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Abstract

We study a two-stage natural disaster management problem modeled as a stochastic program, where
the first stage consists of a facility location problem, deciding where to open facilities and pre-allocate
resources such as medical and food kits, and the second stage is a fixed-charge transportation problem,
routing resources to affected areas after observing a disaster. Our model has binary variables present
in both stages. Due to the lack of data, classical stochastic programming approaches may be ill-suited,
and we propose a two-stage distributionally robust formulation with a Wasserstein ambiguity set, where
we consider distributions consistent with historical data and a tunable parameter to control the level
of risk aversion. We develop a tailored column-and-constraint generation (CCG) algorithm to solve
an extensive reformulation, where scenarios are iteratively generated. We handle the presence of binary
variables in the second stage by leveraging the structure of our support set and second-stage problem, and
provide conditions under which the optimal value of the latter is concave with respect to the intensity
of the disaster, leading to an efficient scenario generation procedure. We also show that our results
extend to the case where the second stage is a fixed-charge network flow problem. We perform extensive
computational experiments demonstrating the computational advantage of our method over classical
CCG implementations on synthetic instances, and illustrate the benefits of our approach on a popular
case study from the literature of hurricane threats on the Gulf of Mexico in the United States.



1 Introduction

Natural disasters can have a significant impact on the lives of many people. It is estimated that about two

major hurricanes make landfall around the Gulf or Atlantic coast of the United States every three years

which can lead to very large costs [9]. Hurricane Katrina and Sandy were among the costliest hurricanes,

leading to over a hundred billion dollars in costs each. In natural disaster management, planners seek to

alleviate the consequences of a disaster ahead of time. Common long-term planning involves readiness,

such as pre-positioning resources and potentially deciding on the location of new facilities to more easily

serve affected areas, and an efficient response after a disaster [27]. Other decisions and challenges include

evacuation planning and its uncertainties [2, 12]. Although optimization is a powerful tool to solve such

decision-making problems, it can lead to arbitrarily poor solutions if one assumes all parameters are known

in advance. There is a natural sequence of decisions in disaster relief operations, namely before and after a

disaster occurs. To account for the uncertainty in the intensity or location of the disaster, such a decision-

making problem naturally lends itself to a two-stage stochastic programming model, where decisions are

split into two stages, before and after observing the uncertainty. We are specifically interested in a two-stage

network design problem arising in natural disaster management, where the first stage is a facility location

problem, deciding where to open facilities and pre-allocate resources such as medical or food kits, and the

second stage is a fixed-charge transportation problem, routing resources from facilities to affected areas after

a disaster.

In general two-stage stochastic programs, the goal is to minimize the sum of the first stage cost and

the expected second-stage cost, where the expectation is taken over the probability distribution P of the

underlying uncertainty. Its general form can be written as

min
xxx ∈ X

ccc>xxx+EP [Q(xxx,ξξξ )] (SP)

where xxx represents the first-stage decisions of opening a facility and pre-allocating resources, ξξξ is a random

vector belonging to a support set Ξ with associated probability distribution P representing uncertain demands

of resources and/or costs resulting from a disaster, and Q(xxx,ξξξ ) is the optimal value of the second-stage

routing problem given first-stage decisions xxx and a realization of the random vector ξξξ . We also refer to

Q(xxx,ξξξ ) as the second-stage value function.
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As in many applications, the underlying distribution P is not known, and historical samples are often

used to approximate the expected value and the empirical average is minimized instead. This is known as

the Sample Average Approximation (SAA) method [33, 21]. Alternatively, a more conservative approach

is to minimize the worst-case cost with respect to the random variables, where a distribution need not be

known. This is referred to as robust optimization (RO) [4]. Although it can be shown that SAA converges to

the optimal solution of (SP) under certain conditions as the number of samples goes to infinity, given a finite

training dataset, the SAA solution can be too optimistic and lead to poor out-of-sample performance [14,

8]. In other words, SAA can overfit the data. This is especially true in applications such as natural disaster

management, where data is scarce or cannot be generated. On the other hand, robust optimization can lead

to a very conservative and high cost solution.

The great majority of the literature has been focused on solving either a stochastic program or robust

optimization model for the problem of pre-allocating and routing resources to affected areas after a disaster.

Surveys of recent work on disaster relief operations can be found in [29] and [17], where the latter is focused

on two-stage stochastic programming solutions. A case study on hurricane threats on the coastal states of

the United States along the Gulf of Mexico and the Atlantic Ocean is presented and solved in [28], where

scenarios are constructed and their probabilities estimated based on historical data. The same case study has

been used in [30, 32, 34]. In [32], a two-stage robust model is solved; in [2] a two-stage evacuation planning

model is solved, and in [12], uncertainties related to evacuation are considered in developing a robust model

to determine supply distribution.

Natural disasters occur relatively rarely, and the scarcity of data makes it difficult to reliably estimate

the underlying probability distribution of the uncertainty [30, 32], especially in developing countries where

infrastructure to collect data is limited. As a result, approaches like SAA that attempt to estimate the

probability distribution from historical data can lead to poor out-of-sample performance. It is only very

recently that attention has been drawn to using a distributionally robust optimization (DRO) paradigm. In

[34], the authors consider a two-stage DRO model under a box and polyhedral ambiguity set. In [30, 38], the

authors consider a two-stage DRO model under a moment-based ambiguity set. Close in spirit to our work

are [40] and [25], where the choice of the ambiguity set is the Wasserstein metric. Although not a natural

disaster application, the former solves a continuous chance-constrained DRO model to determine emergency

medical system locations; the model is reformulated as a MIP to handle the chance constraints. The latter

considers a DRO model with a cluster-based ambiguity set using a Wasserstein metric, where the decision
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is simplified to only picking facility locations; the model is unconstrained, with the only restriction being

the set of possible facility locations, and demand locations are random and served by the closest available

facility.

DRO permits us to be risk averse towards the empirical distribution obtained from historical data. In

two-stage DRO (TSDRO), we seek to minimize the first-stage cost and the worst-case expected value of the

second stage-cost with respect to probability distributions belonging to an ambiguity set. TSDRO problems

are of the form

min
xxx ∈ X

ccc>xxx+max
P∈P

EP [Q(xxx,ξξξ )] , (DRO)

where P is the ambiguity set.

1.1 Brief DRO Literature Review

There is a wide variety of ambiguity sets that have been studied in the literature. Ambiguity sets can be

roughly split into one of two categories: moment-based ambiguity sets and balls in the space of probability

distributions centered at some nominal distribution. In the former, the ambiguity sets include constraints on

the moments of the distribution [11, 35, 39]. Given point estimates of the moments, the ambiguity set can

include constraints such that moments match the estimates or are some distance away from the estimates to

account for the uncertainty in the latter. For example, in [13], the authors propose an ambiguity set which

constrains the mean and the second order moments to lie in an ellipsoid centered at the estimate of the

mean and in the intersection of two positive semi-definite cones, respectively. Moment-based ambiguity

sets have gained popularity for their computational benefits [14]. On the other hand, balls centered at a

nominal distribution depend on a metric defined on probability distributions. Popular metrics include the

φ -divergence [6, 26], the Kullback-Leibler divergence [10, 22], which is a special case of the φ -divergence,

and the Wasserstein metric [1, 14, 16, 23, 36].

The Wasserstein ambiguity set has recently received significant attention due to its finite-sample guar-

antees and out-of-sample performance. It has been shown that (DRO) can be reformulated as a tractable

convex program for various classes of loss functions and support sets, typically convex and continuous,

respectively [14, 16]. Esfahani and Kuhn [14] discuss finite-sample guarantees of using DRO under the

Wasserstein ambiguity set, and illustrate the benefits of DRO over SAA and robust optimization in out-of-

sample performance. Xie [37] shows conditions under which tractable reformulations of TSDRO problems
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with a convex second stage exist for zero-one uncertainties under the type-∞ Wasserstein set.

Limited work explores the case where integer variables are present in the second stage. In [41], a Benders

decomposition approach is used to solve a two-stage distributionally robust unit-commitment problem with

binary variables over a Wasserstein ball. Kim [20] extends the classical dual decomposition method to DRO

models under the Wasserstein set to solve the Lagrangian dual. In [1], an extension of the integer L-shaped

method is proposed to solve TSDRO models with binary first-stage decisions and mixed-binary second-

stage decisions under the Wasserstein set. In two-stage robust optimization, the K-adaptability algorithm

was developed to handle second-stage binary variables in [19] and second-stage mixed-integer variables

in [31]. The K-adaptability algorithm was extended to two-stage distributionally robust optimization with

moment-based ambiguity sets in [18].

The robust optimization literature is rich in tackling two-stage problems. A common approximation is

to assume a parametrized policy for the second stage, where the latter is restricted to a specific structure

[3]. Such methods tend to lead to a more tractable model, and are even optimal in certain applications [5].

Examples of such techniques are affine policies, where the second-stage variables are restricted to an affine

policy with respect to the uncertainty [5, 7].

1.2 Contribution

In this paper, we consider a two-stage distributionally robust model under a Wasserstein ambiguity set, where

we allow binary variables to be present in the second stage. While this provides much greater modeling

power, the presence of binary variables and the Wasserstein ambiguity set significantly complicates the

problem, relative to the continuous case under moment-based sets. We develop a tailored column-and-

constraint generation algorithm by leveraging the structure of a novel support set and the second-stage

problem. We summarize our contributions as follows:

· We solve a distributionally robust disaster planning model by using a richer ambiguity set which does

not require estimating moments or making any assumptions on the underlying distribution of the random

parameters. Moreover, we achieve greater modeling power via binary variables in the second stage.

· By constructing a support set and defining an underlying distance metric of the support that is tailored

to disaster management, we develop an efficient column-and-constraint generation algorithm, where we

leverage the structure of our support set and second-stage value function. We show the conditions under
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which the second-stage value function is concave with respect to a subset of the uncertainty, leading to

an efficient line search scheme to generate scenarios, and show how these results extend to the case of a

fixed-charge network flow second-stage problem.

· Although we present our work in the context of hurricane disasters for ease of exposition, we discuss how

our results and methods extend to different types of disasters, such as earthquakes, or disasters related to

military operations or disease outbreaks.

· We perform extensive computational experiments, showing the computational efficiency of our method

on synthetic instances with very large sets of scenarios, and illustrate our methods on the case study of

hurricane threats on the Gulf of Mexico states, analyzing the solutions obtained from DRO and SAA.

While previous works have considered more general uncertainties, including cost, available capacities or

edges, we limit ourselves to demand uncertainty due to the complexity introduced by binary variables in the

second stage and the Wasserstein ambiguity set, as seen in other studies in emergency planning. Indeed, [25]

solve an uncapacitated facility location model, where only the demand location is uncertain and the second-

stage decision consists in picking the closest facility opened in the first stage to serve the observed demand

location. A classical row-and-column generation algorithm is used to solve the problem. In [40]. the authors

solve a continuous chance-constrained model. Besides [25], DRO for disaster management problems has

been restricted to continuous second stages. In this paper, we consider a richer model with binary variables

present in the second stage, and focus on algorithmic design and implementation. In emergency planning,

binary variables permit us to, for example, model fixed-charge costs incurred in the second stage when

opening a link between a facility and a disaster location. Such fixed-charge costs could be associated with

clearing debris, for example. We motivate the choice of the Wasserstein ambiguity set in Section 2.

We note that our methods can be extended to other types of uncertainty, as in classical column-and-

constraint generation algorithms, but further work is required to leverage the structure of more complex

uncertainties. For instance, the second-stage value function might be jointly concave with respect to multiple

random variables.

The remainder of the paper is organized as follows. We give a formal description and discuss the benefits

of the Wasserstein ambiguity set in Section 2. In Section 3, we formally define our two-stage model and

support set. In Section 4, we study the structure of our model and support set, and present a column-and-

constraint generation (CCG) algorithm and the algorithm used to generate new scenarios. In Section 5,
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we give details on the implementation of our method and how to tackle computational challenges, leading

to an improved CCG algorithm. Finally, we present our computational experiments in Section 6 and give

conclusions in Section 7.

