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Abstract

This paper addresses the mathematical programs with cardinality constraints (MPCaC). We
first define two new tailored (strong and weak) second-order necessary conditions, MPCaC-
SSONC and MPCaC-WSONC. We then propose a constraint qualification (CQ), namely,
MPCaC-relaxed constant rank constraint qualification (MPCaC-RCRCQ), and establish the
validity of MPCaC-SSONC at minimizers under this new CQ. All proposed concepts are
based on the so-called M-stationarity, which is the suitable first-order stationarity for MP-
CaC. Furthermore, they are defined using only original variables, without the help of exoge-
nous auxiliary variables commonly considered in this context. We illustrate the applicability
of MPCaC-WSONC to derive global convergence for a second-order augmented Lagrangian
algorithm under MPCaC-RCRCQ. The advantages of the tailored MPCaC-WSONC over the
standard WSONC are discussed, showing that MPCaC-WSONC is the appropriate condition
to study the global convergence of algorithms for MPCaC.

1 Introduction

In this work, we deal with mathematical programs with cardinality constraints (MPCaC) of the
form

min f(x) subject to g(x) ≤ 0, h(x) = 0, ∥x∥0 ≤ α, (1) prob:mpcac

where f : Rn → R, g : Rn → Rm and h : Rn → Rp are twice continuously differentiable functions,
0 < α < n is a given natural number and ∥x∥0 is the cardinality of the vector x ∈ Rn, that is,
the number of nonzero components of x. It should be mentioned that ∥ · ∥0 is not a norm and the
cardinality constraint is not continuous neither convex. This makes the above problem distinct,
more degenerated than a standard nonlinear programming problem (NLP). It has applications in
several areas such as portfolio optimization, compressing sense and subset selection in regression.
See [15, 30] and references there in.

Although it is possible to completely reformulate (1) by a mixed-integer model, it is common
in the literature dealing with (1) through the continuous NLP

min f(x)
subject to g(x) ≤ 0, h(x) = 0,

n− eT y ≤ α, y ≤ e, x ∗ y = 0,
(2) prob:mpcacref
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�Federal University of Paraná - PR, Brazil. ademir.ribeiro@ufpr.br, mael@ufpr.br
§Department of Applied Mathematics, Federal University of Esṕırito Santo - ES, Brazil.
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see for instance [16, 17, 21]. The relaxed reformulation (2) is slightly different from that of [16, 17]
since we do not impose y ≥ 0. This, however, does not interfere with the results. It is well known
that we are able to recover global solutions of (1) through (2), while local minimizers of both
problems are related only if ∥x∥0 = α [16]. Nevertheless, problem (2) is widely used because,
unlike (1) and mixed-integer models, it is solvable by standard optimization algorithms. In this
sense, stationary points of (2) are considered good candidates for the solutions of (1).

Inspired in the related mathematical programs with complementarity constraints (MPCC) [28],
the authors of [16] propose tailored stationarity concepts, namely S- and M-stationarity. S-
stationarity is equivalent to the KKT conditions for (2), and thus it can be considered the best
stationary concept. Clearly, it involves both x and y variables. In turn, similar to the MPCC
context, M-stationarity can be viewed as the KKT conditions for the NLP model obtained directly
from (1) by fixing all zero xi at the target point as equality constraints (the tightened nonlinear
program). Despite the apparent weakness of M-stationarity compared to S-stationarity, it was
recently established that these two concepts are actually equivalent if we perform a simple adjust-
ment on the components of y [21, Proposition 2.3]. So, M-stationary becomes the “standard” first
order concept for MPCaC due to its simplicity, as it does not involve the auxiliary variable y. See
also [24] for a unified approach of S- and M-stationarity. It should be mentioned that, despite the
MPCaC machinery being inspired by the MPCC theory, MPCaC has a lower level of degeneracy
than MPCC, which justifies a particular study. See [16].

Second-order optimality conditions were widely studied for standard NLP; they are present
in several works and classical books on nonlinear programming. The most common of them
are the strong and weak second-order necessary condition (SSONC and WSONC for shortly),
which basically consist of the non-negativity of the Hessian of the Lagrangian over a critical cone.
However, in the context of cardinality problems only the work [15] treats the subject, to the best
of our knowledge. It is worth mentioning that their conditions are constructed with a special,
MPCaC-tailored, linearization of the feasible set, which differs from the standard one for (2). A
similar linearization is used for MPCCs [18]. In both contexts, such linearizations are necessary
due to the degeneracy of cardinality/complementarity constraints.

In this paper we define two new tailored second-order necessary conditions for MPCaC that we
refer by MPCaC-SSONC and MPCaC-WSONC. The main goal is that these conditions are based
on M-stationarity, which, as we already mentioned, is the most stringent and preferable first-order
stationarity concept. In particular, they are defined using only the original variable x. It should be
mentioned that the second-order conditions in [15] require S-stationary points, and consequently
the auxiliary variable y, to attest their validity at minimizers. In this sense, our theory is clearer
and better fits the original problem (1). Furthermore, we prove the convergence of a well established
practical second-order augmented Lagrangian (AL) algorithm [1] to MPCaC-WSONC points. To
the best of our knowledge, it is the first time that such a result has been proved for MPCaC.
This is in accordance with standard NLP, where WSONC points are considered those that can be
reached by algorithms [11, 19]. Curiously, although the authors of [15] consider the convergence
of regularization methods, they did not use their weak necessary condition for this purpose; they
focus on second-order sufficiency as a hypothesis to derive stability and local convergence results.
This is the same path adopted in the MPCC context, where such methods usually come from. See
for example [29].

It is well known that M-stationarity is not necessarily valid at minimizers of cardinality prob-
lems; to this purpose, a constraint qualification (CQ) is usually imposed. Evidently, the same is
true for MPCaC-S/WSONC since they are defined over M-stationary points. In [15], an MPCaC-
tailored constant rank CQ (which we call MPCaC-CRCQ) for second-order optimality was pro-
posed. It consists of adapting the constant rank CQ (CRCQ) for NLP proposed in [20], which
is known to be a CQ associated with SSONC [3]. In [26], a generalization of CRCQ for NLP
was proposed, called relaxed constant rank CQ (RCRCQ), which later was proved to be also a
CQ for SSONC [5]. Based on this fact, we proposed in this paper the MPCaC-relaxed constant
rank CQ (MPCaC-RCRCQ), and we prove that it is a constraint qualification for MPCaC-SSONC
(consequently, also for MPCaC-WSONC and M-stationarity). Despite the similarities with NLP,
MPCaC-RCRCQ and MPCaC-CRCQ can be quite different in the MPCaC context. In fact, we
show that MPCaC-RCRCQ is always valid at the origin, whereas MPCaC-CRCQ does not. This
is coherent with the fact that the origin, whenever feasible, is always M-stationary independently
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of any regularity [22].
The paper is organized as follows: in section 2 we define our second-order necessary conditions

MPCaC-SSONC and MPCaC-WSONC, and the constraint qualification MPCaC-RCRCQ; we also
prove that under this CQ, minimizers of cardinality problems are M-stationary and satisfy MPCaC-
W/SSONC. In section 3 we discuss the application of the second-order AL algorithm defined in
[1] for solving problem (1) and prove its global convergence to MPCaC-WSONC points under
the new MPCaC-RCRCQ. In section 4 we present the relationship between MPCaC-WSONC and
standard WSONC condition on the reformulated problem (2). On the one hand, we show that
MPCaC-WSONC has the same strength as WSONC, so MPCaC-WSONC is a suitable condition
for studying global convergence of algorithms. But, on the other hand, we exhibit an example where
we lose the positivity of the Hessian of the Lagrangian in WSONC when xi = yi = 0, justifying
why the tailored MPCaC-WSONC condition is adequate for the MPCaC context. Conclusions and
future work are presented in section 5.
Notation. The Hadamard product between two vectors x, y ∈ Rn, that is, the vector obtained
by the componentwise product of x and y, is denoted by x ∗ y. Given δ > 0 and z ∈ Rn, z+ is
the vector of entries max{0, zi}, diag(z) is the n × n diagonal matrix with diagonal z and Bδ(z)
denotes the open ball centered at z with radius δ. We also use the following sets of indices:
Ig(x) = {i | gi(x) = 0}, I+g (x) = {j ∈ Ig(x) | µj > 0} and I0(x) = {i | xi = 0}.

2 Second-order optimality condition for MPCaC problems

⟨sec:prelim⟩The Lagrangian function L : Rn × Rm
+ × Rp × Rn → R associated with (1) is defined by

L(x, µ, λ, γ) = f(x) + µT g(x) + λTh(x) + γTx.

