A new family of route formulations for split delivery
vehicle routing problems

Isaac Balster!, Teobaldo Bulhoes?, Pedro Munari®, Artur A. Pessoa*, and Ruslan Sadykov®

Tnria Centre at the University of Bordeaux, 200 Avenue de la Vieille Tour, Talence 33405,
France, isaac.balster@inria.fr
2Universidade Federal da Paraiba, Centro de Informética, Departamento de Computacao
Cientifica, Rua dos Escoteiros s/n, Mangabeira, 58055-000, Joao Pessoa, Brazil,
tbulhoes@ci.ufpb.br
3Federal University of Sao Carlos, Production Engineering Department, Rod. Washington
Luis Km 235, 13565-905, Sao Carlos-SP, Brazil, munari@dep.ufscar.br
4Universidade Federal Fluminense, Engenharia de Producao, Rua Passo da Patria 156,
Niterdi - RJ - Brasil - 24210-240, arturpessoa@id.uff.br
®Inria Centre at the University of Bordeaux, 200 Avenue de la Vieille Tour, Talence 33405,
France, ruslan.sadykov@inria.fr

Abstract

We propose a new family of formulations with route-based variables for the split delivery
vehicle routing problem with and without time windows. Each formulation in this family is
characterized by the maximum number of different demand quantities that can be delivered to
a customer during a vehicle visit. As opposed to previous formulations in the literature, the
exact delivery quantities are not always explicitly known in this new family. The validity of
these formulations is ensured by an exponential set of non-robust constraints. Additionally,
we explore a property of optimal solutions that enables us to determine a minimum delivery
quantity based on customer demand and vehicle capacity, and this number is often greater
than one. We use this property to reduce the number of possible delivery quantities in our
formulations, improving the solution times of the computationally strongest formulation in the
family. Furthermore, we propose new variants of non-robust cutting planes that strengthen
the formulations, namely limited-memory subset-row covering inequalities and limited-memory
strong k-path inequalities. Finally, we develop a branch-cut-and-price (BCP) algorithm to solve
our formulations enriched with the proposed valid inequalities, which resorts to state-of-the-art
algorithmic enhancements. We show how to effectively manage the non-robust cuts when solving
the pricing problem that dynamically generates route variables. Numerical results indicate that
our formulations and BCP algorithm establish new state-of-the-art results for the variant with
time windows, as many benchmark instances with 50 and 100 customers are solved to optimality
for the first time. Several instances of the variant without time windows are solved to proven
optimality for the first time.

Keywords. vehicle routing, time windows, split delivery, branch-cut-and-price, non-robust cuts

1 Introduction

The applications of the vehicle routing problem (VRP) are ubiquitous and play an important role in
promoting effective logistics operations that contribute to economic, environmental and sustainable
goals (Shapiro 2007, Bektag and Laporte 2011). The success of these applications rests on the results
of intensive research developments made by the VRP community over more than 60 years. These
efforts have involved the design of a number of mathematical formulations and solution approaches
for both theoretical and applied variants, continuously pushing the boundaries of the size and type
of problems that one can expect to solve in practice (Toth and Vigo 2014, Braekers, Ramaekers,
and Nieuwenhuyse 2016).

In the traditional variants of the capacitated VRP, one must design a set of least-cost routes in
a way to visit each customer exactly once using a homogeneous fleet of vehicles available in a single
depot such that the total demand delivered in each route does not exceed the vehicle capacity. In
certain variants, such as the VRP with time windows (VRPTW), customers might only be available
for service during a certain period of time throughout the day, known as a time window, and service
times might vary among customers. In this paper, we are mainly interested in an extension of
this latter variant, known in the literature as the split delivery VRPTW (SDVRPTW), in which
customers may be visited more than once, if beneficial, so that their demands are split between
two or more vehicles.

The SDVRPTW adds a degree of operational flexibility by relaxing the VRPTW and encom-
passing the decision of how much to deliver to each customer. Multiple visits allow us to include
customers with demands that are larger than the vehicle capacity. Additionally, multiple visits
can be beneficial even if a customer’s demand fits in a single vehicle since these split deliveries can
promote significant savings by increasing the utilization of the vehicles’ capacity. As pointed out
originally by Dror and Trudeau (1989, 1990) and Archetti, Savelsbergh, and Speranza (2006) for the
variant without time windows (SDVRP), the savings can reach up to 50% of routing costs. How-
ever, the benefits of multiple visits come in exchange for increased difficulty in modeling and solving
these variants with respect to their nonsplit counterparts, especially regarding exact approaches
(Bianchessi and Irnich 2019, Munari and Savelsbergh 2022, Gouveia, Leitner, and Ruthmair 2023).

