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1 Introduction

Many issues encountered today in various scientific areas often have several contradictory
objectives for which the design of optimal strategies is a challenge for decision-making.
These problems, known as multicriteria or multiobjective optimization problems (MOP),
arise in the field of vector optimization. Their particular difficulty is the fact that the
order used for preference is generally not total. In this case, there will be no single
optimal value, but a set of efficient values called the Pareto front. These solutions first
introduced by Pareto as being non-dominated points, are incomparable and are always at
the forefront of the feasible image set. Note also that the Pareto front may be infinite or
unbounded. Considering further that each Pareto solution is worth another and that none
can represent all the others, it becomes important to determine all these solutions or to
find good approximations of the diverse regions that well represent the Pareto front.

In this perspective, a consistent way to accomplish this task is to treat the initial MOP
as it is, without introducing artificial scalarization parameters, nor other random variables
that may be sensitive to the original problem. This idea was first initiated by Mukai [26]
in 1980, who suggested a set of protocols for computing a multiobjective descent direction
(i.e., a descent direction common to all the criteria). There has been proposed several
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algorithms based on different types of finding-direction subproblems inspired from classical
methods of scalar optimization. Their global convergence to Pareto critical accumulation
points under line search conditions of the Armijo type has been also proved. However, this
work remained unknown until the publication of the paper by Fliege and Svaiter [18] in
2000, who distinguished the unconstrained case from the constrained case by presenting the
Cauchy method and the Zoutendijk method separately. Then, a series of works followed,
e.g., Newton’s method [17], projected gradient method [11], Zoutendijk’s improved method
[25], Wolfe’s reduced gradient method [14] and others (see references given therein). Global
convergence of these methods has been obtained in the sense of subsequence, and some of
them were proved to be fully convergent in the sense of the whole sequence under suitable
assumptions.

The reduced gradient method for multicriteria optimization was first introduced and
called reduced Jacobian method (in brief, RJM) by El Maghri and Elboulge [14] (see
also [13]). In summary, RJM extends the reduced gradient method (RGM) of Wolfe [36] for
linearly constrained single-objective programs without scalarizing the MOP. As in RGM,
the constrained MOP is reduced to an unconstrained one depending only on nonbasic
variables. This allowed us to easily compute multiobjective reduced descent directions by
introducing a simple finding-direction subproblem. As this kind of scheme has only global
convergence, we further investigate in order to obtain better convergence properties.

In fact, in this paper we propose a fully convergent reduced Jacobian method, in brief
FC-RJM, which is a variant RJM that brings precisely a change to the objective functional
of the finding-direction subproblem. We first prove that the new scheme is still globally
convergent in the sense of accumulation points, and show in case of quasiconvex criteria,
that this convergence becomes full in the sense of the entire sequence, provided that the
number of basis changes is finite. This last condition reveals to be not only sufficient but
also necessary whenever the Wolfe’s criterion is applied, that is, the basis selection strategy
favors the largest variables to enter into the basis at each iteration. Our new variant
recovers an earlier improved reduced gradient method by Wang [35] for single-objective
programs (see also [34]). As can be seen in the digital experiences section, FC-RJM gives
good performance on a sample of constrained MOPs, compared to RJM [14], W-RGM [14]
(classical weighting method of scalarization by RGM) and NSGA-II [10] (Nondominated
sorting genetic algorithm).

2 RJM outline

Let F : R® — R” be given by F(z) = (fi(z),..., fr(x)) a C! mapping on a standard
polyhedron S = {x € R" : Az =b, = > 0}, where b € R™ and A € R"™*™ a matrix of full
rank m < n.

A point z* € S is said to be locally weakly efficient or weak Pareto optimum for the
following multicriteria optimization problems:

(MOP) NIE%I F(z)

iff, for a certain neighbourhood N (z*) of z*, there is no other x € S N AN (z*) such that
F(z) < F(z*), or equivalently, fj(z) < f;j(z*) for j = 1--r. From the first-order necessary
efficiency (Pareto optimality) condition, such a point x* € S must satisfy the following
Pareto KKT-stationarity system:

JE ()TN + ATv* —u* =0,
u* - x* =0,

(KKT) {



for some (A*,u*,v*) € R’ \ {0} x R? x R™, where JF(z*) = (Vfi(z*),...,Vfr(a*)) is
the Jacobian matrix of F at 2*, JF(z*)T means the transpose of the matrix JF (z*) and
the symbol “” stands for the usual inner product.

Any feasible point solution to the previous system is called Pareto KKT-stationary or
Pareto critical for (MOP), and (X\*,u*,v*) are the well-known Lagrange multipliers.

Our study in this paper is to find all the Pareto critical points associated to (MOP).
This will include the weakly efficient solutions, in particular, the efficient solutions and
the properly efficient solutions (see, e.g., [14] for more details).

To this end, we will use Wolfe’s reduction strategy. Following this strategy, the matrix

A is partitioned to A = [Ap An] so that the submatrix Ap is invertible (since it is
assumed that A is of full rank). The subset B C {1,...,n} is called a basis of A, and
obviously N = {1,...,n}\B. Then, basic variables xp = (z;);ep and nonbasic variables

xn = (x;)ien are selected in such a way that z = (zp,zx) > 0 and the system Az = b
amounts to xp = Aglb — AglANJ:N. On te other hand, the vector cost F' reduces to
H(zyn) = F(Ag'b— Az Ayan, 2y ). The so-called reduced Jacobian matriz of F is in fact
the Jacobian matrix JH (zx) which obviously is given by

UN(.’L‘) = JFN(.’L‘) — JFB(.’L‘)AE}AN,

where JFy(z) = %(m) (resp. JFp = 8%;(:1;)) is the Jacobian matrix of F' with respect

to the nonbasic vector zx (resp. the basic vector zp).

