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Abstract

This paper studies a statistical learning model where the model coefficients have a pre-
determined non-overlapping group sparsity structure. We consider a combination of a loss
function and a regularizer to recover the desired group sparsity patterns, which can embrace
many existing works. We analyze directional stationary solutions of the proposed formulation,
obtaining a sufficient condition for a directional stationary solution to achieve optimality and
establishing a bound of the distance from the solution to a reference point. We develop an
efficient algorithm that adopts an alternating direction method of multiplier (ADMM), showing
that the iterates converge to a directional stationary solution under certain conditions. In the
numerical experiment, we implement the algorithm for generalized linear models with convex
and nonconvex group regularizers to evaluate the model performance on various data types,
noise levels, and sparsity settings.

1 Introduction

Statistical learning models have been extensively used for data interpretations and predictions in
many fields collecting a large amount of data, such as computer vision and computational biology.
Given a dataset, a statistical learning model is utilized to estimate unknown model coefficients
by minimizing a certain loss function such as mean squared error and cross-entropy [18]. With
a wide range of features, only a small subset of them actually corresponds to nonzero model
coefficients; as a result, fitting a model by blindly incorporating all the available features may
cause a misleading interpretation of contributing features and an inaccurate prediction. In an
attempt to select meaningful features automatically, feature selection techniques [5, 17, 22] have
been developed to produce a sparsely fitted model with many zero coefficients. For example,
regularization methods, appending a penalty function to the loss function, discard insignificant
features by setting small model coefficients to zero. A well-known regularization term is the `1-norm
of the model coefficients, known as least absolute shrinkage and selection operator (LASSO) [54].
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LASSO has been widely used in diverse settings to tackle practical problems such as forecasting
corporate bankruptcy and assessing drug efficacy [53, 55]. However, the convex `1 penalty may
mistakenly suppress large coefficients while shrinking small coefficients to zero, which is referred to
as biasedness [15]. To alleviate this issue, nonconvex regularization functions have been proposed,
including smoothly clipped absolute deviation (SCAD) [15], minimax concave penalty (MCP) [68],
transformed `1 (TL1) [38, 70], `1/2 penalty [27, 65], scale-invariant `1 [46, 56], and logarithm penalty
[10]. These nonconvex regularizers try to retain the large model coefficients while applying a similar
shrinkage of smaller coefficients as the convex `1-norm.

Group selection is a variant of feature selection when features have a group structure; specifically,
each feature belongs to one or more groups. A group structure is non-overlapping if each feature
is assigned to exactly one group. In the non-overlapping group selection, the features in the same
group are required to have the corresponding coefficients altogether nonzero or zero, which is called
group sparsity. The group structure of the features is reasonable in many applications. For example,
a categorical variable should be converted to a group of several binary dummy variables prior to
model fitting. Group sparsity can be enforced into a model by extending regularization techniques
to a group setting. Group LASSO [67, 36] achieves group sparsity with the convex `2,1 norm,
i.e., the sum of the `2 norms of the coefficients from the same group. Exploiting the convexity,
many algorithms were applied and developed to solve for the group LASSO, including the gradient
descent [72], the coordinate descent [26, 47], the second-order cone program [29], the semismooth
Newton’s method [71], the subspace acceleration method [12], and the alternating direction method
of multipliers (ADMM) [7, 13]. However, group LASSO may inherently have bias in the same way
as LASSO [22]. Consequently, nonconvex regularizers such as `0,2 penalty [23], group capped-`1
[39, 45], group MCP [22], group SCAD [57], and group LOG [24], were introduced. A variety
of numerical algorithms are considered to solve for the nonconvex optimization, including primal
dual active set algorithm [23], smoothing penalty algorithm [39], difference-of-convex algorithm
[45], coordinate descent algorithms [43, 60], group descent algorithm [9], coordinate majorization
descent algorithm [59], and iterative reweighted algorithm [24].

We propose a generalized formulation for fitting a statistical learning model with a non-
overlapping group structure. For example, we establish the connection of loss functions under
our setting to generalized linear models (GLMs) [35]. Many existing regularizations can be re-
garded as special cases of our generalized framework; we consider the group variants of `1 penalty,
SCAD, MCP, and TL1 as case studies. Our optimization problem is nonconvex if we use nonconvex
regularization terms. Instead of a global optimum that might be hard to obtain, our analysis is
based on the directional stationary solution, which can be provably achieved by using our algorithm.
Directional stationary solutions were studied for nonconvex programming analyses, especially for
the difference of convex (DC) problems [40, 2, 34]. In the DC literature, it has been shown that
such stationarity is a necessary condition for local optimality [40]. Furthermore, the directional
stationary solution can achieve local and even global optimality [4] under suitable conditions. In
this paper, we identify such conditions based on a restricted strong convexity (RSC) assumption
[19]. RSC was originally analyzed for the convex LASSO problem where the global minimizer is
compared to the ground-truth. We relax the requirement of having the ground-truth vector by a
reference point that can be tied to the ground-truth in a probabilistic interpretation. We further
provide a bound for the distance from the stationary solution obtained by our approach to this
reference point.

To solve our proposed model, we design an iterative scheme based on the ADMM framework,
which is an efficient method for solving large-scale optimization problems in statistics, machine
learning, and related fields [11, 16, 50, 63, 73]. Although ADMM is originally designed for convex
optimization, it can be extended to nonconvex problems, and its global convergence can be proved
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under certain conditions [20, 41, 58]. In our problem formulation, ADMM provides an iterative
scheme that involves two subproblems that can be minimized sequentially. One subproblem involv-
ing the loss function is assumed to be convex, and hence it can be solved efficiently by closed-form
solution or iterative methods. The other subproblem is related to the nonconvex regularization
terms. We rely on proximal operators [42] to produce a stationary solution and characterize con-
ditions for the global optimality of the directional stationary solutions. Theoretically, we prove the
subsequence convergence of the ADMM framework. In other words, the sequence generated by the
ADMM has a subsequence convergence to a directional stationary point of our proposed model.

We conduct in-depth experiments on various datasets under different learning settings. We
use synthetic datasets for linear regression and Poisson regression, and one real dataset for logistic
regression. With hyperparameters tuned by cross-validation, our framework with various group
regularization terms is applied to those datasets. An overall evaluation indicates that nonconvex
penalty functions consistently outperform convex penalty functions.

We summarize our major contributions as follows,

(1) We introduce a generalized formulation for a non-overlapping group sparsity problem that
can be reduced to many existing works;

(2) We investigate properties of the directional stationary solutions of the problem to achieve
optimality as well as the bound on the distance from the solution to a reference point which
is closely related to the optima of the loss function;

(3) We prove the subsequence convergence of ADMM iterates to a directional stationary point
of our proposed model;

(4) Our numerical experiments on various models under different group structure settings evaluate
the performance of existing group sparsity functions under the proposed formulation, showing
the advantages of nonconvex penalties over convex ones.

The rest of the paper is organized as follows. In Section 2, we introduce a generalized formulation
for non-overlapping group selection. Section 3 analyzes the conditions for global optimality of
directional stationary solutions to our optimization problem and their properties under the RSC
assumption on the loss function. In Section 4, we present the ADMM framework for minimizing the
proposed model with convergence analysis. In Section 5, we present in-depth numerical experiments
on both synthetic and real datasets for linear, Poisson, and logistic regressions. Section 6 concludes
the paper.

2 The Proposed Framework

We consider a statistical learning problem defined by a coefficient vector x ∈ Rd with a pre-
determined group structure. We restrict our attention to a non-overlapping group selection by
assuming that components of the variable x from m non-overlapping groups, denoted by Gk for
k ∈ {1, . . . ,m}. Specifically Gk is a set of indices of x that belong to the kth group. The setting of
non-overlapping groups implies that all Gk’s are mutually exclusive. The notation |Gk| represents
the cardinality of the set Gk, and xGk ∈ R|Gk| is defined as a subvector of x that only consists of
the coefficients in the group Gk. For the rest of the paper, we denote Gmax , max

1≤k≤m

√
|Gk|.

We aim to penalize the complexity of the group structure while minimizing the loss of the model
simultaneously. To this end, we propose a general framework

min
x

Fλ(x) , L(x) + λ
m∑
k=1

√
|Gk| p(‖xGk‖2)︸ ︷︷ ︸

,Pk(xGk )

,
(1)
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where the loss function L(·) measures the fit of the model to the observed data, the regularizer Pk(·)
determines the group complexity for the kth group of the model coefficients, and a hyperparameter
λ > 0 balances between the model fitting and the group complexity. Note that Pk : R|Gk| → R is
a composite function consisting of a univariate sparsity function p : R → R and the norm of the
coefficients corresponding to Gk. The following set of assumptions is considered on p(·):

(P1). p is symmetric about zero on R, i.e., p(t) = p(−t), concave and non-decreasing on [0,∞)
with p(0) = 0.

(P2). The derivative of p is well-defined except at 0, finite with p′(t) ≥ 0, and u , sup
t
p′(t) for any

t > 0.
(P3). There exists a constant Lipp > 0 such that

|p′(t1)− p′(t2)| ≤ Lipp|t1 − t2| ∀ t1, t2 > 0.

It is straightforward to verify that many popular sparsity-promoting functions, including SCAD
[15], MCP [68], transformed `1 [38, 70], and logarithm penalty [10], satisfy all the assumptions. We
assume (P1) throughout this paper and impose (P2) or (P3) wherever needed.

The assumptions on the loss function are summarized as follows.

(A1). L(·) is lower-bounded.
(A2). There exists a constant LipL > 0 such that

‖∇L(x1)−∇L(x2)‖2 ≤ LipL‖x1 − x2‖2 ∀x1, x2.

(A3). L(·) is convex with modulus σ, i.e., there exists a constant σ ≥ 0 such that

L(x1)− L(x2)− 〈∇L(x2),x1 − x2〉 ≥
σ

2
‖x1 − x2‖22 ∀x1, x2.

If σ is strictly positive, L(·) is strongly convex.

Some sparsity functions in the literature have been written as DC functions [4, 33, 66, 70].
Using a unified DC representation [4] of p with a convex loss, the problem (1) can be written as a
DC formulation, e.g., Fλ(x) = g(x)−h(x) where both g and h are convex functions. Subsequently,
existing algorithms [25, 30, 44, 28] can be applied to compute a critical point, e.g., x̄ with 0 ∈
∂Fλ(x̄). Our approach bypasses the use of a DC representation of (1) and introduces a numerical
method that computes a directional stationary point.

The loss function used in our optimization problem (1) can be specified by generalized linear
models (GLMs) that are widely used for supervised learning, where input features explain a response
[35]. GLMs are an extension of ordinary linear regression beyond Gaussian response variables,
where the responses bi, i = 1, . . . , n, follow any exponential family distribution with a parameter
θi. Specifically, the probability density function of bi takes the following canonical form:

f(bi; θi) = φ(bi)exp

{
biθi − ψ(θi)

}
, (2)

where ψ is a cumulant function and φ is a function that is independent of θi [35, 64]. Both ψ and
φ are given functions by the exponential family distribution in consideration, and the first-order
derivative of the cumulant function ψ′(θi) is the expected value of bi [31, 35]. Taking a Gaussian

distribution with mean θi and variance 1, for example, one sets ψ(θi) =
θ2i
2 and φ(bi) =

exp(−b2i /2)√
2π

.

Denote the ith observation of the input features by a row vector Ai ∈ Rd of the matrix A ∈ Rn×d.
A GLM associates ψ′(θi) with a linear function of the features Aix such that θi = Aix. Omitting

4



φ(bi) that is free of θi, the loss function L for the GLM is written by summing the negative exponent
in (2) for all the observations (Ai, bi), i = 1, . . . , n, i.e.,

1

n

n∑
i=1

{ψ(θi)− biθi} =
1

n

n∑
i=1

{ψ(Aix)− biAix}.

For example, the logistic regression models binary responses bi ∈ {0, 1} by

ψ(θi) = log(1 + exp(θi)) = log{1 + exp(Aix)}.