1.1 Related literature

Despite its practical benefits and theoretical relevance, the SDVRPTW has received relatively
little attention in the literature. Mullaseril and Dror (1996) presented the first attempt to model
the SDVRPTW using a column generation scheme. Their formulation relies on the replication of
customers, followed by the definition of split configurations in advance so that the problem becomes
an instance of the VRPTW. A first standard branch-and-price scheme tailored for the SDVRPTW
and with no initial assumptions on the number of splits was presented by Feillet et al. (2006), in
which the decision on how much to deliver is addressed at the master problem level, whereas feasible
routes are determined in the pricing subproblem, which consists of an elementary shortest path
problem with resource constraints (ESPPRC). Desaulniers (2010) proposed an innovative branch-
cut-and-price (BCP) algorithm based on extreme delivery patterns, which are determined in the
pricing subproblem together with their corresponding routes, and the actual delivery quantities are
determined through convex combinations of these extreme patterns at the master problem level.
Archetti, Bouchard, and Desaulniers (2011) enhanced this approach by implementing acceleration
techniques on the subproblem by means of a tabu search heuristic, as well as presenting novel valid

inequalities. Luo et al. (2017) presented a BCP algorithm that extends the extreme delivery pattern
concept to the SDVRPTW with linear weight-related costs and takes advantage of acceleration
techniques in their label-setting pricing algorithm.

More recently, tailored branch-and-cut (BC) algorithms have shown superior performance for
the SDVRPTW variant and have become the state-of-the-art exact approaches. Bianchessi and
Irnich (2019) proposed a tailored BC method for the SDVRPTW based on a relaxed commodity
flow formulation. The authors presented new types of valid inequalities, which, together with other
well-known cuts from the literature, are used in their BC to strengthen the linear relaxation of the
relaxed model, as well as cut off integer solutions that are infeasible for the SDVRPTW. Munari and
Savelsbergh (2022) introduced three novel compact formulations for the SDVRP and SDVRPTW
and proposed a BC algorithm based on a relaxation of their best-performing formulation. Different
from previous approaches, their BC algorithm locally extends the relaxed model by inserting new
variables and the so-called regularity property constraints every time an infeasible integer solution
is found in the BC tree. The same BC algorithm was used by Munari and Savelsbergh (2020) to
develop a column generation-based heuristic that consists of adding to the relaxed formulation a
set of time-feasible routes that are generated in advance. Other heuristics have also been proposed
specifically for the SDVRPTW and related variants, employing different strategies. Frizzell and
Giffin (1995) developed a construction heuristic using a look-ahead approach, along with improve-
ment heuristics based on moving and exchanging customers between routes. Mullaseril, Dror, and
Leung (1997) adapted the construction and improvement heuristics proposed by Dror and Trudeau
(1990) to solve a variant applied to livestock feed distribution that was modeled as a split-delivery
capacitated rural postman problem with time windows on arcs. Belfiore and Yoshizaki (2009) also
addressed a real-life variant, modeled as a heterogeneous fleet SDVRPTW, by proposing construc-
tive heuristics and a scatter search algorithm. Finally, Ho and Haugland (2004) developed a tabu
search heuristic for the SDVRPTW, using traditional move operators (relocate, exchange and 2-
opt*) as well as a new move operator called relocate split. The authors conducted computational
experiments using modified Solomon’s instances. Except for Munari and Savelsbergh (2020), none
of the mentioned heuristics have been tested on the exact same benchmark instances considered in
the experiments performed with the recent exact approaches (Archetti, Bouchard, and Desaulniers
2011, Bianchessi and Irnich 2019, Munari and Savelsbergh 2022).

The aforementioned state-of-the-art exact approaches can effectively solve most benchmark
instances with up to 50 customers, but they often become ineffective if the number of customers
increases. For example, Bianchessi and Irnich (2019) reported proven optimal solutions for 104 of
168 instances with 50 customers, while this number decreased to 5 of 168 for instances with 100
customers. For the same instances, Munari and Savelsbergh (2020, 2022) presented proven optimal
solutions for 123 50-customer instances, whereas they reported relatively large integrality gaps for
most 100-customer instances. This behavior has not been observed in the results reported in the
literature for 100-customer instances of traditional VRP variants, such as the VRPTW, when they
are solved using a BCP method (see, e.g., Sadykov, Uchoa, and Pessoa (2021)), suggesting that
there could be room for improvement in the computational solution of the SDVRPTW.

