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Abstract

This paper studies duality and optimality conditions in general convex
stochastic optimization problems introduced by Rockafellar and Wets in
[28]. We derive an explicit dual problem in terms of two dual variables,
one of which is the shadow price of information while the other one gives
the marginal cost of a perturbation much like in classical Lagrangian du-
ality. Existence of primal solutions and the absence of duality gap are
obtained without compactness or boundedness assumptions. In the con-
text of financial mathematics, the relaxed assumptions are satisfied un-
der the well-known no-arbitrage condition and the reasonable asymptotic
elasticity condition of the utility function. We extend classical portfolio
optimization duality theory to problems of optimal semi-static hedging.
Besides financial mathematics, we obtain several new results in stochastic
programming and stochastic optimal control.

Keywords. Convex duality, stochastic programming, stochastic optimal con-
trol, financial mathematics

AMS subject classification codes. 90C15, 90C46, 46N10, 93E20, 46N10,
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1 Introduction

Given a probability space (Ω,F , P ) with a filtration (Ft)
T
t=0 (an increasing se-

quence of sub-σ-algebras of F), consider the problem

minimize Ef(x, ū) :=

∫
f(x(ω), ū(ω), ω)dP (ω) over x ∈ N (SP )

where N is a linear space of stochastic processes x = (xt)
T
t=0 adapted to (Ft)

T
t=0

(i.e., xt is Ft-measurable) and ū is a Rm-valued random variable. We assume
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that f is a convex normal integrand on Rn × Rm × Ω, i.e. f(·, ω) is a closed
convex function for every ω ∈ Ω and ω 7→ epi f(·, ω) is an F-measurable set-
valued mapping; see [31, Chapter 14]. Here and in what follows, we define the
integral of an extended real-valued random variable as +∞ unless its positive
part is integrable. The integral of any extended real-valued measurable function
is then a well defined extended real number so it follows that Ef is a well-defined
convex function on L0(Rn ×Rm).

Problems of the form (SP ) were first studied in [28] where it was observed
that many more specific stochastic optimization problems can be written in
this unified format. Examples include more traditional formulations of stochas-
tic programming, convex stochastic control and various problems in financial
mathematics; see Section 6 below. In [28], problem (SP ) was analyzed through
dynamic programming and convex duality. Soon after, [7] extended the dy-
namic programming principle by removing the convexity assumption but, like
[28], assumed the set of feasible solutions to be bounded. The boundedness
assumptions were removed in [13, 16, 22, 2, 21, 19].

Like [28, 23, 13, 2], the present paper studies problem (SP ) with the func-
tional analytic techniques of convex duality. This will yield dual problems whose
optimum values coincide with that of (SP ) and whose optimal solutions can be
used to characterize those of (SP ). We extend the classic results of [28, 29, 30]
so as to cover various duality results developed independently in stochastics and
financial mathematics e.g. in [6, 33, 9, 34, 15]. The new results allow also for
significant extensions to central models in stochastic programming, stochastic
optimal control and financial mathematics. In particular, we extend the inequal-
ity constrained models of [29] by including equality constraints and allowing for
unbounded strategies. In stochastic optimal control, we obtain a scenariowise
maximum principle. We also extend the classical duality results of financial
mathematics to optimal semistatic hedging problems where one optimizes over
dynamic trading strategies as well as statically held derivative portfolios. In
each application, we establish the existence of primal solutions and the absence
of a duality gap.

Much like in [28, 29, 13, 2], our strategy is to analyze (SP ) through the gen-
eral duality framework of [27]. We deviate from the above references, however,
in that we employ two dualizing parameters: the random vector ū in (SP ) and
another one that perturbs the adaptedness constraint on x. This yields an ex-
plicit dual problem for (SP ) in terms of two dual variables: one is the “shadow
price of information” studied e.g. in [35, 28, 23, 4, 5, 18] and the other one gives
the marginal cost of changing ū. As a special case, we obtain the dual problem
of [29] for stochastic optimization problems with inequality constraints. We
find new duality frameworks for many other problem classes including optimal
stoping, stochastic optimal control and portfolio optimization. Moreover, our
results apply without the compactness and boundedness assumptions made in
[29].

Without the boundedness assumptions, problem (SP ) does not directly fit
the framework of [27] which assumes that the optimal solutions are sought from
a locally convex vector space. We will thus first, in Section 3, restrict the de-
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cision strategies x to a locally convex space X of Rn-valued random variables.
Straightforward application of the functional analytic duality theory then yields
a dual problem and optimality conditions for the restricted problem. We return
to the original problem (SP ) in Section 4 and find that its optimum value as
a function of the parameters (z, u) has the same lower semicontinuous hull as
that of the restricted problem. It follows that their dual problems coincide and,
by an application of Fenchel inequality and Lemma 22, we find scenariowise op-
timality conditions for (SP ). Section 5 recalls sufficient conditions for the lower
semicontinuity of the optimum value function of (SP ). Section 6 illustrates the
new results with applications to more specific problems classes.

2 Integral functionals in duality

Convex duality is based on the theory of conjugate functions on dual pairs of
locally convex topological vector spaces; see [27]. The first part of this sec-
tion reviews spaces of random variables in separating duality with each other
while the second part reviews conjugation of integral functionals on such spaces.
This forms the functional analytic setting for the duality theory of stochastic
optimization developed in the followup sections. For full generality, we make
minimal assumptions on the spaces of random variables. The classical Lebesgue
and Orlicz spaces, Lp and LΦ are covered as special cases but also many others
that come up naturally e.g. in engineering and finance.

2.1 Dual spaces of random variables

Let U and Y be linear spaces of Rm-valued random variables in separating
duality under the bilinear form

⟨u, y⟩ := E[u · y].

This means that u·y ∈ L1 for all u ∈ U and y ∈ Y and that for every nonzero u ∈
U , there exists a y ∈ Y such that ⟨u, y⟩ ≠ 0 and vice versa. As usual, we identify
random variables that coincide almost surely so the elements of U and Y are
actually equivalence classes of random variables that coincide almost surely. We
will also assume that the spaces are decomposable and solid. Decomposability
means that

1Au+ 1Ω\Au
′ ∈ U

for every u ∈ U and u′ ∈ L∞ while solidity means that if ū ∈ U and u ∈ L0 are
such that |ui| ≤ |ūi| almost surely for every i = 1, . . . ,m, then u ∈ U ; similarly
for Y. Solidity implies that

U = U1 × · · · × Um and Y = Y1 × · · · × Ym,

where Ui and Yi are solid decomposable spaces of real-valued random variables
in separating duality under the bilinear form (ui, yi) 7→ E[uiyi]. In particular,

uiyi ∈ L1 and ⟨u, y⟩ =
m∑
i=1

E[uiyi] ∀u ∈ U , y ∈ Y. (1)
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Given a solid space of real-valued random variables U0, the space {u ∈ L0(Rm) |
|u| ∈ U0} is solid and it can be written as Um

0 , the m-fold Cartesian product
of U0. A solid space containing all constant functions is decomposable. The
following shows that the converse does not hold.

Counterexample 1. Let x ≥ 1 be an unbounded real-valued random variable
and X := L∞ + Lin(x1A | A ∈ F). Then X is decomposable, by construction,
but not solid, since it does not contain

√
x.

Decomposable solid spaces of random variables in separating duality in-
clude Lebesgue spaces, Orlicz spaces, Marcinkiewich spaces paired with Lorentz
spaces, spaces of finite moments ∥u∥Lp for all p ∈ (1,∞) as well as the general
class of Banach Function Spaces or, even more generally, locally convex function
spaces; see [20] and its references. The spaces of continuous functions or various
Sobolev spaces of functions on Rn fail to be decomposable or solid. The space
L0 of all random variables is decomposable and solid but if (Ω,F , P ) is atom-
less, it cannot be paired with a nontrivial space of random variables. Indeed,
if y ∈ L0 is nonzero, then there exists ϵ > 0 and A ∈ F such that |y|1A > ϵ
and P (A). Since the space is atomless, there exists η < 0 with E[1Aη] = −∞.
Choosing u = 1Ayη, we get E[u · y] = −∞.

Given a topology on U , the corresponding topological dual of U is the linear
space of all continuous linear functionals on U . A topology is compatible with
the bilinear form on U×Y if every continuous linear functional can be expressed
in the form

u 7→ ⟨u, y⟩

for some y ∈ Y. Such topologies can be characterized in terms of the “weak”
and “Mackey” topologies associated with the bilinear form. The weak topology
σ(U ,Y) on U is the topology generated by linear functionals u 7→ ⟨u, y⟩ where
y ∈ Y. Similarly for Y. The Mackey topology is the topology generated by the
sublinear functionals

σD(u) := sup
y∈D

⟨u, y⟩,

where D ⊂ Y is σ(Y,U)-compact. Similarly for Y. Given a topology on U ,
the corresponding topological dual can be identified with Y if and only if the
topology is between σ(U ,Y) and τ(U ,Y). If U is Fréchet (e.g. Banach) and Y
is its topological dual, then the σ(Y,U)-compact sets are the bounded sets in
Y, so τ(U ,Y) is the strong topology; see [10].

The following is from [16].

Lemma 2. We have L∞ ⊆ U ⊆ L1 and L∞ ⊆ Y ⊆ L1 and

σ(L1, L∞)|U ⊆ σ(U ,Y), σ(U ,Y)|L∞ ⊆ σ(L∞, L1),

τ(L1, L∞)|U ⊆ τ(U ,Y), τ(U ,Y)|L∞ ⊆ τ(L∞, L1).

The L0-topology on U is weaker than τ(U ,Y).
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Given a decomposable space U , its Köthe dual is the linear space

{y ∈ L0 | u · y ∈ L1 ∀u ∈ U}.

This is the largest space of random variables that can be paired with U with
the bilinear form (u, y) 7→ E[u · y]. Clearly, the Köthe dual of a solid space is
solid. The following is well-known, e.g., in Lebesgue and Orlicz spaces.

Lemma 3. Let U and Y be solid and G ⊂ F a σ-algebra such that EGU ⊂ U .
The mapping EG : U → U is weakly continuous if and only if EGY ⊂ Y and in
this case,

⟨EGu, y⟩ = ⟨u,EGy⟩ ∀u ∈ U , y ∈ Y.

If Y is the Köthe dual of U , then EGY ⊂ Y.

Proof. If ui, yi, (EGu)iyi and ui(EGy)i are integrable, Lemma 63 gives

E[EGu · y] = E[(EGu) · EGy] = E[u · EGy]. (2)

Thus, if EGU ⊂ U and EGY ⊂ Y, then, by (1), the function u 7→ EGu is weakly
continuous. On the other hand, if EG : U → U is weakly continuous, then
u 7→ E[EGu · y] is σ(U ,Y)-continuous for y ∈ Y. Thus, there exists a y′ ∈ Y
such that E[EGu · y] = E[u · y′] for all u ∈ U . Since y ∈ L1, (2) gives

E[EGu · y] = E[u · EGy] ∀u ∈ L∞.

Thus, y′ = EGy almost surely.
Assume now that Y is the Köthe dual of U and let y ∈ Y. It suffices

to show EGy ∈ Y. By solidity and linearity, we may assume that at most
one component yi of y is nonzero and that it is nonnegative. Then EGyi is
nonnegative. Since Y is the Köthe dual, it suffices to show that E[ui(EGyi)] < ∞
for every nonnegative u ∈ U . By Lemma 63, E[ui(EGyi)] = E[EG(ui)yi], where
the right side is finite, since EGU ⊂ U .