The Poisson regression for count data bi ∈ {0, 1, 2, . . .} has ψ(θi) = exp(θi) = exp(Aix). Under the
assumptions that the second-order derivative ψ′′ is continuous, positive, and bounded above by a
constant, we establish the Lipschitz continuity of the gradient of the loss function in (A2) and the
convexity in (A3). The boundedness assumption on ψ′′ holds for loss functions of most GLMs such
as ordinary linear regression, logistic regression, and multinomial regression [31], but not Poisson
regression.

3 Theoretical analysis

We present two theoretical results of the proposed model (1). Specifically, Section 3.1 establishes
the global optimality of a directional stationary solution of (1) when the loss function is strongly
convex. In Section 3.2, we define restricted strong convexity (RSC), under which the loss function
is strongly convex over a subset of the feasible space, followed by providing an upper bound of the
distance from the directional stationary solution to a reference point which we define in Section 3.2.

3.1 Optimality of directional stationary solutions

Notations: For a function f : R→ R, its derivative at a point t is denoted as f ′(t). The notation
f ′(t+) represents the right-side derivative at t, i.e.,

f ′(t+) , lim
h→0+

f(t+ h)− f(t)

h
.

The notation F ′(x; d), for F : Rd → R, is the directional derivative of F at a point x along the
direction d, which is formally defined in Definition 1.

Definition 1. Given a function F : Rd → R, the directional derivative of F at point x ∈ Rd along
direction d ∈ Rd is denoted as F ′(x; d) and defined by

F ′(x; d) , lim
h→0+

F (x + hd)− F (x)

h
.

Next, we provide the definition of a directional stationary point used in this paper.

Definition 2. The point x∗ be a directional stationary point of an unconstrained optimization
problem with an objective function F : Rd → R if F ′(x∗; x− x∗) ≥ 0, ∀x ∈ Rd.

Our analysis is built on the directional stationary solutions. Hereafter, we simply denote a direc-
tional stationary solution as a stationary solution. It has been shown that directional stationarity
is a necessary condition for a point to be a local minimum for certain DC programs [40].

We establish in Theorem 2 that a stationary solution of (1) is a global minimizer under certain
conditions. The proof of Theorem 2 requires Lemma 1.
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Lemma 1. If p satisfies Assumption (P3), we have

p(‖y‖2)− p(‖x‖2) ≥ P ′(x; y − x)− Lipp

2
‖x− y‖22 ∀x, y ∈ Rn, (3)

where P (x) , p(‖x‖2) and n is an ambient dimension of x and y.

Proof. Let G(x) , p(‖x‖2) +
Lipp

2
‖x‖22. Observe that G(x) = G1 ◦ G2(x) where G1(t) , p(t) +

Lipp

2
t2 and G2(x) , ‖x‖2. Then for any 0 < t1 ≤ t2, we have

G′1(t1)−G′1(t2) = p′(t1)− p′(t2) + Lipp(t1 − t2)

≤ |p′(t1)− p′(t2)| − Lipp|t2 − t1| since t1 ≤ t2
≤ Lipp|t1 − t2| − Lipp|t1 − t2| = 0 by (P3),

which implies that G′1(t) is monotonically non-decreasing on (0,∞). By choosing sufficiently small
0 < t1 ≤ t2 and taking limit on t1 to 0, we obtain |p′(0+)−p′(t2)| ≤ Lipp t2 from (P3). This implies
G′1(0+) = p′(0+) ≤ p′(t2) + Lipp t2 = G′2(t2). Therefore, G1(t) is a convex function on the interval
[0,∞). Since G1, G2 are both convex and G1 is non-decreasing on [0,∞) by (P1), we conclude
that their composite function G(x) is also a convex function. Using the first order condition, i.e.,
G(y) ≥ G(x) +G′(x; y − x), we have

p(‖y‖2) +
Lipp

2
‖y‖22 ≥ p(‖x‖2) +

Lipp

2
‖x‖22 + Lipp〈x,y − x〉+ P′(x; y − x).

After simple manipulations, we deduce the desired inequality (3).

Theorem 2. Let Assumptions (P3) and (A3) hold with σ > 0. If σ ≥ λLippGmax, then any
stationary solution of (1) is a global minimizer.

Proof. Denote x∗ as a stationary solution of (1). By Assumption (A3) and applying Lemma 1, we
have

Fλ(x)− Fλ(x∗) = L(x) + λ
m∑
k=1

√
|Gk| p(‖xGk‖2)− L(x∗)− λ

m∑
k=1

√
|Gk| p(‖x∗Gk‖2) ∀x ∈ Rd

≥ σ

2
‖x− x∗‖22 + 〈∇L(x∗),x− x∗〉+ λ

m∑
k=1

√
|Gk|

{
p(‖xGk‖2)− p(‖x∗Gk‖2)

}
(4)

≥ σ

2
‖x− x∗‖22 + 〈∇L(x∗),x− x∗〉

+ λ
m∑
k=1

√
|Gk|

{
P ′k(x

∗
Gk ; xGk − x∗Gk)−

Lipp

2
‖xGk − x∗Gk‖

2
2

}
.

Due to the stationarity (Definition 2), x∗ satisfies

〈∇L(x∗),x− x∗〉+ λ

m∑
k=1

√
|Gk|P ′k(x∗Gk ; xGk − x∗Gk) ≥ 0.

Consequently, the inequality (4) can be simplified as

Fλ(x)− Fλ(x∗) ≥ σ

2
‖x− x∗‖22 −

λLipp

2

m∑
k=1

√
|Gk| ‖xGk − x∗Gk‖

2
2

≥ σ

2
‖x− x∗‖22 −

λLipp

2
Gmax ‖x− x∗‖22 =

ζ

2
‖x− x∗‖22,
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where we define ζ , σ−λLippGmax. If σ−λLippGmax ≥ 0, then ζ ≥ 0 and hence Fλ(x) ≥ Fλ(x∗) ∀x,
which implies that any stationary solution x∗ is a global minimizer.

Our result identifies the condition on the hyperparamter λ which guarantees the global optimal-
ity of any stationary solutions. This is a generalization of [24, Theorem 2.2] which is for a special
case of the group-LOG regularizer.

3.2 Stationarity under restricted strong convexity

Before discussing the concept of restricted strong convexity, we first consider two related problems
of (1). In the first problem, we assume there exist data points ξ̃ that are generated by an unknown
distribution D. The following problem minimizes the loss of the model associated with the model
coefficient x with respect to the data distribution:

min
x

IEξ̃∼D L(x; ξ̃) , L̃(x). (5)

With a set of observed data points {ξi}ni=1, we can also minimize the loss over the observed data
points by solving the following sample average approximation problem:

min
x

1

n

n∑
i=1

L(x; ξi) , L̂n(x). (6)

Some works investigate the relationships between (5) and (6). For example, [49, Theorem 7.77]
states that under suitable conditions, for any ε′ > 0, there exists positive constants α and β
independent of n such that

P
(

sup
‖d‖=1

∣∣∣ 〈∇L̂n(x̄),d〉 − 〈∇L̃(x̄),d〉
∣∣∣ ≤ ε′ ) > 1− α e−nβ,

for any given vector x̄. The problem (1) is considered as sample average approximation which
employs regularizers to help recover groupwise sparsity structure in the variables. The connection
between the sample averaging approximation and the population risk is preserved in our group
sparsity problem. If the ground-truth is the unique solution for (5), then the gradient of L̃ at that
point is zero, and the above result yields a probability involving the gradient of the sample average
approximation function L̂n at the ground-truth. However, since the ground-truth is unlikely to be
attained in practice, we consider a reference point, denoted as xε, which satisfies

‖∇L(xε)‖2 ≤ ε (7)

for a given ε > 0. Our analysis is based on the reference point and we compare it to the stationary
solutions of (1).

The assumption of strong convexity may not hold for some loss functions, e.g., ordinary linear
regression with an under-determined system of linear equations. As a remedy, we consider a setting
where strong convexity only holds over a smaller region rather than the entire domain of the loss
function. Since the scope of the strong convexity is limited, such an assumption is referred to as
the restricted strong convexity (RSC) [19]. In statistics, the RSC condition for a subset of possible
vector differences between the ground-truth and an estimator is imposed [37].

We first derive a region for RSC to hold, then provide a bound of the distance from a stationary
solution to a reference point. Let S be the group-wise support set of the reference point xε, i.e.,
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S , { k ∈ {1, . . . ,m} | ‖xεGk‖2 6= 0}. Given δ > 0, define the set Vδ(S) as

Vδ(S) ,

{
ν

∣∣∣∣∣∑
k/∈S

‖νGk‖2 ≤ δ
∑
k∈S
‖νGk‖2

}
.

It is not difficult to verify that Vδ(S) is a cone; i.e., if x ∈ Vδ(S) then αx ∈ Vδ(S) for any α ≥ 0.
Furthermore, the set is a nonconvex cone. For example, let δ = 0.5,G1 = {1, 2},G2 = {3, 4} and
S = {2}. For two points ν1 = (1, 1, 1, 3)T and ν2 = (1, 2, 4, 2)T , we have ν1, ν2 ∈ Vδ(S) but
0.5ν1 + 0.5ν2 /∈ Vδ(S).

Given a reference point xε, there exists a region that includes the vector differences between
the stationary solutions of (1) and xε under certain conditions; refer to the following lemma.

Lemma 3. Let Assumptions (A3) and (P2) hold. Let xε be a vector such that, for a given ε > 0,
‖∇L(xε)‖2 ≤ ε. If x∗ is a stationary solution of (1) with

ε < min
k/∈S

√
|Gk|λ p′(‖x∗Gk‖2), (8)

then there exists δ∗ > 0 such that (xε − x∗) ∈ Vδ∗(S).

Proof. For any stationary solution x∗, one has

〈∇L(x∗),xε − x∗〉+ λ
m∑
k=1

√
|Gk|P ′k(x∗Gk ; xεGk − x∗Gk) ≥ 0. (9)

Since the support of xε may not be the same as that of x∗, the four possible cases for each summand
of (9) are considered. If x∗Gk 6= 0, we use (P2) to obtain

P ′k(x
∗
Gk ; xεGk − x∗Gk)

=
〈
p′(‖x∗Gk‖2)

x∗Gk
‖x∗Gk‖2

,xεGk − x∗Gk

〉{≤ p′(‖x∗Gk‖2)‖xεGk − x∗Gk‖2, if k ∈ S
= −p′(‖x∗Gk‖2)‖x∗Gk‖2, if k /∈ S.

(10)

If x∗Gk = 0, it follows from the definition of the directional derivative that

P ′k(0; xεGk) = p′(0+)‖xεGk‖2. (11)

The above captures the cases k ∈ S and k /∈ S. By (7) and the convexity of L, we obtain

〈∇L(x∗),xε − x∗〉 ≤ 〈∇L(xε),xε − x∗〉

≤ ‖∇L(xε)‖2‖xε − x∗‖2 ≤ ε
m∑
k=1

‖xεGk − x∗Gk‖2. (12)

Substituting (10)-(12) into (9) yields

∑
k/∈S

√
|Gk|p′(‖x∗Gk‖2)‖x∗Gk‖2 −

ε

λ

m∑
k=1

‖xεGk − x∗Gk‖2

≤
∑
k∈S,

x∗Gk
6=0

√
|Gk|p′(‖x∗Gk‖2)‖xεGk − x∗Gk‖2 +

∑
k∈S,

x∗Gk
=0

√
|Gk|p′(0+)‖xεGk‖2.
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By the assumption (P2) where u is defined, we deduce∑
k/∈S

(√
|Gk| p′(‖x∗Gk‖2)− ε

λ

)
‖xεGk − x∗Gk‖2 ≤

∑
k∈S

( ε
λ

+ u
√
|Gk|

)
‖xεGk − x∗Gk‖2.

The condition (8) guarantees the nonnegativity of the left-hand side of the inequality, which vali-
dates the existence of δ∗.

