
A family of accelerated inexact augmented Lagrangian

methods with applications to image restoration∗

Jianchao Bai † Yuxue Ma ‡

May 23, 2022

Abstract. In this paper, we focus on a class of convex optimization problems subject to equality
or inequality constraints and have developed an Accelerated Inexact Augmented Lagrangian
Method (AI-ALM). Different relative error criteria are designed to solve the subproblem of AI-
ALM inexactly, and the popular used relaxation step is exploited to accelerate the convergence.
By a unified variational analysis, we establish the global convergence of AI-ALM and its sublin-
ear convergence rate in terms of the primal iterative residual, the objective function value gap
and constraint violation, respectively. Numerical experiments on testing the image restoration
problem with different types of images indicate that AI-ALM is effective and promising. In
appendix, we also extend AI-ALM to solve a general multi-block problem and briefly discuss
convergence of the extended method.

Key words: convex optimization, inexact augmented Lagrangian method, relaxation step,
relative error criteria, convergence complexity, image restoration

Mathematics Subject Classification(2010): 65K10; 65Y20; 90C25

1 Introduction

We are interested in the following linearly constrained optimization problem

min
x∈Rn

{
θ(x)| Ax = b (orAx ≥ b)

}
, (1)

where θ(x) : Rn → R is a proper closed convex function (but not necessarily strongly convex
or smooth); A ∈ Rm×n, b ∈ Rm are given. Here and hereafter, the symbols R,Rm,Rm×n

denote the sets of real numbers, m dimensional real column vectors, and m× n real matrices,
respectively. The notation Q ≻ 0 means Q is symmetric positive definite matrix, where 0
stands for a zero matrix/vector with proper dimensions. We also use ∥ · ∥ and ⟨·, ·⟩ to denote
the standard Euclidean norm and inner product, respectively. Throughout the context, the
solution set of the problem (1) is assumed to be nonempty.

Motivated by the recent interesting work [4] which is a novel Augmented Lagrangian Method
(ALM), we aims at developing an Accelerated Inexact ALM (AI-ALM, see Algorithm 1) for

∗This work was supported by the National Natural Science Foundation of China (No. 12001430) and the
China Postdoctoral Science Foundation (No. 2020M683545).

†https://bjc1987.github.io, School of Mathematics and Statistics, Northwestern Polytechnical University,
Xi’an 710129, China (bjc1987@163.com).

‡School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710129, China
(Mayuxue708991@163.com).

1

solving the problem (1), where the core subproblem is solved inexactly to satisfy one of the
following relative error criteria:

2
∣∣⟨vk − x̃k, dk⟩

∣∣+ ∥∥dk∥∥2 ≤ (2− γ)σ
∥∥x̃k − xk

∥∥2
Q
; (C1)

2
∣∣⟨vk − x̃k, dk⟩

∣∣+ ∥∥dk∥∥2 ≤ (2− γ)σ
∥∥x̃k−1 − xk−1

∥∥2
Q
; (C2)

2
∣∣⟨vk − x̃k, dk⟩

∣∣+ ∥∥dk∥∥2 ≤ (2− γ)σ

2βγ2

∥∥λk − λk−1
∥∥2. (C3)

The reason why we design an inexact method is that most of algorithmic subproblems perhaps
admit no closed-form solution, and it is not necessary to solve the involved subproblem exactly,
especially in inverse imaging [5, 9, 11]. For more inexact absolute or relative error criteria, we
refer to e.g. [6, 12, 13, 14, 17, 18] and the references therein.

Algorithm 1 [AI-ALM for solving Problem (1)]

1 Initialize (x0, v0, λ0) ∈ Rn ×Rn ×Rm and set β > 0, Q ≻ 0, σ ∈ [0, 1), γ ∈ (0, 2);
2 While stopping criteria is not satisfied do

3 Compute x̃k ≈ arg min
x∈Rn

{
θ(x)−

⟨
λk, Ax− b

⟩
+ β

∥∥A(x− xk)
∥∥2 + 1

2

∥∥x− xk
∥∥2
Q

}
such

that (C1), (C2) or (C3) holds with

dk ∈ ∂θ(x̃k)−ATλk +
(
2βATA+Q

)(
x̃k − xk

)
;

4 Update λ̃k = λk − β
[
A(2x̃k − xk)− b

]
;

5 Update the auxiliary variable vk+1 = vk − dk;

6 Relaxation step:

(
xk+1

λk+1

)
=

(
xk

λk

)
+ γ

(
x̃k − xk

λ̃k − λk

)
.

7 End while

Note that the objective function of the x̃k-subproblem in Algorithm 1 differs from most of
exact/inexact augmented Lagrangian methods, see e.g. [3, 7, 10, 11] to list a few. For example,
the equivalent core subproblem of the standard ALM [7] is

min
x∈Rn

{
θ(x)−

⟨
x, ATλk + βATb

⟩
+

1

2

∥∥x∥∥2
ATA

}
,

while the subproblem of Algorithm 1 amounts to

min
x∈Rn

{
θ(x)−

⟨
x, ATλk + (Q+ 2βATA)xk

⟩
+

1

2

∥∥x∥∥2
Q+2βATA

}
.

Obviously, the above subproblem does not depend on the known data b but the previous
iteration xk, which means our proposed algorithm is a novel inexact ALM. Particularly, by
taking Q = τI− 2βATA with τ > 2β∥ATA∥, the last subproblem will reduce to

min
x∈Rn

{
θ(x) +

τ

2

∥∥x− (ATλk + τxk)/τ
∥∥2}

and it is the proximity operator of θ(x) to be solved easier than the original. The bold symbol
I used here and hereafter denotes an identity matrix with proper dimension. For the problem
(1) subject to Ax ≥ b, the dual update will read λ̃k = max

{
λk − β

[
A(2x̃k − xk)− b

]
,0

}
.

We have the following comments on the aforementioned criteria. By the steps 4 and 6 in

Algorithm 1, the term in the right-hand-side of (C3) will become (2−γ)β
2 σ

∥∥A(x̃k−1 − xk−1) +

2

Ax̃k−1 − b
∥∥2. An obvious difference among these criteria is that the strategy (C1) employs a

variable error since the term in the right-hand-side uses the current primal iterative residual,
while both (C2) and (C3) enjoy an invariant error determined by the previous primal/dual
iterative residual. If there exists an exact solution for the x-subproblem, then we can take
dk = 0 such that (C1), (C2) or (C3) holds. If σ = 0, then the auxiliary variable v is invariant
and hence Algorithm 1 reduces to an exact version of the previous P-rALM [4].

