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Abstract

In this study, we examine the various extensions of the doubly nonnegative (DNN)
cone, frequently used in completely positive programming (CPP) to achieve a
tighter relaxation than the positive semidefinite cone. To provide tighter relax-
ation for generalized CPP (GCPP) than the positive semidefinite cone, inner-
approximation hierarchies of the generalized copositive cone are exploited to ob-
tain two generalized DNN (GDNN) cones from the DNN cone. This study con-
ducts theoretical and numerical comparisons to assess the relaxation strengths
of the two GDNN cones over the direct products of a nonnegative orthant and
second-order or positive semidefinite cones. These comparisons also include an
analysis of the existing GDNN cone proposed by Burer and Dong. The findings
from solving several GDNN programming relaxation problems for a GCPP prob-
lem demonstrate that the three GDNN cones provide significantly tighter bounds
for GCPP than the positive semidefinite cone.

Key words. Optimization, generalized doubly nonnegative cone, generalized com-
pletely positive cone, generalized completely positive programming

1 Introduction

Completely positive programming (CPP), also known as copositive (COP) program-
ming, is a class of conic programming with a completely positive (CP) cone or its dual,
a COP cone. CPP has received significant attention over the last few decades because
it can be used to reformulate many NP-hard problems, such as the standard quadratic
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program (QP) [3], the quadratic assignment problem [22], and nonconvex QP with
binary and continuous variables [5], as convex programming in a unified manner.

Recently, the concepts of CP and COP cones have been generalized in many ways.
Examples include the generalized CP (GCP) CP(K) and COP (GCOP) COP(K) cones
over a closed cone K ⊆ Rn,*1 which are defined as

CP(K) =

{
m∑
i=1

aia
⊤
i

∣∣∣∣∣ ai ∈ K for all i = 1, . . . ,m

}
, (1.1)

COP(K) := {A | A is a symmetric matrix and x⊤Ax ≥ 0 for all x ∈ K}, (1.2)

respectively. GCP and GCOP cones over a nonnegative orthant respectively reduce to
CP and COP cones. Hereafter, “over K” can be omitted when we need not specify it.
GCP programming (GCPP) is a class of conic programming with GCP or GCOP cones.
Because GCPP includes CPP, it can express not only the aforementioned problems,
but also many other NP-hard problems. For example, a rank-constrained semidefinite
programming (SDP) problem [1], which includes sensor network localization [17] and
the max-cut problem [9] as a class, can be formulated as a problem with a GCP cone
over a direct product of a nonnegative orthant and three positive semidefinite cones. To
the best of our knowledge, rank-constrained SDP is not known to be representable as
CPP. Therefore, solving GCPP but not CPP represents an important task. In addition,
under an assumption, the quadratically constrained QP (QCQP) can be equivalently
reformulated as a problem with a GCP cone over a direct product of a nonnegative
orthant and second-order or positive semidefinite cones [7]. Other NP-hard problems
that GCPP can represent include nonconvex conic QP with binary and continuous
variables [6] (e.g., a variable selection problem in linear regression [15]) and k-means
clustering [23]. However, as GCPP can represent such formidable problems equivalently,
it is also difficult to solve directly.

Some approximation hierarchies for the GCOP cone have been developed to solve
GCPP approximately [18, 28]. In a prior work, we solved approximation problems
obtained by replacing the GCOP cone with its inner-approximation hierarchies [18].
Our results showed that the optimal values of approximation problems with the hier-
archy provided by Zuluaga, Vera, and Peña [28], referred to as the Zuluaga–Vera–Peña
(ZVP)-type hierarchy, and those of problems with a hierarchy we provided, referred
to as a Nishijima–Nakata (NN)-type hierarchy, were the same and almost identical to
those of the original problems [18]. This result poses a problem, i.e., whether the ZVP-
and NN-type hierarchies are the same.

Of note, the two hierarchies are generalizations of the inner-approximation hierarchy
provided by Parrilo [20] for the COP cone, and the dual cone of the zeroth level of

*1Some prior literature [1, 6, 10] including the authors’ paper [18], do not use the term “generalized”
when referring to the sets CP(K) and COP(K). Nevertheless, we use this term to specifically highlight
the distinction: whether K represents a nonnegative orthant or otherwise.
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Parrilo’s hierarchy is known to be the doubly nonnegative (DNN) cone, that is, the set
of positive semidefinite matrices with only nonnegative elements [20, Section 5.3]. The
DNN cone is frequently used because DNN programming relaxation can provide tighter
bounds for CPP than SDP relaxation [22, 27]. Thus, generalizing the DNN cone to
provide tighter bounds for GCPP than SDP relaxation is a natural approach. Hence,
we refer to the dual cone of the zeroth level of the ZVP- and NN-type hierarchies as
the ZVP- and NN-type generalized DNN (GDNN) cones, respectively. Regarding these
sets as GDNN cones is justified in Section 3.

In the present work, we provide theoretical and numerical comparisons of the
strength of relaxation by the above two GDNN cones as well as that proposed by
Burer and Dong [7] (the BD-type GDNN cone). To compare these cones, we focus on
the two specific cases in which (i) K is a direct product of a nonnegative orthant and
second-order cones, and (ii) K is a direct product of a nonnegative orthant and positive
semidefinite cones. As can be seen from the examples of rank-constrained SDP and
QCQP, these two cases naturally arise in the context of optimization. Specifically, we
investigate the inclusion relationship between the three GDNN cones because inclu-
sion is a crucial factor in the strength of relaxation. When K is a direct product of
a nonnegative orthant and second-order cones, no theoretical inclusion relationship is
obtained between ZVP- and BD-type GDNN cones (see Examples 4.10 and 4.11), and
numerically, the ZVP-type GDNN cone provides better relaxation than BD-type cone
(Section 5.1). By contrast, when K is a direct product of a nonnegative orthant and
positive semidefinite cones, the ZVP-type GDNN cone provides worse relaxation than
the BD-type cone numerically (Section 5.2). In both cases, theoretically, the NN-type
GDNN cone is strictly included in the ZVP-type cone (Theorems 4.9 and 4.17). Solu-
tions to the GDNN programming (GDNNP) relaxation of GCPP problems show that
the three GDNN cones provide much tighter relaxation for GCPP than the positive
semidefinite cone (Section 5).

In Section 2, we introduce the notation and concepts used throughout this paper.
In Section 3, we introduce two new GDNN cones and describe the BD-type cone. In
Section 4, we discuss the theoretical properties of the three GDNN cones. In Section 5,
we describe the results of numerical experiments conducted to investigate the effective-
ness of relaxation by these cones. In Section 6, we present our conclusions and suggest
potential future directions of research.

2 Preliminaries

2.1 Notation

We use N, R, and Sn to denote the set of nonnegative integers, the set of real numbers,
and the space of real n × n symmetric matrices, respectively. For n ∈ N, let Tn :=
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n(n+1)/2. We use ei, 0, and 1 to represent the vector with the ith element being 1 and
all other elements 0, the zero vector, and the vector with all elements 1, respectively.
In addition, we use O and I to represent the zero matrix and the identity matrix,
respectively. We sometimes use a subscript such as 0n and In to specify the size.
All vectors that appear in this paper are column vectors. However, for notational
convenience, the difference between a column and a row is omitted if it is clear from
the context. Let A ∈ Sn. The (i, j)th element of A is expressed as Ai,j. Moreover,
for index sets I,J ⊆ {1, . . . , n}, AI,J denotes the submatrix obtained by extracting
the rows of A indexed by I, and the columns indexed by J . We also refer to AI,J as
the (I,J )th element of A. The space Rn is endowed with the usual transpose inner
product, and ∥·∥ denotes the induced norm (2-norm). The space Sn is endowed with
the trace inner product defined by ⟨X,Y ⟩ :=

∑n
i,j=1Xi,jYi,j for X,Y ∈ Sn. We use Sn

to denote the n-dimensional unit sphere in Rn+1; i.e., Sn = {x ∈ Rn+1 | ∥x∥= 1}. For
matrices Xi ∈ Sni (i = 1, . . . , k), Diag(X1, . . . ,Xk) denotes the block diagonal matrix
with the ith block Xi. For a set X , we use |X |, conv(X ), cl(X ), and int(X ) to denote
the cardinality, convex hull, closure, and interior of X , respectively.

The set K in a finite-dimensional real vector space is called a cone if αx ∈ K for all
α > 0 and x ∈ K. For a cone K in a finite-dimensional real inner product space, K∗

denotes its dual cone; i.e., the set of x such that the inner product between x and y is
greater than or equal to 0 for all y ∈ K. A cone K is said to be pointed if it contains
no lines. For a closed convex cone K, Ext(K) denotes the set of elements generating
extreme rays (one-dimensional faces) of K. The following properties of a cone and its
dual are established:

Theorem 2.1 ([4, Section 2.6.1]). Let K, K1, and K2 be cones in a finite-dimensional
real inner product space. Then,

(i) K∗ is a closed convex cone.

(ii) If K is a pointed closed convex cone, K∗ has a nonempty interior.

(iii) If K is a closed convex cone, (K∗)∗ = K.

(iv) If K1 ⊆ K2, K∗
2 ⊆ K∗

1.

We use Rn
+ and Sn

+ to denote the set of n-dimensional nonnegative vectors (nonneg-
ative orthant) and the set of n × n symmetric positive semidefinite matrices (positive
semidefinite cone), respectively. Moreover, for S ∈ Sn, let R+S := {αS | α ≥ 0}.

We use Hn,m to denote the set of homogeneous polynomials in n variables of degree
m with real coefficients. Let In=m := {α ∈ Nn |

∑n
i=1 αi = m}. RIn=m and SIn=m denote the

|In=m|-dimensional Euclidean space with elements indexed by In=m, and the space of real
|In=m|×|In=m| symmetric matrices with columns and rows indexed by In=m, respectively.

