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a b s t r a c t

For the fast approximate solution of Mixed-Integer Non-Linear Programs (MINLPs) arising in the
context of Mixed-Integer Optimal Control Problems (MIOCPs) a decomposition algorithm exists that
solves a sequence of three comparatively less hard subproblems to determine an approximate MINLP
solution. In this work, we propose a problem formulation for the second algorithm stage that is a
convex approximation of the original MINLP and relies on the Gauss–Newton approximation. We
analyze the algorithm in terms of approximation properties and establish a first-order consistency
result. Then, we investigate the proposed approach considering a numerical case study of Mixed-
Integer Optimal Control (MIOC) of a renewable energy system. The investigation shows that the
proposed formulation can yield an improved integer solution regarding the objective of the original
MINLP compared with the established Combinatorial Integral Approximation (CIA) algorithm.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Using MIOCPs in real-time control applications requires the
ast solution of MINLPs, cf. Kirches (2011). While general MINLP
olvers are usually not suitable for this task (Sager, 2009), ap-
roximate fast solutions of such MINLPs can be obtained using
decomposition approach which relies on the solution of a se-
uence of three comparatively less hard subproblems, cf. Sager
2009) and Sager et al. (2012, 2011). The approach has been
mplemented successfully in various applications such as the
ontrol of renewable energy systems (Bürger et al., 2019) and
ybrid electric vehicles (Robuschi et al., 2021).
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Teo under the direction of Editor Ian R. Petersen.
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In the second stage of this algorithm, an integer solution for
the discrete inputs of the controlled system is computed based
on a corresponding relaxed solution determined in the first stage.
This is often realized by solving a so-called CIA problem (Sager
et al., 2011), which yields an integer approximation with mini-
mum distance to the determined relaxed solution as measured
by a dedicated norm. The formulation of this problem, which
is a Mixed-Integer Linear Program (MILP) of a special structure,
originally relies only on the relaxed integer solution and possibly
additional combinatorial constraints for the integer solution, e. g.,
maximum permissible number of switches (Sager & Zeile, 2021)
or minimum dwell times (Zeile et al., 2021), but does not ex-
plicitly consider further information of previous algorithm stages,
e. g., the effects of the approximated discrete inputs on the system
states. Owing to that, approximations obtained using CIA can
sometimes lead to poor control performance, depending on the
relaxed solution that is processed and the system’s sensitivity to
its discrete controls, cf. Bürger (2020).

1.1. Relevant literature

With regard to the CIA decomposition, the inclusion of combi-
natorial constraints for MIOCPs has been investigated via multi-

bang or total variation regularization (Leyffer & Manns, 2021;

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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anns, 2021; Sager & Zeile, 2021) and using a penalty alter-
ating direction method (Göttlich et al., 2021). Our approach is
ifferent from the latter method in the sense that we do not
ntroduce a penalization term in the original problem. To obtain
tate constraint feasibility of the rounded solution, a forward
imulation of differential states as part of the CIA problem was
roposed in Lilienthal et al. (2020). Moreover, the steps in the
IA decomposition can be modified and iterated similarly as in
he Feasibility Pump algorithm (Fischetti et al., 2005) for MIOCPs
or which the feasibility of solutions is difficult to achieve. Apart
rom the three-step CIA decomposition, a bilevel approach has
een proposed to solve MIOCPs, where the switching sequence
nd switching times are optimized on the upper and lower level,
espectively (Bemporad et al., 2002). The idea of switching time
ptimization (Axelsson et al., 2008; Gerdts, 2006) is to optimize
ver the durations of the system modes, which results in a Non-
inear Program (NLP). As part of this approach, switching costs
an be included (De Marchi, 2019).
Approaches that approximate MINLPs with MIQPs are com-

utationally advantageous and rely, e.g., on Sequential Quadratic
rogramming (SQP)-type algorithms (Exler et al., 2012) or quad-
atic outer approximation (Fletcher & Leyffer, 1994). These
pproaches are closely related to the one presented in this work.

.2. Contribution

We present a problem formulation for the second stage of the
ecomposition algorithm that relies on linearization of the origi-
al MINLP. In particular, we derive a convex approximation of the
riginal problem that relies on the Gauss–Newton approximation.
he solution of this problem, which is an MIQP, can yield an
mproved integer solution in terms of the objective and feasibility
f the original MINLP as it allows for an explicit consideration of
nformation from the first algorithm stage and how the integer
pproximation affects the system state. We justify the proposed
pproach theoretically by establishing a first-order consistency
esult and demonstrate the possible advantages considering a
umerical case study of MIOC of a renewable energy system.

.3. Outline

The remainder of this work is organized as follows: Section 2
ormally introduces the class of MIOCPs considered in this work.
ection 3 provides a description of the decomposition algorithm.
ection 4 introduces different distance functions for use within
he second stage of the decomposition algorithm, and a novel
auss–Newton (GN)-based distance function. The proposed con-
ex approximation is described in Section 5 and its properties are
iscussed in Section 6. Section 7 states the potential advantages
f the proposed approach considering a numerical case study.
ection 8 concludes this work.

