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Abstract

Derivative-free algorithms seek the minimum value of a given objective function without
using any derivative information. The performance of these methods often worsen as the
dimension increases, a phenomenon predicted by their worst-case complexity guarantees.
Nevertheless, recent algorithmic proposals have shown that incorporating randomization
into otherwise deterministic frameworks could alleviate this effect for direct-search methods.
In particular, the best guarantees and practical performance were obtained for direct-search
schemes using a random vector uniformly distributed on the sphere and its negative at
every iteration. This approach effectively draws directions from a random one-dimensional
subspace, yet the properties of such subspaces have not been exploited in direct search, unlike
for other derivative-free schemes. Moreover, existing theory is by design limited to bounded
directions, and thus does not fully account for the numerous possibilities for generating
random directions (such as drawing from a Gaussian distribution).

In this paper, we study a generic direct-search algorithm in which the polling directions
are defined using random subspaces. Complexity guarantees for such an approach are derived
thanks to probabilistic properties related to both the subspaces and the directions used within
these subspaces. Our analysis crucially extends previous deterministic and probabilistic
arguments by relaxing the need for directions to be deterministically bounded in norm. As a
result, our approach encompasses a wide range of new optimal polling strategies that can be
characterized using our subspace and direction properties. By leveraging results on random
subspace embeddings and sketching matrices, we show that better complexity bounds are
obtained for randomized instances of our framework. A numerical investigation confirms the
benefit of randomization, particularly when done in subspaces, when solving problems of
moderately large dimension.

1 Introduction

This paper is concerned with solving the following unconstrained optimization problem:

min
x∈Rn

f(x), (1)
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where f : Rn → R is a continuously differentiable function. We suppose that the derivative
of f is unavailable for algorithmic purposes, thereby precluding the use of standard nonlinear
optimization techniques. Problems of this form commonly arise in complex engineering problems
where an expensive simulation code is to be calibrated [1]. Tackling such problems is the goal of
derivative-free optimization. Over the past decades, this field has given rise to well-established
algorithms, that have been successfully applied to real-world engineering problems [1, 14, 28].
Derivative-free optimization methods can be broadly classified into two categories: model-based
algorithms, that construct a model of the objective function to guide the optimization process
into selecting a new point to evaluate, and direct-search methods, that proceed by exploring the
space along suitably chosen directions.

A recent trend in nonlinear optimization, and in derivative-free optimization in particular,
is to compare optimization methods based on their complexity guarantees. In the context of
derivative-free optimization, we are interested in the number of function evaluations required
by these methods to reach a point x such that ‖∇f(x)‖ ≤ ε, where ε > 0 is a given tolerance.
Recent results in worst-case complexity analyzes have established that this number is of order
n2ε−2 for standard deterministic derivative-free frameworks such as trust region [18] and direct
search with sufficient decrease [34], as well as n2ε−3/2 for cubic regularization based on finite-
difference estimates [11]. In the case of direct search, it was shown that the factor n2 could not
be improved upon using deterministic algorithms [15].

Despite this negative result, a number of recent algorithmic proposals based on randomized
techniques have been shown to reduce the dependency in the dimension from n2 to n. A direct-
search method based on random directions was endowed with a complexity bound of order nε−2

in a probabilistic sense, provided the directions were chosen uniformly on the unit sphere [20]. In
particular, choosing two opposite directions was identified as the best choice from a theoretical
viewpoint (in that it maximizes the probability of having a good direction among two uniformly
drawn), that also yielded the best results in numerical experiments [20, 22]. Similar results
were obtained through a different analysis for zeroth-order methods that constructed a gradient
estimate, typically based on Gaussian sampling [4, 29, 30]. Very recently, Kozak et al. [26]
also proposed to use directional derivatives sampled within random orthogonal subspaces to
approximate the gradient. In a related, subsequent work, Kozak et al. [27] described a variant
of this approach using finite difference estimates based on orthogonal directions drawn from
random subspaces. In all the aforementioned approaches, a linear dependence in the problem
dimension could be identified, representing an improvement over the deterministic setting. Note,
however, that the seemingly general analysis proposed in the direct-search setting [20] did not
include direction choices such as Gaussian vectors.

The situation was different in the model-based framework. Although randomized frameworks
were proposed based on the same reasoning as direct-search methods, the complexity analysis
did not suggest any possible improvement in terms of the problem dimension [2, 21]. However,
recent approaches focusing on constructing models in random, low-dimensional subspaces did
manage to achieve such a theoretical improvement [12] by leveraging random embeddings using
for instance Gaussian or random orthogonal matrices. Such techniques appeared as promising to
develop scalable derivative-free optimization techniques, which was done by Cartis et al. [7, 12].
Their approach builds on a general framework for derivative-based optimization in random
subspaces [9, 10, 33], and adapts it to a derivative-free, model-based setting. However, the
connection between the subspace arguments in the model-based literature and the use of random
one-dimensional subspaces in direct search was not investigated.
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In this paper, we revisit the analysis of direct-search methods based on probabilistic prop-
erties in order to improve our understanding of their behavior. To this end, we propose a
framework that relies on search directions chosen within subspaces of the variable space. We
define probabilistic properties on these subspaces and directions, by combining elements from
the direct-search literature and that of model-based methods based on random subspaces. Such
properties are then combined to yield complexity bounds for our framework, in a way that de-
parts from existing analyses [20]. In particular, our reasoning allows for unbounded directions,
and thus encompasses popular practical choices such as Gaussian directions. This decoupling of
the subspace and direction generation enables us to introduce a suite of new methods that all
match the best known bound in terms of dependencies on n, and find a new interpretation of
direct search based on opposite, random directions. As a result, our framework for direct search
together with the model-based framework [12] provides a coherent understanding of the benefits
of randomization for scalable derivative-free optimization of nonconvex functions, resolving the
disconnect between randomized direct-search and randomized model-based techniques that was
previously observed [20, 21]. Our experiments confirm that a randomized subspace approach
can be quite beneficial in a direct-search setting.

The rest of this document is organized as follows. In Section 2, we recall the main features
of direct-search methods, and the associated complexity guarantees. We then describe a new
paradigm to generate polling directions based on subspaces in Section 3, for which we establish
probabilistic complexity guarantees. Numerical experiments for our proposed techniques are
given in Section 4.

Software All the algorithms discussed here are available in an open-source Python package
available on Github.1

Notation In what follows, ‖ · ‖ will denote the Euclidean norm for vectors or the operator
2-norm for matrices. We use log(·) to denote the reciprocal of the exponential function and
loga(·) to denote the base-a logarithmic function. The vectors will be denoted by bold lowercase
letters (e.g. x) while the matrices will be denoted by bold uppercase letters (e.g. S). Sets will
be denoted by cursive uppercase letters (e.g. D). The letters m,n, r will always denote integers
greater than or equal to 1. Finally, Ir will denote the identity matrix in Rr×r.

2 Direct-search framework and complexity results

In this section, we recall the key components of a direct-search method based on sufficient
decrease. We focus on the properties that guarantee decrease in the objective function and, as
a result, convergence to approximate stationary points. Section 2.1 recalls the fundamentals of
direct search based on deterministic properties, while Section 2.2 extends the analysis to the
case of probabilistically descent directions, following the reasoning of Gratton et al. [20].

2.1 Direct search based on deterministic descent

Algorithm 1 presents a simplified direct-search framework based on sufficient decrease, for which
complexity results can easily be established. At every iteration, the algorithm chooses a set of

1https://github.com/lindonroberts/directsearch

3

https://github.com/lindonroberts/directsearch


polling directions of fixed cardinality, and evaluates the objective at the corresponding points.
If one of these trial points satisfies the decrease condition (2), this point becomes the new
iterate and the stepsize parameter is (possibly) increased. Otherwise, the current point does not
change, and the stepsize is decreased. Such an adaptive behavior of the stepsize parameter is
instrumental to establishing global convergence of the algorithm, and has roots in convergence
analyzes based on line-search techniques [25].