Lemma 3 can be interpreted as, if there is a stationary solution that is sufficiently close to
xε, then there exists a nonconvex cone which includes the direction xε − x∗. This is because
a stationary solution x∗Gk is more likely to meet the condition (8) if ‖x∗Gk‖2 is near the origin
whenever the corresponding subvector of xεGk is zero. We note that the scale of δ∗ in the analysis is
related to the model parameters and the stationary solution which may lead to a strong assumption
on the RSC.

We define the RSC assumption of L over the set Vδ∗(S):

(A4). There exists σ > 0 such that L(x1)−L(x2)−〈∇L(x2),x1−x2〉 ≥
σ

2
‖x1−x2‖22 ∀(x1−x2) ∈

Vδ∗(S).

Under Assumption (A4), we provide a bound of the distance between a stationary solution of
(1) and the reference point xε.

Theorem 4. Let Assumptions (A4) and (P2) hold. Let xε be a vector such that ‖∇L(xε)‖2 ≤ ε
for a given ε > 0. Let x∗ be a stationary solution of (1) with

ε < min
k/∈S

√
|Gk|λ p′(‖x∗Gk‖2). (13)

Suppose (A4) holds over the set Vδ∗(S) 3 (xε − x∗). We have a bound

‖xε − x∗‖2 ≤
4λu

σ
max
k∈S

√
|Gk|

√∑
k∈S
|Gk|.

Proof. By the RSC assumption (A4), there exists σ > 0 such that
σ

2
‖xε − x∗‖22 ≤ L(xε)− L(x∗)− 〈∇L(x∗),xε − x∗〉

≤ L(xε)− L(x∗) + λ
m∑
k=1

√
|Gk|P ′k(x∗Gk ; xεGk − x∗Gk) by (9)

≤ 〈∇L(xε),xε − x∗〉+ λ
m∑
k=1

√
|Gk|P ′k(x∗Gk ; xεGk − x∗Gk) by (A3)

≤
∑
k/∈S

(
ε− λ

√
|Gk|p′(‖x∗Gk‖2)

)
‖x∗Gk‖2 +

∑
k∈S

(ε+ λu
√
|Gk|)‖xεGk − x∗Gk‖2.

The last inequality is obtained by applying (10)-(12). Due to (13), the first term of the right-hand
side of the inequality is negative and ε < λu

√
|Gk|, leading to

σ

2
‖xε − x∗‖22 ≤ 2λumax

k∈S

√
|Gk|

∑
k∈S
‖xεGk − x∗Gk‖2

≤ 2λumax
k∈S

√
|Gk|‖xεGS − x∗GS‖1 where GS ,

⋃
k∈S
Gk

≤ 2λumax
k∈S

√
|Gk|

√
|GS |‖xεGS − x∗GS‖2

≤ 2λumax
k∈S

√
|Gk|

√
|GS |‖xε − x∗‖2.

9



By dividing ‖xε − x∗‖2 on both sides and substituting |GS | =
∑
k∈S
|Gk|, we complete the proof.

Theorem 3 is a generalization of existing bounds shown for individual sparsity problems (without
group structure) [3, 19], for which every group is a singleton such that G1 = {1}, . . . ,Gd = {d}.
For example, if we let p(t) = |t|, the problem (1) becomes LASSO regularization, and Theorem 3
exactly recovers the bound on the distance between the optimal solution of LASSO and the ground-
truth shown in [19, Theorem 11.1]. The result also extends the bound derived in [3, Theorem 1]
for nonconvex sparsity functions such as SCAD, MCP, and transformed `1.

4 Our algorithm

We adopt the alternating direction method of multipliers (ADMM) [7] to minimize the problem
(1). Specifically, we introduce an auxiliary variable z and rewrite (1) equivalently as

min
x,z

L(z) + λ
m∑
k=1

√
|Gk| p(‖xGk‖2) s.t. x = z. (14)

The corresponding augmented Lagrangian function is

L(x, z; v) , L(z) + λ
m∑
k=1

√
|Gk| p(‖xGk‖2) + ρ〈v,x− z〉+

ρ

2
‖x− z‖22, (15)

where v is a Lagrangian multiplier (or dual variable) and ρ is a positive parameter. We consider
a scaled form [7] in (15) by multiplying ρ in front of 〈v,x − z〉. Consequently, ADMM iterations
proceed as follows: 

xτ+1 ∈ argminx L(x, zτ ; vτ )
zτ+1 ∈ argminz L(xτ+1, z; vτ )
vτ+1 = vτ + xτ+1 − zτ+1,

(16)

where τ indexes the iteration number. The z-subproblem is written as

zτ+1 = argmin
z

L(z) +
ρ

2
‖xτ+1 − z + vτ‖22,

which is convex under Assumption (A3) and hence can be solved efficiently by existing convex
programming algorithms. For example, a closed-form solution can be derived if the loss function is
the least squares for linear regression. In Appendix A, we provide details on how the z-subproblem
is solved for various GLM loss functions that are considered in the numerical study in Section 5.
In Section 4.1, we elaborate on how to solve x-subproblem in (16), and the convergence analysis of
the ADMM scheme (16) is conducted in Section 4.2.

4.1 x-subproblem

The x-subproblem can be decomposed into groups such that for each k ∈ {1, · · · ,m},

xτ+1
Gk ∈ argmin

x∈R|Gk|
λ
√
|Gk|p(‖x‖2) +

ρ

2
‖x− zτGk + vτGk‖

2
2 , Hλ,ρ(x). (17)

It is nonconvex due to Assumption (P1), by which a (global) optimal solution may be difficult to
obtain. Corollary 5 characterizes conditions under which a stationary solution of (17) achieves the
global optimality.
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Corollary 5. Let Assumption (P3) hold. If ρ ≥ λLippGmax, then any stationary solution of (17)
is a global minimizer.

Proof. Since ρ is the strong convexity modulus of the second term in (17), the statement follows
from Theorem 2.

To solve (17), we introduce a general update scheme based on a proximal operator [6, Chapter 6],
then discuss the stationarity of the obtained solution. The proximal operator of a function f is
defined by

proxf (y;µ) ∈ argmin
x

(
µf(x) +

1

2
(x− y)2

)
, (18)

where f is a univariate function and µ is a positive parameter. The notation argmin we use in (17)
and (18) denotes a set of ordinary stationary solutions instead of the (global) optimal solutions.
Here, we define x̄ as an ordinary stationary solution to (18) if there exists v̄ ∈ ∂f(x̄) = {v | f(z) ≥
f(x̄) + v(z − x̄), ∀z } such that µv̄ + (x̄ − y) = 0. It has been shown that (18) yields a global
solution for certain sparsity functions such as transformed `1 function [69, Theorem 3.1]. Multiple
stationary solutions are possible for `1-`2 function [32].

We aim to find a closed-form solution to (17). By applying the change of variable x = c(zτGk −
vτGk), we rewrite the problem (17) to the following univariate problem:

min
c
λ
√
|Gk|p(c‖zτGk − vτGk‖2) +

ρ(c− 1)2

2
‖zτGk − vτGk‖

2
2. (19)

The problem (19) can be solved by a proximal operator, i.e.,

c∗ =
1

‖zτGk − vτGk‖2
proxp

(
‖zτGk − vτGk‖2;

λ
√
|Gk|
ρ

)
, (20)

where c∗ is an ordinary stationary solution of (19). Applying the above to the x-subproblem yields
our x-update:

xτ+1
Gk =

zτGk − vτGk
‖zτGk − vτGk‖2

proxp

(
‖zτGk − vτGk‖2;

λ
√
|Gk|
ρ

)
. (21)

In the proposition below, we show that the solution (21) is a stationary solution of (17).

Proposition 6. The solution xτ+1
Gk in (21) is a stationary solution of the x-subproblem (17).

Proof. We discuss the cases that xτ+1
Gk to be zero and nonzero separately. Let c∗ be a solution given

by (20). If c∗ 6= 0, then it satisfies

λ
√
|Gk|p′(c∗‖zτGk − vτGk‖2) = ρ(1− c∗)‖zτGk − vτGk‖2,

which implies that 0 < c∗ < 1. The corresponding x∗ = c∗(zτGk − vτGk) satisfies the stationary
condition of (17):

λ
√
|Gk|p′(‖x∗‖2)

x∗

‖x∗‖2
+ ρ(x∗ − zτGk + vτGk) = 0.

In the case of c∗ = 0, there exists ū ∈ ∂p(0) such that λ
√
|Gk|ū − ρ‖zτGk − vτGk‖2 = 0. Here,

the set ∂p(0) is nonempty with 0 belonging to the set. To see this, recall the definition of the

11



Algorithm 1 Group ADMM Framework

Set hyperparameter λ > 0, maximal number of iterations τmax > 0, and ADMM penalty parameter
ρ > 0;
Initialize x0, z0,v0, τ = 0.
repeat

for k = 1, 2, . . . ,m do

update xτ+1
Gk by (21)

end

zτ+1 ∈ argmin
z

L(z) +
ρ

2
‖xτ+1 − z + vτ‖22

vτ+1 = vτ + xτ+1 − zτ+1

τ = τ + 1

until ‖xτ−zτ‖2
max{‖xτ‖2,‖zτ‖2,10−16} < 10−6 or |Fλ(xτ−1)− Fλ(xτ )| < 10−4 or τ > τmax;

subgradient: v ∈ ∂p(0) if p(y) ≥ p(0) + v(y − 0) for all y, which is equivalent to p(y) ≥ v y. Since
p(y) ≥ 0 for any y by (P1), we have 0 ∈ ∂p(0). Next, we observe the directional derivative of Hλ,ρ

in (17) at x∗ in the direction x− x∗ for any x, i.e.,

H ′λ,ρ(x
∗; x− x∗) =λ

√
|Gk|P ′k(x∗; x− x∗) + ρ〈x∗ − zτGk + vτGk ,x− x∗〉

≥λ
√
|Gk| lim

h→0+

p(‖x∗ + h(x− x∗)‖2)− p(‖x∗‖2)

h
− ρ‖x∗ − zτGk + vτGk‖2 ‖x− x∗‖2.

Letting x∗ = 0 with p(0) = 0, we have

H ′λ,ρ(0; x) ≥ λ
√
|Gk| lim

h→0+

p(h‖x‖2)

h
− ρ‖zτGk − vτGk‖2 ‖x‖2 (22)

= λ
√
|Gk|p′(0+)‖x‖2 − ρ‖zτGk − vτGk‖2 ‖x‖2 by L’hôpital’s rule.

Combining (22) with the stationary condition of c∗ provides

H ′λ,ρ(0; x) ≥ λ
√
|Gk|‖x‖2

(
p′(0+)− ū

)
.

It remains to show that p′(0+) ≥ u for all u ∈ ∂p(0). Suppose there exists û ∈ ∂p(0) such that
p′(0+) < û. From the property of the subgradient, we have p(t) ≥ p(0) + û(t− 0) for all t ∈ R. If
we choose a strictly positive t̂, then we must have p(t̂) ≥ p(0) + û(t̂ − 0) > p(0) + p′(0+)(t̂ − 0).
This contradicts the concavity of p on the domain [0,∞). Hence we conclude that if c∗ = 0 is a
stationary solution to (19), then H ′λ,ρ(0; x) ≥ 0 for any x.

Proposition 6 and Corollary 5 indicate that if Assumption (P3) holds with ρ ≥ λLippGmax, then

xτ+1
Gk is a global minimizer to the problem (17).

