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with late arrivals at the customers, called the generalized riskiness index (GRI), is optimized. The GRI

covers several existing riskiness indices as special cases and generates new ones. We demonstrate its salient

managerial and computational properties to better motivate it. We propose alternative set partitioning-based
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1. Introduction

A basic Vehicle Routing Problem (vrp), also called a Capacitated vrp (cvrp), is at the core of

the field of transportation and logistics planning, and has been attracting extensive studies over

the decades (e.g., Dantzig and Ramser 1959, Laporte 2009, Baldacci et al. 2010, Toth and Vigo

2014, Vidal et al. 2020). The task of a cvrp consists of routing a fleet of homogeneous vehicles

to deliver goods to (or collect them from) a set of customer locations, to ensure that the vehicle

capacity is not exceeded.

Additionally, when customers need to be serviced within prescribed time windows, a cvrp is

generalized to a vrp with Time Windows (vrptw), possibly the most important variant of vrps.

As a special case of a vrptw, a vrp with Deadlines (vrpd) does not impose the earliest times

for service commencement. In a scenario in which there is only one uncapacitated vehicle, a vrp,

vrpd, and vrptw are reduced to a Traveling Salesman Problem (tsp), tsp with Deadlines (tspd),

and tsp with Time Windows (tsptw), respectively. A vrptw has a wide range of industrial

applications, from school bus scheduling (Park and Kim 2010) to courier delivery (Sungur et al.

2010) to dial-a-ride services (Ho et al. 2018). To solve a vrptw, various solution methods have been

proposed, including exact algorithms and heuristics. Examples of the former are branch-and-cut

(BC), branch-and-price (BP), branch-price-and-cut (BPC), and route enumeration (e.g., Baldacci

et al. 2012, Pecin et al. 2017, Costa et al. 2019). Heuristics methods include tabu search, variable

neighborhood search, and genetic algorithms (e.g., Cordeau et al. 2002, Bräysy and Gendreau

2005a,b, Vidal et al. 2014, Vidal 2017).

However, many vrptw studies assume deterministic travel times, leading to potential violations

of the time window requirements in the real world of uncertainty. In particular, late arrivals may

degrade service levels, and in the long term, cause losses of customers and revenues. To consider the

uncertainty in travel times and provide quality services, the methods to determine the following

must be established: i) model uncertain travel times, ii) measure the time window violation level,

and iii) solve the resultant vrptw with computational effectiveness. The next section presents a

review of the relevant literature on routing problems under uncertain travel times.

1.1. Literature review

In this section, we focus on the uncertainty in travel times (and service times), although the presence

of customers (Bertsimas et al. 1990, Campbell and Thomas 2008) and the quantities of demands

(Secomandi and Margot 2009, Gounaris et al. 2013, Dinh et al. 2018, Ghosal and Wiesemann 2020,

Subramanyam et al. 2021) may also be uncertain. For more comprehensive reviews on vrp under

uncertainty, we refer interested readers to Ritzinger et al. (2016), Gendreau et al. (2016), Oyola

et al. (2018, 2017), De Maio et al. (2021). In particular, distributionally robust chance-constrained
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optimization has been investigated by Gounaris et al. (2013), Dinh et al. (2018), and Ghosal and

Wiesemann (2020). Ghosal and Wiesemann (2020) studied a vrp in which the customer demands

are modeled as a random vector whose distribution is only known to belong to an ambiguity set,

and proposed cutting-plane techniques to enforce robust feasibility, which were embedded into a

BC framework.

In the following, we present the categories of some representative studies that deal with uncertain

travel times in a vrptw, which are also outlined in Table 1. For each study, the table lists the type

of problem investigated, method to deal with the time window constraints, model of uncertainty,

measure adopted to weight a time window violation, solution method, and size of the instances

solved by the corresponding solution method.

Dynamic programming Kao (1978) proposed a preference-order dynamic programming to

solve a tspd that maximizes the on-time completion probability. For tractability, the arc travel

times were assumed to be independently normally distributed. Subsequently, Sniedovich (1981)

pointed out that the above method is inexact. Carraway et al. (1989) solved this issue by developing

an exact generalized dynamic programming method. To our knowledge, dynamic programming-

type methods were not adopted subsequently for studying the family of vrptw under stochastic

and dynamic travel times, possibly owing to their curse of dimensionality in addressing practical-

size problems.

Chance-constrained stochastic programming For studying a vrpd, Laporte et al. (1992)

proposed a chance-constrained model that minimizes the operational cost (i.e., the sum of the fixed

and travel costs of the vehicles) while limiting the late completion probability within a threshold.

Note that for a given routing solution, even checking the feasibility of a chance constraint is NP-hard

when the arc travel times show a general distribution (Nemirovski and Shapiro 2006). Nonetheless,

Laporte et al. (1992) remarked that a chance constraint poses no problem when the arc travel

times have finite supports of small cardinalities or are independently and normally distributed.

Kenyon and Morton (2003) proposed to maximize the joint probability of on-time completions

of all vehicles in a vrpd. They presented the relationship, in terms of their objective values, with

another model that minimizes the expected completion time. The arc travel times were depicted

via samples. They developed two BC algorithms to solve the problem: one applicable to the case

of a small sample space, and a second inexact algorithm to a large sample space case. Adulyasak

and Jaillet (2016) revisited the above problem, proposing a multi-commodity flow formulation and

developing a BC algorithm, which could solve the generated instances having 80 nodes over an

incomplete graph with a node having an average outdegree of 3.
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Table 1 Summary of related work on vrptw under uncertain travel times

Reference Problem Hard
constraints

Model of
uncertainty

Measure of time
window violation

Solution method Instances solved

Kao (1978) stochastic
tspd

- normal distribution lateness probability preference order
dynamic programming

4 nodes

Laporte et al. (1992) stochastic
vrpd

- discrete distribution lateness probability,
expected lateness

BC 20 nodes, 3 vehicles

Verweij et al. (2003) stochastic
tspd

- general distribution expected lateness Sample Average
Approximation (SAA),
Benders decomposition

101 nodes,
incomplete graph

Kenyon and Morton (2003) stochastic
vrpd

- general distribution lateness probability SAA,
BC

28 nodes, 2 vehicles,
incomplete graph

Taş et al. (2014) stochastic
vrptw

- Gamma distribution expected earliness
and lateness

BP Solomon-based,
vehicle capacity = 50,
100 nodes (suboptimally)

Errico et al. (2016) stochastic
vrptw

time
windows

discrete distribution no violation BPC Solomon-based,
50 nodes

Lee et al. (2012) robust
vrpd

deadlines budgeted
uncertainty set

no violation BP Solomon-based,
25 nodes

Agra et al. (2013) robust
vrptw

time
windows

polytope
uncertainty set

no violation BC,
column-and-row genera-
tion

56 ports,
20-50 cargoes

Munari et al. (2019) robust
vrptw

time
windows

budgeted
uncertainty set

no violation BPC Solomon-based,
100 nodes (58% opti-
mally)

Bartolini et al. (2021) robust
tsptw

time
windows

knapsack
uncertainty set

no violation column generation,
route enumeration

80 nodes

Adulyasak and Jaillet (2016) distrib.
robust
vrptw

- distribution,
mean and sup-
port,
moments

lateness probability,
requirement viola-
tion index

Benders decomposition 80 nodes,
incomplete graph

Jaillet et al. (2016) distrib.
robust
tsptw

- distribution,
mean and sup-
port,
moments

requirement violation index Benders decomposition 40 nodes,
incomplete graph

Zhang et al. (2019a) distrib.
robust
tsptw

earliest
service

general distribu-
tion,
mean and covari-
ance

essential riskiness index Benders decomposition 12 nodes

Zhang et al. (2021) distrib.
robust
vrptw

earliest
service

empirical distribu-
tion,
Wasserstein ball

service fulfillment risk index BC Solomon-based,
25 nodes
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Li et al. (2010) studied a chance-constrained vrptw, in which the earliest arrival time constraints

are hard, i.e., the vehicles have to wait if arriving before the time windows and services can still be

rendered after the time windows. They adopted a tabu search to solve it, where the feasibilities of

the chance-constraints for on-time services were examined by simulations. As an alternative, Ehmke

et al. (2015) propose a normal approximation method to estimate the arrival time distribution and

to examine the feasibility of a chance-constrained vrp.

Stochastic programming with recourse In addition to their chance-constrained model,

Laporte et al. (1992) proposed a two-index recourse model and a three-index counterpart that

minimize the sum of the operational and penalty costs for the expected tardiness, where the travel

times are governed by discrete distributions. They developed a BC algorithm to solve this vrpd. In

their models, the “recourse” is simply an observation of the tardiness (Birge and Louveaux 2011).

For solving a tspd counterpart, Verweij et al. (2003) proposed a Benders decomposition method

and showed that the computational time is insensitive to the number of travel time samples.

Russell and Urban (2007) studied a vrp with soft time windows in which a service is rendered

even in early arrival cases. Their multiple objectives included minimizing the number of used

vehicles, total travel distance, and penalty incurred by time window violations. They assumed

that the travel times follow the Erlang distributions and derived closed-form expressions for the

expected tardiness and earliness. Moreover, a tabu search was developed to solve the problem.

Taş et al. (2013) investigated the objective of minimizing the weighted sum of the operational

and penalty costs in a vrp with soft time windows. Assuming Gamma distributions of the arc

travel times, they also derived closed-form expressions for the expected tardiness and earliness,

and solved the problem by a tabu search. In a subsequent research, they developed a BP algorithm

to solve the same problem (Taş et al. 2014). In their numerical study, they solved Solomon-based

instances having 100 nodes without closing the optimality gaps.

Errico et al. (2016) studied a vrp with hard time windows under stochastic service times in which

the time windows can never be violated; they remarked that this “hard” feature makes solving

the problem extremely challenging. In their set partitioning model, they proposed two recourse

policies to recover the operational infeasibility when the first-stage planned routes begin to violate

the time windows. Subsequently, Errico et al. (2016) developed a BPC algorithm that can solve

Solomon-based instances with 50 nodes.

We refer interested readers to Gendreau et al. (2014) for a comprehensive discussion of these

methods.
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Robust optimization Lee et al. (2012) investigated a robust vrpd under uncertain arc travel

times within a cardinality constrained uncertainty set (Bertsimas and Sim 2004). Their model

minimizes the total travel cost while ensuring that the deadlines are satisfied for all travel times

in the uncertainty set. They developed a BP algorithm and solved Solomon-based instances with

25 nodes. Han et al. (2014) also studied a vrpd with consideration of a different, scenario-based

uncertainty set for arc travel times. They established a BC algorithm and solve Solomon-based

instances with 25 nodes.

A robust vrptw under uncertain arc travel times within a cardinality constrained uncertainty

set is more challenging to solve than a robust vrpd. In this problem, arriving earlier than the time

window entails waiting and arriving later is prohibited. Agra et al. (2012) proposed a compact,

layered formulation, which allows a tractable reformulation of the above robust vrptw; however, it

is computationally heavy. Subsequently, Agra et al. (2013) proposed resource and path inequality-

based formulations; they develop BC and column-and-row generation algorithms, respectively,

which could solve generated instances with 50 nodes. Munari et al. (2019) developed an efficient

BPC algorithm that embeds a novel dynamic programming recursive equation to resolve the issue

of uncertainty; they optimally solve 58% of Solomon-based instances with 100 nodes.

Bartolini et al. (2021) studied a robust tsptw in which the arc travel times are within a knapsack-

constrained uncertainty set. They devised an exact method based on column generation and route

enumeration. An extension of the ng-route relaxation technique (Baldacci et al. 2011) enabled

them to solve instances with 80 nodes. Wang et al. (2021) focused on a robust vrp, in which

the customer demands and vehicle travel times are assumed to be random variables. The authors

considered different classes of uncertainty sets–cardinality constrained sets, budget sets, ellipsoidal

sets and discrete sets–and explored BPC algorithms that combine robust cutting-plane techniques

with state-of-the-art deterministic BPC solvers. The BPC algorithms were tested on instances

derived from vrp benchmark sets involving up to 150 nodes.

Distributionally robust optimization Distributionally robust optimization (DRO) can

incorporate distributional ambiguity, i.e., the probability distributions of uncertain parameters are

assumed to belong to an ambiguity set (a set of distributions sharing common properties). It can

determine solutions that are lesser conservative than those computed by robust optimization-based

methods.

Jaillet et al. (2016) introduced an innovative framework to solve a tsp with soft time windows.

In particular, they proposed a new decision criterion, called requirement violation index (RVI),

inspired by the riskiness index (RI) (Aumann and Serrano 2008), to measure the time window

violation level. They developed a multi-commodity flow formulation and a Benders decomposition
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method. In their method, the routes are optimized over known distributions of the arc travel times

for which moment generating functions exist or over the worst-case distribution satisfying incom-

plete information, such as means, variances, and supports. Adulyasak and Jaillet (2016) extended

the above study to a vrp with soft time windows and developed an improved BC algorithm.

However, the framework of Jaillet et al. (2016) cannot deal with hard earliest service time con-

straints owing to some technical factors. To address the above issue, Zhang et al. (2019a) established

a multi-commodity tsptw formulation in which the service start time is expressed as a convex

piecewise affine function of the arc travel times. They further proposed a decision criterion, known

as the essential riskiness index (ERI), which although possesses salient properties similar to the

RVI, can deal with hard earliest service time constraints. They showed a method to optimize

routes when the samples or means and covariance matrix of the arc travel times are known. They

proposed a Benders decomposition method to solve small instances of the problem. Furthermore,

Zhang et al. (2021) extended the decision criterion to the service fulfillment risk index (SRI), which

can model differentiated customer services. They assumeed the travel times to follow a worst-case

distribution that is proximal, measured by the Wasserstein distance, to an empirical distribution,

and develop an efficient BC algorithm that solves Solomon-based instances with 25 nodes.

In a related investigation, Rostami et al. (2021) studied a vrp (without time windows) under

stochastic and correlated arc travel times, with only known means and a covariance matrix. They

minimized the weighed sum of the means and variances of the vehicular travel times for obtaining

reliable travel times. Their proposed BPC algorithm could solve instances with 75 nodes.

1.2. Our contributions and overview of paper

In this study, we consider a vrptw under uncertain travel times, in which the goal is to determine

routes for a fleet of homogeneous vehicles to arrive at the locations of customers within their

stipulated time windows to the maximum extent. Moreover, this should be achieved while ensuring

that the total route cost does not exceed a prescribed budget. The problem is to optimize a

performance measure that accounts for the riskiness associated with late arrivals at the customers.

The following are the contributions of this study:

• We develop new mathematical formulations for the above problem based on a set partitioning

model that exploit the properties of the different riskiness indices reported in the literature and

of the budget constraint. More specifically, the RVI of Jaillet et al. (2016), ERI of Zhang et al.

(2019a), and SRI of Zhang et al. (2021) can be dealt with as special cases of the objective functions

of the new models.

• We establish a reasonably general riskiness index, termed the generalized riskiness index (GRI),

which covers some existing ones as special cases: the RVI, ERI, and SRI. We demonstrate its salient
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managerial and computational properties to better motivate the GRI. To illustrate its generality,

we choose a specific function in the definition of the GRI, resulting in a new measurement, termed

the convex piecewise riskiness index (CPRI).

• We develop a novel exact solution framework to solve the considered vrptw under uncertain

travel times. Our framework combines route enumeration and BPC algorithms, where the chosen

riskiness index is dealt with in route enumeration and column generation subproblems. Leveraging

the properties of both the riskiness indices and budget constraint, we mainly reduce the size of the

candidate route set without loss of optimality.

• We demonstrate that our solution framework can optimally solve Solomon-based instances

with up to 100 nodes, representing the best performance reported in the existing literature. In par-

ticular, the exact method can consistently solve instances involving up to 50 nodes, outperforming

the method of Zhang et al. (2021) by more than doubling the manageable instance size. We also

show that our newly proposed CPRI can better mitigate lateness than the existing ones: the RVI,

ERI, and SRI.

• To our knowledge, this study is the first of this type on solving the family of vrps using

DRO. This study not only supplements the optimization techniques for DRO but also enhances the

corresponding solution methods, and given the flexibility of the set partitioning model in dealing

with additional routing constraints, extends the practical applications of DRO.

The remainder of this paper is organized as follows. In §2 we introduce our set partitioning-based

formulation for the considered vrptw under uncertain travel times, in which the riskiness index

used to measure lateness is elaborated in §3. Subsequently, we present our exact solution framework

in §4, followed by the algorithm details in §5. In §6, we discuss extensive computational studies

conducted to demonstrate the computational efficiency and the efficacy of the decision criterion.

In §7, we present the conclusions of this study and point out future research directions.

2. Problem definition and riskiness index-based mathematical
formulations

The vrptw with uncertain travel times considered in this study is defined on a digraph G= (V,A),

where V = {0,1, . . . , n+m} is a set of n+m+1 vertices and A is an arc set. Vertex 0 represents the

depot and vertex set V is partitioned as V = {0}∪Vc∪Vd where set Vc = {1, . . . , n} corresponds to
n customers. For description convenience, we introduce m dummy depots Vd = {n+1, . . . , n+m}
positioned at the same location as depot 0, and we regard depots 0 and Vd as the start depot and

set of the end depots, respectively. Each vertex i ∈ V is associated with a demand qi (we assume

q0 = 0 and qi = 0, ∀i ∈ Vd) and a time window [ei, li], where ei and li represent the earliest and

latest times, respectively, to serve vertex i. Arc set A is defined as A= {(0, i) : ∀i ∈ Vc} ∪ {(i, j) :
∀i, j ∈ Vc, i ̸= j}∪ {(i, j) : ∀i∈ Vc, j ∈ Vd}.
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A fleet of m identical vehicles of capacity Q stationed at the depot has to fulfill customer

demands. Each arc (i, j) ∈ A is associated with a travel cost dij and let t̃ij be the consolidated

nonnegative random variable associated with the random travel time for traversing arc (i, j). In

the following, (i, j) and a are used interchangeably to represent an arc in set A.

A vehicle route R= (0, i1, . . . , iν , iν+1), where ν ≥ 1 and iν+1 ∈ Vd, is a simple path in G starting

from depot 0, visiting customers {i1, . . . , iν} such that the total demand of the visited customers

does not exceed the vehicle capacity Q, and ends at vertex or depot iν+1. We consider the hard

earliest time window case where if the route arrives at a vertex i before ei the service is delayed

to time ei, and an arrival later than li is allowed; however, the latter results in a poor customer

service. The cost of route R is the sum of the travel costs of the arc set traversed by the route.

We define a vrptw solution as a set of at most m routes such that each customer is visited

exactly once by exactly one route and the total route cost is within a budget B > 0. Given the

uncertain nature of the problem, to improve service quality, the objective should penalize tardiness

and ensure that the fleet of vehicles arrives at the locations of the customers within their stipulated

time windows to the maximum extent. The next section elucidates this in more detail.

2.1. Riskiness index-based mathematical formulations

In this section, we first present a review of the riskiness index-based mathematical formulations

reported in the literature and subsequently describe a new set partitioning-based formulation for

the studied vrptw.

Let R be the index set of all feasible vrptw routes, and for r ∈R, we denote the corresponding

route with Rr, and represent the set of vertices visited and arcs traversed by the route as V (Rr)

and A(Rr), respectively. Let P be the index set of all feasible vrptw solutions, where a solution

p∈P is defined by a set {rp1 , . . . , r
p
hp
} ⊂R of hp ≤m routes. Without loss of generality, we assume

that route Rs, s= 1, . . . , hp, ends at depot n+ s.