All of the aforementioned algorithms can also be applied for the SDVRP, i.e., the variant
without time windows. However, only Munari and Savelsbergh (2022) presented results for both
the SDVRPTW and the SDVRP. Exact approaches proposed in the literature specifically for the
SDVRP include those by Jin, Liu, and Eksioglu (2008), Moreno, De Aragao, and Uchoa (2010),
Archetti, Bianchessi, and Speranza (2011, 2014), Ozbaygin, Karasan, and Yaman (2018), Gouveia,

Leitner, and Ruthmair (2023). These approaches were not extended to include time windows or
verified on SDVRPTW instances. Again, tailored branch-and-cut algorithms dominate the state of
the art for the SDVRP. The current best algorithms by Gouveia, Leitner, and Ruthmair (2023) and
by Munari and Savelsbergh (2022) are able to solve to optimality most of the literature instances
with 50 customers and a small proportion of instances having between 64 and 100 customers.

1.2 Contributions

The main contributions of this paper are summarized as follows.

e We explore a property that holds true for at least one optimal solution of the problem,
applicable to both the SDVRP and the SDVRPTW. This property allows us to establish a
minimum delivery quantity when visiting a customer on a route. The efficiency of our solution
approach depends on the ratio between the minimum delivery quantity and average customer
demand. The larger this ratio, the better our algorithm performs.

e We introduce a new family of route-based formulations for the problem, as well as a BCP
algorithm for solving them. In contrast to previous column generation-based approaches in
the literature, the exact delivery quantities are not always explicitly known, neither in the
pricing problem nor in the master problem. Covering of customer demand is ensured through
an exponential family of constraints separated dynamically using a maximum flow-based
algorithm. These constraints are supported by a flow graph representation of a solution,
which provides both theoretical and practical advantages, as we show in this paper.

e We propose variants of non-robust valid inequalities designed to improve the strength of our
formulations, which are limited-memory subset-row covering inequalities and limited-memory
strong k-path inequalities. Additionally, we show how to effectively manage novel non-robust
valid inequalities when solving the pricing problem of the column generation procedure.

e We numerically compare the strength and the solution time of the formulations in the newly
proposed family using instances of the SDVRPTW with different characteristics.

e Finally, we show that our BCP algorithm outperforms the state-of-the-art exact approaches
for the SDVRPTW. We achieve optimality for numerous benchmark instances for the first
time, including the majority of instances with 50 customers and many instances with 100
customers. Additionally, we solve to optimality a few SDVRP instances for the first time.

1.3 Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we define the problem and state
its known properties of optimal solutions. A new property is introduced in Section 3. In Section
4, a new family of formulations is presented, as well as known and novel valid inequalities for this
family. Our BCP algorithm is described in Section 5. The results of computational experiments are
shown in Section 6, in which we numerically compare the formulations from the proposed family
and test our BCP algorithm on benchmark instances for both the SDVRPTW and the SDVRP.
Section 7 outlines the major contributions and future research directions.

2 Problem definition and known properties

We define the SDVRPTW over a directed graph § = (V,A), where V = {0,n + 1} U € and
A={(,7) 4,5 €V, i#%#n+1, j#0,i+# j}. Nodes 0 and n + 1 are the source and sink
representations of the depot, respectively. Set € = {1,2,...,n} represents customer nodes. For
each arc a € A, a cost ¢, > 0 and a travel time t, > 0 is defined. For the sake of simplicity, when
a = (i,j), we may drop the parenthesis and the comma, and replace c(; ;) and t(; ;) with c;; and
t;j, respectively. We suppose that the triangle inequality holds for both costs and travel times. In
practice, triangle inequality always holds for travel times. Thus, in the case in which arc costs are
equal to arc travel times, this assumption comes without loss of generality. Each customer ¢ € € has
a rational positive demand d; to be fulfilled by one or more vehicles, and this customer is available
for service within a nonempty interval [e;, [;], where e; and [; stand for the earliest and latest times
for starting service, respectively. The time window of the depot [eg,lo] = [en+1,In+1] defines the
planning horizon. In the case of an early arrival at a customer, waiting before starting the service is
allowed. The service time for each customer i € C is assumed to be constant and is embedded into
the travel times of all arcs (7, j) leaving i. A homogeneous fleet of H vehicles with rational, positive
capacity @) is available. A route r = (vy = 0,07,...,v,, = n+ 1) visiting n, nodes in graph G,
starting at time ¢ = eg and delivering amount d;. > 0 of demand to every customer vy, 1 <k < n,,
is feasible if the total delivered demand ZZT:_Il dj, does not exceed @, and the service start time
t;. at every node is within its time window. The service start time ¢;, 1 < k < n,., is recursively
determined as t}; = max{t}_, + tar, e,y }, where aj, denotes the arc (vj_,,v). We define ¢ as the
total demand delivered by route r to customer 7, which may involve multiple visits. The cost ¢”
of route 7 is the total of the costs of the arcs that it traverses: ¢" = 3 ;" cqr. A feasible solution
of the problem consists of a set of at most H feasible routes in which the total delivered quantity
to every customer ¢ € C is at least equal to d;. A split customer in a solution is a customer who
is visited by two or more vehicles. The aim of the SDVRPTW is to find a feasible solution that
minimizes the total cost of the routes. A related variant, the (capacitated) split delivery vehicle
routing problem (SDVRP), is the most basic one, in which time windows, service times, and route
timings are not defined.