Let X and V be decomposable solid spaces of Rn-valued random variables
in separating duality under the bilinear form

(x, v) 7→ E[x · v].

A linear mapping A : X → U is weakly continuous if it is continuous with respect
to the weak topologies. This means that x 7→ ⟨Ax, y⟩ is σ(X ,V)-continuous for
all y ∈ Y, or equivalently, there exists a linear mapping A∗ : Y → V such that

⟨Ax, y⟩ = ⟨x,A∗y⟩ ∀x ∈ X , y ∈ Y.

The mapping A∗ is known as the adjoint of A.

Lemma 4. Let A ∈ L0(Rm×n) be a random matrix such that Ax ∈ U for all
x ∈ X . The linear mapping A : X → U defined pointwise by

Ax = Ax a.s.
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is weakly continuous if and only if A∗y ∈ V for all y ∈ Y, and in this case its
adjoint is given pointwise by

A∗y = A∗y a.s.

If V is the Köthe dual of X , then A∗y ∈ V for all y ∈ Y,

Proof. For any x ∈ X and y ∈ Y,

⟨Ax, y⟩ = E[(Ax) · y] = E[x ·A∗y],

which proves the equivalence and the adjoint formula. The above equation
implies that x ·A∗y ∈ L1, so A∗y ∈ V when V is the Köthe dual of X .

2.2 Conjugates of integral functionals

This section studies convex integral functionals on paired decomposable spaces
U and Y of random variables. More precisely, we take a normal integrand h and
study the integral functionals Eh : U → R and Eh∗ : Y → R defined by

Eh(u) :=

∫
Ω

h(u(ω), ω)dP (ω)

and

Eh∗(y) :=

∫
Ω

h∗(y(ω), ω)dP (ω).

The following two theorems are essentially reformulations of the main results
in [25]. We give the simple proofs for completeness.

Theorem 5. If h is a convex normal integrand with domEh ̸= ∅, then

(Eh)∗ = Eh∗.

Moreover, y ∈ ∂Eh(u) if and only if Eh(u) is finite and y ∈ ∂h(u) almost
surely.

Proof. The first claim follows by applying [31, Theorem 14.60] to the normal
integrand hy(u, ω) := h(u, ω) − u · y(ω), where y ∈ Y. As to the second, we
have y ∈ ∂Eh(u) if and only if Eh(u) is finite and Eh(u) + (Eh)∗(y) = ⟨u, y⟩.
Since (Eh)∗ = Eh∗ by the first part, the equality holds, by Fenchel’s inequality,
if and only if

h(u) + h∗(y) = u · y

almost surely. This means that y ∈ ∂h(u) almost surely.

Corollary 6. Let h be a convex normal integrand. The following are equivalent

1. domEh ̸= ∅ and domEh∗ ̸= ∅,

2. Eh is proper and closed,
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3. domEh ̸= ∅ and there exists y ∈ Y and α ∈ L1 such that

h(u, ω) ≥ u · y(ω)− α(ω)

and imply that Eh and Eh∗ are conjugates of each other and that y ∈ ∂Eh(u)
if and only if y ∈ ∂h(u) almost surely.

Proof. By Theorem 5, 1 implies 2. Assuming 2, there exists u ∈ domEh, y ∈ Y
and a ∈ R such that

Eh(u) ≥ ⟨u, y⟩ − a ∀u ∈ U
Thus, by Theorem 5,

a ≥ (Eh)∗(y) = Eh∗(y).

By Fenchel’s inequality

h(u, ω) + h∗(y, ω) ≥ u · y,

so 3 holds with α(ω) = h∗(y(ω), ω). If 3 holds, Eh∗(y) ≤ Eα, so 1 holds.
By Theorem 5, Eh and Eh∗ are conjugates of each other and y ∈ ∂Eh(u)
implies y ∈ ∂h(u) almost surely. If y ∈ ∂h(u), then h(u) + h∗(y) = u · y almost
surely, where each summand is integrable, since Eh and Eh∗ are proper, so
Eh(u) + Eh∗(y) = ⟨u, y⟩, which means that y ∈ ∂Eh(u).

Corollary 7. Given a closed convex valued measurable mapping S : Ω ⇒ R
m,

the set
S := {u ∈ U | u ∈ S a.s.}

is closed and convex.

Proof. This follows by applying Theorem 5 to the conjugate of h(u, ω) :=
δS(u, ω).

By symmetry, one can add obvious dual versions of 2 and 3 in the list of
equivalent conditions in Corollary 6. The following gives a general form of the
classical Jensen’s inequality for conditional expectations.

Theorem 8 (Jensen’s inequality). Assume that U and Y are solid with EGU ⊂
U and EGY ⊂ Y and let h be a G-measurable convex normal integrand such that
Eh∗ is proper on Y. Then

Eh(EGu) ≤ Eh(u)

for every u ∈ U .
Proof. Assume first that Eh∗ is proper on Y ∩ L0(G). Corollary 6 then gives

Eh(EGu) = sup
y∈Y∩L0(G)

{E[(EGu) · y]− Eh∗(y)}

= sup
y∈Y∩L0(G)

E[u · y − h∗(y)]

≤ E sup
y∈Rm

{u · y − h∗(y)}

= Eh(u)
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for any u ∈ U . If Eh∗ is proper merely on Y, then E(h∗)+ is proper on Y as
well. The function E[(h∗)+]∗ is finite at the origin so, by the first part of the
proof, E(h∗)+(EGy) ≤ E(h∗)+(y), so Eh∗ is finite on Y ∩ L0(G).

3 Duality for integrable strategies

We will develop a duality theory for (SP ) by applying the general conjugate
duality framework of Rockafellar [27] first to the parametric optimization prob-
lem

minimize Ef(x, ū) :=

∫
f(x(ω), ū(ω), ω)dP (ω) over x ∈ Xa (SPX )

where X ⊂ L0(Ω,F , P ;Rn) is a solid decomposable space of random paths and

Xa := X ∩N .

We will assume that the parameter ū belongs to another solid decomposable
space U ⊂ L0(Ω,F , P ;Rm) of random variables. The general theory of convex
duality will give a dual problem and optimality conditions for (SPX ). Section 4
will then extend these results to the original problem (SP ) where we optimize
over general adapted strategies in L0.

We embed (SPX ) into the conjugate duality framework by introducing an
additional parameter z ∈ X and the extended real-valued convex function F on
X × X × U defined by

F (x, z, u) := Ef(x, u) + δN (x− z).

We denote the associated optimum value function by

φ(z, u) := inf
x∈X

{Ef(x, u) |x− z ∈ N}.

We assume that X is in separating duality with a solid decomposable space V ⊂
L0(Ω,F , P ;Rn) and that U is in separating duality with a solid decomposable
space Y ⊂ L0(Ω,F , P ;Rm). The bilinear forms are the usual ones, i.e.

⟨x, v⟩ := E[x · v] and ⟨u, y⟩ := E[u · y].

Solidity implies that

X = X0 × · · · × XT and V = V0 × · · · × VT ,

where Xt and Vt are solid decomposable spaces of Rnt-valued random variables
in separating duality under the bilinear form (xt, vt) 7→ E[xt ·vt]. It follows that

⟨x, v⟩ =
T∑

t=0

E[xt · vt] ∀x ∈ X , v ∈ V
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and
Xa = X0(F0)× · · · × XT (FT ).

According to the general conjugate duality framework of [27], the dual prob-
lem is the concave maximization problem

maximize ⟨ū, y⟩ − F ∗(0, p, y) over (p, y) ∈ V × Y. (D)

More explicit forms will be given below. By definition, φ∗(p, y) = F ∗(0, p, y),
so the dual problem can be written as

maximize ⟨ū, y⟩ − φ∗(p, y) over (p, y) ∈ V × Y.

By Fenchel’s inequality,

F (x, 0, u) ≥ ⟨u, y⟩ − F ∗(0, p, y) ∀x ∈ X , u ∈ U , p ∈ V, y ∈ Y.

Denoting the optimal values of primal and dual problem, respectively, as inf(SPX )
and sup(D), we thus have

inf (SPX ) ≥ sup (D)

A duality gap is said to exist if the inequality is strict. Conversely, we say that
there is no duality gap if the above holds as an equality.

The associated Lagrangian is the convex-concave function L on X × V × Y
given by

L(x, p, y) := inf
(z,u)∈V×U

{F (x, z, u)− ⟨z, p⟩ − ⟨u, y⟩}.

By definition, the conjugate of F can be expressed as

F ∗(v, p, y) = sup
x∈X

{⟨x, v⟩ − L(x, p, y)}.

The associated minimax problem is to find a saddle-value and/or a saddle-point
of the concave-convex function

Lū(x, p, y) := L(x, p, y) + ⟨ū, y⟩,

when minimizing over x and maximizing over (p, y). If

inf
x

sup
p,y

Lū(x, p, y) = sup
p,y

inf
x

Lū(x, p, y),

the common value is called the minimax or the saddle-value, and (x, p, y) is
called a saddle-point if

Lū(x, p
′, y′) ≤ Lū(x, p, y) ≤ Lū(x

′, p, y) ∀x′, p′, y′.

Existence of a saddle-point implies the existence of a saddle-value.
Since N is closed in probability, Lemma 2 gives the following.
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Lemma 9. Xa is σ(X ,V)-closed.

The following three theorems are restatements of the main duality results
in [27] in the present setting. They all involve the assumption that the integral
functional Ef be closed in u. This means that Ef(x, ·) is closed in U for each
x ∈ X . Combined with Lemma 9, this implies that the function F is closed in
(z, u).

The following characterizes the absence of duality gap.

Theorem 10. The following are equivalent,

1. inf (SPX ) = sup (D),

2. φ is closed at (0, ū).

If Ef is closed in u, the above are equivalent to

3. The function Lū has a saddle-value.

The next one characterizes situations where there is no duality gap and,
furthermore, the dual admits solutions.

Theorem 11. If φ(0, u) < ∞, the following are equivalent

1. (p, y) solves (D) and inf (SPX ) = sup (D).

2. either φ(0, ū) = −∞ or (p, y) ∈ ∂φ(0, ū),

If Ef is closed in u, the above are equivalent to

3. inf
x

sup
p,y

Lū(x, p, y) = inf
x

Lū(x, p, y).

The following characterizes the situations where both primal and dual solu-
tions exist and there is no duality gap.

Theorem 12. The following are equivalent,

1. x solves (SPX ), (p, y) solves (D) and inf (SPX ) = sup (D) ∈ R,

2. (0, p, y) ∈ ∂F (x, 0, ū).

If Ef is closed in u, the above are equivalent to

3. 0 ∈ ∂xL(x, p, y) and (0, ū) ∈ ∂(p,y)[−L](x, p, y).