Each solution p ∈ P is associated with a characteristic or incident vector x ∈ {0,1}|A|, where

xij = 1 if arc (i, j) is traversed by one of the routes of p, i.e., (i, j)∈A(Rs) for some s∈ {rp1 , . . . , r
p
hp
},

and 0 otherwise. Let S = {xp}p∈P be a set of all characteristic vectors associated with the solutions

in P, where xp ∈ S denotes the characteristic vector of solution p∈P.
To quantify the riskiness associated with the violation of deadlines, recent studies (Jaillet et al.

2016, Zhang et al. 2019a, 2021) have demonstrated the issue of the commonly used “lateness prob-

ability” (to be detailed in §3.1), and thus, have focused on objective functions based on particular

riskiness indices. More specifically, consider riskiness index computed by a function ρ(ξ̄i(x, t̃)) :

V 7→ [0,+∞] that evaluates the service riskiness at vertex i∈ V , where function ξ̄i(x, t̃) is the delay

function at vertex i (see §EC.2 of the e-companion to this paper) and V is the space of real-valued

random variables. The following model is used to minimize the sum of riskiness indices:
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min
∑
i∈V

ρ(ξ̄i(x, t̃)) (1a)

s.t. c⊤x≤B, (1b)

x∈ S. (1c)

Objective function (1a) minimizes the sum of the riskiness indices over all vertices with deadlines

where constraint (1b) ensures that the total travel cost does not exceed the prescribed budget B.

Zhang et al. (2021) introduced the SRI (see §3) and proposed a mixed-integer linear reformulation

of model (1) (see §EC.2). In particular, set S is represented by a set of constraints of a two-

index (vehicle flow) formulation for a directed capacitated vrp proposed by Laporte et al. (1986).

Moreover, an additional set of the constraints of exponential size is used to correctly consider the

SRI in the objective function. Jaillet et al. (2016) and Zhang et al. (2019a) established the RI

and the ERI for a tspd and a tsptw, respectively. They also proposed to solve (1); however,

the procedure involved modeling the set of characteristic vectors, S, as a set of characteristic

vectors (x,s), where x∈ {0,1}|A| and s∈R|A|×|V | are associated with the constraints of the multi-

commodity flow formulation proposed by Claus (1984) for an Asymmetric tsp.

Given a solution p ∈ P and a realization t of travel times t̃, we can determine the service start

times of the vertices by computing for each route s∈ {rp1 , . . . , r
p
hp
} with Rs = (i0 = 0, i1, . . . , iν , iν+1)

in the following recursive expression:

τik(Rs, t) =max{τik−1
(Rs, t)+ tik−1ik , eik}, k= 1, . . . , ν+1, (2)

where τ0(Rs, t) = e0. The following property states that the service start time of a node can be

represented as a convex piecewise affine function of t.

Proposition 1 Given a route r ∈R with Rr = (i0 = 0, i1, i2, . . . , iν−1, iν , iν+1) and a realization of

t̃, denoted by t, the service start time for each node ik ∈ V (Rr) is determined by the function

τik(Rr, t) = max
h=0,...,k

{
eih +

k−1∑
l=h

til il+1

}
. (3)

Proof. The proof is provided in §EC.4.1 of the e-companion of this paper. □

Based on the service start time function, we define the delay function at vertex i ∈ V (Rr) as

follows

ξi(Rr, t) = τi(Rr, t)− li, (4)

which is also a convex piecewise affine in t, and hence, a late service at vertex i occurs if and only

if ξi(Rr, t)> 0. Because travel times t̃ are uncertain, delay function ξi(Rr, t̃) is also uncertain.
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Based on the above definitions, the sum of the riskiness indices over all vertices with deadlines

can be written as follows: ∑
s∈

{
r
p
1 ,...,r

p
hp

}
∑

i∈V (Rs)

ρ(ξi(Rs, t̃)) =
∑

s∈
{
r
p
1 ,...,r

p
hp

} ζs(ρ, t̃), (5)

where ζs(ρ, t̃) =
∑

i∈V (Rs)
ρ(ξi(Rs, t̃)) is the total riskiness index of route Rs.

Let cr be the cost of route r ∈R computed as cr =
∑

a∈A(Rr)
ca, and let air be a binary coefficient

equal to 1 if vertex i ∈ V (Rr), and 0 otherwise. Let yr be a binary variable equal to 1 if and only

if route r is in the optimal solution. Model (1) can be reformulated as follows:

(Fρ(R)) min
∑
r∈R

ζr(ρ, t̃)yr (6a)

s.t.
∑
r∈R

airyr = 1, ∀i∈ Vc, (6b)∑
r∈R

yr ≤m, (6c)∑
r∈R

cryr ≤B, (6d)

yr ∈ {0,1}, ∀r ∈R. (6e)

Constraints (6b) specify that each customer i∈ Vc has to be visited by exactly one route. Constraint

(6c) requires that at most m routes are selected whereas Constraint (6d) imposes that the total

cost is within the budget B.

With respect to the model proposed by Zhang et al. (2021) showing a polynomial number of

variables and an exponential number of constraints (see §EC.2), model (6) shows a polynomial

number of constraints. Moreover, it embeds the computation of function ρ(·) into the definition of

the route set R. Therefore, its complexity strongly depends on the definition of function ρ(·) and
the size of the route set R. The next section discusses the study of the different riskiness indices

together with their salient properties whereas §4 describes the reformulations of model Fρ(R) and
presents the solution framework adopted to solve the model.

3. Riskiness indices

In this section, we discuss in detail the riskiness index ρ(ξi(R, t̃)) in model (6). For notational

convenience, we use shorthand ξ̃ interchangeably to represent the uncertain delay ξi(R, t̃) at some

node i∈ V for some given route R. The uncertainty is modeled by a state-space Ω and a σ−algebra
F of events in Ω. P denotes the distribution of the uncertain parameters in (Ω,F), where P[·] denotes
the probability of some event, and EP[ξ̃] represents the expectation of the uncertain parameter ξ̃

under probability distribution P. The distribution itself may also be uncertain and is contained in

an ambiguity set F.
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3.1. Review of riskiness indices in routing optimization

To measure the lateness level under uncertainty, Kenyon and Morton (2003) and Adulyasak and

Jaillet (2016) adopted a lateness probability criterion, P[ξ̃ > 0]. However, it cannot distinguish

different lateness magnitudes having the same lateness probability (e.g., a route in which P[ξ̃ =

10] = 5% and P[ξ̃ ≤ 0] = 95%, and another in which P[ξ̃ = 20] = 5% and P[ξ̃ ≤ 0] = 95%). Verweij

et al. (2003) and Taş et al. (2014) alternatively employed expected lateness duration, EP[max{ξ̃,0}],

which can account for the lateness magnitude; however, it does not provide insight into the lateness

probability. Recently, Zhang et al. (2021) proposed the following riskiness index that captures both

the lateness probability and its magnitude. We presents an example to illustrate this issue in §EC.3.

Definition 1 (Service Fulfillment Risk Index, SRI) Given a random delay ξ̃ ∈ V governed by

probability distribution P within ambiguity set F, the SRI is defined as

ρSRI

(
ξ̃
)
=min

{
α≥ 0

∣∣∣∣ sup
P∈F

EP
[(
ξ̃+α

)+]≤ γα} , (7)

where γ ∈ (0,1] corresponds to some service level and (x)+ =max{x,0}.

Zhang et al. (2021) elucidate the following managerial and computational properties of the SRI

for any ξ̃, ξ̃1, and ξ̃2 ∈ V:

i) Satisficing: ρSRI(ξ̃) = 0 if and only if P[ξ̃ ≤ 0] = 1 for all P∈ F.

ii) Infeasibility: If the worst-case Conditional Value-at-Risk (CVaR), F-CVaR1−γ(ξ̃) > 0, then

ρSRI

(
ξ̃
)
=+∞. Here, F-CVaR1−γ(ξ̃) is defined as

F-CVaR1−γ(ξ̃) =min
β∈R

{
β+

1

γ
sup
P∈F

EP[(ξ̃−β)+]
}
.

iii) Convexity: ρSRI

(
λξ̃1 +(1−λ)ξ̃2

)
≤ λρSRI

(
ξ̃1
)
+(1−λ)ρSRI

(
ξ̃2
)
for all λ∈ [0,1].

iv) Probability envelope: For all θ≥ 0 and P∈ F, we have

P
[
ξ̃ > ρSRI

(
ξ̃
)
θ
]
≤ γ

1+ θ
. (8)

Recall that the uncertain delay, ξ̃, is defined in (EC.2) or (4) as difference between the uncertain

service start time and the deadline. Thus, the property of satisficing indicates that the SRI is zero,

its best possible value, if and only if the service start time is earlier than the deadline almost surely

for all probability distributions in the ambiguity set. Because the worst-case CVaR is translation-

invariant (Zhu and Fukushima 2009), F-CVaR1−γ(ξ̃) > 0 is equivalent to F-CVaR1−γ(the service

start time)> the deadline. Thus, the property of infeasibility asserts that if the worst-case CVaR

of the service start time is later than the deadline, then the corresponding route is infeasible.

Convexity is desired in the optimization computation. The probability envelope ensures that the
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probability of the service start time exceeding the deadline with an additional duration, ρSRI

(
ξ̃
)
θ,

is upper bounded by a threshold γ/(1 + θ), for all θ ≥ 0 and all P ∈ F. When θ = 0, the lateness

probability, P[ξ̃ > 0]≤ γ for all P ∈ F. Subsequently in Example 2, we provide a concrete example

to illustrate this property.

The SRI generalizes an earlier riskiness index proposed by Zhang et al. (2019a), which is defined

as follows.

Definition 2 (Essential Riskiness Index, ERI) Given a random delay ξ̃ ∈ V governed by probability

distribution P within ambiguity set F, the ERI is defined as

ρERI

(
ξ̃
)
=min

{
α≥ 0

∣∣∣∣ sup
P∈F

EP
[(
ξ̃+α

)+]≤ α} . (9)

Indeed, the SRI reduces to the ERI when γ = 1. Thus, the ERI also possesses the above properties

when γ = 1. Specifically, for any ξ̃, ξ̃1 and ξ̃2 ∈ V, we have

i) Satisficing: ρERI(ξ̃) = 0 if and only if P[ξ̃ ≤ 0] = 1 for all P∈ F.

ii) Infeasibility: If supP∈FEP[ξ̃]> 0, then ρERI

(
ξ̃
)
=+∞.

iii) Convexity: ρERI

(
λξ̃1 +(1−λ)ξ̃2

)
≤ λρERI

(
ξ̃1
)
+(1−λ)ρERI

(
ξ̃2
)
for all λ∈ [0,1].

iv) Probability envelope: For all θ≥ 0 and P∈ F, we have

P
[
ξ̃ > ρERI

(
ξ̃
)
θ
]
≤ 1

1+ θ
. (10)

With regard to the condition of infeasibility, we note that F-CVaR1−γ(ξ̃) = supP∈FEP[ξ̃] when γ = 1

(Rockafellar and Uryasev 2002). By introducing another dimension, γ ∈ (0,1], of flexibility, the

SRI can model differentiated service levels for different customers. The correspondence of γ to the

service level is shown by fact that the ERI provides a trivial lateness probability bound, P[ξ̃ > 0]≤

1,∀P∈ F, whereas the SRI provides a non-trivial one, P[ξ̃ > 0]≤ γ,∀P∈ F, when γ ∈ (0,1).

This direction of riskiness index-based research in routing optimization originates from the study

by Jaillet et al. (2016), who propose the following riskiness index.

Definition 3 (Requirement Violation Index, RVI) Given a random delay ξ̃ ∈ V governed by prob-

ability distribution P within ambiguity set F, the RVI is defined as

ρRV I

(
ξ̃
)
= inf

{
α> 0

∣∣∣∣ sup
P∈F

EP
[
exp(ξ̃/α)

]
≤ 1

}
. (11)

The RVI, based on the Riskiness Index of Aumann and Serrano (2008) in economics literature, has

been introduced by Jaillet et al. (2016) into vehicle routing under uncertain travel times and/or

demands. Jaillet et al. (2016) show the following salient properties of the RVI, for any ξ̃, ξ̃1, and

ξ̃2 ∈ V:



Zhang et al.: Effective exact solution framework for the VRPTW
14 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

i) Satisficing: ρRV I(ξ̃) = 0 if and only if P[ξ̃ ≤ 0] = 1 for all P∈ F.

ii) Infeasibility: If supP∈FEP[ξ̃]> 0, then ρRV I

(
ξ̃
)
=+∞.

iii) Convexity: ρRV I

(
λξ̃1 +(1−λ)ξ̃2

)
≤ λρRV I

(
ξ̃1
)
+(1−λ)ρRV I

(
ξ̃2
)
for all λ∈ [0,1].

iv) Probability envelope: For all θ > 0 and P∈ F, we have

P
[
ξ̃ > θ

]
≤ exp

(
− θ/ρRV I(ξ̃)

)
. (12)

These properties are highly analogous to those of the ERI, with a difference in the shape of the

probability envelope, which is elucidated subsequently using Example 2. However, to achieve com-

putationally tractable models, the RVI requires the arc travel times to be independently distributed

and the time windows to be soft, i.e., the vehicles should start services immediately even if arriving

before the required earliest service times. These limitations motivate Zhang et al. (2019a, 2021)

to propose the ERI and SRI for solving a vrptw with hard earliest service time constraints and

possibly correlated travel times.

3.2. Generalized Riskiness Index

Given the similarity in the salient properties and the difference in the mathematical forms of the

RI and the ERI (and its generalization, the SRI), it is natural to question whether there exist

other decision criteria of alternative mathematical forms that possess similar properties and would

perform even better in mitigating lateness. Thus, we extend the boundaries and propose such a

reasonably general decision criterion, showing the hidden relations between the RI, ERI, and SRI.

Definition 4 (Generalized Riskiness Index, GRI) Given a random delay ξ̃ ∈ V governed by prob-

ability distribution P within ambiguity set F, we define the GRI as

ρGRI

(
ξ̃
)
= inf

{
α> 0

∣∣∣∣ sup
P∈F

EP
[
ϕ(ξ̃/α)

]
≤ γ

}
, (13)

where γ ∈ (0,1] corresponds to some service level, and ϕ(·) is a disutility function that is convex,

non-decreasing, non-negative, and satisfies ϕ(0) = 1, ϕ(ξ)≥ ξ +1 for all ξ ∈ R, and ϕ(ξ)→ 0+ as

ξ→−∞.

The GRI has the following desired properties.

Theorem 1 For any ξ̃, ξ̃1, and ξ̃2 ∈ V, we have:

i) Monotonicity: If P[ξ̃1 ≥ ξ̃2] = 1 for all P∈ F, then ρGRI(ξ̃1)≥ ρGRI(ξ̃2).

ii) Satisficing: If P[ξ̃ < 0] = 1 for all P∈ F, then ρGRI

(
ξ̃
)
= 0.

iii) Infeasibility: If supP∈FEP[ξ̃]> 0, then ρGRI

(
ξ̃
)
=+∞.

iv) Positive homogeneity: ρGRI

(
kξ̃

)
= kρGRI

(
ξ̃
)
for all k > 0.
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v) Convexity: ρGRI

(
λξ̃1 +(1−λ)ξ̃2

)
≤ λρGRI

(
ξ̃1
)
+(1−λ)ρGRI

(
ξ̃2
)
for all λ∈ [0,1].

vi) Subadditivity: ρGRI

(
ξ̃1 + ξ̃2

)
≤ ρGRI

(
ξ̃1
)
+ ρGRI

(
ξ̃2
)
.

vii) Probability envelope: For all θ > 0 and P∈ F, we have

P
[
ξ̃ > θ

]
≤ γ

ϕ
(
θ/ρGRI(ξ̃)

) . (14)

Proof. The proof is provided in §EC.4.2 of the e-companion to this paper. □

From a managerial standpoint, the monotonicity property indicates that a later service start

time leads to a larger (or at least an equal) value of the GRI, implying a worse performance. In

terms of the satisficing property, if the service start time is earlier than the deadline almost surely,

the GRI is equal to zero, its best possible value. The infeasibility property indicates that if there

exists some distribution in the ambiguity set such that the expected service start time is later

than the deadline, the corresponding route is infeasible. Positive homogeneity implies that the

GRI increases proportionally with the uncertain delay. For instance, consider an uncertain delay ξ̃1

with P[ξ̃1 =−10] = 90% and P[ξ̃1 = 10] = 10% and another one, ξ̃2 = 2ξ̃1. In this scenario, the GRI

considers ξ̃2 twice riskier than ξ̃1; however, the lateness probability criterion does not distinguish

them, such that even if ξ̃1 is late for 10 minutes and ξ̃2 for 20 minutes, they have the same lateness

probability, 10%. Subadditivity suggests that the riskiness of the combined delays does not exceed

the sum of the riskiness associated with the individual delays. Probability envelope suggests that

the lateness probability with respect to the sum of deadline and any duration decays at a certain

rate, which is subsequently illustrated in Example 2.

From a computational viewpoint, the monotonicity and infeasibility properties help in the design

of effective solution methods (see §4), and, as will be explained in §3.3, the convexity facilitates

evaluating the GRI.

In the following, we discuss the relations and differences between the GRI and the aforementioned

riskiness indices—RI, ERI and SRI. First, in the terms of the mathematical forms, the GRI covers

these riskiness indices as special cases. This is illustrated, based on the observation that when ϕ(ξ) =

exp(ξ) and γ = 1, the GRI recovers the RVI in (11); when ϕ(ξ) = (ξ + 1)+, the GRI recovers the

SRI in (7), and when additionally γ = 1, the GRI recovers the ERI in (9). Second, from the aspect

of the possessed properties, our Theorem 1 shows the additional properties–monotonicity, positive

homogeneity, and subadditivity–possessed by the RVI, ERI, and SRI that were not exhibited

previously by Jaillet et al. (2016), Zhang et al. (2019a, 2021). However, our satisficing property of

the GRI is slightly weaker than those of the RVI, ERI, and SRI; this can be viewed as consequence

to compensate the generality of GRI.

In addition to the aforementioned riskiness indices, by choosing alternative disutility functions

ϕ(·) in the GRI, new ones can be obtained. Among them are a class of convex piecewise functions.
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Definition 5 (Convex Piecewise Riskiness Index, CPRI) A CPRI is a GRI in which the disutility

function has the form

ϕ(ξ) =
∑
k∈[K]

ϕk(ξ)1{ξ ∈Ξk},

where Ξk, k ∈ [K], form a K-partition of the support of ξ, and ϕk(ξ), k ∈ [K], are a set of convex

functions.

In the following, we present a concrete example.

Example 1 (CPRI) When ϕCPRI(ξ) = 01{ξ <−1}+ (ξ+1)1{−1≤ ξ < 0}+ exp(ξ)1{ξ ≥ 0}, the

resultant CPRI is expressed as:

ρCPRI

(
ξ̃
)
= inf

{
α> 0

∣∣∣∣ sup
P∈F

EP
[
ϕCPRI(ξ̃/α)

]
≤ γ

}
.

One can verify that such choice of ϕCPRI(ξ) satisfies the conditions required by the definition of

the GRI, and thus, it possesses the properties of GRI.

It would be interesting to compare the probability envelopes induced by the different GRIs. To

this end, we present the following example.

Example 2 Let us consider a random delay ξ̃ following a two-point distribution: P[ξ̃ =−10] = 50%

and P[ξ̃ = 5] = 50%; thus, ambiguity set F is a singleton comprising this distribution. Using the

algorithm to be presented in §EC.5, we calculate that ρRV I

(
ξ̃
)
≈ 10.39, ρERI

(
ξ̃
)
= 5, ρSRI

(
ξ̃
)
= 6.25

and ρCPRI

(
ξ̃
)
≈ 8.51, where γ = 0.9 is set for the SRI and CPRI. The induced probability envelopes,

calculated using (14), are shown in Figure 1. In this example, all probability envelopes are generally

not tight compared with the exact one, except those of the ERI, SRI, and CPRI when θ = 5.