1.3 Notation

Vectors are printed in bold to differentiate them from scalars. Given a finite support set of scenarios Ξ with

an associated index set S , we equivalently refer to both ξ ∈ Ξ and s ∈S as scenarios. Similarly, for a set

of samples of {ξ̂ξξ
nnn
}n∈N ⊆ Ξ indexed by N ⊆S , we refer to n ∈N and ξ̂ξξ

nnn
as samples. To differentiate

between a random vector ξξξ and historical data, we denote samples by a hat as in ξ̂ξξ
nnn
. For a support set Ξ, we

define M (Ξ) to be the set of all probability distributions supported on Ξ and d(·, ·) to be a valid underlying

metric.

2 Wasserstein Ambiguity Set

The Wasserstein set is a ball in the space of probability distributions defined on the Wasserstein metric and

centered at a nominal distribution, typically an empirical distribution obtained from a set of samples. It

is desirable to have an ambiguity set that is rich enough to include the true distribution, but not too large

so as to exclude pathological ones. A discussion of shortcomings of the φ -divergence metric that are not

shared by the Wasserstein metric can be found in [16], where the former can exclude the true distribution

while including pathological ones. Moreover, when using the Kullback-Leibler divergence, for example,

the worst-case distribution can only have a support on scenarios with non-zero probability in the nominal

distribution. In other words, if the nominal distribution is the empirical distribution obtained from histor-

ical data, the worst-case distribution can only have non-zero probability for observed scenarios, thus not

protecting against unobserved scenarios. On the other hand, the Wasserstein set includes distributions that

can assign non-zero probability to any scenario. This is especially advantageous in applications such as

natural disaster management where we wish to protect ourselves against unobserved disaster scenarios. In

this sense, relative to [30, 34], which also consider DRO in disaster relief operations, our work considers

a potentially richer ambiguity set that makes no assumptions on the underlying distribution. By using the

Wasserstein ambiguity set, we circumvent the need to estimate moments of the distribution, which can be

non-trivial with limited data. Finally, we note that our DRO model is further complicated by the presence of
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binary variables in the second stage.

We assume the support set Ξ is a finite but large set of scenarios indexed by s ∈S . Given N samples

indexed by N ⊆ S , we define the empirical distribution as P̂n = 1
N ∑n∈N δ

ξ̂ξξ
nnn , where δ

ξ̂ξξ
nnn is the Dirac

distribution assigning unit mass to ξ̂ξξ
nnn
, i.e. each sample is assigned equal probability. The Wasserstein ball

of radius θ centered at PN is defined as

BW (PN ,θ) = {P ∈M (Ξ) : dW (P,PN)≤ θ},

where dW (P,PN) is the Wasserstein distance between P and PN , and corresponds to the minimization prob-

lem

min
πππ

∑
s∈S

∑
n∈N

d(ξξξ sss
, ξ̂ξξ

nnn
)πsn

s.t. ∑
n∈N

πsn = ps, s ∈S ,

∑
s∈S

πsn =
1
N
, n ∈N ,

∑
s∈S

∑
n∈N

πsn = 1,

πsn ≥ 0, s ∈S , n ∈N .

(W)

Let qn
s = Nπsn be the conditional probability of ξξξ

sss given that we have observed ξ̂ξξ
nnn

(the sampled sce-

nario). It is convenient to write (W) as

min
qqq ∑

s∈S
∑

n∈N

1
N

qn
s d(ξξξ sss

, ξ̂ξξ
nnn
)

s.t. ∑
n∈N

1
N

qn
s = ps, ∀s ∈S ,

∑
s∈S

qn
s = 1, ∀n ∈N ,

qn
s ≥ 0, s ∈S , n ∈N ,

(W’)

where {ξξξ sss}s∈S is the set of all scenarios and {ξ̂ξξ
nnn
}n∈N is the set of sampled scenarios.
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3 Model Formulation

3.1 Two-Stage Distributionally Robust Model

Given a network with nodes V , let I ⊆ V be the set of possible facility locations, let J ⊆ V be the set of

possible demand nodes, and let K be the set of commodities. In the first stage, binary variable oi is 1 if

facility i ∈ I is opened at a cost of hi, and continous variables zik represent the amount of commodity k ∈ K

pre-allocated to facility i at a unit cost of gk. Each facility i ∈ I has a known capacity of Ci, and a unit of

commodity k ∈ K requires a capacity of vk.

In scenario s ∈S of the second stage, let wi j be the fixed-charge cost incurred if link (i, j) is used, let

cki j be the per-unit cost of transportation of commodity k on (i, j), and let ds
k j be the demand of commodity

k at node j ∈ J, for any facility i ∈ I and demand node j ∈ J. Here, the random vector ξξξ
s corresponds to the

demand vector dddsss. Note that we assume cost to be deterministic. We have binary variables σi j determining

whether facility i∈ I is serving demand node j ∈ J and non-negative variables tk
i j which represent the amount

of commodity k transported from facility i to demand node j. Let u be the unmet demand and U be the

penalty per unit of unmet demand. Variables u ensure we have relatively complete recourse (the second stage

problem is feasible for any first stage decision vector and any realization of the uncertainty). Moreover, we

assume we know upper bounds Mi j on the amount that can be transported from facility i to demand node j.

For example, Mi j could be the population at demand node j ∈ J.

Finally, we include a set B in the first stage that can incorporate additional constraints such as available

budget, or the maximum number of facilities that can be opened; in the second stage, the set C can include

valid inequalities. B and C can be chosen to be empty. The TSDRO model is defined as

min
ooo,zzz ∑

i∈I

[
hioi + ∑

k∈K
gkzik

]
+ max

p∈BW (PN ,θ)
∑

s∈S
psQ(ooo,zzz,dddsss)

s.t. ∑
k∈K

vkzik ≤Cioi, ∀i ∈ I, (3.1a)

zik ≥ 0, ∀i ∈ I, ∀k ∈ K,

oi ∈ {0,1}, ∀i ∈ I,

(ooo,zzz) ∈B
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where the second stage cost Q(ooo,zzz,dddsss) is

min
σσσ , ttt,uuu ∑

i∈I
∑
j∈J

[
wi jσi j + ∑

k∈K
cki jtk

i j

]
+U ∑

j∈J
∑
k∈K

uk
j

s.t. ∑
j∈J

tk
i j ≤ zik, ∀i ∈ I, ∀k ∈ K, (3.2a)

∑
i∈I

tk
i j +uk

j ≥ ds
k j, ∀ j ∈ J, ∀k ∈ K, (3.2b)

tk
i j ≤Mi jσi j, ∀i ∈ I, ∀ j ∈ J, ∀k ∈ K, (3.2c)

tk
i j ≥ 0, ∀i ∈ I, ∀ j ∈ J, ∀k ∈ K, (3.2d)

σi j ∈ {0,1}, ∀i ∈ I, ∀ j ∈ J, (3.2e)

uk
j ≥ 0, ∀ j ∈ J, ∀k ∈ K, (3.2f)

(σσσ , ttt,uuu) ∈ C . (3.2g)

If B includes a budget constraint, then B = {(ooo,zzz) : ∑i∈I [hioi +∑k∈K gkzik]≤ b}, where b is a pre-defined

budget in the first stage. We include valid inequalities σi j ≤ oi in C for all i ∈ I and j ∈ J.

Constraint (3.1a) ensures we do not exceed the capacity of each facility i. Constraint (3.2a) ensures

we can only transport what is available from facility i, constraint (3.2b) ensures demand satisfaction with

additional variables uk
j to keep track of unmet demand, and constraint (3.2c) ensures we only use open links

(i, j). We note that the second stage problem is always feasible for all first stage decisions (ooo,zzz) and random

demand ddd.

3.2 Support Set

To construct the finite support set Ξ, we need to define a set of demand scenarios. Since the objective of

DRO is to protect the decision-maker against potentially unobserved events, constructing a set of scenarios

using only historical data is undesirable, especially when data is limited. On the other hand, constructing an

overly complicated support set could lead to unrealistic disaster scenarios. To this end, we define a set of

scenarios such that they are descriptive of the disaster, and lead to a manageable support set. Constructing

such a support set has modeling and algorithmic benefits as we will show.

We define a random vector using two sets of components: 1) One set of components represent the

geographical characteristics of the disaster, determining which nodes are affected, and 2) a component
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determining the intensity of the disaster. More specifically, we redefine our random vector ξξξ to be comprised

of four components: the landfall of the disaster, the radius of impact, the path of the disaster, and the fraction

of the population that is affected at the landfall node. Here, the first three components determine which nodes

are affected by the disaster, and the last component is a measure of the intensity of the disaster, determining

demand at the landfall; in every scenario, we assume there is exactly one landfall. Conditioned on the

demand at the landfall node, we assume that the demands at the remaining affected nodes are deterministic,

where the fraction of the population affected decreases the farther the node is from the landfall.

Let L be the set of landfalls, R be the set of radii of impact, A be the set of paths represented by angles,

and let F be the set of possible fractions that can affect a population (i.e. demand). A scenario is constructed

in a hierarchical fashion, where we first observe a two-dimensional vector ξξξ `̀̀ representing the longitude and

latitude of the landfall node, followed by a radius of impact ξr ∈ R around the landfall. Although ξξξ `̀̀ is a

vector of the landfall nodes’s coordinates, we shall mostly refer to ξξξ `̀̀ as a node in J for simplicity. The

angle ξa ∈ A determines the portion of nodes within the radius ξr which are affected by the disaster. ξa

can, for example, represent the slice of the circle that is affected. Finally, we observe the fraction of the

population affected ξ f ∈ F at the landfall node, which in turn determines the demand at the other affected

nodes. More specifically, let J(ξξξ `̀̀,ξr,ξa) = {ξξξ `̀̀, j1, j2, ...} ⊆ J be the set of affected nodes as determined by

the landfall ξξξ `̀̀ , the radius of impact ξr and angle ξa, and assume nodes are in increasing order of distance

from the landfall. Note that the landfall ξξξ `̀̀ is included in the set. We define functions Πk
j : L×R×A×F →

[0,1] which map the random vector ξξξ to the fraction of the population needing commodity k ∈ K at nodes

j ∈ J(ξξξ `̀̀,ξr,ξa), such that Πk
ξξξ `̀̀
(ξξξ `̀̀,ξr,ξa,ξ f ) ≥ Πk

j1(ξξξ `̀̀,ξr,ξa,ξ f ) ≥ Πk
j2(ξξξ `̀̀,ξr,ξa,ξ f ) ≥ . . . for all k. We

allow the functions Πk
j to be constant for all or any subset of the first three components. The design of the

mappings is a modeling decision. We give more specific details in Section 4.3.

We then have ξξξ = (ξξξ `̀̀,ξr,ξa,ξ f ) as a random vector. Given a scenario ξξξ , we implicitly have an asso-

ciated demand vector ddd that is fed to model (3.2), and thus, only ddd appears in the constraints. We give an

example of two scenarios with the same landfall and radius of impact but with different angles in Figure 1.

This network was used in a case study of hurricane threats in the Gulf of Mexico states in [28] and is the

case study on which we illustrate our method in Section 6.3.

In TSDRO under the Wasserstein ambiguity set, the model hedges against scenarios by transporting

weights from the scenarios in the sample set to other scenarios, possibly not in the sample set (i.e. un-

observed scenarios) at a cost proportional to the distance d(ξ̂ξξ ,ξξξ ), subject to a budget θ , the radius of the
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Figure 1: Example of two different angles ξa, where the landfall is New Orleans (node 12) and the radius is
320 km. Nodes filled with both colors are nodes affected in both scenarios.

Wasserstein ball. Our support set permits us to better measure dissimilarities between two scenarios by

defining a metric tailored to the application in the Wasserstein ambiguity set. We define the distance be-

tween two scenarios as the sum of squared deviations between the components of ξξξ :

d(ξξξ 111
,ξξξ

222
) = ||ξξξ 111

`̀̀ −ξξξ
222
`̀̀ ||2 +(ξ 1

r −ξ
2
r )

2 +(ξ 1
a −ξ

2
a )

2 +(ξ 1
f −ξ

2
f )

2 (3.3)

Recall ξξξ `̀̀ is a two-dimensional vector representation of the coordinates, while the other components are

scalars. Note that by using the metric defined in (3.3), the model considers disaster scenarios hitting land-

falls that are close to each other or having similar characteristics (radius, path and intensity) to be similar

scenarios. If we simply use the `2-norm between demand vectors, the relative distance between scenarios

can be misleading, as certain underlying characteristics of the disasters such as location are lost.