We have ∇xL(x, µ, λ, γ) = ∇f(x) +∇g(x)µ+∇h(x)λ+ γ and

∇2
xxL(x, µ, λ, γ) = ∇2f(x) +

m∑
i=1

µi∇2gi(x) +

p∑
i=1

λi∇2hi(x). (3) HmathcalL

M-stationarity is defined as follows.

⟨def:w⟩Definition 1. Let x∗ be a feasible point for (1). We say that x∗ is M-stationary if there exists a
vector (µ, λ, γ) ∈ Rm

+ × Rp × Rn such that
⟨w⟩

∇xL(x∗, µ, λ, γ) = 0, (4a) w:grad_L

µT g(x∗) = 0, (4b) ?w:g?

γ ∗ x∗ = 0. (4c) w:x

Local minimizers of (1) are M-stationary points under very mild MPCaC-tailored CQs. See for
instance [22, Theorems 3.2 and 4.7].

It should be noticed that the M-stationarity concept previously introduced in the literature
refers to the reformulated problem (2), while our Definition 1 refers to the original problem (1). In
relation to the original variable x, these definitions are exactly the same as they do not depend on
y. So, referring to (1) or (2) is a matter of choice. As (4) does not contain y, we prefer to refer to
the original problem (1). On the other hand, the S-stationarity concept defined in the literature
(see e.g. [15, 16, 17]) only makes sense for (2) since it is the KKT conditions for this problem. In
the statements of our results we choose to say explicitly “KKT for (2)” instead of dealing with an
additional stationarity definition.

If x∗ is M-stationary, then taking y∗i = 1 for i ∈ I0(x
∗) and y∗i = 0 otherwise, the point (x∗, y∗)

is KKT for (2) [21, Proposition 2.3]. So, M-stationarity can be considered the strongest first-order
stationarity concept for (1). Our aim is to derive a second-order (necessary) stationary concept
for (1) based on M-stationarity that does not use the auxiliary variable y. At the same time, this
concept should be connected with the convergence of practical algorithms.

In standard nonlinear programming, second-order conditions request the positive semi-
definiteness of the Hessian of the Lagrangian function over the set of non-ascending directions
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(the critical cone). Let us consider the feasible set of (1),

Ω = {x ∈ Rn | g(x) ≤ 0, h(x) = 0, ∥x∥0 ≤ α}.

The tangent cone to Ω at x∗ ∈ Ω is the set

T (x∗) =
{
d ∈ Rn | ∃(xk) ⊂ Ω, {tk} ⊂ R+ with tk → 0 and (xk − x∗)/tk → d

}
.

Another cone associated with Ω is defined by means of the relaxed problem (2). Similar to MPCCs,
the main difficulty to linearize the feasible set lies in the constraint x∗y = 0. When ∥x∥0 < α, this
expression has a combinatorial nature that describes different faces of the feasible set depending
on the choice of y. Bucher and Schwartz [15] proved that the union of such faces results in the
following linearization

T BS
lin (x∗) =

d ∈ Rn

∣∣∣∣∣∣
∇gi(x∗)T d ≤ 0, i ∈ Ig(x

∗),
∇h(x∗)T d = 0,
|I0(x∗) ∩ I0(d)| ≥ n− α

 .

Note that this set does not depend on y, it encompasses y “implicitly”. Also, |I0(x∗)∩I0(d)| ≥ n−α
captures all directions in the tangent space of every active face at x∗, as showed in the next lemma.

?⟨lm:TsubL⟩?Lemma 1. Let x∗ be a feasible point for (1). Then T (x∗) ⊂ T BS
lin (x∗).

Proof. Let d ∈ T (x∗) be arbitrary. There exist sequences {xk} ⊂ Ω and {tk} ⊂ R+ such that
tk → 0 and (xk − x∗)/tk → d. The proof that ∇gi(x∗)T d ≤ 0 for i ∈ Ig(x

∗) and ∇h(x∗)T d = 0
is straightforward. Now, since ∥xk∥0 ≤ α, the set Jk = {i | xk

i = 0} satisfies |Jk| ≥ n − α for all
k ∈ N. Moreover, there are only finitely many possible choices of index sets Jk and hence at least
one of these sets occurs infinitely often in the sequence, let us say Jk = J for all k ∈ K ⊂ N. Thus,
xk
i = 0 for all i ∈ J and k ∈ K, which yields x∗

i = limk∈K xk
i = 0 for all i ∈ J . Thus J ⊂ I0(x

∗).
To conclude the proof, note that |J | ≥ n− α and di = limk∈K(xk

i − x∗
i )/tk = 0 for all i ∈ J .

Remark 1. As in NLP, we have T (x∗) ̸⊃ T BS
lin (x∗) in general. For instance, consider the

constraints −x3
1 + x2 ≤ 0, −x2 ≤ 0, ∥x∥0 ≤ 1, the point x∗ = (0, 0), and d = (−1, 0). Note

that d ∈ R × {0} = T BS
lin (x∗), but d ̸∈ T (x∗). In fact, every sequence {xk} ⊂ Ω must satisfy

(xk
1)

3 ≥ xk
2 ≥ 0, and hence xk

1/tk ≥ 0, which means that (xk − x∗)/tk → d does not occur.

In [15] the authors provide a second-order necessary optimality condition for critical directions
obtained from T BS

lin (x∗), assuming that the minimizer is S-stationary. However, as far as we are
aware, this condition does not hold if we change S- by M-stationarity. Actually, the authors
themselves remark that this is not possible due to the freedom in which d can be taken. See
Example 3 and its related discussion.

In order to establish a second-order optimality condition associated with M-stationarity, we
propose the following linearized cone:

Tlin(x∗) =

d ∈ Rn

∣∣∣∣∣∣
∇gi(x∗)T d ≤ 0, i ∈ Ig(x

∗),
∇h(x∗)T d = 0,
di = 0, i ∈ I0(x

∗)

 .

It is clear that Tlin(x∗) ⊂ T BS
lin (x∗), but the contrary inclusion is not true in general. Indeed,

Example 1 shows that we do not have even T (x∗) ⊂ Tlin(x∗) in general. The difference between
these linearized sets lies in the null components of the directions: in Tlin(x∗), di must be zero
whenever xi = 0, while in Tlin(x∗) some of these components may be nonzero. See Figure 1.

⟨ex:cones⟩Example 1. Consider only the cardinality constraint ∥x∥0 ≤ 2, where x ∈ R3, and the point x∗ =
(1, 0, 0). The feasible set Ω is the union of the three coordinate planes, and its tangent set T (x∗)
is the union of the planes x2 = 0 and x3 = 0. But Tlin(x∗) = {(x1, 0, 0) | x1 ∈ R} ⊉ T (x∗).

In the MPCaC literature, it is known that there is a one-to-one correspondence between local
minimizers of problems (1) and (2) when ∥x∥0 = α [16]. In such a case, there is a slightly
smaller level of degeneracy since an Abadie-type CQ holds [24]. Next we show that T BS

lin (x) and
Tlin(x) coincides if ∥x∥0 = α. This encourages the use of Tlin(x) to derive a suitable second-order
optimality.
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Figure 1: Representation of T BS
lin (x) (left figure) and Tlin(x) (right figure) for ∥x∥0 ≤ α = 2,

x ∈ R3. There are two points: x̂ with x̂1, x̂3 ̸= 0, x̂2 = 0; and x̃ with x̃2 ̸= 0, x̃1 = x̃3 = 0. At x̂,
∥x̂∥0 = 1 = n − α, and both linearized sets are composed by directions d with d2 = 0; thus they
coincide (see Theorem 1). At x̃, the larger set T BS

lin (x) encompasses directions with at least one
component d1 or d3 zero, while Tlin(x) requires both d1 and d3 zero.

⟨fig:tangent⟩

⟨teo:cones⟩Theorem 1. Consider x∗ ∈ Ω. If ∥x∗∥0 = α then T BS
lin (x∗) = Tlin(x∗).

Proof. In fact, given d ∈ T BS
lin (x∗) we have |I0(x∗)| = n− ∥x∗∥0 = n− α ≤ |I0(x∗) ∩ I0(d)|, which

implies I0(x
∗) ⊂ I0(d). In particular, di = 0 for all i ∈ I0(x

∗), and thus T BS
lin (x∗) ⊂ Tlin(x∗). The

opposite inclusion is trivial.

Using Tlin(x∗), we are able to define our strong second-order optimality necessary condition,
which does not depend on auxiliary variable y. This is in accordance with M-stationarity (Defini-
tion 1).