. Mixed-integer optimal control problems

This section introduces the MIOCP and the derived MINLP for-
ulation considered in this work. For this, we follow the notation
nd presentation of Rawlings et al. (2020). The concatenation of a
umber of vectors a ∈ Rna as in a :=

[
a(1)⊤, . . . , a(k)⊤

]⊤
∈ Rk·na

is in the following denoted by the expression a :=(
a(1), . . . , a(k)

)
.

2

2.1. Problem formulation

The algorithms and approaches presented in this work are
based on a careful formulation of the MIOCP into an MINLP with
a special structure. The MINLP is similar to a standard Optimal
Control Problem (OCP) in discrete time; however, the inputs
comprise continuous inputs u and integer inputs i, such that the
system is described by

x+
= f (x, u, i). (1)

Without loss of generality, we restrict ourselves to integers i ∈ Zni

inside a bounded convex polyhedron P ⊂ Rni . The polyhedral
constraint i ∈ P allows us to exclude some combinations, e. g.,
if two machines cannot be operated simultaneously. The poly-
hedron P can and should be chosen as the convex hull of the
admissible integer values in each time step. Also, note that an
integer program in which all integer variables are constrained so
that the possible choices for each integer variable define a finite
set, can also be formulated as a binary program using partial outer
convexification, cf. Kirches (2011).

We might have additional combinatorial constraints that cou-
ple different time steps with each other. We express these cou-
pling constraints in the form of another polyhedron Pcpl in the
space of integer control trajectories, which are denoted by

i :=
(
i(0), i(1), . . . , i(N − 1)

)
∈ RN·ni , (2)

where N denotes the number of discretization intervals. The over-
all polyhedron describing all combinatorial constraints imposed
on the integer control trajectory is denoted by

P = PN
∩ Pcpl. (3)

Note that the set of integer feasible trajectories is bounded and
given by

P ∩ ZN·ni , (4)

i. e., the intersection of P with the integers. For notational conve-
nience, we also introduce the sequences of predicted states x and
continuous control inputs u as

x :=
(
x(0), x(1), . . . , x(N)

)
∈ R(N+1)·nx , (5)

u :=
(
u(0), u(1), . . . , u(N − 1)

)
∈ RN·nu . (6)

Additionally, we introduce a sequence of vectors of slack varia-
bles

s :=
(
s(0), s(1), . . . , s(N)

)
∈ R(N+1)·ns , (7)

which can be utilized to preserve feasibility of an optimization
problem in the case of small constraint violations, which can
be relevant for practical applications, cf. Rawlings et al. (2020).
Further, we assume that the objective terms consist of a nonlinear
least squares term 1

2 ∥F1(·)∥2
2 and a nonlinear term F2(·), i.e., they

can be written as

ℓ(x, u, i, s) =
1
2

Fℓ,1(x, u, i, s)
2
2 + Fℓ,2(x, u, i, s), (8)

Vf(x, s) =
1
2

Ff,1(x, s)2
2 + Ff,2(x, s). (9)

he inequality constraints h and hf are assumed to be generally
onlinear. Then, the MINLP under investigation can be formulated
s

min
,u,i,s

N−1∑
k=0

ℓ
(
x(k), u(k), i(k), s(k)

)
+Vf

(
x(N), s(N)

) (10a)

s. t. x(0) = x , (10b)
0
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x(k + 1) = f
(
x(k), u(k), i(k)

)
,

k = 0, . . . ,N − 1, (10c)

h
(
x(k), u(k), i(k), s(k)

)
≤ 0,

k = 0, . . . ,N − 1, (10d)

hf
(
x(N), s(N)

)
≤ 0, (10e)

i ∈ P, (10f)

i ∈ ZN·ni . (10g)

In the following, we assume that the problem has a feasible
solution for any fixed control trajectory i ∈ P, considering slack
variables for inequality constraint relaxation if necessary. With-
out the last constraint (10g), problem (10) would be a standard
NLP with optimal control structure complicated only by addi-
tional couplings between the control variables i that enter via the
coupling constraints expressed within the polyhedron P.

2.2. Notational simplifications

To simplify the notation, we collect all continuous variables in
the vector z = (x,u, s) ∈ Rnz with nz = (N+1)nx+Nnu+(N+1)ns
and the integer variables in the vector y = i ∈ Rny with ny =

Nni. In these summarized variable vectors, problem (10) can be
compactly written as:

min
y,z

F (y, z) =
1
2

∥F1(y, z)∥2
2 + F2(y, z) (11a)

s. t. G(y, z) = 0 (11b)

H(y, z) ≤ 0 (11c)

y ∈ P (11d)

y ∈ Zny . (11e)

he objective includes the differentiable nonlinear least squares
erm 1

2 ∥F1(·)∥2
2 and the differentiable nonlinear term F2. The

unctions G and H contain differentiable nonlinear equality and
nequality constraints, respectively. Although the polyhedron P is
convex, the overall problem (11) is nonconvex owing to the inte-
ger variables and the generally nonlinear objective and constraint
functions.