There always exists an optimal solution to the SDVRPTW that satisfies the following properties:

Property 1 (Dror and Trudeau 1990, Feillet et al. 2006) Two routes in the solution share at most
one single split customer;

Property 2 (Feillet et al. 2006) Each route is elementary: it visits each customer at most once;
Property 3 (Feillet et al. 2006) Each arc between customer nodes is traversed at most once;

Property 4 (Desaulniers 2010) For each pair of arcs between two customers, at most one is
traversed; and

Property 5 (Archetti, Bouchard, and Desaulniers 2011) All delivery quantities are integers if
demand and vehicle capacity are integers.

In the next section, we present a new property that generalizes Property 5.

3 Flow graph solution representation and a useful property

The flow graph solution representation introduced in this section can be used to verify the feasibility
of a set of routes with respect to the customer demand. This graph has theoretical and practical
importance since we rely on it to prove the validity of our formulations and to separate some of
our valid inequalities.

Let R = {r,ro,... ,Tm} be a set of time-feasible routes (i.e., satisfying time window con-
straints), in which delivery quantities are not defined. For ease of presentation, we consider that
routes 7; and r; are different whenever 7 # j, even if they follow the same sequence of arcs. We now
construct the following valued graph F (51) to check whether set R defines a feasible SDVRPTW
solution. In the case of positive answer, delivery quantities are determined. The values of arcs in
F(R) correspond to their capacities.

The set of nodes in F(R) is {0} URUCU{n+1}. Nodes 0 and n+ 1 are the source and the sink,
respectively. The first set of arcs Al(jQ) connects the source with each of the route nodes in R.
The capacity of these arcs is (). The second set of arcs .AQ({R) connects the route nodes in R with
customer nodes in C: arc (r,4) belongs to Ay(R) if and only if route r € R visits customer i € €.
The capacity of these arcs is co. Finally, the third set of arcs Ag(ﬁ) connects each customer node to
the sink. The capacity of an arc (i,n + 1) € As(R) is d;. Figure 1 provides an illustration of graph
Er"(fk), where R = {r1 ={0,1,2,3,6},r0 = {0,2,3,6},73 = {0,4,5,6}} is a set of routes serving
customers C = {1,2,3,4,5} with demands d = {10, 20, 30,40, 10}, respectively. The capacity of the
vehicle is Q = 30. From the construction of the graph, we deduce the following observation.

route nodes customer nodes

00 10
0 20
79 > 3 30 > 6
&

30

8

(

40

30 /QD/ 10

T3 o0 >

Figure 1: An example of the flow graph F(R).

Observation 1 4 set R of time-feasible routes forms a feasible SDVRPTW solution if and only

if the mazimum flow f in graph F(R) has a value of Y ;.o d;. In such a case, values fq, a € As,
correspond to the delivery quantities for every route in R to each customer in C.

The maximum flow f in the example flow graph depicted in Figure 1 has a value of 90, which is
less than) ;o d; = 110. As a result, this particular set of routes does not form a feasible solution.

Let now ¢ = ged(Q,dy,da,...,d,) be the greatest common divisor of the capacity and all
customer demands. Since all these values are rational and positive, value g exists (Weil 1983).

Property 6 There exists an optimal solution in which all delivery quantities in all routes are
multiples of q.