SIn=m
+ denotes the set of positive semidefinite matrices in SIn=m . Σn,2m denotes the set
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of sums of squares (SOS) of elements in Hn,m; i.e., Σn,2m = conv{θ2 | θ ∈ Hn,m}. For
y ∈ RIn=2m ,Mn,m(y) ∈ SIn=m is the matrix with (α,α′)th element yα+α′ for α,α′ ∈ In=m.
For example, in the case of n = 2 and m = 3, we have

M 2,3(y) =


(3, 0) (2, 1) (1, 2) (0, 3)

(3, 0) y(6,6) y(5,1) y(4,2) y(3,3)
(2, 1) y(5,1) y(4,2) y(3,3) y(2,4)
(1, 2) y(4,2) y(3,3) y(2,4) y(1,5)
(0, 3) y(3,3) y(2,4) y(1,5) y(0,6)

.
Then, we define Mn,2m := {y ∈ RIn=2m | Mn,m(y) ∈ SIn=m

+ }, which is a closed convex
cone.

For a closed cone K in Rn, we define the GCP cone CP(K) as (1.1) and GCOP cone
COP(K) as (1.2), respectively. By definition, CP(K) ⊆ Sn

+ holds. Moreover, CP(K)
and COP(K) are mutually dual [26]. We define N n as the set of n × n symmetric
matrices with only nonnegative elements, with the DNN cone Sn

+ ∩ N n denoted by
DNN n. By definition, CP(Rn

+) ⊆ DNN n ⊆ Sn
+. In addition, DNN n and Sn

+ + N n

are mutually dual [25, Theorem 1.167]. In particular, Sn
+ +N n is a closed convex cone.

2.2 Euclidean Jordan algebra and symmetric cone

A finite-dimensional real vector space E equipped with a bilinear mapping (product)
denoted by ◦ is called a Jordan algebra if it satisfies the following properties for all
x, y ∈ E:

(J1) x ◦ y = y ◦ x,

(J2) x ◦ ((x ◦ x) ◦ y) = (x ◦ x) ◦ (x ◦ y).

We assume in this paper that E has a (unique) identity element e for the product. A
Jordan algebra is called Euclidean if there exists an associative inner product •; i.e.,
(x ◦ y) • z = x • (y ◦ z) for all x, y, z ∈ E.

We define the symmetric cone E+ associated with the Euclidean Jordan alge-
bra (E, ◦, •) as {x ◦ x | x ∈ E}. Symmetric cones are known to be self-dual—i.e.,
(E+)

∗ = E+—and are therefore pointed closed convex cones with a nonempty interior.
Specifically, the identity element e of E is in int(E+) [8, Theorem III.2.1].

The following three examples represent typical Euclidean Jordan algebras that ap-
pear frequently throughout this paper.

Example 2.2 (nonnegative orthant). Let E be the space Rn. If we define x ◦ y :=
(x1y1, . . . , xnyn) and x • y := x⊤y for x,y ∈ E, then (E, ◦, •) is a Euclidean Jordan
algebra, and the associated symmetric cone E+ is Rn

+. The identity element of the
Euclidean Jordan algebra is 1n.
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Example 2.3 (second-order cone). Let E be the space Rn and for each x ∈ E, we
express (x2, . . . , xn) as x2:n, so that x can be simply expressed as (x1,x2:n). If we
define x ◦ y := (x⊤y, x1y2:n + y1x2:n) and x • y := x⊤y for x,y ∈ E, then (E, ◦, •)
is a Euclidean Jordan algebra, and the associated symmetric cone E+ is the (standard)
second-order cone Ln defined as

Ln :=

{
R+ (n = 1),

{x ∈ Rn | x1 ≥ ∥x2:n∥} (n ≥ 2).

The identity element of the Euclidean Jordan algebra is (1,0n−1).

Example 2.4 (positive semidefinite cone). Consider the space Sn of real n × n sym-
metric matrices. If we define X ♢ Y := (XY + Y X)/2 and X ♦ Y := ⟨X,Y ⟩ for
X,Y ∈ Sn, then (Sn,♢,♦) is a Euclidean Jordan algebra, and the associated symmetric
cone is the positive semidefinite cone Sn

+. The identity element of the Euclidean Jordan
algebra is In.

We focus on the vectorized positive semidefinite cone in this paper. We define the
linear mapping svec:Sn → RTn as

svec(X) := (X1,1,
√
2X1,2, X2,2, . . . ,

√
2X1,n, . . . ,

√
2Xn−1,n, Xn,n)

for each X ∈ Sn. Then, the mapping svec(·) is an isometry between Sn and RTn;
i.e., ⟨X,Y ⟩ = svec(X)⊤ svec(Y ) holds for all X,Y ∈ Sn. Let smat(·) denote the
inverse mapping of svec(·). If we define E := RTn, x ◦ y := svec(smat(x) ♢ smat(y)),
and x • y := x⊤y for x,y ∈ E, then (E, ◦, •) is a Euclidean Jordan algebra, and the
associated symmetric cone E+ is svec(Sn

+). We also refer to the vectorized positive
semidefinite cone svec(Sn

+) as the positive semidefinite cone hereafter.

3 Generalized Doubly Nonnegative Cone

For a class of closed conesK, we consider a GDNN coneDNN (K) overK. The following
requirements are natural. First, to regard DNN (K) as a generalization of the DNN
cone, we require DNN (Rn

+) = DNN n. Second, we require that DNN (K) be a cone.
Third, we require CP(K) ⊆ DNN (K) ⊆ Sn

+ to provide tighter relaxation than SDP for
GCPP as the DNN cone does.

In this section, as described in Section 1, we focus on the fact that the dual cone of
the zeroth level of Parrilo’s hierarchy is the DNN cone, thereby defining the dual cone
of the zeroth level of two inner-approximation hierarchies [18, 28] for the GCOP cone
as a GDNN cone. In addition, we introduce the GDNN cone proposed by Burer and
Dong [7].
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3.1 ZVP-type generalized doubly nonnegative cone

We first introduce the inner-approximation hierarchy proposed by Zuluaga, Vera, and
Peña [28] for COP(K), where K is a (closed) pointed semialgebraic convex cone. Specif-
ically, we suppose that K is expressed as

{x ∈ Rn | ϕi(x) ≥ 0 (i = 1, . . . , q)}, (3.1)

where ϕi ∈ Hn,mi for i = 1, . . . , q, and that K is a pointed convex cone. Then, there
exists some a ∈ Rn \ {0} such that the following holds (see [28, Section 6]):

K ⊆ {x ∈ Rn | a⊤x ≥ 0}, (3.2)

K ∩ {x ∈ Rn | a⊤x = 0} = {0}. (3.3)

In fact, the set of a satisfying (3.2) and (3.3) is exactly int(K∗), which is nonempty
because K is a pointed closed convex cone. From (3.2), the geometric property of K
does not change even if we add the nonnegative constraint a⊤x ≥ 0 with a ∈ int(K∗)
into (3.1). Thus, we may assume that there is some i such that ϕi(x) = a⊤x. Such a
redundant constraint is necessary to construct the inner-approximation hierarchy. Note
that a different choice of a may yield a different hierarchy even if the geometric property
of K does not change. Namely, the hierarchy depends on the algebraic description of
K. Therefore, we may use the notation (K;a) to emphasize the choice of a. Under the
assumption on K, the inner-approximation hierarchy presented by Zuluaga, Vera, and
Peña for COP(K) is described as follows.

Theorem 3.1 ([28, Proposition 17]). Let

En,m(K) := conv

ψ2

k∏
j=1

ϕij

∣∣∣∣∣∣∣
k ∈ N, m−

∑k
j=1mij ∈ N is even,

ψ ∈ Hn,(m−
∑k

j=1 mij
)/2,

ij ∈ {1, . . . , q} (j = 1, . . . , k)

 (3.4)

and KZVP,r(K) := {A ∈ Sn | (a⊤x)rx⊤Ax ∈ En,r+2(K)} for each r ∈ N. The sequence
{KZVP,r(K)}r then satisfies the following conditions:

(i) KZVP,r(K) ⊆ KZVP,r+1(K) ⊆ COP(K) for all r ∈ N.

(ii) int COP(K) ⊆
⋃∞

r=0 KZVP,r(K).

More generally, Zuluaga, Vera, and Peña proposed inner-approximation hierarchies
for the cone of copositive homogeneous polynomials or tensors over a given cone, and
we considered a similar approach [18]. However, we restrict our scope to matrices in
the present work in accordance with Burer and Dong [7].

Using this hierarchy, we define the ZVP-type GDNN cone as follows:
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Definition 3.2. Let K be a pointed semialgebraic convex cone in Rn. Then, we define
KZVP,0(K)∗ as the ZVP-type GDNN cone over K, written as DNN ZVP(K).

Before checking whether the ZVP-type GDNN cone satisfies the requirements men-
tioned at the beginning of Section 3, we provide an explicit expression of DNN ZVP(K).
Note that because the polynomial ψ2

∏k
j=1 ϕij appearing in (3.4) has a degree of m,

homogeneous polynomials of degree exceeding 2 appearing in (3.1) are ignored in the
construction of En,2(K) and therefore KZVP,0(K). Thus, assuming that the degrees of
homogeneous polynomials appearing in (3.1) are at most 2, we now express K as

{x ∈ Rn | x⊤Qix ≥ 0 (i = 1, . . . , q2), a
⊤
i x ≥ 0 (i = 1, . . . , q1)}, (3.5)

where Qi ∈ Sn for i = 1, . . . , q2 and ai ∈ Rn for i = 1, . . . , q1. Recall that KZVP,0(K) =
{A ∈ Sn | x⊤Ax ∈ En,2(K)}.