Given a nonbasic vector dy and a basic vector dg = —AglANdN, the vector d =
(dp,dn) satisfies Ad = 0, and by the partition JF(z) = [JFp(x) JFn(z)], the matrix
JF(x) also satisfies :

JF(x)d =Un(x)dy. (1)

A nonbasic vector dy € R"™™ is called a multiobjective reduced descent direction of F
at x € S, if it satisfies:

Unv(z)dy <0 and d; >0, Vi e I(z) NN, (2)

where I(z) = {i € {1,...,n} : x; = 0} is the index set of active variables of z. Note that
dy is not other than a feasible multiobjective descent direction of the reduced cost H at
xn (see [14] for more details about feasible multiobjective descent directions).

Let us recall that a feasible point x is said to be nondegenerate, if we can select a
nondegenerate basis for x, i.e., there exists a basis B such that xp > 0. The feasible
polyhedron S is in turn called nondegenerate, if any x € S is nondegenerate.

The following result is a consequence of [14, Theorem 2.1] that establishes a geometric
characterization of the Pareto KKT-stationarity in terms of reduced directions.

Theorem 2.1 A nondegenerate point x € S is Pareto KKT-stationary for (MOP), iff
there is mo multiobjective reduced descent direction of F at .

The descent RJM scheme, as stated in its simple form in [14], consists to take at x € S:
Vi€ N,

_ { —.Z‘i(UN(l‘)T)\(l‘))i if (UN(.CL‘)T)\(QJ))Z. >0, 3)

— (UN(ac)T)\(:U))i else,
such that

ANz) € ar;(\ger%m % ZEZN L(UN(;E)T)\)JQ_ + x; UUN(:L")T)\)iJ i,



4 M. EL MAGHRI AND Y. ELBOULQE

where A = {(A1,..., ) € RL @ 375 A\ =1}, la)+ = max{0,a} is the positive part of
the scalar @ and |a]_— = max{0, —a} is its negative part.

For r = 1, we retrieve the well-known continuous scheme of Wolfe for single-objective
programs (see, e.g., [2] or [22]) which may be given under the simpler compact form :

di = ()| _ —x; [ui(x)] (4)

where u;(x) stands for the ith component of the reduced gradient of the objective at x.

There has been shown that the vector dy given by (3) possesses multiobjective descent
properties: if dy # 0, then it is a multiobjective reduced descent direction of F' at x;
otherwise, x is Pareto KKT-stationary for (MOP).

Algorithm RJM:

1. Choose a nondegenerate point z = (zp,zy) € S and fix an Armijo’s constant
B €]0,1].

2. Compute a multiobjective reduced descent direction dy for F' at x according to (3).

3. If ||dn|| = 0, then STOP: the current point x is Pareto KKT-stationary for (MOP);
else, form the direction d = (dp,dy) with dp = —AglANdN, and choose a steplength
te }O,ﬂ moving along d, that satisfies:

1 1 1
t= max {2p : Flx+ 2—pd) < F(z)+ szUN(x)dN} ,

where t =1if d >0, and, t = min{—% cdi <0, 0=1,... ,n} otherwise.
4. Update with x := x + td and change the basis B in case of degeneracy.

Remark 2.1 In this procedure, the bound ¢ ensures the positivity of the new iterate when
d # 0, and, the nondegeneracy assumption ensures that ¢ > 0, so that, |0, ] is nonempty.
If it happens that t = ¢ = —% for some ¢ € B, then the new iterate will be degenerate and
a basis change procedure is necessary in this case; otherwise, nondegeneracy is preserved
(see [14, Lemma 4.1]). On the other hand, the existence of the steplength ¢ €]0,%] in Step
3 is guaranteed according to the following extended Armijo property for vector mappings
(see, e.g., [26, Proposition 6] or [18, Lemma 4]):

3ty >0, Vte]0,ts, F(z+td) < F(zx)+ ftJF(z)d, (5)

whenever d satisfies JF(z)d < 0. Let us recall, by (1), that JF(x)d = Un(z)dn.

The RJM scheme as defined above is however only globally convergent, i.e., every
accumulation point of the sequence produced by the algorithm is Pareto KKT-stationary.
As said in the introduction, we aim to extend this convergence to the entire sequence
to obtain the so-called full convergence property. In the next section, we will see that
modifying the reduced descent scheme will lead to a variant of RJM with the desired

property.



3 The FC-RJM variant

Consider, for x € S, the following scalar optimization subproblem:
. _ 1 T 2 T
(P) 1}\/161[{1 f\z) = 3 (ezN sz — (Un(z) )\)iJ+> +an - (Un(z)"A).

It is obvious that (P,) is convex continuously differentiable and always has an optimal
solution \(z). Moreover, it is easy to verify that the gradient of the functional f(.,z) is
given by

Vaf(\ z) = =Un(x)dn(\, z),

where

Sn(h ) = Qx - (UN(x)T)\)iJ+ - xi)ieN.

The following lemma characterizing the solutions of (P,) will be useful not only for
proving the descent properties but also for the convergence analysis.

Lemma 3.1 \(z) € A is optimal for (Py), iff
(UN(m)dN()\(x),x)) A< (UN(x)(SN(/\(x), x)) AMz) (YA€ A),
or equivalently,
Un(2)dn (A(z), 2) < [(UN(x)aN(A(x), x)) : A(z)}e, e=(1,...,1) €R",
Proof By the minimum principle applied to the differentiable convex program (P,),
Mz) € argmin(P,) &  Vaf(A@),z)  (A—A@) >0  (YAE€A).