The paper is organized as follows. In Section 2, we provide a variational characterization
for the primal-dual solution of the problem (1) and recall two basic lemmas for the sake of
convergence analysis. In Section 3, we analyze the global convergence of the proposed algorithm
and its sublinear convergence rate in a unified framework although different relative error criteria
are involved. Section 4 investigates the numerical performance of the proposed algorithm for
solving the image restoration problem with different kinds of images. We conclude the paper in
Section 5 and finally discuss the convergence of an extended algorithms for solving the multi-
block convex optimization problems.

2 Preliminary

We first characterize the solution of (1) as a variational inequality. By attaching the Lagrangian
multiplier λ to the linear constraints, the Lagrangian function of (1) is given by

L(x, λ) = θ(x)− ⟨λ,Ax− b⟩.

From the perspective of convex optimization, a point

w∗ = (x∗;λ∗) ∈ M := Rn × Λ, where Λ :=

{
Rm, if Ax = b,
Rm

+ , if Ax ≥ b,

is called the primal-dual solution of (1) if and only if it is the saddle-point of L (x, λ):

Lλ∈Λ (x∗, λ) ≤ L (x∗, λ∗) ≤ Lx∈Rn (x, λ∗) .

These inequalities can be expressed as the following variational inequality form

θ(x)− θ(x∗) +
⟨
w −w∗,J (w∗)

⟩
≥ 0, ∀w ∈ M.

where

w =

(
x
λ

)
and J (w) =

(
−ATλ
Ax− b

)
.

Clearly, an equivalent expression of the above variational inequality reads

VI(θ,J ,M) : θ(x)− θ(x∗) +
⟨
w −w∗,J (w)

⟩
≥ 0, ∀w ∈ M, (2)

because the affine mapping J (w) is skew symmetric and satisfies⟨
w − w̄,J (w)− J (w̄)

⟩
= 0, ∀w, w̄ ∈ M. (3)

Notice that the solution set of VI(θ,J ,M), denoted by M∗, is nonempty by the previous
assumption. Moreover, it is convex and can be expressed as

M∗ =
∩

w∈M

{
ŵ | θ(x)− θ(x̂) +

⟨
w − ŵ,J (w)

⟩
≥ 0

}
,

see e.g. [8, Theorem 2.1]. A straightforward conjecture is that convergence properties of our
AI-ALM can be established if a similar inequality to (2) can be obtained with some additional
residuals at the previous and current iterations and some extra terms converging to zero.

The forthcoming preliminary lemmas are used to prove the convergence rate of our proposed
algorithm, which can be found in e.g. [19].

3

Lemma 2.1 Given a function ϕ and a fixed point x̄, if for any λ it holds that

F (x̄)− F (x∗)− ⟨λ,Ax̄− b⟩ ≤ ϕ(λ),

then for any ρ > 0 we have

F (x̄)− F (x∗) + ρ∥Ax̄− b∥ ≤ sup
∥λ∥≤ρ

ϕ(λ).

Lemma 2.2 For any ϵ ≥ 0, if

F (x̄)− F (x∗) + ρ∥Ax̄− b∥ ≤ ϵ,

then we have

∥Ax̄− b∥ ≤ ϵ

ρ− ∥λ∗∥
and − ∥λ∗∥ϵ

ρ− ∥λ∗∥
≤ F (x̄)− F (x∗) ≤ ϵ,

where (x∗, λ∗) is a saddle point of (1), and we assume ∥λ∗∥ ≤ ρ.

3 Convergence analysis of AI-ALM

3.1 Variational characterization for the iterates

In this subsection, the iterates generated by AI-ALM will be characterized as a mixed variational
inequality with the aid of the notation w̃k = (x̃k; λ̃k) and the H-weighted norm defined as
∥w∥H =

√
⟨w,Hw⟩, where H is a symmetric positive definite matrix.

Lemma 3.1 The iterates generated by Algorithm 1 satisfy

w̃k ∈ M, θ(x)− θ(x̃k) +
⟨
w − w̃k,J (w)

⟩
−
⟨
x− x̃k, dk

⟩
≥

⟨
w − w̃k,H(wk − w̃k)

⟩
(4)

for any w ∈ M, where

w̃k =

(
x̃k

λ̃k

)
and H =

[
2βATA+Q AT

A 1
β I

]
(5)

is symmetric positive definite for any β > 0 and Q ≻ −βATA. Moreover, we have

θ(x)− θ(x̃k) +
⟨
w − w̃k,J (w)

⟩
−

⟨
x− x̃k, dk

⟩
≥ 1

2γ

{
∥w −wk+1∥2H − ∥w −wk∥2H + γ(2− γ)∥w̃k −wk∥2H

}
. (6)

Proof. For any β > 0 and Q ≻ −βATA, it holds

H ≻
[

βATA AT

A 1
β I

]
=

(√
βAT

1√
β
I

)(√
βA,

1√
β
I

)
≽ 0.

Hence, H is a positive definite matrix.

By the third step in Algorithm 1, we have

θ(x)− θ(x̃k) +
⟨
x− x̃k,−ATλk + (2βATA+Q)(x̃k − xk)− dk

⟩
≥ 0, ∀x ∈ Rn,

or equivalently,

θ(x)− θ(x̃k) +
⟨
x− x̃k,−ATλ̃k

⟩
−
⟨
x− x̃k, dk

⟩
≥

⟨
x− x̃k, (2βATA+Q)(xk − x̃k) +AT(λk − λ̃k)

⟩
.

4

The update of λ̃k implies

λ̃k ∈ Λ,
⟨
λ− λ̃k, Ax̃k − b

⟩
=

⟨
λ− λ̃k, A(xk − x̃k) +

1

β
(λk − λ̃k)

⟩
, ∀λ ∈ Λ.

Combining the last inequality and equality together with the structure of H given by (5) and
the property in (3), the desired inequality (4) is confirmed.