Algorithm 1: Direct-search framework based on sufficient decrease.

1 Inputs: x0 ∈ Rn, αmax > 0, α0 ∈ (0, αmax], c > 0, 0 < γdec < 1 < γinc, m ∈ N.
2 for k = 0, 1, ... do
3 Compute a polling set Dk ⊂ Rn of m vectors.
4 If there exists dk ∈ Dk such that

f(xk + αkdk) < f(xk)−
c

2
α2
k‖dk‖2, (2)

set xk+1 := xk + αkdk and αk+1 := min{γincαk, αmax}.
5 Otherwise, set xk+1 := xk and αk+1 := γdecαk.

6 end

The choice of the polling sets is crucial for obtaining theoretical guarantees on the behavior
of Algorithm 1. The standard requirements rely on the following concept of cosine measure,
which we define for an arbitrary dimension r for later use in the paper.

Definition 2.1 Given a set of vectors D ⊂ Rr and a nonzero vector v ∈ Rr, the cosine measure
of D at v is defined by

cm (D,v) := max
d∈D

dTv

‖d‖‖v‖
. (3)

The cosine measure of D is then given by

cm (D) := min
v∈Rr

‖v‖6=0

cm (D,v) . (4)

Any set D such that cm (D) > 0 is called a positive spanning set (PSS) for Rr, as its elements
span Rr by nonnegative linear combinations [1, 14]. Using PSSs leads to complexity results for
Algorithm 1 under the following standard assumptions on the objective function.

Assumption 2.1 There exists flow ∈ R such that f(x) ≥ flow for all x ∈ Rn.

Assumption 2.2 The function f is continuously differentiable, and its derivative is L-Lipschitz
continuous with L > 0.

The analysis of Algorithm 1 is based on two key arguments. First, one can use the sufficient
decrease property (2) to guarantee that the step size converges to zero, regardless of the cosine
measure of the polling sets. This is the purpose of the following lemma.
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Lemma 2.1 Let Assumption 2.1 hold, and consider the step size sequence {αk} produced by
Algorithm 1. Suppose that the directions in {Dk}k are uniformly bounded in norm. Then, there
exists β > 0 that does not depend on {Dk} such that

∞∑
k=0

α2
k ≤ β <∞. (5)

As a result, limk→∞ αk = 0.

A key assumption to derive the result of Lemma 2.1 is that the polling directions are uni-
formly bounded in norm. Such a property is easy to satisfy in practice (e.g. by normalizing
directions), and leads to global convergence [25] and complexity results [34] for deterministic
direct search. It was also used in analyzing probabilistic direct search [20], thereby restricting
the kind of directions that could be used. Relaxing this requirement in a probabilistic fashion
leads to a number of complications that we will deal with in Section 3.

The second main ingredient in deriving complexity bounds for Algorithm 1 relates the quality
of the polling sets to the stepsize. It certifies that the method will move to a new point if the
stepsize is small compared to the gradient norm at the current point.

Lemma 2.2 Consider the k-th iteration of Algorithm 1 under the assumption that
cm (Dk,−∇f(xk)) ≥ κ ∈ (0, 1)and ‖dk‖ ≤ Dmax for any d ∈ Dk. Then, if

αk <
2

(L+ c)Dmax
κ‖∇f(xk)‖, (6)

the sufficient decrease condition is satisfied for one direction in Dk, and thus xk+1 6= xk.

In practice, the gradient is unknown, thus the assumption cm (Dk,−∇f(xk)) ≥ κ is replaced by
cm (Dk) ≥ κ, which is equivalent to assuming that Dk is a PSS in Rn.

The updating process on {αk}k together with the result of Lemma 2.2 guarantees convergence
of Algorithm 1 provided the cosine measure sequence {cm (Dk)}k is uniformly bounded below
by κ ∈ (0, 1). Under this assumption, it is known [34] that Algorithm 1 reaches an iterate xk
such that ‖∇f(xk)‖ ≤ ε using at most

O
(
mκ−2 ε−2

)
(7)

function evaluations.

A classical choice in direct search consists in selecting Dk as the set of coordinate vectors
and their negatives in Rn. In that case, one has m = 2n, κ = 1√

n
, and the bound becomes

O
(
n2 ε−2

)
. (8)

In a deterministic setting, the dependency in n2 cannot be improved while using positive span-
ning sets without additional information [15].
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2.2 Direct search based on probabilistic descent

As highlighted in the previous section, the use of positive spanning sets is instrumental for
convergence of classical direct-search methods. However, this property also incurs a dependency
of n2 in the complexity bounds, due to the need to cover an n-dimensional space. Gratton et
al. [20] recently established that randomly generated direction sets that do not form a PSS can
still provide a good approximation of a particular vector in that space, and that this is sufficient
to produce good directions. The following property was thus introduced.

Definition 2.2 Given p ∈ (0, 1] and κ ∈ (0, 1), the polling set sequence {Dk} used in Algo-
rithm 1 is called (p, κ)-descent if

P (cm (D0,−∇f(x0)) ≥ κ) ≥ p

P (cm (Dk,−∇f(xk)) ≥ κ|Fk−1) ≥ p, ∀k ≥ 1,
(9)

where Fk−1 is the σ-algebra generated by the random sets D0, . . . ,Dk−1.

The (p, κ)-descent property is enough to establish probabilistic complexity results for Algo-
rithm 1. Indeed, the result of Lemma 2.1 holds for every realization of the method provided the
directions are bounded, while that of Lemma 2.2 now depends on the occurrence of the random
event {cm (Dk,−∇f(xk)) ≥ κ}.

Using martingale-type arguments, it is then possible to show that a method employing a
(p, κ)-descent sequence converges almost surely to a point with zero gradient. In addition,
high probability complexity guarantees hold, in that the method reaches an iterate satisfying
‖∇f(xk)‖ ≤ ε using at most

O(mκ−2ε−2)

function evaluations with probability at least 1 − O(− exp(Cε−2)). Assuming Dk is randomly
generated using m ≥ 2 directions uniformly distributed on the unit sphere, one obtains an
high-probability evaluation complexity bound in

O(nε−2). (10)

Using m = 2 emerged as a good practical alternative, with the use of two opposite directions
allowing to maximize the probability of having a descent set [20, Appendix B]. Other propos-
als based on random directions [30, 4] relied on evaluations along random Gaussian opposite
directions, leading to a same improvement in the complexity bound (note that the probabilis-
tic descent analysis does not apply to Gaussian direction since those are not deterministically
bounded in norm). For such approaches, using evaluations along a one-dimensional subspace
stood out as an efficient and theoretically sound strategy, but the role of the subspace was not
further investigated. Taking the subspace nature of those directions into account is the key goal
of this paper, and the subject of the next section.

3 Probabilistic descent in reduced spaces

Building in the framework of Algorithm 1, we propose a method that operates in a reduced
space by selecting both a subspace of Rn and a set of polling directions within that subspace.
This two-step process allows to identify deterministic and probabilistic conditions under which
the subspace (resp. the directions) are of suitable quality.
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3.1 Algorithm and suitable properties

Algorithm 2 details our proposed method. At every iteration, we first generate directions in Rr
with r ≤ n. We then combine those directions with a matrix P k ∈ Rr×n to obtain a polling set
in Rn that belongs to an r-dimensional subspace of Rn. This property is a key feature of our
method, as it allows our method to operate in subspaces of lower dimension than that of the
original problem: at iteration k, our polling set is {PT

k d|d ∈ Dk}.

Algorithm 2: Direct-search method in reduced spaces.