3. Three-step decomposition algorithm

We assume that there exists a globally optimal solution of
MINLP (11) which we denote by (y◦, z◦). In most practical ap-
plications, the main difficulty is to determine the optimal integer
choice y◦. If y◦ would be known, one could just solve an NLP in the
remaining variables z to determine the corresponding value z◦.
This statement can be cleanly expressed if we define the optimal
objective function for a fixed y ∈ P, which we might call the fixed
integer value function, as follows: JNLP : P → R, y ↦→ JNLP(y) with

JNLP(y) := min
z∈Rnz

F (y, z) (12a)

s. t. G(y, z) = 0, (12b)

H(y, z) ≤ 0. (12c)

The integer part y◦ of the MINLP solution is the optimal combi-
natorially feasible value of this function JNLP, i.e.,

y◦
= argmin

y
JNLP(y) s.t. y ∈ P ∩ Zny . (13)

Note that a lower bound of the optimal MINLP solution can be
obtained by the continuous relaxation

JNLP(y∗) = min JNLP(y) s.t. y ∈ P. (14)

y

3

The lower bound given by (14) inspires the first step of the three-
step decomposition algorithm presented in Sager (2009) and
Sager et al. (2012, 2011). In the following, a general description
of the three algorithm steps S1, S2, and S3 to determine a good
feasible solution of MINLP (10) resp. (11) is provided.

S1: In a first step, a relaxed version of problem (11), i.e., the NLP
that arises if we omit the integer constraint (11e), is solved.
The result is a relaxed optimal solution (y∗, z∗) with y∗

∈ P
but possibly y∗ /∈ Zny .

S2: Afterward, an integer trajectory y∗∗
∈ P∩ Zny is heuristically

obtained by minimizing some distance function d(y, y∗),
i.e., we set y∗∗

:= argminy∈P∩Zny d(y, y∗).

S3: Finally, the integer controls are fixed to y∗∗ and the restricted
NLP (12) is solved to obtain a solution z∗∗∗.

The result of the algorithm is typically a feasible but subop-
timal solution (y∗∗, z∗∗∗) for the original MINLP. Owing to opti-
mality, the optimal objective values after steps S1 and S3 equal
JNLP(y∗) and JNLP(y∗∗), respectively. In addition, the value of step S1
equals the relaxed minimum of JNLP, i.e., JNLP(y∗) = miny∈P JNLP(y).
Thus, by construction, steps S1 and S3 provide a lower and upper
bound of the true MINLP minimum, i. e.,

F (y∗, z∗) ≤ F (y◦, z◦) ≤ F (y∗∗, z∗∗∗). (15)

n terms of the nonlinear function JNLP, the same fact can be
quivalently stated as

NLP(y∗) ≤ JNLP(y◦) ≤ JNLP(y∗∗). (16)

he choice of the distance function in step S2 affects both solu-
ion quality and computational complexity, which are typically
onflicting objectives. In the remainder of this work, we will
iscuss different choices for step S2, while steps S1 and S3 will
e identical in different variants of the algorithm.
The integer gap between the optimal objective values of (10)

nd its canonical relaxation, i. e., without (10g), was shown to
anish asymptotically for some P with the maximal control dis-
retization grid size for binary inputs entering the dynamics
10c) affinely (Sager et al., 2012). While any problem (10) can
e reformulated via partial outer convexification (Sager, 2009),
e directly assume affinely entering binary inputs for (10) in the

ollowing.

. Distance functions

The perfect choice of distance measure in step S2 would be
he suboptimality of JNLP(y) with respect to the relaxed solution
NLP(y∗), which we denote by

NLP(y, y∗) := JNLP(y) − JNLP(y∗). (17)

his function is nonnegative for all y ∈ P and zero for y = y∗.
hile the minimizer y∗∗

NLP := argminy∈P∩Zny dNLP(y, y∗) would
qual the optimal integer solution y◦ of the original MINLP, how-
ver, the minimization of this distance function is computation-
lly as expensive as solving the original MINLP.

.1. Norm-based distance functions

A usually much cheaper choice is to use a norm as distance
easure. For a given norm ∥ · ∥nrm, one would set

nrm(y, y∗) := ∥y − y∗
∥nrm. (18)

articularly useful are Linear Programming (LP) representable
orms such as the L1 and L∞ norm, because the problem y∗∗

:=
nrm
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rgminy∈P∩Zny dnrm(y, y∗) would be an MILP. A particularly suc-
cessful and widely used norm from this class is the so-called
Combinatorial Integral Approximation (CIA) norm that can be
defined as

∥y − y∗
∥CIA := ∥U(y − y∗)∥∞ (19)

for a given y∗, where U is a specially chosen invertible matrix,
see Sager et al. (2011) for further details. Each row of this matrix
computes an integral over one component of the integer control
deviation trajectory from the start to an intermediate time point.
The MILP to be solved in step S2 would be given by

min
θ∈R,y∈Zny

θ (20a)

s. t. − 1θ ≤ U(y − y∗) ≤ 1θ, (20b)

y ∈ P, (20c)

where 1 is a vector of all ones and P would contain a one-hot
encoding constraint with regard to the binary controls (Sager
et al., 2011). The specific structure of this problem referred to as
the CIA problem can be exploited in tailored solution algorithms,
cf. Bürger et al. (2020) and Sager et al. (2011). Several surrogate
rounding algorithms and problems have been devised instead of
solving the CIA problem, e. g., Sum-Up Rounding (Sager, 2009)
and SCARP (Bestehorn et al., 2020), where the latter algorithm
can also be used to solve the CIA problem. Note that one could
define a function

JCIA(y; y∗) := JNLP(y∗) + γ ∥y − y∗
∥CIA (21)

with arbitrary γ > 0, which one could interpret as the CIA-
approximation of JNLP.