Among them, the SRI appears to be the tightest when θ ∈ [0,5] whereas the CPRI is the tightest

when θ ∈ [5,30]. The RVI and the CPRI decay exponentially, whereas the ERI and the SRI decays

reciprocally.

We remark that although each probability envelope is not tight, it can account for both the late-

ness probability and its magnitude, thereby guiding the search direction for vehicle routes during

optimization.

3.3. Evaluating Generalized Riskiness Index

We aim to develop a computationally efficient method to evaluate the GRI, ρGRI(ξ̃), or equiva-

lently ρGRI(ξ(R, t̃)), given some route R and some ambiguity set F of distribution P governing the

uncertain arc travel times, t̃. This is a key procedure in the design of effective solution methods

for model (6) (see §4).
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Figure 1 Lateness probability envelopes

First, we discuss a review of the methods for evaluating the RVI, ERI, and SRI under different

models of the arc travel times. For evaluating the RVI, Jaillet et al. (2016) suggested a bisection

algorithm to be feasible when t̃ are independently distributed and each t̃ij, (i, j) ∈ A, follows a

known or an ambiguous distribution. The known distribution has a well-defined moment generating

function, whereas the ambiguous distribution has known bounds and a mean value, or has known

moment information. For evaluating the ERI, Zhang et al. (2019a) derived a closed-form solution

when t̃ follow from an empirical distribution. Alternatively, they solve a semidefinite program when

the ambiguous distribution is characterized by the means and covariance of t̃. Subsequently, Zhang

et al. (2021) derived a closed-form solution when t̃ are governed by an ambiguous distribution

in proximity, as measured by the Wasserstein distance, to an empirical distribution. However,

their methods rely on distinct structures of the corresponding riskiness indices, which may not be

trivially extended to evaluate our GRI.

In this study, we consider using an empirical distribution to model the uncertain travel times

t̃. It is supposed that we have N samples of t̃, denoted by tω, where ω ∈Ω and Ω= {1,2, · · · ,N}.

The empirical distribution, P, is defined as a discrete uniform distribution over the samples, i.e.,

P[t̃ = tω] = 1/N,∀ω ∈ Ω. In this setting, the ambiguity set, F, in (13) is defined as the singleton

{P} containing the empirical distribution. This modeling choice originates from two reasons. From

a managerial viewpoint, in the big data era, one can acquire data much easier; thus, historical

travel time data can be employed as samples, which is a useful and natural modeling of the travel

times. From a computational perspective, this choice allows a computationally efficient algorithm
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to evaluate the GRI, which will be shown subsequently. However, despite these advantages, this

modeling choice fails to consider the ambiguity in the travel times.

Based on an empirical distribution, the GRI can be rewritten as

ρ
(
ξ̃
)
= inf {α> 0 | ψ(α)≤ γ } , (15)

where ψ(α) =N−1
∑

ω∈Ω ϕ(ξ
ω/α), and ξω is the delay function under sample ω ∈ Ω. To evaluate

the GRI, we first need a convexity result.

Proposition 2 The function ψ(α) is convex in α> 0.

Proof. The proof is presented in §EC.4.3 of the e-companion of this paper. □

By virtue of the convexity property, we can evaluate the GRI by a bisection search, detailed in

Algorithm 1 presented in §EC.5 of the e-companion to this paper. Because Algorithm 1 is generally

applicable for evaluating the GRI, it is also applicable to the special case, SRI. Zhang et al. (2021)

propose a closed-form solution to evaluate the SRI. We are interested in investigating the loss

of the computational efficiency of Algorithm 1 relative to that of the closed-form solution. We

defer the computational results to §EC.6, which demonstrate that Algorithm 1 is, unexpectedly,

approximately five times faster than the closed-form solution that embeds a sorting procedure with

complexity O(N logN).

4. Exact solution framework

In this section, we first describe the reformulations of model Fρ(R) that mainly reduce the size of

route set R without loss of optimality. This is realized by leveraging (i) the infeasibility property,

a property shared by all the riskiness indices described in the previous section, and (ii) the cost

budget constraint (6d). Subsequently, we present an overview of the solution framework adopted

to solve the resulting models, whose implementation details are described in §5. Hereafter, z(x)

denotes the optimal solution cost of model x.

Based on the infeasibility property in Theorem 1, the set of routes R can be replaced by a set of

routes Rρ defined as Rρ = {r ∈R : ρ(ξi(Rr, t̃))<+∞,∀i ∈ V (Rr)}. Understandably, Rρ ⊆R, and

under the assumption that model Fρ(R) allows a bounded optimal solution, the optimal solution

cost, z(Fρ(Rρ)), of model Fρ(Rρ) equals z(Fρ(R)). We follow the convention and assume that

z(Fρ(Rρ)) =+∞ if model Fρ(Rρ) has no feasible solution.

However, examining the condition in Rρ requires some efforts, e.g., invoking Algorithm 1 in

§EC.5. Alternatively, we can employ a lesser restrictive but computationally amiable condition, to

discard the infeasible routes. Specifically, let µ= EP(t̃) be the expectation of t̃ under probability

distribution P representing the mean travel times. Let Rcap be the set of feasible routes satisfying
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the capacity constraints only. Given a route r ∈Rcap and travel times µ, the service start times of

route Rr = (i0 = 0, i1, i2, . . . , iν−1, iν , iν+1) under mean travel times µ can be computed as

τik(Rr,µ) =max{τik−1
(Rr,µ)+µik−1ik , eik}, k= 1, . . . , ν+1. (16)

Let R⊆Rcap be the set of routes in Rcap satisfying the time window constraints based on the mean

travel times µ, i.e., R= {r ∈Rcap : ei ≤ τi(Rr,µ)≤ li,∀i∈ V (Rr)}. Thus, the following proposition

holds.

Proposition 3 Rρ ⊆R⊆R.

Proof. The proof is provided in §EC.4.4 of the e-companion of this paper. □

Based on the above proposition, set Rρ can be redefined as Rρ = {r ∈R : ρ(ξi(Rr, t̃))<+∞,∀i∈

V (Rr)}. Route set Rρ can be further reduced by exploiting the properties of the budget constraint

(6d) based on the following model:

(FB(Rρ)) min
∑
r∈Rρ

cryr (17a)

s.t. (6b), (6c), (6e). (17b)

Let u∈R|Vc|+1 be the vector of the dual variables associated with the linear programming (LP)

relaxation of model FB(Rρ), where variables ui ∈ R, i ∈ Vc, are associated with constraints (6b)

whereas variable u0 ≤ 0 is associated with constraint (6c). Thus, the following theorem holds.

Theorem 2 Let u be a feasible solution of the dual of the LP relaxation of model FB(Rρ) of

cost z. Define the reduced cost of a route r ∈ Rρ with respect to the dual solution u as cr =

cr−
∑

i∈Vc
airui−u0. Any optimal solution y∗ of FB(Rρ) with cost z(FB(Rρ)) less than or equal

to the budget B cannot contain any route r ∈Rρ such that cr >B− z.

Proof. The proof is provided in §EC.4.5 of the e-companion of this paper. □

Based on the above theorem, given a feasible dual solution u of the LP relaxation of model

FB(Rρ) of cost z, we define set Rρ = {r ∈ Rρ : cr ≤ B − z}. Understandably, Rρ ⊆ Rρ and

z(Fρ(Rρ)) = z(Fρ(Rρ)).

The exact solution framework combines a route enumeration technique and BPC algorithms to

solve model (6) effectively. It comprises the following steps:

1. Compute the initial dual solution. A feasible dual solution u of the LP relaxation of model

FB(R) of cost z is computed (see §5.1.2). Note that the route set, R, accounts for the capacity

constraints and the time window constraints based on the mean travel times.



Zhang et al.: Effective exact solution framework for the VRPTW
20 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

2. Route enumeration. Using the dual solution, u, the largest route set,Rρ = {r ∈Rρ : cr ≤B−z}

such that |Rρ| ≤∆max, where ∆max is a user-defined parameter, is generated (see §EC.7.2). In

addition to the capacity constraints, time window constraints on the mean travel times, and

infeasibility property, the generation of set Rρ relies on the reduction stated by Theorem 2.

3. Finding an optimal solution. We have the following three cases:

a) |Rρ|<∆mip: Model Fρ(Rρ) is solved using a general purpose mixed-integer programming

(MIP) solver, where ∆mip is a user-defined parameter.

b) ∆mip ≤ |Rρ|<∆max: Model Fρ(Rρ) is solved using a BPC algorithm based on the enumer-

ated set of routes Rρ (see §5.2).

c) |Rρ| ≥∆max: Model Fρ(Rρ) is solved using a BPC algorithm (see §5.3).

The next section describes the implementation details of the exact method based on the above

solution framework.

5. Algorithm details

In this section, we present the details of the exact method used to solve the considered vrptw

under a given sample set Ω = {1,2, · · · ,N}. First, we describe the procedure for computing the

lower bounds in a column-and-row generation appproach (§5.1), which is also used to compute

the initial dual solution required in Step 1 of the solution framework. Subsequently, we present

the methods by which models Fρ(Rρ) (§5.2) and Fρ(Rρ) (§5.3) employed in Steps 3.b) and 3.c),

respectively, are solved to optimality. We detail the route enumeration procedure used in Step 2

in the e-companion to this paper (see §EC.7.2).

5.1. Column-and-row generation

Because formulations FB(R) and Fρ(Rρ) feature exponentially many columns, they are suitable

to be solved by a column generation (CG) method (for a general introduction to CG, we refer

the interested reader to Lübbecke and Desrosiers (2005)). Moreover, state-of-the-art methods for

dealing with complex VRPs rely on valid inequalities used to reinforce the LP relaxation of set

partitioning-based models (e.g., Poggi and Uchoa 2014, Costa et al. 2019). Therefore, we designed

the following column-and-row generation procedure.

The LP relaxation corresponds to formulation FB(R) (or Fρ(Rρ)) that is solved by a column-

and-row generation approach, in which, at each iteration, the primal simplex algorithm is used to

solve the restricted master problem (RMP) and provide a primal and a dual solution. Subsequently,

a column generation step is performed, by which the pricing (sub)problem is solved to determine

the negative reduced cost columns (or variables). If no negative reduced cost columns are found, the

current primal solution is the optimal for the master problem; otherwise, one or several negative

reduced cost columns are added to the RMP, and a new iteration is conducted. If the current primal
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solution is the optimal one, a row generation step is performed, in which the valid inequalities (see

below) are separated by a cutting plane approach. The cutting plane algorithm terminates when

no additional valid inequalities are identified, and a new column-and-row generation iteration is

executed. The lower bound computation stops when both the column and row generation algorithms

terminate without finding new columns/rows to be added to the RMP.

5.1.1. Valid inequalities. The following families of the valid inequalities are used to

strengthen the LP relaxation of formulations FB(R) and Fρ(Rρ). Let bijr be a binary coefficient

equal to 1 if and only if arc (i, j)∈A is traversed by the route r ∈R. In addition, δ+(S) = {(i, j)∈

A : i∈ S, j ∈ V \S} denotes the cutset of set S ⊆ Vc.

Two-path inequalities (2PIs). Given a subset S of the customer set, Vc, such that the cus-

tomers in S cannot be serviced by a single vehicle because of the time windows under the mean

travel times, µ, the following inequality as proposed by Kohl et al. (1999) imposes a lower bound

of 2 on the arcs entering set S, where set B is either R or Rρ.∑
(i,j)∈δ+(S)

∑
r∈B

bijryr ≥ 2. (18)

Capacity inequalities (CIs). Rounded capacity inequalities, originally proposed for a CVRP

by Laporte and Nobert (1983), impose a lower bound on the number of vehicles required to service

a subset S of the customer set Vc, and are defined as follows

∑
(i,j)∈δ+(S)

∑
r∈B

bijryr ≥

⌈
1

Q

∑
i∈S

qi

⌉
, (19)

where set B is either R or Rρ.

Subset-row inequalities (SR3Is). Let C ⊆ {C ⊆ Vc : |C| = 3} be a subset of all customer

triplets, and let B(C) ⊆ B be the subset of the routes serving at least two customers in C (i.e.,

B(C) = {r ∈B : |V (Rr)∩C| ≥ 2}), where set B is either R or Rρ. The SR3Is are defined as

∑
r∈B(C)

yr ≤ 1, ∀C ∈ C. (20)

The SR3Is correspond to a subset of SR and the clique inequalities used by Jepsen et al. (2008)

for a vrptw and by Baldacci et al. (2008) for a cvrp, respectively.

To separate 2PIs (18) and CIs (19), the shrinking heuristic and route-based connected component

heuristic separation procedures (Archetti et al. 2011), tabu search (Cordeau 2006), and the partial

enumeration method (Desaulniers 2010) are used. We refer the reader to the corresponding studies

for additional details. The SR3Is (20) are separated by complete enumeration.



Zhang et al.: Effective exact solution framework for the VRPTW
22 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

5.1.2. Computing initial dual solution. To further improve the effectiveness of the route

enumeration phase, the procedure adopted to compute an initial dual solution considers model

FB(R) strengthened with the valid inequalities described in the previous section.

Let ui ∈ R, ∀i ∈ Vc, and u0 ≤ 0 denote the dual variables associated with constraints (6b) and

(6c) of the LP relaxation of formulation FB(R), respectively. In addition, let S = {S ⊆ Vc : |S| ≥ 2},

and let SP ⊆ S, SC ⊆ S, and C ⊆ {C ⊆ Vc : |C| = 3} denote the sets of the 2PIs, CIs and SR3Is

associated with the RMP, respectively. The corresponding dual variables are πS ≥ 0, ∀S ∈ SP ,

ηS ≥ 0, ∀S ∈ SC , and φT ≤ 0, ∀T ∈ C. Therefore, in our implementation, the computed dual solution

is represented by dual vectors (u,π,η,φ), instead of dual vector u.

Formulation FB(R) strengthened with the 2PIs, CIs, and SR3Is, corresponds to a valid for-

mulation for a deterministic vrptw with travel times as the mean travel times µ. Therefore,

to compute an initial dual solution of the LP relaxation of model FB(R), we adopt the above-

mentioned column-and-row generation procedure, following similar procedures used to compute

dual bounds for VRPs (see, for example Baldacci et al. 2011, Pecin et al. 2017, Zhang et al. 2019b).

In particular, the pricing problem associated with formulation FB(R) is solved as an elementary

shortest path problem with resource constraints (ESPPRC) (Irnich and Desaulniers 2005) using

a state-of-the-art algorithm based on a bi-directional search (Righini and Salani 2006), an ng-set

based decremental state space relaxation (Martinelli et al. 2014) and completion bounds (Baldacci

et al. 2011). The algorithm also relies on heuristic pricing to further accelerate the computation.

For a review and discussion on these techniques, the reader is referred to Poggi and Uchoa (2014)

and Costa et al. (2019).

Note that the computation of the dual solution, (u,π,η,φ), disregards the infeasibility property

that is fully exploited in route set Rρ. Nevertheless, we find calculating the dual solution based on

formulation FB(R), instead of formulation FB(Rρ), and exploiting the infeasibility property in

Step 2 of the algorithm during the route enumeration phase as computationally convenient.

5.2. Solving Fρ(Rρ)

In the route enumeration phase, we allow the generation of up to ∆max routes, which in practice

cannot be dealt with directly by an MIP solver when the number of routes generated is greater

than or equal to ∆mip. Note, ∆mip is chosen to ensure that model Fρ(Rρ) can be effectively solved

by a general purpose MIP solver. If the number of routes generated is greater than or equal to ∆mip

and less than ∆max, the routes are stored in a pool and model Fρ(Rρ) is solved by a BPC algorithm

where the pricing problem is solved by inspecting the pool of routes. This method has several

advantages, because it allows the separation of nonrobust cuts without impacting the complexity

of the pricing algorithm. Nonrobust cuts are those for which the values of the corresponding dual
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variables cannot be translated into costs in the pricing subproblem, such as the SR3Is (see Poggi

and Uchoa 2014). In addition, the above method allows alternative branching rules. Implicit pricing

techniques were also used by Baldacci et al. (2011) and Contardo and Martinelli (2014).

In our implementation, using the column-and-row generation procedure based only on the SR3Is

is found as computationlly convenient. In addition, to derive integer solutions, we adopt the fol-

lowing two branching decisions, which are examined in sequence: (i) branching on the number of

vehicles leaving the depot, and (ii) branching on customer pairs, i.e., either customers i and j must

be on the same route or different routes, based on the branching scheme proposed by Ryan and

Foster (1981) for applications that can be formulated as set partitioning problems.

To compute the primal bounds, and thereby accelerate the convergence of the BPC algorithm,

we use two heuristic algorithms. The first heuristic is a local search algorithm (LSA) based on

the heuristic algorithm proposed by Zhang et al. (2021) for a vrptw under the SRI. The LSA

starts from an initial solution constructed by a greedy heuristic (cheapest insertion), which is

further improved by a local search procedure. The move operators commonly used for VRPs are

employed, such as relocate, swap, and 2-opt. We also extend the study of Zhang et al. (2021) to

deal with a generic riskiness index ρ(·), where the algorithm considers solutions that are feasible in

terms of the capacity and function ρ(·) (infeasibility property). Moreover, the budget constraint is

penalized in the objective function as
∑

r∈Rρ
ζr(ρ, t̃)yr +Mmax{

∑
r∈Rρ

cryr−B,0}, where M is a

large constant. Function ζr(ρ, t̃) is computed as ζr(ρ, t̃) =
∑

i∈V (Rr)
ρ(ξi(Rr, t̃)), where ρ(ξi(Rr, t̃))

computes the riskiness index associated with vertex i and is determined using Algorithm 1.

The second heuristic is a primal heuristic, which is applied at each node of the BPC enumeration

tree and builds a feasible vrptw solution using the incumbent fractional RMP solution. Let y∗ be

the current fractional solution of the RMP and let R̂ρ ⊂Rρ be the set of patterns composing the

RMP. The primal heuristic performs the following steps by starting from an empty solution R′:

1) A subset R′
ρ ⊆ R̂ρ of routes is selected such that R′

ρ = {r ∈ R̂ρ : y
∗
r ≥ 0}, and it is sorted in

decreasing y∗ values.

2) Based on the order, the following steps are performed: (a) The first route, r′ ∈R′
ρ, is selected

and fixed into the solution if
∑

r∈R′ cr ≤B − cr′ , i.e., R′ =R′ ∪ {r′}; (b) From set R′
ρ route r′

and all routes r′′ such that ((V (Rr′)∩ Vc)∩ (V (Rr′′)∩ Vc) ̸= ∅ are removed if route r′ is added

into solution; (c) Steps (a) and (b) are repeated until R′
ρ = ∅ or |R′|=m.

3) Let Vc ⊂ Vc be the set of customers not covered by solution R′. If Vc = ∅, then solution R′ is a

feasible solution. Otherwise, the vrptw instance defined by the set of customers, Vc, maximum

number of vehicles equal to m− |R′|, and budget B −
∑

r∈R′ cr is considered. The resulting

(reduced) vrptw instance is solved using the LSA, and let R′′ be the corresponding solution.

4) If the routes in R′′ form a feasible set, then vrptw solution R′ ∪R′′ of cost
∑

r∈R′∪R′′ ζr(ρ, t̃)

is defined.
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5.3. Solving Fρ(Rρ)

Whenever the cardinality of route set Rρ is greater than or equal to ∆max, formulation Fρ(Rρ) is

solved to optimality using the BPC algorithm. The BPC algorithm uses state-of-the-art techniques

designed for deterministic vrptws by Baldacci et al. (2011), Pecin et al. (2017) and Zhang et al.