1 Inputs: x0 ∈ Rn, αmax > 0, α0 ∈ (0, αmax], c >, 0 < γdec < 1 < γinc; m ∈ N, r ≤ n.
2 for k = 0, 1, ... do
3 Compute a matrix P k ∈ Rr×n.
4 Compute a set Dk ⊂ Rr of m vectors.
5 If there exists dk ∈ Dk such that

f(xk + αkP
T
k dk) < f(xk)−

c

2
α2
k‖PT

k dk‖2, (11)

set xk+1 := xk + αkP
T
k dk and αk+1 := min{γincαk, αmax}.

6 Otherwise, set xk+1 := xk and αk+1 := γdecαk.

7 end

To assess the quality of the polling sets, we define separate properties for the matrix P k and
the set Dk, starting with the former. The matrix P k produces an r-dimensional subspace of Rn
in which polling directions will be generated. When r < n, the use of P k will prevent the polling
set from providing good approximations to all of Rn. Nevertheless, for optimization purposes,
we are merely interested in approximating the negative gradient (and its norm). Consequently,
we require the matrix P k to capture a significant portion of gradient information. In addition,
defining the polling set through application of PT

k should alter the directions in the reduced
subspace in a controlled way, which we express through bounds on the singular values of the
matrix. These considerations lead to the following definition, motivated by a similar concept in
the model-based setting [12, 9, 10, 33].

Definition 3.1 Let η, σ and Pmax be positive quantities. For any realization of Algorithm 2
and any k ∈ N, the matrix P k is called (η, σ, Pmax)-well aligned for f at xk provided

‖P k∇f(xk)‖ ≥ η‖∇f(xk)‖, (12)

‖P k‖ ≤ Pmax, (13)

σmin(P k) ≥ σ, (14)

where σmin(·) denotes the minimum nonzero singular value of the matrix P k.

Conditions (12)–(14) are satisfied with η = σ = Pmax = 1 when r = n and P k is the identity
matrix, but may not hold when r < n, or when P k is a random matrix. For this reason, we
introduce a probabilistic counterpart to Definition 3.1.
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Definition 3.2 The sequence {P k}k generated by Algorithm 2 is called (η, σ, Pmax, q)-well-
aligned for q ∈ (0, 1] if

P (P 0 is (η, σ, Pmax)-well aligned) ≥ q
∀k ≥ 1, P (P k is (η, σ, Pmax)-well aligned | Fk−1) ≥ q,

(15)

where Fk−1 is the σ-algebra generated by P 0,D0, . . . ,P k−1,Dk−1.

Our requirement on Dk is given below, and is similar to that used in Section 2.1.

Definition 3.3 Let κ ∈ (0, 1] and Dmax > 1. For any realization of Algorithm 2 and any index
k ∈ N, the set Dk is called (κ,Dmax)-descent for f and P k at xk if

cm (Dk,−P k∇f(xk)) = max
d∈Dk

−dTP k∇f(xk)

‖d‖‖P k∇f(xk)‖
≥ κ (16)

and
∀d ∈ Dk, D−1

max ≤ ‖d‖ ≤ Dmax. (17)

Examples of sets satisfying Definition 3.3 are positive spanning sets in Rr with unitary
elements. As for the properties of P k, we provide a probabilistic counterpart of Definition 3.3
below.

Definition 3.4 The sequence {Dk}k generated by Algorithm 2 is called (κ,Dmax, p)-descent for
p ∈ (0, 1] if

P
(
D0 is (κ,Dmax)-descent

∣∣ F−1/2

)
≥ p

∀k ≥ 1, P
(
Dk is (κ,Dmax)-descent

∣∣ Fk−1/2

)
≥ p,

(18)

where Fk−1/2 is the σ-algebra generated by P 0,D0, . . . ,P k−1,Dk−1,P k and F−1/2 is the σ-
algebra generated by P 0.

Definition 3.4 departs from Definition 2.2 in that it allows for unbounded directions, as long
as such directions occur with a small probability. This enables for instance the use of Gaussian
vectors, a distribution that was not immediately covered by the analysis of Gratton et al. [20].
In Section 3.3 we give several possible choices for P k and Dk that satisfy these requirements.

3.2 Complexity analysis

In this section, we leverage the probabilistic properties defined above to derive complexity re-
sults for Algorithm 2. Our analysis follows a reasoning previously developed for derivative-free
methods based on probabilistic properties [20, 21], but involves two properties of this form at
every iteration, respectively related to P k and Dk. Although these properties can be handled
jointly, the analysis still departs from existing ones as we allow for directions that are unbounded
in norm. At the same time, we point out that our approach still relies on exact function values,
and therefore does not require Lyapunov functions similar to those used in stochastic optimiza-
tion [31].

For the rest of this section, let S denote the index set of successful iterations (i.e. the k for
which xk+1 6= xk) and U denote the index set of unsuccessful iterations (for which xk+1 = xk).
The following lemma describes sufficient conditions under which an iteration must be successful,
based on our properties of interest.

8



Lemma 3.1 Let Assumption 2.2 hold, and consider the k-th iteration of a realization of Algo-
rithm 2. Suppose further that Dk is (κ,Dmax)-descent and that P k is (η, σ, Pmax)-well aligned.
Finally, suppose that

αk < ᾱ‖∇f(xk)‖, where ᾱ :=
2κη

(L+ c)P 2
maxD

3
max

. (19)

Then, the k-th iteration is successful.

Proof. To find a contradiction, suppose that iteration k is unsuccessful. Then, by Assump-
tion 2.2, for all d ∈ Dk we have

− c
2
α2
k‖P T

k d‖2 ≤ f(xk + αkP
T
k d)− f(xk),

≤ αkdTP k∇f(xk) +
L

2
α2
k‖P T

k d‖2.

Since Dk is a (κ,Dmax)-descent set, there exists dk ∈ Dk such that

dTk (−P k∇f(xk))

‖dk‖ ‖P k∇f(xk)‖
= cm (Dk,−P k∇f(xk)) ≥ κ. (20)

Therefore, we obtain

− c
2
α2
k‖P T

k dk‖2 ≤ −καk‖dk‖‖P k∇f(xk)‖+
L

2
α2
k‖PT

k dk‖2

καk‖dk‖ ‖P k∇f(xk)‖ ≤
L+ c

2
α2
k‖PT

k dk‖2

κ‖dk‖ ‖P k∇f(xk)‖ ≤
L+ c

2
αk‖PT

k dk‖2

Using now the property (12) on P k together with the bound (17) on ‖dk‖ leads to

κ‖dk‖ ‖P k∇f(xk)‖ ≥ κηD−1
max‖∇f(xk)‖

as well as

‖PT
k dk‖2 ≤ ‖PT

k ‖2‖dk‖2 ≤ P 2
maxD

2
max.

Putting everything together, we arrive at

κηD−1
max‖∇f(xk)‖ ≤

L+ c

2
P 2

maxD
2
maxαk ⇔ αk ≥ ᾱ‖∇f(xk)‖,

and this contradicts (19). �
We now introduce the following indicator variables:

Zk := 1 (Dk (κ,Dmax)-descent and P k (η, σ, Pmax)-well aligned) , (21a)

Vk(α) := 1 (αk < α) ∀α > 0, (21b)

Wk := 1 (k ∈ S) , (21c)
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whose realizations will be denoted by zk, vk(α), wk, respectively. Our goal is to bound the sum
of zk by a quantity involving the gradient norm. To this end, we study careful combinations
of the indicator variables above, for which we can provide bounds that are independent of the
iteration: this technique has proven useful in establishing complexity guarantees for derivative-
free optimization schemes with probabilistic components [12, 13, 31, 20, 21].

Our first result bounds the sum of squared stepsizes for a certain subset of successful itera-
tions. Unlike in analyses of direct search based solely on descent properties [20], where such a
bound can be obtained for all iterations, here it only holds for those successful iterations that
use both well-aligned subspace matrices and descent directions.