So the first inequality of the lemma follows straightforwardly using the expression of
Vi f()\(x),a:). The second inequality follows necessarily by taking successively A = e’
(j = 1--7), where €’ is the jth vector of the canonical basis of R”, while sufficiency follows
easily using the fact that A >0 and A-e = 1. g

The descent FC-RJM scheme consists to take, at = € S, dy = dn(A(z),x), where
A(z) € argmin(P;), so that: Vi € N,

_z if (Un(z)"Ax)), > x4,

o= { — (Un(z)"A(x)), else. ©)

The following descent properties hold.

Proposition 3.1 Let the nonbasic vector dy be given by (6). Then,
(i) Un(2)dy < —||ldy||*e, where e = (1,...,1) € R".

(ii) dy # 0= dn is a multiobjective reduced descent direction of F at x.
If furthermore xg > 0 (i.e., x is nondegenerate) with B = {1,...,n} \ N, then z is
not Pareto KKT-stationary for (MOP).

(iii) dy = 0 = x is Pareto KK T-stationary for (MOP).
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Proof (i) According to the second inequality of Lemma 3.1 and the very definition of dy,
it suffices to prove that

(Un(@)on (M) ) - Ma) < = ]
Indeed, if we denote by I = {ieN : (UN(ac)T)\(:E))i > x;}, then by virtue of (6),

(Un@in(A@),2)) - Mz) = dy - (Un()TA@))
= — Y (Un@) A2),— X (Un(@)TA())]

iel iEN\T
< —Yal- ¥ (Un@)TA@);
iel ieN\I
= —lan|?.

(ii) The first part of this assertion follows straightforwardly from the assertion (i) and the
fact that, for i € I(z) NN, d; = 6;(A(z),x) = {— (UN(x)T)\(x))iJ > 0. The second part

follows from Theorem 2.1.

(iii) Suppose that dy = 0 and put u} := Un(x)TA(x). Then, by (6), it follows that

uy >0 and uy-zy =0.

Clearly, for \* := A(z), u* := (0,uy) and v* = —(A5")TJFp(z)T)\*, it holds that
A e R\ {0}, u* € RY, u* = JF(z)TX* + ATv* and v* - = 0, which express the Pareto
KKT-stationarity for (MOP). O

In the scalar case (r = 1), the new FC-RJM scheme (6) coincides with the reduced
gradient scheme by Wang [35]: Vi € N, d; = —u; if u;(z) > x;, d; = —u;(z) otherwise,
where u;(x) is the ith component of the reduced gradient of the objective. Note that his
scheme may also be rewritten under the compact form:

Algorithm FC-RJM:

1. Choose a nondegenerate point z = (xp,xy) € S and fix an Armijo’s constant
B €l0,1[.

2. Compute a multiobjective reduced descent direction dy for F' at x according to (6).

3. If ||dn]| = 0, then STOP: the current point x is Pareto KKT-stationary for (M OP);
else, form the direction d = (dp, dy) with dp = —AglANdN, and choose a steplength
te }O,ﬂ moving along d, that satisfies:

1 1 1
t= 111?13\}]{{21) : Flx+ prd) < F(x) +B2PUN(:E)dN},

where t =1if dg > 0, and, t = min{—% 1 d; <0, 1€ B} otherwise.

4. Update with x := z + td and change the basis B in case of degeneracy.



Remark 3.1 1t is worth noting that in this procedure and contrarily to the RJM scheme,
the positivity bound ¢ does not require 7« € N, which is considerable for computational
purpose. Indeed, according to the new scheme (6), one has that for each i € N such that
d; <0,

x; — tx; if (Un(x)"A(x)); > i,

z; — t (Un(2)TA\(z)) else.

7

€Ty +tdi =

Since in the second case, (UN(x)T)\(x))i > 0 because d; < 0, it is clear that x; +td; > 0
for all i € N and ¢ €]0,1].

4 Convergence analysis

From now one, we will assume that the sequence produced by the FC-RJM algorithm is
infinite, since otherwise, according to Proposition 3.1(iii), the algorithm will stop after a
finite number of iterations at a Pareto KKT-stationary point.

We shall also consider the well-known basis property hypothesis which guarantees
preservation of nondegeneracy at any limit point non Pareto KKT-stationary:

¥ — z* non Pareto KKT-stationary,

ke KCN

1B basis, Vk € K, x% > 0.

(H) — 25 > 0.

The hypothesis above was already used by many authors for the convergence analysis of
several RGM algorithms. An example given in [24] shows that this hypothesis is essential.
However, it has been also established that using some special basis selection procedures
like the Wolfe’s criterion, namely, the strategy that favors the largest variables to enter into
the basis at each iteration, the convergence of RGM then does not require this hypothesis
(see, e.g., algorithms proposed in [2,22]). In particular, Smeers [30] proposed a basis
selection procedure that guarantees the result of (H). Also in [37], a pivotal operation
for basis changes was performed at each iteration ensuring in somewhat the same result.
Of course, these latter procedures are in counterpart expensive from the point of view of
computational costs.

4.1 Global convergence

The following theorem gives a global convergence result. Its proof closely follows the
convergence lines of [14, Theorem 4.1], but let us take this opportunity to restore the
forgotten hypothesis () in the latter theorem, which in fact, is required for the proof.