(2019b).

The lower bounds at the different nodes of the enumeration tree are computed using the column-

and-row generation procedure described above, where the 2PIs (18), CIs (19) and SR3Is (20)

are used to strengthen the lower bounds. As branching decisions, we employ commonly adopted

branching strategies for the VRPs, which can be devised by considering the arc-flow variables of the

compact formulation (Lysgaard et al. 2004): (i) branching on the number of vehicles, (ii) branching

on the cutsets, and (iii) branching on the arcs. To compute primal bounds, we also use the LSA

described in the previous section.

We relegate the description of the pricing algorithm to §EC.7.1, which involves the computation

of the ρ(·) associated with the objective function of formulation Fρ(Rρ).

6. Computational experiments

In this section, we present the extensive experimental analysis conducted with three main aims.

First, we discuss the evaluation of the performance of the exact method described in §5 on instances

derived from the literature (see §6.2) and the comparison of its results with those obtained by

Zhang et al. (2021) (see §6.3). Second, we report a comparison of the newly proposed CPRI with

decision criteria from the literature (see §6.4). Third, we present the evaluation of the performance

of the exact method to solve a DRO model based on the SRI and a Wasserstein distance-based

ambiguity set (see §6.5). Additionally, in the e-companion to this paper, we present the analysis of

the effectiveness of the different components of the algorithm (see §EC.8.2), and we describe the

performed sensitivity analysis on important algorithm parameters such as the value of the budget,

B, and the number, N , of samples (see §EC.8.3).

The algorithm was implemented in Java language, and IBM ILOG CPLEX 12.10 (IBM CPLEX

2021) was used as the LP solver in the BPC algorithms, as described in §5.2 and §5.3, and as the

MIP solver to solve the reduced model, Fρ(Rρ), in Step 3.a of the exact algorithm presented in §4.

The experiments were performed on an AMD EPYC 7532 CPU (2.4 GHz) workstation equipped

with 128 GB RAM running with a Windows 10 64-bit operating system (single-thread execution).

Hereafter, the exact algorithm proposed in this paper and detailed in §5 is denoted as EXM.

Based on some preliminary experiments aimed at evaluating the performance of the EXM, we set

parameters ∆mip = 100,000 and ∆max = 15,000,000. Moreover, we impose a time limit of 4 hours

(14,400 seconds) for the execution of the EXM. Below, we first describe the benchmark instances

used in our experiments.
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6.1. Benchmark instances

The benchmark instances used in our experiments correspond to the set of instances used by

Zhang et al. (2021), which were derived from the commonly used Solomon’s deterministic vrptw

instances (Solomon 1987).

The Solomon instances are classified into six classes (c1, rc1, and r1 with tight time windows and

strict vehicle capacity, and c2, rc2, and r2 with wide time windows and a loose vehicle capacity).

Prefixes “c”, “r”, and “rc” denote clustered, random, and mixed clustered-random type of instances,

respectively. For experiments aimed at evaluating the service level under an uncertain environment,

Zhang et al. (2021) chosed to use only the instances with tight time windows, i.e., r1, c1, and rc1 set

of instances, for a total of 29 instances. Moreover, because the original Solomon instances involve

100 nodes, Zhang et al. (2021) generated instances with 25 and 50 nodes by selecting the first 25

or 50 nodes from the original 100 node instances. Therefore, we consider a total of 29× 3 = 87

instances involving 25, 50, and 100 nodes.

Zhang et al. (2021) obtained the uncertain travel times based on an asymmetric two-point distri-

bution. More specifically, the travel time, t̃a, for each arc a∈A is assumed to follow an asymmetric

two-point distribution supported on µa − σa/
√
3 and µa +

√
3σa with respective probabilities of

0.75 and 0.25. Here, the original travel time of arc a is used as the mean, µa, and the standard

deviation, σa = λaµa, with λa randomly chosen from interval [0.1, 0.5]. The original travel cost and

time between two nodes are computed base on the Euclidean distance. As commonly presented

in the literature, the distance and travel time between two nodes are rounded down to the first

decimal place (e.g., Jepsen et al. 2008, Baldacci et al. 2011, Pecin et al. 2017).

In the experiments, unless otherwise stated, the riskiness index used for the EXM algorithm is

the CPRI, and the number, N , of the samples is set as 200. Moreover, for each instance, the value

of the budget, B, was set as 1.05× opt, where opt is the optimal solution cost of the deterministic

vrptw solution computed by the method of Zhang et al. (2019b) using the travel times of the

original Solomon instance.

6.2. Results of EXM under CPRI

This section presents the results of the EXM based on the new CPRI obtained by solving the

benchmark instances.

Table 2 summarizes the results obtained. For each group of instances, the table provides the

number of instances in the group (“#inst”). For Step 1, column %lb provides the average percentage

deviation of the initial lower bounds, lb, computed as 100× lb/B. For Step 2, column |Rρ| reports

the average cardinality of the set of routes generated by the route enumeration phase, computed

over the instances for which |Rρ|<∆max. Concerning Step 3, column “#opt.” gives the number
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Table 2 Summary results of EXM under CPRI

Step 1 Step 2 Step 3

n #inst %lb t |Rρ| t #opt MIP iBPC BPC t
25 29 95.1 1.2 3112.4 2.0 29 29 0 0 0.4
50 29 95.2 9.8 198251.5 103.4 27 17 10 2 76.9
100 29 95.0 360.9 2757508.3 203.3 7 0 6 23 4368.5

of instances solved to otpimality and the next three columns report statistics about the type of

methods used in solving the group of instances: “MIP” (general MIP solver, Step 3.a), “iBPC”

(implicit BPC, Step 3.b), and “BPC” (BPC, Step 3.c). Finally, for each step of the EXM, the

table reports the corresponding average computing times (“t”). For Step 2 and 3, the computing

times are computed over the set of instances solved to optimality. Detailed results are reported in

§EC.8.1.

The obtained results can be summarized as follows: The EXM algorithm solves to optimality all

25 node instances, all but two 50 node instances and seven 100 node instances. Almost all instances

involving 25 and 50 nodes are solved using the MIP and iBPC methods, and in §EC.8.2 we show

that they outperform the direct use of the BPC method. The detailed results show that for two

instances involving 50 nodes and for all but six instances with 100 nodes, the EXM generates

more than ∆max routes during the execution of Step 2; thus, the BPC method is used to solve

model Fρ(Rρ). The computing times of the EXM noticeably show that its effectiveness is related

to the cardinality of the set of routes, Rρ, which, in turn, is related to the difficulty of solving the

pricing problem associated with the corresponding instance. It is worth noting that the EXM (see

the detailed results) fails to compute the feasible solutions for some instances for which it reaches

the imposed time limit, and this can be due to the imposed budget constraint, which is highly

restrictive. In §EC.8.3, we also present the analysis of the impact by varying the budget, B.

6.3. Comparison with Zhang et al. (2021) under SRI

In this section, we discuss the comparison of the results of the EXM with those obtained by Zhang

et al. (2021) using the SRI. The results of Zhang et al. (2021) using their BC algorithm are based on

instances involving 25 nodes and are summarized by Table 3. In the table, columns %gap and ttot

list the final percentage gap and the total computing time of their BC (computing time in seconds

on an Intel(R) Core(TM) CPU i7-7700 clocked at 3.60 GHz), respectively. For the EXM algorithm,

in addition to the notations already introduced, the table lists the time spent in computing the SRI

(“tSRI”) and the time spent at Step 2 to generate the route set, Rρ (“tRE”). The last line of the

table reports the average values. To compute the SRI, we use the closed-form expression described

by Zhang et al. (2021).
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Table 3 Comparison of different approaches on the SRI

Zhang et al. (2021) EXM

Name %gap ttot %gap |Rρ| tSRI tRE Method ttot

c101 0.00 0.08 0.00 1389 0.65 0.42 MIP 1.20

c102 0.00 1.90 0.00 8264 3.98 5.50 MIP 7.13
c103 0.00 0.02 0.00 2329 4.77 6.64 MIP 9.32

c104 0.00 0.02 0.00 18066 22.50 31.46 MIP 35.04

c105 0.00 0.02 0.00 2073 0.65 0.66 MIP 1.83
c106 0.00 0.11 0.00 1718 0.67 0.56 MIP 1.27

c107 0.00 0.02 0.00 4115 0.83 1.08 MIP 1.99

c108 0.00 0.02 0.00 2930 1.00 1.28 MIP 2.48
c109 0.00 0.02 0.00 1953 2.79 3.57 MIP 5.29

r101 0.00 0.14 0.00 288 0.40 0.18 MIP 0.84

r102 2.22 >1800 0.00 1423 0.79 0.87 MIP 1.95

r103 0.00 0.00 0.00 1621 0.81 0.96 MIP 2.02

r104 0.00 0.02 0.00 2151 1.02 1.23 MIP 2.70
r105 0.00 2.34 0.00 673 0.49 0.41 MIP 1.15

r106 100.00 >1800 0.00 2039 0.95 1.11 MIP 3.24

r107 100.00 >1800 0.00 2340 0.99 1.14 MIP 2.91
r108 0.00 0.02 0.00 4424 1.59 2.02 MIP 6.28

r109 0.00 126.22 0.00 1087 0.71 0.69 MIP 1.63

r110 0.00 0.02 0.00 6933 1.38 1.64 MIP 4.61
r111 100.00 >1800 0.00 2239 0.99 1.22 MIP 3.18

r112 0.00 0.02 0.00 3947 1.86 2.28 MIP 8.49

rc101 0.00 40.08 0.00 1338 0.55 0.58 MIP 2.28
rc102 0.00 106.58 0.00 1313 1.52 1.97 MIP 2.80

rc103 100.00 >1800 0.00 1228 2.07 2.80 MIP 4.01
rc104 100.00 >1800 0.00 7095 11.64 16.18 MIP 18.15

rc105 0.00 1098.86 0.00 1436 0.67 0.86 MIP 1.72

rc106 0.00 1614.22 0.00 852 1.03 1.15 MIP 2.05
rc107 0.00 889.78 0.00 924 2.09 2.65 MIP 3.73

rc108 100.00 >1800 0.00 715 7.39 10.53 MIP 12.01

176.39 2.36 3.08 4.81

The comparison shows that the proposed EXM algorithm outperforms the BC algorithm of

Zhang et al. (2021) in terms of the number of instances solved to optimality. By also considering

the machines used by the two methods for the instances solved to optimality, the EXM is two

orders of magnitude faster than the BC algorithm. All instances are solved by the EXM using an

MIP route enumeration-based method; therefore, it is proven to be particularly effective for this

set of instances.

6.4. Comparison of CPRI with decision criteria from literature

In this section, we discuss the investigation of the performance of the CPRI and RVI, ERI, and

SRI using different indicators. Our analysis follows those of Zhang et al. (2019a) and Zhang et al.

(2021); however, it extends their schemes by considering larger instances with 50 nodes. More

importantly, it is based on the computation of the optimal solutions, and thus, is more accurate in

terms of evaluating the different indicators.
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Table 4 Comparison of decision criteria

RVI ERI

Name z∗ tRV I ttot SumExp MaExp SumProb MaxProb z∗ tERI ttot SumExp MaExp SumProb MaxProb

c101 7.18 0.37 2.70 0.94 0.47 0.30 0.14 1.25 1.22 3.19 0.94 0.47 0.30 0.14
c102 6.95 1.51 14.11 0.00 0.00 0.00 0.00 1.25 17.76 29.46 0.00 0.00 0.00 0.00
c103 1.10 21.43 228.61 0.00 0.00 0.00 0.00 0.23 364.70 565.44 0.00 0.00 0.00 0.00
c105 0.00 0.47 4.90 0.00 0.00 0.00 0.00 0.00 1.74 4.18 0.00 0.00 0.00 0.00
c106 18.35 0.75 22.92 0.00 0.00 0.00 0.00 6.17 2.58 22.49 0.00 0.00 0.00 0.00
c107 0.00 0.33 4.55 0.00 0.00 0.00 0.00 0.00 2.74 8.30 0.00 0.00 0.00 0.00
c108 0.00 0.78 31.21 0.00 0.00 0.00 0.00 0.00 6.52 43.01 0.00 0.00 0.00 0.00
c109 0.00 5.47 42.97 0.00 0.00 0.00 0.00 0.00 57.84 99.82 0.00 0.00 0.00 0.00
r101 56.64 0.54 2.51 3.04 3.04 0.26 0.26 18.72 0.77 2.56 3.04 3.04 0.26 0.26
r102 57.59 10.39 50.87 0.00 0.00 0.00 0.00 19.36 10.30 25.99 0.00 0.00 0.00 0.00
r103 49.19 104.81 219.24 4.47 3.59 0.63 0.25 15.76 110.54 257.85 0.68 0.68 0.25 0.25
r104 27.06 515.23 1232.62 0.74 0.74 0.26 0.26 6.80 539.09 1373.49 1.18 0.45 0.24 0.09
r105 8.02 1.68 10.04 0.01 0.01 0.06 0.06 1.58 1.85 9.18 0.01 0.01 0.06 0.06
r106 13.78 33.20 100.53 0.71 0.41 0.19 0.09 2.92 34.37 102.87 0.40 0.17 0.12 0.07
r107 31.20 188.50 635.15 1.90 1.90 0.34 0.34 5.10 199.43 637.44 0.49 0.20 0.16 0.07
r109 7.74 29.37 92.85 0.62 0.59 0.26 0.26 1.01 32.98 93.17 0.67 0.51 0.12 0.09
r110 10.79 30.83 90.22 0.02 0.02 0.01 0.01 1.83 40.82 103.74 0.15 0.14 0.05 0.05
r111 6.03 130.22 338.72 0.25 0.25 0.08 0.08 0.55 141.63 386.25 0.00 0.00 0.00 0.00
r112 13.98 412.82 1416.56 0.00 0.00 0.00 0.00 1.71 516.95 2085.80 0.00 0.00 0.00 0.00
rc101 18.00 1.29 9.39 0.74 0.74 0.25 0.25 6.48 1.61 12.48 0.74 0.74 0.25 0.25
rc102 61.09 32.39 118.64 0.00 0.00 0.00 0.00 19.63 28.68 140.81 0.00 0.00 0.00 0.00
rc103 56.21 76.67 782.10 1.83 1.50 0.28 0.20 14.37 74.69 548.73 1.66 1.13 0.26 0.14
rc104 18.50 105.64 259.17 0.73 0.49 0.18 0.10 3.62 119.52 269.95 0.70 0.49 0.17 0.10
rc105 36.95 7.61 38.46 0.00 0.00 0.00 0.00 12.02 9.18 62.33 0.00 0.00 0.00 0.00
rc107 59.96 31.17 82.13 4.46 4.46 0.25 0.25 17.94 39.63 87.09 4.46 4.46 0.25 0.25
rc108 57.83 62.25 170.14 5.80 2.56 0.92 0.26 15.65 98.63 204.34 8.30 3.99 0.67 0.25

24.01 69.45 230.82 1.01 0.80 0.16 0.11 6.69 94.45 276.15 0.90 0.63 0.12 0.08

SRI CPRI

Name z∗ tSRI ttot SumExp MaExp SumProb MaxProb z∗ tCPRI ttot SumExp MaExp SumProb MaxProb

c101 1.41 0.97 2.61 0.94 0.47 0.30 0.14 7.40 0.26 2.16 0.94 0.47 0.30 0.14
c102 1.40 16.17 27.54 0.00 0.00 0.00 0.00 7.17 0.99 11.46 0.00 0.00 0.00 0.00
c103 0.25 352.09 553.50 0.00 0.00 0.00 0.00 1.13 17.57 236.49 0.00 0.00 0.00 0.00
c105 0.00 1.66 4.31 0.00 0.00 0.00 0.00 0.00 0.42 4.88 0.00 0.00 0.00 0.00
c106 7.08 2.49 21.35 0.00 0.00 0.00 0.00 18.68 0.59 22.53 0.00 0.00 0.00 0.00
c107 0.00 2.22 6.97 0.00 0.00 0.00 0.00 0.00 0.31 4.66 0.00 0.00 0.00 0.00
c108 0.00 5.62 40.98 0.00 0.00 0.00 0.00 0.00 0.52 34.78 0.00 0.00 0.00 0.00
c109 0.00 59.17 94.90 0.00 0.00 0.00 0.00 0.00 3.86 45.83 0.00 0.00 0.00 0.00
r101 21.60 0.74 2.52 3.04 3.04 0.26 0.26 50.64 0.42 2.14 3.04 3.04 0.26 0.26
r102 22.34 9.81 24.32 0.00 0.00 0.00 0.00 53.57 4.18 29.43 0.00 0.00 0.00 0.00
r103 18.50 98.00 236.29 0.43 0.34 0.08 0.06 46.67 47.35 177.83 0.00 0.00 0.00 0.00
r104 7.94 513.78 1249.64 1.18 0.45 0.24 0.09 26.77 287.88 1256.01 0.40 0.40 0.07 0.07
r105 1.78 2.76 12.62 0.01 0.01 0.06 0.06 8.26 0.96 9.41 0.01 0.01 0.06 0.06
r106 3.33 32.83 96.64 0.59 0.59 0.25 0.25 14.15 17.73 133.81 0.00 0.00 0.00 0.00
r107 5.79 192.03 425.29 1.65 1.43 0.29 0.24 29.71 100.31 469.75 0.00 0.00 0.00 0.00
r109 1.13 28.98 103.30 0.00 0.00 0.00 0.00 7.98 15.27 117.57 0.62 0.59 0.26 0.26
r110 2.06 38.32 88.82 0.00 0.00 0.00 0.00 10.77 17.80 89.26 0.02 0.02 0.01 0.01
r111 0.62 139.58 335.49 0.00 0.00 0.00 0.00 6.17 66.80 323.40 0.25 0.25 0.08 0.08
r112 1.92 508.08 1414.40 0.67 0.52 0.14 0.09 14.25 240.58 1252.27 0.70 0.40 0.18 0.09
rc101 7.52 1.42 13.66 0.74 0.74 0.25 0.25 18.05 0.73 11.16 0.74 0.74 0.25 0.25
rc102 23.11 27.34 129.09 0.00 0.00 0.00 0.00 58.50 15.37 104.85 0.00 0.00 0.00 0.00
rc103 16.51 74.70 545.42 1.66 1.13 0.26 0.14 56.10 38.39 286.87 1.83 1.50 0.28 0.20
rc104 4.13 115.52 254.04 0.70 0.49 0.17 0.10 18.77 52.08 220.35 0.73 0.49 0.18 0.10
rc105 14.31 9.53 50.28 0.00 0.00 0.00 0.00 33.98 4.64 38.02 0.00 0.00 0.00 0.00
rc107 21.01 40.37 84.13 4.46 4.46 0.25 0.25 57.91 11.15 59.83 4.46 4.46 0.25 0.25
rc108 18.00 91.77 191.16 8.30 3.99 0.67 0.25 51.56 30.87 144.59 6.85 6.57 0.43 0.25

7.76 91.00 231.13 0.94 0.68 0.12 0.08 23.01 37.58 195.74 0.79 0.73 0.10 0.08
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To evaluate the performance of the solutions under the different indices, we perform an out-of-

sample evaluation by generating 10,000 independent samples of t̃. As the basic indicators, we con-

sider for each i∈ V , the lateness probability, P[ξi(x, t̃)> 0] and the expected lateness, E[(ξi(x, t̃))+],
as well as the following derived indicators:

• SumProb, the sum of the lateness probabilities computed as
∑

i∈V P[ξi(x, t̃)> 0].

• MaxProb, the maximum lateness probability computed as maxi∈V P[ξi(x, t̃)> 0].