Lemma 3.2 Let Assumption 2.1 hold. For any realization of Algorithm 2,

∞∑
k=0

zkwkα
2
k ≤ β :=

2D2
max(f(x0)− flow)

cσ2
. (22)

Proof. It suffices to consider iterations for which zkwk = 1, i.e. successful iterations for
which Dk is (κ,Dmax)-descent and P k is (η, σ, Pmax)-well aligned. For such an iteration, there
exists dk ∈ Dk such that xk+1 = xk + αkP

T
k dk, and

f(xk)− f(xk+1) ≥ c

2
α2
k‖PT

k dk‖2 ≥
c

2
α2
kσ

2‖dk‖2≥
c

2
σ2D−2

maxα
2
k.

On the other hand, Assumption 2.1 guarantees that

f(x0)− flow ≥
∞∑
k=0

f(xk)− f(xk+1) ≥
∞∑
k=0

zkwk (f(xk)− f(xk+1)).

Thus, we obtain
∞∑
k=0

zkwkα
2
k ≤

2D2
max(f(x0)− flow)

cσ2
,

proving the desired result. �
The next two results are obtained by carefully examining the behavior of the stepsize se-

quence. This is another notable departure from the analysis of direct search based on proba-
bilistic descent [20], that is due to our two probabilistic properties. We note that similar results
have been derived in the context of randomized model-based methods [12].

Lemma 3.3 Let Assumption 2.1 hold. Consider a realization of Algorithm 2 and an index k
such that min0≤`≤k−1 ‖∇f(x`)‖ > 0. Then,

k−1∑
j=0

vj (αk)wj ≤ µ
k−1∑
j=0

vj

(
γinc

γdec
αk

)
(1− wj) (23)

with µ := logγinc(γ
−1
dec).

αk :=
γdec

γinc
min

{
γ−1

incα0, ᾱ min
0≤`≤k−1

‖∇f(x`)‖
}
, (24)

and ᾱ is defined as in Lemma 3.1.
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Proof. If vj (αk)wj = 0 for every j ≤ k − 1, the bound clearly holds. For the rest of
the proof, we thus assume that there exist at least one index j ∈ {0, . . . , k − 1} such that

vj (αk)wj = 1. Since γinc
γdec

> 1, we also have vj

(
γinc
γdec

αk

)
wj = 1, thus there also exists at least

one index satisfying this property.

Consider a sequence of iterates j1, . . . , j2 such that vj

(
γinc
γdec

αk

)
= 1 for every j ∈ {j1, . . . , j2},

with vj2 (αk)wj2 = 1 and either j1 = 0 or vj1−1

(
γinc
γdec

αk

)
= 0 (note that such a sequence

necessarily exists by assumption). Using the updating rules on the stepsize together with the
bound αk < γ−1

incα0 ≤ γ−1
incαmax, we obtain for any j = j1, . . . , j2 that

αj+1 = min{γincαj , αmax} = γincαj , if vj(αk)wj = 1,

αj+1 ≥ αj , if (1− vj(αk))vj
(
γinc
γdec

αk

)
wj = 1,

αj+1 = γdecαj , if vj

(
γinc
γdec

αk

)
(1− wj) = 1.

(25)

Note that the rules (25) cover all possible cases. Applying rule (25) iteratively gives:

αj2+1 ≥ γ

∑j2
j=j1

vj(αk)wj

inc γ

∑j2
j=j1

vj

( γinc
γdec

αk

)
(1−wj)

dec αj1 .

Moreover, since vj2 (αk)wj2 = 1, we have

αj2+1 = γincαj2 ≤ γincαk,

leading to

γincαk
αj1

≥ γ
∑j2

j=j1
vj(αk)wj

inc γ

∑j2
j=j1

vj

( γinc
γdec

αk

)
(1−wj)

dec . (26)

To bound the ratio γincαk
αj1

, we consider two cases. If j1 = 0, then γdecαk ≤ α0 by definition of

αk, and thus γdec
αk
αj1
≤ 1. Otherwise, if j1 > 0, we have by definition of j1 that vj1−1

(
γinc
γdec

αk

)
=

0, that is, αj1−1 ≥ γinc
γdec

αk. Per the updating rules on the step size, this implies

αj1 ≥ γdecαj1−1 ≥ γincαk,

hence γinc
αk
αj1
≤ 1 also holds in this case. Plugging this bound into (26) yields

1 ≥ γ
∑j2

j=j1
vj(αk)wj

inc γ

∑j2
j=j1

vj

( γinc
γdec

αk

)
(1−wj)

dec .

Taking logarithms, we obtain that

0 ≥ log(γinc)

j2∑
j=j1

vj(αk)wj + log(γdec)

j2∑
j=j1

vj

(
γinc
γdec

αk

)
(1− wj),

which after rearranging becomes

j2∑
j=j1

vj(αk)wj ≤ logγinc(γ
−1
dec)

j2∑
j=j1

vj

(
γinc
γdec

αk

)
(1− wj) = µ

j2∑
j=j1

vj

(
γinc
γdec

αk

)
(1− wj).

11



To conclude, we simply observe that

{j | vj(αk)wj = 1} ⊂
{
j
∣∣∣ vj ( γincγdec

αk

)
= 1
}
,

or equivalently, that every j ∈ {0, . . . , k − 1} for which vj(αk)wj = 1 is in such a subsequence
j1, . . . , j2. As a result, we obtain

k−1∑
j=0

vj(αk)wj ≤ µ
k−1∑
j=0

vj

(
γinc
γdec

αk

)
(1− wj).

�

Lemma 3.4 Let Assumption 2.1 hold. Consider a realization of Algorithm 2 and an index k
such that min0≤`≤k−1 ‖∇f(x`)‖ > 0. Then,

k−1∑
j=0

(1− vj (αk)) (1− wj) ≤
1

µ

k−1∑
j=0

(
1− vj

(
γdec

γinc
αk

))
wj + logγ−1

dec

(
α0

γdecαk

)
, (27)

where µ and αk are defined as in Lemma 3.3.

Proof. The proof follows the template of that of Lemma 3.3. The bound trivially holds if
(1− vj (αk)) (1 − wj) = 0 for every j ≤ k − 1. Therefore, we suppose that there exists at least
one index j ∈ {0, . . . , k − 1} such that (1 − vj(αk))(1 − wj) = 1. Since γdec

γinc
< 1, we also have(

1− vj
(
γdec
γinc

αk

))
(1−wj) = 1, thus there also exists at least one index satisfying this property.

Consider now a sequence of iterates j1, . . . , j2 such that
(

1− vj
(
γdec
γinc

αk

))
= 1 for every

j = j1, . . . , j2, with (1− vj2 (αk)) (1− wj2) = 1 and either j1 = 0 or vj1−1

(
γdec
γinc

αk

)
= 1: such a

sequence necessarily exists by assumption. From the updating rules on the stepsize, we obtain
the following possible cases:

αj+1 = γdecαj , if (1− vj(αk))(1− wj) = 1,

αj+1 ≤ αj , if vj(αk)
(

1− vj
(
γdec
γinc

αk

))
(1− wj) = 1,

αj+1 ≤ γincαj , if
(

1− vj
(
γdec
γinc

αk

))
wj = 1,

(28)

for any j = j1, . . . , j2. By applying rule (28) iteratively, we thus obtain

αj2+1 ≤ γ
∑j2

j=j1
(1−vj(αk))(1−wj)

dec γ

∑j2
j=j1

(
1−vj

(γdec
γinc

αk

))
wj

inc αj1 .