Theorem 4.1 Assume that S is nondegenerate and (H) is satisfied. Let (2¥)ren be the
sequence produced by the FC-RJM algorithm. Then,

(i) 2* € S and F(z**) < F(2%) for all k € N;

(i) any accumulation point x* of (z*)y is a Pareto KKT-stationary point for (MOP),
and, lim F(z*) = F(z*).
k——+o0

Proof (i) At the iteration k, one has 2**1 = zF 4+ ¢;.d*. The fact that Az*T! = b comes

from the fact that Ad* = 0, since by construction, d%k = —A;iAdelka where By is the

k+1

nondegenerate basis for the kth iterate 2¥. While the positivity of z**1, it follows from
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tr €]0,t;] where ¢ is defined in Step 3 of the algorithm (see Remarks 2.1 and 3.1). The
second part of this assertion follows directly from the Armijo’s condition (5): Vk € N,

F(z") — F(a¥) < ptyUn, (2%)dR;, <0, (8)

since the algorithm is assumed to be infinite, i.e., d]ka are always reduced descent directions.

k_ 2* with K7 C N an infinite subset.
keK,

The closeness of S implies that z* remains feasible as (z*)z. Now, by continuity of F
and the previous assertion (i), it follows that F(z*) = F(z*). On the other hand, since
€

(ii) By hypothesis, there exists a subsequence x

the index set By is included in the finite set {1,...,n}, we can assume without loss of
generality that By = B (hence Ny = N) for all k € K. Now, observe that while passing
onto the limit in (8), we get

: ky gk _
kléIII(ll tUn(2%)d3 = 0. 9)
k—+o00

Also, as (A(zF)) ., is bounded and the sequence (Un(z")) . is convergent, then by virtue of
(6), (dN)keKl is bounded. This shows that A(z*) k&é A* € A and dy, k&é dy for some

K, C K, an infinite subset. In fact, we shall first prove that d}, is given by (6) at z*.
Indeed, according to Lemma 3.1, one has: Vk € Ks,

Un(z")on(A(z"), 2%) < [(UN(xk)éN(/\(xk),xk)) )\(xk)} e.
Passing to the limit, as k " 400, this leads to
Un(z*)dn(\F,2%) < [(UN(a:*)éN()\*,x*)> -A*}e.

Once again, by virtue of Lemma 3.1, \* € argmin(P,+). Also, passing to the limit in the
formulae d% = Sy (A(z*),2%), as k 7 400, we obtain that

&y = o (N, 2%).

Hence d}; is given by (6) at *. Now, suppose by contradiction way, that z* is not Pareto
KKT-stationary. Then, according to Proposition 3.1(ii)-(iii), d}, would be a multiobjective
reduced descent direction at z* € .S, that is,

Un(z*)dy < 0. (10)
By (9), we would have t, k—K> 0, which would imply that for any fixed p € N and any
€K,

k € Ky sufficiently large, t; < 2%, Moreover, there exists pg such that for any p > po,
2% < kinlg_ 1, where the steplength bound #j, is defined in Step 3 of the FC-RJM algorithm.
€2

Indeed, if inf ¢, = 0, as B is a finite set, we would have (without loss of generality) that

ke Ko
k
ty = —z,’f ke_KL 0 for some ig € B. Since d¥ = —AglANdﬁv, the sequence (dfo)kng is
iQ
bounded as (d%;)x, and we would obtain that xf'o — 0 = zj , which would contradict

keKo
the hypothesis (H). Hence, for any fixed p > py and any k € K, sufficiently large,

tr < 2% < t;. This means that, at the iteration k, the Armijo’s condition would not be
satisfied at t = 2% That is, for all kK € K5 sufficiently large,

F (xk + ;pdk) £ F(z®) + Q%UN(xk)dﬁv.



At the limit, when k& * +00, we would obtain that for infinitely many p,
/8 * k
F x+ £ F(x )+27UN(93)dN7

where d* := (di,dY) with d := AZ'Andy. But, by virtue of (10), this contradicts
the necessary Armijo’s condition (5). Hence, z* is well Pareto KKT-stationary point for

(MOP). 0

Remark 4.1 An accumulation point of the generated sequence (xk)k exists, for instance,
if the feasible level subset {z € S: F(z) < F(2°)} is bounded, since it contains (xk)k
Thus, if such a point exists, then by replacing the stopping criterion H =0 in Step 3
of the algorithm by Hd H < ¢ with any prespecified precision ¢ > 0, the algorithm will
stop after a finite number of iterations according to Theorem 4.1(ii).

4.2 Full convergence

In this subsection we shall prove the full convergence of the FC-RJM algorithm when
the vector objective F' is assumed to be quasiconvex. Recall that the vector mapping
F : R" — R" is said to be quasiconvex on the convex set S, if for all y € R", the
feasible level set {z € S : F(x) <y} is convex. Note that F' is quasiconvex on S iff, F' is
componentwise quasiconvex on S (see [4]). As vector convexity also means componentwise,
it follows that vector quasiconvexity is more general than vector convexity. Since here,
we assume that the vector mapping F' is differentiable, we will rather use the following
characterization whose proof can be found in [5].

Proposition 4.1 The vector mapping F': § C R” — R" is quasiconvex on .9, iff

Vo, o' € S, F(2') < F(z) = JF(z)(z' —z) <0.

Before stating the main theorem, we first prove the following lemma.

Lemma 4.1 Assume that F is quasiconver on S nondegenerate and let (z¥)ren be the
sequence produced by the FC-RJM algorithm. Then for any ¥’ € S and k € N such that
F(z') < F(z%), we have
- B
k
> + ekt -,
j=1

2

)

LS ) + 2ok, — b,
j=1

where Ny is the nonbasic inder set generated by the algorithm at the iteration k, and,
B €10,1[ is the Armijo’s constant.