4.2 Convergence analysis

The ADMM framework for minimizing (14) that involve both x- and z-subproblems is described
in Algorithm 1, where τmax is the maximal number of iterations. In this section, we present its
convergence analysis. We first show that each x- and z-update decreases its objective value, followed
by monotontic decreasing of {L(xτ , zτ ; vτ )}; refer to Lemmas 7, 8, and 10, respectively.
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Lemma 7. Let Assumption (P3) hold. If ρ > λLippGmax, then for any xτ+1 given by (16), there
exists c̄1 > 0 independent of τ such that

L(xτ+1, zτ ; vτ )− L(xτ , zτ ; vτ ) ≤ − c̄1

2
‖xτ+1 − xτ‖22. (23)

Proof. By Proposition 6, xτ+1 is a stationary solution to (16) such that

λ

m∑
k=1

√
|Gk|P ′(xτ+1

Gk ; xτGk − xτ+1
Gk ) + ρ〈xτ+1 − zτ + vτ ,xτ − xτ+1〉 ≥ 0. (24)

It follows from Lemma 1 that

p(‖xτ+1
Gk ‖2)− p(‖xτGk‖2) ≤ Lipp

2
‖xτ+1
Gk − xτGk‖

2
2 − P ′(xτ+1

Gk ; xτGk − xτ+1
Gk ). (25)

Simple calculations lead to

L(xτ+1, zτ ; vτ )− L(xτ , zτ ; vτ )

=λ
m∑
k=1

√
|Gk|

(
p(‖xτ+1

Gk ‖2)− p(‖xτGk‖2)

)
+
ρ

2

(
‖xτ+1 − zτ + vτ‖22 − ‖xτ − zτ + vτ‖22

)
≤λLipp

2

m∑
k=1

√
|Gk|‖xτ+1

Gk − xτGk‖
2
2 − λ

m∑
k=1

√
|Gk|P ′(xτ+1

Gk ; xτGk − xτ+1
Gk )

+
ρ

2
〈xτ+1 + xτ − 2zτ + 2vτ ,xτ+1 − xτ 〉 by (25)

≤λLipp

2
Gmax‖xτ+1 − xτ‖22 +

ρ

2
〈xτ − xτ+1,xτ+1 − xτ 〉 by (24)

=− ρ− λLippGmax

2
‖xτ+1 − xτ‖22.

If ρ > λLippGmax, we choose c̄1 = 1
2(ρ− λLippGmax) > 0 such that (23) holds.

Lemma 8. Let Assumption (A3) hold. There exists c̄2 > 0 independent of τ such that

L(xτ+1, zτ+1; vτ )− L(xτ+1, zτ ; vτ ) ≤ − c̄2

2
‖zτ+1 − zτ‖22.

Proof. The optimality condition of zτ+1 is

∇L(zτ+1)− ρ(xτ+1 − zτ+1 + vτ ) = 0. (26)

It follows from Assumption (A3) that

L(xτ+1, zτ+1; vτ )− L(xτ+1, zτ ; vτ )

=L(zτ+1)− L(zτ ) +
ρ

2

(
‖xτ+1 − zτ+1 + vτ‖22 − ‖xτ+1 − zτ + vτ‖22

)
≤− 〈∇L(zτ+1), zτ − zτ+1〉 − σ

2
‖zτ+1 − zτ‖22

+
ρ

2
〈2xτ+1 − zτ+1 − zτ + 2vτ , zτ − zτ+1〉 by (A3)

=− σ

2
‖zτ+1 − zτ‖22 +

ρ

2
〈zτ+1 − zτ , zτ − zτ+1〉 by (26)

=− ρ+ σ

2
‖zτ+1 − zτ‖22.

13



As ρ > 0 and σ ≥ 0, we choose c̄2 = ρ+ σ > 0 that completes the proof.

Lemma 9. Let Assumption (A2) hold. We have

‖vτ+1 − vτ‖22 ≤
LipL

2

ρ2
‖zτ+1 − zτ‖22.

Proof. Based on (26) and v-update formula vτ+1 = vτ + xτ+1 − zτ+1, we obtain

∇L(zτ+1)− ρvτ+1 = 0, (27)

or equivalently vτ+1 = ∇L(zτ+1)
ρ . Similarly, we have vτ = ∇L(zτ )

ρ . It follows from Assumption (A2)
that

‖vτ+1 − vτ‖2 =
1

ρ
‖∇L(zτ+1)−∇L(zτ )‖2 ≤

LipL

ρ
‖zτ+1 − zτ‖2. (28)

Combining Lemmas 7-9, we shown in Lemma 10 that every triplet (xτ+1, zτ+1; vτ+1) produced
by (16) sufficiently decreases the objective value of (15).

Lemma 10. (sufficient descent) Let Assumptions (P3), (A2) and (A3) hold. If ρ in (15) satisfies

ρ > max

{
λLippGmax,

√
σ2+8LipL

2−σ
2

}
, then there exist two constants c1 > 0 and c2 > 0 such that

L(xτ+1, zτ+1; vτ+1)− L(xτ , zτ ; vτ ) ≤ −c1‖xτ+1 − xτ‖22 − c2‖zτ+1 − zτ‖22. (29)

Proof. It follows from v-update formula vτ+1 − vτ = xτ+1 − zτ+1 that

L(xτ+1, zτ+1; vτ+1)− L(xτ+1, zτ+1; vτ ) =〈ρvτ+1,xτ+1 − zτ+1〉 − 〈ρvτ ,xτ+1 − zτ+1〉
=ρ〈vτ+1 − vτ ,xτ+1 − zτ+1〉

=ρ‖vτ+1 − vτ‖22 ≤
LipL

2

ρ
‖zτ+1 − zτ‖22,

where the last inequality holds by Lemma 9. By applying Lemmas 7-8, we achieve the desired

inequality (29) with c1 = c̄1
2 and c2 = c̄2

2 −
LipL

2

ρ , where c̄1 and c̄2 are defined in Lemma 7 and
Lemma 8, respectively. The condition ρ > λLippGmax is required for Lemma 7. Additionally we

require ρ >

√
σ2+8LipL

2−σ
2 such that c2 > 0.

Theorem 11 establishes the subsequence convergence of the iterates under an assumption that
the objective function Fλ(·) is coercive; refer to Definition 3. If either the regularization function
P or the loss function L is coercive, then the objective function is coercive, which guarantees the
boundedness of the minimizing sequence.

Definition 3. A function f(·) is coercive if f(x)→∞ as ‖x‖2 →∞.

Theorem 11. (convergence) Let Assumptions (P3), (A1)-(A3) hold. If either P or L is coercive,

and ρ in (15) satisfies ρ > max

{
λLippGmax,

√
σ2+8LipL

2−σ
2

}
, then the sequence {(xτ , zτ ,vτ )}∞τ=1

generated by (16) has a convergent subsequence. Moreover, its limit point is a stationary solution
of the problem (1).
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Proof. We first show the convergence of the sequence {(xτ , zτ ,vτ )}∞τ=1. By telescoping summation
of (29) from τ = 0 to T, we have

L(xT+1, zT+1; vT+1) ≤L(x0, z0; v0)− c1

T∑
τ=0

‖xτ+1 − xτ‖22 − c2

T∑
τ=0

‖zτ+1 − zτ‖22 (30)

≤L(x0, z0; v0), ∀T = 0, 1, . . .

which implies that the sequence {L(xτ , zτ ; vτ )}∞τ=0 is upper-bounded. On the other hand, we can
estimate a lower bound for ∀T = 0, 1, . . .

L(xT+1, zT+1; vT+1)

=L(zT+1) + Fλ(xT+1)− L(xT+1) + ρ〈vT+1,xT+1 − zT+1〉+
ρ

2
‖xT+1 − zT+1‖22

≥Fλ(xT+1) + 〈ρvT+1 −∇L(zT+1),xT+1 − zT+1〉+
ρ− LipL

2
‖xT+1 − zT+1‖22

=Fλ(xT+1) +
ρ− LipL

2
‖xT+1 − zT+1‖22, (31)

where we use (27) and Assumption (A2). It follows from (31) that the sequence {Fλ(xτ )}∞τ=0 is
upper-bounded if ρ > LipL and thus {Fλ(xτ )}∞τ=0 is bounded by Assumption (A1). Note that

LipL ≤
√
σ2+8LipL

2−σ
2 , a constant stated in Lemma 10. Since Fλ(·) is coercive by the coerciveness

of P or L, {xτ}∞τ=1 is bounded, so is {zτ}∞τ=1 by (31). To show the boundedness of {vτ}∞τ=1, we
consider

‖vT+1 − v0‖2 ≤
LipL

ρ
‖zT+1 − z0‖2, ∀T = 0, 1, . . .

which can be obtained similarly to (28). This implies that

‖vT+1‖2 ≤ ‖v0‖+
LipL

ρ
(‖zT+1‖2 + ‖z0‖2), ∀T = 0, 1, . . . (32)

Together with the boundedness of {zτ}∞τ=1, we have {vτ}∞τ=1 bounded. By Bolzano–Weierstrass the-
orem, the bounded sequence {(xτ , zτ ,vτ )}∞τ=1 has a convergent subsequence, denoted by (xτj , zτj ,vτj )→
(x∗, z∗,v∗) as τj →∞.

With the boundedness, L(xτ , zτ ; vτ ) converges due to the monotonic decreasing property shown
in Lemma 10. By letting T →∞ in (30), we have

∑∞
τ=0 ‖xτ+1 − xτ‖22 and

∑∞
τ=0 ‖zτ+1 − zτ‖22 are

finite. Therefore, xτ+1−xτ → 0 and zτ+1−zτ → 0 as τ →∞. It further follows from Lemma 9 that
vτ+1−vτ → 0 as well. As (xτj , zτj ,vτj )→ (x∗, z∗,v∗), we have (xτj+1, zτj+1,vτj+1)→ (x∗, z∗,v∗)
and x∗ = z∗ due to the v-update.

We next show that (x∗, z∗,v∗) is a stationary solution of (1). By the iterative scheme (16), we
have

L(xτj+1, zτj ,vτj ) ≤ L(x, zτj ,vτj ) ∀x
L(xτj+1, zτj+1,vτj ) ≤ L(xτj+1, z,vτj ) ∀z

Let τj → ∞, we have L(x∗, z∗,v∗) ≤ L(x, z∗,v∗), ∀x and L(x∗, z∗,v∗) ≤ L(x∗, z,v∗), ∀z, which
implies that

λ
m∑
k=1

√
|Gk| p(‖x∗Gk‖2) +

ρ

2
‖v∗‖22 ≤ λ

m∑
k=1

√
|Gk| p(‖xGk‖2) +

ρ

2
‖x− z∗ + v∗‖22,∀x (33)
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and

L(z∗) +
ρ

2
‖v∗‖22 ≤ L(z) +

ρ

2
‖x∗ − z + v∗‖22,∀z. (34)

Let us fix x in (33), and let z = x in (34). As x∗ = z∗, combining (33) and (34) yields

L(x∗) + λ
m∑
k=1

√
|Gk| p(‖x∗Gk‖2) + ρ‖v∗‖22

≤ L(x) + λ
m∑
k=1

√
|Gk| p(‖xGk‖2) +

ρ

2
(‖x− x∗ + v∗‖22 + ‖x∗ − x + v∗‖22), (35)

for any x. Define F̂λ(x) , Fλ(x) + ρ‖x− x∗‖22. It follows from (35) that

F̂λ(x∗) = Fλ(x∗) ≤ Fλ(x) + ρ‖x− x∗‖22 = F̂λ(x), ∀x,

implying x∗ is a global minimum for F̂λ(x) and hence a stationary point. We show Fλ and F̂λ have
the same directional derivative at the point x = x∗ by the following calculations,

F̂ ′λ(x∗; d) = lim
h→0+

F̂λ(x∗ + hd)− F̂λ(x∗)

h

= lim
h→0+

Fλ(x∗ + hd) + ρ‖x∗ + hd− x∗‖22 − Fλ(x∗)− ρ‖x∗ − x∗‖22
h

= lim
h→0+

Fλ(x∗ + hd)− Fλ(x∗) + ρh2‖d‖22
h

= lim
h→0+

Fλ(x∗ + hd)− Fλ(x∗)

h
= F ′λ(x∗; d), ∀d.

Since x∗ is a stationary point of F̂λ(x), it is also a stationary point of Fλ(x).

If neither L nor P is coercive, then we need to assume the sequence generated by the ADMM
framework is bounded. In other words, the sequence either diverges or has a subsequence convergent
to a stationary point; see Theorem 12.

Theorem 12. (convergence without coerciveness) Let Assumptions (P3), (A1)-(A3) hold. Let ρ
satisfy the condition given in Theorem 11. If the sequence {(xτ , zτ ,vτ )}∞τ=1 is bounded, then it has
a subsequence convergent to a stationary point of problem (1).