• SumExp, the sum of the expected lateness durations computed as
∑

i∈V E[(ξi(x, t̃))+].
• MaxExp, the maximum expected lateness duration computed as maxi∈V E[(ξi(x, t̃))+].
For comparison, the RVI is computed by a bisection approach mentioned in Jaillet et al. (2016),

the ERI and SRI are computed using the original closed forms (Zhang et al. 2019a, 2021), whereas

the CPRI is computed using Algorithm 1. It is worth noting that the analyses of Zhang et al.

(2019a) and Zhang et al. (2021) have already shown the advantages of using the ERI and the

SRI for methods aimed at minimizing alternative objective functions. Examples of these functions

are the total travel or routing cost (i.e., solving the deterministic vrptw), sum of the expected

lateness durations, and sum of the lateness probabilities. Consequently, our comparison focuses on

the direct comparison of the different indices.

The results of the different indicators are tabulated in Table 4. The results are based on the 26

instances involving 50 nodes that can be solved to optimality under all indices. For each instance

and each index, the table reports the optimal solution cost (“z∗”), the total time spent in computing

the indices (“tx”, x∈ {RV I,ERI,SRI,CPRI}), total computing time of EXM (“ttot”), and values

of the different indicators. The last line under each section of the table reports the average values.

Figure 2 illustrates the results of the normalized values of the indicators for the different indices.

As shown, the CPRI, SRI, ERI outperform the RVI on average in mitigating the lateness. In fact,

the performance of the various indicators for the CPRI, SRI, and ERI are on average superior to

that of the RVI. The SRI and the ERI display similar average performance. The CPRI achieves

smallest SumProb, MaxProb, and SumExp among all indices, and it shows a slightly higher

average maximum expected lateness duration for the worst-case node (MaxExp) with respect to

the SRI and the ERI. Therefore, the CPRI shows a good balanced performance on all on-time

service indicators.

Concerning the total computing times, the EXM under the CPRI is the fastest method, being

approximately 30% faster than the ERI based-computation and approximately 15% faster than

both the RVI and SRI based-computations, respectively.

Summarizing, our analysis shows that the new CPRI has salient features from the aspects of both

computation and performance. In addition, the EXM algorithm can be a useful tool for decision

makers interested in designing routing plans that provide on-time services with maximum efficiency

while limiting the budgeted routing costs.
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SumExp

MaxExp

SumProb

MaxProb

RVI

ERI

SRI
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Figure 2 Normalized values of the indicators for the CPRI, SRI, ERI and RVI

6.5. Solving DRO models using EXM

In this section, we report the results of the EXM for solving a DRO model based on the SRI and a

Wasserstein distance-based ambiguity set defined as follows: Suppose the true distribution, P, lies

in a Wasserstein ball of radius θ ∈R+ that is centered at the empirical distribution, P†. Then, the

Wasserstein ambiguity set is defined as

F(θ) =
{
P∈P(W)

∣∣∣∣ t̃∼ P, t̃† ∼ P†,
dW(P,P†)≤ θ,

}
,

where P(W) represents the set of all probability distributions supported on set W ⊆ RI and

dW(P,P†) :P ×P → [0,+∞)] computes the type-1 Wasserstein distance.

As mentioned in Section 3.3, Zhang et al. (2021) derived a closed-form solution when t̃ are

governed by the Wasserstein distance and designed an efficient algorithm for its computation.

They demonstrated that incorporating the distributional ambiguity over the empirical distributions

helps improve the out-of-sample performance of indicators. Therefore, the aim of study presented

in this section is to investigate the effectiveness of the EXM in incorporating the distributional

ambiguity based on the SRI and the Wasserstein ambiguity set. We consider the 50 node instances

solved to optimality by the EXM under the SRI, and we vary the Wasserstein ball radius, θ ∈
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{0.0,0.05,0.1.0.5,1.0}, where θ = 0 ignores the distributional ambiguity and corresponds to the

sample average approximation.

The obtained results are listed by Table 5. For each value of θ, the table provides the results of

the EXM based on the notations already introduced for the previous tables. The table also reports

the average values over the different columns.

The obtained results show that the performance of the EXM remains stable under the different

values of θ. A larger radius θ implies a higher effectiveness of the infeasibility property in reducing

the solution space in which customers receive poor service. This is validated by the decreasing

average cardinalities of the sets of routes, Rρ, for increasing θ values, with a reduction of approxi-

matedly 10% from the θ= 0 and θ= 1.0 cases. Specifically, the effectiveness of the EXM is improved

under DRO because its performance strongly relies on the infeasibility property.

7. Conclusions and future research

Routing optimization under uncertain travel times has generated the interest of many researchers

in recent years, both owing to the practical importance of this class of problems and their intrinsic

difficulty. In particular, the recent literature has focused on methods aimed at mitigating late

service riskiness using decision criteria to measure it. The main interest in such criteria is that they

account for both the probability and magnitude of the lateness and also consider the distributional

ambiguity of uncertain travel times.

In this context, we studied a vehicle routing problems with time windows (vrptw) under empir-

ical travel times. We introduced a new decision criterion, the generalized riskiness index (GRI),

and its special case, the convex piecewise riskiness index (CPRI). As main results of our study,

we demonstrate its salient managerial and computational properties and show that the new index

covers some indices recently proposed in the literature as special cases. Moreover, by exploiting

the structure of the new index, we establish a new mathematical set partitioning-based formu-

lation and a novel exact solution framework combining route enumeration and state-of-the-art

branch-price-and-cut algorithms to solve the formulation.

The new solution framework is extensively tested on vrptw instances derived from the literature.

Our computational experiments demonstrate the effectiveness of the proposed algorithm in solving

instances with up to 100 nodes, more than doubling the manageable instance size with respect

to state-of-the-art algorithms. We also present that the newly proposed index can better mitigate

lateness compared to existing ones. Moreover, it is shown that the new solution framework can

effectively solve distributionally robust models, and thus, to the best of our knowledge, it is the first

exact column generation-based method to be used to solve VRPs in the context of distributionally

robust optimization.
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Table 5 Incorporating distributional ambiguity into EXM: effect of the Wasserstein distance

θ = 0.0 θ = 0.05 θ = 0.1

Name z∗ |Rρ| tSRI tRE ttot z∗ |Rρ| tSRI tRE ttot z∗ |Rρ| tSRI tRE ttot

c101 1.41 13949 0.97 1.19 2.61 4.49 13949 1.31 1.63 3.38 7.58 13901 1.36 1.62 3.20
c102 1.40 55074 16.17 22.11 27.54 4.49 55171 18.18 24.58 30.56 7.57 55305 17.06 23.44 27.95
c103 0.25 296641 352.09 528.65 553.50 3.32 297007 369.61 551.67 571.26 6.38 297048 361.77 546.56 566.93
c105 0.00 32351 1.66 2.30 4.31 3.06 32294 2.67 3.94 6.80 6.11 32190 2.68 3.82 6.56
c106 7.08 44544 2.49 3.57 21.35 10.20 44543 3.85 5.57 24.60 13.33 44475 3.55 5.28 24.68
c107 0.00 25231 2.22 2.76 6.97 3.06 25231 2.37 2.91 7.23 6.11 25210 2.97 3.73 8.00
c108 0.00 34002 5.62 8.10 40.98 3.06 33833 6.30 9.04 34.97 6.11 33741 6.32 9.02 38.86
c109 0.00 101284 59.17 83.79 94.90 3.06 101306 54.86 77.70 91.85 6.11 101333 64.04 87.35 103.28
r101 21.60 5027 0.74 0.73 2.52 25.34 5002 0.71 0.75 2.51 29.07 4966 0.66 0.66 2.35
r102 22.34 53657 9.81 13.38 24.32 25.95 53403 8.56 11.33 21.28 29.56 52881 9.71 12.80 23.61
r103 18.50 275340 98.00 143.00 236.29 21.95 273724 90.35 129.50 221.04 25.39 272890 97.10 138.01 231.74
r104 7.94 1092277 513.78 736.63 1249.64 11.23 1087001 491.08 696.50 1109.21 14.52 1081302 502.30 707.98 1379.65
r105 1.78 18817 2.76 3.41 12.62 5.15 18789 2.69 3.56 11.71 8.52 18643 2.83 3.77 11.27
r106 3.33 151828 32.83 45.41 96.64 6.68 151138 33.53 45.03 86.82 10.02 150659 30.80 42.63 93.88
r107 5.79 465929 192.03 292.91 425.29 9.09 463716 191.36 281.65 401.42 12.38 462051 185.54 276.36 515.51
r109 1.13 174656 28.98 40.02 103.30 4.42 173721 28.88 39.27 99.77 7.71 172925 29.57 40.18 143.49
r110 2.06 161066 38.32 53.35 88.82 5.32 160443 36.92 51.32 87.81 8.58 159742 40.25 55.85 93.74
r111 0.62 436830 139.58 195.35 335.49 3.86 434041 133.81 193.47 313.23 7.10 432458 128.63 186.46 296.83
r112 1.92 1152489 508.08 786.62 1414.40 5.11 1147628 505.94 770.56 1442.49 8.31 1143192 491.52 759.91 1318.39
rc101 7.52 12365 1.42 1.75 13.66 10.96 12274 2.00 2.55 15.79 14.40 12214 2.08 2.48 14.73
rc102 23.11 53806 27.34 37.32 129.09 26.59 53710 27.77 37.12 118.80 30.07 53424 28.09 37.76 116.51
rc103 16.51 64314 74.70 105.37 545.42 19.77 64156 70.48 100.29 736.27 23.03 63840 71.50 99.80 1174.47
rc104 4.13 23606 115.52 249.17 254.04 7.25 23571 116.05 240.41 244.65 10.37 23435 122.29 246.25 250.67
rc105 14.31 28279 9.53 12.51 50.28 17.77 28250 9.51 12.42 57.14 21.24 28156 9.44 12.27 51.73
rc107 21.01 12156 40.37 63.23 84.13 24.35 12112 39.32 61.38 82.84 27.69 12051 39.38 61.06 82.47
rc108 18.00 14099 91.77 158.86 191.16 21.25 14034 84.15 143.26 174.61 24.49 14000 94.21 156.66 187.87

7.76 184601 91.00 138.13 231.13 11.03 183848 89.70 134.52 230.69 14.30 183155 90.22 135.45 260.32

θ = 0.5 θ = 1.0

Name z∗ |Rρ| tSRI tRE ttot z∗ |Rρ| tSRI tRE ttot

c101 32.23 12952 1.46 1.84 3.52 63.15 12761 1.46 1.66 3.36
c102 32.22 54834 17.81 24.22 28.83 63.11 54855 17.87 24.57 29.55
c103 30.86 292423 338.91 509.37 529.99 61.48 292167 343.00 522.31 548.55
c105 30.56 31742 1.75 2.44 5.30 61.11 30939 2.40 3.31 5.91
c106 38.39 43898 3.65 5.44 24.55 69.62 43167 3.76 5.29 23.80
c107 30.56 25004 2.36 2.80 6.90 61.11 24989 2.77 3.66 7.97
c108 30.56 32531 6.21 8.61 38.43 61.11 32014 6.00 8.62 38.74
c109 30.56 101581 55.51 79.49 90.60 61.11 101828 59.25 83.04 95.40
r101 59.11 4689 0.81 0.76 3.13 96.91 4328 0.82 0.82 2.50
r102 58.58 51214 9.40 12.88 28.17 95.08 45679 7.20 9.72 39.96
r103 52.86 260412 94.91 133.88 195.83 87.37 239458 89.32 123.60 174.40
r104 41.23 1015860 476.06 681.38 1230.75 73.72 961635 430.69 613.03 1060.39
r105 35.47 17831 2.92 3.50 11.08 69.32 17001 2.59 3.44 11.24
r106 36.82 143957 32.90 44.59 73.46 70.58 137455 27.37 37.89 76.25
r107 38.76 446719 187.30 278.38 520.18 71.88 427355 185.10 270.66 478.01
r109 34.05 166953 30.83 41.67 93.14 66.99 158731 29.70 40.25 126.15
r110 34.70 152526 39.37 55.38 90.41 67.39 145633 38.40 52.74 108.66
r111 33.04 415939 130.05 185.23 342.29 65.10 391029 126.59 179.61 301.99
r112 33.86 1105909 477.51 735.80 1710.17 65.82 1060525 436.43 685.66 1419.98
rc101 41.96 11832 1.89 2.19 10.26 76.87 11231 1.92 2.25 11.82
rc102 57.84 51762 25.16 34.46 110.69 92.98 49417 24.57 33.12 99.12
rc103 49.17 61525 69.22 97.73 312.28 82.11 59261 67.64 93.33 677.95
rc104 35.39 22469 117.80 240.15 245.01 66.79 21191 117.17 233.83 238.26
rc105 48.97 27131 9.18 11.89 48.64 83.69 25793 8.33 10.77 45.55
rc107 54.49 11683 39.60 60.87 82.15 88.49 11206 36.55 56.16 76.86
rc108 50.57 13542 88.83 147.56 178.95 83.67 13081 93.00 154.11 184.12

40.49 176035 86.98 130.87 231.34 73.33 168182 83.07 125.13 226.40
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Several interesting future research directions originating from this study can be considered.

First, the adopted set partitioning-based model can be easily adapted to deal with other routing

constraints, simply by considering such constraints in the route generation phase. Second, the

computational efficiency to evaluate the GRI depends mainly on the selection of both the disutility

function and ambiguity set about uncertain arc travel times, making it challenging to achieve.

Although its solution algorithm applies to any disutility function, it is limited to an ambiguity

set containing only an empirical distribution of travel times. Therefore, it would be interesting to

also investigate other model selections of the ambiguity set, such as (generalized) moment-based

ambiguity sets (e.g., Delage and Ye 2010, Wiesemann et al. 2014, Chen et al. 2020) and statistical

distance-based ambiguity sets (e.g., Ben-Tal et al. 2013, Jiang and Guan 2018, Gao and Kleywegt

2016, Esfahani and Kuhn 2018). It is unclear which choices of the combination of the disutility

function and the ambiguity set will lead to an efficient method for evaluating the GRI, which

can be explored in the future. Finally, the applications for which the different decision criteria

can be used to evaluate the target fulfillment riskiness are quite broad and include, for instance,

portfolio optimization, inventory control, and appointment scheduling. Moreover, previous studies

have shown the usefulness and wide applicability of a set partitioning model in modeling various

applications, including railroad and airline crew scheduling, information retrieval, stock cutting,

assembly line balancing, capital equipment decisions, and facility location problems. Therefore, our

set partitioning-based model embedding riskiness indices can be a useful modeling tool to deal with

other challenging optimization problems under uncertainty. Thus, our future research direction will

also be to investigate these applications.
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Glossary, MIP model, example, proofs of statements,
additional implementation details and computational results

EC.1. Glossary and terminology

Table EC.1 Glossary of symbols used

Symbol Meaning

G= (V,A) digraph with vertex set V = {0,1,2, . . . , n+m}
Vc set of customers

Vd set of end depots

qi, [ei, li] demand and time window of vertex i∈ V

m, Q number of vehicles and vehicle capacity

dij , t̃ij cost and uncertain travel time of arc (i, j)∈A

B budget value

R, Rr, V (Rr), A(Rr) index set of routes; route, vertices visited, arcs traversed

P, S = {xp}p∈P index set of feasible vrptw solutions and associated characteristic vec-
tors

ρ(·) riskiness-index function

x decision variables of model (1)

τi(Rs, t) service start time function of i∈ V

ξi(Rs, t) delay function at vertex i∈ V

ζs(ρ, t̃) total riskiness index of route Rs

cr, air cost and coefficients of route r

y decision variables of model (6)

Ω= {1,2, · · · ,N} sample set

Table EC.2 Riskiness indices

Term Reference/Meaning

Riskiness index (RI) Aumann and Serrano (2008)

Requirement violation index (RVI), ρRV I

(
ξ̃
)

Jaillet et al. (2016)

Essential riskiness index (ERI), ρERI

(
ξ̃
)

Zhang et al. (2019a)

Service fulfillment risk index (SRI), ρSRI

(
ξ̃
)

Zhang et al. (2021)

Generalized riskiness index (GRI), ρGRI

(
ξ̃
)

New riskiness index introduced in this paper

Convex piecewise riskiness index (CPRI), ρCPRI

(
ξ̃
)

Special instance of the GRI

EC.2. MIP model of Zhang et al. (2021)

In this section, we describe the mixed-integer linear problem (MIP) used by Zhang et al. (2021)

for the SRI.

Let S = {xp}p∈P be the set of all characteristic vectors associated with the solutions in P, where

xp ∈ S denotes the characteristic vector of solution p∈P, and for a vertex i∈ V , r(p, i) denotes the

route index of solution p to which the vertex belongs. Given a route Rr = (i0 = 0, i1, . . . , iν , iν+1)

with r ∈R and vertices i, j ∈ V (Rr) such that vertex j precedes i in the route, Rji
r denotes path
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(j, . . . , i) from vertex j up to vertex i. Moreover, V (Rji
r ) denotes the set of vertices visited and

A(Rji
r ) denotes the set of arcs traversed from vertex j up to vertex i (we assume V (Rii

r ) = {i} and

A(Rii
r ) = ∅).

Given a solution p ∈ P and a realization t of travel times t̃, it can be shown (see Zhang et al.

2021) that the following function determines the service start time, τi(x
p, t), of vertex i∈ V under

realization t:

τi(x
p, t) = max

j∈V
(
R0i

r(p,i)

)
ej +

∑
a∈A

(
R

ji
r(p,i)

) ta
 . (EC.1)

Function τi(x
p, t) is convex piecewise affine in t (see Zhang et al. 2021). Based on the service start

time function, the delay function at vertex i is defined as

ξ̄i(x
p, t) = τi(x

p, t)− li, (EC.2)

and hence, a late service at vertex i occurs if and only if ξ̄i(x
p, t)> 0. Because the travel times t̃

are uncertain, the delay function, ξ̄i(x
p, t̃), is also uncertain.

Let set S represent a set of constraints of the two-index (vehicle flow) formulation for the directed

capacitated vrp proposed by Laporte et al. (1986), i.e.,

S =



x∈ {0,1}|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
a∈δ+(i)

xa = 1, ∀i∈ Vc,∑
a∈δ−(i)

xa = 1, ∀i∈ Vc,∑
a∈δ+(0)

xa ≤m,∑
a∈δ−(i)

xa ≤ 1, ∀i∈ Vd,

∑
a∈δ+(T )

xa ≥
⌈∑

i∈T qi

Q

⌉
, ∀T ⊆ V, |T | ≥ 2.



,

where δ−(i) = {(j, i)∈A : j ∈ V \{i}} and δ+(i) = {(i, j)∈A : j ∈ V \{i}}. In the formulation,

the first four set of constraints impose degree constraints on the vertices, whereas the last set of

constraints are the capacity constraints.

Let ηi be a nonnegative continuous variable representing the SRI value associated with vertex

i∈ V . Zhang et al. (2021) reformulated problem (1) for the SRI as the following MIP problem:

min
∑
i∈V

ηi (EC.3a)

s.t.

∑
a∈A(R0i

r(p,i)
)

(xa− 1)ρSRI(ξ̄i(y
p, t̃))+ ρSRI(ξ̄i(y

p, t̃))≤ ηi,

∀yp ∈ S, i∈ V : ρSRI(ξ̄i(y
p, t̃))<+∞,

(EC.3b)
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a∈A(R0i

r(p,i)
)

(xa− 1)+1≤ 0,

∀yp ∈ S, i∈ V : ρSRI(ξ̄i(y
p, t̃)) =+∞,

(EC.3c)

c⊤x≤B, (EC.3d)

x∈ S, (EC.3e)

η ∈R|V |
+ . (EC.3f)

The objective function (EC.3a) minimizes the sum of the SRI measures over all vertices. Con-

straints (EC.3b) and (EC.3c) define the correct values of variables ηi, i ∈ V , by imposing the

optimality and feasibility of the SRI, respectively. Constraint (EC.3d) imposes the budget limit.