Proof 1t is not difficult to verify that the nonbasic vector d?vk generated by the algorithm
at the iteration k, is an optimal solution to the convex problem:

Min (v, z¥) = ; Hv—i— UNk(JCk)T)\(l'k)H27

v>— z’Nk

and then, satisfies the minimum variational principle: Vv > —xﬁvk,

0 < Vo (dk, a*) - (v—df,) = (d’ka + Uy, (a:k)T)\(a:k)> (v —df).
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By taking v = m’Nk - a:’f\,k for any 2’ € S such that F(2') < F(2*), it follows that

H k+1 2

TN, — xNk

— k k /

2
S [ Y —aly) + & |dk, |

N
2

Ny

< ok, — ot |+ 2, - 2, — o) + 20 |,
2
k k k k
= ||z}, — 2N, || — 2tkdy, (a:’Nk Ty, — de)

2
< xﬁvk — iy || + 2tk (UNk (xk)T)\(xk)> . (a:’Nk — x’ka — d’ka)

2
= xllc\fk - x/Nk o 2tkd§€\fk ’ (UNk ("Ek)TA(l'k))
+ 2 (Un (@A) ) - (2, — o).

On the other hand, by Armijo’s condition (5) multiplied by the positive vector A(z*):
Vk € N,

\)

?(F(xkﬂ)f p(xk)>. A > f2tk(UNk(:pk)d§ka>->\(z:k)
= 24y, - (Un(&5)AE)).

It follows that
2 2

- B)\(xk) . (F(xk“) - F(xk))

+ 2 (Un (@A) - (ah, — o).

According to Proposition 4.1 applied to 2’ and z* since F(z2') < F(z%), it is easy to see
that

k+1
H.’L‘Nk I‘Nk

< Hmka — $§Vk

We finally obtain that

22
[kt =] < ke =] = 560 (Pt - Paby).
Using now that (F(z*)), is decreasing (see Theorem 4.1) and that (A(z*)), C [0,1]", we
get the desired inequality:
k+1 S - k+1 k
Ha:Nk —a:Nk < HxNk -y || — BZf](x ) — fi(z").
j=1

U

Remark 4.2 Since in this section the algorithm is assumed to be infinite, then no z* can
be weakly efficient, and therefore, by the very definition, there is always 2’ € S such that
F(x') < F(2").
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The theorem below gives necessary and sufficient conditions for the full convergence
of the FC-RJM algorithm.

Theorem 4.2 Assume that F is quasiconvex on S nondegenerate and (H) is satisfied.
Let (xF)ren be the sequence produced by the FC-RJM algorithm.

(i) If the sequence (z¥)ren is bounded and the number of basis changes is finite, then the
whole sequence (x*)ren converges to a Pareto KK T-stationary point for (MOP).

(ii) Conversely, if the basis selection strategy that favors the largest variables to enter
into the basis at each iteration (the so-called Wolfe’s criterion) is used, then the
number of basis changes is finite.

Proof (i) By hypothesis, there exists a subsequence z* Iﬁ{ z* with K C N, and, there
€

exists kg € N such that for all & > ko, By = B (hence N = N), where (By)y is the
sequence of the basic index sets generated by the algorithm. By Theorem 4.1, the sequence
(F(a:k))keN is decreasing, z* € S is a Pareto KKT-stationary point for (MOP) and
F(z%) ps F(z*). Thus, F(z*) < F(z%) for all k € N. It follows by Lemma 4.1 that for

all k > ko,

2

9

k:-l-l /8 k—l—l ¥
Z filw T

o
j=1

which means that the sequence

jz;lfj( ﬂ HxN

2

k>ko

is decreasing, and as it is bounded below, then it is convergent. Therefore,

lim Zf] ﬁ HxN = lim Zf] ﬁ HxN = Zr:f](x*)
j=1

k—4-00 keK
k—+o0 J=1

Hence,

ks pos oy and a2l = AG'b — A Anak, Py AR — A Anay = o5,

which proves the convergence of the entire sequence.

(ii) Suppose, by a contradiction way, that the basis changes are infinite. Then, there would
exist an index igp € {1,...,n} that goes in and out of the generated bases infinitely many
times. This would imply the existence of a subsequence (z¥)pcx such that a:fo = 0 for all
k € K. But the whole sequence (mk)k is assumed to be convergent, say to z*. Then, we

would obtain that :Ufo ﬁ;) r; = 0. Since by Theorem 4.1, (z%), is feasible, its limit 2*
€

feasible too. Now, by nondegeneracy assumption on .S, there exists a basis B such that
x> 0. This would imply that
Jko €N, Yk > ko, af >a2f >0  VieB.

Clearly, by the special basis change strategy, this means that the index iy would never
enter in any basis after the iteration kg, which contradicts the starting hypothesis. This
finally proves the finiteness of the basis changes that favors the largest variables. O
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FC-RJM RJM W-RGM
Pb Ref m n Iter Feval Beval Iter Feval Beval Iter Feval Beval
EL1 14 1 2 0.66 4.04 0 0.595 3.72 0 4.115 38.475 0.33
EL2 14 2 6 0.995 1.99 0.555 | 0.995 1.99 0.55 2.025 3.03 1.53
Constr [9} 2 6 1 2 0.52 1 2 0.415 3.44 15.62 1.345
Hanne2 [7] 2 5 1 2 0.165 1 2 0.135 | 8.815 92.33 0.33
Hanne3 [7] 2 5 1 2 0.195 1 2 0.2 2 3 0.535
GBG 200 2 7 1.77 3.525 0.455 1.75 3.485 0.495 2.245  3.525  1.655
TLK1 [31] 2 8 11.14 56.57 0.55 11.5 60.42 0.57 13.185 110.3 0.8
OF 271 2 5 0.325 0.65 0.125 | 0.325 0.65 0.125 5.02 32.845 1.12
PF 29] 4 5 5.385 27.33 0.28 4.31 19.095 0.31 9.46 41.765 0.77
MOP3 [21] 2 4 3.835 26.055 0.15 2.78 14.15 0.14 3.475 18.43 0.38
SK2 21] 4 8 2.535 3.585 0.89 3.415 4.485 0.89 4.425 10.28 1.635
TRS 8] 12 26 9.79 10.79 8.215 | 12.43 13.43 8.415 14.94 1594 11.25