⟨def:ssonc⟩Definition 2. Let x∗ be an M-stationary point of (1). We say that x∗ fulfills the strong second-
order optimality necessary condition (MPCaC-SSONC) if there is a multiplier vector (µ, λ, γ) ∈
Rm

+ × Rp × Rn associated with x∗ such that

dT∇2
xxL(x∗, µ, λ, γ)d ≥ 0 for all d ∈ CS(x∗),

where CS(x∗) is the strong MPCaC critical cone defined as

CS(x∗) = {d ∈ Tlin(x∗) | ∇f(x∗)T d ≤ 0}.

?⟨rem:gradfdnulo⟩?Remark 2. As in standard NLP, if x∗ is M-stationary we can rewrite CS(x∗) using multipliers
instead of the gradient of the objective function. To be precise, if (µ, λ, γ) ∈ Rm

+ × Rp × Rn is a
vector of associated multipliers then

CS(x∗) =
{
d ∈ Tlin(x∗) | ∇gi(x∗)T d = 0, i ∈ I+g (x∗)

}
. (5) strong_cone

In fact, given d ∈ CS(x∗), using (4a) and (4c) we obtain 0 ≤ −
∑

i∈Ig(x∗) µi∇gi(x∗)T d =

∇f(x∗)T d ≤ 0, from which follows ∇gi(x∗)T d = 0 for i ∈ I+g (x∗). On the other hand, if d
satisfies the restrictions in (5), using again (4a) and (4c) we conclude that

∇f(x∗)T d = −
∑

i∈Ig(x∗)

µi∇gi(x∗)T d = −
∑

i∈I+
g (x∗)

µi∇gi(x∗)T d = 0,

implying d ∈ CS(x∗).

It is well known from standard NLP that the strong second-order necessary condition can not be
expected at the limit points of practical algorithms [11, 19]. Instead, the adequate concept in this
context is the weak second-order necessary condition, which consists of relaxing the requirements
on ∇g in (5). We then derive an MPCaC-tailored weak second-order optimality necessary condition
(MPCaC-WSONC), which substitutes the strong critical cone CS(x∗) in Definition 2 by a smaller
set CW (x∗) ⊂ CS(x∗), called weak critical cone, defined as

CW (x∗) =
{
d ∈ Tlin(x∗) | ∇gi(x∗)T d = 0, i ∈ Ig(x

∗)
}
. (6) CW
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As occurs with the first-order concept M-stationarity, second-order conditions are not neces-
sarily valid at minimizers unless some CQ holds. Like in the MPCC context, a usual way to define
MPCaC-tailored CQs is to require a standard CQ on the tightened nonlinear problem (TNLP(x∗))

min f(x) subject to g(x) ≤ 0, h(x) = 0, xi = 0, i ∈ I0(x
∗). (7) prob:tnlp

Using this strategy, several standard CQs have been adapted to ensure M-stationarity. Next, we
recall two of them (see [17]). Note that M-stationarity for x∗ is exactly the KKT conditions for
TNLP(x∗), and Tlin(x∗) is just the standard linearized cone of (7).

⟨def:licq⟩Definition 3. We say that a point x∗ ∈ Ω conforms to the MPCaC-linear independence constraint
qualification (MPCaC-LICQ) if the gradients

∇gi(x∗), i ∈ Ig(x
∗), ∇hj(x

∗), j = 1, . . . , p, ei, i ∈ I0(x
∗)

are linearly independent.

⟨def:crcq⟩Definition 4. We say that MPCaC-constant rank constraint qualification (MPCaC-CRCQ) holds
at x∗ ∈ Ω if there exists a neighborhood N(x∗) of x∗ such that for every I ⊂ Ig(x

∗), J ⊂ {1, . . . , p}
and I0 ⊂ I0(x

∗), the gradients

∇gi(x), i ∈ I, ∇hj(x), j ∈ J , ei, i ∈ I0

has the same rank for every x ∈ N(x∗).

It is worth mentioning that MPCaC-CRCQ was defined in [17], but, instead of established
through the constant rank of the gradients as in Definition 4, it was stated saying that such
gradients remain linearly dependent in a neighborhood of x∗. These two definitions are equivalent,
see [5]. Definition 4 is in line with how CRCQ was originally defined for NLP [20], and is better
suited to introduce its relaxed version, as we do next.

In standard NLP, the corresponding CQs above attest second-order optimality at local mini-
mizers. Another CQ with this property is the relaxed constant rank CQ (RCRCQ), defined in [26].
This condition relaxes the requirements in CRCQ over equality constraints. Next, we define its
MPCaC counterpart by imposing RCRCQ condition on TNLP(x∗).

⟨def:rcrcq⟩Definition 5. We say that MPCaC-relaxed constant rank constraint qualification (MPCaC-
RCRCQ) holds at x∗ ∈ Ω if there exists a neighborhood N(x∗) of x∗ such that for every I ⊂ Ig(x

∗),
the family of gradients

∇gi(x), i ∈ I, ∇hj(x), j ∈ {1, . . . , p}, ei, i ∈ I0(x
∗)

has the same rank for every x ∈ N(x∗).

MPCaC-RCRCQ is strictly implied by MPCaC-CRCQ even in the absence of equality con-
straints h(x) = 0, due to the difference related to the canonical vectors ei’s. The next example
illustrates this with an interesting situation.

⟨ex:rcrcq⟩Example 2. For any constraints g(x) ≤ 0, h(x) = 0, ∥x∥0 ≤ α for which x∗ = 0 is feasible,
MPCaC-RCRCQ is valid at x∗. This is because ei, i ∈ I0(x

∗), form the canonical basis of Rn.
On the other hand, MPCaC-CRCQ does not necessarily hold at x∗, for example, g1(x1, x2) =
x2
1 + x2 ≤ 0 and ∥x∥0 ≤ 1. In fact, the conditions in Definition 4 do not hold at x∗ when I = {1}

and I0 = {2}.

Example 2 says that MPCaC-RCRCQ always holds at the origin if it is feasible. This is in
accordance with the validity of the M-stationary condition: the origin, whenever feasible for (1), is
always M-stationary regardless of the fulfillment of any MPCaC-CQ (see [22, Example 4.8]). More
generally, the components x∗

i = 0 do not impose restrictions on the fulfillment of the M-stationarity.
To see this, observe that we can take γi = −(∇f(x∗) +∇g(x∗)µ +∇h(x∗)λ)i in Definition 1 for
any fixed µ and λ, whenever x∗

i = 0. This is an intrinsic property of M-stationarity. So, MPCaC-
RCRCQ is somehow closer to M-stationary points than MPCaC-CRCQ.
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Very recently, a new MPCaC-tailored CQ for M-stationarity, called CC-AM-regular CQ, was
defined [22]. To maintain the compatibility with our notation, we will refer to it as MPCaC-AM-
regular CQ. It was established in the context of sequential optimality conditions, similar to what is
done in NLP [7]. Actually, MPCaC-AM-regularity is just the cone continuity property (CCP) [7]
on TNLP(x∗), and it is implied by other CQs such as MPCaC-CRCQ (see the discussion before
Corollary 4.10 of [22]). Given x∗ ∈ Ω, we define the set

K(x, x∗) =

{
∇g(x)µ+∇h(x)λ+ γ

∣∣∣∣ µ ≥ 0, µj = 0, j ̸∈ Ig(x
∗),

γi = 0, ∀i ̸∈ I0(x
∗)

}
for each x ∈ Rn. The Painlevé-Kuratowski outer limit [27] of the mapping x ⇒ K(x, x∗) as x→ x∗

is the set

lim sup
x→x∗

K(x, x∗) = {y∗ ∈ Rn | ∃{(xk, yk)} → (x∗, y∗) such that yk ∈ K(xk, x∗),∀k}.

⟨def:am-regular⟩Definition 6. We say that x∗ ∈ Ω conforms to the MPCaC-AM-regular CQ if K(·, x∗) is outer
semi-continuous at x∗, that is, if lim supx→x∗ K(x, x∗) ⊂ K(x∗, x∗).

By [22, Theorems 3.2 and 4.7], MPCaC-AM-regularity is a CQ for M-stationarity as summarized
below.

⟨th:min_am_m⟩
Theorem 2. Let x∗ be a local minimizer of the problem (1) that satisfies the MPCaC-AM-regula-
rity condition. Then x∗ is M-stationary.

Next, we prove that MPCaC-RCRCQ is a CQ for M-stationarity by showing that it implies
MPCaC-AM-regularity.

⟨teo:rcrcq_AM⟩Theorem 3. If x∗ ∈ Ω satisfies MPCaC-RCRCQ, then MPCaC-AM-regularity holds at x∗. In
particular, every local minimizer of (1) that conforms to MPCaC-RCRCQ is an M-stationary point.

Proof. Note that x∗ is feasible for problem (7). Moreover, by Definition 5, this point satisfies
the standard RCRCQ condition for the nonlinear problem (7). Thus, by the relations between
the standard constraints qualifications established in [7], we conclude that CCP for the tightened
problem (7) holds at x∗. But this is just the meaning of MPCaC-AM-regularity given in Definition
6. The last statement follows directly from Theorem 2.