The sixth step in Algorithm 1 shows

wk+1 = wk + γ(w̃k −wk), (7)

which makes the term in the right-hand-side of (4) become⟨
w − w̃k,H(wk − w̃k)

⟩
=

1

γ

⟨
w̃k −w,H(wk+1 −wk)

⟩
=

1

2γ

{∥∥w̃k −wk
∥∥2
H
−
∥∥w̃k −wk+1

∥∥2
H
+
∥∥w −wk+1

∥∥2
H
−

∥∥w −wk
∥∥2
H

}
=

1

2γ

{
γ(2− γ)

∥∥w̃k −wk
∥∥2
H
+
∥∥w −wk+1

∥∥2
H
−
∥∥w −wk

∥∥2
H

}
. (8)

Here, the third equality of (8) uses (7) and the second uses the identity⟨
p− q,H(u− v)

⟩
=

1

2

{∥∥p− v
∥∥2
H
−
∥∥p− u

∥∥2
H
+
∥∥q− u

∥∥2
H
−
∥∥q− v

∥∥2
H

}
(9)

with specifications
p := w̃k, q = w, u = wk+1 and v := wk.

Then, plug (8) into (4) to obtain the inequality (6). �
To obtain a more tight result (as shown in the following Corollary 3.1) from Lemma 3.1 and

for the sake of simplicity, let us now denote
Φk(w) =

1

γ
∥w −wk∥2H + ∥x− vk

∥∥2,
φ(σ, γ) = min{1, 1− σ}2− γ

γ2
,

(10)

and

Ψk =


0, if (C1) is satisfied,

σ 2−γ
γ2

∥∥xk − xk−1
∥∥2
Q
, if (C2) is satisfied,

σ 2−γ
2βγ2

∥∥λk − λk−1
∥∥2, if (C3) is satisfied.

(11)

Corollary 3.1 Let Φk and Ψk be defined in (10) and (11), respectively. For any β > 0, γ ∈
(0, 2), σ ∈ [0, 1), the iterates generated by Algorithm 1 satisfy

2
{
θ(x̃k)− θ(x) +

⟨
w̃k −w,J (w)

⟩}
+Φk+1(w) + Ψk+1

≤Φk(w) + Ψk − φ(σ, γ)
{
∥xk+1 − xk∥2Q +

1

2β
∥λk+1 − λk∥2

}
.

(12)

Moreover, we have

Φk+1(w
∗) + Ψk+1 ≤ Φk(w

∗) + Ψk − φ(σ, γ)
{∥∥xk+1 − xk

∥∥2
Q
+

1

2β
∥λk+1 − λk∥2

}
. (13)

5

Proof. It follows from (6), the fifth step of Algorithm 1 and (9) that

2
{
θ(x)− θ(x̃k) +

⟨
w − w̃k,J (w)

⟩}
− 2

⟨
vk − x̃k, dk

⟩
− (2− γ)∥w̃k −wk∥2H + ∥dk∥2

≥ 1

γ

{
∥w −wk+1∥2H − ∥w −wk∥2H

}
− 2

⟨
vk − x, dk

⟩
+ ∥dk∥2

=
1

γ

{
∥w −wk+1∥2H − ∥w −wk∥2H

}
+ 2

⟨
x− vk, vk − vk+1

⟩
+ ∥vk − vk+1∥2

=
1

γ

{
∥w −wk+1∥2H − ∥w −wk∥2H

}
+ ∥x− vk+1

∥∥2 − ∥x− vk
∥∥2,

in other words,

2
{
θ(x̃k)− θ(x) +

⟨
w̃k −w,J (w)

⟩}
(14)

≤
{ 1

γ
∥w −wk∥2H + ∥x− vk

∥∥2}−
{ 1

γ
∥w −wk+1∥2H + ∥x− vk+1

∥∥2}
−2

⟨
vk − x̃k, dk

⟩
− (2− γ)∥w̃k −wk∥2H + ∥dk∥2

= Φk(w)− Φk+1(w)− 2
⟨
vk − x̃k, dk

⟩
+ ∥dk∥2

−(2− γ)
{
∥x̃k − xk∥22βATA+Q + 2

⟨
A(x̃k − xk), λ̃k − λk

⟩
+

1

β
∥λ̃k − λk∥2

}
≤ Φk(w)− Φk+1(w)− 2

⟨
vk − x̃k, dk

⟩
+ ∥dk∥2

−(2− γ)
{
∥x̃k − xk∥2Q +

1

2β
∥λ̃k − λk∥2

}
,

where the equality uses the notation of Φk(w) given by (10) and the structure of the matrix
H, the final inequality uses the following Cauchy-Schwartz inequality

−2
⟨
A(x̃k − xk), λ̃k − λk

⟩
≤ 2β∥x̃k − xk∥2ATA +

1

2β
∥λ̃k − λk∥2.

Next, we estimate the upper bound of the term in the right-hand-side of the final inequality
in (14), denoted by RHS, under the aforementioned relative error criteria.

• For Algorithm 1 with (C1), we have

RHS ≤Φk(w)− Φk+1(w) + σ(2− γ)
∥∥x̃k − xk

∥∥2
Q

− (2− γ)
{
∥x̃k − xk∥2Q +

1

2β
∥λ̃k − λk∥2

}
=Φk(w)− Φk+1(w)− (1− σ)(2− γ)∥x̃k − xk∥2Q − 2− γ

2β
∥λ̃k − λk∥2

=Φk(w)− Φk+1(w)− (1− σ)(2− γ)

γ2
∥xk+1 − xk∥2Q − (2− γ)

2βγ2
∥λk+1 − λk∥2.

• For Algorithm 1 with (C2), it follows that

RHS ≤Φk(w)− Φk+1(w) + σ(2− γ)
∥∥x̃k−1 − xk−1

∥∥2
Q

− (2− γ)
{
∥x̃k − xk∥2Q +

1

2β
∥λ̃k − λk∥2

}
=
{
Φk(w) +

σ(2− γ)

γ2
∥xk − xk−1∥2Q

}
−
{
Φk+1(w) +

σ(2− γ)

γ2
∥xk+1 − xk∥2Q

}
− (1− σ)(2− γ)

γ2
∥xk+1 − xk∥2Q − (2− γ)

2βγ2
∥λk+1 − λk∥2.