JOS1 [21] 50 100 1.98 8.485 0 1.9 8.185 0 3.075 7.16 0.88

100 200 | 1.42 5.245 1.86 7.06 2.535 6.22 0.7
200 400 | 1.25 4.43 1.89  7.465 2.45 5.7 0.73
ZDT1 [39] 50 100 1.81  3.39 1.26  2.59 24.735 35.695 20.25
100 200 | 2.405 3.665 1.125 2.28 45.245 60.445 40
200 400 | 4.165 5.245 1.085 2.175 166.82 176.55 164

ZDT2 [39] 50 100 | 1.135 2.34
100 200 1.34 234
200 400 | 1.945 2.945
ZDT3 [39] 50 100 | 3.135 9.775
100 200 | 3.525 9.435
200 400 9.25 19.5

1 2 60.32 61.32 59.51

1 2 165.35 166.35 165
2.26 8.635 593.88 971.676 47.64
2.61 8.84 721.45 1054.941 53.98
4.25 16.3125 841.23 1353.22 67.8

(=l eNoNeNeNoBoBol-NeNe

0
0
0
0
0
1 2 0 28.435 29.435 27.515
0
0
0
0
0

Table 1: Standard performance measurements.

Remark 4.3 1t has been shown in [14] that if the vector objective F' is pseudoconvex
(resp. strictly pseudoconvex) on S, then any Pareto KKT-stationary point of the MOP
is a weakly efficient (resp. efficient) point. On the other hand, it is well known that
in the convex case, any Pareto KKT-stationary point associated with a positive vector
Lagrange multiplier, say A*, is actually properly efficient (see [12], e.g.). Furthermore,
it is worth noting, according to the proofs of Proposition 3.1(iii) and Theorem 4.1(ii),
that A* is not other than an accumulation point of the sequence A(z*) generated by
the FC-RJM algorithm. Hence, under these considerations and the assumptions of the
previous theorem, the limit of the iterates z* by the variant FC-RJM will belong to the
corresponding type of efficient set.

5 Numerical experiments

In this section, experiments carried out on the proposed FC-RJM method are described.
This includes comparisons with the original RJM version [14], the weighting method of
scalarization denoted in [14] by W-RGM, and the evolutionary NSGA-II method [10].
All codes are implemented in MATLAB R2021a on a machine equipped with 1.90 GHz
Intel(R) Core(TM) i5 CPU and 16 Go memory.

Sixteen well-known test MOPs with linear constraints are experimented (see Table 1).
In order to graphically investigate the approximated Pareto fronts, we restricted ourselves
to bi-criteria and three-criteria problems that we think are sufficient to reflect essential
aspects of the compared methods. All these problems were solved with the same selected
initial population of 200 individuals (starting points). With the exception of NSGA-II
which can give less than 200 approximate non-dominated solutions, the FC-RJM, RJM
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and W-RGM iterative descent methods necessarily provide the same number as the initial
population. To make a correct comparison, we have set “PopulationSize” equal to 571
for NSGA-II, in order to get the same number 200 of final solutions for each problem
solved. All other settings of NSGA-II were used as predefined by the solver in MATLAB.
For the reduced methods, each feasible polyhedron must be set under the standard form:
Ax =b, x > 0. After a basis B is selected, nonbasic coordinates x are randomly chosen
between a positive lower bound and an upper bound of the feasible polyhedron. The vector
basic variable is of course computed according to the relationship g = Aglb— A;A NIN,
so that Az = b, and while xp # 0, the initialization procedure is repeated.

The W-RGM method consists to apply Wolfe’s continuous RGM scheme (4) to the
scalarized problem:

Min A - F(z),

x€S
where the weighting vector of scalarization A = (A1,...,\.) € A are of course chosen at
random. In the bi-criteria case, for example, each ¢th individual, ¢ = 1,...,200, can

have a different weight chosen at random in an equidistant partition of [0, 1], namely,
M € |55, 5 and obviously, A = 1— Ay

During the numerical experiments, we prescribed 8 = 0.25 as Armijo’s constant, and we
started the Armijo procedure with the initial guess tg = . The finding-direction programs
for FC-RJM and RJM were in turn solved by RGM schemes (7) and (4) respectively.
It should be noted that these two problems are convex differentiable having as many
variables as the number of objectives and only one linear equality constraint, so that, a
nondegenerate guess in their feasible set A is trivial.

During running, the stopping criterion was: ||dy|| < 107°.

We started by analysing the standard measures of computational effort that are specific
to descent methods, namely, the number of iterations, the number of evaluations of vector
functions and the number of basis changes, denoted here respectively by: “Iter 7, “Feval”
and “Beval”. Table 1 summarizes the results obtained by FC-RJM, RJM, and W-RGM on
the sixteen test problems considered, where “Pb”, “Ref”, “m” and “n” mean respectively
the name of the test problem, its reference, the number of its original variables and the
number of its variables with standard form. The values presented are the average number
per population of 200 individuals. The best scores are in bold.

According to Tab.1, one can observe that the reduced Jacobian methods FC-RJM
and RJM give the solutions within only a few iterations, and with an equally reasonable
number of function evaluations. Therefore, this implies a relatively low cost of computation
of steplengths, while noting a slight advantage of the RJM over FC-RJM with regard to
both number of iterations and function evaluations. One can also see that the two reduced
Jacobian approaches perform, on average, generally less than a single basis change, except
for the instance TRS. It is also worth noting that both FC-RJM and RJM work quite well
on large size issues, and they are not very sensitive to increased dimension n, as we can
see it with JOS1 and the ZDT instances. Comparing these results with those of W-RGM,
show that W-RGM spent in both number of iterations, function evaluations and basis
changes, especially, for the ZDT problems. Note also that W-RGM did not completely
recover the Pareto front even in the convex case, as clearly seen in Fig.1 with the Constr
problem. Moreover, from all figures corresponding to the nonconvex cases, including the
pseudoconvex problem EL2, we see that W-RGM has found only the extreme efficient
points.
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Figure 1: Pareto fronts of some test problems by FC-RJM, RJM and W-RGM.