Proof. If {xτ}∞τ=1 is bounded, then {zτ}∞τ=1 and {vτ}∞τ=1 are bounded due to (31) and (32), re-
spectively. The rest of the proof is along the same lines as Theorem 11, thus is omitted.

Note that the Poisson regression does not have a global Lipschitz constant owing to ψ′′(θi) =
exp(θi), and hence Assumption (A2) does not hold. As a result, Theorems 11-12 are not applicable
to Poisson regression. Fortunately, we observe in the empirical studies of Section 5 that ADMM
with the Poisson loss function generally converges.
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Name Definition Proximal operator

LASSO p(t) , |t| [22]

MCP

(λ̃ > 0, a > 1)
p(t; λ̃, a) ,


λ̃|t| − t2

2a
, |t| ≤ aλ̃

1

2
aλ̃2, |t| > aλ̃,

[22]

SCAD

(λ̃ > 0, a > 2)
p(t; λ̃, a) ,



λ̃|t|, |t| ≤ λ̃

2aλ̃|t| − t2 − λ̃2

2(a− 1)
, λ̃ < |t| ≤ aλ̃

(a+ 1)λ̃2

2
, |t| > aλ̃

[22]

Transformed `1
(a > 0)

p(t; a) ,
(a+ 1)|t|
a+ |t|

, [69]

LOG
(ε > 0)

p(t; ε) , log(
√
t2 + ε+ |t|) Appendix B

Table 1: A list of sparsity-promoting regularization functions and their proximal operators

5 Numerical experiments

In the numerical experiments, we examine group regularization methods that are widely used,
including group LOG, group MCP, group SCAD, group transformed `1, and group LASSO. The
definitions of the corresponding univariate regularization functions and the references for their
proximal operators are listed in Table 1.

A comparison to LASSO is added as a baseline method for feature selection without the group
structure. We consider three loss functions for linear regression, Poisson regression, and logistic
regression in Sections 5.1-5.3, respectively. We generate synthetic data for linear regression and
Poisson regression, while applying logistic regression on a real dataset that involves prostate cancer
gene expression levels.

5.1 Synthetic data for linear regression

We generate 50 triplets of a dataset that consists of 200 features and 200 observations (A,x∗,b)
for linear regression, where A ∈ R200×200 is called the feature matrix, x∗ ∈ R200 is the ground-
truth vector, and b ∈ R200 is the response vector. Each row of the feature matrix A, denoted by
Ai ∈ R200, is randomly generated from multivariate Gaussian distribution with zero mean 0 ∈ R200

and covariance matrix Σ ∈ R200×200 independently, i.e, Ai
iid∼ N (0,Σ). We set the variances of all

the features to be 1, i.e. Σjj = 1, ∀j. The off-diagonal elements of the covariances Σjj′ , j 6= j′ are
set as one of the following cases:

Case 1. Σjj′ = 0.
Case 2. Σjj′ = 0.2 when j, j′ ∈ Gk, Σjj′ = 0 otherwise.
Case 3. Σjj′ = 0.5 when j, j′ ∈ Gk, Σjj′ = 0.2 otherwise.

The three cases for the covariance matrix Σ consider various levels of correlations among the
features. Specifically, Case 1 considers features that are completely independent of each other,
while Cases 2-3 consider the features positively correlated in part or in whole. Positive correlations
are introduced within a group in Case 2. In Case 3, all feature pairs have positive correlations, and
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the within-group correlations are stronger than the across-group correlations.
The ground-truth x∗ ∈ Rd (d = 200) consists of 40 equal-size groups with 5 coefficients in each

group that are simultaneously zero or nonzero. We assume without loss of generality that x∗1, . . . , x
∗
s

are nonzero coefficients (s < d), whose indices 1, . . . , s are grouped into the first m′ distinct groups
G1, . . . ,Gm′ (m′ < m). The indices in Gm′+1, . . . ,Gm correspond to zero coefficients. We set the
number of nonzero groups to be one, three, or five for Cases 1-3. The coefficients in the nonzero
group(s) are randomly generated from uniform distribution between −5 and 5 independently, i.e,

x∗j
iid∼ U [−5, 5]. The response vector b is generated by a linear regression model

b = Ax∗ + e, (36)

where the noise e ∈ R200 follows Gaussian distribution, ei
iid∼ N (0, σ̃2). Here, σ̃2 is the empirical

version of Var(Ax∗) such that σ̃2 =
∑

i(Aix
∗ − Āx∗)2/199, where Ā =

∑
iAi/200.

Let x̂ ∈ Rd be a reconstructed solution from any method with its support Ŝ = {j : x̂j 6= 0}.
The complement of the support is denoted as Ŝc = {j : x̂j = 0}. Let M̂ = {k : x̂j 6= 0, ∀j ∈ Gk}
and N̂ = {k : x̂j = 0,∀j ∈ Gk} denote the index set of groups in which coefficients being estimated
as nonzero and the index set of groups whose coefficients being estimated as zero, respectively. To
quantitatively evaluate the performance of each regularization method, we consider the following
standard metrics:

1. Relative error of x̂ ,
‖x̂− x∗‖2
‖x∗‖2

.

2. Precision of x̂ ,
|Ŝ ∩ {1, . . . , s}|

|Ŝ|
.

3. Recall of x̂ ,
|Ŝ ∩ {1, . . . , s}|

s
.

4. Element accuracy of x̂ ,
|Ŝ ∩ {1, . . . , s}|+ |Ŝc ∩ {s+ 1, . . . , d}|

d
.

5. Group accuracy of x̂ ,
|M̂ ∩ {1, . . . ,m′}|+ |N̂ ∩ {m′ + 1, . . . ,m}|

m
.

For tuning the hyperparameter λ, we split the dataset (A,b) into two equal-size datasets: a
training dataset (Atr,btr) ∈ R100×200×R100 and a validation dataset (Av,bv) ∈ R100×200×R100. We
solve the following optimization problem with the training dataset for different penalty functions
p(·):

min
x,x0

1

100
‖Atrx + x01− btr‖22 + λ

40∑
k=1

√
|Gk|p(‖xGk‖2). (37)

For the linear regression problem (37), there is a closed-form solution for the z-subproblem as
detailed in Appendix A. The hyperparameter settings for the different penalty functions are sum-
marized in Table 2. Specifically for group LOG, group transformed `1 , group LASSO, and LASSO,
we tune the hyperparameter λ with 50 logarithmically spaced values (generated by Matlab function
logspace) from 10−4 to 10. For group MCP and group SCAD, we tune the log-spaced hyperpa-
rameter λ̃ from 10−4 to 10 with λ = 1. By fixing λ = 1 for group MCP and group SCAD, we
conform to their standard formulations found in [15, 68]. Although we do not have the intercept
x0 in generating data from (36), we include it in the estimation to mimic the reality with no prior
information about the intercept value. The numerical experiments are performed without the reg-
ularization on the intercept to have straightforward interpretations of the estimated solution. We
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Fixed parameters Tuned parameters

Group LOG ε = 0.01 λ from 10−4 to 10

Group MCP λ = 1, a = 2 λ̃ from 10−4 to 10

Group SCAD λ = 1, a = 3.7 λ̃ from 10−4 to 10
Group Transformed `1 a = 1 λ from 10−4 to 10
Group LASSO - λ from 10−4 to 10
LASSO - λ from 10−4 to 10

Table 2: Hyperparameter settings for different penalty functions

may regularize the intercept term by treating it as a standalone group, for which the convergence
theory is easily extended. Given a specific value of hyperparameters, we obtain an estimated vector
x̂ and an intercept x̂0 that can be used to compute the mean squared error (MSE) on the validation
set, MSElin , ‖Avx̂+ x̂01−bv‖22/100. The optimal value of the hyperparameter can be found with
the smallest MSE among the preset range of the hyperparameters. We do not tune the algorithmic
parameter ρ, as it only affects the convergence speed but not the performance. Generally, a larger
value of ρ results in a longer computation time. On the other hand, a very small of ρ may cause
our algorithm to be divergent, as the x-subproblem is nonconvex and thus ill-posed. In practice,
we choose ρ = 1 for group LASSO, and ρ = 2λLippGmax for group LOG, MCP, SCAD, and TL1,
which ensures the x-subproblem is convex.

Table 3 summarizes the results of all the eight methods (TL1 stands for transformed `1) for the
datasets with Case 1 covariance. Note that the overall performance of the various models does not
depend on the number of nonzero groups. We additionally consider the oracle method that sets
the zero coefficients in x∗ to be zero a priori and obtains the solution by least-squares minimization
without any regularization. The nonconvex regularizers outperform the convex regularizers such as
group LASSO and LASSO. The average relative errors of the nonconvex regularizers are very close
to those of the oracle method. In particular, group LOG is successful in recovering the sparsity and
group structure and has smaller relative errors than the oracle method on average. Although the
sparsity and group structure of the oracle method perfectly aligns with the ground-truth, the group
LOG outperforms the oracle solution which is undermined by a large signal-to-noise ratio. Both
LASSO and group LASSO have low average precision values but high average recall values, which
indicates that both methods tend to incorrectly estimate the zero coefficients at the ground-truth
as nonzero. LASSO is not successful in recovering the group structure as the group structure is not
incorporated in the model formulation. Note that the union of the group index sets M̂ and N̂ for
the group regularizers and the oracle method is the whole group index set {1, . . . ,m} while LASSO
may have some group indices not in any of the two sets. The estimation with a larger number of
nonzero groups is a more challenging task, as indicated by the increase in the relative errors and
the decrease in the precision, accuracy, and group accuracy metrics. Similar patterns are obtained
in the results with Case 2 and Case 3 covariances. Refer to Tables 6-7 in Appendix C for more
details.

We compare the ADMM to a block successive upper-bound minimization (BSUM) method [21]
and an iteratively reweighted algorithm in [24, Algorithm 1] for the group LOG penalty. The
last algorithm is a special case of the successive upper-bound minimization algorithm [48] that
solves a sequence of convex subproblems involving the weight of the current iterate; we refer to
the algorithm as the iteratively reweighted algorithm. We note that iterates of both algorithms
are shown to converge to the same type of stationary solution. We implement both algorithms on
an identical computation environment with covariance matrix Σij′ = 0 (Case 1) and three nonzero
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Method Relative error Precision Recall Accuracy Group accuracy

1 nonzero group
Group LOG 0.0209(0.0073) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group MCP 0.0220(0.0084) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group SCAD 0.0222(0.0084) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group TL1 0.0237(0.0093) 0.8348(0.3202) 1.0000(0.0000) 0.9705(0.0851) 0.9705(0.0851)
Group LASSO 0.0396(0.0124) 0.2769(0.2526) 1.0000(0.0000) 0.8685(0.0982) 0.8685(0.0982)
LASSO 0.0567(0.0157) 0.3293(0.1588) 0.9800(0.0606) 0.9352(0.0364) 0.7230(0.1360)
Oracle 0.0219(0.0087) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

3 nonzero groups
Group LOG 0.0420(0.0097) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group MCP 0.0425(0.0103) 0.8956(0.1631) 1.0000(0.0000) 0.9875(0.0216) 0.9875(0.0216)
Group SCAD 0.0437(0.0111) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group TL1 0.0433(0.0098) 0.7975(0.2461) 1.0000(0.0000) 0.9670(0.0486) 0.9670(0.0486)
Group LASSO 0.0782(0.0144) 0.2299(0.1408) 1.0000(0.0000) 0.6785(0.1513) 0.6785(0.1513)
LASSO 0.1099(0.0199) 0.2848(0.0621) 0.9480(0.0607) 0.8042(0.0634) 0.3645(0.1133)
Oracle 0.0424(0.0097) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

5 nonzero groups
Group LOG 0.0567(0.0103) 0.9967(0.0236) 1.0000(0.0000) 0.9995(0.0035) 0.9995(0.0035)
Group MCP 0.0575(0.0122) 0.9411(0.1199) 1.0000(0.0000) 0.9890(0.0263) 0.9890(0.0263)
Group SCAD 0.0574(0.0121) 0.9943(0.0404) 1.0000(0.0000) 0.9990(0.0071) 0.9990(0.0071)
Group TL1 0.0587(0.0116) 0.8902(0.1838) 1.0000(0.0000) 0.9745(0.0524) 0.9745(0.0524)
Group LASSO 0.1128(0.0208) 0.2225(0.0481) 1.0000(0.0000) 0.5400(0.1132) 0.5400(0.1132)
LASSO 0.1723(0.0382) 0.3225(0.0519) 0.9344(0.0377) 0.7369(0.0598) 0.2525(0.0855)
Oracle 0.0569(0.0113) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

Table 3: Results for synthetic linear regression datasets with Case 1 covariance matrix. The
averages are presented along with their standard deviations in parentheses.

groups in ground-truth. Figure 1 plots the decrease in the objective values and the relative errors
of the iterates with respect to computation time. Although both methods reach the same level
of objective value and relative error in the end, Figure 1 indicates that the ADMM converges
faster than the iteratively reweighted algorithm when both subproblems in (16) have closed-form
solutions. Both ADMM and iterative algorithm are much faster compared to BSUM.