6

• For Algorithm 1 with (C3), it follows that

RHS ≤Φk(w)− Φk+1(w) +
σ(2− γ)

2βγ2
∥λk − λk−1∥2

− (2− γ)
{
∥x̃k − xk∥2Q +

1

2β
∥λ̃k − λk∥2

}
=
{
Φk(w) +

σ(2− γ)

2βγ2
∥λk − λk−1∥2

}
−
{
Φk+1(w) +

σ(2− γ)

2βγ2
∥λk+1 − λk∥2

}
− 2− γ

γ2
∥xk+1 − xk∥2Q − (1− σ)(2− γ)

2βγ2
∥λk+1 − λk∥2.

Combining the above three cases and (14) together with the notations in (10) and (11), the
result (12) is confirmed.

Finally, set w = w∗ in (12) and use (2) to complete the proof of (13). �

Remark 3.1 From the analysis of Corollary 3.1, the term
(
2
∣∣⟨vk − x̃k, dk⟩

∣∣ + ∥∥dk∥∥2) can be
also upper bounded by a convex combination of the two or three terms in the right-hand-side
of (C1)-(C3). And similar convergence results will be achieved. Besides, comparing (4) to
VI(θ,J ,M), the iterate w̃k will be a solution point of VI(θ,J ,M) if both dk and (wk − w̃k)
are zero, equivalently, (vk − vk+1) and (wk −wk+1) are zero. For this case, Algorithm 1 will
reduce to an exact version without relaxation step.

Remark 3.2 Recalling the previous analysis in Section 3.1, one may use the following general
iterate to replace the fourth step of Algorithm 1:

λ̃k = λk − sβ
[
A(2x̃k − xk)− b

]
,

where s ∈ (0, 1] denotes a stepsize parameter. For this case, Lemma 3.1 still hold but with
the lower-upper block of H given by (5) being replaced by 1

sβ I. And the resulting matrix is

still positive definite for any Q ≻ 0 and s ∈ (0, 1]. By multiplying the right-hand-side of (C3)
by 2−s

s , we can obtain the inequalities (12) and (13) but with the term 1
2β ∥λ

k+1 − λk∥2 being

replaced by 2−s
2sβ ∥λ

k+1 − λk∥2.

3.2 Global convergence and sublinear convergence rate

Based on the key Corollary 3.1, this section aims to establish the global convergence of Al-
gorithm 1 and its sublinear convergence rate in the sense of the primal iterative residual, the
objective function value gap and constraint violation.

Theorem 3.1 For Algorithm 1 with inexact criteria (C1), (C2) or (C3), we have

(i) lim
k→∞

∥wk+1 −wk∥ = 0 and lim
k→∞

∥Axk+1 − b∥ = 0;

(ii) The sequence {wk} converges to a solution point w∞ ∈ M∗;

(iii) For any k ≥ 1, there exists an integer t ≤ k such that

∥wt+1 −wt∥2 ≤ 1

k

1

φ(σ, γ)

[
Φ1(w

∗) + Ψ1

]
.

Proof. Sum (13) over k = 1, 2, · · · ,∞ to obtain

∞∑
k=1

(
∥xk+1 − xk∥2Q +

1

2β
∥λk+1 − λk∥2

)
≤ 1

φ(σ, γ)

[
Φ1(w

∗) + Ψ1

]
< ∞. (15)

7

Together with Q ≻ 0, the inequality (15) shows

lim
k→∞

∥xk+1 − xk∥ = 0 and lim
k→∞

∥λk+1 − λk∥ = 0.

So, the first result in (i) is confirmed. Combining the last two equations together with the sixth
step of Algorithm 1 indicates

lim
k→∞

∥x̃k − xk∥2 = 0 and lim
k→∞

∥λ̃k − λk∥2 = 0. (16)

Together with a variant of the fourth step of Algorithm 1, that is,

λk − λ̃k

β
= Ax̃k − b+A(x̃k − xk) = Axk − b+ 2A(x̃k − xk),

and the sixth step of Algorithm 1, we further deduce

lim
k→∞

∥∥Axk+1 − b
∥∥ = lim

k→∞

∥∥∥λk − λ̃k

β
+ (γ − 2)A(x̃k − xk)

∥∥∥ = 0.

That is, the second result in (i) is ture.

For any w∗ ∈ M∗, it follows from (13) that

Φk+1(w
∗) ≤ Φk+1(w

∗) + Ψk+1 ≤ Φk(w
∗) + Ψk ≤ Φ1(w

∗) + Ψ1,

which, by using the definition of Φk(w) and γ ∈ (0, 2), shows that the sequences {wk}, {vk}
are bounded. In addition, {w̃k} is also bounded by (7) and the boundedness of {wk}. Let
w∞ = (x∞, λ∞) be a cluster point of {w̃k} and {w̃kj} be the subsequence converging to w∞.
Combine (16) with (C1), (C2) or (C3) to achieve

lim
k→∞

⟨vk − x̃k, dk⟩ = 0 and lim
k→∞

∥dk∥ = 0.

For any fixed w ∈ M, taking w̃kj in (4) together with (3), letting j go to ∞ we have

θ(x)− θ(x∞) +
⟨
w −w∞,J (w∞)

⟩
≥ 0,

which means that w∞ ∈ M∗ is a solution point of VI(θ,J ,M). Since w∞ ∈ M∗, for all l ≥ kj
it follows from (13) again that

Φl(w
∞) + Ψl ≤ Φkj (w

∞) + Ψkj .

This together with (i), lim
j→∞

w̃kj = w∞ and the positive definiteness of H shows lim
l→∞

wl = w∞.

Namely, the sequence {wk} cannot have another cluster point and thus it converges to the
solution w∗ = w∞ ∈ M∗.

Finally, let k ≥ 1 be any fixed constant and t ≤ k be a positive integer such that∥∥wt+1 −wt
∥∥ = min

{∥∥wl+1 −wl
∥∥ | l = 1, . . . , k

}
.