In order to analyse the graphical representations and to have convenient comparisons
between the methods, two essential factors are considered: the convergence of approximate
sets towards the true Pareto front, and the diversity of solutions. These two tasks can
be measured with many performance metrics suggested in the literature. Here, we have
opted for the three performance measures: Purity metric (P) [1], Hypervolume metric
(HV) [40], and the Generational distance (GD) [32]. Since the true Pareto front may not
be readily available in real-life problems, these measures are rather defined with the help
of the so-called reference Pareto front, which is not other than a concatenation of the non-
dominated solutions provided by all the competing methods, of course, after eliminating
the extra-dominated points. More precisely, if we denote by S the set of considered solvers
and P the set of tested problems, and if we call F), ; the approximated Pareto front of
problem p € P obtained by method s € §, then the reference Pareto front associated to
the problem p is given by

Fp:{y*GUF,s Py e UF7S, y<y*}.

SES seS
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— Purity (P). This metric consists in measuring the proportion of Fj, s points admitted
in Fj:
By N B
Pp7s = 77‘
| Fp.s]

Clearly P, s € [0,1] and the extreme values are significant in the sense that a value
P, s close to 1 indicates better performance, while a value equal to 0 implies that
the algorithm is unable to generate any point of F,.

— Hypervolume (HV). The hypervolume tries to estimate the size of the feasible region
dominated by F), 5. For example, in the case of a bicriteria problem, this corresponds
to the area delimited by F), s and a reference point. Often the latter is taken as the
vector whose ith component is the maximum value of the ith objective observed for
the given problem. Thus, the higher the hypervolume of solver s for problem p, the
better the dispersion of the solutions in F}, ;.

— Generational Distance (GD). Measuring the convergence, this metric represents how
far F), ¢ is from F,:

GD, s

[Pl

where d; is the minimum distance between the ith solution in F), ; and the reference
Pareto front F},. Obviously, lower values of GD,, ; are requested.

Table 2 summarizes the results of the performance measures realized by FC-RJM,
RJM, W-RGM and NSGA-II on the sixteen test problems, in addition to the C PU times
(in sec). To simplify the interpretation of these results and to be able to analyse the overall
performance of each solver on all the test problems, then look for significant differences
between them, the performance profile is used (see, e.g., [38]). Recall that a performance
profile is the graphical representation of the (cumulative) distribution function of measures
obtained by a solver on a set of problem tests with respect to a performance metric. More
precisely, given a performance measure m,, ; by solver s for solving p, and the performance
ratio

Mp,s

Tp,s = :
min mp75
sES

with respect to a decreasing metric!, the distribution function associated to s is given by

B HpEP : rwga}‘
ps(a) - "P‘ .

Note that at the threshold oo = 1, ps(«) gives us the largest number of problems among the
best solved by s according to the analysed performance. However, a value ps(«) attaining
1 means that all the problems p € P have been solved by solver s at the threshold a.
Thus, the best overall performance of a solver is that which reaches the value 1 for the
smallest value of a.