EC.3. Example of decision criteria for measuring lateness level

In this section, we present a vrptw example to illustrate the performance of different decision

criteria to measure lateness levels. Consider a network with four nodes: depot 0 and customers 1, 2,

and 3. We abbreviate “with probability” as “w.p.” and provide the (correlated) travel time matrix

in Table EC.3. Only one vehicle with an infinite capacity is available. It departs from depot 0 at

Table EC.3 Travel time matrix (unit: minute)

nodes 0 1 2 3

0 0 100 100 +∞
1 90 w.p. 40%,

110 w.p. 60%
0 90 w.p. 95%,

110 w.p. 5%
100

2 90 w.p. 95%,
120 w.p. 5%

90 w.p. 90%,
105 w.p. 10%

0 100

3 100 100 100 0

time 0, serves each customer exactly once, and returns to the depot. Suppose the time window for

each customer is [0,+∞] and that for the depot is [0,400]; hence, a deadline for returning to the

depot is imposed. We can enumerate all candidate routes: R1 = (0,1,2,3,0),R2 = (0,1,3,2,0),R3 =

(0,2,1,3,0),R4 = (0,2,3,1,0),R5 = (0,3,1,2,0), and R6 = (0,3,2,1,0). Based on Table EC.3, the

travel time from node 0 to 3 is +∞, suggesting that R5 and R6 cannot satisfy the deadline of 400

with 100% probability. We next compare the remaining four routes in Table EC.4. The arc travel

times in Table EC.3 indicate that the returning time of route R1 to the depot is 390 with 95%

probability and 410 with 5% probability, using which the uncertain delay in Table EC.4 can be

obtained.

From the results in Table EC.4, we observe that the lateness probability criterion cannot dis-

tinguish the difference between routes R1 and R2, although R1 has a smaller lateness magnitude
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Table EC.4 Comparing the decision criteria for the candidate routes

Route
Uncertain delay Decision criteria

Realization Probability Lateness probability Expected lateness duration RVI ERI SRI CPRI

R1

-10 95%
5% 0.5 3.4 0.53 0.59 3.4610 5%

R2
-10 95%

5% 1 7.37 1.05 1.18 6.92
20 5%

R3
-10 90%

10% 0.5 2.18 0.56 0.63 2.28
5 10%

R4

-10 40%
60% 6 +∞ +∞ +∞ +∞10 60%

than R2. In contrast, the other decision criteria–expected lateness duration, Requirement Viola-

tion Index (RVI), Essential Riskiness Index (ERI), Service Fulfillment Risk Index (SRI), Convex

Piecewise Riskiness Index (CPRI)–invariably prefer R1 over R2. The expected lateness duration is

indifferent to R1 and R3, whereas the lateness probability criterion chooses R1 because of its lower

lateness probability. The riskiness indices ERI and SRI would prefer R1 over R3, whereas the RVI

and the CPRI prefer R3 over R1. This is because the exponential disutility underlying the RVI

and the CPRI penalize the lateness magnitude in an exponential manner, whereas the ERI and

the SRI do this in a linear manner. Although the riskiness indices here seem to be abstract, they

are related to the lateness probability guarantee, which is detailed in Section 3 and concretized in

Example 2. Route R4 is late from an expectation perspective. In this case, the lateness probability

and the expected lateness duration criteria will tolerate it, whereas the riskiness indices will assert

R4 to be infeasible.

EC.4. Proof of statements
EC.4.1. Proof of Proposition 1

Given a route r ∈R with Rr = (i0 = 0, i1, i2, . . . , iν−1, iν , iν+1) and a realization of t̃, denoted by t,

the service start time for each node ik ∈ V (Rr) can be computed as:

• τi0(Rr, t) = e0.

• τi1(Rr, t) =max{τi0(Rr, t)+ ti0 i1 , ei1}.

• τi2(Rr, t) =max{τi1(Rr, t)+ ti1 i2 , ei2}.

• . . . .

• τiν (Rr, t) =max{τiν−1
(Rr, t)+ tiν−1 iν , eiν}.

• τiν+1
(Rr, t) =max{τiν (Rr, t)+ tiν iν+1

, eiν+1
}.



ec6 e-companion to Zhang et al.: Effective exact solution framework for the VRPTW

Therefore, for a node ik ∈ V (Rr), we derive:

τik(Rr, t) =max{τik−1
(Rr, t)+ tik−1 ik , eik}=

max{max{τik−2
(Rr, t)+ tik−2 ik−1

, eik−1
}+ tik−1 ik , eik}=

. . .

max{e0 + ti0 i1 + · · ·+ tik−1 ik , e1 + ti1 i2 + · · ·+ tik−1 ik , . . . , eik−1
+ tik−1ik , eik},

(EC.4)

or, equivalently

τik(Rr, t) = max
h=0,...,k

{
eih +

k−1∑
l=h

til il+1

}
.□ (EC.5)

EC.4.2. Proof of Theorem 1

The different statements can be proved as follows.

i) Monotonicity: If P[ξ̃1 ≥ ξ̃2] = 1,∀P ∈ F, then P[ξ̃1/α≥ ξ̃2/α] = 1,∀P ∈ F, α > 0. Becuase ϕ(·) is

non-decreasing, we have EP[ϕ(ξ̃1/α)]≥EP[ϕ(ξ̃2/α)],∀P∈ F, and therefore supP∈FEP[ϕ(ξ̃1/α)]≥
supP∈FEP[ϕ(ξ̃2/α)]. Hence, Y1 ⊆Y2 where Yi ≜ {α> 0| supP∈FEP[ϕ(ξ̃i/α)]≤ γ}, i= 1,2. Finally,

we conclude that ρGRI(ξ̃1) = inf Y1 ≥ inf Y2 = ρGRI(ξ̃2).

ii) Satisficing: If P[ξ̃ < 0] = 1,∀P ∈ F, then as α→ 0+, we have P[ξ̃/α→−∞] = 1,∀P ∈ F, and
P[ϕ(ξ̃/α)→ 0+] = 1,∀P∈ F, which implies that EP[ϕ(ξ̃/α)]≤ γ,∀P∈ F, and that α= 0+ satisfies

the constraint in (13). In addition, α> 0; taking the infimum, we obtain ρGRI(ξ̃) = 0.

iii) Infeasibility: If supP∈FEP[ξ̃]> 0, then supP∈FEP[ξ̃/α]> 0 for all α > 0. Since ϕ(ξ)≥ ξ + 1, we

obtain supP∈FEP[ϕ(ξ̃/α)]≥ supP∈FEP[ξ̃/α]+1> 1. Consequently, the constraint in (13) cannot

be satisfied and ρGRI

(
ξ̃
)
= inf ∅=+∞.

iv) Positive homogeneity: For all k > 0, we have

ρGRI

(
kξ̃

)
= inf

{
α> 0

∣∣∣ supP∈FEP
[
ϕ(kξ̃/α)

]
≤ γ

}
= inf

{
(kα)> 0

∣∣∣ supP∈FEP
[
ϕ(kξ̃/(kα))

]
≤ γ

}
= k inf

{
α> 0

∣∣∣ supP∈FEP
[
ϕ(ξ̃/α)

]
≤ γ

}
= kρGRI

(
ξ̃
)
,

where the second equality holds by substituting α with kα without loss of generality.

v) Convexity: The GRI (13) can be equivalently rewritten as

ρGRI

(
ξ̃
)
= inf

{
α> 0

∣∣∣∣ sup
P∈F

EP
[
g(ξ̃, α)]≤ 0

}
, (EC.6)

where g(ξ,α) = αϕ(ξ/α)−γα. Because ϕ(ξ) is convex in ξ ∈R, its perspective function αϕ(ξ/α)
for α> 0 is then jointly convex in (ξ,α). Thus, g(ξ,α) is jointly convex in (ξ,α).

For notational convenience, we express α⋆
1 ≜ ρGRI(ξ̃1), α

⋆
2 ≜ ρGRI(ξ̃2) and αλ ≜ λα⋆

1+(1−λ)α⋆
2

for λ∈ [0,1]. By convexity we have

g(λξ1 +(1−λ)ξ2, αλ)≤ λg(ξ1, α⋆
1)+ (1−λ)g(ξ2, α⋆

2). (EC.7)
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Hence, ∀P∈ F,

EP[g(λξ̃1 +(1−λ)ξ̃2, αλ)] ≤ λEP[g(ξ̃1, α
⋆
1)]+ (1−λ)EP[g(ξ̃2, α

⋆
2)]

≤ λ0+ (1−λ)0

= 0,

(EC.8)

where the second inequality holds because the constraint in (EC.6) implies EP[g(ξ̃1, α
⋆
1)] ≤ 0

and EP[g(ξ̃2, α
⋆
2)]≤ 0,∀P∈ F.

Owing to the condition (EC.8) and the fact that αλ = λα⋆
1 + (1− λ)α⋆

2 > 0, we conclude

that αλ is a feasible solution for the optimization problem underlying the definition (EC.6) of

ρGRI(λξ̃1 +(1−λ)ξ̃2) and thus ρGRI(λξ̃1 +(1−λ)ξ̃2)≤ αλ. The result then follows.

vi) Subadditivity: To prove the result, we note that

ρGRI(ξ̃1 + ξ̃2)/2 = ρGRI((ξ̃1 + ξ̃2)/2)≤ (ρGRI(ξ̃1)+ ρGRI(ξ̃1))/2,

where the equality is due to the positive homogeneity property and the inequality follows from

the convexity when λ= 1/2.

vii) Probability envelope: Putting α⋆ ≜ ρGRI(ξ̃), we have, ∀P∈ F and θ > 0,

P
[
ξ̃ > θ

]
= P

[
ξ̃/α⋆ > θ/α⋆

]
≤ P

[
ϕ(ξ̃/α⋆)≥ ϕ(θ/α⋆)

]
≤ EP[ϕ(ξ̃/α

⋆)]

ϕ(θ/α⋆)

≤ γ

ϕ
(
θ/α⋆

) .
The first inequality holds because ϕ(·) is non-decreasing, the second one owing to Markov’s

inequality and the fact that ϕ(·) is strictly positive in R+, and the last inequality follows from

the definition (13).□

EC.4.3. Proof of Proposition 2

By the convexity of function ϕ(·), we have N−1
∑

ω∈Ω ϕ(ξ
ω) is convex in ξ = (ξω)ω∈Ω. Thus,

its perspective, αN−1
∑

ω∈Ω ϕ(ξ
ω/α) for α > 0, is jointly convex in (ξ, α). Consequently, g(α) =

αN−1
∑

ω∈Ω ϕ(ξ
ω/α)−αγ is convex in α, and subsequently the sublevel set,M≜ {α|g(α)≤ 0}, is

convex. Note that M is equivalent to {α|ψ(α)≤ γ}. Hence, the convexity of set M suggests the

convexity of ψ(α).□

EC.4.4. Proof of Proposition 3

We first note that given a route r ∈R, we have that r ∈R because route set R satisfies the capacity

and hard earliest service time window constraints. However, a route r ∈ R might not satisfy the
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deadlines, li, of the time windows constraints under the mean travel times, µ. Therefore, R⊆R.
Below, we show that Rρ ⊆R. Consider a route r ∈Rρ. For each i∈ V (Rr), we have:

ρ(ξi(Rr, t̃))<+∞

⇒ EP[ξi(Rr, t̃)]≤ 0

⇒ EP[τi(Rr, t̃)− li]≤ 0

⇒ EP[τi(Rr, t̃)]≤ li

⇒ τi(Rr,EP [̃t])≤EP[τi(Rr, t̃)]≤ li.

(EC.9)

The four implications result from the (i) infeasibility property, (ii) definition of the delay function

(4), (iii) translation invariance of EP, and (iv) property that the service start time function τi(Rr, t̃)

is convex piecewise affine in t̃ and Jensen’s inequality. We conclude that Rρ ⊆R⊆R.□

EC.4.5. Proof of Theorem 2

Let B= {r ∈Rρ : y
∗
r = 1} be the index set of the routes of solution y∗ of cost z(FB(Rρ))≤B and,

by contradiction, suppose that there exists r′ ∈B such that cr′ >B− z. Therefore, we have∑
r∈B

cr =
∑
r∈B

cr−
∑
r∈B

∑
i∈Vc

birui−
∑
r∈B

u0. (EC.10)

Because B represents a feasible solution of model FB(Rρ), we have:∑
r∈B

∑
i∈Vc

birui +
∑
r∈B

u0 =
∑
i∈Vc

ui + |B|u0 ≥
∑
i∈Vc

ui +mu0, (EC.11)

where the last inequality holds since |B| ≤m and u0 ≤ 0. The last term of the above inequality

equals the cost of the dual solution, z, and since z(FB(Rρ)) =
∑

r∈B cr we obtain

z(FB(Rρ))≥ z+
∑
r∈B

cr. (EC.12)

Because solution u is a feasible dual solution, we have cr ≥ 0, ∀r ∈B, and from inequality (EC.12),

we derive

z(FB(Rρ))≥ z+
∑
r∈B

cr ≥ z+ cr′ >

z+B− z =B.□
(EC.13)

EC.5. Bisection algorithm for evaluating GRI

The bisection algorithm for evaluating the GRI is presented in Algorithm 1. Herein, becuase +∞
is non-implementable, we use M to replace it in our implementation. Note that because ψ(α) is

convex, its subgradient, dψ(α)/dα, always exists. As a common argument, the bisection algorithm

terminates in finite steps. Specifically, because each iteration cuts the search space, [ε,M ], by half,

it takes at most ⌈log2((M−ε)/ϵ)⌉ iterations to terminate. For example, ifM = 103 and ε= ϵ= 10−3,

then the maximum number of iterations is 20.
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Algorithm 1 Bisection for evaluating GRI

1: if
∑

ω∈Ω ξ
ω > 0 then

2: return +∞ ▷ By infeasibility property in Theorem 1

3: Let α←M and α← ε ▷ M is big number and ε is small positive number

4: if ψ(α)≤ γ then

5: return 0 ▷ By definition in (15)

6: Initialize α⋆←+∞ ▷ We use α⋆ to restore GRI

7: if ψ(α)>γ then ▷ If yes, we find some feasible α∈ (α,α) via bisection

8: while α−α> ϵ do ▷ ϵ is tolerable error bound

9: Let α← (α+α)/2 ▷ α is tentative GRI

10: if ψ(α)≤ γ then ▷ We already find a feasible α

11: Let α← α and break

12: else ▷ α is infeasible. Continue bisection

13: if dψ(α)/dα> 0 then ▷ By convexity of ψ(α), we have α⋆ ̸∈ [α,α]

14: Let α← α

15: else ▷ By convexity of ψ(α), we have α⋆ ̸∈ [α,α]

16: Let α← α

17: while α−α> ϵ do ▷ If we enter this loop, we must have ψ(α)>γ and ψ(α)≤ γ

18: Let α← (α+α)/2

19: if ψ(α)≤ γ then ▷ Such α is feasible

20: Let α← α and α⋆← α

21: else

22: Let α← α

23: return α⋆

EC.6. Comparing computational efficiency of Algorithm 1 and
closed-form solution of Zhang et al. (2021) for evaluating SRI

In practice, the efficiency of the riskiness index calculation is particularly important because it

is repeatedly performed several times in resolution methods. We conduct experiments for solving

instances with 25 nodes using the SRI as the riskiness index. Specifically, we repeat the experiments

in Table EC.5 by changing the riskiness index from the CPRI to the SRI, where the number,

N , of samples is set as 200. We apply Algorithm 1 and the closed-form solution of Zhang et al.

(2021), respectively, to evaluate the SRI. In Algorithm 1, we set M = 103, ε= ϵ= 10−3. The total

computational time used for evaluating the SRI in each instance and the average over all instances

are shown in Figure EC.1.



ec10 e-companion to Zhang et al.: Effective exact solution framework for the VRPTW

r1
01

r1
0
2

r1
0
3

r1
0
4

r1
0
5

r1
06

r1
0
7

r1
0
8

r1
0
9

r1
1
0

r1
1
1

r1
1
2

c1
01

c1
02

c1
03

c1
04

c1
05

c1
06

c1
07

c1
08

c1
09

rc
10
1

rc
10
2

rc
10
3

rc
10
4

rc
10
5

rc
10
6

rc
10
7

rc
10
8

av
er
ag
e

0

5

10

15

20
co
m
p
u
ta
ti
on

a
l
ti
m
e
(s
ec
.)

Closed-form solution
Algorithm 1

Figure EC.1 The total computational time for evaluating the SRI

Unexpectedly, Algorithm 1, although being more generally applicable than the closed-form solu-

tion, requires a shorter computational time for all instances. Specifically, the average over all

instances is 0.43, approximately five times faster than that of the closed-form solution, 2.65 sec-

onds. This probably is caused by the closed-form solution necessitating a sorting procedure with

complexity O(N logN), which can be relatively time consuming.

EC.7. Implementation details
EC.7.1. Pricing algorithm

Let v≤ 0 be the dual variable associated with constraint (6d) of the LP relaxation of formulation

Fρ(Rρ), and consider the dual vectors–u, π, η and φ–introduced in Section 5.1.2. The pricing

problem under the set of samples, Ω, needs computing

min
r∈Rρ

{
ζr(ρ, t̃)−

∑
i∈Vc

airui−u0− crv−
∑

(i,j)∈A

bijr
∑

S∈SP :(i,j)∈δ+(S)

πS−

∑
(i,j)∈A

bijr
∑

S∈SC :(i,j)∈δ+(S)

ηS −
∑

C∈C:|V (Rr)∩C|≥2

φT

}
,

(EC.14)

where ζr(ρ, t̃) =
∑

i∈V (Rr)
ρ(ξi(Rr, t̃)) and function ρ(ξi(Rr, t̃)) is computed using Algorithm 1 pre-

sented in §3.3. The last three terms of the above expression account for the dual contributions

of the 2PIs, CIs and SR3Is, respectively. Problem (EC.14) is an ESPPRC and can be effectively

solved by a label-setting algorithm (Irnich and Desaulniers 2005) as follows:
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We designed a forward dynamic programming-based algorithm, where a label L represents a

partial path P starting at depot 0 and ending at vertex i ∈ V and is composed of the following

information commonly used in label-setting algorithms for VRPs:

• i: the last vertex in P .

• X: the set of vertices visited by P (also used to denote the sequence of vertices visited).

• c: the travel cost of P .

• c: the reduced cost of P .

• w: the cumulative load along P .

• τ(µ): the earliest time at which a service can start at vertex i under the mean travel time µ.

• H: the set of binary resources associated with the SR3Is in set C. For each SR3I inequality

associated with a subset T , we consider one binary integer resource κ :Rρ→{0,1}. T (κ) and φ(κ)

denote the vertex subset defining the SR3I inequality and the associated dual variable, respectively.

In addition, the following two components are specifically introduced to deal with the riskiness

index ρ(·):

• ζ: the cumulative riskiness index along P .

• {τ(ω)}ω∈Ω: the earliest time at which service can start at vertex i under the different samples

in set Ω.