Norm-based distance functions can be advantageous in terms
of computational efficiency as the corresponding optimization
problems can be solved comparatively fast. However, integer
approximations are usually computed based only on y∗ as found
in step S1 and possibly additional combinatorial constraints, with
limited possibility to consider further information from step S1 or
the effects of the integer approximation on the system state.

4.2. Novel Gauss–Newton-based distance function

As an intermediate approach that lies between the aforemen-
tioned two in terms of ease of computation and approximation
accuracy of JNLP, we propose here to use linearizations of the
original MINLP founding at (y∗, z∗). In summary, we will define
a convex approximation of JNLP that we denote by JGN(y; y∗, z∗)
and which relies on the GN approximation, cf. Rawlings et al.
(2020). The resulting optimization problem is an MIQP, for which
we define a nonnegative distance function (to be minimized in
step S2) as follows:

dGN(y, y∗) := JGN(y; y∗, z∗) − JNLP(y∗). (22)

5. Gauss–Newton integer approximation

To formulate the proposed approximation, we first define the
linearization of function G at (ȳ, z̄) as

GL(y, z; ȳ, z̄) := G(ȳ, z̄) +
∂G

∂(y, z)
(ȳ, z̄) ·

[
y − ȳ
z − z̄

]
, (23)

. e., its first-order Taylor series expansion. Similarly, we denote
he linearization of F and H around (ȳ, z̄) by FL(y, z; ȳ, z̄) and
(y, z; ȳ, z̄), respectively. We define the quadratic approximation
L

4

f F as

QP(y, z; ȳ, z̄, B) := FL(y, z; ȳ, z̄) (24)

+
1
2

[
y − ȳ
z − z̄

]⊤

B
[
y − ȳ
z − z̄

]
,

where B is a positive semidefinite Hessian approximation. An
nteresting approximation is the squared Jacobian of F1 from (11a)
e call the Gauss–Newton Hessian approximation BGN, which can
ield good approximations for least-squares objectives (Rawlings
t al., 2020):

GN(ȳ, z̄) :=
∂F1

∂(y, z)
(ȳ, z̄)

(
∂F1

∂(y, z)
(ȳ, z̄)

)⊤

. (25)

e define FGN as a special case of FQP, in which we set B = BGN.
or a given linearization point (ȳ, z̄) and matrix B, we define the
ollowing MIQP approximation of the original MINLP problem
hat is given by

in
y,z

FQP(y, z; ȳ, z̄, B) (26a)

s. t. GL(y, z; ȳ, z̄) = 0 (26b)

HL(y, z; ȳ, z̄) ≤ 0 (26c)

y ∈ P (26d)

y ∈ Zny . (26e)

his MIQP is solved in step S2 of the decomposition algorithm,
ith the linearization point chosen to equal the relaxed NLP
olution, i.e., with (ȳ, z̄) = (y∗, z∗).
The MIQP (26) can be relaxed to a convex Quadratic Program

QP) if we drop the integer constraint (26e). This relaxed QP is
n approximation of the relaxed NLP, which comes along with a
P approximation of the function JNLP that we denote by JQP and
hich is defined by JQP : P×Rny ×Rnz ×R(ny+nz )×(ny+nz ) → R, y ↦→

QP(y; ȳ, z̄, B) with

QP(y; ȳ, z̄, B) := min
z∈Rnz

FQP(y, z; ȳ, z̄, B) (27a)

s. t. GL(y, z; ȳ, z̄) = 0 (27b)

HL(y, z; ȳ, z̄) ≤ 0. (27c)

iven the convexity of the relaxed problem (26) in its variables
y, z), the function JQP is convex in y. In fact, being the optimal
alue function of a parametric QP, it is a continuous and piecewise
uadratic function, cf. Bank et al. (1983) and Borrelli et al. (2017).
s a particular outcome of the QP, we define the Gauss–Newton
pproximation as

GN(y; ȳ, z̄) := JQP(y; ȳ, z̄, BGN(ȳ, z̄)). (28)

n step S2, we require y ∈ P ∩ Zny . The idea to use a convex
pproximation of a possibly nonconvex problem stems from the
act that we linearize around its relaxed optimal solution and
sufficiently close neighborhood of this minimum should be

onvex.