Then, by (15) again we deduce
∥∥wt+1 −wt

∥∥2 ≤ 1
k

1
φ(σ,γ)

[
Φ1(w

∗) + Ψ1

]
. �

The results in Theorem 3.1 requires Q ≻ 0 that is the condition we explained in Algorithm 1.
According to the first conclusion in Theorem 3.1, one may use max

{
∥xk+1−xk∥, ∥λk+1−λk∥

}
≤

ϵ or the associated relative error as a simple stopping criterion for Algorithm 1, where 0 < ϵ < 1
is a given tolerance error. The second conclusion shows that x∞, λ∞ are the solution point of
the primal problem (1) and its dual respectively, while the third shows that Algorithm 1 has a
sublinear convergence rate in terms of the primal iterative residual.

8

Next, we establish its sublinear convergence rate in terms of the objective function value gap
and constraint violation for the following ergodic iterates (it was firstly appeared in [2])

w̄T :=
1

T

T+κ∑
k=κ

w̃k and x̄T :=
1

T

T+κ∑
k=κ

x̃k, ∀κ, T > 0. (17)

Theorem 3.2 Let x̄T be defined in (17). Then, for any integer T > 0, we have

∣∣θ(x̄T)− θ(x∗)
∣∣ ≤ 1

2T

(
2ρ20
γβ

+ c0

)
and

∥∥Ax̄T − b
∥∥ ≤ 1

2T

(
2ρ20
γβ

+ c0

)
, (18)

where β > 0, γ ∈ (0, 2), c0 is a certain positive constant and

ρ0 = max
{
1 + ∥λ∗∥, 2∥λ∗∥

}
. (19)

Proof. Summing (12) over k between κ and κ+ T yields

1

T

T+κ∑
k=κ

[
θ(x̃k)− θ(x) +

⟨
w̃k −w,J (w)

⟩]
≤ 1

2T

(
Φκ(w) + Ψκ

)
.

By making use of the convexity of θ, the definitions in (17) and the structure of H, take
w = (x∗, λ) in the last inequality to obtain

θ(x̄T)− θ(x∗)− λT(Ax̄T − b)

≤ 1

2Tγ

(
∥x∗ − xκ∥22βATA+Q + 2(λ− λκ)TA(x∗ − xκ) +

1

β
∥λ− λκ∥2

)
+

1

2T

(
∥x∗ − vκ

∥∥2 +Ψκ

)
≤ 1

2T

{
1

γ

(
∥x∗ − xκ∥23βATA+Q +

2

β
∥λ− λκ∥2

)
+ ∥x∗ − vκ

∥∥2 +Ψκ

}
=

1

2T

(2

γβ
∥λ− λκ∥2 + c0

)
,

where the second inequality follows from the Cauchy-Schwartz inequality

2(λ− λκ)TA(x∗ − xκ) ≤
∥∥x∗ − xκ

∥∥2
βATA

+
1

β

∥∥λ− λκ
∥∥2

and c0 = 1
γ ∥x

∗ −xκ∥2
3βATA+Q

+ ∥x∗ − vκ∥2 +Ψκ is certain constant depending on the problem

data and the parameters of Algorithm 1. For any ρ > 0, according to Lemma 2.1 we have

θ(x̄T)− θ(x∗) + ρ∥Ax̄T − b∥ ≤ 1

2T

(
c0 +

2

γβ
sup

∥λ∥≤ρ

∥λ− λκ∥2
)
.

Moreover, letting ρ > ∥λ∗∥ and applying Lemma 2.2 to above inequality, we have

∥∥Ax̄T − b
∥∥ ≤ 1

2T

2ρ2/(γβ) + c0
ρ− ∥λ∗∥

,

and

− 1

2T

∥λ∗∥
ρ− ∥λ∗∥

(
2ρ2

γβ
+ c0

)
≤ θ(x̄t)− θ(x∗) ≤ 1

2T

(
2ρ2

γβ
+ c0

)
.

Taking ρ = ρ0 in the above two relations with ρ0 given by (19), we can get (18) immediately.
This completes the whole proof. �

9

Remark 3.3 According to the analysis of Corollary 3.1, one may exploit the following simple
error criteria ∥∥dk∥∥2 ≤ 2σ

∣∣⟨vk − x̃k, dk⟩
∣∣, ∀σ ∈ (0, 1] (C4)

when solving the subproblem of Algorithm 1 inexactly. And the convergence of Algorithm 1
under (C4) can be established similar to the previous analysis. In practice, combining (14) and
(C4) is to obtain

2
{
θ(x̃k)− θ(x) +

⟨
w̃k −w,J (w)

⟩}
≤Φk(w)− Φk+1(w)− 1− σ

σ
∥dk∥2 − (2− γ)

{
∥x̃k − xk∥2Q +

1

2β
∥λ̃k − λk∥2

}
,

which, by setting w = w∗ together with (2), gives

Φk+1(w
∗) ≤ Φk(w

∗)− 1− σ

σ
∥dk∥2 − (2− γ)

{
∥x̃k − xk∥2Q +

1

2β
∥λ̃k − λk∥2

}
.

Then, Algorithm 1 under (C4) converges globally with a sublinear convergence rate. A surprising
observation in experiments is that AI-ALM with the criteria (C4) performs very well.

4 Numerical experiments

In this section, we apply our proposed method to solve a class of image restoration problems
and then we report some related numerical results. All experiments are coded in Matlab R2017a
on a PC with Intel Core i5 processor (2.5HZ) and 16GB memory.

Consider the following total variation (TV) uniform noise removal model in [16]:

min{
∥∥|∇x|

∥∥
1
|
∥∥Hx− x̄

∥∥
∞ ≤ δ},

where x̄ ∈ Rl is an observed image corrupted by a zero-mean uniform noise; H ∈ Rl×l denotes
a blurring operator matrix;

∥∥|∇ · |
∥∥
1
is the TV norm of the divergence operator ∇· (see e.g.

[13]), δ > 0 is a parameter indicating the uniform noise level and
∥∥x∥∥∞ = max1≤i≤l |xi|.

By denoting

A =

(
H
−H

)
and b =

(
x̄− δ1
−x̄− δ1

)
,

with 1 = (1, 1, . . . , 1)T ∈ Rl, the above model can be rewritten as

min{
∥∥|∇x|

∥∥
1
| Ax ≥ b} (20)

which is a special case of (1). Thus, the proposed AI-ALM can be applied to solve it.