In addition, using that (1− vj2 (αk)) (1− wj2) = 1, we also have

αj2+1 = γdecαj2 ≥ γdecαk,

thus

γdec
αk
αj1
≤ γ

∑j2
j=j1

(1−vj(αk))(1−wj)

dec γ

∑j2
j=j1

(
1−vj

(γdec
γinc

αk

))
wj

inc . (29)

12



Taking the logarithm, we get

log

(
γdec

αk
αj1

)
≤ − log(γ−1

dec)

j2∑
j=j1

(1− vj(αk))(1− wj) + log(γinc)

j2∑
j=j1

(
1− vj

(
γdec
γinc

αk

))
wj ,

which after re-arranging gives

j2∑
j=j1

(1− vj(αk))(1− wj) ≤ logγ−1
dec

(γinc)

j2∑
j=j1

(
1− vj

(
γdec
γinc

αk

))
wj − logγ−1

dec

(
γdec

αk
αj1

)

=
1

µ

j2∑
j=j1

(
1− vj

(
γdec
γinc

αk

))
wj + logγ−1

dec

(
αj1

γdecαk

)

by definition of µ.

To bound the last term, we consider two cases. If j1 = 0, then
αj1

γdecαk
= α0

γdecαk
. Otherwise,

if j1 > 0, we have by definition of j1 that vj1−1

(
γdec
γinc

αk

)
= 1, that is, αj1−1 <

γdec
γinc

αk. Per the

updating rules on the step size, this implies

αj1 ≤ γincαj1−1 < γdecαk,

hence
αj1

γdecαk
≤ 1 and thus logγ−1

dec

(
αj1

γdecαk

)
< 0. Overall, we thus obtain that

j2∑
j=j1

(1− vj(αk))(1− wj) ≤


1
µ

∑j2
j=j1

(
1− vj

(
γdec
γinc

αk

))
wj + logγ−1

dec

(
α0

γdecαk

)
if j1 = 0

1
µ

∑j2
j=j1

(
1− vj

(
γdec
γinc

αk

))
wj otherwise.

Finally, we note that

{j | (1− vj(αk))(1− wj) = 1} ⊂
{
j
∣∣∣ 1− vj

(
γdec
γinc

αk

)
= 1
}
,

on equivalently, that every j ∈ {0, . . . , k − 1} for which (1 − vj(αk))(1 − wj) = 1 is in such a
subsequence j1, . . . , j2. This allows us to conclude

k−1∑
j=0

(1− vj(αk))(1− wj) ≤
1

µ

k−1∑
j=0

(
1− vj

(
γdec
γinc

αk

))
wj + logγ−1

dec

(
α0

γdecαk

)
.

�
The results of Lemmas 3.3 and 3.4 are sufficient to obtain a bound on the number of iterations

for which the directions are generated from both a descent set and a well-aligned subspace matrix.

Proposition 3.1 For any realization of Algorithm 2 and any positive integer k,

k−1∑
j=0

zj ≤
(1− p0)C

min{γ−2
incα

2
0, ᾱ

2[g̃k]2}
+ (1− p0) logγ−1

dec

(
γincα0

γ2
dec min{γ−1

incα0, ᾱg̃k}

)
+ p0k, (30)
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where g̃k = min0≤j≤k−1 ‖∇f(xj)‖,

C :=
(µγ2

dec + γ2
inc)γ

2
incβ

µγ4
dec

, (31)

and

p0 := max

{
ln(γdec)

ln(γ−1
incγdec)

,
ln(γinc)

ln(γincγ
−1
dec)

}
= max

{
1

1 + µ
,

µ

1 + µ

}
. (32)

Proof. For any j = 0, . . . , k − 1, we have

zj = zjvj(αk)wj + zj(1− vj(αk))(1− wj) + zj(1− vj(αk))wj . (33)

Indeed, the bound clearly holds when zj = 0. Assuming zj = 1, it also holds when vj(αk)wj = 1
or (1− vj(αk))(1−wj) = 1, while Lemma 3.1 implies that we cannot have zjvj(αk)(1−wj) = 1.
This last property will be instrumental in the proof of our result.

Summing (33) over all j = 0, . . . , k − 1, we obtain:

k−1∑
j=0

zj =
k−1∑
j=0

zj(1− vj(αk))wj +
k−1∑
j=0

zjvj(αk)wj +
k−1∑
j=0

zj(1− vj(αk))(1− wj). (34)

We will provide separate bounds on the three sums on the right-hand side of (34).

Consider first an index such that zj (1 − vj(αk))wj = 1. By definition of vj(αk), we obtain
from 1− vj(αk) = 1 that

1 ≤
(
αj
αk

)2

=
γ2

incα
2
j

γ2
dec min{γ−2

incα
2
0, ᾱ

2 min0≤`≤k−1 ‖∇f(x`)‖2}
.

Thus,

zj (1− vj(αk))wj ≤
zjwjγ

2
incα

2
j

γ2
dec min{γ−2

incα
2
0, ᾱ

2[g̃k]2}

and summing over all indices up to k − 1 gives

k−1∑
j=0

zj (1− vj(αk))wj ≤
γ2

inc

γ2
dec min{γ−2

incα
2
0, ᾱ

2[g̃k]2}

k−1∑
j=0

zjwjα
2
j ≤

γ2
incβ

γ2
dec min{γ−2

incα
2
0, ᾱ

2[g̃k]2}
, (35)

where the last inequality follows from Lemma 3.2.

We now bound the second term on the right-hand side of (34). Thanks to Lemma 3.3, we
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have

k−1∑
j=0

zjvj(αk)wj ≤
k−1∑
j=0

vj(αk)wj

≤ µ
k−1∑
j=0

vj

(
γinc

γdec
αk

)
(1− wj)

= µ

k−1∑
j=0

zjvj

(
γinc

γdec
αk

)
(1− wj) +

k−1∑
j=0

(1− zj)vj
(
γinc

γdec
αk

)
(1− wj)


≤ µ

k−1∑
j=0

zjvj

(
γinc

γdec
αk

)
(1− wj) +

k−1∑
j=0

(1− zj)(1− wj)


Now, for any j = 0, . . . , k − 1, we have

zjvj

(
γinc

γdec
αk

)
(1− wj) ≤ zjvj(ᾱg̃k)(1− wj) = 0,

hence the first sum in the above expression is always zero. Thus,

k−1∑
j=0

zjvj(αk)wj ≤ µ
k−1∑
j=0

(1− zj)(1− wj). (36)

We finally consider the last sum in the right-hand side of (34). Applying Lemma 3.4, we get

k−1∑
j=0

zj(1− vj(αk))(1− wj) ≤
k−1∑
j=0

(1− vj(αk))(1− wj)

≤ 1

µ

k−1∑
j=0

(
1− vj

(
γdec

γinc
αk

))
wj + logγ−1

dec

(
α0

γdecαk

)

=
1

µ

k−1∑
j=0

zj

(
1− vj

(
γdec

γinc
αk

))
wj

+
1

µ

k−1∑
j=0

(1− zj)
(

1− vj
(
γdec

γinc
αk

))
wj + logγ−1

dec

(
α0

γdecαk

)

≤ 1

µ

k−1∑
j=0

zj

(
1− vj

(
γdec

γinc
αk

))
wj

+
1

µ

k−1∑
j=0

(1− zj)wj + logγ−1
dec

(
α0

γdecαk

)
.

By the same reasoning used to obtain (35), we can bound the first sum in the last expression
as follows:

k−1∑
j=0

zj

(
1− vj

(
γdec

γinc
αk

))
wj ≤

γ4
incβ

γ4
dec min{γ−2

incα
2
0, ᾱ

2‖g̃k‖2}
.

15



Therefore, the following bound holds:

k−1∑
j=0

zj(1− vj(αk))(1−wj) ≤
γ4

incβ

µγ4
dec min{γ−2

incα
2
0, ᾱ

2‖g̃k‖2}
+

1

µ

k−1∑
j=0

(1− zj)wj + logγ−1
dec

(
α0

γdecαk

)
.