Other constraint qualifications introduced in the literature are MPCaC-constant positive linear
dependence (MPCaC-CPLD) CQ [16] and MPCaC-quasinormality (MPCaC-QN) CQ [21] (we
rename them to fit our nomenclature). The second was used in the convergence analysis of the first-
order augmented Lagrangian method defined in [2], which we will present in the next section. As
before, these CQs consist of imposing their NLP counterparts on TNLP(x∗). So, the relationship
among all the cited MPCaC-CQs follows that of standard NLP, see [7, Fig. 2], which is completely
summarized in Figure 2.

MPCaC-

LICQ

MPCaC-

CRCQ

MPCaC-

RCRCQ

MPCaC-AM-

regularity

MPCaC-

CPLD
MPCaC-QN

Th. 3

Figure 2: Relations among the MPCaC-tailored CQs. An arrow indicates a strict implication
between two conditions.

⟨diagram⟩

Similar to standard NLP [3, 5], MPCaC-RCRCQ is a CQ for strong second-order stationarity
as we show next.

?⟨teo:ssonc_r⟩?
Theorem 4. Let x∗ be a local minimizer of (1) and suppose that MPCaC-RCRCQ is satisfied
at x∗. Then x∗ is M-stationary and, for any associated multiplier vector (µ, λ, γ), x∗ fulfills the
MPCaC-SSONC condition, that is,

dT∇2
xxL(x∗, µ, λ, γ)d ≥ 0

for all d ∈ CS(x∗), where CS(x∗) is the strong MPCaC critical cone (5).
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Proof. By Theorem 3, x∗ is M-stationary. Let (µ, λ, γ) be an arbitrary multiplier vector associated
with it and take a vector d ∈ CS(x∗), d ̸= 0. Applying [3, Proposition 3.2] to the tightened problem
(7), we conclude that there exists a twice continuously differentiable arc ζ : [0, δ)→ Rn such that
ζ(0) = x∗, ζ ′(0) = d, ζ([0, δ)) is feasible for (7), and gj(ζ(t)) = 0 for all t ∈ [0, δ) and j ∈ I+g (x∗).
Note that, in particular, ζℓ(t) = 0 for all t ∈ [0, δ) and ℓ ∈ I0(x

∗). Define β : [0, δ) → R by
β(t) = f(ζ(t)). Since

∇f(x∗) +
∑

j∈I+
g (x∗)

µj∇gj(x∗) +

p∑
i=1

λi∇hi(x
∗) +

∑
ℓ∈I0(x∗)

γℓeℓ = 0, (8) M_stationary

we have β′(0) = ∇f(x∗)T d = 0. Moreover, x∗ is a local minimizer of (7) and hence β(0) ≤ β(t)
for all t ≥ 0 sufficiently small. Therefore,

dT∇2f(x∗)d+∇f(x∗)T ζ ′′(0) = β′′(0) ≥ 0. (9) beta2

On the other hand, we have

dT∇2gj(x
∗)d+∇gj(x∗)T ζ ′′(0) = (gj ◦ ζ)′′(0) = 0, j ∈ I+g (x∗), (10a) gj

dT∇2hi(x
∗)d+∇hi(x

∗)T ζ ′′(0) = (hi ◦ ζ)′′(0) = 0, i = 1, . . . , p, (10b) h

eTℓ ζ
′′(0) = ζ ′′ℓ (0) = 0, ℓ ∈ I0(x

∗). (10c) zeta

Thus, multiplying (10a) by µj , (10b) by λi, (10c) by γℓ and summing the resulting expressions
over j ∈ I+g (x∗), i = 1, . . . , p, ℓ ∈ I0(x

∗) together with (9), we obtain the desired result in view of
(8).

Since CW (x∗) ⊂ CS(x∗), an immediate consequence of the above theorem is that MPCaC-
RCRCQ is also a CQ for weak second-order stationarity. Furthermore, MPCaC-WSONC actually
strengthens the quality of stationarity beyond M-stationary, see Example 4.

⟨teo:wsonc⟩Corollary 1. Let x∗ be a local minimizer of (1) and suppose that MPCaC-RCRCQ holds at x∗.
Then x∗ is M-stationary and fulfills MPCaC-WSONC for any multiplier vector (µ, λ, γ) associated
with x∗.

A second-order condition using the linearization T BS
lin (x∗) instead of Tlin(x∗) was stated in [15,

Corollary 3.1]. This condition still involves the auxiliary variable y, as it requires S-stationarity.
But since T BS

lin (x∗) does not explicitly have y, one might ask whether it is reasonable to define
a (weak) second-order stationarity associated with M-stationary points using T BS

lin (x∗) instead of
Tlin(x∗); that is, using

CBS(x∗) =
{
d ∈ T BS

lin (x∗) | ∇gi(x∗)T d = 0, i ∈ Ig(x
∗)
}

(11) CWBS

in Definition 2. In view of Theorem 1, the resulting concept is the same as MPCaC-WSONC if
∥x∗∥ = α. If ∥x∗∥ < α, using (11) gives more freedom to the directions d and so, in principle,
would lead to a stronger stationarity. However, (11) can lead to an undesirable concept due to
the cardinality constraint, as the next example shows. In particular, Corollary 1 would no longer
be valid. This justifies why it is not possible to define a second-order optimality linked to M-
stationarity using T BS

lin (x∗).

⟨ex:TBS⟩Example 3. Let us consider the three-dimensional problem

min
1

2

[
(x1 − 1)2 − x2

2 − x2
3

]
subject to x2 − x3

3 = 0, ∥x∥0 ≤ 2.

The feasible point x∗ = (1, 0, 0) is an isolated local minimizer since (1, t3, t), t ̸= 0, is not feasible.
It is clear that MPCaC-LICQ is valid at x∗, and so x∗ is M-stationary with multipliers λ and
γ = (0,−λ, 0) (see Definition 1). For any λ ∈ R we have

∇2
xxL(x∗, λ, γ) =

 1 0 0
0 −1 0
0 0 −1

 and CBS(x∗) = R× {0} × R.

Taking d = (0, 0, 1) ∈ CBS(x∗), we have dT∇2
xxL(x∗, λ, γ)d = −1 < 0. On the other hand,

CW (x∗) = R× {0}2 and so MPCaC-WSONC is valid at x∗.
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To end this section, we briefly comment on the validity of MPCaC-WSONC at the origin. As we
already mentioned in the introduction, the origin, if feasible, is always M-stationary independently
of the validity of any CQ. MPCaC-WSONC, as long as defined over M-stationary points, has the
same property (note that di = 0 in CW (x∗) if x∗

i = 0). In this sense, MPCaC-WSONC acts only
on nonzero components of x∗. This is not a serious drawback, for instance, when a sparse solution
is required, a typical situation modelled by (1).

3 An augmented Lagrangian method that converges to
MPCaC-WSONC points

⟨sec:alg⟩ In this section we consider the application of the second-order (safeguarded) AL method known
as Algencan-second [1] to solve (1). It is based on the well established first-order Algencan
method [2]. As we mentioned in the introduction, the algorithm is applied to (2). However, its
convergence will be established using stationary concepts not involving the auxiliary variable y.

The Powell-Hestenes-Rockafellar (PHR) augmented Lagrangian function associated with (2) is
given by

Lρ(x, y, µ̄, λ̄, µ̄
e, µ̄y, γ̄) = f(x) +

ρ

2

[∥∥∥∥(g(x) + µ̄

ρ

)
+

∥∥∥∥2
2

+

∥∥∥∥h(x) + λ̄

ρ

∥∥∥∥2
2

+

(
n− eT y − α+

µ̄e

ρ

)2

+

+

∥∥∥∥(y − e+
µ̄y

ρ

)
+

∥∥∥∥2
2

+

∥∥∥∥x ∗ y + γ̄

ρ

∥∥∥∥2
2

]
,

where ρ > 0, and the subproblem is

min
x,y

Lρ(x, y, µ̄, λ̄, µ̄
e, µ̄y, γ̄) (12) ALsubprob

for given ρ > 0, µ̄ ∈ Rp
+, λ̄ ∈ Rm, µ̄e ∈ R+, µ̄

y ∈ Rn
+ and γ̄ ∈ Rn.

In order to obtain MPCaC-WSONC points, we require that the subproblems are solved up to
second-order stationarity. We say that (x, y) ∈ R2n is a second-order ε-stationary point for (12) if
the following conditions are satisfied:

� first-order condition ∥∥∇(x,y)Lρ(x, y, µ̄, λ̄, µ̄
e, µ̄y, γ̄)

∥∥
∞ ≤ ε. (13) appstat1

This is in accordance with Algencan method described in [2]. See also [21].