Proof. Let I be a problem instance. We define a new instance I’ derived from I by dividing all
demands and capacity by g. In this case, any solution s’ of I’ is feasible if, and only if, there is an
equivalent feasible solution s of I with the same cost, and the same delivery quantities multiplied
by g. Since, as stated in Property 5, there exists an optimal solution s’ of I’ in which all delivery
quantities are integers, the corresponding solution s of I is also optimal and satisfies Property 6.
O

4 Mathematical formulations

In this section, we introduce a new family of formulations based on route variables. Let R be the
set of all feasible SDVRPTW routes satisfying Property 6. Requiring elementarity for routes may
make the route generation subproblem difficult to solve. Thus, we do not enforce Property 2 for
routes in R.

We define D; = {q,2q,...,d;} as the set of all possible delivery quantities to customer i € C
via any route in R. Zero delivery is not included in D; due to the triangle inequalities. For a given
route r € R, customer i € C, and delivery quantity ¢ € D;, we define the parameter b;"q as the
number of times » makes a visit to ¢ with a delivery quantity equal to q.

4.1 Base formulation

Let h,g be a binary value that is equal to 1 if and only if route r enters subset S C C. For every
route 7 € R, we define a nonnegative integer variable 6, which represents the number of vehicles
that follow route r. We now state our first formulation, which we denote as (F0).

(FO): Min Z c"o,, (1)

reR

s.t. ZhTser > {Z di/Q—‘ , VS C €, (2)
reR €S
0, € 7", Vr e R. (3)

Objective Function (1) minimizes the sum of routing costs. Constraints (2) correspond to the
strong k-path inequalities introduced by Baldacci, Christofides, and Mingozzi (2008) and used for
the SDVRPTW in Archetti, Bouchard, and Desaulniers (2011). These inequalities are a strength-
ened version of well-known rounded capacity cuts, with the same right-hand side. The difference

lies in the coefficient h,g, which is equal to one even if route r leaves and enters subset S several
times. Finally, the integrality of the 6, variables is ensured by (3).

We now show that Constraints (2) and (3) suffice to define the set of feasible solutions to our
problem. We first denote by 51(0_) = {ri,ro,... ’Tlﬁ(é)l} the set of routes corresponding to an

integer solution @: every route 7 € R is added 6, times to 53(5) Again, we consider that r; # r;
are different whenever ¢ # j, although there may be multiple routes in 52(0_) representing the same
route 7 € R in case 6, > 1.

If an integer solution @ satisfies Constraints (2), then set R(8) of routes forms a feasible SD-
VRPTW solution.

Proof by contradiction. Suppose that set 51(0_) does not form a feasible SDVRPTW solution.
By Observation 1, it follows that, in the flow graph F(R(8)), the maximum flow value is strictly
less than) ;o d;. By the min-cut-max-flow theorem, the value of a minimum 0 — (n + 1) cut C' in

this graph is strictly smaller than), . d;. We denote by R(C) the set of route nodes r € R(6) in

graph F(R(6)) such that arc (0,r) is included in cut C. Set R(C) is not empty since the cut cannot

contain all arcs in A3(R(€)) and cannot contain any arc in A2(R(6)). We also denote by C(C') the

set of customer nodes i € € in graph F(R(0)) such that arc (i,n + 1) is not included in cut C. No

arc in Ay(R(8)) crosses cut C' in the direction of the sink since otherwise the value of the cut would
be co. Therefore, no route in R(0) \ R(C) enters subset C(C') of customers. Conversely, all routes
in R(C) enter C(C); otherwise, C' would not be a minimum cut. We therefore have

> Qhyeeyfr =IRO) - Q< Y di. (4)

rex i€e(C)

The last inequality in (4) holds because the value of cut C'is };ce ey di + [R(C)] - Q, which
should be smaller than } ;.o di = > ;ce\e(c) di + 2ice(c) di- By canceling the term - e\e(c) di
in both expressions, we obtain the result. Dividing Inequality (4) by @ yields >, 5 hr’@(c)ér <
> ice(c) di/Q, and Constraint (2) for set €(C) of customers is violated by solution 6. Therefore,

our assumption is incorrect, and set R(8) forms a feasible SDVRPTW solution. O
Constraints (2) can be exactly separated for integer solutions @ of Formulation (F0) in polyno-
mial time by defining graph JF (51(0_)) and finding a minimum cut in it.
The minimum 0 — 6 cut in the example flow graph in Figure 1 includes customer nodes 4 and
5 at the sink side of the cut. The subset consisting of these two customers induces a violated

inequality (2). Only one route in R enters this subset, whereas at least two routes are needed.