(37)
To conclude the proof, we combine (34), (35), (36) and (37) as follows:

k−1∑
j=0

zj ≤
k−1∑
j=0

zj(1− vj(αk))wj +
k−1∑
j=0

zjvj(αk)wj +
k−1∑
j=0

zj(1− vj(αk))(1− wj)

≤ γ2
incβ

γ2
dec min{γ−2

incα
2
0, ᾱ

2[g̃k]2}
+ µ

k−1∑
j=0

(1− zj)(1− wj) +
γ4

incβ

µγ4
dec min{γ−2

incα
2
0, ᾱ

2[g̃k]2}

+
1

µ

k−1∑
j=0

(1− zj)wj + logγ−1
dec

(
α0

γdecαk

)

=
(µγ2

dec + γ2
inc)γ

2
incβ

µγ4
dec min{γ−2

incα
2
0, ᾱ

2[g̃k]2}
+ µ

k−1∑
j=0

(1− zj)(1− wj)

+
1

µ

k−1∑
j=0

(1− zj)wj + logγ−1
dec

(
α0

γdecαk

)

≤
(µγ2

dec + γ2
inc)γ

2
incβ

µγ4
dec min{γ−2

incα
2
0, ᾱ

2[g̃k]2}
+ max

{
µ,

1

µ

} k−1∑
j=0

(1− zj) + logγ−1
dec

(
α0

γdecαk

)

=
C

min{γ−2
incα

2
0, ᾱ

2[g̃k]2}
+ max

{
µ,

1

µ

} k−1∑
j=0

(1− zj) + logγ−1
dec

(
α0

γdecαk

)
,

where the last line simply uses the formula (31) for C. Re-arranging the terms gives

k−1∑
j=0

zj ≤
max

{
µ, 1

µ

}
1 + max

{
µ, 1

µ

}k +
1

1 + max
{
µ, 1

µ

} [ C

min{γ−2
incα

2
0, ᾱ

2[g̃k]2}
+ logγ−1

dec

(
α0

γdecαk

)]
.

By using the formula (24) for αk and observing that

max
{
µ, 1

µ

}
1 + max

{
µ, 1

µ

} = max

{
µ

1 + µ
,

1

1 + µ

}
= p0

we arrive at the desired result. �
Note that Proposition 3.1 yields an alternate definition of p0 than that identified by Gratton

et al [22], which was log(γdec)

log(γ−1
incγdec)

. However, we point out that both terms in (32) are equal

whenever γinc = γ−1
dec, corresponding to p0 = 1

2 : this particular setting has been widely used in
analyzing derivative-free methods based on probabilistic properties [13].

In addition to the result of Proposition 3.1, we also have the following concentration inequal-
ity on the sum of the zk variables.
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Lemma 3.5 Consider the sequences {Dk}k and {P k}k generated by Algorithm 2, and suppose
that the sequences are (κ,Dmax, p)-descent and (η, σ, Pmax, q)-well-aligned, respectively.

Let πk(λ) := P
(∑k−1

j=0 Zj ≤ λk
)

for any λ ∈ (0, pq). Then,

πk(λ) ≤ exp

[
−(pq − λ)2

2pq
k

]
. (38)

The reasoning behind this result is the same as Lemma 4.5 of Gratton et al. [20], except that
the variable Zk involves two random events. To connect it with our probabilistic properties of
interest, one must use

P (Zk = 1|Z0, . . . , Zk−1) = P (Dk is (κ,Dmax)-descent & P k is (η, σ, Pmax) well-aligned|Fk−1)

= P
(
Dk is (κ,Dmax)-descent|Fk−1/2

)
×P (P k is (η, σ, Pmax) well-aligned|Fk−1) ,

which holds because the events on Dk and P k are conditionally independent.

Combining the results of Proposition 3.1 and Lemma 3.5 lead to our main high-probability
complexity result. The proof of this result follows from that of Theorem 4.6 in Gratton et
al. [20], and merely differs by the presence of the additional logarithmic term in (30).

Theorem 3.1 Suppose that the sequences {Dk}k and {P k}k generated by Algorithm 2 are
(κ,Dmax, p)-descent and (η, σ, Pmax, q)-well-aligned, respectively. Suppose further that pq > p0,
where p0 is defined as in Proposition 3.1, and consider an index k and a tolerance ε > 0 such
that

k ≥ 2

pq − p0

[
(1− p0)C

ᾱ2
ε−2 + (1− p0) logγdec

(
γ2decᾱ
γincα0

ε
)]

(39)

with C defined as in Proposition 3.1, and

ε ≤ min

{
1,
γ−1

incα0

ᾱ

}
. (40)

Then,

P
(
G̃k ≤ ε

)
≥ 1− exp

[
−(pq − p0)2

8pq
k

]
, (41)

where G̃k is the random variable associated with g̃k.

When r = n and P k = In, our result is of the same order as that of Gratton et al [20,
Theorem 4.6]. The additional logarithmic term in (39) can be viewed as an additional cost
incurred by the generalization of the reasoning to handle unbounded directions and random
subspaces.

The result of Theorem 3.1 can be stated in a number of alternate ways, depending on the
quantity of interest (gradient norm, number of iterations) and the type of result that is sought
(high probability, fixed probability guarantee, in expectation). We provide below two results
that are of particular interest to our approach. The first one is a high-probability complexity
bound on the number of function evaluations required to reach an approximate stationary point.
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Corollary 3.1 Under the assumptions of Theorem 3.1, let Nε be the number of function eval-
uations required by Algorithm 2 to reach a point xk such that ‖∇f(xk)‖ ≤ ε, where ε > 0
satisfies (40). Then,

P
(
Nε ≤

⌈
2m

pq − p0
φ(ε)

⌉)
≥ 1− exp

[
−(pq − p0)

4pq
φ(ε)

]
(42)

where φ(ε) = (1−p0)C
ᾱ2 ε−2 + (1− p0) logγdec

(
γ2decᾱ
γincα0

ε
)

.

The proof of Corollary 3.1 follows from that of Theorem 4.8 in Gratton et al. [20]. Its result
shows that Algorithm 2 has a high-probability complexity bound in

2m

pq − p0
φ(ε) = O

(
m

1

pq − p0
η−2σ−2P 4

maxD
8
maxκ

−2ε−2

)
(43)

The second corollary of our main result illustrates how our analysis leads to bounds in
expectation: this result can be obtained following the argument developed for derivative-free
algorithms based on probabilistic properties [21, Theorem 2.14].

Corollary 3.2 Under the assumptions of Theorem 3.1,

E [Nε] ≤
2m

pq − p0
φ(ε) +

1

1− exp
(
− (pq−p0)2

8pq

) , (44)

where Nε and φ(ε) are defined as in Corollary 3.1.

As φ(ε) = O(ε−2) for ε < 1, we obtain a complexity bound that matches that of other
probabilistic techniques in terms of dependencies on ε [21]. In addition, the dependencies on m,
κ and ε match that obtained for direct search based on deterministic descent (7). In the next
two sections, we will establish evaluation complexity bounds for several choices of subspaces and
polling sets.

3.3 Examples of direction generation techniques

The above analysis of Algorithm 2 requires that our poll directions {Dk}k are (κ,Dmax, p)-
descent and that our subspace matrices {P k}k are (η, σ, Pmax, q)-well-aligned. We now discuss
several approaches to satisfying these requirements, both deterministic and probabilistic.