Lemma 3.3. Suppose that K is expressed as (3.5). Then,

KZVP,0(K) = Sn
+ +

q2∑
i=1

R+Qi +
∑

1≤i<j≤q1

R+A
ij,

where Aij := (aia
⊤
j + aja

⊤
i )/2.

Proof. Let A ∈ KZVP,0(K). Note that we can replace the convex hull operator in (3.4)
with the conical hull operator because the inner set of the right-hand side of (3.4) is a
cone containing zero. Then, because x⊤Ax ∈ En,2(K), there exist ψt ∈ Rn, ψ2(t) ∈ R,
i2(t) ∈ {1, . . . , q2}, ψ1(t) ∈ R, and i1(t), j1(t) ∈ {1, . . . , q1} such that

x⊤Ax =
∑
t

(ψ⊤
t x)

2 +
∑
t

ψ2
2(t)(x

⊤Qi2(t)x) +
∑
t

ψ2
1(t)(a

⊤
i1(t)
x)(a⊤

j1(t)
x) (3.6)

= x⊤

(∑
t

ψtψ
⊤
t +

∑
t∈T1

ψ2
1(t)ai1(t)a

⊤
i1(t)

+
∑
t

ψ2
2(t)Qi2(t) +

∑
t∈T2

ψ2
1(t)A

i1(t)j1(t)

)
x,

(3.7)

where T1 := {t | i1(t) = j1(t)} and T2 := {t | i1(t) ̸= j1(t)}. The first summand in (3.6)
corresponds to the case of k appearing in (3.4) equal to 0; in the second, k = 1; and in
the third, k = 2. Since (3.7) holds for all x, it follows that

A =
∑
t

ψtψ
⊤
t +

∑
t∈T1

ψ2
1(t)ai1(t)a

⊤
i1(t)

+
∑
t

ψ2
2(t)Qi2(t) +

∑
t∈T2

ψ2
1(t)A

i1(t)j1(t) ,

which belongs to Sn
+ +

∑q2
i=1R+Qi +

∑
1≤i<j≤q1

R+A
ij.

Conversely, letA ∈ Sn
++
∑q2

i=1R+Qi+
∑

1≤i<j≤q1
R+A

ij. The matrixA can then be

written as P +
∑q2

i=1 ψiQi +
∑

1≤i<j≤q1
ψijA

ij, where P ∈ Sn
+, ψi ≥ 0 for i = 1, . . . , q2,
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and ψij ≥ 0 for 1 ≤ i < j ≤ q1. Because P ∈ Sn
+, there exist p1, . . . ,pn ∈ Rn such that

P =
∑n

i=1 pip
⊤
i . Therefore,

x⊤Ax =
n∑

i=1

(p⊤i x)
2 +

q2∑
i=1

(
√
ψi)

2x⊤Qix+
∑

1≤i<j≤q1

(
√
ψij)

2(a⊤
i x)(a

⊤
j x),

which belongs to KZVP,0(K).

Proposition 3.4. Suppose that K is expressed as (3.5). Then,

DNN ZVP(K) = Sn
+ ∩

q2⋂
i=1

{X ∈ Sn | ⟨Qi,X⟩ ≥ 0} ∩
⋂

1≤i<j≤q1

{X ∈ Sn | ⟨Aij,X⟩ ≥ 0}.

Proof. Note that for S ∈ Sn, we have (R+S)
∗ = {X ∈ Sn | ⟨S,X⟩ ≥ 0}. In addition,

for any closed convex cones K1, . . . ,Kk, (
∑k

i=1 Ki)
∗ =

⋂k
i=1K∗

i holds. Using these facts,
we obtain the desired result by taking the dual in Lemma 3.3.

It is reasonable to call DNN ZVP(K) a GDNN cone. First, when K = Rn
+ =

{x ∈ Rn | e⊤i x ≥ 0 (i = 1, . . . , n)} and a is given as 1n ∈ int(K∗), the hierarchy
{KZVP,r(Rn

+;1n)}r agrees with Parrilo’s hierarchy (see [28, Remark 2] for its reason),
the rth level of which is described as{

A ∈ Sn

∣∣∣∣∣ (x⊤x)r
n∑

i,j=1

Ai,jx
2
ix

2
j ∈ Σn,2(r+2)

}
. (3.8)

This implies that DNN ZVP(Rn
+;1n) = DNN n. Second, DNN ZVP(K) is a cone, as it

is obtained by dualizing KZVP,0(K). Third, it follows from Theorem 3.1 that CP(K) ⊆
DNN ZVP(K) and from Proposition 3.4 that DNN ZVP(K) ⊆ Sn

+.
Note that unlike Sn

+ +N n, which is closed, KZVP,0(K) is not closed in general. See
Appendix A for an example of K such that KZVP,0(K) is not closed. Therefore, the
dual cone of DNN ZVP(K) is not KZVP,0(K) itself, but instead its closure. However, at
least when K is a direct product of a nonnegative orthant and second-order or positive
semidefinite cones, KZVP,0(K) is closed (see Sections 4.1 and 4.2).

3.2 NN-type generalized doubly nonnegative cone

Let (E, ◦, •) be a Euclidean Jordan algebra where E is the space Rn. As noted above,
we previously proposed an inner-approximation hierarchy for the GCOP cone over the
symmetric cone E+ [18].

Theorem 3.5 ([18, Theorem 3.3]). Let

KNN,r(E+) := {A ∈ Sn | (x⊤x)r(x ◦ x)⊤A(x ◦ x) ∈ Σn,2(r+2)}

for each r ∈ N. Then, KNN,r(E+) is a closed convex cone for each r ∈ N, and the
sequence {KNN,r(E+)}r satisfies the following conditions:
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(i) KNN,r(E+) ⊆ KNN,r+1(E+) ⊆ COP(E+) for all r ∈ N.

(ii) int COP(E+) ⊆
⋃∞

r=0KNN,r(E+).

Using this hierarchy, we define the NN-type GDNN cone:

Definition 3.6. Let (E, ◦, •) be a Euclidean Jordan algebra where E is the space Rn. We
then define KNN,0(E+)

∗ as the NN-type GDNN cone over E+, written as DNNNN(E+).

The set DNNNN(E+) may be considered a GDNN cone. When the Euclidean
Jordan algebra is taken as in Example 2.2, the associated symmetric cone E+ is the
nonnegative orthant Rn

+ and the hierarchy {KNN,r(Rn
+)}r agrees with Parrilo’s hierar-

chy (3.8). This implies that DNNNN(Rn
+) = DNN n. Moreover, DNNNN(E+) is a

cone that includes CP(E+) for the same reason as does the ZVP-type GDNN cone.
Finally, for any A ∈ Sn

+, there exists U ∈ Sn such that A can be decomposed into U 2.
For each x ∈ E, because each element of x ◦x is a quadratic homogeneous polynomial,
we can write x ◦ x as (ϕ1(x), . . . , ϕn(x)), where ϕi(x) ∈ Hn,2 for i = 1, . . . , n. Then,
we have

(x ◦ x)⊤A(x ◦ x) = ∥U(x ◦ x)∥2=
n∑

i=1

(
n∑

j=1

Ui,jϕj(x)

)2

∈ Σn,4.

Therefore, Sn
+ ⊆ KNN,0(E+), and so DNNNN(E+) ⊆ Sn

+ hold.
We should note, however, that a fully explicit expression of DNNNN(E+) has been

unknown in the case of general symmetric cones. According to the result presented
in [18], DNNNN(E+) is written as the closure of a set defined by a positive semidefinite
constraint. We demonstrate that the closure operator can be removed in the case
wherein E+ is a direct product of a nonnegative orthant and second-order or positive
semidefinite cones. Namely, in such cases, DNNNN(E+) is fully captured by a positive
semidefinite constraint. Note in addition that because KNN,0(E+) is always closed as
mentioned in Theorem 3.5, the dual of DNNNN(E+) is precisely KNN,0(E+).

3.3 BD-type generalized doubly nonnegative cone

Above, we propose two GDNN cones based on the inner-approximation hierarchies for
the GCOP cone. Independently, Burer and Dong [7] proposed another GDNN cone
over a closed convex cone without exploiting inner-approximation hierarchies.

Definition 3.7 ([7, Section 4]). For a closed convex cone K in Rn, the BD-type GDNN
cone DNNBD(K) over K is defined by Sn

+ ∩ N (K), where N (K) := {X ∈ Sn | Xs ∈
K for all s ∈ Ext(K∗)}.

The set DNNBD(K) can also be considered a GDNN cone based on the requirements
listed at the beginning of Section 3. In fact, by the definition of DNNBD(K), it
comprises a cone included in the positive semidefinite cone. In addition, as discussed
in [7], DNNBD(Rn

+) = DNN n holds and DNNBD(K) includes CP(K).
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4 Analysis on Three Generalized Doubly Nonnega-

tive Cones

In the previous section, we provided two GDNN cones DNN ZVP(K) and DNNNN(K)
and introduced another, DNNBD(K), proposed by Burer and Dong [7]. Note that for a
general closed cone K, some GDNN cones may not be defined, in which case we cannot
compare the three GDNN cones. That is, DNN ZVP(K) is defined for pointed semial-
gebraic convex cones, whereas DNNNN(K) is defined for symmetric cones. Therefore,
in this section, we consider two special cases to define all three cones. In particu-
lar, we consider the case in which K is a direct product of a nonnegative orthant and
second-order cones. In addition, as a preliminary investigation, we also consider the
case in which K is a direct product of a nonnegative orthant and positive semidefinite
cones. Recall that the sequence {KZVP,r(Rn

+;1n)}r agrees with Parrilo’s hierarchy and
the vector 1n is the identity element of the Euclidean Jordan algebra associated with
Rn

+, as shown in Example 2.2. Accordingly, we select the vector a ∈ int(K∗) in the
ZVP-type GDNN cone DNN ZVP(K;a) as the identity element of a Euclidean Jordan
algebra associated with K, and no longer specify it.