. Finite-dimensional approximation properties

In this section, we illustrate the approximation properties of
he proposed approach. For this, we first review in Section 6.1
lassical results of parametric optimization of Chapter 5.2 in Bon-
ans and Shapiro (2013), which do not consider integrality con-
traints.
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.1. Results from parametric optimization

We reconsider the parametric NLP (12) at y, with y being the
parameter vector. We consider the linearization of the parametric
problem at the optimal solution (y∗, z∗) in the direction y−y∗ and
efine this problem as (LP):

LP(y; y∗, z∗) := min
z∈Rnz

FL(y, z; y∗, z∗) (29a)

s. t. GL(y, z; y∗, z∗) = 0 (29b)

SA(y∗,z∗)HL(y, z; y∗, z∗) ≤ 0, (29c)

here A(y∗, z∗) is the set of active inequality constraints at
(y∗, z∗) and SA(y∗,z∗) selects the active inequality constraints of HL
ith entries equal to 1 for active constraints and 0 otherwise.
he theory in Bonnans and Shapiro (2013) is based on a related
P which we denote as (PL). We define (PL) as (LP) but with
L(y, z; y∗, z∗)− F (y∗, z∗) as the objective function. Hence, for the
orresponding value function holds:

PL(y − y∗
; y∗, z∗) := JLP(y; y∗, z∗) − F (y∗, z∗). (30)

et L(y, λ, z) be the Lagrangian function associated with NLP (12)
at y and we use S(DL) to denote the set of optimal solutions of the
ual of the linearized problem (PL). Finally, we need a strong form
f a second-order sufficient optimality condition in the direction
− y∗, which states that for all z − z∗

∈ C(z∗) \ {0} holds

sup
∈S(DL)

∂2L
∂2z

(y∗, λ, z∗)(z − z∗, z − z∗) > 0, (31)

where C(z∗) is the critical cone associated with z∗. With these
definitions, we can state the key result from Bonnans and Shapiro
(2013), that we need for this paper.

Theorem 1 (Bonnans and Shapiro (2013)). Let ∥ · ∥ denote a vector
norm. Suppose that

(1) the unperturbed NLP with y = y∗ has a unique optimal
solution z∗,

(2) the Mangasarian–Fromovitz constraint qualification holds at
the point z∗,

(3) the set of feasible Lagrange multipliers Λ(y∗, z∗) is nonempty,
(4) second-order sufficient condition (31) is satisfied,
(5) for all ∥y − y∗

∥ sufficiently small, the feasible set of NLP (12)
at y is nonempty and uniformly bounded.

Then, for any optimal solution z of NLP (12) at y holds:

∥z − z∗
∥ = O(∥y − y∗

∥), (32)

JNLP(y) = JLP(y; y∗, z∗) + O(∥y − y∗
∥
2). (33)

Proof. The results follow from Theorem 5.53, (a) and (b), in Bon-
nans and Shapiro (2013). In comparison with Bonnans and
Shapiro (2013), we replaced Gollan’s condition with the Mangasa-
rian–Fromovitz condition, which is a stronger condition based
on Theorem 5.50, (v), in Bonnans and Shapiro (2013). Moreover,
we dropped parameterization with t ≥ 0 of y(t) and z(t) by
considering the directions y−y∗ and z−z∗ in the optimal solution
y∗ and z∗. Finally, we express (33) with JLP instead of JPL, which
are equivalent up to the term F (y∗, z∗). Note that we define (PL)
here with the constant constraint terms G(y∗, z∗) and H(y∗, z∗) in
contrast to Bonnans and Shapiro (2013). As these terms are zero
in the optimum (y∗, z∗), the constraints of (PL) reduce to the first
derivative parts and, thus, are equivalent to the constraints of the
linear problem described in Bonnans and Shapiro (2013). □
 J

5

6.2. Implications for the proposed algorithm

The following corollary applies the results of Theorem 1 to the
QP (27) and the NLP (12).

Corollary 1. Let the assumptions of Theorem 1 hold for the
parametric NLP (12) at y = y∗ and assume that the parametric
QP (27) at y = ȳ = y∗ has a unique solution and satisfies the second
order condition (31). Then, it holds that

JQP(y; y∗, z∗, B) = JLP(y; y∗, z∗) + O(∥y − y∗
∥
2). (34)

Furthermore, there is a C1 > 0 and a small ϵ1 > 0 so that for all
y ∈ Pϵ1 := {y : ∥y − y∗

∥ < ϵ1} holds

JNLP(y) − JQP(y; y∗, z∗, B)| ≤ C1∥y − y∗
∥
2. (35)

roof. While Theorem 1 was so far formulated for the original
LP (12), denoted by NLP(y), at the point y = y∗, we can also
pply Theorem 1 to the QP (27), denoted by QP(y; ȳ, z̄), which
epends on two sets of parameters, on y and on (ȳ, z̄), but
here we assume (ȳ, z̄) as fixed to (y∗, z∗). Thus, QP(y; y∗, z∗)

s a parametric problem of the same form as NLP(y) if we only
egard its parametric dependence on y. We regard this parametric
P problem again at the point y = y∗. To apply Theorem 1 to
he QP(y; y∗, z∗), we use the fact that all first order terms of the
LP(y∗) and of the QP(y∗

; y∗, z∗) coincide, so assumptions (2), (3),
nd (5) in Theorem 1 hold because they hold for the original NLP,
nd by the explicit assumptions also (1) and (4) hold. Also, the
orresponding LPs (29) are identical. Thus, (34) follows from the
pplication of Theorem 1 to the QP(y; y∗, z∗) at y = y∗.
The inequality (35) follows from the first claim (34) and The-

rem 1, (33), by combining these results and expressing the
-notation with the constant C1. □

We remark that the O-notation in the context of integers
an be considered as conflicting as the integers y might not be
rbitrarily close to y∗. To this end, we introduce the following
ssumption.

ssumption 1. Consider the set Pϵ1 from Corollary 1. We assume
hat for any ϵ1 > 0, there is a discretization of the MIOCP so that
∗∗, y◦

∈ Pϵ1 , where y∗∗, y◦ are the optimal solutions of the MIQP
26) with ȳ = y∗, z̄ = z∗ and the MINLP (11).