Observation 2 Formulation (F0) is correct even without any information about delivery quantities
in routes r € R.

Although Observation 2 highlights an interesting theoretical property, it is not always possible
to use Formulation (F0) in practice. We define R as the set of routes without specification of
delivery quantities. Obviously, R" is not smaller than R. Set R is not finite in two cases: i) for
the standard SDVRP; and ii) for the SDVRPTW if there exists a cycle with zero total travel time.
This is because routes in R are not necessarily elementary and are not constrained by the vehicle
capacity. Thus, the length of routes is not restricted in the SDVRP case. This is also the case for
the SDVRPTW with zero travel times, as a route may indefinitely circulate along a cycle with zero
travel time. Even for the SDVRPTW with only positive travel times, Formulation (F0) is weak, as
shown in the computational experiments.

4.2 A family of partially discretized formulations

Formulation (F0) can be strengthened in the following way. Since the triangle inequalities are
satisfied, there exists an optimal solution with no zero deliveries. Thus, we can reduce the number
of variables in Formulation (FO) by only considering variables 6, for routes delivering at least ¢
at every visit. The minimum delivery of one unit was already imposed by Archetti, Bianchessi,
and Speranza (2011). We denote this strengthened formulation as (F1). Moreover, there exists an
optimal solution @ to the linear relaxation of (F1) in which every route r such that f, > 0 delivers
exactly ¢ at every visit. Consequently, the length of each route is at most @)/g. We denote the set
of all such routes as R! C R.

There are further ways to strengthen (F0) if we consider the information about full and partial
deliveries along routes. Recall that b}, is the number of times that a route r € R includes a visit to
i with delivery quantity equal to g. We denote as bjp = b}, the number of times that route r € R
delivers full demand to customer i € €. Additionally, let bjp = >_ D\{d;} Diq e the number of
times that route r € R delivers partial demand to customer i € C. The following constraints are
valid for the SDVRPTW:

> (2bf + bjp)6r > 2, VieC. (5)
reR

These constraints are a special case of the strong minimum number of vehicles (SVM) inequalities
used by Archetti, Bouchard, and Desaulniers (2011).

We denote as (F2) the formulation with Objective Function (1) and Constraints (2), (3) and
(5). Let RZ={r e R: by, =0, Vi € €, Vg € D;\ {q,d;}} be the set of routes in which the delivery
quantity in every visit to customer ¢ € € is equal either to g or to d;.

Observation 3 There exists an optimal solution @ to the linear relaxation of Formulation (F2)

such that 0, = 0 for all r ¢ R?.

This observation is derived from the fact that the coefficients of variables in Formulation (F2)
depend only on whether a delivery is full or partial, and not on the exact delivery quantities. As
a result, any route 7’ ¢ R? is dominated, i.e., can be replaced by a route r € R? in any optimal
solution of the relaxation without losing feasibility and optimality of this solution. Thus, we can
restrict the set of routes in Formulation (F2) to R? without compromising the validity of the dual
bound provided by its linear relaxation.

Restricting the number of different delivery quantities to a customer is useful to speed up the
dynamic generation of route variables, as will be shown in Section 5. We now extend the case with
at most two different delivery quantities per customer to any integer K > 2. As will be shown by
computational experiments, increasing the value of K renders the formulation stronger, possibly
at the expense of slower generation of route variables. We start with the observation that the
following constraints are valid for the SDVRPTW:

D b >di, Viet. (6)

reR qeD;

For some customers i € C, we derive new inequalities as follows. Let us define C(K) = {i € C:
K@ < d;} as the set containing each customer ¢ € € to which K deliveries of size ¢ are not enough to
satisfy the demand d;. For a given customer i € C(K), we multiply Inequality (6) by (K —1)/(d;—e¢),

where € > 0 is a constant significantly smaller than q. Next, we apply Chvéatal-Gomory rounding
on both sides of the resulting inequality and obtain

L3 [l [N ”

reR qeD;

Since d;/(d;—e) is slightly greater than 1, the right-hand side of (7) is equal to K. Additionally, given
that b7, is integer, the following holds for the coefficient in the left-hand side of these inequalities:

Hence, we can rewrite (7) as

>, { We) > K. (9)

reR qeD;