4 Column and Constraint Generation Algorithm

In this section, we present our column and constraint generation algorithm (CCG). We first present a known

extensive reformulation of (3.1), then describe how we leverage the structure of our support set and second

stage value function.
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4.1 Extensive Reformulation

To simplify notation, we concatenate all first stage variables under the vector xxx, and all second stage variables

under the vector yyy. Let X be the feasible region of the first stage and let Y (xxx,ξξξ ) be the feasible region of

the second stage given xxx and random vector ξξξ . More specifically, we work with (DRO), where Q(xxx,ξξξ ) =

minyyy
{

qqq>yyy : yyy ∈ Y (xxx,ξξξ )
}

.

The following theorem presents a known extensive reformulation of (DRO).

Theorem 1. Problem (3.1) is equivalent to

min ccc>xxx+θλ +
1
N ∑

n∈N
αn

s.t. αn ≥ qqq>yyysss−λ d(ξξξ sss
, ξ̂ξξ

nnn
), s ∈S ,n ∈N ,

yyysss ∈ Y (xxx,ξξξ sss
), s ∈S ,

xxx ∈ X ,

λ ≥ 0

(ER)

Proof. See Appendix A.1

In the reformulated inner maximization problem of (DRO) (see Appendix A.1), the conditional probabil-

ities qn
s can be interpreted as the hedging strategy, where we are moving weight from the sampled scenario

ξ̂ξξ
nnn

to scenario ξξξ
sss, at a cost of 1

N d(ξξξ sss
, ξ̂ξξ

nnn
), and the total weight moved from sample ξ̂ξξ

nnn
to all scenarios

{ξξξ sss}s∈S has to equal one.

Due to the hierarchical nature of the scenarios, there is an obvious ordering of the scenarios with respect

to the second-stage cost. For example, for the same landfall and direction, increasing the radius and/or

intensity at the landfall leads to a greater second stage cost. We can reduce the number of scenarios to

consider in the model and get an equivalent problem as follows. We define the following two sets for each

sample n:

Ξ̄n =
{

ξξξ ∈ Ξ : (ξ f < ξ̂
n
f , ξr < ξ̂

n
r ) or (ξ f = ξ̂

n
f , ξr < ξ̂

n
r ) or (ξ f < ξ̂

n
f , ξr = ξ̂

n
r )
}
,

Ξn = Ξ\ Ξ̄n.

The sets Ξn exclude scenarios where both intensity and radius are strictly smaller than the sample in question,
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and scenarios where one of the two is strictly smaller and the other is the same. For each Ξn, we define an

associated index set Sn and define the set of all scenarios as SN =
⋃

n∈N Sn.

Theorem 2. (ER) is equivalent to

min ccc>xxx+θλ +
1
N ∑

n∈N
αn

s.t. αn ≥ qqq>yyysss−λ d(ξξξ sss
, ξ̂ξξ

nnn
), s ∈Sn, n ∈N , (c1),

yyysss ∈ Y (xxx,ξξξ sss
), s ∈SN , (c2),

xxx ∈ X ,

λ ≥ 0.

(ER’)

Proof. See Appendix A.2

The sets Ξn exclude dominated scenarios which need not be included in the model. For a sample ξ̂ξξ
nnn
,

each scenario ξξξ ∈ Ξ̄n has a corresponding scenario ξξξ
′′′ ∈ Ξn which dominates ξξξ , where d(ξ̂ξξ ,ξξξ ′′′) < d(ξ̂ξξ ,ξξξ )

and Q(xxx,ξξξ ′′′) ≥ Q(xxx,ξξξ ). In other words, moving weight to ξξξ
′′′ would lead to a greater cost in the inner

maximization of (3.1) while using less of the available budget θ in the Wasserstein ambiguity set. Note that

the reduction in the number of scenarios included in the model directly depends on the sample set.

4.2 Column & Constraint Generation

Since the number of scenarios |SN | can be very large, solving (ER’) is computationally infeasible. As in

typical CCG algorithms, we start with a subset of scenarios Ŝn ⊆Sn for each sample n, solve a restricted

model, which we denote as (RER), and record optimal solutions x̂xx, α̂αα and λ̂ . For each sample n ∈N , we

then search for a new scenario s∈Sn\Ŝn such that α̂n <Q(x̂xx,ξξξ sss
)− λ̂ d(ξξξ sss

, ξ̂ξξ
nnn
), where Q(x̂xx,ξξξ sss

) is obtained

by solving the second stage problem given first stage decision x̂xx and random vector ξξξ
sss. Note that we can

generate multiple scenarios per iteration. We repeat the process until we can no longer find such a scenario

for any sample. We refer to the process of generating new scenarios as the separation problem. With a slight

abuse of language, for some sample n, we say that a scenario s violates (c1) if constraint (c1) is violated at

scenario s.

We summarize a vanilla CCG algorithm in Algorithm 1. The function SEPARATION(ξ̂ξξ
nnn
, x̂xx, α̂n, λ̂) returns

a set Vn ∈Sn \ Ŝn of new scenarios which violate αn ≥ Q(x̂xx,ξξξ sss
)−λ d(ξξξ sss

, ξ̂ξξ
nnn
) for a sample n and optimal
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solutions x̂xx, α̂n and λ̂ of (RER).

Algorithm 1 CCG

1: Initialize Ŝn for each n ∈N
2: while ∪n∈N Vn 6= /0 do
3: Solve (RER) and record optimal solutions (x̂xx, α̂αα, λ̂ ).
4: for each n ∈N do
5: Vn← SEPARATION(ξ̂ξξ

nnn
, x̂xx, α̂n, λ̂)

6: Ŝn← Ŝn∪Vn

7: end for
8: end while

4.3 Separation Problem

There are two main difficulties that arise in Algorithm 1. The first, more significant one, is in the separation

step, where one might have to enumerate all scenarios in Sn \ Ŝn, which is a very large set. Recall that

for each scenario, we must solve a fixed-charge transportation problem (3.2). While today’s commercial

solvers can typically efficiently solve such models, the difficulty lies in repeatedly solving (3.2) a large

number of times, and having to do it after each solve of (RER), the restricted model of (ER’). The second

main difficulty is in solving (RER) after having generated many scenarios. After each iteration, the number

of scenarios generated, if not controlled, can be large. Consider the case where each sample generates one

new scenario. For each scenario s generated, we add the associated constraint (c1), a new set of variables ys,

and a set of second stage constraints (c2). Depending on the number of samples, this can lead to a large and

difficult master problem.

Given optimal solutions x̂xx and λ̂ of (RER), the separation problem consists of solving the following

problem for each sample n:

max
ξξξ

zn(ξξξ ) := Q(x̂xx,ξξξ )− λ̂ d(ξξξ , ξ̂ξξ
nnn
)

s.t. ξξξ ∈ Ξ.

(SPn)

Let ξξξ
sss∗ be the optimal solution and let z∗n be the optimal value of (SPn). If z∗n > α̂n, then we generate new

scenario s∗; otherwise, we conclude none of the scenarios violate (c1) for sample n.

One simple greedy approach is to enumerate the scenarios, and stop at the first one that violates con-

straint (c1). We repeat this for each sample n. Such a separation method generally leads to quickly generating

new scenarios, especially in the early stages of the algorithm, but typically leads to a greater number of outer
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iterations (i.e. master solves). Moreover, as the algorithm progresses, we enumerate more and more scenar-

ios before finding one which violates (c1), and in the worst case, could end up enumerating all scenarios for

some of the samples. Alternatively, we can solve (SPn) by enumerating all scenarios and pick the scenario

with the greatest objective zn(ξξξ ).

We instead leverage the structure of our support set Ξ and the optimal value of the second stage Q(xxx,ξξξ )

to solve (SPn). Recall that J(ξξξ `̀̀,ξr,ξa) is the set of affected nodes determined by the landfall ξξξ `̀̀ , radius of

impact ξr and angle ξa, including the landfall ξξξ `̀̀ . We make the following two assumptions:

Assumption 1. The functions Πk
j(ξξξ `̀̀,ξr,ξa,ξ f ) : L× R× A× F → [0,1] determining the fraction of the

population needing commodity k at nodes j ∈ J(ξξξ `̀̀,ξr,ξa) are concave in ξ f for each landfall ξξξ `̀̀ ∈ L,

radius of impact ξr ∈ R, and angle ξa ∈ A.

Assumption 2. A facility at node i ∈ I has a limit ki on the number of nodes it can serve, but is able to

satisfy any amount of demand at nodes it is serving.

Assumption 1 ensures we have well-behaved mappings Πk
j. An example of a function satisfying As-

sumption 1 is the piece-wise linear function Πk
j(ξξξ `̀̀,ξr,ξa,ξ f ) = min{aξ f , ξ̄ f j} which is linear in ξ f with

upper bounds ξ̄ f j on each demand node j, where a ≤ 1 is a pre-determined parameter. The upper bounds

might depend on ξξξ `̀̀ , ξr, ξa and k ∈ K, but we drop this dependence in ξ̄ f j to simplify notation. Since the

intensity of the disaster decreases as we move farther from ξξξ `̀̀ , upper bounds ξ̄ f j also decrease the farther j

is from ξξξ `̀̀ .

Under Assumption 2, we no longer pre-allocate resources in the first stage and thus, variables zik are

removed from the model. The upper bounds ki can either be a pre-defined parameter, or a first stage decision

replacing zik. Variables ki can be interpreted as the size of the facility built at node i ∈ I. In the case where

ki is a pre-determined parameter, (3.1) becomes:

min
ooo ∑

i∈I
hioi + max

p∈BW (PN ,θ)
∑

s∈S
psQ(ooo,ξξξ sss

)

s.t. oi ∈ {0,1}, ∀i ∈ I,

ooo ∈B

(4.1)
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where the second stage cost Q(ooo,ξξξ sss
) is

min
σσσ , ttt,uuu ∑

i∈I
∑
j∈J

[
wi jσi j + ∑

k∈K
cki jtk

i j

]
+U ∑

j∈J
∑
k∈K

uk
j

s.t. ∑
j∈J

σi j ≤ ki, ∀i ∈ I, (4.2a)

σi j ≤ oi ∀i ∈ I, ∀ j ∈ J, (4.2b)

(3.2b)− (3.2g)

Constraint (4.2a) ensures each facility i ∈ I only serves at most ki demand nodes j ∈ J and constraint (4.2b)

ensures a link (i, j) can only be used if facility i is open. Note that if a demand node cannot be served, the

unsatisfied demand is still penalized by U .

Assumptions 1 and 2 are key to exploiting the structure of the second stage optimal cost Q(xxx,ξξξ ) and

lead to the following results.

Theorem 3. Under Assumptions 1 and 2, for any first stage decision vector xxx, Q(xxx,ξξξ ) is concave with

respect to ξ f for a fixed landfall ξξξ `̀̀ , radius of impact ξr and angle ξa.

Corollary 1. Under Assumptions 1 and 2, for any first stage decision vector xxx and λ ≥ 0, zn(ξξξ ) is concave

with respect to ξ f for a fixed landfall ξξξ `̀̀ , radius of impact ξr and angle ξa.

Proof. See Appendix A.3

Theorem 3 and its corollary motivate performing a line search on ξ f . Since F is a discrete set, we

perform a Fibonacci search on F , which is the discrete version of a golden-section line search. More

specifically, we enumerate and fix ξξξ `̀̀ , ξr and ξa, and solve maxξ f∈F f (ξ f ) using a Fibonacci search, where

f (ξ f ) is the objective of the separation problem zn(ξ ) as a function of ξ f with ξξξ `̀̀ , ξr and ξa fixed. At

each step of the Fibonacci search, we compute f (ξ f ) by solving the second stage problem Q(xxx,ξξξ ). This

separation scheme, which we refer to as SEPARATION-FIB
(

ξ̂ξξ
nnn
, x̂xx, α̂n, λ̂

)
, is described in Appendix C.2.