In order to write the dual problem and the optimality conditions more ex-
plicitly in terms of the problem data, we will first derive explicit expressions
for F ∗ and φ∗. The rest of the section will then focus on the Lagrangian, the
associated minimax problem and optimality conditions. We will denote the
orthogonal complement of Xa by

X⊥
a := {v ∈ V | ⟨x, v⟩ = 0 ∀x ∈ Xa}.
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Lemma 13. If domEf ∩ (X × U) ̸= ∅, then

F ∗(v, p, y) = Ef∗(v + p, y) + δX⊥
a
(p),

and, in particular,
φ∗(p, y) = Ef∗(p, y) + δX⊥

a
(p).

If, in addition, domEf∗ ∩ (V × Y) ̸= ∅, then F is proper and closed.

Proof. By the interchange rule [31, Theorem 14.60],

F ∗(v, p, y) = sup
x∈X ,z∈X ,u∈U

{⟨x, v⟩+ ⟨z, p⟩+ ⟨u, y⟩ − Ef(x, u) |x− z ∈ Xa}

= sup
x∈X ,z′∈X ,u∈U

{E[x · (v + p) + u · y − f(x, u)− z′ · p] | z′ ∈ Xa}

= Ef∗(v + p, y) + δX⊥
a
(p).

When domEf∗ ̸= ∅, Ef is proper and closed, by Corollary 6, so F is closed as
a sum of proper and closed functions. Clearly, F is proper.

As an immediate corollary, we get the following.

Theorem 14. If domEf ∩ (X × U) ̸= ∅, the dual problem (D) can be written
as

maximize ⟨ū, y⟩ − Ef∗(p, y) over (p, y) ∈ X⊥
a × Y. (D)

Much as in [28, Section 4] and [23, Proposition 1], the orthogonal complement
of Xa can be expressed in terms of the set

N⊥ := {v ∈ L1 | ⟨x, v⟩ = 0 ∀x ∈ N ∩ L∞}.

Lemma 15. The set Xa is σ(X ,V)-closed and

X⊥
a = N⊥ ∩ V = {v ∈ V |Etvt = 0 t = 0, . . . , T}.

Proof. Since N N is closed in L0, Lemma 2 implies that Xa is closed in τ(X ,V)
and thus, by convexity, also in σ(X ,V). Since

Xa = X0(F0)× · · · × XT (FT ),

we have v ∈ X⊥
a if and only if E[xt · vt] = 0 for every xt ∈ Xt(Ft). Here,

E[xt · vt] = E[xt · (Etvt)], by Lemma 63.

Note that the dual objective can be written also as

⟨ū, y⟩ − Ef∗(p, y) = E inf
(x,u)∈Rn×Rm

[f(x, u)− x · p+ (ū− u) · y].

This is the optimum value in a relaxed version of the primal problem (SP )
where we are now allowed to optimize over both x and u and the information
constraint x ∈ N has been removed so the minimization can be done. The
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constraints have been replaced by linear penalties given by the dual variables p
and y. The optimum value of (D) is less than or equal to that of (SPX ). If the
value function φ is closed at (0, ū), then, by Theorem 10, the optimum values can
be made arbitrarily close by an appropriate choice of (p, y). If (p, y) ∈ ∂φ(0, ū),
then, by Theorem 11, there is no duality gap and (p, y) solves the dual. This
implies, in particular, that p is a subgradient of φ with respect to the first
argument at (0, ū), i.e.,

Ef(x+ z, ū)− ⟨z, p⟩ ≥ φ(0, ū) ∀x ∈ Xa, z ∈ X .

In other words, one cannot improve the optimum value of (SPX ) by adding a
nonadapted perturbation z to the strategy x when one has to pay ⟨z, p⟩. Such
an element p ∈ X⊥

a is known as a shadow price of information of (SPX ). In the
deterministic setting, X⊥

a = {0} so the dual problem becomes

maximize ū · y − f∗(0, y) over y ∈ Rm

and we recover the classical duality framework in finite-dimensional spaces.
Theorem 14 can be used to restate Theorems 10, 11, and 12 more explicitly.

In particular, the first two equivalences in Theorem 12 can be restated as follows.

Theorem 16. If (SPX ) and (D) are feasible, then the following are equivalent

1. x solves (SPX ), (p, y) solves (D) and inf (SPX ) = sup (D),

2. x ∈ Xa, (p, y) ∈ X⊥
a × Y and

(p, y) ∈ ∂f(x, ū) a.s.

Proof. By Theorem 12, 1 is equivalent to (0, p, y) ∈ ∂F (x, 0, ū) which means
that F (x, 0, ū) + F ∗(0, p, y) = ⟨ū, y⟩. By Lemma 13, this means that x ∈ Xa,
p ∈ X⊥

a and
Ef(x, ū) + Ef∗(p, y) = E[x · p] + E[ū · y]. (3)

Given (x′, u′) ∈ X × U and (p′, y′) ∈ V × Y, we have

f(x′, u′) + f∗(p′, y′) ≥ x′ · p′ + u · y′, (4)

by Fenchel’s inequality, so the feasibility assumptions imply that the negative
parts of f(x′, u′) and f∗(p′, y′) are integrable and thus, by Lemma 62,

Ef(x′, u′) + Ef∗(p′, y′) = E[f(x′, u′) + f∗(p′, y′)].

Thus, (3) means that (x, ū) and (p, y) satisfy (4) as an equality, i.e., (p, y) ∈
∂f(x, ū).

Note that the dual is feasible e.g. if F is bounded from below since then
F ∗(0, 0) is finite. If ∂φ(0, ū) is nonempty, then by Theorem 11, there is no
duality gap and a dual has a solution. Theorem 16 thus implies the following.
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Corollary 17. If ∂φ(0, ū) ̸= ∅, then inf (SPX ) = sup (D) and the following are
equivalent for an x ∈ Xa,

1. x solves (SPX ),

2. there exists (p, y) ∈ X⊥
a × Y with

(p, y) ∈ ∂f(x, ū) a.s.

The rest of the section focuses on the Lagrangian L and the associated mini-
max problem. The Lagrangian L itself has a somewhat cumbersome expression
but it turns out that it is “equivalent” to a simpler function that has the same
saddle-value and saddle-points. The expressions derived below, involve the La-
grangian integrand l : Rn ×Rm × Ω → R defined by

l(x, y, ω) := inf
u∈Rm

{f(x, u, ω)− u · y}.

For any (x, y, ω), the function l(·, y, ω) is convex and l(x, ·, ω) is upper semicon-
tinuous and concave. Clearly,

f∗(v, y, ω) = sup
x∈Rn

{x · v − l(x, y, ω)}

so, by the biconjugate theorem,

(clx l)(x, y, ω) = sup
v∈Rn

{x · v − f∗(v, y, ω)}.

Given x ∈ X and y ∈ Y, the functions

(y, ω) 7→ −l(x(ω), y, ω) = sup
u∈Rm

{u · y − f(x(ω), u, ω)}

and
(x, ω) 7→ (clx l)(x, y(ω), ω) = sup

v∈Rn

{x · v − f∗(v, y(ω), ω)}

are normal integrands, by Proposition 14.45 and Theorem 14.50 of [31]. In
particular, the functions

ω 7→ l(x(ω), y(ω), ω) and ω 7→ (clx l)(x(ω), y(ω), ω)

are measurable, by [31, Proposition 14.28],
We will denote the projection of domEf to the x component by

domx Ef := {x ∈ X | ∃u ∈ U : Ef(x, u) < ∞}

and the projection of domEf∗ to the y component by

domy Ef∗ := {y ∈ Y | ∃v ∈ U : Ef∗(v, y) < ∞}.

13



Lemma 18. We have

L(x, p, y) =


+∞ if x /∈ domx Ef,

El(x, y)− ⟨x, p⟩ if x ∈ domx Ef and p ∈ X⊥
a ,

−∞ otherwise.

If domEf ̸= ∅, then

(clx L)(x, p, y) =

{
E(clx l)(x, y)− ⟨x, p⟩ if y ∈ domy Ef∗ and p ∈ X⊥

a ,

−∞ otherwise.

If domEf ̸= ∅ and domEf∗ ̸= ∅, then all convex-concave functions between L
and clx L have the same saddle-value, saddle-points and subdifferentials. In this
case,

v ∈ ∂xL(x, p, y), (z, u) ∈ ∂p,y[−L](x, p, y)

if and only if x− z ∈ Xa, p ∈ X⊥
a and

p+ v ∈ ∂xl(x, y), u ∈ ∂y[−l](x, y) a.s.

Proof. By definition,

L(x, p, y) = inf
(z,u)∈X×U

{F (x, z, u)− ⟨z, p⟩ − ⟨u, y⟩}

= inf
(z,u)∈X×U

{E[f(x, u)− z · p− u · y] |x− z ∈ Xa}

= inf
(z′,u)∈X×U

{E[f(x, u)− (x− z′) · p− u · y] | z′ ∈ Xa},

so the expression for L follows from [31, Theorem 14.60]. By Lemma 13,

(clx L)(x, p, y) = sup
v∈V

{⟨x, v⟩ − F ∗(v, p, y)}

=

{
supv∈V{⟨x, v⟩ − Ef∗(v + p, y)} if p ∈ X⊥

a ,

−∞ otherwise

so the expression for clx L follows from [31, Theorem 14.60] again. When
domEf ̸= ∅ and domEf∗ ̸= ∅, the function F is proper and closed by Lemma 13,
so the saddle-values, saddle-points and subdifferentials of L and clx L coincide,
by [32, Theorem 2 and 7].

When domEf ̸= ∅ and domEf∗ ̸= ∅, F is closed, by Corollary 6, and then,
(v, z, u) ∈ ∂L(x, p, y) if and only if (v, p, y) ∈ ∂F (x, z, u). By Lemma 13, this
means that x− z ∈ Xa, p ∈ X⊥

a and

Ef(x, u) + Ef∗(v + p, y) = E[x · v] + E[z · p] + E[u · y]

or, equivalently,

Ef(x, u) + Ef∗(v + p, y) = E[x · (v + p)] + E[u · y]
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Since, by Fenchel’s inequality,

f(x, u, ω) + f∗(v + p, y, ω) ≥ x · (v + p) + u · y,

this means that (v + p, y) ∈ ∂f(x, u) almost surely. Since f is closed, this is
equivalent to v + p ∈ ∂xl(x, y) and u ∈ ∂y[−l](x, y).

Corollary 19. If (SPX ) and (D) are feasible, the following are equivalent with
the conditions in Theorem 16,

1. (x, p, y) is a saddle-point of

(x, p, y) 7→ El(x, y)− ⟨x, p⟩+ ⟨ū, y⟩,

when minimizing over x ∈ X and maximizing over (p, y) ∈ X⊥
a × Y,

2. x ∈ Xa, (p, y) ∈ X⊥
a × Y and

p ∈ ∂xl(x, y), ū ∈ ∂y[−l](x, y) a.s.

Proof. The claim follows from Theorem 12 and Lemma 18, since the convex-
concave function in the first condition lies between L and clx L.

Similarly, we can augment Corollary 17 as follows.

Corollary 20. If ∂φ(0, ū) ̸= ∅, then the following are equivalent,

1. x solves (SPX ),

2. x ∈ Xa and there exists (p, y) ∈ X⊥
a × Y with

(p, y) ∈ ∂f(x, ū) a.s.

3. x ∈ Xa and there exists (p, y) ∈ X⊥
a × Y with

p ∈ ∂xl(x, y), ū ∈ ∂y[−l](x, y) a.s.