5.2 Synthetic data for Poisson regression

Poisson regression is a generalized linear model that takes count data as its response. We generate
50 triples of (A,x∗,b), where x∗ ∈ R200 is the ground-truth vector and b ∈ R200 is the response
vector generated by Poisson distribution, i.e.,

bi
iid∼ Poisson(Aix

∗).

The feature matrix A ∈ R200×200 is generated in the same manner as in Section 5.1 with Case 1,
2, 3 covariance settings. One, three, and five groups of 5 coefficients in the ground-truth x∗ are
nonzero and the rest of the coefficients are zero. The nonzero coefficients are randomly generated

from uniform distribution between −0.5 and 0.5, i.e., x∗j
iid∼ U [−0.5, 0.5]. Same as in Section 5.1,

we randomly split the dataset (A,b) into training and validation sets. For the training dataset
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Figure 1: Convergence comparison of the ADMM for group LOG penalty to the BSUM algorithm
[21] and an iterative algorithm [24] in terms of the objective value (left) and the relative error to
the ground-truth (right) with respect to the computation time.

(Atr,btr), we consider the following optimization problem with different penalty functions p(·):

min
x,x0

1

100

100∑
i=1

[
(btr)i

(
(Atr)ix + x0

)
− exp

(
(Atr)ix + x0

)]
+ λ

40∑
k=1

√
|Gk|p(‖xGk‖2).

We adopt Newton’s method, described in Appendix A, to solve for the z-subproblem. The Newton’s
method terminates if the distance between the current iterate and the previous iterate is less than
10−3. Note that our empirical study shows that the stopping tolerance in the subproblem does not
have a significant influence on the final results. We use 50 different hyperparameter values from
10−4 to 10 (λ for group LOG, group transformed `1, group LASSO, LASSO, and λ̃ for group MCP,
group SCAD). Given a specific hyperparameter value, we obtain the estimated coefficients x̂ and
the intercept x̂0. For hyperparameter selection, we use mean squared error (MSE) on the validation
set (Av,bv) for Poisson regression defined as

MSEpois , ‖ exp(Avx̂ + x̂01)− bv‖22,

where the exp of a vector is a componentwise operation. The hyperparameter value giving the
smallest MSE is chosen. Note that there are alternatives to MSE for Poisson regression, such as
deviance and mean squared error of log response, to alleviate the sensitivity to large predicted
values. With the known ground-truth, the evaluation metrics are the same as in linear regression.

Table 4 summarizes the results of the eight approaches with Case 1 covariance setting. The
five nonconvex regularizers show great performance, among which group LOG attains the smallest
relative error. Group LASSO and LASSO show poor performance in terms of relative errors,
precision, and group accuracy. Tables 8-9 in Appendix C present the results for the Case 2 and
Case 3 covariance settings, reporting a similar conclusion.

5.3 Prostate cancer gene expression dataset for logistic regression

Prostate cancer is the most commonly diagnosed non–skin cancer and the second leading cause of
cancer death among men in the United States [8]. In order to identify prostate cancer risk genes,
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Method Relative error Precision Recall Accuracy Group accuracy

1 nonzero group
Group LOG 0.3857(0.2139) 0.7918(0.3120) 0.9800(0.1414) 0.9800(0.0410) 0.9800(0.0410)
Group MCP 0.4108(0.2248) 0.7542(0.3183) 0.9800(0.1414) 0.9815(0.0311) 0.9815(0.0311)
Group SCAD 0.4338(0.2797) 0.9040(0.2344) 0.9200(0.2740) 0.9905(0.0231) 0.9905(0.0231)
Group TL1 0.4726(0.2060) 0.3558(0.2959) 0.9800(0.1414) 0.9005(0.0983) 0.9005(0.0983)
Group LASSO 0.5486(0.1888) 0.1754(0.1927) 0.9800(0.1414) 0.8050(0.1204) 0.8050(0.1204)
LASSO 0.6776(0.1685) 0.2526(0.1845) 0.5960(0.2725) 0.9220(0.0442) 0.7095(0.1618)
Oracle 0.3673(0.2025) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

3 nonzero groups
Group LOG 0.3849(0.1423) 0.8335(0.1998) 0.9533(0.1168) 0.9755(0.0288) 0.9755(0.0288)
Group MCP 0.4143(0.1591) 0.8049(0.1883) 0.9467(0.1406) 0.9730(0.0266) 0.9730(0.0266)
Group SCAD 0.4051(0.1676) 0.9537(0.1095) 0.9467(0.1234) 0.9915(0.0148) 0.9915(0.0148)
Group TL1 0.4910(0.1406) 0.4262(0.2012) 0.9867(0.0660) 0.8575(0.1043) 0.8575(0.1043)
Group LASSO 0.5668(0.1161) 0.2207(0.0717) 0.9867(0.0660) 0.7046(0.1115) 0.7045(0.1115)
LASSO 0.7057(0.1022) 0.2823(0.0672) 0.6173(0.1318) 0.8430(0.0474) 0.4680(0.1485)
Oracle 0.3618(0.1255) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

5 nonzero groups
Group LOG 0.3789(0.1248) 0.8296(0.1834) 0.9640(0.0875) 0.9621(0.0423) 0.9620(0.0423)
Group MCP 0.4165(0.1373) 0.8393(0.1215) 0.9600(0.0808) 0.9690(0.0245) 0.9690(0.0245)
Group SCAD 0.4223(0.1533) 0.9445(0.1127) 0.9160(0.1462) 0.9815(0.0271) 0.9815(0.0271)
Group TL1 0.4907(0.1295) 0.4112(0.1577) 0.9800(0.0606) 0.7831(0.1123) 0.7830(0.1124)
Group LASSO 0.5735(0.1085) 0.2554(0.0643) 0.9800(0.0606) 0.6113(0.1220) 0.6110(0.1222)
LASSO 0.7090(0.1130) 0.3238(0.0634) 0.5616(0.1527) 0.7911(0.0470) 0.3690(0.1436)
Oracle 0.3787(0.1001) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

Table 4: Results for synthetic Poisson regression datasets with Case 1 covariance matrix. The
averages are presented along with their standard deviations in parentheses.

we analyze gene expression levels of prostate samples collected from 102 study participants [51].
Genetic expression levels of 6033 genes were measured from 52 prostate cancer patients and 50
normal controls. For our model fittings, we choose the top 50 genes with large median absolute
deviation in the participants’ gene expression levels. The response vector consists of binary values
representing 0 = cancer patient and 1 = normal control. We generate a feature matrix of
dimension 102× 150 for a cubic B-spline basis function of the 50 genes, where each row is for one
man and each of the three columns corresponds to one gene.

To evaluate the performance of the seven regularization methods for the logistic regression
model, we perform 50 random splits of the dataset into a training set (Atr,btr) ∈ R82×150 × R82

and test set (Atest,btest) ∈ R20×150 ×R20. The model coefficients x̂ and x̂0 are estimated from the
logit loss function with regularization, i.e.,

min
x,x0

1

82

82∑
i=1

[
log
{

1 + exp
(

(Atr)ix + x0

)}
− (btr)i exp

(
(Atr)ix + x0

)]
+ λ

50∑
k=1

√
|Gk|p(‖xGk‖2).

As the Hessian matrix for this problem is nearly singular, we apply the standard gradient descent
for solving the z-subproblem. The gradient descent terminates if the distance between the current
iterate and the previous iterate is less than 10−3. The oracle method is not available for this
experiment since the ground-truth is not known. The performance metrics of each method are
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given by

1. Prediction error ,
1

20

20∑
i=1

∣∣∣1((b̂test)i > 0.5
)
− (btest)i

∣∣∣,, where

(b̂test)i =
1

1 + exp(−x̂0 − (Atest)ix̂)

and 1(Ω) is the indicator function that returns 1 if condition Ω holds and 0 otherwise.

2. Area under a receiver operating characteristic curve (AUC) ,
∫ 1

0
TPR(t) dt, where

TPR(t) ,
TP (t)

TP (t) + FN(t)
,

TP (t) ,
20∑
i=1

1
(

(b̂test)i > t
)

(btest)i, and

FN(t) ,
20∑
i=1

1
(

(b̂test)i ≤ t
)

(btest)i.

3. Coefficient selection rate ,
1

d

d∑
j=1

1(x̂j 6= 0).

4. Group selection rate ,
1

m

m∑
k=1

1(x̂Gk 6= 0), where x̂Gk is a coefficient subvector corresponding

to the k-th group.

For all methods, we perform 5-fold cross-validation on the 50 training sets to tune the hy-
perparameters (λ for group LOG, group transformed `1, group LASSO, LASSO, and λ̃ for group
MCP, group SCAD) by maximizing AUC. The other parameters are fixed as in Table 2, except
for ε = 1e-4 of group LOG. For group LOG, we tune the log-spaced hyperparameter λ from 10−4

to 10−2. For group transformed `1 and group LASSO, we tune the log-spaced hyperparameter λ
from 10−3 to 10−1. For group MCP and group SCAD, we tune the log-spaced hyperparameter λ̃
from 10−3 to 10−1 while fixing the hyperparameter λ = 1. With the selected hyperparamter by
cross-validation, the model coefficients x̂ and x̂0 are estimated on the whole training set and their
performances are evaluated on the corresponding test set.

Method Prediction error AUC Coefficient selection rate Group selection rate

Group LOG 0.4240(0.1089) 0.6308(0.1344) 0.5224(0.2456) 0.5224(0.2456)
Group MCP 0.4130(0.1024) 0.6467(0.1251) 0.9984(0.0055) 0.9984(0.0055)
Group SCAD 0.4080(0.0804) 0.6528(0.1112) 0.9944(0.0162) 0.9944(0.0162)
Group TL1 0.4530(0.0992) 0.5965(0.1238) 0.3580(0.2188) 0.3580(0.2188)
Group LASSO 0.4670(0.1053) 0.5982(0.1086) 0.3264(0.2791) 0.3264(0.2791)
LASSO 0.4410(0.1077) 0.6324(0.1175) 0.1891(0.1535) 0.4172(0.3083)

Table 5: Results for prostate cancer gene dataset. The averages are presented along with their
standard deviations in parentheses.

Table 5 exhibits the performance of the seven regularization methods with logistic regression.
The nonconvex group penalties except for group transformed `1 have smaller prediction errors
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and higher AUCs than group LASSO. As seen in the coefficient and group selection rates, both
group MCP and group SCAD result in non-sparse coefficients with marginally higher AUC values.
LASSO, on average, has the smallest coefficient selection rate, but it cannot retain the group struc-
ture by nature. Taking both prediction accuracy and group sparsity recovery into consideration,
group LOG shows satisfactory results compared to the other methods.