� second-order condition

dT∇2
(x,y)Lρ(x, y, µ̄, λ̄, µ̄

e, µ̄y, γ̄)d ≥ −ε, ∀d ∈ R2n, (14) appstat2

where the second derivatives of terms ρ
2 (p(z)+η/ρ)2+ related to inequality constraints p(z) ≤ 0

are computed as
(ρp(z) + η)+∇2p(z) + δρ∇p(z)∇p(z)T ,

δ = 1 if 1√
ρ (ρp(z) + η) ≥ −ε and zero otherwise. This “smooth” second derivative was

employed in theAlgencan-second as described in [1]. In that paper it was also presented an
implementable algorithm, namely Gencan-second, that ensures conditions (13) and (14).

We present the second-order AL method in Algorithm 1.
Algorithm 1 generates a sequence {(xk, yk)}. However, in view of Definition 1, we are interested

in the accumulation points of {xk} only. The next result says that we can take the limit of the
auxiliary sequence {yk} whenever {xk} converges. So, we will take accumulation points of the
auxiliary sequence without further details.
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Algorithm 1 (Safeguarded) Second-order AL method applied to MPCaC

⟨algencan⟩ Set the parameters τ ∈ [0, 1), θ > 1, λmin < λmax, µmax, µ
e
max, µ

y
max > 0 and ρ1 > 0. Let

λ̄1 ∈ [λmin, λmax]
m, µ̄1 ∈ [0, µmax]

p, µ̄e,1 ∈ [0, µe
max], µ̄

y,1 ∈ [0, µy
max]

n and γ̄1 ∈ [γmin, γmax]
n be

the initial Lagrange multipliers estimates, and {εk} ↓ 0. Initialize k ← 1.

Step 1. (Solving the subproblem) Compute a second-order εk-approximate stationary point
(xk, yk) of the subproblem minx,y Lρk

(x, y, µ̄k, λ̄k, µ̄e,k, µ̄y,k, γ̄k).

Step 2. (Estimate new multipliers) Compute

µk =
(
µ̄k + ρkg(x

k)
)
+
, λk = λ̄k + ρkh(x

k), γk = γ̄k + ρk(x
k ∗ yk).

µe,k =
(
µ̄e,k + ρk(n− eT yk − α)

)
+
, µy,k =

(
µ̄y,k + ρk(y

k − e)
)
+

Step 3. (Update the penalty parameter) Define

V k= min
{
− g(xk),

µ̄k

ρk

}
, V k

e = min
{
eT yk + α− n,

µ̄e,k

ρk

}
, V k

y = min
{
e− yk,

µ̄y,k

ρk

}
.

If k = 1 or

max
{
∥(h(xk), V k, V k

e , V k
y )∥∞

}
≤ τ max

{
∥(h(xk−1), V k−1, V k−1

e , V k−1
y )∥∞

}
,

choose ρk+1 = ρk. Otherwise, define ρk+1 = θρk.

Step 4. (Update multipliers estimates) Compute λ̄k+1 ∈ [λmin, λmax]
m, µ̄k+1 ∈ [0, µmax]

p,
µ̄e,k+1 ∈ [0, µe

max], µ̄
y,k+1 ∈ [0, µy

max]
n and γ̄k+1 ∈ [γmin, γmax]

n.

Step 5. Set k ← k + 1 and go to Step 1.

⟨lemaybounded⟩Lemma 2 ([21, Proposition 4.1]). Let {xk} be a sequence generated by Algorithm 1. If {xk} has
a bounded subsequence, then {yk} is bounded on the same subsequence.

In [21], it was shown that the usual first-order safeguarded AL method converges to a stationary
point of the infeasibility without additional assumptions. That is, only approximate first-order (13)
guarantees that every (possibly non feasible) limit point of Algorithm 1 is stationary for the
infeasibility measure

Φ(x, y) = ∥g(x)+∥22 + ∥h(x)∥22 + (n− eT y − α)2+ + ∥(y − e)+∥22 + ∥x ∗ y∥22. (15) infeas

This is in accordance with standard results in NLP for Algencan [2, 13]. So, in the sequel we
deal only with feasible accumulation points.

Convergence of the first-order counterpart of Algorithm 1 through sequential optimality condi-
tions was addressed in [22]. The authors showed that Algorithm 1, with subproblems solved only
up to (13), converges to M-stationary points under a generalized Kurdyka-Lojasiewicz (GKL) [9]
inequality and the MPCaC-AM-regular CQ (Definition 6). The GKL inequality is a common hy-
pothesis in convergence results of Algencan on degenerate problems. See [6, 22]. We say that a
smooth function F : Rq → R satisfies the GKL inequality at z̄ if there exist δ > 0 and φ : Bδ(z̄)→ R
such that limz→z̄ φ(z) = 0 and for each z ∈ Bδ(z̄) we have |F (z)− F (z̄)| ≤ φ(z)∥∇F (z)∥2. With
this previously established result, the convergence to M-stationary points under MPCaC-RCRCQ
together GKL is a consequence of Theorem 3 and [22, Theorems 4.7 and 6.3]. We summarize it in
the next theorem.

⟨teo:1aordem⟩
Theorem 5. Let (x∗, y∗) be a feasible accumulation point of a sequence generate by Algorithm 1
with subproblems solved only up to satisfy (13). Suppose that x∗ conforms to MPCaC-AM-regularity
(or, in particular, MPCaC-RCRCQ) and that Φ(x, y) satisfies the GKL inequality at (x∗, y∗). Then
x∗ is M-stationary.

Next, we discuss the global convergence for the second-order AL method, where subproblems
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are solved to satisfy (13) and (14). Similar to standard NLP [1, 4], we need some technical results
for this purpose.

⟨lem:CW⟩Lemma 3. Let x∗ ∈ Ω. Define the set

CW (x, x∗) =

d ∈ Rn

∣∣∣∣∣∣
∇gi(x)T d = 0, i ∈ Ig(x

∗),
∇h(x)T d = 0,
di = 0, i ∈ I0(x

∗)


and let d∗ ∈ CW (x∗, x∗). Suppose that x∗ conforms to MPCaC-RCRCQ. Also, let {xk} be a
sequence, not necessarily feasible, converging to x∗. Then there exists a sequence {dk} converging
to d∗ such that dk ∈ CW (xk, x∗) for all k.

Proof. This lemma was proved for standard NLP in [8] assuming, instead of a CQ, that the
gradients of the active (equality and inequality) constraints at x∗ have the same rank in an open
neighborhood of x∗. Thus, the statement follows from [8, Lemma 3.1] applied to TNLP(x∗)
provided the following trivial assertions: (i) the set T (x) in [8] for TNLP(x∗) is exactly CW (x, x∗);
(ii) MPCaC-RCRCQ guarantees that all the gradients of the active constraints of TNLP(x∗) at
x∗, namely ∇gi(x∗), i ∈ Ig(x

∗), ∇hj(x
∗), j = 1, . . . , p, ei, i ∈ I0(x

∗), have constant rank in an
open neighborhood of x∗.

⟨lem:curva⟩Lemma 4. Suppose that x∗ ∈ Ω fulfills MPCaC-RCRCQ. Then there is a neighborhood N(x∗) of
x∗ such that, for each d ∈ CW (x, x∗), x ∈ N(x∗), there is a twice continuously differentiable arc
ζ : (−T, T )→ Rn, T > 0, satisfying ζ(0) = x, ζ ′(0) = d and, for every t ∈ (−T, T ), h(ζ(t)) = h(x),
gj(ζ(t)) = gj(x) for all j ∈ Ig(x

∗) and [ζ(t)]i = xi for all i ∈ I0(x
∗).

Proof. By definition of MPCaC-RCRCQ, there is a neighborhood N(x∗) of x∗ such that the vectors

∇gi(x), i ∈ Ig(x
∗), ∇hj(x), j ∈ {1, . . . , p}, ei, i ∈ I0(x

∗)

have constant rank in N(x∗). By the definition of CW (x, x∗) (see Lemma 3), each d in this set is
orthogonal to these vectors. Thus, [4, Lemma 4.9] ensures the existence of a twice continuously
differentiable function ζ : (−T, T )→ Rn with the required properties.

We prove next the main result of this section.

⟨teo:2aordem⟩Theorem 6. Let (x∗, y∗) be a feasible accumulation point of a sequence generate by Algorithm 1.
Suppose that x∗ conforms to MPCaC-RCRCQ and that Φ(x, y) satisfies the GKL inequality at
(x∗, y∗). Then x∗ is an MPCaC-WSONC point.