As explained in Introduction, we take Q = τI− 2βATA with τ > 2β∥ATA∥ in experiments.
Then, the core subproblem of AI-ALM is

x̃k ≈ arg min
x∈Rl

∥∥|∇x|
∥∥
1
+

τ

2

∥∥∥x− ATλk + τxk

τ

∥∥∥2.
In the following experiments, the method in [5] is used to solve the above subproblem to obtain
an inexact solution per iteration, and AI-ALM terminates when the previous mentioned inexact
criterions are satisfied or execute 10 iterations. For simplicity, we denote AI-ALM by AI-ALM1,
AI-ALM2, AI-ALM3 when the inexact criterions (C1), (C2) and (C3) are adopted respectively.
We also denote AI-ALM as AI-ALM4 when (C4) is utilized as we discussed in Remark 3.3. These
methods are compared with the specialized algorithm C-PPA [9] whose main subproblem still
use the method in [5]. We don’t compare our algorithm with other image restoration algorithms

10

Figure 1: The first row is the clean images: House, Pepper, TomAndJerry and Lena, while the last two rows
are degraded images with δ = 0.2 and 0.5, respectively.

since C-PPA had been shown better than some state-of-the-art algorithms, see [9, Section 5].
The parameters of C-PPA use the default settings as mentioned therein.

We take (x0, v0, λ0) = (x̄, x̄,0) as the initial point and use the tuned parameters β = 12, τ =
50, σ = 0.99, γ = 1.8 for our proposed algorithms. The following Signal-to-Noise Ration (SNR)
in decibel (dB) defined by

SNR = 20 log10
∥x̄∥

∥x̄− x†∥
is used to measure the quality of a restored image, where x̄ denotes the origin clean image
and x† denotes the restored image obtained by an algorithm. All mentioned algorithms will
terminate when SNR no longer changes, which means that SNR value difference between the
current iteration and the last iteration is controlled within 10−2.

We test different type of images: House (256 × 256), Pepper (256 × 256), TomAndJerry
(256 × 256) and Lena (512 × 512), as shown in the first row of Fig 1. The origin images are
degraded by the Gaussian filter of size 9 with standard deviation 2.5, and then a zero-mean
uniform noise with δ = 0.2 or 0.5 is added to the degraded images. Those degraded images
are shown respectively in the last two rows of Fig 1. Tables 1-2 report some numerical results
of solving (20) with δ ∈ {0.2, 0.5}, including the number of outer iterations (Oiter), the total
number of inner iterations (Iiter)(”-” for C-PPA means it executes 10 iterations for each outer
iteration), the CPU time in seconds (Time). The notations ”SNR(input)” and ”SNR(final)”
denote the SNR value of the corrupted images and the final restored images, respectively. Note
that, the larger the obtained SNR value, the better the quality of a restored image. From
Tables 1-2, we can see that the outer iteration number of our AI-ALM is smaller than C-PPA,
and the CPU time of AI-ALM4 is of the smallest among the compared algorithms to obtain a
relatively better SNR finally.

Fig 2 depicts the tendency of SNR versus the CPU time, showing intuitionally the advantage
of our algorithms, especially the algorithm AI-ALM4 (it can obtain a large SNR value with
relatively cheaper CPU time). Of course, it is undeniable that C-PPA may recover the image

11

of average quality quickly when the image is seriously polluted. Fig 3 and Fig 4 visualize the
images restored by all compared algorithms, from which we can see all methods can restore the
degraded images with good qualities.

Table 1: Numerical results of different algorithms for solving (20) with δ = 0.2.

Image SNR(input) Method Oiter Iiter Time SNR(final)

House 13.23

AI-ALM1 17 17 0.47 22.39
AI-ALM2 17 26 0.61 22.39
AI-ALM3 17 26 0.44 22.39
AI-ALM4 17 17 0.24 22.39
C-PPA 51 - 1.04 21.41

Pepper 11.81

AI-ALM1 16 16 0.48 17.85
AI-ALM2 16 25 0.56 17.85
AI-ALM3 16 25 0.43 17.85
AI-ALM4 16 16 0.23 17.85
C-PPA 35 - 0.72 17.10

TomAndJerry 11.18

AI-ALM1 21 21 3.43 19.03
AI-ALM2 21 30 3.95 19.03
AI-ALM3 21 30 2.89 19.03
AI-ALM4 21 21 1.71 19.03
C-PPA 44 - 6.72 18.24

Lena 12.56

AI-ALM1 16 16 2.59 22.23
AI-ALM2 16 25 3.22 22.23
AI-ALM3 16 25 2.30 22.23
AI-ALM4 16 16 1.34 22.23
C-PPA 43 - 6.61 21.53

Table 2: Numerical results of different algorithms for solving (20) with δ = 0.5.

Image SNR(input) Method Oiter Iiter Time SNR(final)

House 5.80

AI-ALM1 25 25 0.70 20.64
AI-ALM2 25 34 0.80 20.65
AI-ALM3 25 34 0.60 20.65
AI-ALM4 25 25 0.35 20.64
C-PPA 45 - 0.93 20.09

Pepper 4.94

AI-ALM1 26 26 0.73 16.81
AI-ALM2 26 35 0.82 16.81
AI-ALM3 26 35 0.62 16.81
AI-ALM4 26 26 0.35 16.81
C-PPA 36 - 0.75 16.31

TomAndJerry 4.02

AI-ALM1 27 27 4.30 17.80
AI-ALM2 27 36 4.92 17.80
AI-ALM3 27 36 3.55 17.80
AI-ALM4 27 27 2.20 17.80
C-PPA 42 - 6.41 17.34

Lena 5.03

AI-ALM1 28 28 4.44 20.76
AI-ALM2 28 37 5.09 20.76
AI-ALM3 28 37 3.64 20.76
AI-ALM4 28 28 2.27 20.76
C-PPA 37 - 5.62 20.30

12

0 0.2 0.4 0.6 0.8 1 1.2

Time

13

14

15

16

17

18

19

20

21

22

23

S
N

R
(d

B
)

House (256 256)

AI-ALM1
AI-ALM2
AI-ALM3
AI-ALM4
C-PPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time