For the case in which K is a direct product of a nonnegative orthant and one second-
order cone, i.e., K = Rn1

+ × Ln2 , we the authors [18], previously selected a ∈ int(K∗)
as in this paper, to construct a ZVP-type hierarchy {KZVP,r(K;a)}r. Upon solving the
approximation problems that resulted from substituting the GCOP cone with hierar-
chies such as ZVP- and NN-types, a numerical comparison of these hierarchies was
conducted. In this study, we consider the case in which K is a direct product of a
nonnegative orthant and multiple second-order cones and investigate the inclusion rela-
tionship between the dual cone of the zeroth level of the ZVP- and NN-type hierarchies
theoretically.

4.1 When K is a direct product of a nonnegative orthant and
second-order cones

In this subsection, we consider the case in which K is a direct product of a nonnegative
orthant and second-order cones—i.e., K = Rn1

+ ×
∏N

h=2 Lnh—and let n :=
∑N

h=1 nh.
For convenience, we reindex (1, . . . , n) as (11, . . . , 1n1, 21, . . . , 2n2, . . . , N1, . . . , NnN);
i.e., let hi :=

∑h−1
k=1 nk + i for h = 1, . . . , N and i = 1, . . . , nh. Moreover, we set

Ih := {h1, . . . , hnh} for h = 1, . . . , N , I−
h := Ih \ {h1} for h = 2, . . . , N , and

I≥0 := I1 ∪
⋃N

h=2{h1}. Let (E1, ◦1, •1) be the Euclidean Jordan algebra associated
with the nonnegative orthant Rn1

+ shown in Example 2.2, and (Eh, ◦h, •h) be the Eu-
clidean Jordan algebra associated with the second-order cone Lnh shown in Example 2.3
for h = 2, . . . , N . Taking the direct product of the N Euclidean Jordan algebras, we
obtain the Euclidean Jordan algebra (E, ◦, •) with E+ = K. For each x ∈ E, the square

11



x ◦ x is calculated as

x ◦ x =

(
(x2I)I∈I1 ,

∑
I∈I2

x2I , (2x21xI)I∈I−
2
, . . . ,

∑
I∈IN

x2I , (2xN1xI)I∈I−
N

)
.

The identity element e of the Euclidean Jordan algebra (E, ◦, •) is the vector with Ith
(I ∈ I≥0) elements 1 and all other elements 0.

4.1.1 Explicit expression of GDNN cones

First, we provide a simpler explicit expression of the ZVP-type GDNN cone
DNN ZVP(K). Note that the cone K has the following semialgebraic representation:x ∈ Rn

∣∣∣∣∣∣
e⊤I x = xI ≥ 0 (I ∈ I≥0),
e⊤x =

∑
I∈I≥0

xI ≥ 0,

x⊤Jhx = x2h1 −
∑

I∈I−
h
x2I ≥ 0 (h = 2, . . . , N)

 , (4.1)

where Jh is the n × n matrix such that the (h1, h1)th element is 1, the
(h2, h2), . . . , (hnh, hnh)th elements are −1, and all other elements are 0 for h =
2, . . . , N . As mentioned in Section 3.1, remember that the redundant constraint
e⊤x ≥ 0 is necessary to construct the ZVP-type hierarchy. Consequently, Lemma 3.3
and Proposition 3.4 yield explicit expressions of KZVP,0(K) and DNN ZVP(K), respec-
tively. However, in this case, they can be expressed in a simpler way.

Lemma 4.1.

KZVP,0(K) = Sn
+ +

N∑
h=2

R+Jh +

{
N ∈ Sn

∣∣∣∣∣ NI,J

{
≥ 0 (I, J ∈ I≥0, I ̸= J)

= 0 (otherwise)

}
. (4.2)

Throughout this subsection, for simplicity, we express the last set in the right-hand
side of (4.2) as N≥0.

Proof. Let EIJ := (eIe
⊤
J + eJe

⊤
I )/2 and EI := (eIe

⊤ + ee⊤I )/2. By Lemma 3.3, we
have

KZVP,0(K) = Sn
+ +

N∑
h=2

R+Jh +
∑
I<J

I,J∈I≥0

R+E
IJ +

∑
I∈I≥0

R+EI .

Therefore, it is sufficient to show that

Sn
+ +

∑
I<J

I,J∈I≥0

R+E
IJ +

∑
I∈I≥0

R+EI = Sn
+ +N≥0.

12



For each I, J ∈ I≥0 with I < J , since EIJ is the matrix with (I, J)th and (J, I)th
elements equal to 1/2 and other elements 0, we have EIJ ∈ N≥0. In addition, for each
I ∈ I≥0, we have

EI = eIe
⊤
I +

∑
J∈I≥0

J ̸=I

EIJ ∈ Sn
+ +N≥0.

These imply the “⊆” component. Conversely, let N ∈ N≥0. Then,

N =
∑
I<J

I,J∈I≥0

2NI,JE
IJ ∈

∑
I<J

I,J∈I≥0

R+E
IJ ,

which implies the “⊇” component, thereby completing the proof.

Taking the dual in Lemma 4.1, we have a simpler explicit expression ofDNN ZVP(K).

Proposition 4.2. For K = Rn1
+ ×

∏N
h=2 Lnh, it follows that

DNN ZVP(K) = Sn
+∩

N⋂
h=2

{X ∈ Sn | ⟨Jh,X⟩ ≥ 0}∩{N ∈ Sn | NI,J ≥ 0 (I, J ∈ I≥0, I ̸= J)}.

Next, we provide an explicit expression of the NN-type GDNN cone. For y =
(yδ)δ∈In=4

∈ RIn=4 , let C0(y) ∈ Sn be the matrix with the (I, J)th element:*2

y2(eI+eJ ) (I, J ∈ I1), (4.3a)∑
K∈Ih

y2(eI+eK) (I ∈ I1, J = h1, h = 2, . . . , N), (4.3b)

2y2eI+eh1+eJ (I ∈ I1, J ∈ I−
h , h = 2, . . . , N),∑

K∈Ig

∑
L∈Ih

y2(eK+eL) (I = g1, J = h1, g, h = 2, . . . , N), (4.3c)

∑
K∈Ig

2y2eK+eh1+eJ (I = g1, J ∈ I−
h , g, h = 2, . . . , N),

4yeg1+eI+eh1+eJ (I ∈ I−
g , J ∈ I−

h , g, h = 2, . . . , N).

If we define C0 := {C0(y) | y ∈ Mn,4}, we can show that KNN,0(K) = C∗
0 by the same

argument as in [18, Proposition 3.6]. Since C0(y) is linear with respect to y and Mn,4

is a convex cone, it follows that C0 is a convex cone. Therefore, DNNNN(K) = cl C0.
We now demonstrate that C0 is closed, and the closure operator can be removed.

*2Although we only define the upper triangular blocks of C0(y) in (4.3), the lower triangular blocks
are further defined so that C0(y) is a symmetric matrix.
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Proposition 4.3. The set C0 is closed.

Proof. Let {y(k)}k ⊆ Mn,4 and suppose that C0(y
(k)) converges to some C∗

0 in the

limit k → ∞. It follows from the definition of Mn,4 that Mn,2(y(k)) ∈ SIn=2
+ , and in

particular, the diagonal elements of Mn,2(y(k)) are nonnegative. Hence, we see that

y
(k)
2γ ≥ 0 for all γ ∈ In=2. (4.4)

Since C0(y
(k)) → C∗

0 , each element of C0(y
(k)) is bounded. Specifically,

(i) {y(k)2(eI+eJ )
}k is bounded for all I, J ∈ I1 (see (4.3a)).

(ii) For each h = 2, . . . , N , {
∑

J∈Ih y
(k)
2(eI+eJ )

} is bounded for all I ∈ I1 (see (4.3b)).

Therefore, we see from (4.4) that {y(k)2(eI+eJ )
}k is bounded for all I ∈ I1 and J ∈ Ih.

(iii) For each g, h = 2, . . . , N , {
∑

I∈Ig
∑

J∈Ih y
(k)
2(eI+eJ )

}k is bounded (see (4.3c)). There-

fore, {y(k)2(eI+eJ )
}k is bounded for all I ∈ Ig and J ∈ Ih.

Because In=2 = {eI + eJ | 1 ≤ I ≤ J ≤ n}, it follows from (i) to (iii) that {y(k)2γ }k is
bounded for all γ ∈ In=2, which implies the boundedness of the diagonal elements of
Mn,2(y(k)). Combining boundedness with the positive semidefiniteness of Mn,2(y(k))
yields the boundedness of each element in Mn,2(y(k)). Therefore, {y(k)}k is also

bounded, as y
(k)
δ is an element of Mn,2(y(k)) for each δ ∈ In=4. Therefore, there ex-

ists a convergent subsequence {y(kr)}r with a limit of y∗. Then, because Mn,4 is closed
and y(kr) ∈ Mn,4, we have y∗ ∈ Mn,4. Since C0(y) is continuous with respect to y, we
obtain C0(y

(kr)) → C0(y
∗) = C∗

0 . Thus, C0 is closed.

Corollary 4.4. For K = Rn1
+ ×

∏N
h=2 Lnh, it follows that DNNNN(K) = C0.

Proof. It is clear from Proposition 4.3.

Remark 4.5. For K = Rn1
+ ×

∏N
h=2 Lnh, in the same manner as [18, Proposition 3.6]

and Corollary 4.4, we can derive an explicit semidefinite representation of the dual
cone of KNN,r(K) for general cases of r. The discussion can be extended to the case of
tensors.