Proof. As MPCaC-RCRCQ is valid at x∗, Theorem 5 ensures that x∗ is M-stationary. It remains
to prove that x∗ is a MPCaC-WSONC point.

Taking a subsequence if necessary and using Lemma 2, we can suppose throughout the proof
that the entire sequence {(xk, yk)} generated by the method converges to (x∗, y∗). From (13), the
estimate given by the method at iteration k for M-stationary multipliers is

(µk, λk, γ̃k) = (µk, λk, γk ∗ yk). (16) teo:2aordemseq

Next we prove that (16) asymptotically fulfills the complementarity conditions in Definition 1, that
is, µk

j = 0 for all k large enough whenever j ̸∈ Ig(x
∗) and

lim
k

γ̃k
i = 0 for all i ̸∈ I0(x

∗). (17) teo:2ordemgamma

If {ρk} is bounded, then {(µk, λk, γk)} is bounded too and therefore (16) is also bounded.
When gj(x

∗) < 0, Step 3 of Algorithm 1 ensures that V k → 0, and so µ̄k
j /ρk → 0, which implies

µ̄k
j → 0. In this case, µk

j =
(
µ̄k
j + ρkgj(x

k)
)
+
= 0 for all k large enough. Also, limk γ̃

k
i x

k
i = 0 from

the boundedness of {γk}, so γ̃k
i → 0 for all i ̸∈ I0(x

∗).
Suppose that ρk → ∞. In this case, µk

j = 0 for all k large enough and j ̸∈ Ig(x
∗). Using the

same arguments from the proof of [22, Theorem 6.3], we can show that the GKL hypothesis implies

ρkΦ(x
k, yk)→ 0 (18) teo:2aordeminfeas
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(indeed, this argument is usual in this context and does not depend on whether {ρk} is unbounded
or not, see [6, 9, 10]). In view of (15), we have ρk(x

k
i y

k
i )

2 → 0 for all i. So, by feasibility and the
boundedness of {γ̄k}, γ̃k

i x
k
i = γ̄k

i (x
k
i y

k
i ) + ρk(x

k
i y

k
i )

2 → 0 for all i. In particular, γ̃k
i → 0 for all

i ̸∈ I0(x
∗), as we wanted.

The discussion above and expression (13) allow us to write

∇f(xk) +
∑

j∈Ig(x∗)

µk
j∇gj(xk) +

p∑
i=1

λk
i∇hi(x

k) +
∑

i∈I0(x∗)

γ̃k
i ei = vk → 0. (19) teo:2aordemlimalg

We can assume without loss of generality that µk
j , λ

k
i and γ̃k

i are all non zero in the above sum. At

xk, we can take index sets Ikh ⊂ {1, . . . , p} and Ik0 ⊂ I0(x
∗) such that the gradients from the equality

constraints {∇hi(x
k), ej | i ∈ Ikh , j ∈ Ik0 } form a basis for {∇hi(x

k), ej | i ∈ {1, . . . , p}, j ∈ I0(x
k)}.

Applying [5, Lemma 1], for each k there is Ikg ⊂ Ig(x
∗) such that the gradients

∇gi(xk), i ∈ Ikg , ∇hj(x
k), j ∈ Ikh , ei, i ∈ Ik0 (20) teo:2aordemli

are linearly independent and

∇f(xk) +
∑
j∈Ik

g

µ̂k
j∇gj(xk) +

∑
i∈Ik

h

λ̂k
i∇hi(x

k) +
∑
i∈Ik

0

γ̂k
i ei = vk → 0

for some (µ̂k
Ik
g
, λ̂k

Ik
h

, γ̂k
Ik
0
) with µ̂k

jµ
k
j > 0. As there are only finitely many sets Ikg , I

k
h and Ik0 , there

is a subsequence {xk}k∈K for which these sets repeat, let us say, Ikg = Ig, Ikh = Ih and Ik0 = I0 for
all k ∈ K. So,

∇f(xk) +
∑
j∈Ig

µ̂k
j∇gj(xk) +

∑
i∈Ih

λ̂k
i∇hi(x

k) +
∑
i∈I0

γ̂k
i ei = vk → 0. (21) teo:2aordemlim

We set λ̂k
i , µ̂

k
j and γ̂k

i all to zero for the indices that do not appear in the expression above. In
particular,

µ̂k
j = 0 for all k ∈ K, j ̸∈ Ig(x

∗). (22) teo:2ordemmu

Clearly, due to the linear independence of the gradients in (20), those of the new index sets Ig, Ih
and I0 are linearly independent too.

Consider the sequence {δk = ∥(µ̂k, λ̂k, γ̂k)∥∞}k∈K , and let us prove that it is bounded. In fact,
if this is not the case, dividing (21) by δk and passing to the limit over an appropriate subsequence,
let us say with indices in K1 ⊂ K, we arrive at

lim
k∈K1

∇f(xk)

δk
+
∑
j∈Ig

µ̂k
j

δk
∇gj(xk) +

∑
i∈Ih

λ̂k
i

δk
∇hi(x

k) +
∑
i∈I0

γ̂k
i

δk
eiyi = 0.

By definition of δk, we have µ̂k
j /δk = 1, λ̂k

i /δk = 1 or γ̂k
i /δk = 1 for all k ∈ K1. So, we get a non

trivial linear combination of linearly independent gradients of active constraints at x∗ equals to
the null vector, contradicting the validity of MPCaC-RCRCQ at x∗. Thus, {δk}k∈K is bounded.
Note that the convergence or not of {µe,k} and {µy,k} does not matter.

Now, we back our attention to the second-order properties of the sequence generated by Algo-
rithm 1. Considering (3), condition (14) says that (we eventually omit the index k for simplicity)[

∇2
xxL(x, µ, λ, γ̃) 0

0 0

]
+ ρ

[ ∑p
i=1∇hi∇hT

i +
∑

j| 1√
ρ (ρgj+µ̄j)≥−εk

∇gj∇gTj 0

0 0

]

+ ρ

[
Y 2 2XY + diag(γ̄)/ρ

2XY + diag(γ̄)/ρ Ie + Iy +X2

]
⪰ −εkI, (23) teo:2aordemalg

where∇hi,∇gj and gj are evaluated at xk,Xk = diag(xk), Yk = diag(yk), Ie is the square matrix of
all ones if (ρ(n−α−eT y)+µ̄e)/

√
ρ ≥ −εk and Ie = 0 otherwise, Iyii = 1 if (ρ(yi−ei)+µ̄y

i )/
√
ρ ≥ −εk

and Iyij = 0 otherwise.
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Let us consider an arbitrary d∗ ∈ CW (x∗) = CW (x∗, x∗). By Lemma 3, there is a sequence
{dk}k∈K → d∗ such that dk ∈ CW (xk, x∗) for all k ∈ K. In particular, ∇h(xk)T dk = 0 and
∇gi(xk)T dk = 0 for all i ∈ Ig(x

∗) and k ∈ K. In addition, note that if 1√
ρk
(ρkgj(x

k) + µ̄k
j ) ≥

−εk → 0 then gj(x
∗) = 0. In fact, it is trivial if ρk →∞ by the boundedness of {µ̄k

j }, and if {ρk}
is bounded then V k → 0 by Step 3 of Algorithm 1. Thus, immediately µ̄k

j → 0 or gj(x
k) → 0. If

the first case happens, it follows that 1√
ρk
ρkgj(x

k) → 0, which in turn implies gj(x
k) → 0. This

implies that also ∇gj(xk)T dk = 0 for such indices j. Thus, we multiply (23) by d̄k = (dk, 0) ∈ R2n

on the left and right to arrive at

(dk)T∇2
xxL(xk, µk, λk, γ̃k)dk ≥ −εk∥dk∥2 − ρk(d

k)TY 2
k d

k. (24) teo:2aordem1

As dk ∈ CW (xk, x∗), we have dki = 0 for all i ∈ I0(x
∗). Furthermore, it follows from (18) that

ρk(x
k
i y

k
i )

2 ≤ ρkΦ(x
k, yk) → 0 for all i, which in particular implies ρk(y

k
i )

2 → 0 for all i ̸∈ I0(x
∗).