The label extension rule for a label L= (i,X, c, c,w, τ(µ),H, ζ,{τ(ω)}ω∈Ω) is as follows. Let j be

a vertex in set Vc ∪ {n+ 1} \X such that w+ qj ≤Q, τ(µ) + µij ≤ lj and ζ + ρ(ξj(P
′, t̃))<+∞,

where ρ(ξj(P
′, t̃)) computes the riskiness index of path P ′ obtained by appending vertex j to the

partial path P . If j = n+1, then path P ′ corresponds to a complete route. Otherwise, a new label

L′ is created to append vertex j to path P as follows:

i(L′) = j, (EC.15a)

X(L′) =X(L)∪{j}, (EC.15b)

c(L′) = c(L)+ dij, (EC.15c)

c(L′) = c(L)+ ρ(ξj((X,j), t̃))−uj − dijv−πij −
∑

κ∈H s.t.
κ(L)=1, j∈T (κ)

φ(κ), (EC.15d)

w(L′) =w(L)+ qj, (EC.15e)

τ(µ)(L′) =max{ej, τ(µ)(L)+µi(L)j}, (EC.15f)

κ(L′) =

{
mod(κ(L)+ 1,2), if j ∈ T (κ)
κ(L), otherwise

, (EC.15g)

ζ(L′) = ζ(L)+ ρ(ξj((X,j), t̃)), (EC.15h)

τ(ω)(L′) =max{ej, τ(ω)(L)+ tωij},∀ω ∈Ω, (EC.15i)
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where πij =
∑

S∈SP :(i,j)∈δ+(S) πS +
∑

S∈SC :(i,j)∈δ+(S) ηS.

The algorithm starts with an initial label L= (0,∅,0,−u0,0,0,{0}κ∈H,0,{0}ω∈Ω).

To reduce the number of labels to extend, the dominance rule below is proposed to identify the

labels that can be safely discarded. This dominance rule extends that proposed for a deterministic

vrptw by Jepsen et al. (2008) to account for the riskiness index.

Dominance 1 Let L1 and L2 be two labels with i(L1) = i(L2). Label L1 dominates label L2 if

(i) X(L1)⊆X(L2),

(ii) w(L1)≤w(L2),

(iii) τ(µ)(L1)≤ τ(µ)(L2),

(iv) τ(ω)(L1)≤ τ(ω)(L2), ∀ω ∈Ω,

(v) c(L1)−
∑

κ∈H s.t.
κ(L1)=1,κ(L2)=0

φ(κ)≤ c(L2),

and at least one of the above inequalities is strict.

Conditions (i)–(iv) ensure that the feasible extensions of L1 are also feasible for L2. Inequality

(v) aims at considering all resources from which a common extension of L1 and L2 will result in

increasing the reduced cost of L1 without increasing that of L2. Thus, the inequality represents

the impossibility of the reduced cost of L1 exceeding that of L2. It follows that L2 can be safely

discarded as it will never produce paths better than those that can be produced by extending L1.

Note that Proposition 3 causes condition (iv) of Dominance 1 to dominate condition (iii). How-

ever, condition (iii) can accelerate the computation. In addition, based on Proposition 3 and the

infeasibility property, graph G can be reduced by removing arcs (i, j)∈A such that ei+µij > lj or

EP[max{ei + t̃ij, ej}]> lj.

Our implementation of the above label-setting algorithm also relies on a state-of-the-art algo-

rithm based on an ng-set based decremental state space relaxation (Martinelli et al. 2014) and

completion bounds (Baldacci et al. 2011). In particular, the completion bounds are computed by

disregarding the SR3Is and the computation of the riskiness indices. We omit the corresponding

details for the sake of brevity.

EC.7.2. Generating set of routes Rρ

Column or route enumeration-based methods have been shown to be particularly effective for

routing problems (Baldacci et al. 2008, Costa et al. 2019). To enumerate the set of routes Rρ at

Step 2 of the exact algorithm, we use two different enumeration strategies.

The first strategy is based on a simple adaptation of the label-setting algorithm used to compute

the dual solution (u,π,η,φ) (see §5.1.2) in Step 2 of the exact algorithm. More precisely, the
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algorithm is modified to generate the largest route set R̂= {r ∈R : cr ≤B− z}, where the reduced

cost of a route r ∈R is computed as

cr = cr−
∑
i∈Vc

airui−u0−
∑

(i,j)∈A

bijr
∑

S∈SP :(i,j)∈δ+(S)

πS−

∑
(i,j)∈A

bijr
∑

S∈SC :(i,j)∈δ+(S)

ηS −
∑

C∈C:|V (Rr)∩C|≥2

φT

}
,

(EC.16)

and the final route setRρ is computed asRρ = {r ∈ R̂ : ρ(ξi(Rr, t̃))<+∞,∀i∈ V (Rr)}. Specifically,

the set of routes R̂ is further reduced by (a posteriori) removing it from the set the routes that

are infeasible for the infeasibility property.

In the second strategy, the computations of the riskiness index and the infeasibility property are

embedded into a label-setting algorithm based on the algorithm used to solve formulation Fρ(Rρ)

(see §EC.7.1). In this case, the reduced cost computed using (EC.15d) is modified to

c(L′) = c(L)+ dij −uj −πij −
∑

κ∈H s.t.
κ(L)=1, j∈T (κ)

φ(κ). (EC.17)

In addition, Dominance 1 is modified as follows:

Dominance 2 Let L1 and L2 be two labels with i(L1) = i(L2). Label L1 dominates label L2 if

(i) X(L1) =X(L2),

(ii) τ(µ)(L1)≤ τ(µ)(L2),

(iii) τ(ω)(L1)≤ τ(ω)(L2), ∀ω ∈Ω,

(iv) c(L1)−
∑

κ∈H s.t.
κ(L1)=1,κ(L2)=0

φ(κ)≤ c(L2),

(v) c(L1)≤ c(L2).

It is worth noting that the two strategies also differ in the dynamic programming strategy

used to generate the labels. The first strategy relies on a bidirectional strategy, by which first,

forward and backward labels are computed and subsequently joined to form complete routes. In

the second strategy, although the infeasible labels are fathomed timely, the labels are generated in

a forward manner. The motivation is that when the riskiness index is accounted into the reduced

cost computation (as in the second strategy), the computation of the backward labels is difficult

owing to the computation of the riskiness index. Based on experiments aimed at selecting the best

strategy (see §6), we adopted the second strategy to perform the route enumeration. Finally, two

different routes visiting the same customers may have the same riskiness index, particularly in the

first option. To further reduce the number of routes generated, the following dominance rule is also

used:
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Table EC.5 Results of EXM under the CPRI on instances with 25 customers

Step 1 Step 2 Step 3

Name B z z∗ %gap %cost ttot %lb t |Rρ| t Method zheu nodes t

c101 200.87 7.36 7.36 0.00 95.24 0.92 95.24 0.59 1389 0.26 MIP - - 0.02

c102 199.82 7.19 7.19 0.00 95.24 3.67 95.24 1.26 8334 1.87 MIP - - 0.08
c103 199.82 0.86 0.86 0.00 97.04 5.32 95.24 1.95 2351 2.57 MIP - - 0.70

c104 196.25 0.00 0.00 0.00 99.16 13.96 95.24 2.19 18073 10.61 MIP - - 0.52

c105 200.87 0.00 0.00 0.00 95.24 1.29 95.24 0.87 2073 0.32 MIP - - 0.03
c106 200.87 17.67 17.67 0.00 95.24 1.03 95.24 0.60 1734 0.31 MIP - - 0.02

c107 200.87 0.00 0.00 0.00 98.62 1.51 95.24 0.73 4108 0.56 MIP - - 0.05

c108 200.87 0.00 0.00 0.00 95.24 2.10 95.24 1.21 2977 0.72 MIP - - 0.04
c109 200.87 0.00 0.00 0.00 95.68 3.72 95.24 1.49 1954 1.99 MIP - - 0.12

r101 647.96 40.83 40.83 0.00 99.77 0.83 95.24 0.47 294 0.17 MIP - - 0.18

r102 574.46 9.02 9.02 0.00 99.35 1.37 95.24 0.68 1501 0.49 MIP - - 0.14

r103 477.33 10.73 10.73 0.00 98.55 1.80 95.24 0.73 1689 0.58 MIP - - 0.38

r104 437.75 12.79 12.79 0.00 99.60 2.31 95.24 0.85 2246 0.80 MIP - - 0.59
r105 557.02 9.90 9.90 0.00 99.73 1.05 95.24 0.57 736 0.24 MIP - - 0.19

r106 488.67 18.76 18.76 0.00 99.39 2.87 95.24 1.42 2196 0.78 MIP - - 0.60

r107 445.52 14.16 14.16 0.00 98.76 2.96 95.24 1.07 2429 0.82 MIP - - 1.00
r108 417.17 6.61 6.61 0.00 98.50 6.48 95.24 1.93 4682 1.61 MIP - - 2.70

r109 463.37 10.97 10.97 0.00 98.54 1.22 95.24 0.62 1117 0.37 MIP - - 0.19

r110 466.31 1.86 1.86 0.00 98.73 5.22 92.17 1.74 7422 1.99 MIP - - 1.29
r111 450.24 5.58 5.58 0.00 99.66 2.76 95.24 1.33 2354 0.73 MIP - - 0.62

r112 412.65 2.17 2.17 0.00 99.14 8.21 95.24 3.52 4355 1.84 MIP - - 2.69

rc101 484.16 39.79 39.79 0.00 99.93 1.97 95.24 0.92 1422 0.41 MIP - - 0.59
rc102 369.39 155.57 155.57 0.00 99.60 2.31 95.24 0.74 1454 1.50 MIP - - 0.02

rc103 349.44 8.66 8.66 0.00 98.87 4.05 95.24 1.10 1316 2.84 MIP - - 0.02
rc104 321.93 8.91 8.91 0.00 99.90 14.48 95.24 1.41 7902 12.68 MIP - - 0.11

rc105 431.87 18.81 18.81 0.00 98.71 1.51 95.24 0.71 1495 0.64 MIP - - 0.11

rc106 362.78 4.94 4.94 0.00 98.13 1.54 95.24 0.82 869 0.67 MIP - - 0.01
rc107 313.22 0.54 0.54 0.00 99.20 2.99 95.24 0.99 957 1.94 MIP - - 0.01

rc108 309.23 1.82 1.82 0.00 99.86 7.87 95.24 1.46 832 6.36 MIP - - 0.01

Dominance 3 A route r1 ∈Rρ dominates a route r2 ∈Rρ if the following conditions are satisfied:

(i) V (Rr1)∩Vc = V (Rr2)∩Vc,

(ii) cr1 ≤ cr2,
(iii) ζr1(ρ, t̃)≤ ζr2(ρ, t̃).

EC.8. Additional computational results
EC.8.1. Detailed results of EXM under CPRI

This section presents the detailed results of the EXM based on the new CPRI obtained by solving

the benchmark instances.

Tables EC.5, EC.6 and EC.7 list the results obtained for the instances involving 25, 50 and

100 nodes, respectively. For each instance, the tables provide the name of the instance, value of

budget B, best lower bound obtained at the end of the exact method (“z”), CPRI of the optimal

solution or the CPRI of the best solution found (“z∗”), and percentage gap %gap with respect to

the optimal solution value, computed as 100× (z∗−z)/z∗. The %gap is equal to zero if the instance

is solved to optimality. The tables also list the percentage deviation, %cost, of the total routing

cost, c, computed as 100× c/B, and the total computing time in seconds of the EXM (“ttot”).

For Step 1, column %lb provides the percentage deviation of the initial lower bound, lb, computed
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Table EC.6 Results of EXM under the CPRI on instances with 50 customers

Step 1 Step 2 Step 3

Name B z z∗ %gap %cost ttot %lb t |Rρ| t Method zheu nodes t

c101 380.52 7.40 7.40 0.00 95.24 2.16 95.24 1.04 14081 0.75 MIP - - 0.12

c102 379.47 7.17 7.17 0.00 97.90 11.46 95.24 1.88 55706 7.10 MIP - - 1.02
c103 379.47 1.13 1.13 0.00 98.11 236.49 95.24 3.78 302842 214.16 iBPC inf 2 18.54

c104 375.90 0.00 - - - 14400.00 95.24 11.89 ∆max 480.24 BPC inf 10 13538.01

c105 380.52 0.00 0.00 0.00 97.03 4.88 95.24 1.41 32467 2.08 MIP - - 0.47
c106 380.52 18.68 18.68 0.00 95.66 22.53 95.24 1.44 44989 3.00 MIP - - 16.90

c107 380.52 0.00 0.00 0.00 97.81 4.66 95.24 1.44 25305 1.14 MIP - - 1.66

c108 380.52 0.00 0.00 0.00 96.11 34.78 95.24 2.52 35764 3.13 MIP - - 28.16
c109 380.52 0.00 0.00 0.00 99.47 45.83 95.24 4.26 101458 28.90 iBPC 0.00 18 12.66

r101 1096.20 50.64 50.64 0.00 99.89 2.14 95.24 1.27 5494 0.51 MIP - - 0.28

r102 954.45 53.57 53.57 0.00 99.99 29.43 95.24 1.18 60395 9.96 MIP - - 17.07

r103 811.54 46.67 46.67 0.00 99.90 177.83 95.14 5.19 307828 115.14 iBPC 114.53 95 57.50

r104 656.67 26.77 26.77 0.00 99.91 1256.01 95.24 12.76 1246194 684.67 iBPC inf 101 558.57
r105 944.26 8.26 8.26 0.00 99.98 9.41 95.96 3.07 20485 2.03 MIP - - 3.88

r106 832.65 14.15 14.15 0.00 99.86 133.81 94.77 2.69 166012 41.00 iBPC 66.22 202 90.12

r107 746.66 29.71 29.71 0.00 99.98 469.75 95.83 19.33 521649 254.09 iBPC inf 48 196.32
r108 648.59 4.86 - - - 14400.00 93.64 32.23 ∆max 783.95 BPC inf 2 13855.71

r109 826.14 7.98 7.98 0.00 99.87 117.57 94.76 9.26 193186 37.68 iBPC inf 55 70.62

r110 731.85 10.77 10.77 0.00 99.94 89.26 95.24 4.90 177707 44.72 iBPC inf 40 39.63
r111 742.56 6.17 6.17 0.00 99.82 323.40 95.24 12.46 487192 166.84 iBPC inf 101 144.09

r112 661.71 14.25 14.25 0.00 99.79 1252.27 95.46 113.08 1306765 658.62 iBPC inf 72 480.56

rc101 991.20 18.05 18.05 0.00 99.85 11.16 95.23 2.46 13217 1.56 MIP - - 6.74
rc102 863.62 58.50 58.50 0.00 99.45 104.85 95.16 5.14 59922 34.66 MIP - - 63.68

rc103 746.45 56.10 56.10 0.00 99.81 286.87 95.24 4.62 71738 93.47 MIP - - 187.09
rc104 573.09 18.77 18.77 0.00 99.39 220.35 95.73 3.20 28147 215.76 MIP - - 0.64

rc105 898.06 33.98 33.98 0.00 99.86 38.02 95.24 3.35 31201 10.34 MIP - - 23.61

rc106 759.36 196.67 196.67 0.00 97.95 30.93 95.24 4.25 13858 7.65 MIP - - 18.68
rc107 674.84 57.91 57.91 0.00 99.99 59.83 94.88 4.57 13598 38.87 MIP - - 15.82

rc108 628.00 51.56 51.56 0.00 99.94 144.59 95.24 8.39 15590 113.34 MIP - - 22.44

as 100× lb/B. For Step 2, column |Rρ| reports the cardinality of the set of routes generated by

the route enumeration phase; we report ∆max whenever |Rρ| ≥∆max. Concerning Step 3, column

“Method” indicates the method that is used in solving the instance: “MIP” (general MIP solver,

Step 3.a), “iBPC” (implicit BPC, Step 3.b), and “BPC” (BPC, Step 3.c). In addition, for Step

3, the tables tabulate the CPRI of the best solution found by the heuristic algorithm during the

BPC (for “iBPC” or “BPC”) (we report “-” if the upper bound is not computed and “inf” if the

heuristic fails to compute a valid upper bound). They also specify the number of nodes of the BPC

executed in Step 3.b or 3.c (“nodes”). Finally, for each step of the EXM, the tables report the

corresponding computing times (“t”).

EC.8.2. Effectiveness of the different EXM components

In this section, we describe the investigation of the effectiveness of the route enumeration step of

the EXM. More specifically, we compared the following three versions of the EXM: (i) with the

use of the bidirectional label-setting algorithm (see Strategy 1, §EC.7.2), (ii) with the use of the

forward label-setting algorithm (see Strategy 2), and (iii) without the use of the route enumeration

phase, wherein the EXM works as a pure BPC. The three versions of the EXM were tested on the

25 and 50 node instances.
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Table EC.7 Results of EXM under the CPRI on instances with 100 customers

Step 1 Step 2 Step 3

Name B z z∗ %gap %cost ttot %lb t |Rρ| t Method zheu nodes t

c101 868.66 12.01 12.01 0.00 99.29 14400.00 95.24 3.32 1048792 47.54 iBPC 293.25 401 14350.81

c102 868.66 2.85 - - - 14400.00 95.24 8.92 ∆max 542.80 BPC - 2 13814.17
c103 867.62 0.07 - - - 14400.00 95.24 17.76 ∆max 526.88 BPC - 2 13862.08

c104 864.04 0.00 - - - 14400.00 95.24 47.95 ∆max 499.83 BPC - 7 13235.56

c105 868.66 0.00 0.00 0.00 97.77 342.28 95.24 5.85 3069085 164.47 iBPC 0 3 171.94
c106 868.66 14.04 14.04 0.00 99.20 14396.47 95.24 5.96 2270867 174.89 iBPC - 212 14215.61

c107 868.66 0.00 0.00 0.00 99.54 919.60 95.24 7.87 7282608 440.07 iBPC 0 5 471.61

c108 868.66 0.00 - - - 14400.00 95.24 8.85 ∆max 485.36 BPC - 18 12401.99
c109 868.66 0.00 0.00 0.00 99.53 595.97 95.24 19.36 ∆max 576.14 BPC 0.00 1 0.45

r101 1719.59 197.97 197.97 0.00 99.98 212.38 93.73 5.73 689596 69.42 iBPC - 197 137.22

r102 1539.93 116.52 574.85 79.73 0.00 14400.00 93.27 6.48 ∆max 708.90 BPC 574.85 10 13657.27

r103 1269.13 84.20 799.80 89.47 0.00 14400.00 94.94 20.23 ∆max 674.26 BPC 799.8 3 13683.75

r104 1020.08 0.00 - - - 14400.00 95.27 850.59 ∆max 655.75 BPC - 1 12889.45
r105 1423.07 37.09 - - - 14400.00 95.03 32.22 ∆max 756.68 BPC - 15 13539.98

r106 1296.33 31.36 - - - 14400.00 95.12 62.21 ∆max 790.53 BPC - 4 13509.95

r107 1117.83 33.10 - - - 14400.00 94.76 74.76 ∆max 656.89 BPC - 1 13651.64
r108 978.91 0.00 - - - 14400.00 94.70 1126.61 ∆max 842.91 BPC - 1 12426.07

r109 1204.25 26.42 - - - 14400.00 94.94 70.46 ∆max 643.50 BPC - 3 13662.57

r110 1121.40 23.19 - - - 14400.00 95.12 146.27 ∆max 707.85 BPC - 1 13524.76
r111 1101.13 28.46 - - - 14400.00 94.88 149.37 ∆max 707.67 BPC - 1 13525.03

r112 996.03 0.00 - - - 14400.00 94.88 4651.92 ∆max 748.49 BPC - 1 9003.80

rc101 1700.79 107.90 107.90 0.00 99.99 1581.74 95.24 26.35 2184102 323.23 iBPC - 131 1232.14
rc102 1530.27 75.47 - - - 14400.00 95.23 98.88 ∆max 891.46 BPC - 6 13382.00

rc103 1320.90 55.64 - - - 14400.00 95.22 390.29 ∆max 812.11 BPC - 1 13205.63
rc104 1188.91 0.00 - - - 14400.00 94.97 1669.96 ∆max 708.54 BPC - 1 12016.88

rc105 1589.39 110.05 - - - 14400.00 95.24 35.25 ∆max 998.15 BPC - 6 13335.11

rc106 1441.34 47.50 - - - 14400.00 94.71 180.24 ∆max 991.72 BPC - 2 13187.63
rc107 1268.19 18.56 - - - 14400.00 95.24 101.83 ∆max 821.99 BPC - 1 13469.65

rc108 1169.91 0.00 - - - 14400.00 94.84 641.48 ∆max 789.03 BPC - 1 12965.04

Tables EC.8 and EC.9 summarize the results obtained by the different versions of the EXM,

where the notations of the different columns are as previously described and the last row of each

table provides the average results. Columns z and z∗ report the values of the lower bounds and

the solution values of Tables EC.5 and EC.6, respectively.