4.1.2 Inclusion relationship between GDNN cones

The following subsubsection discusses the inclusion relationship between ZVP-, NN-,
and BD-type GDNN cones.

To begin with, we show that DNNNN(K) is strictly included in DNN ZVP(K). The
proof requires the closedness of KZVP,0(K), which does not hold in the general case.
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To prove closedness, we prepare an additional lemma that claims a sufficient condition
that the Minkowski sum of pointed closed convex cones is closed. Because it is a slight
modification of [24, Corollary 9.1.3], the proof is omitted.

Lemma 4.6. Let Ki ⊆ Sn (i = 1, . . . ,m) be pointed closed convex cones. Then,
∑m

i=1Ki

is closed if the following condition holds: for any Xi ∈ Ki (i = 1, . . . ,m), if
∑m

i=1Xi =
O, then Xi = O for all i = 1, . . . ,m.

Lemma 4.7. For K = Rn1
+ ×

∏N
h=2 Lnh, the convex cone KZVP,0(K) is closed.

Proof. Let P ∈ Sn
+, t2, . . . , tN ≥ 0, and N ∈ N≥0, and suppose that

A := P +
N∑

h=2

thJh +N = O.

For every h = 2, . . . , N , because Ah1,h1 = Ph1,h1 + th = 0 and each term is nonnegative,
we have Ph1,h1 = th = 0. Given that th = 0 for all h = 2, . . . , N , for each I ∈
I1 ∪

⋃N
h=2 I

−
h , we have AI,I = PI,I = 0. Therefore, the diagonal elements of P are all 0

and P = O, as P ∈ Sn
+. Finally, we obtainA =N = O. Obviously, Sn

+ and R+Jh (h =
2, . . . , N) are pointed closed convex cones. In addition, because N≥0 ⊆ N n, N≥0 is also
a pointed closed convex cone. KZVP,0(K) is therefore closed by Lemma 4.6.

Lemma 4.8. For K = Rn1
+ ×

∏N
h=2 Lnh, KZVP,0(K) ⊆ KNN,0(K) holds. Moreover, the

inclusion holds strictly if n1 ≥ 1 and n2 ≥ 2.

Proof. Let

A = P +
N∑

h=2

thJh +N ∈ KZVP,0(K), (4.5)

where P ∈ Sn
+, t2, . . . , tN ≥ 0, and N ∈ N≥0. First, let U be a real n × n symmetric

matrix such that P = U 2; then, (x ◦ x)⊤P (x ◦ x) = ∥U(x ◦ x)∥2∈ Σn,4. Second, for
each h = 2, . . . , N ,

(x ◦ x)⊤(thJh)(x ◦ x) = th

x2h1 − ∑
I∈I−

h

x2I

2

∈ Σn,4.

Finally,

(x ◦ x)⊤N (x ◦ x) =
∑

I,J∈I1

NI,J(xIxJ)
2 + 2

N∑
h=2

∑
I∈I1

∑
J∈Ih

NI,h1(xIxJ)
2

+
N∑

g,h=2

∑
I∈Ig

∑
J∈Ih

Ng1,h1(xIxJ)
2 ∈ Σn,4.
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Therefore, (x ◦ x)⊤A(x ◦ x) ∈ Σn,4, which means that A ∈ KNN,0(K).
The following example shows that the inclusion holds strictly. Suppose that n1 ≥ 1

and n2 ≥ 2. Let A ∈ Sn be a matrix with the (11, 21)th, (11, 22)th, (21, 11)th, and
(22, 11)th elements 1 and all other elements 0. Since

(x ◦ x)⊤A(x ◦ x) = 2x211
∑
I∈I2

x2I + 4x211x21x22

= 2x211

(x21 + x22)
2 +

∑
I∈I−

2 \{22}

x2I

 ∈ Σn,4,

it follows that A ∈ KNN,0(K).
On the other hand, we assume that A ∈ KZVP,0(K) and express A as (4.5). Then,

we have 0 = A11,11 = P11,11. Combining P11,11 = 0 with P ∈ Sn
+ yields P11,22 =

0. Therefore, A11,22 must be 0, which contradicts the definition of A. Hence, A ̸∈
KZVP,0(K).

Theorem 4.9. For K = Rn1
+ ×

∏N
h=2 Lnh, DNNNN(K) ⊆ DNN ZVP(K) holds. More-

over, the inclusion holds strictly if n1 ≥ 1 and n2 ≥ 2.

Proof. By taking the dual in Lemma 4.8, we have DNNNN(K) ⊆ DNN ZVP(K). We
next show by contradiction that the strict inclusion DNNNN(K) ⊊ DNN ZVP(K) holds
under the assumption of n1 ≥ 1 and n2 ≥ 2. Assume that DNNNN(K) = DNN ZVP(K)
holds. By taking its dual, we have DNN ZVP(K)∗ = DNNNN(K)∗. Remember that
the double dual of a closed convex cone agrees with itself (see Theorem 2.1.iii). Since
KZVP,0(K) and KNN,0(K) are both closed convex cones (see Lemma 4.7 and Theorem 3.5,
respectively), it follows from the definition of the ZVP- and NN-type GDNN cones that
KZVP,0(K) = KNN,0(K). This contradicts the assumption and Lemma 4.8.

We will demonstrate that, in general, there is no inclusion relationship between
DNN ZVP(K) and DNNBD(K). Before presenting such examples, we provide a more
concise expression of N (K) appearing in DNNBD(K) for the case where K is a direct
product of a nonnegative orthant and second-order cones. It can be easily seen that
the set J, defined as

J :=
⋃
I∈I1

{(eI ,0n2 , . . . ,0nN
)} ∪

N⋃
h=2

{(0n1 ,0n2 , . . . , 1/2,v/2, . . . ,0nN
) | v ∈ Snh−2},

satisfies Ext(K) = {αs | α > 0, s ∈ J}. Since the vector Xs is linear with respect
to s and K is self-dual, we can equivalently represent N (K) as {X ∈ Sn | Xs ∈
K for all s ∈ J}.
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Example 4.10 (a matrix that is in DNN ZVP(K) but not in DNNBD(K)). Suppose
that n1 ≥ 1 and n2 ≥ 2. Let

A =


Diag(n2 − 1,On1−1)

0 1⊤
n2−1

0n1−1 O(n1−1)×(n2−1)
O

0 0⊤
n1−1

1n2−1 O(n2−1)×(n1−1)
Diag(n2 − 1, In2−1) O

O O O

 .

We use Proposition 4.2 to show that A ∈ DNN ZVP(K). We can easily check that

A ∈
N⋂

h=2

{X ∈ Sn | ⟨Jh,X⟩ ≥ 0} ∩ {N ∈ Sn | NI,J ≥ 0 (I, J ∈ I≥0, I ̸= J)}.

Therefore, it is sufficient to show that A ∈ Sn
+. A ∈ Sn

+ if and only if

Diag

[
O∑N

h=1 nh−n2−1, n2 − 1,

(
n2 − 1 1⊤

n2−1

1n2−1 In2−1

)]
∈ Sn

+, (4.6)

which is obtained by rearranging some rows and columns of A. Moreover, (4.6) is
equivalent to (

n2 − 1 1⊤
n2−1

1n2−1 In2−1

)
∈ Sn2

+ ,

which is true because (n2 − 1) − 1⊤
n2−1In2−11n2−1 = 0. (Here, we apply the Schur

complement lemma [2, Lemma 4.2.1].) Therefore, we have A ∈ DNN ZVP(K).
Next, we let

s =

(
0n1 ,

1

2
,− 1n2−1

2
√
n2 − 1

,0

)
∈ J.

Then, since (As)1 = −
√
n2 − 1/2 < 0, we see that As ̸∈ K. (The first component of

an element in K must be nonnegative.) Thus, A ̸∈ DNNBD(K).

Example 4.11 (a matrix that is in DNNBD(K) but not in DNN ZVP(K)). Suppose
that n2 ≥ 3. Let

A = Diag

(
On1 , 1,

In2−1√
n2 − 1

,O

)
.

On the one hand, A ∈ DNNBD(K). Indeed, let s ∈ J. If s = (0n1 , 1/2,v/2,0) for
some v ∈ Sn2−2, then

As =

(
0n1 ,

1

2
,

v

2
√
n2 − 1

,0

)
.

Since (
1

2

)2

−
∥∥∥∥ v

2
√
n2 − 1

∥∥∥∥2 = 1

4

(
1− 1

n2 − 1

)
≥ 0,
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(1
2
, v
2
√
n2−1

) ∈ Ln2, and therefore we get As ∈ K. Otherwise, As = 0 ∈ K.

On the other hand, A ̸∈ DNN ZVP(K) because ⟨J2,A⟩ = 1−
√
n2 − 1 < 0.

We consider the special case of K = Ln. As a consequence of the dual of the
S-lemma [21] (see also [26, Theorem 1]), it follows that

CP(Ln) = Sn
+ ∩ {X ∈ Sn | ⟨Diag(1,−In−1),X⟩ ≥ 0}.

Therefore, CP(Ln) itself is semidefinite representable. Surprisingly, from Proposi-
tion 4.2 and Theorem 4.9, we see that DNN ZVP(Ln) and DNNNN(Ln) agree with
CP(Ln). However, Example 4.11 implies that DNNBD(Ln) includes CP(Ln) strictly if
n ≥ 3. Including the case of n ≤ 2, we derive the necessary and sufficient condition
that CP(Ln) agrees with each GDNN cone over Ln.

Proposition 4.12. CP(Ln) = DNNNN(Ln) = DNN ZVP(Ln) ⊆ DNNBD(Ln) holds.
Furthermore, the above inclusion of “⊆” holds strictly if and only if n ≥ 3.