In the deterministic setting, X⊥
a = {0} so condition 3 in Corollary 20 be-

comes the Karush-Kuhn-Tucker (KKT) condition in finite-dimensional convex
optimization. In the stochastic setting, the shadow price of information p ∈ X⊥

a

allows us to write the KKT-conditions scenariowise.

4 Duality for (SP )

While problem (SPX ) in Section 3 allows for a convenient dualization within
the purely functional analytic conjugate duality framework, there are interesting
applications where inf (SPX ) > inf (SP ) or the infimum in (SP ) is attained in
L0 but not in X ; see Counterexample 28 for a simple illustration. It may even
happen that (SPX ) is infeasible while (SP ) is not; see Counterexample 29. This
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section shows that many of the duality relations between (SPX ) and (D) derived
in Section 3 also hold between (SP ) and (D).

The function

φ̄(z, u) := inf
x∈L0

{Ef(x, u) | x− z ∈ N}

on X × U gives the optimum value of (SP ) when we perturb the strategies x
by z ∈ X and vary the parameter ū in the space U . In particular, φ̄(0, ū) =
inf (SP ). Clearly, φ ≥ φ̄ since the latter is defined by optimizing over a larger
class of strategies. However, under a mild condition, their conjugates coincide.

Lemma 21. If domEf ∩ (X × U) ̸= ∅, then φ∗ = φ̄∗.

Proof. Since φ ≥ φ̄, we have φ∗ ≤ φ̄∗. To prove the converse, let (p, y) ∈
domφ∗. By Lemma 13,

φ∗(p, y) = Ef∗(p, y) + δX⊥
a
(p),

so p ∈ X⊥
a . By Fenchel’s inequality,

Ef(x, u) + δN (x− z) + Ef∗(p, y) ≥ E[(x− z) · p] + E[z · p] + E[u · y]

for all (x, z, u) ∈ L0 ×X × U , so Lemma 22 below implies

Ef(x, u) + δN (x− z) + Ef∗(p, y) ≥ E[z · p] + E[u · y].

Thus φ̄(z, u)+φ∗(p, y) ≥ ⟨z, p⟩+ ⟨u, y⟩ for all (z, u) ∈ X ×U , which means that
φ̄∗(p, y) ≤ φ∗(p, y).

The above proof used the following from [22]; see also [19].

Lemma 22. Let x ∈ N and v ∈ N⊥. If E[x · v]+ ∈ L1, then E[x · v] = 0.

Note that, if domEf ∩ (X ×U) ̸= ∅ and φ∗ is proper, then Ef is proper on
X × U .

Corollary 23. We have ∂φ(z, u) = ∂φ̄(z, u) whenever the left side is nonempty.
In particular, if ∂φ(0, ū) ̸= ∅, then

inf (SP ) = inf (SPX ) = sup (D)

and the dual optimum is attained.

Proof. If ∂φ(z, u) ̸= ∅, we have (z, u) ∈ domφ and thus, domEf ∩ (X ×U) ̸= ∅.
By the biconjugate theorem and Lemma 21, clφ = cl φ̄. In particular, φ ≥ φ̄ ≥
clφ. When ∂φ(z, u) ̸= ∅, we have φ(z, u) = clφ(z, u) so φ̄(z, u) = φ(z, u) and
thus, φ̄(z, u)+ φ̄∗(p, y) = ⟨x, p⟩+⟨u, y⟩ if and only if φ(z, u)+φ∗(p, y) = ⟨x, p⟩+
⟨u, y⟩. In other words, (p, y) ∈ ∂φ̄(z, u) if and only if (p, y) ∈ ∂φ(z, u). The
second claim follows from Theorem 11 and Lemma 21 since subdifferentiability
implies closedness.
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By Lemma 21,

φ̄(0, ū) ≥ ⟨ū, y⟩ − φ∗(p, y) ∀(p, y) ∈ V × Y,

where the right side is the dual objective from Section 3. Thus, the optimal value
of (SP ) is always bounded from below by the dual objective so the duality gap
between (SP ) and (D) is nonnegative. The duality gap is zero if and only if
φ̄∗∗(0, ū) = φ̄(0, ū). Thus, we have the following, which gives the analogue of
the first equivalence in Theorem 10.

Theorem 24. If domEf ∩ (X × U) ̸= ∅, then the following are equivalent,

1. inf (SP ) = sup (D),

2. φ̄ is closed at (0, ū).

The following gives the analogue of the first equivalence in Theorem 11.

Theorem 25. If domEf ∩ (X × U) ̸= ∅ and φ̄(0, u) < ∞, then the following
are equivalent

1. (p, y) solves (D) and inf (SP ) = sup (D),

2. either φ̄(0, ū) = −∞ or (p, y) ∈ ∂φ̄(0, ū),

Proof. Condition 2 means that either φ̄(0, ū) = −∞ or φ̄(0, z)+φ̄∗(p, y) = ⟨ū, y⟩,
where, by Lemma 21, φ̄∗ = φ∗. Thus the claim follows from Lemma 13.

Theorem 26. If domEf ∩ (X × U) ̸= ∅ and (SP ) and (D) are feasible, then
following are equivalent

1. x solves (SP ), (p, y) solves (D) and inf (SP ) = sup (D),

2. x is feasible in (SP ), (p, y) is feasible in (D) and

(p, y) ∈ ∂f(x, ū) P -a.s. (5)

3. x is feasible in (SP ), (p, y) is feasible in (D) and

p ∈ ∂xl(x, y), ū ∈ ∂y[−l](x, y) P -a.s.

Proof. The assumptions imply that f is proper so the equivalence of 2 and 3
follows from [26, Theorem 37.5]. Let x ∈ N and (p, y) ∈ V × Y be feasible. By
Fenchel’s inequality,

f(x, u) + f∗(p, y)− ū · y ≥ x · p P -a.s.

so
Ef(x, u) + E[f∗(p, y)− ū · y] ≥ E[x · p]

and one holds as an equality if and only if the other one does. Equality in the
former means that 2 holds. By Lemma 22, E[x · p] = 0, so equality in the latter
means that 1 holds.
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If ∂φ̄(0, ū) ̸= ∅, then, by Theorem 25, inf (SP ) = sup (D) and the dual has
a solution. Theorem 26 thus gives the following.

Corollary 27. If domEf ∩ (X × U) ̸= ∅ and ∂φ̄(0, ū) ̸= ∅, then inf (SP ) =
sup (D), the optimum is attained in the dual and the following are equivalent,

1. x solves (SP ),

2. x is feasible and there exists a dual feasible (p, y) with (p, y) ∈ ∂f(x, ū)
almost surely.

If (SP ) has a solution, (p, y) is dual optimal and inf (SP ) = sup (D), then,
by Theorem 26, solutions of (SP ) are scenariowise minimizers of the function

x 7→ l(x, y)− x · p

and, in particular, if the scenariowise minimizer is unique, then it is necessarily
adapted and solves (SP ).

Counterexample 28. It is possible that inf (SP ) = sup (D) while inf (SPX ) >
sup (D). Indeed, let

f(x, u, ω) = (x0 − 1)2 + δ{0}(x0ξ(ω)− x1),

F0 be trivial and ξ ∈ L0(F1) with ξ /∈ X . Since f is nonnegative, (1, ξ) is
optimal for (SP ) and the optimal value is zero. Here Ef is proper on X × U ,
and, by a direct verification, f∗(0, 0) = 0, so the origin is a dual solution and
inf (SP ) = sup (D) = 0. On the other hand, the only feasible solution of (SPX )
is the origin, so inf (SPX ) = 1.

Counterexample 29. It may happen that (SPX ) is infeasible, but nevertheless,
(SP ) is feasible and inf (SP ) = sup (D). Indeed, let

f(x, u, ω) = δ{0}(xT − uξ(ω)).

If ξ /∈ X and ū = 1, then (SP ) is feasible while (SPX ) is not. Clearly Ef is
proper on X × U and f∗(0, 0) = 0, so inf (SP ) = sup (D) = 0.

The optimum value of the dual problem

maximize ⟨u, y⟩ − φ∗(p, y) over (p, y) ∈ V × Y (D)

clearly coincides with that of

maximize ⟨u, y⟩ − g(y) over (p, y) ∈ V × Y, (rD)

where
g(y) := inf

p∈V
φ∗(p, y).

Problem (rD) is called the reduced dual problem. A pair (p, y) solves (D) if and
only if y solves (rD) and p attains the infimum in the definition of g. In many
applications, the infimum and the minimizing p can be found analytically.
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5 Absence of a duality gap

This section recalls the main result of [22] on the lower semicontinuity of the
optimum value function of (SP ). As we have seen, the lower semicontinuity im-
plies the absence of a duality gap. Besides the lower semicontinuity, Theorem 31
below establishes the existence of optimal solutions to (SP ).

Assumption 30. (SP ) is feasible,

{x ∈ N | f∞(x, 0) ≤ 0}

is a linear space and there exists p ∈ X⊥
a and ϵ > 0 such that

inf
y∈Y

Ef∗(λp, y) < ∞

for λ ∈ [1− ϵ, 1 + ϵ].

The linearity condition in Assumption 30 holds trivially if f(·, 0) is inf-
compact since then, its recession function is strictly positive except at the origin;
see [26, Theorem 8.6]. If f is bounded from below by an integrable random vari-
able, then Ef∗(0, 0) < ∞ so the second condition in Assumption 30 holds. The
second condition holds also e.g. if domEf∗∩(V×Y) is a nonempty cone. In cer-
tain models of financial mathematics, it is implied by the well-known asymptotic
elasticity conditions on the utility function; see [19, Section 5.5].

Theorem 31. Under Assumption 30, the function

φ̄(z, u) = inf
x∈L0

{Ef(x, u) | x− z ∈ N}

is lower semicontinuous on X × U ,

φ̄∞(z, u) = inf
x∈L0

E{f∞(x, u) | z − z ∈ N},

and the infimums are attained for every (z, u) ∈ X × U .

Proof. We have

φ̄(z, u) = inf
x∈N

Ef(x+ z, u) = inf
x∈N

Ef̄(x, z, u),

where f̄(x, z, u, ω) = f(x+ z, u, ω). The claim thus follows from the main result
of [22] as soon as

{x ∈ N | f̄∞(x, 0, 0) ≤ 0}
is linear and there exists p ∈ X⊥

a and ϵ > 0

inf
(p′,y)∈V×Y

Ef̄∗(λp, p′, y) < ∞.

Since f̄∞(x, z, u, ω) = f∞(x + z, u, ω), the former is clear from the linearity
condition in Assumption 30. We have

f̄∗(v, p, y, ω) = f∗(v, y, ω) + δ{0}(p− v)

so the latter follows from Assumption 30 as well.
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Combining the above with Theorem 24 gives the following.

Corollary 32. Under Assumption 30, inf (SP ) = sup (D), and (SP ) has a
solution.

6 Applications

This section applies the general duality result to specific instances of (SP ). In
the following applications, we give more explicit expressions for the involved
functions and conditions but only give selected statements as examples of how
the general theory can be applied.

6.1 Mathematical programming

Consider the problem

minimize Ef0(x) over x ∈ N ,

subject to fj(x) ≤ 0 j = 1, . . . , l a.s.,

fj(x) = 0 j = l + 1, . . . ,m a.s.