This assumption can be deduced as a corollary from Theorem 3
n Sager et al. (2012) if we drop the combinatorial constraints y ∈

. However, in the presence of combinatorial constraints it can
e restrictive since these constraints can induce a large ϵ1 and,
hus, preventing y from being arbitrarily close to y∗. Based on the
bove assumption and corollary, the main theoretical result for
ur algorithm states that the constructed solution y∗∗ is correct
p to first-order terms with regard to the size of the deviation of
he integer controls.

heorem 2. Let the assumptions of Theorem 1 hold for the
arametric NLP (12), with the optimal solution (y∗, z∗) of the relaxed
LP. Consider the constant C1 from Corollary 1 for the set Pϵ1 and
et Assumption 1 hold true. Then, we have for the optimal solutions
or y∗∗ and y◦ of the MIQP (26) and the MINLP (11)

JNLP(y∗∗) − JNLP(y◦)|

≤ C1
(
∥y∗

− y∗∗
∥
2
+ ∥y∗

− y◦
∥
2) . (36)

roof. We abbreviate in the following JQP(y) := JQP(y; y∗, z∗, B).
irst, note that owing to optimality of y∗∗ and y◦ in MIQP (26) and
INLP (11), resp., it holds that

JQP(y∗∗) − JQP(y◦) ≤ 0. (37)
∗∗ ◦
NLP(y ) − JNLP(y ) ≥ 0. (38)
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Fig. 1. Schematic of the solar thermal climate system subject to this study.
w

e use this to derive the result:

JNLP(y∗∗) − JNLP(y◦)|
(38)
= JNLP(y∗∗) − JNLP(y◦)

= JNLP(y∗∗) − JNLP(y◦) + JQP(y∗∗)
− JQP(y∗∗) + JQP(y◦) − JQP(y◦)

(37)
≤ JNLP(y∗∗) − JQP(y∗∗) − (JNLP(y◦) − JQP(y◦))

≤ |JNLP(y∗∗) − JQP(y∗∗)| + |JNLP(y◦) − JQP(y◦)|

≤ C1
(
∥y∗

− y∗∗
∥
2
+ ∥y∗

− y◦
∥
2) ,

where we apply in the last inequality Corollary 1 twice for y∗∗

and y◦. □

The above result holds for any positive semidefinite matrix B
and in particular for the GN-MIQP. Using a suitable vector norm,
we may have consistency of order one in the control grid size. By
iteratively refining the control grid size, one could possibly estab-
lish an asymptotic convergence to the optimal solution, similar to
the CIA decomposition (Jung et al., 2015) but here with quadratic
convergence in the grid size. The asymptotic convergence theory
can be considered for future studies.

6.3. On the choice of the Hessian approximation

The theoretical results mentioned in the previous section hold
regardless of the choice of the Hessian approximation B, as long
as it is chosen to be positive semidefinite. However, in prac-
tice, the choice is quite relevant. The exact Hessian matrix of
the Lagrangian would possibly ensure second-order consistency,
however, at the price of expensive computation and possibly
indefiniteness. This is in contrast to the pure linearization with
B = 0, which is inexpensive, but often leads to unfavorably
large steps as numerical experiments show. The choice of the GN-
approximation appears as a good compromise solution, which is
computationally relatively cheap and represents a good approxi-
mation of the Hessian matrix.

7. MIOC of a renewable energy system

For this case study we consider a solar thermal climate system
located at Karlsruhe University of Applied Sciences, cf. Bürger
et al. (2021) for a detailed description. It comprises an Adsorption
Cooling Machine (ACM) which can produce cooling energy to
cover heat loads of a university building in two different oper-
ation modes: in Adsorption Cooling (AC) mode (bac = 1), solar
thermal heat can be used to drive the ACM; in Free Cooling
(FC) mode (bfc = 1), the recooler of the ACM can be used to
directly cool down the medium at the ambient in times of low
ambient temperature. Heating and cooling energy can be stored
in dedicated stratified storages.

An experimental operation of the system using MIOC and CIA
was carried out in Bürger (2020) and Bürger et al. (2021). It
6

showed that insufficient quality of approximated binary controls
can lead to less efficient system operation, e. g., through activation
of ACM operation modes at unsuitable time periods (Bürger,
2020). In this case study, the GN-MIQP approach is applied to
solve an optimal control problem for the system to achieve ef-
ficient system operation in accordance with defined constraints
regarding the system’s temperature states. The results are com-
pared to those obtained using the CIA approach with regard to
solution quality and runtime.