Proof. It is sufficient to show that DNNBD(Ln) ⊆ CP(Ln) in the case of n ≤ 2. The
equality holds when n = 1 because CP(L1) = S1

+ and DNNBD(L1) is sandwiched
between CP(L1) and S1

+.
Let us consider the case of n = 2. ForX ∈ DNNBD(L2), X is positive semidefinite

by the definition of DNNBD(L2). In addition, since the vector (1, 1)⊤ generates an
extreme ray of L2, it follows thatX(1, 1)⊤ = (X1,1+X1,2, X1,2+X2,2)

⊤ ∈ L2, i.e., X1,1+
X1,2 ≥ |X1,2+X2,2|. This implies that X1,1−X2,2, which is equal to ⟨Diag(1,−I1),X⟩,
is greater than or equal to 0. Thus, we have X ∈ CP(L2).

Finally, we discuss the inclusion relationship betweenDNNNN(K) andDNNBD(K).
Because DNNNN(K) ⊆ DNN ZVP(K) (Theorem 4.9), the matrix presented in Exam-
ple 4.11 is also in DNNBD(K), but not in DNNNN(K). Therefore, we are interested
in whether there exists a matrix that is in DNNNN(K) but not in DNNBD(K). If
no such matrix exists, DNNNN(K) is included in DNNBD(K). Although we were not
able to determine this theoretically, the results of our numerical experiment imply that
DNNNN(K) is included in DNNBD(K). For details, see Section 5.1.

4.2 When K is a direct product of a nonnegative orthant and
positive semidefinite cones

In this subsection, we consider the case where K is a direct product of a nonnegative
orthant and positive semidefinite cones; i.e., K = Rn1

+ ×
∏N

h=2 svec(S
nh
+ ), and let n :=

n1 +
∑N

h=2 Tnh
. For convenience, we reindex (1, . . . , n) as

(11, . . . , 1n1, 211, 212, 222, . . . , 21n2, . . . , 2n2n2, . . . , N11, . . . , NnNnN),
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i.e., 1i := i for i = 1, . . . , n1, and hij := n1+
∑h−1

k=2 Tnk
+ j(j− 1)/2+ i for h = 2, . . . , N

and 1 ≤ i ≤ j ≤ nh. For h = 2, . . . , N and 1 ≤ j < i ≤ nh, let hij := hji. Moreover,
we set Ĩh := {h11, h12, h22, . . . , hnhnh} for h = 2, . . . , N and

Ĩ≥0 := {11, . . . , 1n1, 211, 222, 233, . . . , 2n2n2, . . . , N11, . . . , NnNnN}.

Let (E1, ◦1, •1) be the Euclidean Jordan algebra associated with the nonnegative orthant
Rn1

+ shown in Example 2.2, and (Eh, ◦h, •h) be the Euclidean Jordan algebra associated
with the positive semidefinite cone svec(Snh

+ ) shown in Example 2.4 for h = 2, . . . , N .
Taking the direct product of the N Euclidean Jordan algebras, we obtain the Euclidean
Jordan algebra (E, ◦, •) with E+ = K. For each x ∈ E, the square x◦x is calculated as

(x ◦ x)I =



x2I (I = 11, . . . , 1n1),

x2I +
1

2

∑
k:k ̸=i

x2hki (I = hii, h = 2, . . . , N, i = 1, . . . , nh),

xhiixI + xIxhjj

+
1√
2

∑
k:k ̸=i,j

xhikxhjk
(I = hij, h = 2, . . . , N, 1 ≤ i < j ≤ nh).

The identity element e of the Euclidean Jordan algebra (E, ◦, •) is the vector with Ith

(I ∈ Ĩ≥0) elements 1 and all other elements 0.
As mentioned in Section 2.2, the positive semidefinite cone svec(Sm

+ ) is a symmetric
cone. In addition, svec(Sm

+ ) is semialgebraic, as

svec(Sm
+ ) =

{
x ∈ RTm

∣∣∣∣ det smat(x)I,I ≥ 0 for all I ⊆ {1, . . . ,m},
e⊤x =

∑
I∈Ĩ≥0

xI ≥ 0

}
. (4.7)

Therefore, we can define all three GDNN cones properly in this case.
Here, we investigate the inclusion relationship between the ZVP- and NN-type

GDNN cones. As in Section 4.1, we provide a simpler explicit expression of KZVP,0(K)
and DNN ZVP(K):

Lemma 4.13. Let J ij
h be the n × n matrix with (hii, hjj)th and (hjj, hii)th elements

1, (hij, hij)th element −1, and all other elements 0. Then,

KZVP,0(K) = Sn
+ +

N∑
h=2

∑
1≤i<j≤nh

R+J
ij
h +

{
N ∈ Sn

∣∣∣∣∣ NI,J

{
≥ 0 (I, J ∈ Ĩ≥0, I ̸= J)

= 0 (otherwise)

}
.

(4.8)

For simplicity, we write the last set in the right-hand side of (4.8) as Ñ≥0. Because
Lemma 4.13 can be proven in the same way as Lemma 4.1, the proof is omitted. We
can also show that KZVP,0(K) is closed using Lemma 4.6. Moreover, taking the dual in
Lemma 4.13, we obtain a simpler explicit expression of DNN ZVP(K).
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Proposition 4.14. For K = Rn1
+ ×

∏N
h=2 svec(S

nh
+ ), it follows that

DNN ZVP(K) = Sn
+ ∩

N⋂
h=2

⋂
1≤i<j≤nh

{X ∈ Sn | ⟨J ij
h ,X⟩ ≥ 0}

∩ {N ∈ Sn | NI,J ≥ 0 (I, J ∈ Ĩ≥0, I ̸= J)}.
Remark 4.15. Similarly to Corollary 4.4, we can obtain an explicit expression of
DNNNN(K) without the closure operator. In addition, this can be extended to the case
of tensors.

We show that the NN-type GDNN cone is strictly included in the ZVP-type cone
as in the case that K involves second-order cones.

Lemma 4.16. For K = Rn1
+ ×

∏N
h=2 svec(S

nh
+ ), KZVP,0(K) ⊆ KNN,0(K) holds. Moreover,

the inclusion holds strictly if n1 ≥ 1 and n2 ≥ 2.

Proof. Let

A = P +
N∑

h=2

∑
1≤i<j≤nh

tijh J
ij
h +N , (4.9)

where P ∈ Sn
+, t

ij
h ≥ 0, and N ∈ Ñ≥0. First, as the proof of Lemma 4.8, (x ◦x)⊤P (x ◦

x) ∈ Σn,4. Second, for h = 2, . . . , N and 1 ≤ i < j ≤ nh, because

2(x ◦ x)⊤J ij
h (x ◦ x)

= 4

(
x2hii +

1

2

∑
k:k ̸=i

x2hki

)(
x2hjj +

1

2

∑
k:k ̸=j

x2hkj

)

− 2

(
xhiixhij + xhijxhjj +

1√
2

∑
k:k ̸=i,j

xhikxhjk

)2

= (x2hij − 2xhiixhjj)
2 +

∑
k:k ̸=i,j

(xhijxhik −
√
2xhiixhjk)

2

+
∑

k:k ̸=i,j

(xhijxhjk −
√
2xhjjxhik)

2 +
∑
k<l

k,l ̸=i,j

(xhikxhjl − xhilxhjk)
2,

we have (x ◦ x)⊤J ij
h (x ◦ x) ∈ Σn,4. Finally,

(x ◦ x)⊤N (x ◦ x)

=

n1∑
i,j=1

N1i,1jx
2
1ix

2
1j + 2

N∑
h=2

n1∑
i=1

nh∑
j=1

N1i,hjjx
2
1i

(
x2hjj +

1

2

∑
k:k ̸=j

x2hkj

)

+
N∑

g,h=2

ng∑
i=1

nh∑
j=1

Ngii,hjj

(
x2gii +

1

2

∑
k:k ̸=i

x2gki

)(
x2hjj +

1

2

∑
k:k ̸=j

x2hkj

)
. (4.10)
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As all variables that appear in (4.10) are squared and each element ofN is nonnegative,
we see that (x◦x)⊤N (x◦x) ∈ Σn,4. Therefore, (x◦x)⊤A(x◦x) ∈ Σn,4, which implies
that A ∈ KNN,0(K).

The following example shows that the inclusion holds strictly. Suppose that n1 ≥ 1
and n2 ≥ 2. Let ϵ be a sufficiently small positive value, a = (aij)1≤i≤j≤n2 ∈ RTn2 be the
vector such that

aij =

{
1 (i = j),

ϵ (i < j),

and A ∈ Sn be the matrix with (11, Ĩ2)th and (Ĩ2, 11)th elements a and all other
elements 0. Then, some calculations yield the following:

(x ◦ x)⊤A(x ◦ x) = x211

[
ϵ
∑
i<j

{(x2ii+x2ij)2+(x2ij+x2jj)
2}+ ϵ√

2

∑
i<j

∑
k:k ̸=i,j

(x2ik+x2jk)
2

+ {2− (n2 − 1)ϵ}
n2∑
i=1

x22ii + [2− {2 +
√
2(n2 − 2)}ϵ]

∑
i<j

x22ij

]
.

Thus, (x ◦ x)⊤A(x ◦ x) can be represented as an SOS polynomial if

ϵ ≤ min

{
2

n2 − 1
,

2

2 +
√
2(n2 − 2)

}
.

Such a positive ϵ certainly exists. Consequently, on the one hand, we have A ∈
KNN,0(K).

On the other hand, assume that A can be expressed as (4.9). Then, we have
0 = A11,11 = P11,11. Combining P11,11 = 0 with P ∈ Sn

+ yields P11,2ij = 0 for all i < j.
Therefore, for a pair (i, j) with i < j, A11,2ij must be 0. However, by the definition of
A, A11,2ij = ϵ > 0, which is a contradiction.