6 Conclusion

We study a generalized formulation of the non-overlapping group selection problem, which en-
compasses many existing works by choosing a specific set of loss functions and sparsity-promoting
functions. We analyzed the properties of a directional stationary solution to our proposed model,
demonstrating its global optimality under certain conditions and providing a bound of its distance
to a reference point which is a proxy of the ground-truth in the view of probability. We applied the
ADMM framework with a proximal operator to iteratively minimize the generalized formulation
that is commonly nonconvex and nonsmooth. We also proved the subsequence convergence of the
algorithm to a stationary point. The global convergence and inexact ADMM [61, 62] (when the
subproblems are solved approximately), which requires more conditions on the loss function, will be
left for future work. In numerical experiments, we tested our algorithm on synthetic datasets with
linear and Poisson regression analysis, showing that nonconvex group regularization methods often
outperform the convex approaches with respect to the recovery of the ground-truth. The analysis
of prostate cancer gene expression data confirmed that a solution with group sparsity structure is
successfully produced by our proposed model, in which nonconvex group regularization methods
outperform group LASSO.
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Appendix

A Common approaches to solving the z-subproblem

This section details three approaches regarding how to solve for the z-subproblem in (16).

• A closed-form solution can be derived for the least squares loss

Llin(z) ,
1

n

n∑
i=1

(bi −Aiz)2 .

We shall consider an intercept, denoted by x0, and hence the least squares loss can be ex-
pressed as

Llin(z, x0) ,
1

n

n∑
i=1

(bi −Aiz− x0)2 .

The z-update is given by

zτ+1 =
( 1

n
ATA+ ρId

)−1( 1

n
AT (xτ01 + b) + ρ(xτ+1 + vτ )

)
,

where 1 denotes the all-ones vector and Id is the d × d identity matrix. The x0-update is
made by

xτ+1
0 =

1

n

n∑
i=1

(bi −Aizτ+1).

• The Newton’s method is often used when any GLM loss has a continuous second-order deriva-
tive. It is especially useful when there is no closed-form solution of z, such as logistic regression
and Poisson regression. The Newton’s method at the s-th inner iteration is given by

zs+1 = zs−δs
{
∇2

zsL
glm(zs) + ρId

}−1

{
∇zsL

glm(zs) + ρ(zs − xτ+1 − vτ )
}
,

= zs−δs
{
ψ
′′
(Aizs)A

T
i Ai + ρId

}−1

[
{ψ′(Aix)− bi}ATi + ρ(zs − xτ+1 − vτ )

]
,

where δs > 0 is a step size. We define the logit loss as follows,

Llogit(x, x0) ,
1

n

n∑
i=1

[log {1 + exp(Aix + x0)} − bi(Aix + x0)] .

Its first and second derivatives with respect to each component of x can be obtained by

∂Llogit

∂xj
=

1

n

n∑
i=1

[
aij exp(Aix + x0)

1 + exp(Aix + x0)
− biaij

]
,

∂2Llogit

∂xj∂xk
=

1

n

n∑
i=1

[
aijaik exp(Aix + x0)

1 + exp(Aix + x0)
− aijaik

(
exp(Aix + x0)

1 + exp(Aix + x0)

)2
]
,
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for j, k = 1, . . . , d. Its derivatives with respect to x0 are

∂Llogit

∂x0
=

1

n

n∑
i=1

[
exp(Aix + x0)

1 + exp(Aix + x0)
− bi

]
,

∂2Llogit

∂x2
0

=
1

n

n∑
i=1

[
exp(Aix + x0)

1 + exp(Aix + x0)
−
(

exp(Aix + x0)

1 + exp(Aix + x0)

)2
]
,

For the Poisson loss, which is defined by

Lpois(x) , − 1

n

n∑
i=1

{bi(Aix + x0)− exp(Aix + x0)} ,

its first and second derivatives with respect to each component of x are

∂Lpois

∂xj
=

1

n

n∑
i=1

[aij exp(Aix + x0)− biaij ]

∂2Lpois

∂xj∂xk
=

1

n

n∑
i=1

aijaik exp(Aix + x0).

Its first and second derivatives with respect to x0 are given by

∂Lpois

∂x0
=

1

n

n∑
i=1

[exp(Aix + x0)− bi] ,

∂2Lpois

∂x2
0

=
∂2Lpois

∂xj∂xk
=

1

n

n∑
i=1

exp(Aix + x0),

• Gradient descent is considered when computing the Hessian matrix is infeasible or inefficient.
It is useful for analysis of high dimensional datasets or employing loss functions that are not
twice differentiable. The gradient descent at the s-th inner iteration is given by

zs+1 = zs−δs
[
∇zsL

glm(zs) + ρ(zs − xτ+1 − vτ )
]

= zs−δs
[
{ψ′(Aix)− bi}ATi + ρ(zs − xτ+1 − vτ )

]
where δs > 0 is a step size.

B Proximal operator for group LOG

Group LOG penalty was recently developed in [24] that can be solved by an iterative reweighted
algorithm. The high computational costs due to the double loop of the iterative scheme motivated
us to derive the proximal operator of group LOG, followed by ADMM leading to a single-loop
algorithm. We derive a closed-form solution of the proximal operator for group LOG under certain
conditions and demonstrate the ADMM scheme equipped with this proximal operator significantly
reduces the computational time compared to our previous iterative reweighted approach [24].
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Let plog(x) denote the group LOG penalty, i.e, plog(x) = log(
√
x2 + ε+|x|). The penalty function

satisfies Assumptions (P1)-(P3). We define an objective function fy(x), x ∈ R, corresponding to
the LOG penalty function, i.e.,

proxlog(y;µ) ∈ argmin fy(x) , µplog(x) +
1

2
(x− y)2

= µ log(
√
x2 + ε+ |x|) +

1

2
(x− y)2.

We are interested in the stationary points of fy(x), which can be 0 or any point x∗ 6= 0 such that
f ′y(x

∗) = 0. Since the first and second terms of fy are symmetric about the vertical axis and y = x,
a minimizer of fy must have the same sign as y. The first and second order derivative of fy(x) in
R \ {0} are given by

f ′y(x) =
µ sign(x)√
x2 + ε

+ x− y, x 6= 0,

f ′′y (x) = − µ|x|
(x2 + ε)3/2

+ 1, x 6= 0.

Instead of directly solving for f ′y(x) = 0 to derive the proximal operator, we simply find real
roots of the quartic equation f ′y(x)gy(x) = 0 with

gy(x) ,
µ sign(x)√
x2 + ε

− (x− y).

Specifically we first examine the quartic equation,

f ′y(x)gy(x) = x4 − 2yx3 + (y2 + ε)x2 − 2yεx+ y2ε− µ2 = 0, (38)

followed by the discussion on which of these roots corresponds to the solution of f ′y(x) = 0. Ac-
cording to [14, 52], the quartic equation (38) have the following four roots:

x1 = sign(y)
(√
t1 − (

√
t2 +

√
t3)
)

+
y

2
,

x2 = sign(y)
(√
t1 + (

√
t2 +

√
t3)
)

+
y

2
,

x3 = sign(y)
(
−
√
t1 − (

√
t2 −

√
t3)
)

+
y

2
,

x4 = sign(y)
(
−
√
t1 + (

√
t2 −

√
t3)
)

+
y

2
,

(39)

where
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t1 =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
− 1

3

(
ε

2
− y2

4

)
,

t2 =
−1 +

√
3i

2

3

√
−q

2
+

√
q2

4
+
p3

27

+

(
−1 +

√
3i

2

)2
3

√
−q

2
−
√
q2

4
+
p3

27
− 1

3

(
ε

2
− y2

4

)
,

t3 =
−1−

√
3i

2

3

√
−q

2
+

√
q2

4
+
p3

27

+

(
−1−

√
3i

2

)2
3

√
−q

2
−
√
q2

4
+
p3

27
− 1

3

(
ε

2
− y2

4

)
,

p =

(
µ2

4
+
ε2

16
− y2ε

8

)
− 1

3

(
ε

2
− y2

4

)2

,

q =
2

27

(
ε

2
− y2

4

)3

− 1

3

(
ε

2
− y2

4

)(
µ2

4
+
ε2

16
− y2ε

8

)
− y2ε2

64
.

In what follows, we show that the first solution (x1) given in (39) is the stationary solution of
fy(x) when certain conditions hold.

Lemma 13. Given ε > 0, if µ <
3
√

3

2
ε and

µ√
ε
< |y|, then x1 given in (39) satisfies f ′y(x1) = 0.

Proof. By examining the derivative of f ′′y , we verify that

inf
x 6=0

f ′′y (x) = f ′′y (
√
ε/2) = − 2µ

3
√

3ε
+ 1 > 0, (40)

when µ < 3
√

3
2 ε. This implies that f ′y(a) < f ′y(b) for any a < b < 0 or b > a > 0. From the

assumption of |y| > µ√
ε

, we discuss two cases: y > µ√
ε

and y < − µ√
ε
.

In the first case, we have f ′y(0
−), f ′y(0

+) < 0. Since lim
x→∞

f ′y(x) =∞ and f ′y is strictly increasing

on (0,∞) by (40), there exists exactly one root x̄1 > 0 such that f ′y(x̄1) = 0. Similarly, we verify
that gy has exactly one root x̄2 > 0, i.e., g(x̄2) = 0. This implies that the equation (38) has
exactly two positive solutions. Furthermore, by examining f ′y(x̄1) = µ√

x̄21+ε
+ x̄1 − y = 0 and

g(x̄2) = µ√
x̄22+ε

− x̄2 + y = 0, we deduce x̄1 < y < x̄2.

Next we identify x̄1 among the candidates shown in (39). Referring to [14, 52], t1, t2 and t3 in
(39) are three roots of the cubic equation

t3 +

(
ε

2
− y2

4

)
t2 +

(
µ2

4
+
ε2

16
− y2ε

8

)
t− y2ε2

64
= 0.

Since −y
2ε2

64
< 0, there are only three cases for the roots of the above equation: (1) t1, t2, t3 > 0;

(2) t1 > 0 and t2, t3 < 0; (3) t1 > 0, t2 and t3 are complex conjugate. As only two of the solutions
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(38) are in R, we must have the third case. Referring to [1], we verify that
√
t2 +

√
t3 > 0. To see

this, let t2 = a+ bi and t3 = a− bi, where a, b ∈ R with b 6= 0, then we have

√
t2 +

√
t3 =

√√
a2 + b2 + a

2
+ i sign(b)

√√
a2 + b2 − a

2

+

√√
a2 + b2 + a

2
− i sign(b)

√√
a2 + b2 − a

2

=

√
2(
√
a2 + b2 + a) > 0.

Similarly, we can show that
√
t2 −

√
t3 /∈ R. Since x̄1 < x̄2, we have

x̄1 = sign(y)
(√
t1 − (

√
t2 +

√
t3)
)

+
y

2
with f ′y(x̄1) = 0,

x̄2 = sign(y)
(√
t1 + (

√
t2 +

√
t3)
)

+
y

2
with gy(x̄2) = 0,

showing x̄1 is a stationary solution of fy(x). The proof for the remaining case of y < − µ√
ε

can be

shown similarly.

Theorem 14. If µ <
3
√

3

2
ε, then the proximal operator of group LOG is given by

proxlog(y;µ) =


0, if |y| ≤ µ√

ε
,

sign(y)
(√
t1 − (

√
t2 +

√
t3)
)

+
y

2
, if |y| > µ√

ε
.

Proof. The case of |y| > µ√
ε

is shown by Lemma 13. For the other case, the definition of f ′y
together with (40) yields f ′y(x1) < f ′y(0

−) ≤ 0 ≤ fy(0
+) < f ′y(x2), ∀x1 < 0 < x2. Hence fy obtains

the minimum at 0.

Here we summarize the procedure regarding how to numerically compute the proximal operator
proxlog(y;µ), which can be either one point among the solutions in (39) or 0. For any x 6= 0,

f ′y(x) = 0 is equivalent to y − x = µsign(x)√
x̄21+ε

. This implies that, when y > 0, a stationary solution x̄

of fy satisfies x̄ ∈ (0, y). Similarily, when y < 0, a stationary solution x̄ of fy satisfies x̄ ∈ (y, 0).
With the intervals for the real roots of f ′y(x) = 0, we present the following process to compute
proxlog(y;µ):

1. Compute x1, x2, x3, x4 by (39) and define the set of roots for the quartic equation (38) Q ,
{x1, x2, x3, x4};

2. Let P , {x ∈ Q |x ∈ R, |x| ∈ (0, |y|)}, which is the set of real roots for equation f ′y(x) = 0.
3. Find x̄ such that fy(x̄) ≤ fy(x) for any x ∈ P ∪ {0}, which is proxlog(y;µ).