Thus
lim
k∈K

ρk(d
k)TY 2

k d
k = lim

k∈K

∑
i ̸∈I0(x∗)

(dki )
2[ρk(y

k
i )

2] = 0. (25) teo:2aordemdYd

For each k ∈ K, define Πk = µk − µ̂k and Λk = λk − λ̂k. As µk
j = µ̂k

j = 0 for all k ∈ K large

enough and j ̸∈ Ig(x
∗), we suppose that Πk

j = 0 for all k ∈ K, j ̸∈ Ig(x
∗). Thus, using (3) we can

write
(dk)T∇2

xxL(xk, µ̂k, λ̂k, γ̃k)dk = (dk)T∇2
xxL(xk, µk, λk, γ̃k)dk −Rk, (26) teo:2aordem2

where

Rk =
∑

j∈Ig(x∗)

Πk
j (d

k)T∇2gj(x
k)dk +

p∑
i=1

Λk
i (d

k)T∇2hi(x
k)dk

In the sequel, we prove that Rk = 0 for every k ∈ K. Fix k ∈ K and let ζk : (−T, T ) → Rn,
T > 0, with the properties in the statement of Lemma 4 with x = xk. Differentiating twice ζk at
t = 0 and using ζ(0) = xk, ζ ′(0) = dk we obtain

∇gj(xk)T ζ ′′k (0) + (dk)T∇2gj(x
k)dk = 0, j ∈ Ig(x

∗),

∇hi(x
k)T ζ ′′k (0) + (dk)T∇2hi(x

k)dk = 0, i = 1, . . . , p,

eTi ζ
′′
k (0) = 0, i ∈ I0(x

∗).

(note that hi(ζk(t)), gj(ζk(t)) and ζ(t)ℓ, ℓ ∈ I0(x
∗), are constant in (−T, T ), so the right hand side

in the expressions above is zero). Therefore, from (19) and (21) we have

Rk = −
∑

j∈Ig(x∗)

Πk
j∇gj(xk)T ζ ′′k (0)−

p∑
i=1

Λk
i∇hi(x

k)T ζ ′′k (0)

= −

( ∑
j∈Ig(x∗)

(µk
j − µ̂k

j )∇gj(xk) +

p∑
i=1

(λk
i − λ̂k

i )∇hi(x
k) +

∑
i∈I0(x∗)

(γ̃k
i − γ̂k

i )ei

)T

ζ ′′k (0)

= −(vk − vk)T ζ ′′k (0) = 0.

Finally, from Rk = 0 for all k ∈ K, εk → 0, (17), (22), (24), (25), (26) and the boundedness of

{(µ̂k, λ̂k, γ̃k)}k∈K we obtain, passing to a subsequence if necessary,

(d∗)T∇2
xxL(x∗, µ̂∗, λ̂∗, γ̃∗)d∗ = lim

k∈K
(dk)T∇2

xxL(xk, µ̂k, λ̂k, γ̃k)dk ≥ 0,

where µ̂∗ ≥ 0, (µ̂∗)T g(x∗) = 0 and γ̃ ∗ x∗ = 0. As d∗ ∈ CW (x∗) is arbitrary, we conclude that x∗

is a MPCaC-WSONC point as wanted.

Remark 3. The reader may ask if it is possible to obtain Theorem 6 directly from related results
in NLP, specifically the third item of [1, Theorem 2] and [4, Theorems 4.2 and Section 3.3]. The
answer is “no”. The reason is that these results require standard CQs, but they do not hold for (2)
in general [24].
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The next example illustrates that if the subproblems of Algorithm 1 are solved only up to the
first-order condition (13), the AL method can converge to a non-MPCaC-WSONC M-stationary
point even if MPCaC-LICQ and GKL hold.

⟨ex:algencannonwsonc⟩Example 4. Inspired in [4, Example 3.10], let us consider the three-dimensional problem

min −x1 − x2 + x2
3 subject to x2

1x
2
2 − 1 ≤ 0, ∥x∥0 ≤ 2,

whose relaxed reformulation is

min −x1 − x2 + x2
3 subject to x2

1x
2
2 − 1 ≤ 0, 3− eT y ≤ 2, y ≤ e, x ∗ y = 0.

The feasible point x∗ = (1, 1, 0) clearly satisfies MPCaC-LICQ. Also, Φ(x, y) satisfies the GKL
inequality at all (x, y) ∈ R6 since all data functions are analytic [9].

In view of Definition 1, it is easy to verify that x∗ is M-stationary with unique µ = 1 and
γ = (0, 0, 0). But x∗ is not an MPCaC-WSONC point since for d = (−1, 1, 0) ∈ CW (x∗) =
{(d1, d2, 0) | d1 + d2 = 0} (see (6)) we have

dT∇2
xxL(x∗, µ, γ)d = dT

 2 4 0
4 2 0
0 0 2

 d = −2 < 0.

Let us show that Algorithm 1 with subproblems solved only satisfying (13) can converge to x∗.
To simplify, suppose that all multipliers estimates in Step 4 are chosen as zero. So Step 1 reduces
to 

−1
−1
2x3

0
0
0

+


ρ(x2

1x
2
2 − 1)+ 2x1x

2
2

ρ(x2
1x

2
2 − 1)+ 2x2

1x2

0
ρ(y1 − 1)+ − ρ(1− eT y)+
ρ(y2 − 1)+ − ρ(1− eT y)+
ρ(y3 − 1)+ − ρ(1− eT y)+

+ ρ


x1y

2
1

x2y
2
2

x3y
2
3

x2
1y1

x2
2y2

x2
3y3

→


0
0
0
0
0
0

 . (27) exalgencanlim

Take the sequences defined by

xk =

(
1 +

1

8ρk
, 1 +

1

8ρk
, 0

)
, yk =

(
1

ρ2k
,
1

ρ2k
, 1

)
and ρk = θk−2ρ1,

k ≥ 2 and ρ1 > 1. We have ρk((x
k
1)

2(xk
2)

2 − 1)+ → 1/2, (1 − eT yk)+ = 0, (yki − 1)+ = 0 and
ρkx

k
i y

k
i → 0 for i = 1, 2, 3. Thus, these sequences satisfy (27). Also, all quantities ∥V k

z ∥∞ do not
decrease at a linear rate, so the test in Step 4 fails infinitely many times. Therefore, the above
sequences are possible in Algorithm 1 when only (13) is required, that is, the method can converge
to the non-MPCaC-WSONC point x∗.

On the other hand, Algorithm 1 with subproblems requiring (14) can not converge to x∗ due to
Theorem 6.

As mentioned in the introduction, the reformulated problem (2) is related to MPCCs, which
are characterized by the presence of complementarity-type constraints G(x) ≥ 0, H(x) ≥ 0 and
G(x) ∗ H(x) = 0. One of the most prominent difference between MPCCs and MPCaCs lies
on the fact that, for MPCaCs, M- and S-stationarity (KKT for (2)) are equivalent in the sense
of Theorem 7. This is not true for the related concepts for MPCC. Actually, S-stationarity in
MPCCs can be guaranteed only under assumptions stronger than the Mangasarian-Fromovitz-
type CQ or assuming that Gi and Hi can not be zero simultaneously for each i. See [28]. As a
consequence, we do not expect algorithms converging to S-stationary points of MPCCs even under
strong assumptions. This scenario is clearly different for MPCaCs where, in particular, AL and
regularization methods converge to KKT under very mild hypotheses. See for instance [21, 22] and
Theorem 5.

Our theory for Algorithm 1 goes in the same direction. It shows that, besides first-order,
MPCaCs inherit much of the second-order stationarity of standard NLP. Despite the (strong)
second-order stationarity concept provided in [15], Theorem 6 illustrates that MPCaC-WSONC is
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suitable for convergence analysis of algorithms, as WSONC is for standard NLP [11, 19]. Indeed,
the spirit of our work is to derive a concept linked to practical algorithms. So, we contribute to
attest that MPCaC is somewhat closer to standard NLP than to MPCC. It is worth mentioning
that it is not known whether the second-order AL method [1], from which Algorithm 1 is derived,
converges to second-order stationary points of MPCCs or not. The convergence of such method for
MPCCs was considered in [12], where it was shown only that (first-order) M-stationary-type points
are reached under a strong linear independence assumption. Instead, Theorem 6 attest convergence
to second-order points of MPCaC under GKL and the mild MPCaC-RCRCQ condition.

4 Strength of the MPCaC-WSONC condition

⟨sec:strength⟩A natural question is what the relationship between the specialized MPCaC-WSONC condition
and the standard WSONC applied to the reformulated problem (2) viewed as an NLP. Next we
address this issue.