(MP )

where fj are convex normal integrands with fj affine for j > l. This fits the
general duality framework with ū = 0 and

f(x, u, ω) =

{
f0(x, ω) if x ∈ domH, H(x) + u ∈ K,

+∞ otherwise,

where K = Rl
− × {0} and H is the K-convex random function defined by

domH(·, ω) =
m⋂
j=1

dom fj(·, ω) and H(x, ω) = (fi(x, ω))
m
j=1.

The Lagrangian integrand becomes

l(x, y, ω) = inf{f(x, u, ω)− u · y}

=


+∞ if x /∈ domH(·, ω),
f0(x, ω) + y ·H(x, ω) if x ∈ domH(·, ω) and y ∈ K∗,

−∞ otherwise

and the conjugate of f

f∗(p, y) = sup
x∈Rn

{x · p− l(x, y)}

=

{
supx∈Rn{x · p− f0(x)− y ·H(x) | x ∈ domH(·, ω)} if y ∈ K∗,

+∞ if y ̸∈ K∗.
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If domEf ∩ (X ×U) ̸= ∅, Lemma 13 says that the dual problem can be written
as

maximize E inf
x∈Rn

{f0(x) + y ·H(x)− x · p} over (p, y) ∈ X⊥
a × Y

subject to y ∈ K∗ a.s.
(DMP )

To get more explicit expressions for f∗ and the dual problem, additional struc-
ture is needed; see Example 36 below.

Recall that the normal cone of a convex set C at at point x is given by

NC(x) := {v ∈ Rn | (x′ − x) · v ≤ 0 ∀x′ ∈ C}.

When C is a convex cone, then

v ∈ NC(x) ⇔ x ∈ X, v ∈ C∗, x · v = 0, (6)

where C∗ := {v ∈ Rn | x · v ≤ 0 ∀x ∈ C} is the polar cone of C; see the end of
[26, Section 23]. Theorem 26 gives the following.

Theorem 33. If domEf ∩ (X × U) ̸= ∅ and (MP ) and (DMP ) are feasible,
then the following are equivalent

1. x solves (MP ), (p, y) solves (DMP ) and inf (MP ) = sup (DMP ),

2. x is feasible in (MP ), (p, y) is feasible in (DMP ) and

p ∈ ∂x[f0 + y ·H](x),

H(x) ∈ K, y ∈ K∗, y ·H(x) = 0

almost surely.

Proof. It suffices to note that, when (x, y) ∈ dom l, we have

0 ∈ ∂y[−l](x, y) = −H(x) +NK∗(y)

if and only ifH(x) ∈ NK∗(y). This is equivalent with the given complementarity
condition by (6).

Assumption 34.

1. (MP ) is feasible,

2. domEf ∩ (X × U) ̸= ∅,

3. {x ∈ N | f∞
j (x) ≤ 0 j = 0, . . . l, f∞

j (x) = 0 j = l + 1, . . . ,m} is a linear
space,

4. there exists a p ∈ X⊥
a and an ϵ > 0 such that for all λ ∈ (1− ϵ, 1+ ϵ) there

exist a y ∈ Y and β ∈ L1 such that y ∈ K∗ and

f0(x, ω) + y(ω) ·H(x, ω) ≥ λx · p(ω)− β(ω) ∀x ∈ Rn.
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Theorems 31 and 33 give the following.

Theorem 35. Under Assumption 34, inf (MP ) = sup (DMP ) and (MP ) has
a solution. In this case, a dual feasible (p, y) solves (DMP ) if and only if there
exists a primal feasible x with

p ∈ ∂x[f0 + y ·H](x),

H(x) ∈ K, y ∈ K∗, y ·H(x) = 0

almost surely.

In case of linear stochastic programming, the dual can be written down
explicitly in terms of the problem data.

Example 36 (Linear stochastic programming). Consider the problem

minimize E[x · c] over x ∈ N
subject to Ax− b ∈ K a.s.

and assume that there exists (x, u) ∈ X×U such that E[x·c] < ∞ and Ax+u−b ∈
K almost surely. The dual problem becomes

minimize E[b · y] over p ∈ X⊥
a , y ∈ Y,

subject to c+A∗y = p, y ∈ K∗ a.s.

and the scenariowise KKT-conditions

A∗y + c = p,

Ax− b ∈ K, y ∈ K∗, (Ax− b) · y = 0,

where A∗ is the scenariowise transpose of A.
Indeed, this is a special case of (MP ) with f0(x, ω) = c(ω) ·x and fj(x, ω) =

aj(ω) · x− bj(ω) for j = 1, . . . ,m. We get

l(x, y, ω) = x · c(ω) + y ·A(ω)x− y · b(ω)− δK∗(y)

and

f∗(p, y, ω) = sup
x∈Rn

{x · v − l(x, y, ω)}

=

{
y · b(ω) if y ∈ K∗ and c(ω) +A∗(ω)y = p,

+∞ otherwise.

This gives the dual problem while the KKT conditions follow directly from The-
orem 33.

We will denote the adapted projection of an integrable process u by

au := (Etut)
T
t=0.
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Example 37 (Linear stochastic programming, reduced dual). In the setting of
Example 36 assume that c ∈ V and A∗y ∈ V for all y ∈ Y. Then, a pair (p, y)
solves the dual if and only if y solves the reduced dual problem

minimize E[b · y] over y ∈ Y,

subject to
a
(c+A∗y) = 0, y ∈ K∗ a.s.

and p = c + A∗y − a
(c + A∗y). If the elements of ct and the columns At of A

corresponding to xt are Ft-measurable, then the reduced dual can be written as

minimize E[b · y] over y ∈ Y,

subject to ct+A∗
t · Ety = 0 t = 0, . . . , T, y ∈ K∗ a.s.

Proof. The first claim is clear and the second claim is a straightforward appli-
cation of Lemma 63.

6.2 Optimal stopping

Let R be a real-valued adapted stochastic process and consider the optimal
stopping problem

maximize ERτ over τ ∈ T , (OS)

where T is the set of stopping times, i.e. measurable functions τ : Ω → {0, . . . , T+
1} such that {ω ∈ Ω | τ(ω) ≤ t} ∈ Ft for each t = 0, . . . , T . Choosing τ = T +1
is interpreted as not stopping at all. The problem

maximize E

T∑
t=0

Rtxt over x ∈ N ,

subject to x ≥ 0,

T∑
t=0

xt ≤ 1 a.s.

(ROS)

is a convex relaxation of (OS) in sense that their optimal values coincide and
the extreme points of the feasible set of (ROS) can be identified with T ; see
[19, Section 5.2].

Problem (ROS) fits the general duality framework with nt = 1, m = 1,

f(x, u, ω) =

{
−
∑T

t=0 xtRt(ω) if x ≥ 0 and
∑T

t=0 xt + u ≤ 0,

+∞ otherwise
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and ū = −1. We get

l(x, y, ω) = inf
u∈Rn

{f(x, u, ω)− uy}

= inf
u∈Rn

{−
T∑

t=0

xtRt(ω)− uy | x ≥ 0,

T∑
t=0

xt + u ≤ 0}

=

{
−
∑T

t=0 xtRt(ω) + y
∑T

t=0 xt + δRn
+
(x) if y ≥ 0,

−∞ otherwise

=

{∑T
t=0 xt[y −Rt(ω)] + δRn

+
(x) if y ≥ 0,

−∞ otherwise,

and

f∗(p, y, ω) = sup
x
{x · p− l(x, y, ω)}

= sup
x∈Rn

+

T∑
t=0

xt[pt − y +Rt(ω)] + δR+
(y)

=

{
0 if y ≥ 0 and pt +Rt(ω) ≤ y, t = 0, . . . , T ,

+∞ otherwise.

Since domEf ∩ (X × U) ̸= ∅, Lemma 13 says that the dual of (ROS) can be
written as

minimize Ey over (p, y) ∈ X⊥
a × Y+

subject to pt +Rt ≤ y t = 0, . . . , T a.s.
(DOS)

It is clear that (ROS) is feasible, and (DOS) is feasible when the pathwise
maximum maxt Rt belongs Y. Theorem 26 thus gives the following.

Theorem 38. If maxt Rt ∈ Y, then the following are equivalent,

1. x solves (ROS), (p, y) solves (DOS) and there is no duality gap.

2. x ∈ Xa and (p, y) ∈ X⊥
a × Y and

xt ≥ 0, pt +Rt ≤ y, xt(pt +Rt − y) = 0 t = 0, . . . , T,

y ≥ 0,

T∑
t=0

xt ≤ 1, y(

T∑
t=0

xt − 1) = 0

almost surely.

In particular, a stopping time τ ∈ T solves (OS), (p, y) ∈ X⊥
a ×Y solves (DOS)

and there is no duality gap if and only if pt +Rt ≤ y for all t and pτ +Rτ = y
almost surely.
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Proof. The scenariowise KKT-condition in Theorem 26 can be written as

pt +Rt − y ∈ NR+
(xt) t = 0, . . . , T,

T∑
t=0

xt − 1 ∈ NR+
(y),

This is equivalent to the conditions given in the statement by (6). The second
claim thus follows from Theorem 16 and Corollary 19. The last claim follows
from the fact that a τ ∈ T solves the optimal stopping problem (OS) if and
only if the process x ∈ Xa given by

xt =

{
1 if t = τ ,

0 if t ̸= τ

is optimal in (ROS); [19, Section 5.2].

Example 39 (Reduced dual). Assume that maxt Rt ∈ Y and EtY ⊆ Y ⊆ Vt

for all t. The optimum value of (DOS) equals that of the reduced dual

minimize Ey0 over y ∈ MY
+

subject to Rt ≤ yt t = 0, . . . , T a.s.,
(rDOS)

where MY
+ is the cone of nonnegative martingales y with yT ∈ Y. A pair

(p, y) ∈ V×Y solves (DOS) if and only if pt = y−Ety and the process yt := Ety
solves (rDOS). The following are equivalent

1. x ∈ Xa solves (ROS), y ∈ Y solves (rDOS) and there is no duality gap

2. x ∈ Xa, y ∈ MY and

xt ≥ 0, Rt ≤ yt, xt(Rt − yt) = 0 t = 0, . . . , T,

yT ≥ 0,

T∑
t=0

xt ≤ 1, yT (

T∑
t=0

xt − 1) = 0

almost surely.

In particular, a stopping time τ ∈ T solves (OS), y ∈ MY
+ solves (rDOS) and

there is no duality gap if and only if Rt ≤ yt for all t and Rτ = yτ almost surely.

Proof. Let y ∈ Y. The first two claims follow from the identity

{y ∈ Y | ∃p ∈ X⊥
a : pt +Rt ≤ y ∀t} = {y ∈ Y | Rt ≤ Et[y] ∀t}.

The last claim follows from the second one and Theorem 38.

We end this section by applying the results of Section 5. Assumption 30
holds with p = 0 and y = maxt Rt. Theorems 31 and 38 thus give the following.

Theorem 40. If maxt Rt ∈ Y, then sup (OS) = sup (ROS) = inf (DOS), and
(OS) and (ROS) have a solution. In this case, a dual feasible (p, y) solves
(DOS) if and only if there exists a stopping time τ ∈ T with pτ +Rτ = y almost
surely.