C Additional tables
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Method Relative error Precision Recall Accuracy Group accuracy

1 nonzero group
Group LOG 0.0245(0.0106) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group MCP 0.0253(0.0113) 0.9473(0.1860) 1.0000(0.0000) 0.9945(0.0228) 0.9945(0.0228)
Group SCAD 0.0250(0.0115) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group TL1 0.0268(0.0109) 0.8310(0.3314) 1.0000(0.0000) 0.9680(0.0753) 0.9680(0.0753)
Group LASSO 0.0506(0.0163) 0.1621(0.1283) 1.0000(0.0000) 0.7855(0.1440) 0.7855(0.1440)
LASSO 0.0729(0.0213) 0.2383(0.1418) 0.9760(0.0657) 0.8927(0.0610) 0.5860(0.1832)
Oracle 0.0253(0.0114) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

3 nonzero groups
Group LOG 0.0545(0.0136) 0.9900(0.0495) 1.0000(0.0000) 0.9990(0.0049) 0.9990(0.0049)
Group MCP 0.0540(0.0142) 0.8777(0.1904) 1.0000(0.0000) 0.9830(0.0325) 0.9830(0.0325)
Group SCAD 0.0538(0.0140) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group TL1 0.0561(0.0142) 0.7331(0.2945) 1.0000(0.0000) 0.9390(0.0944) 0.9390(0.0944)
Group LASSO 0.1015(0.0260) 0.1709(0.0558) 1.0000(0.0000) 0.5966(0.1352) 0.5965(0.1352)
LASSO 0.1410(0.0356) 0.2781(0.0571) 0.9480(0.0560) 0.7991(0.0627) 0.3355(0.1087)
Oracle 0.0538(0.0138) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

5 nonzero groups
Group LOG 0.0780(0.0245) 0.9900(0.0400) 1.0000(0.0000) 0.9985(0.0060) 0.9985(0.0060)
Group MCP 0.0776(0.0236) 0.9583(0.1030) 1.0000(0.0000) 0.9925(0.0197) 0.9925(0.0197)
Group SCAD 0.0777(0.0233) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group TL1 0.0791(0.0246) 0.8175(0.2146) 1.0000(0.0000) 0.9565(0.0636) 0.9565(0.0636)
Group LASSO 0.1462(0.0363) 0.2071(0.0393) 1.0000(0.0000) 0.5005(0.1158) 0.5005(0.1158)
LASSO 0.2170(0.0648) 0.3244(0.0447) 0.9200(0.0511) 0.7444(0.0492) 0.2450(0.0825)
Oracle 0.0779(0.0236) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

Table 6: Results for synthetic linear regression datasets with Case 2 covariance matrix. The
averages are presented along with their standard deviations in parentheses.

Method Relative error Precision Recall Accuracy Group accuracy

1 nonzero group
Group LOG 0.0215(0.0073) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group MCP 0.0222(0.0074) 0.8880(0.2486) 1.0000(0.0000) 0.9905(0.0247) 0.9905(0.0247)
Group SCAD 0.0219(0.0069) 0.9867(0.0943) 1.0000(0.0000) 0.9990(0.0071) 0.9990(0.0071)
Group TL1 0.0237(0.0078) 0.8307(0.3294) 1.0000(0.0000) 0.9695(0.0761) 0.9695(0.0761)
Group LASSO 0.0413(0.0098) 0.2977(0.2899) 1.0000(0.0000) 0.8640(0.1104) 0.8640(0.1104)
LASSO 0.0584(0.0125) 0.2874(0.1479) 0.9960(0.0283) 0.9140(0.0587) 0.6690(0.1679)
Oracle 0.0218(0.0070) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

3 nonzero groups
Group LOG 0.0407(0.0086) 0.9950(0.0354) 1.0000(0.0000) 0.9995(0.0035) 0.9995(0.0035)
Group MCP 0.0422(0.0098) 0.8477(0.2097) 1.0000(0.0000) 0.9790(0.0317) 0.9790(0.0317)
Group SCAD 0.0417(0.0102) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group TL1 0.0417(0.0079) 0.8262(0.2235) 1.0000(0.0000) 0.9745(0.0383) 0.9745(0.0383)
Group LASSO 0.0741(0.0135) 0.2356(0.1004) 1.0000(0.0000) 0.7067(0.1326) 0.7065(0.1325)
LASSO 0.1051(0.0217) 0.3119(0.0760) 0.9533(0.0508) 0.8249(0.0616) 0.4040(0.1391)
Oracle 0.0416(0.0091) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

5 nonzero groups
Group LOG 0.0563(0.0109) 0.9933(0.0330) 1.0000(0.0000) 0.9990(0.0049) 0.9990(0.0049)
Group MCP 0.0562(0.0110) 0.9611(0.0898) 1.0000(0.0000) 0.9935(0.0158) 0.9935(0.0158)
Group SCAD 0.0561(0.0107) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Group TL1 0.0576(0.0106) 0.8418(0.2174) 1.0000(0.0000) 0.9595(0.0730) 0.9595(0.0730)
Group LASSO 0.1114(0.0170) 0.2344(0.0602) 1.0000(0.0000) 0.5630(0.1199) 0.5630(0.1199)
LASSO 0.1654(0.0339) 0.3239(0.0640) 0.9304(0.0449) 0.7362(0.0647) 0.2575(0.1044)
Oracle 0.0560(0.0107) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

Table 7: Results for synthetic linear regression datasets with Case 3 covariance matrix. The
averages are presented along with their standard deviations in parentheses.
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Method Relative error Precision Recall Accuracy Group accuracy

1 nonzero group
Group LOG 0.4667(0.2512) 0.6767(0.3629) 0.9200(0.2740) 0.9735(0.0366) 0.9735(0.0366)
Group MCP 0.4730(0.2430) 0.6477(0.3650) 0.9200(0.2740) 0.9720(0.0345) 0.9720(0.0345)
Group SCAD 0.5383(0.2897) 0.8370(0.3172) 0.8400(0.3703) 0.9905(0.0159) 0.9905(0.0159)
Group TL1 0.5951(0.2318) 0.3303(0.3088) 0.9200(0.2740) 0.8955(0.0906) 0.8955(0.0906)
Group LASSO 0.6708(0.2127) 0.1442(0.1505) 0.9000(0.3030) 0.8095(0.1320) 0.8095(0.1320)
LASSO 0.7662(0.1874) 0.2150(0.1438) 0.4680(0.2638) 0.9321(0.0450) 0.7475(0.1687)
Oracle 0.4841(0.3168) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

3 nonzero groups
Group LOG 0.4889(0.1759) 0.7051(0.2399) 0.8867(0.1976) 0.9490(0.0492) 0.9490(0.0492)
Group MCP 0.5131(0.1955) 0.7152(0.2591) 0.8467(0.2448) 0.9510(0.0434) 0.9510(0.0434)
Group SCAD 0.5297(0.2046) 0.8753(0.2081) 0.8000(0.2694) 0.9700(0.0357) 0.9700(0.0357)
Group TL1 0.5480(0.1500) 0.3559(0.1910) 0.9467(0.1234) 0.8206(0.1047) 0.8205(0.1047)
Group LASSO 0.5991(0.1313) 0.1933(0.0668) 0.9533(0.1168) 0.6656(0.1104) 0.6655(0.1105)
LASSO 0.7521(0.1357) 0.2983(0.0895) 0.5347(0.1663) 0.8576(0.0514) 0.5215(0.1674)
Oracle 0.4152(0.1461) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

5 nonzero groups
Group LOG 0.4923(0.1601) 0.7152(0.2315) 0.9040(0.1628) 0.9220(0.0708) 0.9220(0.0708)
Group MCP 0.5475(0.1610) 0.7324(0.1915) 0.8600(0.1773) 0.9365(0.0480) 0.9365(0.0480)
Group SCAD 0.5632(0.1859) 0.9075(0.1556) 0.8320(0.2035) 0.9650(0.0361) 0.9650(0.0361)
Group TL1 0.5537(0.1288) 0.4053(0.1207) 0.9480(0.1199) 0.7926(0.1025) 0.7925(0.1027)
Group LASSO 0.6187(0.1097) 0.2450(0.0593) 0.9560(0.0929) 0.6006(0.1164) 0.6005(0.1164)
LASSO 0.7725(0.0961) 0.3421(0.0951) 0.5144(0.1582) 0.8014(0.0493) 0.3850(0.1689)
Oracle 0.4606(0.1251) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

Table 8: Results for synthetic Poisson regression datasets with Case 2 covariance matrix. The
averages are presented along with their standard deviations in parentheses.

Method Relative error Precision Recall Accuracy Group accuracy

1 nonzero group
Group LOG 0.4084(0.2395) 0.7899(0.2997) 0.9400(0.2399) 0.9855(0.0243) 0.9855(0.0243)
Group MCP 0.4246(0.2448) 0.7630(0.3104) 0.9400(0.2399) 0.9825(0.0304) 0.9825(0.0304)
Group SCAD 0.4620(0.2887) 0.9167(0.2230) 0.8600(0.3505) 0.9930(0.0134) 0.9930(0.0134)
Group TL1 0.4976(0.2137) 0.4364(0.3366) 0.9600(0.1979) 0.9200(0.0851) 0.9200(0.0851)
Group LASSO 0.5776(0.1868) 0.1873(0.1404) 0.9600(0.1979) 0.8335(0.1144) 0.8335(0.1144)
LASSO 0.7383(0.1654) 0.2282(0.1607) 0.5680(0.2810) 0.9163(0.0571) 0.6855(0.2018)
Oracle 0.3660(0.1685) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

3 nonzero groups
Group LOG 0.3439(0.1184) 0.8405(0.1978) 0.9533(0.1168) 0.9770(0.0285) 0.9770(0.0285)
Group MCP 0.3437(0.1195) 0.8020(0.2062) 0.9600(0.1094) 0.9715(0.0350) 0.9715(0.0350)
Group SCAD 0.3540(0.1253) 0.9633(0.0925) 0.9333(0.1347) 0.9915(0.0130) 0.9915(0.0130)
Group TL1 0.4459(0.1237) 0.4827(0.2140) 0.9733(0.0913) 0.8836(0.0906) 0.8835(0.0907)
Group LASSO 0.5271(0.1011) 0.2158(0.0709) 0.9800(0.0800) 0.6950(0.1249) 0.6950(0.1249)
LASSO 0.6757(0.0825) 0.2817(0.0631) 0.6240(0.1180) 0.8438(0.0449) 0.4555(0.1275)
Oracle 0.3181(0.0904) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

5 nonzero groups
Group LOG 0.3715(0.1013) 0.8119(0.1824) 0.9680(0.0741) 0.9585(0.0427) 0.9585(0.0427)
Group MCP 0.4261(0.1446) 0.8217(0.1744) 0.9400(0.1010) 0.9590(0.0390) 0.9590(0.0390)
Group SCAD 0.4169(0.1516) 0.9455(0.1203) 0.9240(0.1271) 0.9810(0.0279) 0.9810(0.0279)
Group TL1 0.4740(0.1150) 0.4271(0.1561) 0.9880(0.0480) 0.7930(0.1191) 0.7930(0.1191)
Group LASSO 0.5476(0.0936) 0.2487(0.0677) 0.9960(0.0283) 0.5895(0.1356) 0.5895(0.1356)
LASSO 0.7113(0.1095) 0.3382(0.0774) 0.6016(0.1364) 0.7929(0.0509) 0.3440(0.1404)
Oracle 0.3735(0.1074) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

Table 9: Results for synthetic Poisson regression datasets with Case 3 covariance matrix. The
averages are presented along with their standard deviations in parentheses.
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