The results of the comparison noticeably show the advantage of using the route enumeration

phase in terms of the number of instances solved to optimality, either using Strategy 1 or 2. Indeed,

the pure BPC variant cannot solve to optimality two 25 node instances and almost all 50 node

instances. On the instances solved to optimality by the pure BPC, the other two variants require

considerably shorter computing times. From the comparison of the two strategies, expectedly, the

cardinalities of the corresponding sets of routes, Rρ, are similar; however, Strategy 2 (forward label

setting) is on average approximately three and nine times faster than Strategy 1 (bidirectional LS)

on the 25 and 50 node instances, respectively.

EC.8.3. Sensitivity analyses on budget B and on number N of samples

To investigate the impacts of the budget value, B, and the number, N , of samples, we considered

the 50 node instances solved by the EXM algorithm using different values of B and N .
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Table EC.8 Effectiveness of the route enumeration phase on the 25 customer instances

Bidirectional LS Forward LS Pure BPC

Name z z∗ |Rρ| tRE ttot |Rρ| tRE ttot z z∗ ttot

c101 7.36 7.36 1389 0.60 1.30 1389 0.25 0.92 7.36 7.36 252.84

c102 7.19 7.19 8334 15.41 16.96 8334 1.85 3.67 7.07 7.19 14400.00
c103 0.86 0.86 2351 7.84 10.35 2351 2.56 5.32 0.68 3.42 14400.00

c104 0.00 0.00 18073 45.58 49.12 18073 10.59 13.96 0.00 0.00 845.34

c105 0.00 0.00 2073 1.05 1.89 2073 0.32 1.29 0.00 0.00 0.12
c106 17.67 17.67 1734 0.71 1.40 1734 0.30 1.03 17.67 17.67 218.38

c107 0.00 0.00 4108 1.98 3.00 4108 0.55 1.51 0.00 0.00 0.13

c108 0.00 0.00 2977 4.19 5.69 2977 0.71 2.10 0.00 0.00 0.15
c109 0.00 0.00 1954 5.33 6.98 1954 1.98 3.72 0.00 0.00 0.14

r101 40.83 40.83 294 0.33 0.96 294 0.16 0.83 40.83 40.83 654.85

r102 9.02 9.02 1501 1.35 2.40 1501 0.48 1.37 9.02 9.02 609.04

r103 10.73 10.73 1689 1.58 2.77 1689 0.58 1.80 10.73 10.73 1323.28

r104 12.79 12.79 2246 2.31 3.88 2246 0.79 2.31 12.79 12.79 7074.47
r105 9.90 9.90 736 0.50 1.27 736 0.24 1.05 9.90 9.90 305.71

r106 18.76 18.76 2193 2.16 4.36 2196 0.77 2.87 18.76 18.76 1128.18

r107 14.16 14.16 2429 2.56 4.43 2429 0.81 2.96 14.16 14.16 4271.98
r108 6.61 6.61 4682 5.75 10.85 4682 1.60 6.48 6.61 6.61 3098.87

r109 10.97 10.97 1117 0.86 1.82 1117 0.36 1.22 10.97 10.97 2006.67

r110 1.86 1.86 7422 7.46 10.77 7422 1.98 5.22 1.86 1.86 1591.12
r111 5.58 5.58 2354 2.23 4.33 2354 0.73 2.76 5.58 5.58 1235.67

r112 2.17 2.17 4355 5.00 11.81 4355 1.82 8.21 2.17 2.17 4771.95

rc101 39.79 39.79 1422 1.05 2.50 1422 0.40 1.97 39.79 39.79 454.15
rc102 155.57 155.57 1454 3.59 4.42 1454 1.49 2.31 155.57 155.57 4284.12

rc103 8.66 8.66 1316 8.12 9.38 1316 2.83 4.05 8.66 8.66 2269.30
rc104 8.91 8.91 7901 21.58 23.39 7902 12.67 14.48 8.91 8.91 12198.88

rc105 18.81 18.81 1495 2.09 3.01 1495 0.63 1.51 18.81 18.81 1617.63

rc106 4.94 4.94 869 2.48 3.36 869 0.66 1.54 4.94 4.94 158.16
rc107 0.54 0.54 957 4.82 5.85 957 1.94 2.99 0.54 0.54 2329.60

rc108 1.82 1.82 832 6.40 7.90 832 6.35 7.87 1.82 1.82 13648.48

14.33 14.33 3112 5.69 7.45 3112 1.94 3.70 14.32 14.42 3281.01

More specifically, for the budget value, B, we compared the results of the default setting (i.e.,

B = 1.05× opt, where opt is the optimal cost of the deterministic vrptw) with two alternatives

values, B = 1.01×opt and B = 1.03×opt. For the number, N , of samples, we compared the default

value of N = 200 adopted in our experiments with two alternative values N = 500 and N = 1000.

Tables EC.10 and EC.11 summarize the obtained results; the notations of the different columns

are the same as in the previous tables, and the last line of each table reports the average values.

The results reported in Table EC.10 show that the EXM is particularly sensitive to the value

of budget, B, which controls the quality of the final solution in terms of the total routing cost.

Therefore, it is particularly relevant for a decision maker interested in the analysis of the trade-off

between the service quality, addressed by the CPRI in the EXM, and the cost. Managerially, a low

cost budget B results in a high (or at least equal) value z∗ of the CPRI, which represents a tradeoff

between the cost and the service level, consistent with our expectation. Computationally, a low

value of B implies a high efficiency of the EXM, as displayed by the average computing times. The

main cause of this is that the cardinality of the set of routes, Rρ, is significantly reduced for low
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Table EC.9 Effectiveness of the route enumeration phase on the 50 customer instances

Bidirectional LS Forward LS Pure BPC

Name z z∗ |Rρ| tRE ttot |Rρ| tRE ttot z z∗ ttot

c101 7.40 7.40 14081 2.32 3.65 14081 0.74 2.16 7.40 7.40 353.44

c102 7.17 7.17 55706 88.68 93.16 55706 7.08 11.46 6.79 7.17 14400.00
c103 1.13 1.13 302801 3421.4 3441.55 302842 214.15 236.49 0.73 - 14400.00

c104 0.00 - ∆max 56.04 14400.00 ∆max 480.19 14400.00 0.00 - 14400.00

c105 0.00 0.00 32465 14.92 18.31 32467 2.06 4.88 0.00 0.00 0.24
c106 18.68 18.68 44989 17.6 36.87 44989 2.99 22.53 18.68 18.68 439.11

c107 0.00 0.00 25305 11.11 14.00 25305 1.13 4.66 0.00 0.00 0.33

c108 0.00 0.00 35764 43.29 76.70 35764 3.11 34.78 0.00 0.00 369.46
c109 0.00 0.00 101461 197.58 210.73 101458 28.87 45.83 0.00 0.00 0.31

r101 50.64 50.64 5494 2.05 3.89 5494 0.50 2.14 50.64 50.64 515.71

r102 53.57 53.57 60348 67.78 80.77 60395 9.95 29.43 53.57 53.57 10679.34

r103 46.67 46.67 307716 662.6 725.22 307828 115.12 177.83 46.39 111.29 14400.00

r104 26.77 26.77 1245420 3250.51 4592.46 1246194 684.65 1256.01 24.88 647.81 14400.00
r105 8.26 8.26 20485 11.54 18.73 20485 2.02 9.41 8.26 8.26 1381.75

r106 14.15 14.15 165937 241.64 310.65 166012 40.99 133.81 13.13 66.17 14400.00

r107 29.71 29.71 521655 1142.62 1430.55 521649 254.07 469.75 29.59 - 14400.00
r108 4.86 - ∆max 14774.4 14400.00 ∆max 783.77 14400.00 4.86 - 14400.00

r109 7.98 7.98 193088 182.33 263.52 193186 37.66 117.57 7.98 7.98 13165.90

r110 10.77 10.77 177666 209.64 251.80 177707 44.70 89.26 10.76 - 14400.00
r111 6.17 6.17 487137 814.49 954.76 487192 166.82 323.40 5.73 - 14400.00

r112 14.25 14.25 1306923 2941.3 3444.82 1306765 658.59 1252.27 9.76 - 14400.00

rc101 18.05 18.05 13216 10.37 19.10 13217 1.55 11.16 18.05 18.05 1810.30
rc102 58.50 58.50 59920 217.37 282.84 59922 34.64 104.85 53.76 - 14400.00

rc103 56.10 56.10 71742 569.75 1322.45 71738 93.46 286.87 54.37 - 14400.00
rc104 18.77 18.77 28151 785.39 790.33 28147 215.75 220.35 0.00 - 14400.00

rc105 33.98 33.98 31199 69.36 95.37 31201 10.32 38.02 33.98 33.98 6713.28

rc106 196.67 196.67 13861 57.66 79.83 13858 7.64 30.93 160.13 - 14400.00
rc107 57.91 57.91 13596 276.05 298.66 13598 38.86 59.83 57.45 - 14400.00

rc108 51.56 51.56 15591 504.88 542.49 15590 113.33 144.59 0.00 - 14400.00

27.58 29.44 198212 1056.71 1662.18 198251 139.82 1169.66 23.34 64.44 9663.07

B values. Nevertheless, the problem can become infeasible as shown by the infeasible instances

(marked with “inf” in the table), and therefore a trade-off must be identified.

Table EC.11 lists the results obtained by varying the sample size, concerning the instances for

which the EXM can compute the optimal solution for each different sample size. The increase in

the number, N , of samples has a marginal effect on the number of routes generated during the

enumeration phase, as shown by the average cardinalities of sets Rρ under the different sample

sizes. The number of samples directly impacts the complexity of the pricing problem, because the

computation of the CPRI and the dominance rules depend on the number of samples. Indeed,

the average computing time under the 1000 samples case is approximately thrice that in the 200

samples case, where most of the additional time is spent by the route enumeration phase (see

column tRE).

To better understand the impact of the number, N , of samples on the CPRI, we additionally

perform out-of-sample evaluation using another 10,000 independent samples and report the results

(“ẑ”). As shown, with the increase in the number of samples, the in-sample z∗ increases and the out-

of-sample ẑ decreases, suggesting that the optimizer’s curse (or overfitting effect) is alleviated and
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Table EC.10 Sensitivity analysis on the budget B

Name
B = 1.01× opt B = 1.03× opt B = 1.05× opt

z∗ %gap |Rρ| tRE ttot z∗ %gap |Rρ| tRE ttot z∗ %gap |Rρ| tRE ttot

c101 7.40 0.00 1050 0.20 1.29 7.40 0.00 5923 0.48 1.81 7.40 0.00 14081 0.74 2.16
c102 7.35 0.00 1807 0.33 2.28 7.17 0.00 13932 1.72 4.10 7.17 0.00 55706 7.08 11.46
c103 1.30 0.00 2235 24.44 27.57 1.13 0.00 51247 67.87 73.13 1.13 0.00 302842 214.15 236.49
c104 0.00 0.00 1068 129.76 142.27 0.00 0.00 ∆max 985.28 2111.93 - - ∆max 480.19 14400.00
c105 0.00 0.00 1529 0.22 1.58 0.00 0.00 10146 0.71 2.50 0.00 0.00 32467 2.06 4.88
c106 18.68 0.00 1352 0.19 1.65 18.68 0.00 12930 0.72 2.37 18.68 0.00 44989 2.99 22.53
c107 0.00 0.00 907 0.18 1.69 0.00 0.00 8661 0.62 2.26 0.00 0.00 25305 1.13 4.66
c108 0.00 0.00 297 0.20 2.72 0.00 0.00 5549 0.79 3.39 0.00 0.00 35764 3.11 34.78
c109 0.00 0.00 620 0.57 5.83 0.00 0.00 14494 4.00 9.35 0.00 0.00 101458 28.87 45.83
r101 inf 0.00 574 0.19 1.77 82.75 0.00 2758 0.34 2.21 50.64 0.00 5494 0.50 2.14
r102 inf 0.00 1164 0.31 1.67 78.63 0.00 13155 2.33 5.12 53.57 0.00 60395 9.95 29.43
r103 93.84 0.00 3347 0.83 6.17 70.33 0.00 57111 16.61 61.33 46.67 0.00 307828 115.12 177.83
r104 58.55 0.00 4114 2.69 16.85 42.74 0.00 166902 58.85 136.68 26.77 0.00 1246194 684.65 1256.01
r105 inf 0.00 121 0.29 4.26 161.59 0.00 4407 1.07 8.24 8.26 0.00 20485 2.02 9.41
r106 95.75 0.00 4579 1.02 5.40 23.05 0.00 35871 5.60 24.27 14.15 0.00 166012 40.99 133.81
r107 187.96 0.00 740 2.51 21.19 100.19 0.00 60509 28.20 121.78 29.71 0.00 521649 254.07 469.75
r108 51.73 0.00 165900 83.78 290.03 13.88 0.00 1721109 1001.27 1858.30 - - ∆max 783.77 14400.00
r109 32.51 0.00 4530 1.37 9.80 15.87 0.00 47980 9.39 47.28 7.98 0.00 193186 37.66 117.57
r110 inf 0.00 1169 0.34 3.79 55.16 0.00 26502 4.76 102.47 10.77 0.00 177707 44.70 89.26
r111 inf 0.00 2376 2.03 15.60 16.89 0.00 64590 19.81 48.48 6.17 0.00 487192 166.82 323.40
r112 109.36 0.00 3059 22.80 133.74 41.86 0.00 164109 128.91 380.76 14.25 0.00 1306765 658.59 1252.27
rc101 inf 0.00 2234 0.61 4.83 48.32 0.00 9664 1.21 13.12 18.05 0.00 13217 1.55 11.16
rc102 127.85 0.00 2756 1.05 6.84 59.02 0.00 23414 11.32 38.87 58.50 0.00 59922 34.64 104.85
rc103 164.38 0.00 1665 3.05 7.98 82.94 0.00 15986 28.67 62.08 56.10 0.00 71738 93.46 286.87
rc104 47.38 0.00 210 29.59 32.62 20.96 0.00 4747 80.33 83.41 18.77 0.00 28147 215.75 220.35
rc105 112.08 0.00 2138 0.56 4.07 51.39 0.00 14319 3.69 23.86 33.98 0.00 31201 10.32 38.02
rc106 inf 0.00 1048 0.53 4.26 196.67 0.00 5874 4.27 14.49 196.67 0.00 13858 7.64 30.93
rc107 453.84 0.00 639 8.21 12.41 87.92 0.00 3735 21.71 29.05 57.91 0.00 13598 38.86 59.83
rc108 inf 0.00 393 11.65 19.87 64.69 0.00 3966 38.91 47.81 51.56 0.00 15590 113.33 144.59

0.00 7366 11.36 27.24 0.00 89734 85.71 143.51 198251 139.82 1169.66

Table EC.11 Sensitivity analysis on the sample size

Name
N = 200 N = 500 N = 1000

z∗ ẑ Rρ tRE ttot z∗ ẑ Rρ tRE ttot z∗ ẑ Rρ tRE ttot

c101 7.40 8.94 14081 0.74 2.16 7.29 8.94 14464 1.30 3.33 8.28 8.94 16722 3.51 5.55
c102 7.17 6.95 55706 7.08 11.46 6.40 6.95 73970 35.93 41.41 6.77 6.95 105335 114.56 121.75
c103 1.13 1.04 302842 214.15 236.49 1.06 1.04 145297 136.51 149.06 1.02 1.04 189254 332.34 346.60
c105 0.00 0.00 32467 2.06 4.88 0.00 0.00 32512 2.62 4.75 0.00 0.00 32485 6.52 8.79
c106 18.68 18.30 44989 2.99 22.53 18.03 18.30 28865 2.38 5.04 17.96 18.30 14431 3.48 5.70
c107 0.00 0.22 25305 1.13 4.66 0.00 0.22 36254 2.90 5.99 0.00 0.22 36253 8.92 13.19
c108 0.00 0.24 35764 3.11 34.78 0.00 0.24 81015 10.63 26.59 0.00 0.00 52747 23.88 60.64
c109 0.00 0.00 101458 28.87 45.83 0.00 0.00 96973 61.21 137.68 0.00 0.00 91674 133.08 277.19
r101 50.64 50.39 5494 0.50 2.14 51.27 50.39 5168 0.98 2.43 51.04 50.39 5384 3.02 5.53
r102 53.57 58.38 60395 9.95 29.43 55.36 58.38 70598 34.25 50.91 56.05 56.73 69672 76.49 93.91
r103 46.67 55.61 307828 115.12 177.83 50.62 48.19 273568 261.11 319.45 48.19 47.36 251828 527.22 590.13
r105 8.26 11.24 20485 2.02 9.41 9.35 9.76 19709 5.57 12.65 9.64 9.76 19707 10.12 16.27
r106 14.15 22.82 166012 40.99 133.81 16.67 21.01 164509 86.94 166.92 17.17 18.85 177959 220.93 274.00
r107 29.71 45.59 521649 254.07 469.75 29.65 35.20 558209 615.04 861.98 33.74 35.20 555116 1350.30 1680.39
r109 7.98 16.83 193186 37.66 117.57 11.31 14.02 179720 76.93 157.81 11.93 12.54 205671 194.44 278.04
r110 10.77 13.87 177707 44.70 89.26 13.00 13.87 170206 101.19 153.57 14.76 13.87 163295 221.68 269.52
r111 6.17 10.51 487192 166.82 323.40 7.74 13.14 504275 406.71 543.18 7.94 10.51 558623 987.94 1125.87
rc101 18.05 17.55 13217 1.55 11.16 17.59 17.55 13476 3.17 9.27 16.89 17.55 13281 8.88 16.57
rc102 58.50 56.51 59922 34.64 104.85 53.68 56.51 48992 39.61 81.27 54.84 56.51 50885 169.39 230.88
rc103 56.10 55.62 71738 93.46 286.87 54.55 56.99 67621 162.59 559.84 55.05 55.62 64272 480.43 927.92
rc104 18.77 23.91 28147 215.75 220.35 19.94 23.62 24300 378.50 381.76 20.72 23.52 19307 773.70 777.56
rc105 33.98 37.05 31201 10.32 38.02 41.94 37.05 32338 17.61 110.47 41.59 37.05 35297 66.94 140.83
rc106 196.67 197.85 13858 7.64 30.93 180.58 197.85 14391 14.53 31.63 176.41 198.09 12484 38.60 59.48
rc107 57.91 61.90 13598 38.86 59.83 61.69 61.90 22104 82.78 100.26 63.95 61.90 31372 281.20 297.11
rc108 51.56 51.16 15590 113.33 144.59 51.04 52.44 13675 218.52 239.01 50.70 51.16 30050 573.68 596.23

30.15 32.90 111993 57.90 104.48 30.35 32.14 107688 110.38 166.25 30.59 31.68 112124 264.45 328.79

the accuracy is improved, respectively. Although the results show the benefit of using more samples,

the improvement is marginal and associated with the consequence of increased computational

burden. Thus, a sample size of 200 may suffice for many real-world applications.
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