'Here, the metric m,  may be 1/P, 1/HV, GD or CPU, so that, all these metrics have the same
asymptotic behaviour in a sense that the smaller the measure, the better the solver.
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FC-RIM RJM
Pbs CPU P HV GD CPU P HvV GD
EL1 0.0188 0.985 0.582282  0.0000005 0.0248 0.985 0.5823362 0.0000005
EL2 0.0331 0.995 0.2442221 0.0004188 0.0403 0.995 0.2442227 0.0004188
Constr 0.0451 1 3.8048019 0 0.0588 1 3.805181 0
Hanne2 | 0.0116 1 8672.2525 0 0.0173 1 8671.8278 0
Hanne3 | 0.0121 1 4.0376345 0 0.0160 1 4.0581354 0
GBG 0.0110 1 35.101078 0 0.0143 1 34.789304 0
TLK1 0.0595 0.235 0.2904914 0.0001144 0.0801 0.21 0.2937795 0.0001138
OF 0.0168 1 31.21749 0 0.0213 1 31.217491 0
PF 0.0441 0.855 0.0021093  0.0000003 0.0483 0.86 0.0021105 0.0000003
MOP3 0.2889 0.995 560.13286 (0.0000012 0.2638 0.99 558.92114 0
SK2 0.0337 1 10.0984 0 0.0591 0.97 9.7412008 2.112D-08
TRS 0.1511 1 4093.9733 0 0.2233 1 4093.3217 0
JOS1 0.0276 0.89 1.6601522 4.305D-08 | 0.0331 0.915 1.6600265 0.0000002
0.0257 0.945 1.6840092 0.0000011 | 0.0346 0.73 1.6848459 0.0000228
0.0430 0.975 1.716233 0.0000005 | 0.0585 0.75 1.7158919 0.0000394
ZDT1 0.0720 1 0.9829638 0 0.0387 1 0.9828619 0
0.1343 1 2.7570317 0 0.0434 1 2.7557124 0
0.2557 1  5.1332833 0 0.0634 1 5.1326993 0
7ZDT2 0.0297 1 0.7416248 0 0.0348 1 0.7426255 0
0.0478 1 0.7078539 0 0.0451 1 0.7080764 0
0.1273 1 1.5383919 0 0.0854 1 1.5380217 0
7ZDT3 0.2909 0.665 2.248064 0.0105172 | 0.1346 0.65 2.249226 0.011813
0.9059 0.755 2.285064 0.0107885 | 0.3356 0.705 2.251236 0.0189156
1.9823 0.755 2.287016 0.0099565 | 1.3566 0.85 2.281667 0.0189157
W-RGM NSGA-II
Pbs CPU P HV GD CPU P HV GD
EL1 0.0223  0.985 0.5633661 0.0000001 | 0.0366 0.99 0.5827026 0.0000003
EL2 0.0121 1 1.508D-10 0 2.0116 0.805 0.2454173 0.0000162
Constr 0.0153 1 3.6466906 0 2.7901 0.615 3.8055397 0.0000882
Hanne2 | 0.0103 1 8676.4909 0 0.5548 0.645 8675.526  0.0006059
Hanne3 | 0.0043 1 3.0455804 0 0.5632 0.755 4.1011699 0.0000886
GBG 0.0046 1 0.0792 0 0.5396 0.77 35.551297 0.0003792
TLK1 0.0418 0.155 0.2967715 0.0001436 1.7514 1 0.2986474 0
OF 0.0176  0.95 31.527816 0 1.4782 0.81 31.600599 0.0000829
PF 0.0271 0.94 0.0021371 0.0000002 | 0.9598 0.445 0.0021496 0.0000089
MOP3 0.0303 1 356.21129 0 0.0234 0.875 558.92114 0.000615
SK2 0.0198 1 8.9025976 0 0.0297 0.785 10.944865 0.0001213
TRS 0.0857 1 3578.0001 0 1.6461 0 1799.8796 0.4927958
JOS1 0.0244 0.995 2.1388898 0.0000004 0.0435 0.495 2.0123538 0.000119
0.0603 0.98 2.1436591 0.0000182 0.0581 0.33 2.1164373 0.0001171
0.3903 0.975 2.1113116 0.0000177 0.0759 0.345 2.0682378 0.0001069
ZDT1 0.4637 1 0.8953741 0 0.0281 0.04 0.9548326 0.0005029
4.5067 1 2.4190441 0 0.0352 0.045 2.727446 0.0011227
131.7077 1 4.5152886 0 0.0582 0 5.1018942 0.0156109
7ZDT2 0.6056 1 0.4169525 0 0.0296 0 0.5934084 0.0028143
7.7111 1 0.3811394 0 0.0423 0 0.6151129  0.001585
152.7394 1 1.2119 0 0.1079 0 1.4488972 0.0027216
7ZDT3 0.7346  0.26 2.10378 0.012013 0.0222 0 2.237751 0.0171232
0.8386  0.213  2.10378 0.015037 0.0227 0 2.257581  0.0156127
2.7684 0.113  2.10375 0.0133765 | 0.1245 O 2.256591  0.0154432

Table 2: Multiobjective performance measurements.
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L

F

I

I

K

18 M. EL MAGHRI AND Y. ELBOULQE

EL1 EL1 EL1 EL1
—— ~——
& o) &
- - . - -
I+ FC-RIM “7 - -RIM “'F = W-RGM . *'Ie + *NSGA-II
f fi f fi
SK2 SK2 SK2 SK2
= “FC-RIM m - “RIM " F * *W-RGM " F - *NSGA-Il
. .
. ~ .
~. & " = 2
~. ~ - .
~, B ., 2 .. s
- : . : - : ~
.. 52 T — 52 T a2 \
f fi f fi
TRS TRS TRS TRS
= “FC-RIM F - "RIM ] F * =W-RGM F = *NSGA-I
W .‘. = 220.
1 - Y N .
\ ) \ - h A\
fi N1 fi N1
JOS1 (n=200) JOS1 (n=200) JOS1 (n=200) JOS1 (n=200)
F * “FC-RIM k- “RIM -+ =W-RGM -+ *NSGA-II
& \ 2 \ = \
\\‘- : . k - - "h._h-_
. .. - -
\-. - h-‘!-. N - - - -
fi f1 fi f1
ZDT2 (n=200) ZDT2 (n=200) ZDT2 (n=200) ZDT2 (n=200)
F e -rowm - SRIM F - -w-reM s - = *NSGA-II
--Q-\\\ ' “-\5\ ‘ . R\-

/
fo
/
f2
fo

~. | o ~. | . \
| - N :

Figure 4: Pareto fronts of some test problems by FC-RJM, RJM, W-RGM and NSGA-II.

According to Figure 2, FC-RJM and RJM obtain overall good scores in both CPU,
P, HV and GD compared to W-RGM and NSGA-II. Indeed, we can see that the best
value p(a) = 1 could be reached at a fairly small threshold a. For example, in terms
of convergence, we can clearly see from Fig.2 that the performance profiles P and GD
indicate that NSGA-IT as well as W-RGM could not globally reach the reference front for
the set of the test problems, especially, because of TLK1, PF, TRS, JOS1, ZDT1, ZDT?2
and ZDT3 (see Tab.2 for more precisions). In contrast, the observed HV dispersion profile
shows that FC-RJM and RJM achieve a slight superiority against NSGA-II, although this
latter being generally efficient with regard to this metric. Finally, comparing FC-RJM and
RJM, it can be also seen from Fig.2 that the new variant proposed in this paper clearly
exceeds its rival RJM in terms of the convergence indicators GD and P, noting however a
slight advantage of RJM in CPU and HV.

As we know, the graphical representation of approximated Pareto fronts does not
reflect the real landscape of the true fronts. However, those exposed in Fig.4, for instance,
confirms our interpretations made on the new FC-RJM about its ability together with RJM
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and NSGA-II to better explore Pareto fronts even in non-convex cases, and to handle some
serious difficulties, such as discontinuity or nonuniform density. Unlike W-RGM where we
must underline the difficulty of the classical scalarizing approach of being able to identify
the Pareto fronts, especially, in the non-convex cases.
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