Taking the dual in Lemma 4.16, we obtain the following desired result:

Theorem 4.17. For K = Rn1
+ ×

∏N
h=2 svec(S

nh
+ ), DNNNN(K) ⊆ DNN ZVP(K) holds.

Moreover, the inclusion holds strictly if n1 ≥ 1 and n2 ≥ 2.

The theoretical inclusion relationship between ZVP- and BD-type GDNN cones and
between NN- and BD-type GDNN cones remains unknown. See also Section 5.2 for the
numerical comparison of the strength of relaxation by the three GDNN cones.

5 Numerical Experiments

We conducted a series of numerical experiments to investigate the strength of relaxation
by the three GDNN cones. We consider in Section 5.1, the case where K is a direct
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product of a nonnegative orthant and second-order cones, and in Section 5.2, the case
where K is a direct product of a nonnegative orthant and positive semidefinite cones.
We conducted all of the experiments with MATLAB (R2021b in Section 5.1 and R2022a
in Section 5.2) on a computer with an Intel Core i5-8279U 2.40 GHz CPU and 16 GB
of memory. The versions of the YALMIP modeling language [14] and the MOSEK
solver [16] we used in the following two experiments are 20210331 and 9.3.3, respectively.

5.1 Mixed 0–1 second-order cone programming

We considered the following mixed 0–1 second-order cone programming problem with
a linear objective function.

minimize
x

c⊤x

subject to 0 ≤ x1 ≤ 2,

0 ≤ xi ≤ 1 (i = 2, . . . , n),

xi ∈ {0, 1} (i ∈ B ⊆ {2, . . . , n}),
x ∈ Ln.

(5.1)

As a consequence of Burer’s findings, the second constraint of problem (5.1) ensures
that we can equivalently transform problem (5.1) into a GCPP problem [6]. Specifically,
by introducing 2n nonnegative slack variables, we can convert problem (5.1) into the
primal standard form of GCPP

minimize
X

⟨C,X⟩

subject to ⟨Ai,X⟩ = bi (i = 1, . . . ,m),

X ∈ CP(K)

(5.2)

with m = 4n+ |B|+ 1 and K = R2n+1
+ × Ln for some symmetric matrices A1, . . . ,Am,

C and scalars b1, . . . , bm. In this section, we solve the problem obtained by relaxing the
GCPP problem with each GDNN cone and compare the results.

Reformulating problem (5.1) as a GCPP problem would be impractical because
problem (5.1) can be solved directly and quickly with an existing mixed-integer second-
order cone programming solver. However, we decided to solve a mixed 0–1 second-order
cone programming problem with a linear objective function rather than a nonlinear or
nonconvex objective because we were able to obtain the exact optimal value of the
problem with the solver and calculate the difference between the optimal value of the
original problem and that of its relaxation problem with each GDNN cone.

We created instances of problem (5.1) as follows. The number n of variables was
changed between 5, 10, 30, and 50. The set B of indices to determine binary variables
was generated by selecting 0.4n elements from {2, . . . , n} randomly. All elements of c
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Table 1: Optimal values of problem (5.1) and its associated GDNNP and SDP relaxation
problems

Optimal value
n No. MISOCP NN ZVP BD SDP
5 1 −4.01 −4.01 −4.01 −4.01 −30.56

2 −3.18 −3.18 −3.18 −3.18 −4.93
3 −0.28 −0.28 −0.31 −0.28 −16.86
4 0.00 0.00 0.00 0.00 −106.50
5 −1.47 −1.47 −1.47 −1.47 −163.54

10 1 −4.73 OOM −4.74 −4.77 −42.56
2 −5.43 OOM −5.43 −5.43 −140.18
3 −1.99 OOM −1.99 −1.99 −13.20
4 0.00 OOM −0.86 0.00 −186.66
5 −4.23 OOM −4.23 −4.23 −53.90

30 1 −9.17 OOM −9.17 −9.62 −328.08
2 −9.42 OOM −9.42 −9.95 −340.17
3 −5.91 OOM −5.91 −6.00 −120.07
4 −3.05 OOM −3.07 −3.25 −444.75
5 −9.58 OOM −9.58 −10.14 −362.77

50 1 −9.34 OOM −9.34 −10.93 −489.81
2 −9.70 OOM −9.71 −10.25 −324.13
3 −6.68 OOM −6.69 −7.16 −293.58
4 −3.30 OOM −3.30 −3.78 −560.80
5 −12.07 OOM −12.10 −13.29 −750.69

were independent and identically distributed, and each followed the standard normal
distribution. For each n, we generated five instances varying the randomness of B and
c. For each instance, the optimal value of the relaxation problem with DNNNN(K)
(written as NN in Table 1), DNN ZVP(K) (ZVP), and DNNBD(K) (BD) was measured.
For reference, we also solved the problem (5.1) itself (MISOCP), as well as the relaxation
problem with the positive semidefinite cone (SDP). To improve numerical stability,
0.005I was added to the coefficient matrix C in the standard form (5.2) when we
solved the SDP relaxation problems. We solved a BD-type GDNNP problem as a semi-
infinite conic programming problem by adopting an algorithm based on the explicit
exchange method [19]. See Appendix B for the algorithm. We used the YALMIP
modeling language and the MOSEK solver to solve the optimization problems.

Table 1 lists the optimal values of the problem (5.1) and its GDNNP and SDP
relaxation problems, where “OOM” means that we could not solve the problem because
of insufficient memory.

It may be observed from Table 1 that the optimal values of the GDNNP relaxation
problems were much better than those of the SDP relaxation problems and were close
to those of the original problems. This implies that GDNNP relaxation for GCPP
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Figure 1: Inclusion relationship between ZVP-, NN-, and BD-type generalized doubly
nonnegative cones (including Conjecture 5.1)

provides much tighter bounds than SDP relaxation. In particular, the NN- and ZVP-
type GDNNP relaxations provided nearly optimal values for the original problems.
These results are consistent with those of our previous study mentioned in Section 1, in
which we approximated the GCOP cone with the dual cone of the NN- and ZVP-type
GDNN cones, i.e., KNN,0(K) and KZVP,0(K).

ZVP-type GDNNP relaxation exhibited better numerical properties than BD-type
GDNNP relaxation. As illustrated in Examples 4.10 and 4.11, the inclusion relationship
between ZVP- and BD-type GDNN cones does not hold. However, the optimal values
of the ZVP-type GDNNP relaxation problems are better than those of the BD-type
problems in most cases, especially when n ≥ 30.

Given the theoretical inclusion relationship between NN- and ZVP-type GDNN
cones shown in Theorem 4.9 and the superior numerical performance of the ZVP-type
GDNN cone compared to the BD-type cone, it is reasonable to conjecture that the NN-
type cone provides numerically tighter relaxation than the BD-type. It may be observed
from Table 1 that the optimal values of the NN-type GDNNP relaxation problems were
always not worse than those of the BD-type problems. Of note, the theoretical inclusion
relationship between NN- and BD-type GDNN cones remains unknown. We therefore
presume that the NN-type GDNN cone is included in the BD-type GDNN cone.

Conjecture 5.1. If K is a direct product of a nonnegative orthant and second-order
cones, DNNNN(K) ⊆ DNNBD(K) holds.

Note that this conjecture is true where K is a second-order cone by Proposition 4.12.
Thus far, we have demonstrated the inclusion relationship between the three GDNN
cones in Theorem 4.9, Examples 4.10, 4.11, and Conjecture 5.1. These results are
illustrated in Figure 1.

We have observed that the NN-type GDNN cone provided the tightest relaxation
of the three GDNN cones from both theoretical and numerical perspectives. However,
we could not compute the NN-type GDNNP relaxation problems in the case of n ≥ 10
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due to insufficient memory. *3 We suspect that one of the reasons is that the NN-
type GDNN cone is described by the positive semidefiniteness of the moment matrix.
The NN-type GDNNP relaxation problem of problem (5.2) includes a positive semidef-
inite constraint of size O(n2), whereas the ZVP-type GDNNP relaxation problem only
includes a positive semidefinite constraint of size O(n).

5.2 Max-cut problem

Let G = (V,E) be an undirected graph with nonnegative weights (wij)ij∈E, where
V := {1, . . . , n} is a set of vertices, and E ⊆ {{i, j} | 1 ≤ i < j ≤ n} is a set
of edges. We write ij for {i, j} ∈ E. The max-cut problem, a well-known NP-hard
problem [13], aims to find a subset S ⊆ V that maximizes the sum of weights on edges
connecting S and V \S. For notational convenience, for 1 ≤ i ≤ j ≤ n with ij ̸∈ E, we
define wij := 0. Then, the max-cut problem can be formulated as the following binary
quadratic programming problem:

maximize
x

1

4

n∑
i,j=1

wij(1− xixj)

subject to x2i = 1 (i = 1, . . . , n).

(5.3)

Introducing a matrix variable X̂ := xx⊤, up to a constant term and the sign of the opti-
mal value, (5.3) is equivalent to an SDP problem with the rank constraint rank(X̂) ≤ 1.
Furthermore, by [1, Theorem 5], we can equivalently transform the rank-constrained
SDP problem into a GCPP problem in the form of (5.2) with m = n2 + 3n + 4 and
K = R+ × svec(Sn

+)
3. As in Section 5.1, to solve the problem obtained, we relax the

GCPP problem with each GDNN cone and compare the results.
Instances of problem (5.3) were created as follows. The number n of vertices was

changed between 3 and 5. *4 For each 1 ≤ i < j ≤ n, we independently generated an
edge ij with probability 1/2. All elements of (wij)ij∈E were independent and identically
distributed, and each followed the uniform distribution on the interval (0, 1). For each
n, we generated five instances by varying the randomness of E and (wij)ij∈E. For
each instance, the optimal value of the relaxation problem with DNNNN(K) (written
as NN in Table 2), DNN ZVP(K) (ZVP), and DNNBD(K) (BD) was measured. For
reference, we also solved problem (5.3) (MC) and the associated relaxation problems
with the positive semidefinite cone S3Tn+1

+ (SDP). To improve numerical stability, 0.005I
was added to the coefficient matrix C in the standard form (5.2) when solving SDP

*3We tried to solve the NN-type GDNNP relaxation problems on another computer with 64 GB of
memory, but the same issue persisted.