25



6.3 Optimal control

Consider the optimal control problem

minimize E

[
T∑

t=0

Lt(Xt, Ut)

]
over (X,U) ∈ N ,

subject to ∆Xt = AtXt−1 +BtUt−1 +Wt t = 1, . . . , T

(OC)

where the state X and the control U are processes with values in RN and
R

M , respectively, At and Bt are Ft-measurable random matrices, Wt is an Ft-
measurable random vector and the functions Lt are convex normal integrands.
The linear constrains in (OC) are called the system equations.

The problem fits the general duality framework with x = (X,U), ū =
(Wt)

T
t=1 and

f(x, u, ω) =

T∑
t=0

Lt(Xt, Ut, ω) +

T∑
t=1

δ{0}(∆Xt −At(ω)Xt−1 −Bt(ω)Ut−1 − ut).

We thus assume that X and U are solid decomposable spaces of R(T+1)(N+M)-
and RTM -valued random variables, respectively, and that (W1, . . . ,WT ) ∈ U .
By solidity,

U = U1 × · · · × UT , U = Y1 × · · · × YT ,

where Ut and Yt are solid decomposable spaces of RM -valued random variables
in separating duality under the bilinear form (ut, yt) 7→ E[ut ·yt]. It follows that

⟨u, y⟩ =
T∑

t=1

E[ut · yt].

For simplicity, we assume further that, for all t,

Xt = S × C, Ut = S
Vt = S ′ × C′, Yt = S ′

where S and C are solid decomposable spaces in separating duality with S ′ and
C′, respectively.

The Lagrangian integrand becomes

l(x, y, ω) = inf
u∈Rm

{f(x, u, ω)− u · y}

=

T∑
t=0

Lt(Xt, Ut, ω)−
T∑

t=1

(∆Xt −At(ω)Xt−1 −Bt(ω)Ut−1) · yt

=

T∑
t=0

[Lt(Xt, Ut, ω) +Xt · (∆yt+1 +A∗
t+1(ω)yt+1) + Ut ·B∗

t+1(ω)yt+1].
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The conjugate integrand can be written as

f∗(v, y, ω) = sup
x∈Rn

{x · v − l(x, y, ω)}

=

T∑
t=0

L∗
t (vt − (∆yt+1 +A∗

t+1(ω)yt+1, B
∗
t+1(ω)yt+1), ω),

where yT+1 := 0, AT+1 := 0 and BT+1 := 0.
As soon as domEf ∩ (X × U) ̸= ∅, Lemma 13 says that the dual problem

can be written as

maximize E

[
T∑

t=1

Wt · yt −
T∑

t=0

L∗
t (pt − (∆yt+1 +A∗

t+1yt+1, B
∗
t+1yt+1))

]
over (p, y) ∈ X⊥

a × Y.
(DOC)

Theorem 16 and Corollary 19 give the following.

Theorem 41. If domEf ∩ (X × U) ̸= ∅ and (OC) and (DOC) are feasible,
then the following are equivalent

1. (X,U) solves (OC), (p, y) solves (DOC) and there is no duality gap,

2. (X,U) is feasible in (OC), (p, y) is feasible in (DOC) and, for all t,

pt − (∆yt+1 +A∗
t+1yt+1, B

∗
t+1yt+1) ∈ ∂Lt(Xt, Ut),

∆Xt = AtXt−1 +BtUt−1 +Wt

almost surely.

The optimality conditions in Theorem 41 can be formulated also in the form
of a stochastic maximum principle.

Remark 42 (Maximum principle). The scenariowise KKT-conditions in The-
orem 41 mean that (X,U) satisfies the system equations and that

−(∆yt+1, 0) ∈ ∂(Xt,Ut)Ht(Xt, Ut, yt+1)− pt, (7)

where

Ht(Xt, Ut, yt+1) := Lt(Xt, Ut) + yt+1 · (At+1Xt +Bt+1Ut).

This can be written equivalently as

Ut ∈ argmin
Ut∈RM

{Ht(Xt, Ut, yt+1)− (Xt, Ut) · pt},

−∆yt+1 ∈ ∂Xt
H̄t(Xt, pt, yt+1),

where

H̄t(Xt, pt, yt+1) := inf
Ut∈RM

{Ht(Xt, Ut, yt+1)− (Xt, Ut) · pt}.
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If, for all (Xt, Ut, yt+1) ∈ RN ×RM ×RN ,

∂(Xt,Ut)Ht(Xt, Ut, yt+1) = ∂Xt
Ht(Xt, Ut, yt+1)× ∂Ut

Ht(Xt, Ut, yt+1), (8)

this can be written as

Ut ∈ argmin
Ut∈RM

{Ht(Xt, Ut, yt+1)− (Xt, Ut) · pt},

−∆yt+1 ∈ ∂Xt{Ht(Xt, Ut, yt+1)− (Xt, Ut) · pt}

almost surely. Condition (8) holds, in particular, if Lt is of the form

Lt(X,U) = L0
t (X,U) + L1

t (X) + L2
t (U),

where L0
t is differentiable.

Proof. The optimality conditions in Theorem 41 mean that

−(∆yt+1, 0) ∈ ∂ft(Xt, Ut), (9)

where ft(Xt, Ut) := Ht(Xt, Ut, yt+1)− (Xt, Ut) · pt. The first claim thus follows
from [26, Theorem 37.5]. Under (8), condition (9) can be written as

−∆yt+1 ∈ ∂Xt
ft(Xt, Ut),

0 ∈ ∂Ut
ft(Xt, Ut),

which is the second condition.

Assumption 43. The spaces S ′ and C′ are the Köthe duals of S and C,
respectively, and, for all t,

A EtS ⊆ S and EtC ⊆ C,

B AtS ⊆ S and BtC ⊆ S.

Except for condition B, Assumption 43 holds automatically e.g. in Lebesgue
and Orlicz spaces. Part B holds e.g. if columns of At and Bt belong to L∞ or,
alternatively, if C and S are Cartesian products of spaces of finite moments (see
[20, Section 6.1]) and the columns of At and Bt belong to S. By Lemmas 3
and 4, Assumption 43 implies that, for all t,

A′ EtS ′ ⊆ S ′ and EtC′ ⊆ C′,

B′ AtS ′ ⊆ S ′ and BtS ′ ⊆ C′.

Moreover, Assumption 43 implies the following.

Lemma 44. Under Assumption 43,

Et[A
∗
t yt] = A∗

tEtyt and Et[B
∗
t yt] = B∗

tEtyt

for all yt ∈ S ′.
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Proof. B implies that yt · AtXt−1 is integrable for all Xt−1 ∈ S and yt ∈ S ′.
Solidity of S implies that if we take Xt−1 ∈ S and set all but one of its com-
ponents to zero, the resulting vector is still in S. Similarly for S ′. Condition
B thus implies that (A∗

t )i,jy
j
t ∈ L1 for all i, j. The claim now follows from

Lemma 63.

Remark 45 (Reduced dual). Assume that each Lt is Ft-measurable, each ELt

is proper on S × C and that Assumption 43 holds. Then the optimum value of
the dual problem (DOC) equals that of the reduced dual problem

maximize E

[
T∑

t=1

Wt · yt −
T∑

t=0

[L∗
t (−Et(∆yt+1 +A∗

t+1yt+1, EtB
∗
t+1yt+1))]

]
over y ∈ Ya

(rDOC)
A pair (p, y) ∈ X⊥

a × Y solves (DOC), if and only if ay solves the reduced dual
and

pt = (∆yt+1 +A∗
t+1yt+1, B

∗
t+1yt+1)− Et(∆yt+1 +A∗

t+1yt+1, B
∗
t+1yt+1).

The following are equivalent

1. (X,U) solves (OC), y solves (rDOC) and there is no duality gap,

2. (X,U) is feasible in (OC), y is feasible in (rDOC) and, for all t,

Et[∆yt+1 +A∗
t+1yt+1, B

∗
t+1yt+1] ∈ ∂Lt(Xt, Ut),

∆Xt = AtXt−1 +BtUt−1 +Wt

almost surely.

Proof. Given y ∈ Y, the Jensen’s inequality in Theorem 8 gives

inf
p∈X⊥

a

E

T∑
t=0

L∗
t (pt − (∆yt+1 +A∗

t+1yt+1, B
∗
t+1yt+1))

= E

T∑
t=0

L∗
t (−Et(∆yt+1 +A∗

t+1yt+1, B
∗
t+1yt+1)),

where the infimum is attained by the p given in the statement. The properties
A′ and B′ stated after Assumption 43 imply that the p given in the statement
belongs to X⊥

a so it attains the infimum above. By Lemma 44,

−Et(∆yt+1 +A∗
t+1yt+1, B

∗
t+1yt+1) = −Et(∆

ayt+1 +A∗
t+1

ayt+1, B
∗
t+1

ayt+1),

so y can be chosen adapted without worsening the dual objective. The last
claim follows from the second and Theorem 41.

The optimality conditions Remark 45 are closely related to (5.20a)–(5.20e)
in [3]. It should be noted however, that in [3], the functions Lt depend on Wt+1.
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Remark 46 (Maximum principle in reduced form). The scenariowise optimality
condition in Remark 45 can be written as

−(Et∆yt+1, 0) ∈ ∂(X,U)Ht(Xt, Ut, yt+1),

where

Ht(Xt, Ut, yt+1) := Lt(Xt, Ut) + Et[A
∗
t+1yt+1] ·Xt + Et[B

∗
t+1yt+1] · Ut.

As in Remark 42, this can be written also as

Ut ∈ argmin
Ut∈RM

Ht(Xt, Ut, yt+1),

−Et∆yt+1 ∈ ∂XH̄t(Xt, yt+1),

where

H̄t(Xt, yt+1) := inf
Ut∈RM

Ht(Xt, Ut, yt+1).

We end this section by an application of Theorem 31. In optimal control,
Assumption 30 holds under the following.

Assumption 47.

1. (OC) is feasible,

2. domEf ∩ (X × U) ̸= ∅,

3. {(X,U) ∈ N | L∞
t (Xt, Ut) ≤ 0∆Xt = AtXt−1 + BtUt−1 t = 0, . . . T} is a

linear space,

4. there exists a p ∈ X⊥
a and an ϵ > 0 such that for all λ ∈ (1− ϵ, 1+ ϵ) there

exist a y ∈ Y such that (λp, y) is feasible in (DOC).

Theorems 31 and 41 give the following.

Theorem 48. Under Assumption 47, inf (OC) = sup (DOC) and (OC) has a
solution. In this case, a dual feasible (p, y) solves (DOC) if and only if there
exists a primal feasible x such that, for all t,

pt − (∆yt+1 +A∗
t+1yt+1, B

∗
t+1yt+1) ∈ ∂Lt(Xt, Ut),

∆Xt = AtXt−1 +BtUt−1 +Wt

almost surely.
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6.4 Problems of Lagrange

Consider the problem

minimize E

T∑
t=0

Kt(xt,∆xt) over x ∈ N , (L)

where x is a process of fixed dimension d, Kt are convex normal integrands
and x−1 := 0. Problem (L) can be thought of as a discrete-time version of
a problem studied in calculus of variations. Other problem formulations have
Kt(xt−1,∆xt) instead of Kt(xt,∆xt) in the objective, or an additional term of
the form Ek(x0, xT ), all of which fit the general format of stochastic optimiza-
tion.