11

12

13

14

15

16

17

18

S
N

R
(d

B
)

Pepper (256 256)

AI-ALM1
AI-ALM2
AI-ALM3
AI-ALM4
C-PPA

0 1 2 3 4 5 6 7

Time

11

12

13

14

15

16

17

18

19

20

S
N

R
(d

B
)

TomAndJerry (256 256)

AI-ALM1
AI-ALM2
AI-ALM3
AI-ALM4
C-PPA

0 1 2 3 4 5 6 7

Time

12

14

16

18

20

22

24

S
N

R
(d

B
)

Lena (512 512)

AI-ALM1
AI-ALM2
AI-ALM3
AI-ALM4
C-PPA

0 0.2 0.4 0.6 0.8 1

Time

4

6

8

10

12

14

16

18

20

22

S
N

R
(d

B
)

House (256 256)

AI-ALM1
AI-ALM2
AI-ALM3
AI-ALM4
C-PPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time

4

6

8

10

12

14

16

18

S
N

R
(d

B
)

Pepper (256 256)

AI-ALM1
AI-ALM2
AI-ALM3
AI-ALM4
C-PPA

0 1 2 3 4 5 6 7

Time

4

6

8

10

12

14

16

18

S
N

R
(d

B
)

TomAndJerry (256 256)

AI-ALM1
AI-ALM2
AI-ALM3
AI-ALM4
C-PPA

0 1 2 3 4 5 6

Time

4

6

8

10

12

14

16

18

20

22

S
N

R
(d

B
)

Lena (512 512)

AI-ALM1
AI-ALM2
AI-ALM3
AI-ALM4
C-PPA

Figure 2: Comparison curves of the SNR vs the CPU time by different algorithms for solving (20) with δ = 0.2
(the left column) and δ = 0.5 (the right column), respectively.

13

5 Brief conclusion

In this paper, we proposed an accelerated inexact augmented Lagrangian method to solve the
convex optimization problems with equality or inequality constraints. We designed several
different inexact criteria to control the accuracy of the solution to the core subproblem and we
proved the global convergence of the new method and its sublinear convergence rate in a unified
framework. To investigate the numerical efficiency of the proposed algorithm under different
criteria, we applied it to solve a class of image restoration problems. For the theoretical interests,
we also extended the proposed algorithm to solve the multi-block problem in the appendix and
briefly discussed the related convergence results. Notice that in the basic AI-ALM and its
extended algorithm, a positive definite matrix Q is exploited to simplify the solving difficulty of
involved subproblem. So, whether a positive indefinite matrix can be utilized is an interesting
topic in the future work.

Figure 3: The restored images of different algorithms for solving (20) with δ = 0.2: (from top to bottom)
AI-ALM1, AI-ALM2, AI-ALM3, AI-ALM4 and C-PPA, respectively.

Appendix: Extension of AI-ALM to multi-block case

This appendix aims to briefly discuss the convergence of an extended AI-ALM (eAI-ALM,

14

see Algorithm 2) for solving a multi-block convex programming in the form of

min
xi∈Rni

{
θ(x) :=

p∑
i=1

θi(xi)|
p∑

i=1

Aixi = b (or ≥ b)
}
, (A1)

where θi(xi) : Rni → R, i = 1, 2, · · · , p are proper closed convex functions; Ai ∈ Rm×ni and
b ∈ Rm are given data. Problems in the form of (A1) arise in many practical applications such
as statistical learning [1], video surveillance [15] and so on.

Figure 4: The restored images of different algorithms for solving (20) with δ = 0.5: (from top to bottom)
AI-ALM1, AI-ALM2, AI-ALM3, AI-ALM4 and C-PPA, respectively.

Note that, if some of the involved subproblems have exact solution to be solved easily, then
we can only focus on the solving of other subproblems inexactly. To simplify the convergence
of Algorithm 2, let us define

M :=

p∏
i=1

Rni × Λ, where Λ :=


Rm, if

p∑
i=1

Aixi = b,

Rm
+ , if

p∑
i=1

Aixi ≥ b,

and

15

Algorithm 2 [eAI-ALM for solving Problem (A1)]

1 Initialize (x0
1, . . . ,x

0
p, v

0
1 , . . . , v

0
p, λ

0) and set βi > 0, Qi ≻ 0, σ ∈ [0, 1), γ ∈ (0, 2);
2 While stopping criteria is not satisfied do
3 For i = 1, · · · , p, parallelly update

4 x̃k
i ≈ arg min

xi∈Rni
θi(xi)−

⟨
λk, Aixi − b

⟩
+ βi

∥∥Ai(xi − xk
i)
∥∥2 + 1

2

∥∥xi − xk
i

∥∥2
Qi

such

that (C1), (C2) or (C3) holds with

dki ∈ ∂θi(x̃
k
i)−AT

i λ
k +

(
2βiA

T
i Ai +Qi

)(
x̃k
i − xk

i

)
;

5 End for
6 Update λ̃k = λk − β

[∑p
i=1 Ai(2x̃

k
i − xk

i)− b
]
where β = 1/

∑p
i=1

1
βi
;

7 Update the auxiliary variable vk+1
i = vki − dki for i = 1, · · · , p;

8 Relaxation step:


xk+1
1
...

xk+1
p

λk+1

 =


xk
1
...
xk
p

λk

+ γ


x̃k
1 − xk

1
...

x̃k
p − xk

p

λ̃k − λk

.

9 End while

w =

(
x
λ

)
=


x1

...
xp

λ

 , w̃k =

(
x̃k

λ̃k

)
=


x̃k
1
...
x̃k
p

λ̃k

 , J (w) =


−AT

1λ
...

−AT
pλ

p∑
i=1

Aixi − b

 .

We provide a similar lemma to Lemma 3.1 to establish the convergence of eAI-ALM.

Lemma A.1 The iterates generated by eAI-ALM satisfy (4) and (6) where

dk =


dk1
dk2
...
dkp

 , H =


2β1A

T
1A1 +Q1 · · · 0 AT

1
...

. . .
...