We begin by noting that our framework encompasses direct search based on deterministic
and probabilistic descent. Indeed, if we take r = n and P k = In for every k, P k is (η, σ, Pmax, q)-
well-aligned with η = σ = Pmax = q = 1, and Algorithm 2 reduces to Algorithm 1. We then
recover classical, deterministic direct search by choosing all Dk to be the same PSS: the sequence
{Dk}k is then (κ,Dmax, p)-descent with p = 1, and m ≥ n + 1. Table 1 shows the values of m,
κ and Dmax for three popular approaches: the coordinate vectors and their negatives, a set of
n + 1 vectors with uniform angles [14, Chapter 2.1], or the coordinate vectors and the vector
with all entries −1.2 For probabilistic descent, we form Dk by generating m independent vectors
uniformly distributed on the unit sphere: in that case, Dk is (κ,Dmax, p)-descent with Dmax = 1,

κ = τ/
√
n and p≥1−

(
1
2 + τ√

2π

)m
for any τ ∈ [0,

√
n] [20, Appendix B]. Choosing τ = 1, we can
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Method m κ Dmax Success prob. p

[Ir,−Ir] 2r r−1/2 1 1
Uniform angle PSS r + 1 r−1 1 1

[Ir,−er] r + 1 (r2 + 2(r − 1)
√
r)−1/2

√
r 1

Random unit vectors O(1) r−1/2 1 1− (1/2 + 1/
√

2π)m.

Table 1. Summary of methods for generating a direction set Dk in Rr.

make the lower bound on p sufficiently large so that it exceeds p0 by taking m = O(1). These
choices are summarized in Table 1.

We now explain how to generate P k matrices that are probabilistically well-aligned (the
previous paragraph gives an example of a deterministically well-aligned matrix). Consider first
the requirements (12) and (13). Three possible approaches can be used:

• If P k has entries which are i.i.d. N (0, 1/r) and r = Ω((1 − η)−2| log(1 − q)|), then P k

satisfies (12) and (13) [5, Theorem 2.13] with Pmax = Θ(
√
n/r) with high probability [3,

Corollary 3.11].

• If P k is an s-hashing matrix3 with s = Θ((1−η)−1| log(1−q)|) and r = Ω((1−η)−2| log(1−
q)|), then P k satisfies (12) and (13) for Pmax =

√
n, where the value of Pmax comes from

‖P k‖2 ≤ ‖P k‖F =
√
n [24].

• If P k =
√
n/rIr×nQT where Ir×n denotes the first r rows of the n × n identity matrix

In, and Q ∈ Rn×n is the orthogonal factor in the QR decomposition Z = QR ∈ Rn×n
of a matrix Z with i.i.d. standard normal entries such that the diagonal entries of R are
positive, then ‖P k‖2 ≤

√
n/r, so P k satisfies (13). Moreover, for a given r and η, P k

satisfies (12) with probability q = 1−Iηr/d(r/2, (n−r)/2), where Ip(α, β) is the regularized
incomplete Beta function [26, Lemma 1]. Although this does not give a closed form for a
suitable choice of r, numerical evidence suggests that r may be chosen independently of
n [26, Figure 1].

We now focus on condition (14), that corresponds to bounding the smallest singular value
of P k away from zero. For Gaussian matrices with entries in N (0, 1/r) as above, the estimate
σmin(P T

k ) ∼
√
n/r − 1 holds with high probability [32, Theorem 1.1]. In the case of orthog-

onal subsampling (the third case above), we automatically have σmin(P T
k ) =

√
n/r. We are

unaware of theoretical results showing that σmin(P k) = Θ(
√
n/r) for hashing matrices, we

present numerical evidence that this estimate holds when n is sufficiently large compared to r
in Appendix A.

Table 2 summarizes our results for the three random choices of P k described above: for such
choices, since r can be chosen as small compared to the ambient dimension n, we may choose
Dk to be a standard PSS in Rr, such as the columns of [Ir − Ir]. As result, our poll step tests
the points xk ± αkpk,i, where pk,i is the i-th row of P k. In that case, we obtain directions that
are very similar to those used in Gratton et al. [20]. In fact, using r = 1 and orthogonal P k

corresponds to using {±
√
n v}, where v ∈ Rn is a randomly drawn unit vector. Up to a scaling

constant, this recovers the method described in Gratton et al. [20, p. 1535]. Our framework

2We thank Warren Hare and Gabriel Jarry-Bolduc for checking the value of κ in that latter case [23].
3i.e. every column of P k has exactly s nonzero entries at randomly selected locations, each taking value ±1/

√
s

with independent probability 1/2.
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Method r Success prob. q Pmax σ Comments
Identity n 1 1 1 —

Gaussian O(1) 1− e−
(1−η)2
Ar Θ(

√
n/r) Θ(

√
n/r) Pmax, σ valid with high prob.

s-Hashing O(1) 1− e−
(1−η)2
Ar

√
n Θ(

√
n/r) s = Θ( | log(1−q)|1−η ), σ from App. A

Orthogonal O(1) 1− Iηr/d( r2 ,
n−r
2 )

√
n/r

√
n/r r estimated from [26, Figure 1].

Table 2. Summary of methods for generating P k. The value A is used to represent a universal constant.

Columns of Dk \ P k choice Identity Gaussian s-Hashing Orthogonal
[I,−I] n2 n n n

Uniform angle PSS n3 n n n
[I,−e] n7 n n n

Random unit vectors n n n n

Table 3. Summary of evaluation complexity dependency on n for different choices of P k and Dk in
Algorithm 2.

is however more general: for instance, using a Gaussian matrix P k with r = 1 leads to the
directions {±v}, where v ∈ Rn is a vector with i.i.d. standard Gaussian components.

Remark 3.1 Compared to traditional direct search, the use of random subspaces defined by
P k increases the per-iteration linear algebra cost of Algorithm 2: however, this cost depends
on the ensemble from which P k is generated. For instance, a Gaussian P k would have a per-
iteration cost of O(nr) to generate the matrix, and O(mnr) to construct each P T

k d, noting that
m = O(r) for most methods considered above. By contrast, an orthogonal P k requires O(nr2) to
generate P k via QR factorization, and again O(mnr) to construct P T

k d. Finally, using hashing
to generate P k would take approximately O(ns) work, depending on the specific method used to
select the nonzero locations, and only O(m nnz(P k)) = O(mns) to construct P T

k d using sparse
multiplication. Note that this cost is lower when Dk contains sparse vectors, such as the columns
of [Ir − Ir].

3.4 Evaluation complexity results

As illustrated in Section 3.3, the framework given by Algorithm 2 may be implemented in
various ways. We now compare several instances of this method using the evaluation complexity
bound (43) derived in Section 3.2. We pay particular attention to the dependency on n that
arises as we instantiate the method, since our reduced space approach aims at reducing this
dependency.

Table 3 highlights the dependency on n for several variants of the method. Note that for
classical direct search (P k = In, Dk deterministic), there is a substantial difference in complexity
depending on the choice of Dk. On the contrary, using a randomized subspace choice P k always
leads to an evaluation complexity in O(nε−2), independently of the choice of Dk. Our result
recovers the O(nε−2) complexity from direct search based on probabilistic descent [20], and
shows how the same result may be achieved with substantially greater flexibility. It also gives
further insight into the choice P k = In and Dk = {±v} where v is a random unit vector, briefly
discussed in Gratton et al. [20, p. 1535]. As explained above, this choice may be viewed as
taking P k to be orthogonal with r = 1 and Dk as the columns of [In,−In].
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We conclude this section by commenting on the connections between our results and that
obtained for model-based techniques. Unlike for direct search, in the model-based setting, using
models that are of probabilistically good quality (or probabilistically fully linear [14]) is not
known to improve the dependence on the dimension [21]. However, such an improvement can be
obtained by using deterministically fully linear models in randomly drawn subspaces [12]. This
result, together with the complexity analysis of this section, suggests that using random sub-
space exploration is a more general approach method for producing the complexity improvement
observed in both direct-search and model-based techniques.