This fits the general duality framework with ū = 0 and

f(x, u, ω) =

T∑
t=0

Kt(xt,∆xt + ut, ω).

We thus assume that both X and U are solid decomposable spaces of R(T+1)d-
valued random variables. For simplicity, we assume that

Xt = S, Vt = S ′, U = X , Y = V,

where S and S ′ are solid decomposable spaces in separating duality.
The Lagrangian integrand becomes

l(x, y, ω) =

T∑
t=0

[∆xt · yt +Ht(xt, yt, ω))]

=

T∑
t=0

[−xt ·∆yt+1 +Ht(xt, yt, ω)] ,

where yT+1 := 0 and

Ht(xt, yt, ω) := inf
ut∈Rd

{Kt(xt, ut, ω)− ut · yt}

is the associated Hamiltonian. The conjugate integrand can be written as

f∗(v, y, ω) = sup{x · v − l(x, y, ω)}

=

T∑
t=0

K∗
t (vt +∆yt+1, yt, ω).

If (L) is feasible, Lemma 13 says that the dual problem can be written as

maximize E[−
T∑

t=0

K∗
t (pt +∆yt+1, yt)] over y ∈ Y, p ∈ X⊥

a (DL)

where yT+1 := 0. Theorem 16 and Corollary 19 now give the following.
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Theorem 49. If domEf ∩ (X × U) ̸= ∅ and (L) and (DL) are feasible, then
the following are equivalent

1. x solves (L), (p, y) solves (DL) and there is no duality gap,

2. x is feasible in (L), (p, y) is feasible in (DL) and

pt +∆yt+1 ∈ ∂xHt(xt, yt),

∆xt ∈ ∂y[−Ht](xt, yt),

almost surely.

Note that, by [26, Theorem 37.5], the scenariowise KKT-conditions can be
written equivalently as the discrete-time stochastic Euler–Lagrange equations

(pt +∆yt+1, yt) ∈ ∂Kt(xt,∆xt) (10)

or

(xt,∆xt) ∈ ∂K∗
t (pt +∆yt+1, yt).

Assumption 50. The space S ′ is the Köthe dual of S and EtS ⊆ S for all t.

By Lemma 3, Assumption 50 implies that EtS ′ ⊂ S ′ for all t.

Remark 51 (Reduced dual). Consider Theorem 49 and assume that, for all t,
Kt is Ft-measurable and EKt is proper on S×S and that Assumption 50 holds.
Then the optimum value of the dual problem (DL) equals that of the reduced
dual problem

maximize E[−
T∑

t=0

K∗
t (Et∆yt+1, yt)] over y ∈ Ya. (rDL)

A pair (p, y) solves (DL) if and only if ay solves (rDL) and pt = Et∆yt+1 −
∆yt+1. The following are equivalent

1. x solves (L), y solves (rDL) and there is no duality gap,

2. x is feasible in (L), y is feasible in (rDL) and

Et∆yt+1 ∈ ∂xHt(xt, yt),

∆xt ∈ ∂y[−Ht](xt, yt),

almost surely.

Proof. Given y ∈ Y, the Jensen’s inequality in Theorem 8 gives

inf
p∈X⊥

a

E[

T∑
t=0

K∗
t (pt +∆yt+1, yt)] = E[

T∑
t=0

K∗
t (Et∆yt+1, Etyt)],

where the infimum is attained by pt = Et∆yt+1 −∆yt+1. This proves the first
two claims. The last one follows from the second and Theorem 49.
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Remark 52. Any y ∈ Ya has the Doob decomposition

yt = mt + at,

where m is a martingale and at is Ft−1-measurable. Indeed, let ∆at := Et−1∆yt,
a0 := 0, ∆mt := ∆yt −∆at and m0 := y0. The reduced dual problem in (rDL)
can be written as

maximize E[−
T∑

t=0

K∗
t (∆at+1,mt + at)] over (m, a) ∈ MY × Yp

subject to at ∈ Ft−1, t = 1, . . . , T, a0 = 0,

where MY is the set of martingales and Yp the predictable processes in Y.

Example 53 (Optimal stopping). The relaxed optimal stopping problem

maximize
x∈N+

E

T∑
t=0

Rt∆xt subject to ∆x ≥ 0, xT ≤ 1 a.s. (ROS)

from Section 6.2 can be written as a problem of Lagrange with d = 1 and

Kt(xt, ut) = −Rtut + δR−(xt − 1) + δR+(ut).

We get

K∗
t (vt, yt) = sup

xt,ut∈R
{xt · vt + ut · yt −Kt(xt, ut)}

= sup
xt,ut∈R

{xt · vt + ut · yt +Rtut | xt ≤ 1, ut ≥ 0}

=

{
vt if vt ≥ 0 and Rt + yt ≤ 0,

+∞ otherwise

so the reduced dual becomes

maximize Ey0 over y ∈ Ya

subject to Et[∆yt+1] ≥ 0,

Rt + yt ≤ 0,

or with the change of variables S := −y,

minimize ES0 over S ∈ Ya

subject to Et[∆St+1] ≤ 0,

Rt ≤ St.

Thus, feasible dual solutions are supermartingales that dominate the reward pro-
cess R.
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The Hamiltonian can be written as

Ht(x, y) = sup
u∈R

{uy −Kt(xt, ut)}

=


+∞ if xt > 0,

0 if xt ≤ 1 and Rt + yt ≤ 0,

−∞ otherwise

so the optimality conditions become

Et∆yt+1 ∈ NR−(xt − 1)

∆xt ∈ NR−(Rt + yt).

This implies that is ∆xt nonzero only when Rt = −yt and Et∆yt+1 is nonzero
only when xt = 1.

We end this section by an application of Theorem 31.

Assumption 54.

1. (L) is feasible,

2. domEf ∩ (X × U) ̸= ∅,

3. {x ∈ N |
∑T

t=0 K
∞
t (xt,∆xt) ≤ 0} is a linear space,

4. there exists a p ∈ X⊥
a and an ϵ > 0 such that for all λ ∈ (1− ϵ, 1+ ϵ) there

exist a y ∈ Y such that (λp, y) is feasible in (DL).

Assumption 54 implies Assumption 30 so Theorems 31 and 49 give the fol-
lowing.

Theorem 55. Under Assumption 54, inf (L) = sup (DL) and (OC) has a
solution. In this case, a dual feasible (p, y) solves (DL) if and only if there
exists a primal feasible x such that, for all t,

pt +∆yt+1 ∈ ∂xHt(xt, yt),

∆xt ∈ ∂y[−Ht](xt, yt),

almost surely.

6.5 Financial mathematics

Let s = (st)
T
t=0 be an adapted RJ -valued stochastic process describing the unit

prices of a finite set J of perfectly liquid tradeable assets. Assume also that
there is a finite set K of derivative assets that can be bought or sold at time
t = 0 and that provide random payments Cj ∈ L0, j ∈ K at time t = T .
We denote C = (Cj)j∈K . The cost of buying a derivative portfolio x−1 ∈ RK

at the best available market prices is denoted by S0(x−1). Such a function is
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convex and lsc with S0(0) = 0. For example, if the buying and selling prices
of the derivative assets are given by vectors sb ∈ RK and sa ∈ RK of bid-
and ask-prices, respectively, and if we assume that one can buy and sell infinite
quantities at these prices, then

S0(x−1) = sup
s∈[sb,sa]

x−1 · s,

where [sb, sa] denotes theK-dimensional box defined by sb and sa. If the bid and
ask prices come with finite quantities given by vectors qb ∈ RK and qa ∈ RK ,
respectively, then

S0(x−1) = sup
s∈[sb,sa]

x−1 · s+ δ[−qb,qa](x−1).

Similarly, one can express trading costs given by general limit order books by
convex functions; see e.g. [12, 14].

Consider the problem of finding a dynamic trading strategy x = (xt)
T
t=0 in

the liquid assets J and a static portfolio x−1 in the derivatives K so that their
combined revenue provides the “best hedge” against the financial liability of
delivering a random amount c ∈ L0 of cash at time T . If we assume that cash
(or another numeraire asset) is a perfectly liquid asset that can be lent and
borrowed at zero interest rate, the problem can be written as

minimize EV

(
c−

T−1∑
t=0

xt ·∆st+1 − C · x−1 + S0(x−1)

)
over x ∈ N , x−1 ∈ RK ,

subject to xt ∈ Dt t = 0, . . . , T − 1 a.s.,
(SSH)

where V is a random “loss function” on R and Dt is a random Ft-measurable
set describing possible portfolio constraints. More precisely, the function V is a
convex normal integrand such that V (·, ω) nondecreasing and nonconstant for
all ω. We will assume DT = {0}, which means that all positions have to be
closed at the terminal date. Note that nondecreasing convex loss functions V
are in one-to-one correspondence with nondecreasing concave utility functions
U via V (c) = −U(−c); see e.g. [8, Section 8.2].

The special case where there are no statically held derivative assets, i.e. K =
∅, has been extensively studied in the literature of financial mathematics; see
e.g. [24] its references. In the literature on “model-independent” mathematical
finance, problems of finding both the dynamically updated portfolio x and the
static part x−1 are often referred to as “semi-static hedging”; see e.g. [1]. One
should note, however, that problem (SSH) is based on the assumption that one
can buy and sell arbitrary quantities of the assets J at prices given by s. It
also assumes that one can lend and borrow arbitrary amounts of cash at zero
interest rate. Under these assumptions, the random variable c can be thought
of as the difference of the claim to be hedged and the initial wealth and the
sum in the objective can be interpreted as the proceeds from trading the assets
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J over the period [0, T ]. More realistic models for dynamic trading have been
analyzed in [12, 14, 17].

As soon as c ∈ U , problem (SSH) fits the general duality framework with
the time index running from −1 to T − 1, F−1 = {Ω, ∅}, ū = c and f is given
by

f(x, u, ω) = V

(
u−

T−1∑
t=0

xt ·∆st+1(ω)− C(ω) · x−1 + S0(x−1), ω

)
+

T−1∑
t=0

δDt(ω)(xt, ω)

if x−1 ∈ domS0 and f(x, u, ω) := +∞ otherwise. By [17, Lemma 16], f is a
normal integrand since our assumptions on V imply V ∞(c, ω) > 0 for c > 0.
The Lagrangian integrand becomes

l(x, y, ω) = inf
u∈R

{f(x, u, ω)− uy}

= y

[
S0(x−1)− C(ω) · x−1 −

T−1∑
t=0

xt ·∆st+1(ω)

]
− V ∗(y, ω) +

T∑
t=0

δDt(ω)(xt).

Here and in what follows, we define yS0 := δcl domS0
if y = 0. The conjugate of

f becomes

f∗(v, y, ω) = sup
x∈Rn

{x · v − l(x, y, ω)}

= V ∗(y, ω) +

T−1∑
t=0

σDt(ω)(vt + y∆st+1(ω)) + sup
x−1∈RK

{x−1 · (v−1 + yC(ω))− yS0(x−1)}

= V ∗(y, ω) +

T−1∑
t=0

σDt(ω)(vt + y∆st+1(ω)) + (yS0)
∗(v−1 + yC(ω)).