Let us consider (x∗, y∗) feasible for (2). The KKT conditions for this problem are
⟨kktmpcacref⟩ [

∇f(x∗) +∇g(x∗)µ+∇h(x∗)λ
−µee− µy

]
+

[
λc ∗ y∗
λc ∗ x∗

]
= 0, (28a) {?}

gj(x
∗)µj = 0, ∀j, µy

i (y
∗
i − 1) = 0, ∀i, µe(n− eT y∗ − α) = 0, (28b) {?}

µ ≥ 0, µe ≥ 0, µy ≥ 0, (28c) {?}

for certain multipliers µ ∈ Rm, λ ∈ Rp, µe ∈ R, µy ∈ Rn and λc ∈ Rn. In turn, standard WSONC
at (x∗, y∗) holds if this point is KKT (in the sense of (28)) with an associated multiplier vector
(µ, λ, µe, µy, λc) satisfying

dT
[
∇2f(x∗) +

∑
j µj∇2gj(x

∗) +
∑

i λi∇2hi(x
∗) diag(λc)

diag(λc) 0

]
d ≥ 0 (29) WSONCmpcacref

for all d = (dx, dy) in

CW
NLP(x

∗, y∗) =

(dx, dy) ∈ R2n

∣∣∣∣∣∣∣∣∣∣
∇gi(x∗)T dx = 0, i ∈ Ig(x

∗),
∇h(x∗)T dx = 0,

eT dy = 0 if n− eT y∗ = α,
dyi = 0, i : y∗i = 1,

y∗i d
x
i + x∗

i d
y
i = 0, i = 1, . . . , n

 .

Note that (28) and (29) change as auxiliary variables yi assume fractional values. By the proof
of [21, Proposition 2.3], it was observed that when yi is fractional at optimality, taking yi = 1
maintains optimality. This is the crucial fact to elect M-stationarity as the strongest first order
concept for (1), which we summarize below.

⟨teo:kktadjusty⟩Theorem 7. Let x∗ be a feasible point for (1) and define y∗ putting y∗i = 1 if i ∈ I0(x
∗) and

y∗i = 0 otherwise. Then x∗ is M-stationary for (1) if, and only if, (x∗, y∗) is KKT for (2).

A similar result is valid for our second-order optimality condition.

⟨teo:wsoncadjusty⟩Theorem 8. Let x∗ and y∗ as in Theorem 7. Then x∗ is an MPCaC-WSONC point if, and only
if, (x∗, y∗) conforms to the standard WSONC for (2).

Proof. Let x∗ be an MPCaC-WSONC point. In particular, x∗ is M-stationary, for which there are
µ ∈ Rm

+ , λ ∈ Rp and γ ∈ Rn such that

∇f(x∗) +∇g(x∗)µ+∇h(x∗)λ+ γ = 0, µT g(x∗) = 0, γ ∗ x∗ = 0.

As y∗i = 1 whenever x∗
i = 0, we have γ ∗ y∗ = γ, and thus conditions (28) are satisfied with µe = 0,

µy = 0 and λc = γ. That is, (x∗, y∗) is KKT for (2) associated with (µ, λ, 0, 0, γ).
Now, let us show that this KKT-multiplier vector fulfills WSONC for (2). Given (dx, dy) ∈

CW
NLP(x

∗, y∗), we have ∇gi(x∗)T dx = 0 for all i ∈ Ig(x
∗) and ∇h(x∗)T dx = 0. As y∗i = 1 if x∗

i = 0,
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the last condition in CW
NLP(x

∗, y∗) implies that dxi = 0 whenever x∗
i = 0, and hence dx ∈ CW (x∗)

(see (6)). Again from the definition of y∗, we have y∗i = 0 if and only if x∗
i ̸= 0. So, the last

condition in CW
NLP(x

∗, y∗) implies that dx ∗ dy = 0. Therefore, the left hand-side of (29) with
λc = γ is

(dx)TWdx + 2γT (dx ∗ dy) = (dx)TWdx, (30) teo:wsoncadjusty2

where W is the Hessian of the Lagrangian function. As dx ∈ CW (x∗), MPCaC-WSONC implies
(dx)TWdx ≥ 0, from which we conclude that WSONC for (2) holds at (x∗, y∗).

The converse is straightforward considering the M-multiplier vector (µ, λ, γ) with γ = λc ∗ y∗
from (28), the definition of y∗, expression (30) and the fact that dx ∈ CW (x∗) implies (dx, 0) ∈
CW

NLP(x
∗, y∗).

Theorem 8 says that MPCaC-WSONC is as strong as WSONC for the reformulated problem (2)
viewed as an NLP. However, CW

NLP is inconsistent in the following sense: if x∗
i = 0 ≤ y∗i < 1 then

dyi is free in CW
NLP(x

∗, y∗), augmenting this cone unnecessarily (actually, when x∗
i = y∗i = 0, we

even may lost KKT conditions for (2)); and if x∗
i = 0 < y∗i = 1 then dyi = 0. Instead, MPCaC-

WSONC removes this ambiguity since it works only with the original variable x. In this sense,
MPCaC-WSONC is to WSONC as M-stationarity is to KKT. The next example illustrates that
standard WSONC may fail if xi = yi = 0 for some i.

⟨ex:wsoncincons⟩Example 5. Let us consider the three-dimensional problem of minimizing x2
1 + x2

2 + x2
3 subject to

∥x∥0 ≤ 2, for which x∗ = (0, 0, 0) is the global solution. Its reformulated problem is

min x2
1 + x2

2 + x2
3 subject to 3− y1 − y2 − y3 ≤ 2, y ≤ e, xiyi = 0, i = 1, 2, 3.

It is straightforward to verify that (x∗, y∗) = (0, 0, 0, 0, 3/4, 3/4) is KKT for the above problem
with multipliers µe = 0, µy = (0, 0, 0) and any λc ∈ R × {0}2. The left hand-side of (29)
reduces to 2∥dx∥22 + 2λc

1d
x
1d

y
1, which is negative for (dx, dy) = (1, 0, 0, 1, 0, 0) ∈ CW

NLP(x
∗, y∗) and

λc = (−2, 0, 0).

In Example 5, the solution x∗ = (0, 0, 0) satisfies the most stringent constraint qualification
MPCaC-LICQ (Definition 3). Also, it satisfies second-order stationarity in both senses MPCaC-
WSONC and standard WSONC; in fact, it conforms to WSONC by taking λc = (0, 0, 0) and/or
y∗i > 0 for i = 1, 2, 3 (e.g. y∗ = (1, 1, 1)). However, if an algorithm reaches x∗ = y∗ = 0, it can fails
to declare convergence using the standard second-order optimality. So, establishing convergence
using MPCaC-WSONC is more appropriate.

Remark 4. Theorem 8 remains valid if, for each x∗
i = 0, we take any y∗i ∈ (0, 1] such that (x∗, y∗)

is feasible. The proof is the same, but setting λc
i = γi/y

∗
i for all i such that y∗i > 0 and zero

otherwise (condition y∗i = 1⇒ dyi = 0 in CW
NLP(x

∗, y∗) was never used). Similar statement is valid
for M-stationarity (Theorem 7). In other words, the true degeneracy of MPCaC problems viewed
through the reformulated problem (2) lies on the bi-activity x∗

i = y∗i = 0. Note that if (x∗, ỹ) is
feasible for (2), then all (x∗, y∗) where 1 ≥ y∗i ≥ ỹi if x∗

i = 0 and y∗i = ỹi = 0 otherwise are also
feasible.

5 Conclusions
⟨sec:concl⟩

In this paper we have presented a study on second-order optimality conditions, constraint qualifi-
cations and a practical algorithm for cardinality-constrained problems (MPCaC). We have defined
two new tailored second-order necessary conditions, MPCaC-SSONC and MPCaC-WSONC, a
constraint qualification, MPCaC-RCRCQ, and we proved that minimizers of the original prob-
lem (1) satisfies MPCaC-SSONC under this CQ. The tailored constraint qualification, based on
RCRCQ [26], had not been defined yet in the context of MPCaC. Differently from previous second-
order conditions [15], ours do not use the auxiliary variable y presented in the reformulated prob-
lem (2), only the original x. This allows them to be constructed using M-stationarity, which is the
strongest first-order concept in the MPCaC-context. So, our second-order conditions are simple
and fit well into the structure of cardinality-constrained problems. We also compared MPCaC-
WSONC and the usual WSONC applied to (2), and showed that the proposed tailored condition
excludes possible problems when verifying WSONC originated from the artificial variable y.
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A primal (safeguarded) augmented Lagrangian algorithm was considered and its global conver-
gence to second-order points was established. We have proved that, besides M-stationary points,
the algorithm achieves MPCaC-WSONC ones. To the best of your knowledge, this is the first
time that convergence up to second-order stationarity was established for an algorithm applied to
MPCaC.

As the proposed MPCaC-WSONC proves to be a second-order optimality condition associated
with algorithms, a topic for future research is the convergence of regularization methods such as
those defined in [14, 15, 16]. It worth mentioning that these methods usually are adaptations
from the MPCC-context, from where many other potentially algorithms can be originated. See for
instance [23] and references therein. Another interesting topic is, despite the lack of continuity and
convexity of the cardinality constraint, the establishment of methods that deal exclusively with
original variable x. We believe that an inexact restoration [25] approach may be possible in this
direction.
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