For a given value of K and delivery quantity ¢ € D; of a route r, the rounded-up coefficient in
the left-hand side of these inequalities is a step function that assumes integer values k£ from 1 to
K, depending on the value of ¢q. For example, for K = 2, the possible values of [¢/(d; — €)] with
q € D; are 1, if ¢ < d;; and 2, if ¢ = d;. In this case, Inequalities (9) are the same as (5). For
K =3, [2¢/(d; —¢)] results in 1, if ¢ < d;/2; in 2, if d;/2 < ¢ < d;; and in 3, if ¢ = d;. The first
two cases correspond to partial deliveries, while the last is a full delivery. Extending this analysis

to an arbitrary value of K, we have that for a given delivery quantity q € D;, {(([;:15))‘1-‘ is equal to

k, if (k_l)di <qg< [Igdil, for k =1,..., K. Using this observation, we define the binary value gfq
that assumes the value of 1 if and only if (k 1) I (9)

as follows:

>N szqglqkﬂ > K. (10)

reRqeD; k=1

We denote as (FK) the formulation with Objective Function (1), Constraints (2) and (3),
Constraints (10) for i € €(K), and Constraints (6) for i € C\ €(K). We define set R of routes in
which the delivery quantity of every visit to a customer i € C(K) is the minimum nonzero value in

[(kK 1)1d R 1) that is a multiple of g, for some k € {1,..., K}; and the delivery quantity of every

visit to a customer ¢ € €\ C(K) is a nonzero multiple of g. Let D;(K) be the set of such delivery
quantities, defined as follows:

K . .
D;(K) = U {min{lq‘} 2 lg € [(kK__l)ldz, de—ll) , le N} if i € C(K), (11)
k=1
Di(K)={lg:Vvi=1,...,d;/q} ifieC\CK). (12)

Then, R = {r ER:b,=0,VieC Vgg D,-(K)}. Note that for customers in €\ C(K), the set
D;(K) includes all nonzero multiples of ¢, ranging from ¢ to d;. For this reason, we call it a full
discretization of d;. Conversely, for customers in C(K), there is at least one multiple of g that is
not included in D;(K), and hence we have a partial discretization.

10

Figure 2 illustrates the set of delivery quantities D;(K) for different values of K, considering
g = 5 and a customer ¢ with demand d; = 40. Since d;/q = 8, we observe partial discretizations
for K = 2 to 7, and full discretization for K = 8. For instance, in the partial discretization with
K =4, the possible delivery quantities are 5, 15, 30 and 40, which are the minimum multiples of ¢

inside the ranges [0, 13.33), [13.33,26.67), [26.67,40) and [40, 53.33), obtained from the expression

(k[;i)ldi, I?‘Z) for each k = 1,2,3 and 4. As indicated in the figure, each of these intervals has size

13.33 (= d;/(K — 1)).

Partial discretization Example: d; =40, =15, d;/3=38.
2< K <di/q K=2 K=3 K=4 K=5
Y di 4040 40 40 404 40 40 40
35H 35H 35 10435H
di/(K —1) 13.33 0
30H 20430H 30H 30H 30
H H26.67)
25H 25H 254 25H
k={1,2,....,K} P K —1 40420 20H 20 20(H 20H 20
15H 15H 15H 15H
H H13.33
10H 10H 1oH 10H 10
[(k—l)rh kd;)
K—1 » K—1 5 H 5 H 5 H 5H
Uo Uo Uo U o Uo
Di(K) = U, {min{Zq} g D; = {5,40} D; = {5,20,40} D; = {5,15, D; = {5,10,
30,40} 20, 30,40}

K-1 7 K-1

G[M M),IGN}

Full discretization

K=6 K=1 K=d;/g=38 K >d;/q
40 40 40[40 40M 40 M d;
8{35— 6'67{35— 5{35— 35
L 39 H33.34 q
30H 30H 30H 30
25H o, 25 [26-67 25H 25]
20H 20H 20 20H 20 1=A{1,...,d;/q} | |} K
15[16 15H 15H 15
H13.33 H
10H < 10H 10H 10
ol - [6-67 sH s [(1—1)g, 1)
—0 -0 “ 0 =70
D; = {5, 10,20, D; = {5,10, 15, D; = {5,10,15,20, Di{(K)={lg:Vvl=1,
25,35,40} 20, 30, 35,40} 25,30, 35,40} oo di/q}

Figure 2: From partial to full discretization — a numerical example.

11

Observation 4 There erists an optimal solution @ to the linear relazation of Formulation (FK)

such that 0, = 0 for all r ¢ RE.