It is natural to assume that S0(0) = 0 and 0 ∈ Dt almost surely for all t. If
EV is proper on U , Lemma 13 then says that the dual problem can be written
as

maximize
p∈X⊥

a ,y∈Y
E

[
cy − V ∗(y)−

T−1∑
t=0

σDt
(pt + y∆st+1)− (yS0)

∗(p−1 + yC)

]
.

(DSSH)

Theorem 56. If (SSH) and (DSSH) are feasible, then the following are equiv-
alent

1. x solves (SSH), (p, y) solves (DSSH) and there is no duality gap.

2. x is feasible in (SSH), (p, y) is feasible in (DSSH) and

y ∈ ∂V (u−
T−1∑
t=0

xt∆st+1 − C · x−1 + S0(x−1)),

pt + y∆st+1 ∈ NDt
(xt) t = 0, . . . , T,

p−1 + yC ∈ ∂(yS0)(x−1)

almost surely.
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Proof. By Theorem 16 and Corollary 19 it suffices to show that the scenariowise
optimality conditions

p ∈ ∂xl(x, y), ū ∈ ∂y[−l](x, y) a.s.

can be written as the scenariowise conditions given above. By the sum-rule of
subdifferentiation [26, Theorem 23.8], the first condition gives the last two in
the statement while the second condition becomes

S0(x−1)− C(ω) · x−1 −
T−1∑
t=0

xt ·∆st+1(ω) ∈ ∂V ∗(y).

By [26, Corollary 23.5.1], (∂V ∗)−1 = ∂V so this becomes the first condition
above.

Under the following assumption, the dual problem (DSSH) can be written
in a reduced form where the shadow price of information p has been optimized
for a each given y.

Assumption 57. X = L∞, V = L1, Y is the Köthe dual of U and, for all t,

A EtU ⊆ U ,

B ∆st+1 ∈ U .

If part B holds, Assumption 57 holds, e.g., in Lebesgue and Orlicz spaces;
see the examples in Section 2.1. By Lemmas 3 and 4, Assumption 57 implies
that, for all t,

A′ EtY ⊆ Y,

B′ y∆st+1 ∈ L1 for all y ∈ Y.

Remark 58 (Reduced dual). Under Assumption 57 the optimum value of
(DSSH) equals that of the reduced dual problem

maximize
y∈Y

E

[
cy − V ∗(y)−

T−1∑
t=0

σDt(Et[y∆st+1])− (E[y]S0)
∗(E[yC])

]
.

(rDSSH)
A pair (p, y) solves (DSSH) if and only if y solves (rDSSH) and

p−1 :=
E[yC]

E[y]
y − yC and pt = Et[y∆st+1]− y∆st+1 t = 0, . . . , T − 1,

where the fraction is interpreted as 0 if E[y] = 0. The following are equivalent

1. x solves (SSH), y solves (rDSSH) and there is no duality gap,
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2. x is feasible in (SSH), y is feasible in (rDSSH) and

y ∈ ∂V (u−
T−1∑
t=0

xt∆st+1 − C · x−1 + S0(x−1)),

Et[y∆st+1] ∈ NDt
(xt) t = 0, . . . , T,

E[yC]

E[y]
y ∈ ∂(yS0)(x−1)

almost surely. Again, the fraction is interpreted as 0 if E[y] = 0

Proof. Given y ∈ Y+, the Jensen’s inequality in Theorem 8 gives

inf
p∈X⊥

a

E

[
T−1∑
t=0

σDt
(pt + y∆st+1) + (yS0)

∗(p−1 + yC)

]
= E

[
T−1∑
t=0

σDt
(Et[y∆st+1]) + (E[y]S0)

∗(E[yC])

]
,

where the infimum is attained by the p given in the statement. Indeed, if
E[y] ̸= 0, this choice gives, by sublinearity,

(yS0)
∗(p−1 + yC) = (yS0)

∗(
E[yC]

E[y]
y)

= (
y

E[y]
E[y]S0)

∗(
y

E[y]
E[yC])

=
y

E[y]
(E[y]S0)

∗(E[yC]).

If E[y] = 0 then y = 0 almost surely and (p, y) = (0, 0) is feasible in (DSSH)
and gives the same objective value. This proves the first two claims. The third
follows from the second and Theorem 56.

If the optimality conditions were satisfied with y = 0, the first condition
would imply

u−
T−1∑
t=0

xt∆st+1 − C · x−1 + S0(x−1) ∈ argminV a.s.,

which would mean that x achieves a perfect hedge in terms of the loss function
V . This is impossible e.g. if V is strictly increasing. In this case y > 0 almost
surely and the scenariowise optimality conditions above can be written as

λ
dQ

dP
∈ ∂V (u−

T−1∑
t=0

xt∆st+1 − C · x−1 + S0(x−1)),

EQ
t [∆st+1] ∈ NDt(xt) t = 0, . . . , T,

EQ[C] ∈ ∂S0(x−1),
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where λ = E[y] and Q is the probability measure defined by dQ/dP = y/E[y].
If S0 is sublinear, the reduced dual can be written as

maximize
y∈Y

E

[
cy − V ∗(y)−

T−1∑
t=0

σDt(Et[y∆st+1])

]
subject to E[yC] ∈ E[y] domS∗

0 ,

where the set E[y] domS∗
0 is interpreted as the recession cone of domS∗

0 if
E[y] = 0. If E[y] ̸= 0, the constraint means that

EQC ∈ domS∗
0 .

The constraint in the dual thus requires that the measure Q be “calibrated” to
the observed market prices of the claims C. For example, if infinite quantities
are available to buy and sell at prices sa ∈ RK and sb ∈ RK , respectively, then

S0(x−1) = sup
s∈[sb,sa]

x−1 · s

and the constraint becomes EQC ∈ [sb, sa].
It turns out that, in the absence of portfolio constraints, the linearity con-

dition in Assumption 30 becomes the classical no-arbitrage condition

x ∈ N ,

T−1∑
t=0

xt ·∆st+1 ≥ 0 a.s. =⇒
T−1∑
t=0

xt ·∆st+1 = 0 a.s.; (NA)

see [19, Section 5.5]. The second condition in Assumption 30 holds, in particular,
if there exists a martingale measure Q ≪ P such that

dQ/dP ∈ Y ∩ domEV ∗,

V is deterministic such that either

lim sup
u→−∞

uV ′(u)

V (u)
< 1 or lim inf

u→+∞

uV ′(u)

V (u)
> 1;

see [19, Remark 53]. More generally, Assumption 30 is implied by the following.

Assumption 59. There are no portfolio constraints and

1. the set

L := {x ∈ N | S∞
0 (x−1)− x−1 · C −

T−1∑
t=0

xt∆st+1 ≤ 0, xt ∈ D∞
t ∀t}

is a linear space,

2. there exists y feasible in the reduced dual (rDSSH) and ϵ such that λy ∈
domEV ∗ for all λ ∈ (1− ϵ, 1 + ϵ).

39



Theorem 60. Under Assumption 59, φ̄ is closed and the infimum in its defini-
tion is attained for every (z, u) ∈ X×U . In particular, inf (SSH) = sup (DSSH)
and (SSH) has a solution. In this case, a dual feasible (p, y) solves (DSSH) if
and only if there is a primal feasible x such that

y ∈ ∂V (u−
T−1∑
t=0

xt∆st+1 − C · x−1 + S0(x−1)),

pt + y∆st+1 ∈ NDt(xt) t = 0, . . . , T,

p−1 + yC ∈ ∂(yS0)(x−1)

almost surely.

Proof. By [26, Theorem 9.3] and [11, Theorem 7.3],

f∞(x, u, ω) = V ∞

(
u−

T−1∑
t=0

xt ·∆st+1(ω)− C(ω) · x−1 + S∞
0 (x−1), ω

)
+

T−1∑
t=0

δD∞
t (ω)(xt, ω).

Since V is nonconstant and nondecreasing,

{c ∈ R | V ∞(c) ≤ 0} = R−

so the linearity condition in Assumption 59 implies the one in Assumption 30.
For y from Assumption 59, p defined by

p−1 :=
E[yC]

E[y]
y − yC and pt = Et[y∆st+1]− y∆st+1 t = 0, . . . , T − 1,

satisfies Assumption 30. Thus the claims follow from Theorems 31 and 56.

Given a convex function g on Rn, the set

lin g = {x ∈ Rn | g∞(x) = −g∞(−x)}

is called the lineality space of g.

Example 61 (Robust no-arbitrage condition). Assume that there are no port-
folio constraints and that there exists a cost function S̃0 such that

S̃0(x, ω) ≤ S∞
0 (x, ω) ∀x ∈ RK ,

S̃0(x, ω) < S∞
0 (x, ω) ∀x /∈ linS0(·, ω)

and the market model described by S̃0 and s satisfies the no-arbitrage condition

C ∩ L0
+ = {0}, (11)

where

C := {c ∈ U | ∃x) ∈ N :

T−1∑
t=0

xt ·∆st+1 + x−1 · c− S̃0(x−1) ≥ c a.s.}.

Then the linearity condition in Assumption 59 holds. A violation of (11) would
mean that there is a trading strategy x that superhedges a nonzero nonnegative
claim c.
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Proof. If the linearity condition fails, there is a x ∈ L such that

S∞
0 (−x−1) + x−1 · C +

T−1∑
t=0

xt∆st+1 > 0

on a set A ∈ F with P (A) > 0. It suffices to show that x is an arbitrage strategy
for S̃0. Since x ∈ L, and S̃0 ≤ S∞

0 , we have

S̃0(x−1)− x−1 · C −
T−1∑
t=0

xt∆st+1 ≤ 0.

If x−1 /∈ linS0, then S̃0(x) < S∞
0 (x) and the inequality is strict so x is an

arbitrage strategy. If x−1 ∈ linS0, then S̃0(x−1) ≤ S∞
0 (x−1) = −S∞

0 (−x−1) so

S̃0(x−1)− x−1 · C −
T−1∑
t=0

xt∆st+1 ≤ −S∞
0 (−x−1)− x−1 · C −

T−1∑
t=0

xt∆st+1 < 0

on A so x is an arbitrage strategy in this case too.

7 Appendix

Given extended real-valued random variables ξ1 and ξ2, their pointwise sum
ξ2+ξ2 is well-defined by the usual algebraic operations of the extended real-line
R except when one of them takes the value +∞ and the other one −∞. In this
exceptional case, we define the sum as +∞.

The proofs of the following two lemmas can be found in [19].

Lemma 62. Given extended real-valued random variables ξ1 and ξ2, we have

E[ξ1 + ξ2] = E[ξ1] + E[ξ2]

under any of the following:

1. ξ+1 , ξ
+
2 ∈ L1 or ξ−1 , ξ−2 ∈ L1.

2. ξ1 ∈ L1 or ξ2 ∈ L1,

3. ξ1 or ξ2 is {0,+∞}-valued.

Lemma 63. Let ξ1 and ξ2 be extended real-valued random variables.

1. If ξ1 and ξ2 are quasi-integrable and satisfy any of the conditions in
Lemma 62, then ξ1 + ξ2 is quasi-integrable and

EG [ξ1 + ξ2] = EG [ξ1] + EG [ξ2].

2. If ξ2 and (ξ1ξ2) are quasi-integrable, and ξ1 is G-measurable, then

EG [ξ1ξ2] = ξ1E
G [ξ2].

41



References
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