7.1. System modeling and operational constraints

In this study, we use a variant of the existing model and asso-
ciated constraints presented in Bürger et al. (2021). The model is
described by a set of Ordinary Differential Equations (ODEs) as a
switched nonlinear system
dx(t)
dt

= f0
(
x(t), u(t), c(t)

)
+

nb∑
i=1

bi(t) · fi
(
x(t), u(t), c(t)

) (39)

with differential states x(t) ∈ Rnx , continuous controls u(t) ∈

Rnu , binary controls b(t) ∈ {0, 1}nb , and time-varying parameters
c(t) ∈ Rnc , with nx = 20, nu = 5, nb = 2, and nc = 4. A
schematic is depicted in Fig. 1. For simplicity, the building part
of the model in Bürger et al. (2021) is replaced by a simplified
load model that facilitates the application of a specific cooling
load profile Q̇lc to the system. In particular, the temperature Tlc of
the medium returning from the fan coil units and corresponding
water mass flow ṁlc are calculated as

Tlc(t) = Tlts,nlts (t) + ∆Tlc, ṁlc(t) =
Q̇lc(t)
cw∆Tlc

, (40)

ith cw being the medium’s specific heat capacity and ∆Tlc being
an assumed constant temperature difference for the medium
returning from the fan coil units.

The system’s operational constraints, such as state and control
boundaries and minimum dwell times, are summarized in the
inequality constraints vector h as

h
(
x(t), u(t), b(·), c(t), s(t)

)
≤ 0 (41)

where we write b(·) to indicate that the constraints for the binary
controls can be coupled over time, cf. Bürger et al. (2020). Vector
s ∈ Rns , ns ∈ N contains slack variables that can be used to
relax certain conditions in h, e. g., state constraints, to preserve
feasibility if necessary. With regard to the introduction of (40) in
the model, the upper and lower limits of the temperature states
of the Low-Temperature Storage (LTS) are set to Tlts,max = 18 ◦C
and Tlts,min = 8 ◦C, respectively.

The nonlinear and nonconvex constraints (54) and (55) from
Bürger et al. (2021), which are introduced to achieve that the
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Fig. 2. Results of the CIA (left) and GN-MIQP (right) approaches after step S3 of the decomposition algorithm.
CM is only operated under suitable conditions with regard to
igh-Temperature Storage (HTS), LTS, and ambient temperature,
re in this work replaced by suitable linear Big-M constraints.
hile preliminary tests showed that such yielded better solutions

n this study both for the CIA and GN-MIQP approach compared
o the original formulation, using linear constraints can be ad-
antageous especially for the GN-MIQP approach, since such can
ven be represented exactly in the GN-MIQP and not only in an
pproximate form as it is the case for nonlinear constraints.

.2. Optimal control problem formulation

The aim of the optimal control problem for the system is to
ompensate the cooling load of the building while keeping the
ystem states, such as storage and collector temperatures, within
uitable bounds and reduce the electrical energy consumption of
he system. Formulated in continuous time, the used MIOCP reads
s

min
x(·),u(·),
b(·),s(·)

1
2

∫ tf

t0

L1 (x(t), u(t), b(t), s(t)) dt

+

∫ tf

t0

L2 (x(t), u(t), b(t), s(t)) dt
(42a)

s. t. for t ∈ [t0, tf] :

(39),(41) (42b)
nb∑
i=1

bi(t) ≤ 1, (42c)

x(t0) = x̂. (42d)

The objective (42a) consists of two Lagrangian terms L1 and
L2, where L1 contains the nonlinear least squares terms and L2
the linear terms of the objective function. The system model and
constraints are included in (42b). Eq. (42c) ensures that at most
one ACM operation mode is active at a time and (42d) is the initial
state constraint.

7.3. Discretization and implementation

Using a non-equidistant time grid with 91 time steps, cf.
Bürger et al. (2021), the MIOCP is formulated as an MINLP using
7

first discretize, then optimize approaches. For steps S1 and S3, an
MINLP is derived using direct collocation (Tsang et al., 1975). For
generating the components of the GN-MIQP, an MINLP is derived
using direct multiple shooting (Bock & Plitt, 1984) to obtain a
matrix GL that is comparatively smaller than a corresponding
matrix derived using direct collocation, with the idea to facilitate
a faster solution of the MIQP.

The implementation of the MINLPs is carried out using CasADi
(Andersson et al., 2019), the numerical integrator used for the
initial guess simulation and within multiple shooting is CVODES
(Hindmarsh et al., 2005). The NLPs are solved using Ipopt
(Wächter & Biegler, 2006) with linear solver MA57 (HSL, 2019).
Combinatorial constraints are neglected in step S1, cf. Bürger et al.
(2021). The MIQP is solved using Gurobi (Gurobi Optimization,
LLC, 2022) and the CIA problem is solved using the tailored
branch-and-bound algorithm in pycombina (Bürger et al., 2020).
We provide a sample implementation for a more simple MIOC
application at https://github.com/adbuerger/gn-miqp-mwe.

7.4. Numerical results

The CIA and GN-MIQP approaches are used to solve the MIOCP
(42) for an exemplary operation scenario. Fig. 2 depicts the results
obtained using the CIA approach in the left plots and the solution
obtained using the GN-MIQP approach in the right plots. The
values of the time-varying parameters c are shown in dash-
dotted lines: solar irradiation on the VTSC arrays Ivtsc and ambient
temperature Tamb from an exemplary Test Reference Year (TRY)
dataset (Deutscher Wetterdienst (DWD), 2014) depicting a sum-
mer day in August, solar irradiation on the oriented FPSC arrays
Ifpsc calculated using pvlib-python (Holmgren et al., 2018), and
a generic cooling load profile Q̇lc. The (identical) solution after
step S1 is denoted by dotted lines and the solution after step S3
is denoted by solid lines. The state boundaries considered in the
form of soft constraints are indicated using dashed gray lines. It
can be observed that the state boundaries of the solar collector
temperatures Tfpsc and Tvtsc as well as the HTS temperatures
Thts,{1...4} are widely met (only Tfpsc and Tvtsc limits are slightly
violated using the CIA approach). However, this is not the case
for the LTS temperatures Tlts,1 and Tlts,2.