The Fibonacci search FIBONACCI
(

F,ξξξ `̀̀,ξr,ξa, ξ̂ξξ
nnn)

takes as arguments the set of fractions F , the values of

the fixed components of ξξξ and the sample ξ̂ξξ
nnn
. Details on the Fibonacci search can be found in [15]. We

detail our implementation of the Fibonacci search for self-containment in Appendix C.1.

Remark. FIBONACCI terminates in O (log |F |) steps [15]. Thus, to solve (SPn), the second stage problem
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is solved O (|L|× |R|× |A|× log |F |) times, as opposed to O (|L|× |R|× |A|× |F |) times if enumerating all

scenarios.

Since F is essentially the demand component of our random vector, we expect it to have the highest

cardinality compared to L, R, and A. In fact, since two-stage DRO under the Wasserstein set aims to protect

the decision-maker against unobserved scenarios, a finer discretization of F might be desired. By using

SEPARATION-FIB, the separation step scales logarithmically in the size of F .

If we wish to solve the original model (3.1) when Assumption 2 does not hold, SEPARATION-FIB is

not guaranteed to return an optimal solution to (SPn). However, we observe in our experiments that zn(ξξξ )

is still concave with respect to ξ f for a fixed landfall, radius and angle in the vast majority of cases, and

in the few cases where it is not concave, the solution is optimal or close to optimal. Thus, we can perform

SEPARATION-FIB as an efficient heuristic. To ensure an exact method, we can perform a full enumeration

to solve (SPn) once no scenarios are generated by the heuristic; see Section 6 for more details.

4.4 Extensions

Our results can be extended to the case where the second-stage is a fixed-charge network flow problem; we

provide details in Appendix B. Moreover, our model and methods can be extended to other types of disasters

that can be described via “location” components (in our case, the landfall, radius of impact and path of the

hurricane) and an intensity component, as long as it is practically reasonable to assume there is only demand

in isolated regions of the network, which can be determined by the intensity of the disaster via an appropriate

mapping Π as described in Section 3.2. Our support set is flexible in that it can be modified accordingly to

account for different types of disasters such as earthquakes, wildfires, floods, biological or military disasters.

For example, in the case of earthquakes, we can drop the path component and only consider landfall, radius

of impact and intensity. Moreover, commodities can also represent equipment or people to clear debris or

repair damages to essential nodes, links, or infrastructure such as electricity or water [27].

In certain applications, we might want to consider multiple landfalls. For example, consider a military

application where decision-makers wish to protect themselves against attacks that can occur in multiple

locations. Alternatively, consider the problem of planning for a response to disease outbreaks which can

occur at the same time in different locations of the network. To consider multiple landfalls, our results (with

a slight modification to Theorem 2) remain valid if in any scenario involving more than one landfall, there
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can never be overlap in the affected nodes. In other words, given that each landfall, radius and angle result

in a set of affected nodes, the intersection of these sets must be empty across all scenarios. Consider the case

where there can be up to two landfalls. There would then be intensities ξ f1 and ξ f2 associated with landfalls

ξξξ `1
and ξξξ `1

, respectively. Then zn(ξξξ ) is jointly concave with respect to ξ f1 and ξ f2 . SEPARATION-FIB

would be modified to enumerate over (ξξξ `1
,ξr1 ,ξa1 ,ξξξ `2

,ξr2 ,ξa2) ∈ L×R×A×L×R×A instead. A more

sophisticated joint search over ξ f1 and ξ f2 would be required, however.

5 Algorithm Implementation

In this section, we focus on the implementation and practical details of the algorithm to make it computa-

tionally efficient.

5.1 Solving RER

We have so far only discussed how to efficiently solve the separation problem, but have not tackled the re-

stricted model (RER), which might become difficult to solve as the algorithm progresses and as we generate

many scenarios, especially for larger numbers of samples. First, to get a tighter formulation, we include

valid inequalities σi j ≤ oi in C in the second stage model (3.2) as mentioned in Section 3 (note that this

constraint is required if solving (4.1)). Moreover, we set upper bounds Mi j in constraint (3.2c) to be the

highest demand that can possibly occur in any scenario at demand node j, i.e. Mi j = maxξ f∈F ξ f Pj, where

Pj is the population at node j.

To control the size of (RER), we limit the number of generated scenarios in an iteration. The limit can

be dynamically adjusted as the algorithm progresses. There are many possible variations, such as generating

multiple scenarios for one sample until we hit the limit, or setting a limit for each sample in addition to

a limit across all samples. For simplicity, we ensure only one scenario is generated per sample, and only

impose a limit on the total number of scenarios generated across all samples, which we keep constant

throughout the algorithm. Finally, we observe in our experiments that the solver spends the vast majority of

the time proving optimality, and seems to quickly find good, feasible integer solutions. To this end, we also

dynamically adjust the MIP gap tolerance when solving (RER), where we start with a loose tolerance and

tighten it as the algorithm progresses.
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5.2 Separation Step Implementation

In the separation problem, when searching for a scenario that violates constraint (c1) for some sample n,

we solve the second-stage problem to get the optimal value Q(x̂xx,ξξξ ) for a first stage vector x̂xx and candidate

scenario ξξξ . Once the second stage is solved at the candidate scenario ξξξ , we do not need to re-compute

Q(x̂xx,ξξξ ) during the search for other samples. Thus, if we solve the separation problem by enumerating all

scenarios at the first sample, we can perform a quick check for scenarios that violate (c1) via an enumeration

for the remaining samples. We are still enumerating all scenarios but only perform simple operations for

each scenario instead of solving the second stage MIP, which can be done very fast. This leads to the

question of how beneficial it is to use Fibonacci search in the separation step. For one fixed sample, using

Fibonacci search does indeed lead to far fewer scenarios enumerated. However, it is possible that for the next

sample, we cannot always take advantage of the fact that the second stage problem has been solved during

the search at the previous sample. In other words, depending on the scenarios visited during the Fibonacci

search for one sample and fixed components ξξξ `̀̀ , ξr and ξa, we might still have to solve the second stage

model for unvisited scenarios during the search at another sample at the same fixed components. As the

number of samples increases, it becomes more likely that this event occurs, especially for larger sets F . We

observe in our experiments that although SEPARATION-FIB can never perform worse than full enumeration,

the computational benefits can be further improved.

We empirically observe that for fixed ξξξ `̀̀ , ξr and ξa, the maxima of f (ξ f ) can be close to each other

across different samples, if not the same in many instances. This motivates the following procedure: we

perform SEPARATION-FIB for the first sample in the list, then simply consider scenarios for which the

second-stage model has been solved for the remaining samples, where we return the scenario at which zn(ξ )

is greatest. In other words, we are assuming that for the same fixed components ξξξ `̀̀ , ξr and ξa, the maximum

always occurs at the same ξ f across the samples. In the next iteration, we perform SEPARATION-FIB for

the second sample, and so on. This heuristic to solving (SPn) leads to significant computational benefits as

we see in Section 6.2. Once no scenarios can be generated, we still have to perform a final check where we

perform SEPARATION-FIB for each sample to ensure an exact method. This leads to our final column and

constraint generation algorithm, which we call CCG-FIB.

We formalize and present CCG-FIB in Algorithm 2. In this context, the set of samples N is interpreted

as an array which can be indexed. We refer to the scenarios at which the second-stage model has been solved
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at the current first stage decision x̂xx as Ξ̂ (i.e. during SEPARATION-FIB), and the process of enumerating them

as LAZY-ENUMERATION
(

Ξ̂, ξ̂ξξ
nnn
, α̂n, λ̂

)
. In general, this function can return a set of scenarios Vn⊆ Ξ̂ violating

(c1), but we limit it to returning at most one scenario whose objective value zn(ξξξ ) is the greatest. Note that

LAZY-ENUMERATION simply computes zn(ξξξ ) for all ξξξ ∈ Ξ̂ without resolving Q(x̂xx,ξξξ ). We keep track of

a boolean final check, which is initialized to False. When False, we perform SEPARATION-FIB for

one sample, and LAZY-ENUMERATION for the remaining samples. Thus, during this phase, we break out of

the while-loop (line 9) at the end of the first iteration and jump to line 13, where we enumerate scenarios

ξξξ ∈ Ξ̂, i.e. scenarios for which the second-stage problem has been solved at the current iteration. We

then increment the sample index i in line 17, where the index loops back to 0 after reaching the end of the

array. This ensures we rotate through the samples for which we fully solve maxξξξ zn(ξξξ ). Once no scenarios

are generated, final check becomes True (line 22). During this phase, we perform SEPARATION-FIB

for each sample, and reset the sample index i to 0 in line 19. If no scenarios are generated, we reset

final check to False (line 24) and the algorithm exits the outer while-loop to terminate.

Finally, we note that we have omitted the changes to solving (RER) in Algorithm 2 for ease of exposition,

specifically the limit on the number of scenarios generated and the adjustement of the MIP tolerance of

(RER). By definition of SEPARATION-FIB and LAZY-ENUMERATION, we have that |Vn|= 1, i.e. we generate

at most one scenario per sample, and given a limit on the total number of scenarios that can be generated, we

either exit the inner while-loop (5-11) or the for-loop in lines 13-16 once the number of generated scenarios

hits the limit. Moreover, given an array of MIP tolerances, we decrease the tolerance when solving (RER)

once no scenarios can be generated during the phase where final check is false. In other words, instead

of setting final check to True in line 22, we decrease the MIP tolerance and restart the process. Once

we get to the lowest (tightest) desired tolerance, we proceed as normal where we enter the final check phase

once no scenarios can be generated during the first phase.

6 Computational Experiments

We perform computational experiments to illustrate our method. We perform a series of experiments on

randomly generated networks to test the computational benefits of our proposed method and perform exper-

iments on a case study of hurricane threats on the coastal states of the United States along the Gulf of Mexico

and the Atlantic Ocean presented in [28] and further studied in [30], analyzing the solutions obtained by the
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Algorithm 2 CCG-FIB

1: Initialize Ŝn for each n ∈N
2: i← 0, final check← False
3: while ∪n∈N Vn 6= /0 or final check do
4: Solve (RER) and record optimal solutions (x̂, α̂, λ̂ )
5: while i≤ |N |−1 do
6: n←Ni

7: Vn← SEPARATION-FIB(ξ̂ξξ
nnn
, x̂xx, α̂n, λ̂)

8: Ŝn← Ŝn∪Vn

9: if not final check then break

10: i← i+1
11: end while
12: if not final check then
13: for each n′ ∈N , n′ 6= n do

14: Vn′ ← LAZY-ENUMERATION

(
Ξ̂, ξ̂ξξ

n′
, α̂n′ , λ̂

)
15: Ŝn′ ← Ŝn′ ∪Vn′

16: end for
17: i← i+1 (mod |N |)
18: else
19: i← 0
20: end if
21: if ∪n∈N Vn = /0 & not final check then . Start final check
22: final check← True

23: else if ∪n∈N Vn = /0 & final check then . Algorithm terminates
24: final check← False

25: end if
26: end while

DRO model under the Wasserstein radius and by SAA. All experiments were performed on compute nodes

running Intel Xeon Gold 6226 “Cascade Lake” at 2.7 Ghz. We limit our resources to 8 GB of RAM and 5

processors. We use GUROBI 9.1.0 as the solver for all models.

We first give a brief description of the data and other details that are common to the synthetic instances

and the case study. We then discuss how we construct the synthetic instances and results, before tackling

the case study.

6.1 Data

6.1.1 Commodity data

We consider only one commodity for simplicity, which can be interpreted as a bundle containing a medical

kit, food and water. To calculate the per-unit cost of the bundle, we take the sum of the cost of each
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commodity adjusted to the needs of one person. More specifically, as in [28], we assume the average person

needs three meals and two snacks per day, and one gallon of water per day. We further assume that a disaster

lasts five days. Data related to water, food, and medical kits from [28] is given in Table D.1. Thus, 1,000

gallons of water costing $647.7 to purchase and $0.3 per unit of distance to transport translates to a cost of

approximately $3.24 to purchase and $0.0015 to transport per person. Similarly, meal kits cost $135.5 to

purchase and $0.001 per unit of distance to transport per person, and a medical kit costs $35 to purchase and

$1.45e-4 to transport. We then have that a bundle costs about $173.74 to purchase and $0.0026 per unit of

distance to transport.