...
0 · · · 2βpA

T
pAp +Qp AT

p

A1 · · · Ap

p∑
i=1

1
βi
I


is symmetric positive definite for any βi > 0 and Qi ≻ −βiA

T
i Ai(i = 1, · · · , p). Moreover, the

inequalities (12) and (13) hold with Q = diag(Q1, · · · , Qp).

Proof. We first prove the positive definiteness of H. For any βi > 0 and Qi ≻ 0 ≻ −βiA
T
i Ai,

by the structure of H given by Lemma A.1 we have

H ≻


β1A

T
1A1 · · · 0 AT

1
...

. . .
...

...
0 · · · βpA

T
pAp AT

p

A1 · · · Ap

p∑
i=1

1
βi
I



=


β1A

T
1A1 · · · 0 AT

1
...

. . .
...

...
0 · · · 0 0
A1 · · · 0 1

β1
I

+ · · ·+


0 · · · 0 0
...

. . .
...

...
0 · · · βpA

T
pAp AT

p

0 · · · Ap
1
βp
I



16

=



√
β1A

T
1

0
...
0
1√
β1
I





√
β1A

T
1

0
...
0
1√
β1
I



T

+ . . .+


0
...
0√
βpA

T
p

1√
βp

I




0
...
0√
βpA

T
p

1√
βp

I



T

.

Clearly, the term in the right-hand-side of the above final equality is nonnegative and hence
the matrix H is symmetric positive definite.

By the fourth step of Algorithm 2, we have for any i = 1, 2, · · · , p, that

θi(xi)− θi(x̃
k
i) +

⟨
xi − x̃k

i ,−AT
i λ

k +
(
2βiA

T
i Ai +Qi

)
(x̃k

i − xk
i)− dki

⟩
≥ 0, ∀xi ∈ Rni ,

that is,

θi(xi)− θ(x̃k
i) +

⟨
xi − x̃k

i ,−AT
i λ̃

k
⟩
−
⟨
xi − x̃k

i , d
k
i

⟩
≥

⟨
xi − x̃k

i ,
(
2βiA

T
i Ai +Qi

)
(xk

i − x̃k
i) +AT

i (λ
k − λ̃k)

⟩
.

Besides, it follows from the update of λ̃k that λ̃k ∈ Λ and⟨
λ− λ̃k,

p∑
i=1

Aix̃
k
i − b

⟩
=

⟨
λ− λ̃k,

p∑
i=1

Ai(x
k
i − x̃k

i) +

p∑
i=1

1

βi
(λk − λ̃k)

⟩
, ∀λ ∈ Λ.

Combine the last inequality and equality together with the block structure of H to obtain the
inequality (4). Then, analogous to the rest proof of Corollary 3.1, the inequality (6) holds too.

The inequalities (12) and (13) can be proved similar to Corollary 3.1 with Q being a diagonal
matrix, that is, Q = diag(Q1, · · · , Qp). �

Based on Lemma A.1, the global convergence and sublinear convergence rate of eAI-ALM
can be established as the rest parts of Section 3.2. Notice that both Algorithm 1 and Algorithm
2 obey primal-dual updates. In practice, we can first update the dual variable and then update
the primal variables to obtain a dual-primal version which is omitted here. Interested readers
can find the similar discussions in [4, Remark 3.1].

References

[1] J. Bai, J. Li, F. Xu, H. Zhang, Generalized symmetric ADMM for separable convex optimization, Comput.
Optim. Appl. 70 (2018), 129-170.

[2] J. Bai, W. Hager, H. Zhang, An inexact accelerated stochastic ADMM for separable convex optimization,
Comput. Optim. Appl. 81 (2022), 479-518.

[3] J. Bai, D. Han, H. Sun, H. Zhang, Convergence analysis of an inexact accelerated stochastic ADMM with
larger stepsizes, CSIAM Trans. Appl. Math. (2022), DOI: 10.4208/csiam-am.SO-2021-0021.

[4] J. Bai, H. Zhang, An new insight on augmented Lagrangian method with applications in machine learning,
Optimization Online, (2021), http://www.optimization-online.org/DB FILE/2021/08/8559.pdf.

[5] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis. 20
(2004), 89-97.

[6] J. Eckstein, D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm
for maximal monotone operators, Math. Program. 55 (1992), 293-318.

[7] M. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl. 4 (1969), 303-320.

[8] B. He, X Yuan, On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method,
SIAM J. Numer. Anal. 50 (2012), 700-709.

17

[9] B. He, X. Yuan, W. Zhang, A customized proximal point algorithm for convex minimization with linear
constraints, Comput. Optim. Appl. 56 (2013), 559-572.

[10] B. He, L. Hou, X. Yuan, On full Jacobian decomposition of the augmented Lagrangian method for separable
convex programming, SIAM J. Optim. 25 (2015), 2274-2312.

[11] M. Kang, M. Kang, M. Jung, Inexact accelerated augmented Lagrangian methods, Comput Optim. Appl.
62 (2015), 373-404.

[12] M. Li, L. Liao, X. Yuan, Inexact alternating direction methods of multipliers with logarithmic-quadratic
proximal regularization, J. Optim. Theory Appl. 159 (2013), 412-436.

[13] Y. Ma, J. Bai, H. Sun, An inexact ADMM with proximal-indifinite term and larger stepsize, Optimization
Online, (2022), http://www.optimization-online.org/DB FILE/2022/02/8793.pdf.

[14] Z. Peng, D. Wu, An inexact parallel splitting augmented Lagrangian method for large system of linear
equations, Appl. Math. Comput. 216 (2010), 1624-1636.

[15] M. Tao, X. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy
observations, SIAM J. Optim. 21 (2011), 57-81.

[16] P. Weiss, G. Aubert, L. Blanc-Fraud, Some applications of ℓ∞-constraints in image processing, INRIA
Research Report (2006).

[17] Z. Wu, M. Li, General inexact primal-dual hybrid gradient methods for saddle-point problems and con-
vergence analysis, Asia Pac. J. Oper. Res. 8 (2021), 1-27.

[18] J. Xie, On inexact ADMMs with relative error criteria, Comput. Optim. Appl. 71 (2018), 743-765.

[19] Y. Zu, Accelerated first-order primal-dual proximal mehtods for linearly constrained composite convex
programming, SIAM J. Optim. 27 (2017), 1459-1484.

18