The LTS temperatures are directly influenced by the binary
approximation b∗∗

ac and b∗∗

fc obtained in step S2 and at the same
time widely operated at their upper boundaries in the solution of

https://github.com/adbuerger/gn-miqp-mwe
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Fig. 3. Evaluation of the functions JNLP
(
b̄(α, β)

)
, JGN

(
b̄(α, β); b∗, (x∗, u∗, s∗)

)
, and

CIA
(
b̄(α, β); b∗

)
. The value of JNLP(b∗∗

GN) is denoted by • and of JNLP(b∗∗

CIA) by ◦.

tep S1. Therefore, an application of the CIA approach which does
ot consider the development of the system states but only the
elaxed binary solution within step S2, can easily violate those
emperature boundaries. In contrast, it can be observed that vio-
ations of LTS temperature constraints occur less frequently and
o a lesser extent while using the GN-MIQP approach. Different
rom the LTS temperatures, the solar collector temperatures are
dditionally influenced by continuous controls, e. g., the speed
f the pumps Ppsc and Pssc and the positions of the valves Mpsc
nd Mssc, so that their operation can still be adjusted to a certain
xtent in step S3 according to the binary approximation obtained
n step S2. The HTS temperatures are, in addition to the collec-
or operation, influenced by the ACM operation, and with this,
y the quality of the obtained binary approximation. However,
he HTS is not operated at its upper temperature boundary in
his scenario; thus, violations are less likely to occur when an
pproximated binary solution is applied.
As an additional remark, it can be observed in Fig. 2 that

he CIA problem solution contains a short activation of the free
ooling mode bfc at the beginning of the control horizon, whereas
fc occurs in the solution of step S1 only to a negligible extent.
imilar to the effects described in Bürger (2020), this can be
xplained by the circumstance that the optimal solution of a
IA problem might not be unique. In the case presented here,
he short activation of bfc is not the dominating term of the
IA objective, which minimizes the maximum accumulated dif-
erence between the relaxed and binary solution of all binary
ontrols from the beginning of the control horizon up to all time
oints. While the optimal solution of the CIA problem (20) here
ields an objective value of θ∗

= 1935.6, the activation of bfc
only yields an accumulated difference of 900.0, which is not the
maximum accumulated difference. In the solution obtained using
the GN-MIQP approach, such activation does not occur.

Fig. 3 shows the values of JNLP
(
b̄(α, β)

)
, JCIA

(
b̄(α, β); b∗

)
, and

JGN
(
b̄(α, β); b∗, (x∗, u∗, s∗)

)
for (42), with

b̄(α, β) = b∗
+ α(b∗∗

GN − b∗) + β(b∗∗

CIA − b∗) (43)

evaluated for (α ∈ [0, 1], β = 0), (α = 0, β ∈ [0, 1]), and
(α + β = 1). The plot illustrates the piecewise linear approx-
imation yielded by the CIA approach, the piecewise quadratic
approximation yielded by the GN-MIQP approach, and that JNLP
can be well approximated by JGN locally around the linearization
point b∗, (x∗, u∗, s∗).

A runtime comparison for each solution step of both methods
is listed in Table 1. The solution times in step S1 are identical
since the same problem is solved here. For step S2, the solution of
the CIA problem, which was computed using a dedicated solution
algorithm (Bürger et al., 2020; Sager et al., 2011), is obtained
8

Table 1
Runtime of the solution steps for (42).
Step Runtime CIA (s) Runtime GN (s)

S1 2.928 · 101 2.928 · 101

S2 9.001 · 10−3 2.840 · 102

S3 1.266 · 101 1.085 · 101

several orders of magnitude faster compared with the solution of
the GN-MIQP (to full optimality). The duration of 284.0 s for the
GN-MIQP in Table 1 includes the time for setting up the matrix
GL (22.3 s) and solving the problem (261.7 s).

8. Conclusion and future work

We presented a novel MIQP problem formulation for the sec-
ond stage of an existing decomposition algorithm for fast solution
of MIOCPs. First, we established a first-order consistency approx-
imation result for the proposed algorithm. Then, we achieved an
improved solution in terms of the original MINLP objective func-
tion and overall control performance for a complex application.
Since the solution time for the GN-MIQP is rather high compared
to the CIA problem, future work could examine its complexity and
possibilities to achieve faster GN-MIQP solutions, e. g., if warm-
starting based on CIA-based solutions can reduce the runtime and
if dedicated solution methods for the GN-MIQP can be developed.
Moreover, it could be investigated if suboptimal solutions of the
GN-MIQP can already yield an improved control performance,
especially in the context of gradually improving an existing CIA
result.
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