6.1.2 Facility data

In both the synthetic instances and the case study, we assume we can open one type of facility of capacity

408,200 ft3 at a cost of $188,400 as in [30] (equivalent to the medium facility in [28]). Following a similar

process as with the costs, a bundle occupies about 3.1 ft3. Thus, we assume the facility has a capacity of

about 131,837, and the bundle occupies a space of one unit.

6.1.3 Support Set

The construction of our support set is heavily influenced by the Hurricane Database (HURDAT) provided by

the National Oceanic and Atmospheric Administration (NOAA) [24], which logs the paths and intensities of

more than 150 years of hurricanes, as well as by the constructed scenarios in [28]. A visualization tool of the

HURDAT data is available at https://coast.noaa.gov/hurricanes. Note that although the network of nodes is

randomly generated in the synthetic instances, we assume the shores are to the east and south, representing

the Atlantic Ocean and the Gulf of Mexico, respectively, so that the following applies to both the synthetic

instances and the case study.

We assume there can only be one landfall node ξξξ `̀̀ per scenario, and that landfalls are close to shore.

The landfall determines the remaining affected nodes depending on the radius of impact and angle (or path)

of the hurricane. We define the set of radii as R = {ξr = 100i, i = 0,1, . . . ,5} in kilometers and the set of

angles as A = {0, −π

4 , −π

2 , π

4 ,
π

2 } in radians. Depending on the network, the set of nodes hit by a disaster can

be the same for two different radii, leading to the same scenario. We exclude redundant scenarios from our

support.

22

https://coast.noaa.gov/hurricanes


We observe in the HURDAT data that hurricanes hitting the coastal states of the United States along the

Gulf of Mexico and the Atlantic Ocean tend to take a curved path, generally starting from the south-east and

curving towards the north-east and decreasing in intensity as the hurricane advances in-land. Thus, given a

landfall and radius of impact, we assume only nodes within the northern half-circle are affected, where the

half-circle is rotated by the angle ξa. For example, if ξ = 0, then the base of the half-circle is horizontal,

and nodes that are north of the base and within the half-circle are affected. A positive angle rotates the

base of the half-circle counter-clockwise and a negative angle rotates it clockwise. In the example given in

Figure 1, Scenario 1 is obtained with ξa =
π

4 and Scenario 2 with ξa =
−π

4 . Moreover, we choose functions

Π j(ξξξ `̀̀,ξr,ξa,ξ f ) = min{ξ f , ξ̄ f j} for all j, ξξξ `̀̀ , ξr and ξa. Upper bounds ξ̄ f j (and thus the functions Π j) are

independent of ξr and only depend on ξξξ `̀̀ and ξa. Given a landfall and angle, we determine the upper bound

ξ̄ f j as follows. We look at all the nodes that can be affected at the maximum radius. If node j is the ith

furthest affected node from the landfall, then ξ̄ f j is set to the ith largest value in F , or to the smallest value

in F if i > |F |. This is to also satisfy the fact that the intensity of the hurricane decreases as it travels in-land

(i.e. the fraction of the population affected decreases as we move farther away from the landfall) and to

satisfy Assumption 1.

Although we do not know the true distribution in practice, we construct a probability distribution asso-

ciated with each scenario to simulate and test our methods. We use this distribution to get the sample set

N and simulate the out-of-sample performance. It is unlikely that the components of our random vector

are truly independent, but we assume independence for simplicity as in [30]. As such, the probability of a

scenario (ξξξ `̀̀,ξr,ξa,ξ f ) is the product of the probabilities of each component. For the radii, we assume a

skew-normal distribution with the median of R, the standard deviation of R and -1 as parameter values for

the location, scale and shape, respectively. This is a normal distribution that is slightly left skewed. For the

angles, we assume P [ξa = 0] = 4
15 , P

[
ξa =

−π

4

]
= 5

15 , P
[
ξa =

−π

2

]
= 3

15 , P
[
ξa =

π

4

]
= 2

15 , P
[
ξa =

π

2

]
= 1

15 .

The idea is that it is more likely for a hurricane to be pathing east (negative angles have a higher probability)

and more likely to be pathing north than at a very steep angle (P [ξa = 0] > P
[
ξa =

−π

2

]
). We constructed

these probabilities based on observations of the HURDAT data.

Finally, the probability distribution of ξ f is determined based on the number of hurricanes by category

that have hit the coastal states between 1851 and 2004. Hurricanes are classified in categories from 1 to

5, with a higher category indicating a more major hurricane. These categories are based on the SAFFIR-

SIMPSON scale, which is a rating determined by the hurricane’s wind speeds. For example, Hurricane
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Katrina was a category 5 hurricane which hit the New Orleans area in 2005. According to [28] and [9], the

number of hurricanes that have hit the coastal states between 1851 and 2004 at each category from 1 to 5 is

113, 74, 76, 18 and 3, respectively. Given a set F of possible values for ξ f , we order F in increasing order,

assign equal intervals of F to each category and assign the same weight to each value in the interval based

on the number of historical hurricanes at each category. For example, if F = {0.1,0.2,0.3, . . . ,1}, then

ξ f ∈ {0.1, . . . ,0.2} would be considered category 1 hurricanes and each value in the interval is assigned a

weight of 113; ξ f ∈ [0.21,0.4] would be category 2 hurricanes and each value is assigned a weight of 74,

and so on. We then normalize so that the probabilities sum to one.

We give details on the probability distribution of ξξξ `̀̀ , the landfall node, in the following sections, as it is

different for the synthetic instances and the case study.

6.2 Synthetic Instances

6.2.1 Instance Generation

To create the synthetic instances, we randomly generate a set of nodes on a grid by uniformly picking x

and y coordinates between 0 and 20. To avoid generating nodes that are too close to each other, we set a

minimum threshold such that any two nodes are at least a Euclidean distance of 2 away from each other. We

assume the coast is on the right and bottom sides of the grid as in the case study, and assume nodes within

a threshold distance of the coast can be a potential landfall node. An example of a randomly generated

network can be found in Appendix D.4. We then generate random populations for each node, where we

sample from a uniform distribution on the interval [1e5,2e6].

Recall that we use a cost of $173.74 to purchase and $0.0026 per unit of distance to transport a unit

of commodity. Thus, we set the per-unit cost of transportation from facility i to demand node j to be

ci j = 0.0026di j, where di j is the `2-norm between node i and j in our grid, i 6= j. Since a node can be

both a potential facility and demand node, we assume a facility serving its own node incurs the cheapest

transportation cost out of all facilities; i.e. it always makes sense for facilities to serve its own node if there

is demand. Note that we scale the distances up so that the order of magnitude of the distances is similar to

that of the case study. We do this so that the balance between the first and second stage costs is reasonable

and comparable to the case study. We set the fixed-charge cost to be a multiple of the cost of transportation,

so that wi j = φci j. In our experiments, we set φ = 5000 and the penalty for unmet demand U = 10.
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Finally, we construct a probability distribution for the landfall nodes that is inversely proportional to the

sum of distances to the closest eastern and southern points, such that the closer a node is to the coast, the

higher the likelihood of it being a landfall.

6.2.2 Experiment Setup

We perform four sets of experiments for different combinations of sample set sizes N and radii θ of the

Wasserstein set, where we run tests for a sample size of 10 and 50, and a radius of 1e-2 and 1e-3 for the

Wasserstein ball. For each set of experiments, we test how our methods perform as the discretization of F

becomes finer, where we pick 15, 30, 50 and 75 equi-distant values between 0.001 and 0.3. In these sets of

experiments, we assume Assumptions 1 and 2 hold, and are thus solving (4.1). We assume B to be empty.

In the second stage, we fix the limit on the number of demand nodes that a facility can serve ki to 3 for all

facilities i. We keep the Gurobi parameters to their default values with the exception of the relative MIPGap

and Threads parameter. We start with a loose tolerance of 0.12 for the relative MIP gap to solve (RER) and

adjust it to 0.01 as detailed in Section 5. We set the limit on the number of scenarios generated per iteration

to 5 when N = 10 and to 10 when N = 50. To reduce the computational resources used, we limit the number

of threads that Gurobi can use to 1 when the tolerance is 0.12, and increase it to 5 when the tolerance is 0.01.

Finally, we set a time limit of 8 hours for all experiments.

We randomly generate networks of 30 nodes, where we randomly pick a set I of 15 potential facility

locations; every node in the network is a potential demand node. We compare our method to two classical

CCG algorithms, where the separation step is a simple enumeration process. In one case we stop at the

first scenario violating constraint (c1), and in the other we perform a full enumeration to pick the scenario

ξξξ which maximizes zn(ξξξ ) for sample n ∈ N . We refer to the former as CCG-ENUM-0 and the latter

as CCG-ENUM-1. Note that both algorithms are the same as CCG-FIB but only differ in the separation

function called in line 7 of CCG-FIB. Thus, for both CCG-ENUM-0 and CCG-ENUM-1, after performing

an enumeration of scenarios for sample n where we are solving the second stage problem, we perform

LAZY-ENUMERATION for samples n′ 6= n. Moreover, we are still applying Theorem 2 but do not leverage the

structure of the second stage value function.

We also define CCG-FIB-0, which is similar to CCG-FIB but with a slight modification to the call to

SEPARATION-FIB. Instead of performing Fibonacci search for each combination of components (ξξξ `̀̀,ξr,ξa),

we exit the outer-loop as soon as the Fibonacci search returns a scenario which violates (c1). Note that we
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can go a step further and terminate the separation step as soon as a scenario which violates (c1) is found

during the Fibonacci search, but our experiments showed it is always better to finish the Fibonacci search

before terminating the separation step, as it is relatively cheap to finish running Fibonacci search and it

might lead to a scenario ξξξ with a greater objective value zn(ξξξ ). The idea behind CCG-FIB-0 is to get the

best of both CCG-ENUM-0 and CCG-FIB, where the separation problem is solved fast in the earlier stages

of the algorithm, permitting to quickly generate scenarios, before naturally transitioning to CCG-FIB as the

algorithm progresses, avoiding enumerating close to all scenarios in the later stages as would happen in

CCG-ENUM-0.

The performance of our methods depends on the sample set and the order of the samples in the set. Thus,

for each sample set size and discretization of F , we run 10 experiments where we generate a new random

network and a new random set of samples. We provide the average number of scenarios across generated

networks for each discretization of F after removing redundant scenarios in Appendix D.3.

For all experiments and computed metrics, we only consider runs where all methods terminated within

the time limit. When using any of the four method, for N = 50 and θ = 0.001, one run did not terminate

for |F | = 50 and two runs did not terminate for |F | = 75. These were the same three runs for all methods.

This is due to the solver stalling when solving (RER) in certain iterations. Such stalls can be circumvented

by further adjusting the MIP tolerances or increasing the number of threads available to Gurobi. For N = 50

and θ = 0.01, CCG-ENUM-0 did not terminate in one of the runs.

6.2.3 Results

In Figure 2 and Appendix D.5, we plot the average runtimes over the 10 runs as a function of the size of F

for each sample set size N and radius of the Wasserstein ball θ . The upper and lower limits of the ribbon are

one standard deviation from the average. In general, we observe that the runtimes are faster for the smaller

radius. For N = 10, CCG-FIB significantly outperforms CCG-ENUM-0 and CCG-ENUM-1, with CCG-

FIB-0 being a close second. We note, however, that CCG-FIB-0 has a greater standard deviation of runtimes

than CCG-FIB, suggesting the latter is a more stable method. For θ = 0.001, CCG-FIB is about 39% to

40% faster on average than both CCG-ENUM-0 and CCG-ENUM-1 when |F |= 15, and is about 69% faster

on average when |F |= 75. Similarly, for θ = 0.01, CCG-FIB is about 27% faster than CCG-ENUM-1 and

52% faster than CCG-ENUM-0 on average when |F | = 15, and is about 66% faster than CCG-ENUM-1

and 65% faster on average than CCG-ENUM-0 when |F | = 75. For N = 50, the gap between the methods
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Figure 2: Average runtimes over 10 runs of CCG-FIB, CCG-FIB-0, CCG-ENUM-0, and CCG-ENUM-1
with Wasserstein radius θ = 0.01 and sample set sizes N, with ribbons spanning two standard deviations.

is not as pronounced, but CCG-FIB still outperforms the other three. The two best performing methods are

CCG-FIB and CCG-ENUM-1. For |F |= 75, on average, CCG-FIB is about 11% faster than CCG-ENUM-1

when θ = 0.001, and about 21% faster when θ = 0.01. In general, we observe that the benefit of using

CCG-FIB increases as the size of |F | increases, which is expected as the number of scenarios enumerated is

logarithmic in the size of F for CCG-FIB but linear for CCG-ENUM-0 and CCG-ENUM-1.