*4Comparing the three GDNN cones for larger n generated numerical issues. For n = 10, the
computational time for solving BD-type GDNNP relaxation problems exceeded 14400 s, and due to
insufficient memory, we were unable to solve NN-type GDNNP relaxation problems.
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Table 2: Optimal values of problem (5.3) and its associated GDNNP and SDP relaxation
problems

Optimal value
n No. MC NN ZVP BD SDP
3 1 0.81 0.81 0.81 0.81 13.58

2 0.33 0.33 0.33 0.33 2.89
3 1.00 1.00 1.00 1.00 15.14
4 1.19 1.19 1.19 1.19 25.41
5 0.87 0.87 0.87 0.87 19.38

5 1 2.10 OOM 2.10 2.10 36.55
2 1.81 OOM 2.24 1.81 26.67
3 3.04 OOM 3.32 3.04 45.36
4 4.05 OOM 4.30 4.05 91.34
5 1.94 OOM 2.13 1.94 35.26

relaxation problems. As in Section 5.1, the BD-type GDNNP problem was solved by
the algorithm shown in Appendix B. To solve NN-, ZVP-, and BD-type GDNNP and
SDP relaxation problems, we used the YALMIP modeling language and the MOSEK
solver. To solve (5.3), we used the Gurobi solver [11] (version 10.0.3).

Table 2 lists the optimal values of problem (5.3) and the accompanying GDNNP and
SDP relaxation problems, where “OOM” means that we could not solve the problem
because of insufficient memory.

GDNNP relaxation for GCPP provided significantly tighter bounds than SDP relax-
ation, a finding that aligns with the results presented in Section 5.1. However, unlike
Section 5.1, the ZVP-type GDNN cone provided worse relaxation than the BD-type
cone. This might be because the semialgebraic representation (4.7) of svec(Sn

+) involves
polynomials of degree exceeding 2 when n ≥ 3; whereas the semialgebraic representa-
tion (4.1) of the direct product of a nonnegative orthant and second-order cones only
involves polynomials of degree at most 2. As mentioned in Section 3.1, polynomials of
degree exceeding 2 appearing in a semialgebraic representation of K do not contribute
to the construction of DNN ZVP(K). Therefore, we can assume that the more the
polynomials of degree exceeding 2, the looser is the ZVP-type GDNNP relaxation.

6 Conclusion

In this study, we theoretically and numerically compared the strength of the relaxation
of ZVP-, NN-, and BD-type GDNN cones over cones K. In particular, we considered
two types of cones K: a direct product of a nonnegative orthant and second-order cones
and a direct product of a nonnegative orthant and positive semidefinite cones. When
K is a direct product of a nonnegative orthant and second-order cones, no theoretical
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inclusion relationship is obtained between ZVP- and BD-type GDNN cones, and the
ZVP-type GDNN cone provides better relaxation numerically than BD-type cone. By
contrast, when K is a direct product of a nonnegative orthant and positive semidefinite
cones, the ZVP-type GDNN cone numerically provides worse relaxation than BD-type
cone. In both cases, the NN-type GDNN cone is theoretically strictly included in the
ZVP-type cone. The results of our numerical experiments show that the three GDNN
cones yield much tighter bounds for GCPP than the positive semidefinite cone, which
suggests a promising avenue for further study.

As noted in Section 1, we aimed to explore whether the ZVP-type {KZVP,r(K)}r
and NN-type hierarchies {KNN,r(K)}r are the same. Lemmas 4.8 and 4.16 address
this problem specifically for the case where K is a direct product of a nonnegative
orthant and second-order or positive semidefinite cones. These lemmas establish the
strict inclusion relationship between the zeroth level of the two hierarchies. However,
whether the inclusion relationship between them also holds for a general r remains an
open question.

The theoretical inclusion relationship between the BD-type and other GDNN cones
is of interest when the underlying cone K involves positive semidefinite cones. In addi-
tion, the case of K being neither the direct product of a nonnegative orthant and second-
order cones nor the direct product of a nonnegative orthant and positive semidefinite
cones is also intriguing. Seemingly, these are more challenging tasks than the cases we
treat in this paper. First, for a general cone K, the set KZVP,0(K) is not necessarily
closed, which would preclude us from investigating the strict inclusion relationship be-
tween ZVP- and NN-type GDNN cones in the same way as in this paper. Second, a
characterization of the NN-type GDNN cone DNNNN(K) exists theoretically for a gen-
eral symmetric cone, as shown in (4.3), which needs a closure operator in general [18,
Proposition 3.6]. Third, when K involves a matrix cone such as a positive semidefinite
cone, the vectorization of a matrix and matrization of a vector are required to deal
with the BD-type GDNN cone DNNBD(K). Consider the case where K is the positive
semidefinite cone svec(Sn

+). In this scenario, a symmetric matrix X ∈ STn belongs to
DNNBD(svec(Sn

+)) only if smat(X svec(vv⊤)) ∈ Sn
+ for all v ∈ Sn−1. (Note that any

extreme ray of Sn
+ is generated by the matrix vv⊤ for some v ∈ Sn−1.) This condition

appears to be much more difficult to verify theoretically than the discussion conducted
in Section 4.1.
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Appendix A Example of K Such That KZVP,0(K) Is

Not Closed

Let a := (1, 0)⊤ and Q :=

(
0 0
0 −1

)
. Then,

K := {x ∈ R2 | x⊤Qx = −x22 ≥ 0, a⊤x = x1 ≥ 0}

is a pointed semialgebraic convex cone (the nonnegative x1-axis) and the vector a
satisfies a ∈ int(K∗). It follows from Lemma 3.3 that KZVP,0(K) = S2

++R+Q. For each

k, we define Pk :=

(
1/k 1
1 k

)
∈ S2

+ and Xk := Pk + kQ ∈ KZVP(K). Then, we have

Xk =

(
1/k 1
1 0

)
→X∗ :=

(
0 1
1 0

)
.

To see that X∗ ̸∈ KZVP,0(K), we assume that there exist P ∗ ∈ S2
+ and t∗ ≥ 0 such

that X∗ = P ∗ + t∗Q. This equation implies that P ∗
1,1 = 0 and P ∗

1,2 = 1. However, by
P ∗
1,1 = 0 and the positive semidefiniteness of P ∗, P ∗

1,2 must be 0, which is a contradiction.
Therefore, KZVP,0(K) is not closed.

Appendix B Explicit Exchange Method for BD-

Type Generalized Doubly Nonnega-

tive Programming

For a symmetric cone K, the algorithm used to solve a BD-type GDNNP problem
obtained by replacing CP(K) in problem (5.2) with DNNBD(K) is presented in Algo-
rithm 1. Although we preliminarily set γk to 0.5k, in the branch of Step 1-2, if case (b)
with r = 0 occurred five times in a row, γk+1 was set to τ at the end of Step 2 and
returned to Step 1 to accelerate convergence. The threshold value τ in Algorithm 1 was
set to 10−5 and subset J(0,0) was set to ∅. We tried to identify s

(k,r)
new using the following

method. Before starting the algorithm, we fixed a finite subset Jfix of a compact set J
satisfying *5

Ext(K) = {αs | α > 0, s ∈ J}. (B.1)

In Section 5.1, because

J = {(ei,0n) | i = 1, . . . , 2n+ 1} ∪ {(02n+1, 1/2,v/2) | v ∈ Sn−2}

satisfies (B.1), we took

Jfix = {(ei,0n) | i = 1, . . . , 2n+ 1} ∪ {(02n+1, 1/2,vi/2) | i = 1, . . . , 1000},
*5For example, the set of primitive idempotents in a Euclidean Jordan algebra associated with K is

a compact set satisfying (B.1) (see [8, Exercise IV.5] and [12, Corollary 12]).
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where each vi was generated from Sn−2 randomly. In Section 5.2, because

J = {(1,03Tn)} ∪ {(0, svec(vv⊤),02Tn) | v ∈ Sn−1}
∪ {(0,0Tn , svec(vv

⊤),0Tn) | v ∈ Sn−1} ∪ {(0,02Tn svec(vv
⊤)) | v ∈ Sn−1}

satisfies (B.1), we took

Jfix = {(1,03Tn)} ∪ {(0, svec(viv⊤i ),02Tn) | i = 1, . . . , 1000}
∪ {(0,0Tn , svec(viv

⊤
i ),0Tn) | i = 1001, . . . , 2000}
∪ {(0,02Tn svec(viv

⊤
i )) | i = 2001, . . . , 3000},

where each vi was generated from Sn−1 randomly. In Step 1-2, we first checked whether
there exists snew ∈ Jfix such that λmin(X

(k,r)snew + γke) < 0 where λmin(·) is the
minimum eigenvalue in the sense of Euclidean Jordan algebras [8, Theorem III.1.1]. If

such snew exists, we let s
(k,r)
new = snew. Otherwise, we next checked whether the optimal

value of the optimization problem mins∈J λmin(X
(k,r)s+γke) is less than 0. In addition,

v
(k,r+1)
s was regarded as 0 if ∥v(k,r+1)

s ∥≤ 10−12.
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