4 Numerical experiments

In this section, we investigate the practical performance of Algorithm 2 by comparing the fol-
lowing direct-search methods:

• Algorithm 1 with deterministic descent, setting Dk as either the columns of [In − In] or
Dk = [In − en], where en ∈ Rn is the vector of ones;

• Algorithm 1 with probabilistic descent, using Dk = {±v} where v ∈ Rn is drawn from the
uniform distribution on the unit sphere ‖v‖ = 1;

• The Stochastic Three-Points (STP) algorithm from Bergou et al.[4], that relies on opposite
directions uniform on the sphere, with step size schedule αk = α0/(k + 1);

• Algorithm 2 with P k taken either to be a Gaussian matrix with r ∈ {1, 2, 3, 4, 5}, a hashing
matrix, or a subsampled orthogonal matrix with r ∈ {1, 5}. The poll directions were chosen
to be columns of [Ir − Ir].

All methods used α0 = 1 and terminated if αk < 10−6. The direct search methods used γinc = 2,
γdec = 0.5, αmax = 1000, and used opportunistic polling4 with the sufficient decrease condition

f(xk + αkP
T
k dk) < f(xk)−min

(
10−5, 10−5α2

k‖P T
k dk‖2

)
, (45)

where P k = I for standard and probabilistic direct search. All methods used in our experiments
have been implemented within a Python package that has been made publicly available.5

4.1 Robust Regression

Our first set of experiments considers a robust linear regression problem with Gaussian data
and a significant fraction of outliers, described by Carmon et al. [6]. Specifically, we perform
linear regression using a smoothed biweight loss function:

f(x) =
1

m

m∑
i=1

φ(aTi x− bi), where φ(θ) :=
θ2

1 + θ2
. (46)

The vectors ai ∼ N(0, In) are i.i.d. Gaussian vectors and the values bi are the coordinates of
b = Az + 3u1 + u2, where A has columns ai, z ∼ N(0, 4Im), u1 ∼ N(0, Im) and the entries of

4i.e. Do not check any other poll directions as soon as a dk satisfying (45) is found.
5https://github.com/lindonroberts/directsearch
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u2 are i.i.d. Bernoulli distributed with p = 0.3. We choose n = 100, m = 200, start all solvers
from the origin and run each solver for a maximum of 50(n+ 1) objective evaluations. For this
initial study, we only compare direct search with 2n poll directions, probabilistic direct search,
STP and Algorithm 2 with Gaussian P k and r = 1. All randomized methods are run 10 times
for a given problem.
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(b) Second problem instance

Figure 1. Objective value versus number of objective evaluations (in units of n + 1) for the nonconvex
regression problem (46). For randomized methods, we show the average value (±1 standard deviation)
achieved over 10 instances.

In Figure 1, we plot the average objective value reached (over the 10 runs per solver with
±1 standard deviation error bounds) versus the number of objective evaluations normalized
in terms of simplex gradients (i.e. units of n + 1 evaluations). We show these results for two
instances of problem (46), with different choices of ai and b. All three randomized variants based
on Algorithm 2 substantially outperform the traditional (deterministic) direct search method.
Moreover, using randomized subspaces (effectively using Gaussian poll directions) leads to better
results on average than using unit vectors as poll directions, as done in probabilistic direct search
and STP.

4.2 CUTEst Collections

Our second set of experiments is based on two collections of problems from the CUTEst opti-
mization test set [19]:

• The CFMR collection [8, Section 7] of 90 medium-scale problems (25 ≤ n ≤ 120, with
n ≈ 100 for 67 problems, approximately 75%), ignoring bound constraints if any;

• The CR-large collection [12, Appendix B] of 28 large-scale problems (1000 ≤ n ≤ 5000).

All solvers were run for at most 200(n+ 1) objective evaluations for the CFMR collection, and
at most 10(n + 1) evaluations for the CR-large collection. As above, all randomized methods
were run 10 times on every problem.
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Figure 2. Comparison of r values for Gaussian sketching

In this case, for each problem P and solver instance S, we measure the number of objective
evaluations NP,S required to achieve

f(xk) ≤ f∗ + τ(f(x0)− f∗), (47)

where τ ∈ (0, 1) measures the required accuracy and f∗ is the true minimum objective value for
each problem. If this accuracy level is never achieved for a particular solver instance (within
the desired budget or before termination), we take the convention NP,S =∞. We then compare
solver performance using performance profiles [16], which, for a given solver S, plots the fraction
of test problems for which NP,S is within some factor of minS NP,S (averaged over all solver
instances).

Figure 2 compares Algorithm 2 with Gaussian P k for different values of r, for both CFMR
and CR-large test sets and accuracy levels τ ∈ {10−1, 10−3}. In the case of the medium-scale
CFMR problems, we see that smaller r values give the best performance, but all values are
able to solve essentially the same number of problems. In the case of large-scale CR-large
problems, again smaller r values give the best performance, but we find that larger r values
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Figure 3. Comparison of different solvers

are less robust in terms of the total number of problems solved (within the given evaluation
budget). Motivated by these results, in Figure 3 we compare Algorithm 2 (with Gaussian
and hashing P k and r = 1) with the other direct-search variants. For both problem sets and
accuracy levels, the best-performing methods are probabilistic direct search (Algorithm 1 with
uniformly random directions) and the two Algorithm 2 variants, which for larger performance
ratios strongly outperform deterministic direct search and STP. Comparing Algorithm 2 with
probabilistic direct search, we see broadly a very similar level of performance, reflecting the
similarity of the two methods (both randomized with at most two objective evaluations per
iteration at xk ±αkv for a random vector v). However, for low-accuracy solutions to the larger
test problems CR-large, we see that allowing non-unit poll directions in Algorithm 2 gives a
notable performance improvement over probabilistic direct search.

Overall, we find that Algorithm 2 performs similarly well to probabilistic direct search in
many instances, although there appears to be a reasonable fraction of problems (in CUTEst and
the nonconvex regression problem) for which our new approach gives superior performance.
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5 Conclusion

We have proposed a general direct-search framework equipped with complexity guarantees that
allows for polling in low-dimensional subspaces. We identified properties of both the subspaces
and the polling directions that enable the derivation of complexity guarantees, which we ex-
pressed in a probabilistic form. Both our theoretical analysis and our numerical experiments
suggest that using one-dimensional subspaces is an overall efficient approach that allows for
applying direct-search methods to larger dimensional problems than usually considered in the
literature. Interestingly, the use of random embeddings does not remove all dependencies on
the original dimension of the problem, but comes with the computational advantage of drawing
only two directions per iteration.

Our approach is based on characterizing properties of the polling directions at the itera-
tion level, while information from previous iterations is typically used in practice to improve
the polling set. On the other hand, removing our conditional independence yields a number of
mathematical challenges, that would have to be overcome in order to obtain a complexity re-
sult. Similarly, extending this method to handle noisy function values would require combining
our analysis with existing frameworks for stochastic optimization, some of which have strong
similarity to direct search [17, 28]. Both avenues of research represent natural perspectives for
future work.
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A Smallest Singular Value of Hashing Matrices

This appendix provides numerical evidence for the bound σ = Θ(
√
n/r) when P k is a hashing

matrix (see the description in Section 3.3) and σ > 0 is the parameter used in Definitions 3.1
and 3.2. To this end, we generated 100 independent hashing matrices with s = 1 for different
combinations of n and r (with n � r) and calculated their smallest singular value. Note that
for hashing matrices, we have σ ≤ σmin(P k) = σmin(P T

k ) ≤ Pmax, and that Pmax ≤
√
n.

In Figure 4, we plot the mean, maximum and minimum values for each of the 100 independent
trials. When n � r, we observe that there is very little uncertainty in σmin(P k), and the
relationship σmin(P k) = O(

√
n) holds, as shown by Figure 4a. Similarly, we see little uncertainty

in σmin(P k) as r varies (see Figure 4b), while the relationship σmin(P k) = O(1/
√
r) holds.

Altogether, these results suggest that the value σ = Θ(
√
n/r) leads to satisfaction of (14) with

high probability when P k is a hashing matrix.
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Figure 4. Computed values of σmin(P k) (minimum nonzero singular value) for hashing with s = 1, as a
function of n and r.
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