As we increase the size of the sample set, solving (RER) becomes harder, and a larger portion of time

is spent solving (RER) and smaller portion solving the separation step. This explains why the difference

between CCG-FIB and CCG-ENUM-1 is not as large when N = 50, and why CCG-ENUM-0 and CCG-

FIB-0 start to fall behind. For the latter, the separation step is solved fast (at least in the earlier stages), but

(RER) is solved much more often, increasing runtime.

To better understand the behavior of the four methods, we record the number of second stage problems

solved during the separation step and the time spent in the separation step, where we aggregate the values

across all iterations and the 10 runs to get a distribution for both metrics. We fix θ = 0.01, and plot the

cumulative distribution (CDF) of the number of second stage solves for |F |= 75 in Figure 3 and for |F |= 15

in Appendix D.6. The CDF of the time spent in the separation step is in Appendix D.7.

When comparing CCG-FIB to CCG-ENUM-1, the number of second stage solves in the separation

problem is significantly less for the former. We see that in over 80% of the iterations, the number of

second stage problems solved is over 50% less in CCG-FIB than in CCG-ENUM-1 when |F | = 15. When
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Figure 3: Cumulative distribution of number of second stage solves during the separation step where θ =
0.01 and |F |= 75, for sample set sizes 10 and 50.

|F | = 75, the gap is much more significant, with CCG-FIB consistently solving fewer than 2,500 second

stage problems in over 80% of the iterations, compared to CCG-ENUM-1 ranging between 7,500 and over

15,000. The increase in the number of second stage solves during CCG-FIB occurs in the final phase (i.e.

when final check is set to True, and SEPARATION-FIB is applied to every sample). For |F | = 75, we

see that the number of second stage solves in CCG-FIB gradually increases from about 2,500 to 10,000 for

N = 10, and from about 2,500 to 14,000 for N = 50. As discussed in Section 5.2, while SEPARATION-FIB

does lead to significantly fewer second stage solves for one sample, we might end up visiting new scenarios

for which we have to compute the second stage problem if applied to all samples. Our experiments confirm

our intuition that for larger sample sets, this is more likely to happen. Indeed, the maximum number of

second stage solves in CCG-FIB jumps from about 10,000 to 14,000 when increasing the sample size from

10 to 50.

As expected, the CDF for both metrics are very similar. We note that the CDFs for CCG-FIB-0 are

always upper-bounded by the CDFs for CCG-FIB, where they start very close to CCG-ENUM-0 and get

close to CCG-FIB. This is in line with our idea behind CCG-FIB-0. However, as seen in Figure 2, the

increase in the number of times (RER) is solved does not justify it. This analysis also permits us to see

how long CCG-FIB spends in the final phase, i.e. the phase during which we perform SEPARATION-FIB for

each sample (see Section 5). Figures 3 suggests that less than 20% of iterations are in the final phase when

looking at all iterations across the 10 runs.
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6.3 Case Study: Hurricane Threats in the Gulf of Mexico States

We now turn our focus to the case study of hurricanes threats on the coastal states of the United States first

presented in [28]. A plot of the network and the potential landfall nodes can be found in Appendix D.2. We

assume all nodes are potential facility locations and potential demand nodes. In this section, we analyze the

solutions obtained from DRO for various radii levels, and from SAA (when θ = 0). We solve problem (3.1),

in which case Assumption 2 no longer holds. We include valid inequalities σi j ≤ oi in C for all i and j, and

as in the synthetic instances, we set B to be empty. Recall that in this version of the model, we are opening

facilities and pre-allocating resources in the first stage. We use CCG-FIB to solve all models, where we set

the MIP tolerance to 0.12 and adjust it to 1e-3 as described in Section 5. As mentioned in section 4.3, once

CCG-FIB terminates, we run one iteration of CCG-ENUM-1 to ensure an exact method. In almost all runs,

CCG-ENUM-1 terminates in one iteration and does not generate additional scenarios, suggesting CCG-FIB

has a strong computational performance as a heuristic even if Assumption 2 does not hold.

As in the synthetic instances, we use the data and support set described in Sections 6.1.1, 6.1.2 and 6.1.3,

and fix |F | = 50 where we pick 50 equi-distant values between 0.001 and 0.3. We assume a similar cost

structure for transportation costs, where the per-unit cost of transportation from facility i to demand node

j is ci j = 0.0026di j, where di j is the haversine distance between nodes i and j, i 6= j. As in the synthetic

instances, a node can be both a facility and demand node, and we define the transportation costs of a facility

serving its own node to be lower than any other node. We set the fixed-charge cost to be wi j = φci j where

φ = 5,000. Moreover, we construct a probability distribution for the landfall nodes by using the frequency

of hurricanes by region recorded in [28] and [9].

6.3.1 Results

We test the out-of-sample performance of our DRO model for various Wasserstein radii and penalty param-

eters U . As the radius of the Wasserstein ball increases, we are more risk averse, leading to higher costs in

the first stage as we increase the number of facilities open and the amount of resources pre-allocated with

the hope of satisfying more demand in more scenarios. As such, there is a natural trade-off between the first

stage costs and the penalty incurred for unsatisfied demand U . We analyze the out-of-sample performance

of DRO for U ∈ {5,10,100}. We run tests for N ∈ {10,50}, and for radii θ ∈ {1e-5, 5e-5, 1e-4, 5e-4, 1e-3,

5e-3, 0.01, 0.05, 0.1}.
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Wasserstein Radius Selection Picking a good radius for the Wasserstein ambiguity set is not straight-

forward and is the subject of research in the literature. Although there exists some theoretical radii which

give probabilistic guarantees on the out-of-sample performance (see [14]), such radii tend to be too large in

practice and depend on constants which might be difficult to compute. In practice, the radius selection can

be done in an ad-hoc manner through trial and error, or through k-fold cross-validation [14]. Given that we

are dealing with very small sets of samples, cross-validation might be ill-suited. To this end, we choose a

wide range of radii spanning a few orders of magnitudes for simplicity to illustrate our DRO model.

For each set of experiments, we generate N samples using the constructed probability distribution,

solve the DRO model (3.1) with a Wasserstein radius of θ , and record optimal solutions (oooθθθ ,zzzθθθ ). We

then solve Q(oooθθθ ,zzzθθθ ,ξξξ ) for all ξξξ ∈S and compute E
[
Q(oooθθθ ,zzzθθθ ,ξξξ )

]
= ∑s∈S psQ(oooθθθ ,zzzθθθ ,ξξξ

sss
), where {ps}s∈S

is the true, constructed, underlying distribution. We repeat this process 20 times for different sets of sam-

ples. We define the out-of-sample cost of run m ∈ {1, . . . ,20} for radius θ as vm
θ
= ∑i∈I

[
hio

θ ,m
i +gzθ ,m

i

]
+

E
[
Q(oooθ ,m,zzzθ ,m,ξξξ )

]
, where vm

0 corresponds to the out-of-sample cost of SAA. For each run m, we record

the non-zero Wasserstein radius which leads to the lowest out-of-sample cost as θ ∗ 6= 0. In Figures 4a and

4c, we plot the improvement of DRO over SAA in the total out-of-sample cost at θ ∗, i.e. we plot 1− vm
θ∗

vm
0

for

all values of U . In Figures 4b and 4d, we plot the relative decrease in the average unsatisfied demand when

using DRO over SAA. The average unmet demand for a fixed first-stage solution is defined as ∑s∈S psuuus∗,

where uuus∗ is the unmet demand resulting from solving Q(oooθ ,m,zzzθ ,m,ξξξ
sss
).

For N = 10, the relative improvement in total cost increases as U increases. For U = 5, the improvement

over SAA is close to 0 for many runs, with a few runs sitting between about 1.4% and 8% and achieves

up to 10% decrease in total cost. The average total cost decrease over the runs is about 2%. For U = 10,

DRO performs worse than SAA in run 2 with a 3.5% increase in total out-of-sample cost, but outperforms

SAA otherwise, with decreases in out-of-sample cost of up to about 24%, with many runs achieving over

4% decrease. The average total cost decrease is about 5%. Finally, as we increase U to 100, the decrease in

the out-of-sample cost becomes significant, achieving over 80% decrease in one of the runs and an average

decrease of 23% over all runs. We observe that even when there is no or very little improvement in the

out-of-sample cost, DRO consistently satisfies more demand than SAA for all U . For example, for U = 10,

DRO satisfies up to 66% more demand, with an average of over 16%.

The results tell a different story for N = 50. DRO achieves a decrease in out-of-sample cost of about

3% and 5% in two runs when U = 10 and up to 2.5% when U = 5, but the change is close to 0% in most
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(a) Total Cost Improvement for N = 10
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(b) Decrease in Unsatisfied Demand for N = 10
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(c) Total Cost Improvement for N = 50
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(d) Decrease in Unsatisfied Demand for N = 50

Figure 4: Relative improvement of DRO over SAA in total out-of-sample cost and unsatisfied demand at
θ ∗.

runs. For U = 100, we observe that DRO achieves similar or lower costs than SAA, with up to 8% decrease,

but achieves a higher cost in a few runs, up to 3.6% in total cost. Increasing the penalty parameter U has

two potential outcomes: 1) If SAA has a high rate of unmet demand, then DRO has more potential to lead

to a decrease in total out-of-sample cost, where a higher value of U means the decrease in the second stage

costs outweights the increase in the first stage; 2) If the sample set contains one or a few scenarios with a

high demand, a very high penalty forces SAA to open many facilities and pre-allocate a very large quantity

of resources at each facility, leading to an already high cost solution and low unsatisfied demand on average

across all scenarios. In the second case, there is less opportunity for DRO to decrease the second stage cost

and make up for any increase in the first stage cost. We note that the second case is more likely to happen
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for larger N while the first case is more likely for smaller N as seen in the set of experiments for N = 10.

For N = 50 and U = 100, for run 6, the SAA solution opens 16 facilities and fills almost all of them

to full capacity, and the average unsatisfied demand is about 91 units. At θ = 1e-5, DRO pre-allocates an

additional 46,882 units across facilities with remaining capacity, and at θ = 5e-5, DRO opens a new facility

and pre-allocates an additional 73,672 units compared to θ = 1e-5 (or about 120,555 more units compared

to SAA). This leads to a significant increase in the first stage cost, with little benefits (on average) in the

second stage. For θ = 1e-5 and θ = 5e-5, the average unmet demand is close to 80 and 64, respectively. We

observe that for a high value of U , increasing the Wasserstein radius leads to more drastic changes in the

solution. For runs 15 and 16, SAA opens five facilities, filling them to almost full capacity. Increasing the

radius to θ = 1e-5 leads to an additional opened facility, and all six facilities at almost full capacity. This

suggests that for high values of U , smaller increments in the Wasserstein radius could yield more useful

solutions. Indeed, in Figure 5, we can see how the average unmet demand, averaged across the 20 runs,

quickly reaches 0 for higher values of U as we increase θ . Regardless, it seems solutions are more unstable

as evidenced by the runs where SAA opens over 10 facilities and allocating resources to almost full capacity

everywhere. One can also circumvent such solutions by applying a budget on the number of facilities or first

stage cost in the set B in the first stage (see model 3.1).

Although the improvement of DRO over SAA in total out-of-sample cost is not significant for N = 50,

we see that DRO satisfies significantly more demand in the second stage across all runs and all values of U

as seen in Figure 4d, similar to the sets of experiments for N = 10. DRO satisfies up to 30% more demand

when U = 5, up to 38% when U = 10, and up to 60% when U = 100.

Finally, we report the first stage solutions obtained for one run when N = 10 and N = 50 in Tables 1

and 2, respectively, to illustrate how solutions might evolve as the radius of the Wasserstein ball increases.

We can see how the model opens more facilities and pre-allocate more resources as the radius increases,

as expected. For N = 10, the model initially only opens one facility in Biloxi at θ = 0 and one in Mobile

at θ = 1e-5, hedging against disasters in the Louisiana area, before opening a facility in Jacksonville when

θ = 5e-5 and Savannah when θ = 5e-4. For N = 50, the model covers similar areas of the network, but

pre-allocates more resources from θ = 0 to θ =1e-3, with an additional facility open for radii 0 and 1e-5.

For radii 5e-3 and 0.01, less resources are pre-allocated when N = 50, however.

We note that in practice, the best radius is of course unknown. However, it is generally the case in our

experiments that smaller changes in the radius and in the solution of SAA lead to better out-of-sample cost.
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Figure 5: Average unsatisfied demand as a function of the radius of the Wasserstein ball θ for N = 10 and
N = 50, averaged across all runs.

Table 1: First stage solutions of run 20, N = 10 and U = 10 for various Wasserstein radii θ .

Facility \ θ 0 1e-05 5e-05 1e-4 5e-4 1e-3 5e-3 0.01

4 0 0 0 0 0 0 131837 131837
10 0 0 0 0 0 0 0 131837
12 0 0 91926 91926 91926 91926 131837 0
13 91926 0 0 0 0 0 0 0
14 0 131837 0 0 0 0 0 0
22 0 0 0 0 63543 0 0 0
25 0 0 63543 63543 0 63543 125521 125499

As we increase the radius, once there is a drastic jump in the first stage cost caused by a large amount of

additional resources pre-allocated or additional facilities opened, the out-of-sample cost tends to get worse

(depending on U), as the first stage costs incurred outweigh the decrease in the second stage costs. The

radius of the Wasserstein ball provides a convenient lever of risk-aversion to decision-makers to control the

trade-off between first stage costs and potential second stage costs.

7 Conclusions

The lack of data in natural disaster management applications can lead to optimistic solutions and poor out-

of-sample performance when using classical stochastic programming methods such as SAA. In this paper,

we tackle a two-stage DRO model under the Wasserstein ambiguity set, where the first stage is a facility
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Table 2: First stage solutions of run 10, N = 50 and U = 10 for various Wasserstein radii θ .

Facility \ θ 0 1e-05 5e-05 1e-4 5e-4 1e-3 5e-3 0.01

10 0 0 0 0 0 0 100942 125923
11 69438 89299 89299 0 71327 71327 0 0
13 0 0 0 90491 0 0 0 0
23 0 0 0 0 127448 127448 47420 0
24 0 0 0 0 0 0 94128 78615
25 91345 92536 92536 91345 0 0 0 88031

location problem, where we decide facility locations and the amount of resources to pre-allocate, and where

the second stage is a fixed-charge transportation problem. We develop an efficient column and constraint

generation algorithm, where we leverage the structure of our support set and second stage value function

to efficiently solve the separation problem. Specifically, we show conditions under which the second stage

value function is concave with respect to the intensity component of our random vector and show how our

results extend to the case where the second stage is a fixed-charge network flow problem. We also provide

guidance on numerical improvements which can significantly impact computational efficiency. We conduct

extensive computational experiments on synthetic instances, showing strong computational performance

compared to (mostly) classical column and constraint generation algorithms, and analyze the solutions ob-

tained from our DRO model on a case study of hurricane threats on the coastal states of the United States.

We show that our DRO model achieves lower out-of-sample costs than SAA in many instances, and con-

sistently satisfies significantly more demand after a disaster occurs, even when the out-of-sample costs are

comparable. Given the performance of DRO under the Wasserstein set for hurricane disasters, it would be

worth exploring its benefits for other types of disasters. Finally, although we can have joint concavity with

respect to intensities associated with multiple landfalls, it is unclear how to efficiently search over multiple

intensities.
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[26] David Love and Güzin Bayraksan. “Phi-divergence constrained ambiguous stochastic programs for data-driven
optimization”. In: Technical report, Department of Integrated Systems Engineering, The Ohio State University,
Columbus, Ohio (2015).

[27] Engineering National Academies of Sciences, Medicine, et al. “Strengthening post-hurricane supply chain re-
silience: Observations from Hurricanes Harvey, Irma, and Maria”. In: (2020).

[28] Carmen G Rawls and Mark A Turnquist. “Pre-positioning of emergency supplies for disaster response”. In:
Transportation research part B: Methodological 44.4 (2010), pp. 521–534.

[29] Monir Sabbaghtorkan, Rajan Batta, and Qing He. “Prepositioning of assets and supplies in disaster operations
management: Review and research gap identification”. In: European Journal of Operational Research 284.1
(2020), pp. 1–19.

[30] Karmel S Shehadeh and Emily L Tucker. “A Distributionally Robust Optimization Approach for Location and
Inventory Prepositioning of Disaster Relief Supplies”. In: arXiv preprint arXiv:2012.05387 (2020).

[31] Anirudh Subramanyam, Chrysanthos E Gounaris, and Wolfram Wiesemann. “K-adaptability in two-stage mixed-
integer robust optimization”. In: Mathematical Programming Computation 12.2 (2020), pp. 193–224.

[32] German A Velasquez, Maria E Mayorga, and Osman Y Özaltın. “Prepositioning disaster relief supplies using
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A Proofs

A.1 Proof of Theorem 1

Proof. Using (W’), the inner maximization problem of (DRO) can be written as

max
ppp ∑

s∈S
psQ(xxx,ξξξ sss

)

s.t. min
qqq≥0

{
∑

s∈S
∑

n∈N

1
N

d(ξξξ sss
, ξ̂ξξ

nnn
)qn

s : ∑s∈S qn
s = 1, ∀n ∈N

∑n∈N
1
N qn

s = ps, ∀s ∈S

}
≤ θ

which is equivalent to

max
qqq ∑

s∈S
∑

n∈N

1
N

qn
s Q(xxx,ξξξ sss

)

s.t. ∑
s∈S

∑
n∈N

1
N

d(ξξξ sss
, ξ̂ξξ

nnn
)qn

s ≤ θ ,

∑
s∈S

qn
s = 1 ∀n ∈N ,

qn
s ≥ 0, ∀s ∈S , ∀n ∈N .

(A.1)

Its dual is

min
λ ,α

θλ +
1
N ∑

n∈N
αn

s.t. αn ≥ Q(xxx,ξξξ sss
)−λ d(ξξξ sss

, ξ̂ξξ
nnn
), ∀s ∈S , ∀n ∈N ,

λ ≥ 0.

We then have

min
xxx,λ

ccc>xxx+θλ +
1
N

N

∑
n=1

αn

s.t. αn ≥ Q(xxx,ξξξ sss
)−λ d(ξξξ sss

, ξ̂ξξ
nnn
), s ∈S ,n ∈N ,

xxx ∈ X ,

λ ≥ 0

which is equivalent to (ER).
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A.2 Proof of Theorem 2

Proof. Recall from the proof of Theorem 1, we can write the inner maximization as

max
qqq ∑

s∈S
∑

n∈N

1
N

qn
s Q(xxx,ξξξ sss

)

s.t. ∑
s∈S

∑
n∈N

1
N

d(ξξξ sss
, ξ̂ξξ

nnn
)qn

s ≤ θ ,

∑
s∈S

qn
s = 1 ∀n ∈N ,

qn
s ≥ 0, ∀s ∈S , ∀n ∈N .

(A.2)

where qn
s is the conditional probability of scenario ξξξ

sss given we have observed ξ̂ξξ
nnn
, the sampled scenario.

In (A.2), we are moving weight qn
s from a sample ξ̂ξξ

nnn
to a scenario ξξξ

sss for all s and n, with the objective
of maximizing the expected cost of the second stage. Consider a sample ξ̂ξξ

nnn
and a scenario ξξξ ∈ Ξ̄n. We

show that there exists a scenario ξξξ
′′′ which dominates ξξξ , in the sense that d(ξ̂ξξ ,ξξξ ′′′)< d(ξ̂ξξ ,ξξξ ) and Q(xxx,ξξξ ′′′)≥

Q(xxx,ξξξ ). Let ξξξ
′′′
= (ξξξ `̀̀, ξ̂

n
r ,ξa, ξ̂

n
f ). Then we have Q(xxx,ξξξ ′′′) ≥ Q(xxx,ξξξ ) for all xxx ∈ X , since ξ f ≤ ξ̂ n

f and

ξr ≤ ξ̂ n
r , where at least one of the two inequalities holds strictly, and ξξξ `̀̀ = ξξξ

′′′
`̀̀ and ξa = ξ ′a. Moreover, we

have d(ξ̂ξξ
nnn
,ξξξ
′′′
)< d(ξ̂ξξ

nnn
,ξξξ ) since:

d(ξ̂ξξ
nnn
,ξξξ
′′′
) = ||ξ̂ξξ

nnn
`̀̀ −ξξξ `̀̀||22 +(ξa−ξa)

2

d(ξ̂ξξ
nnn
,ξξξ ) = ||ξ̂ξξ

nnn
`̀̀ −ξξξ `̀̀||22 +(ξ̂ n

r −ξr)
2 +(ξ̂ n

a −ξa)
2 +(ξ̂ n

f −ξ f )
2

where one of (ξ̂ n
r −ξr)

2 or (ξ̂ n
f −ξ f )

2 must be non-zero because ξξξ ∈ Ξ̄n.

A.3 Proof of Theorem 3 and Corollary 1

Proof. First note that each demand node is served by at most one facility. Given a set of open facilities, let
a = {i1, i2, . . .} be a set of assignments from facilities to nodes with positive demand, where i j is the facility
assigned to node j, and let A be the set of all possible assignments between facilities and demand nodes
satisfying the cardinality constraints (4.2a). Let Ĵ be the set of demand nodes in J(ξξξ `̀̀,ξr,ξa) that are not
served by a facility in a set of assignments a. Let Pj be the population at node j. Define f (ξ f ) to be the
objective of the separation problem zn(ξ ) as a function of ξ f , where ξξξ `̀̀ , ξr and ξa are fixed.

First note that as we increase ξ f for a fixed set of assignments a ∈ A, the fixed-charge cost component
remains constant at wi j j, and the transportation cost is equal to cki j jΠ

k
j(ξξξ `̀̀,ξr,ξa,ξ f )Pj for each served node

j and commodity k ∈ K. For nodes that are not served, the cost is UΠk
j(ξξξ `̀̀,ξr,ξa,ξ f )Pj. The objective value

of the second stage is then

∑
j∈J(ξξξ `̀̀ ,ξr,ξa)\Ĵ

[
wi j j + ∑

k∈K
cki j jΠ

k
j(ξξξ `̀̀,ξr,ξa,ξ f )Pj

]
+U ∑

j∈Ĵ

Π
k
j(ξξξ `̀̀,ξr,ξa,ξ f )Pj. (A.3)
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Note that (A.3) is concave with respect to ξ f by Assumption 1. We then have

f (ξ f ) = Q(xxx,ξξξ )−λ d(ξξξ , ξ̂ξξ
nnn
)

= min
a∈A

 ∑
j∈J(ξξξ `̀̀ ,ξr,ξa)\Ĵ

[
wi j j + ∑

k∈K
cki j jΠ

k
j(ξξξ `̀̀,ξr,ξa,ξ f )Pj

]
+U ∑

j∈Ĵ

Π
k
j(ξξξ `̀̀,ξr,ξa,ξ f )Pj

−λ d(ξ , ξ̂ n),

where the first term is the minimum of concave functions and is therefore concave with respect to ξ f , and
−λ d(ξξξ , ξ̂ξξ

nnn
) is concave since λ ≥ 0. We conclude that f (ξ f ) is concave.

B Second-Stage Fixed-Charge Network Flow

We show that our results extend to the case where the second stage problem is an uncapacitated fixed-charge
network flow problem. Given a graph G = (V ,A ), we define all nodes incident to outgoing and incoming
arcs as δ+(e1) = {e2 : (e1,e2)∈A } and δ−(e2) = {e1 : (e1,e2)∈A }, respectively. In line with Assumption
2, we assume each facility sends an uncapacitated vehicle to serve demand nodes, and can serve up to ki

demand nodes. Variable σi j is 1 if facility i is serving demand node j. We introduce a new variable βββ where
βe1e2 is 1 if arc (e1,e2) is used. Variable t ik

e1e2
represents the amount of commodity k transported through

arc (e1,e2) by facility i’s vehicle. Finally, let M be a sufficiently large number. We write the second stage
problem as:

min
σσσ ,βββ , ttt,uuu

∑
(e1,e2)∈A

[
we1e2βe1e2 +∑

i∈I
∑
k∈K

cke1e2t
ik
e1e2

]
+U ∑

j∈J
∑
k∈K

uk
j (B.1a)

s.t. ∑
j∈J

σi j ≤ ki, ∀i ∈ I, (B.1b)

σi j ≥
1
M ∑

e1∈δ−( j)
t ik
e1 j, ∀i ∈ I, ∀ j ∈ J, (B.1c)

∑
e2∈δ+(i)

t ik
ie2
− ∑

e1∈δ−(i)
t ik
e1i = ∑

j∈J
ds

k jσi j ∀i ∈ I, ∀k ∈ K, (B.1d)

∑
e2∈δ+( j)

t ik
je2
− ∑

e1∈δ−( j)
t ik
e1 j =−ds

k jσi j ∀i ∈ I, ∀ j ∈ J, ∀k ∈ K, (B.1e)

uk
j ≥ ds

k j−M∑
i∈I

σi j ∀ j ∈ J, ∀k ∈ K, (B.1f)

t ik
e1e2
≤Mβe1e2 , ∀(e1,e2) ∈A , ∀i ∈ I, ∀k ∈ K, (B.1g)

σi j ≤ oi ∀i ∈ I, ∀ j ∈ J, (B.1h)

tk
i j ≥ 0, ∀i ∈ I, ∀ j ∈ J, ∀k ∈ K,

σi j ∈ {0,1}, ∀i ∈ I, ∀ j ∈ J,

uk
j ≥ 0, ∀ j ∈ J, ∀k ∈ K,

(σσσ , ttt,uuu) ∈C.

Constraints (B.1b) ensure a facility i serves at most ki demand nodes j as in (4.1); constraints (B.1c) set σi j

to 1 if facility i is serving node j; constraints (B.1d) are network flow constraints at facility nodes, ensuring
dk j units of commodity k leaves the facility for each demand node j it is serving; constraints (B.1e) ensure
facility i’s vehicle delivers dk j units of commodity k to node j if i is serving j; constraint (B.1f) ensures
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uk
j = ds

k j if demand node j ∈ J is not served by any facility i ∈ I, i.e. ∑i∈I σi j = 0; constraints (B.1g) ensure
βe1e2 = 1 if t ik

e1e2
> 0 for any commodity k and facility i; finally constraints (B.1h) ensure facility i can serve

demand node j only if facility i is open.
We have the following similar result.

Theorem 4. Assuming Assumption 1 holds, if the second stage problem corresponds to (B.1), then for fixed
first stage decision vector x and λ ≥ 0, Q(x,ξξξ ) and zn(ξξξ ) are concave with respect to ξ f for a fixed landfall
ξξξ `̀̀ , radius of impact ξr, and angle ξa.

Proof. The proof is very similar to the proof of Theorem 3 and its corollary. Let Î be the set of open facilities.
For an open facility i ∈ Î, let Ji ⊆ J(ξξξ `̀̀,ξr,ξa) be the set of demand nodes it serves, and let ρi = {ρi j} j∈Ji

be a set of paths from facility i to nodes j ∈ Ji, where ρi j is a set of edges from facility i to demand node
j. Thus, {ρi}i∈Î corresponds to a solution to the second stage problem, representing paths from each open
facility i∈ Î to the demand nodes they each serve. Let ρ be the set of all possible {ρi}i∈Î satisfying constraint
(B.1b). Recall that Ĵ is the set of demand nodes in J(ξξξ `̀̀,ξr,ξa) that are not served by any facility, and f (ξ f )
corresponds to zn(ξξξ ) as a function of ξ f , where ξξξ `̀̀ , ξr and ξa are fixed.

For a fixed set of paths for each facility i ∈ Î, i.e. for a fixed {ρi}i∈Î , the second stage cost is:

∑
i∈Î

∑
j∈Ji

∑
e∈ρi j

[
we1e2 + ∑

k∈K
cke1e2Π

k
j(ξξξ `̀̀,ξr,ξa,ξ f )Pj

]
+U ∑

j∈Ĵ

Π
k
j(ξξξ `̀̀,ξr,ξa,ξ f )Pj, (B.2)

which is concave with respect to ξ f . We then have

f (ξ f ) = Q(xxx,ξξξ )−λ d(ξξξ , ξ̂ξξ
nnn
)

= min
{ρi}i∈Î∈ρ

∑
i∈Î

∑
j∈Ji

∑
e∈ρi j

[
we1e2 + ∑

k∈K
cke1e2Π

k
j(ξξξ `̀̀,ξr,ξa,ξ f )Pj

]
+U ∑

j∈Ĵ

Π
k
j(ξξξ `̀̀,ξr,ξa,ξ f )Pj


−λ d(ξ , ξ̂ n),

and the result follows.

C Pseudo-Code of Algorithms

C.1 Fibonacci Search

In Algorithm 3, we define Ω to be the array of scenarios in increasing order of ξ f ∈ F and an array Θ

of Fibonacci numbers up to the qth Fibonacci number, such that q ≥ |Ω| − 1. Our sequence of Fibonacci
numbers starts with 0, 1 and 1. Let m = |Θ| be the size of this array. We index the ith element of Ω and
Θ by Ωi and Θi, and start the indexing at 0. In lines 4-8, we handle the corner cases where there are only
one or two scenarios in Ω, in which case it is a simple check. Throughout the search, we keep track of
three variables: `, ia and u, where ` ≤ ia ≤ u. These are indices of Ω which represent intervals where the
maximum might be. The three variables are Fibonacci numbers and the idea is to maintain a constant ratio
of the interval sizes, such that u−ia

ia−` is close to the golden-ratio. In order to search the intervals, we define a
fourth index ib between ia and u. We then compare zn(Ωia) to zn(Ωib). If zn(Ωia) > zn(Ωib), then we know
the maximum is somewhere between ` and ib, otherwise, it is between ia and u. We update the indices
accordingly in lines 13-21. In order to maintain the same interval ratios as the algorithm progresses, ib is
also chosen to be a Fibonacci number where ib = `+u− ia. We repeat this process until ia = ib. Note that
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this will find the maximum if it is not at one of the initial endpoints (i.e. 0 or Θm−1). If either ` = 0 or
u = Θm−1 after exiting the while-loop, we must do a manual check against ia. This is done in lines 23-29.

Algorithm 3 FIBONACCI
(

F,ξξξ `̀̀,ξr,ξa, ξ̂
n
)

Input: set F in increasing order, ξξξ `̀̀ , ξr, ξa and sample ξ̂ n

1: Ω← [(ξξξ `̀̀,ξr,ξa,ξ f )]ξ f∈F
2: Θ: array of Fibonacci numbers of size m in increasing order

3: // Corner cases
4: if |Ω|= 1 then
5: return Ω0
6: else if |Ω|= 2 then
7: return ξξξ

∗ := argmaxξξξ {zn(ξξξ ) : ξξξ ∈ {ΩΩΩ000,ΩΩΩ111}}
8: end if

9: // Initialize indices `, u, ia and ib
10: (`, ia,u)← (0,Θm−3,Θm−1)
11: ib← `+u− ia
12: while ia 6= ib do
13: if ib > |Ω|−1 or zn(ΩΩΩia)> zn(ΩΩΩib) then
14: u← ib
15: ib← ia
16: ia← `+u− ib
17: else
18: `← ia
19: ia← ib
20: ib← `+u− ia
21: end if
22: end while
23: if `= 0 then
24: ξξξ

∗← argmaxξξξ {zn(ξξξ ) : ξξξ ∈ {ΩΩΩia ,ΩΩΩ`̀̀}}
25: else if u = Θm−1 then
26: ξξξ

∗← argmaxξξξ {zn(ξξξ ) : ξξξ ∈ {ΩΩΩia ,ΩΩΩuuu}}
27: else
28: ξξξ

∗←ΩΩΩia
29: end if
30: return ξξξ

∗

C.2 Separation Scheme

In Algorithm 4, we enumerate components (ξξξ `̀̀,ξr,ξa) in L×R×A. In the inner loop, we apply Theorem
2 and only consider components ξ f such that ξξξ ∈ Ξn, and exclude scenarios which are already included in
(RER) to get a subset F̂ ⊆ F . If F̂ is not empty, we call the Fibonacci search function in line 10 to get the
scenario ξ 0 which maximizes f (ξ f ). We keep track of the greatest value of z and the maximizing scenario
by z∗ and ξξξ

∗, respectively. These are updated in lines 12-15. SEPARATION-FIB either returns the index
associated with ξξξ

∗ if that scenario violates (c1), or returns an empty set otherwise.
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Algorithm 4 SEPARATION-FIB
(

ξ̂ξξ
nnn
, x̂xx, α̂n, λ̂

)
Input: sample ξ̂ n and optimal solutions of (RER) x̂, α̂n and λ̂

1: z∗←−∞

2: for each (ξξξ `̀̀,ξr,ξa) ∈ L×R×A do
3: F̂ ← /0
4: for each ξ f ∈ F do
5: ξξξ ← (ξξξ `̀̀,ξr,ξr,ξ f )
6: if ξ ∈ Ξn & ξ /∈ Ŝn then
7: F̂ ← F̂ ∪{ξ f }
8: end if
9: end for

10: if F̂ 6= /0 then ξξξ
000← FIBONACCI

(
F̂ ,ξξξ `̀̀,ξr,ξa, ξ̂

n
)

. Solve max
ξ f∈F̂ f (ξ f )

11: // Update maximizing ξ ∗ and optimal value z∗

12: if zn(ξξξ
000
)> z∗ then

13: ξξξ
∗← ξξξ

000

14: z∗← zn(ξξξ
000
)

15: end if
16: end for
17: Let s∗ be the index associated with ξξξ

∗

18: if αn < z∗ then
19: return {s∗}
20: else
21: return /0
22: end if

D Computational Experiments

D.1 Case Study Data

Table 3: Per unit purchase cost, volume, and transportation cost per unit distance of water, food and medical
kits.

Commodity Unit Purchase Cost ($) Volume (ft3)
Transportation

Cost ($)

Water (1000 galons) 647.7 144.6 0.3
Food (1000 kits) 5420 83.33 0.04

Medicine Kit (serves 4) 140 1.16 5.8e-4

D.2 Case Study Network

D.3 Synthetic Instances: Number of Scenarios
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Figure 6: Map of the network with potential landfall nodes colored in yellow.

Table 4: Average number of scenarios across randomly generated networks for fixed size of the set F .

Size of F
Avg. Number of

Scenarios

15 3070.0
30 6468.0
50 10020.0
75 14715.0

D.4 Synthetic Instances: Network Example

D.5 Synthetic Instances: Runtimes
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Figure 7: Landfall nodes and facilities of a randomly generated network of 30 nodes, where yellow nodes
are potential landfall nodes, blue nodes are potential facility nodes, and orange nodes are both
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(a) N = 10,θ = 0.001
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Figure 8: Average runtimes over 10 runs of CCG-FIB, CCG-FIB-0, CCG-ENUM-0, and CCG-ENUM-1
with Wasserstein radius θ = 0.001 and sample set sizes N, with ribbons spanning two standard deviations.

D.6 Synthetic Instances: Number of Second Stage Solves

D.7 Synthetic Instances: Separation Step Runtimes
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(a) N = 10, |F |= 15
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(b) N = 50, |F |= 15

Figure 9: Cumulative distribution of number of second stage solves during the separation step where θ =
0.01 and |F |= 15, for sample set sizes 10 and 50.
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(a) N = 10, |F |= 15
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(b) N = 10, |F |= 75
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(c) N = 50, |F |= 15
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(d) N = 50, |F |= 75

Figure 10: Cumulative distribution of runtimes in the separation step of each method where θ = 0.01, for
sample set sizes 10 and 50, and for two discretizations of F , where |F |= 15 and |F |= 75.
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