Let Kpax = max;ee d;i/q. We call Formulation (FKyx) the fully discretized formulation since
all possible delivery quantities according to Property 6 are considered and R¥ = R. Strong k-path
inequalities (2) are redundant for this formulation but still useful as cutting planes. Formulations
(FK) with K > Kpax are equivalent to (FKyax). Formulations (FK) with K < Ky, are partially
discretized. For such formulations, the exact separation of strong k-path inequalities (2) is necessary
to ensure the feasibility of integer solutions.

4.3 Valid inequalities

To further strengthen the proposed formulations, we present well-known valid inequalities that are
adapted to the split delivery variants and propose novel families of limited-memory subset-row
inequalities and limited-memory strong k-path inequalities.

4.3.1 Rounded capacity inequalities.

Let z7; be the number of times route r € R traverses arc (4,j) € A. Constraints

S>> apte =2 {Z di/Q-‘ , vsce, (13)

reR (i,5)€A: €S
{#,4}NSI=1

are known in the literature as rounded capacity inequalities (RCIs) or weak k-path inequalities (De-
saulniers 2010, Archetti, Bouchard, and Desaulniers 2011). They were introduced by Laporte
and Nobert (1983) for the CVRP. RCIs have been separated in virtually all branch-and-cut and
branch-cut-and-price algorithms in the literature for the SDVRP and the SDVRPTW due to their
importance for obtaining strong lower bounds.

4.3.2 Limited-memory subset-row packing inequalities.

Cuts of the next family are adapted from the subset-row inequalities introduced by Jepsen et al.
(2008) for the CVRP. They can be obtained by Chvétal-Gomory rounding of the set packing
constraints, stating that every customer can be visited at most once. However, since the split
delivery variants do not include this requirement, we modify these constraints to consider only the
visits in which the delivery quantity is strictly greater than half of its demand. Hence, for each
customer ¢, the number of such visits must be at most one, i.e.:

> bbe<1, Viee (14)

reR q€D;:
q>di/2

By considering subsets S C € of size three and applying Chvatal-Gomory rounding of Con-
straints (14) for customers in S with multiplier 1/2, we obtain the following subset-row packing

12

inequalities (SRPIs) that are valid for Formulation (FK) with K > 1:

> ZZ b?" 0. <1, vSce, |S|=3. (15)

reR | i€S q€D;:
q>d;/2

A weaker version of the SRPIs was used for the SDVRPTW by Archetti, Bouchard, and De-
saulniers (2011). In their cuts, condition ¢ > d;/2 is restricted to ¢ = d;. Note that any formulation
(FK) with K > 1 still involves only variables 6,., r € RX. Of course, inequalities (15) are just an
example of SRPIs that can be derived from (14). In general, one can define a rational multiplier
wi/n € [0,1),n > 0, for each customer i € C and obtain the following inequality by means of
Chvéatal-Gomory rounding:

ISP S] (6)

reR | i€C qeD;: 1€C
q>d;/2

The reader is referred to Appendix A for further details on the definition of general SRPIs.
We also use elementarity cuts to enforce Property 2 in any integer solution. These cuts state
that every customer can be visited at most once in any route:

SIS %b;"q 6, <0, VieC. (17)

reR |qeD;

Constraints (17) can be obtained from Inequalities (16) by considering a larger set of values ¢, and
by setting n = 2, pu; = 1, puy = 0 for all ' € C\ {i}. Thus, these constraints are also included in the
family of subset-row packing inequalities.

It is known in the literature that a large number of active subset-row cuts can render the dynamic
generation of route variables very expensive (Jepsen et al. 2008, Pecin et al. 2017a). Thus, we adopt
the following limited memory technique introduced by Pecin et al. (2017a). Each limited-memory
SRPT (Im-SRPI) >~ g a(r,p,n, M)b, < {Zz’ee %J is associated with an arc memory M C A.

Algorithm 1 shows the computation of function «a(r, u,n, M). From its definition, it follows that

ol M) < |37 3 L, (18)

1€C geD;:
q>d; /2

for any M C A. Therefore, Im-SRPIs are valid for the problem.

4.3.3 Limited-memory subset-row covering inequalities.

Novel subset-row covering inequalities (SRCIs) can be obtained by Chvéatal-Gomory rounding of
constraints stating that, for every customer, there should be at least one nonzero delivery. Again,

13

Algorithm 1: Function «(r, u, n, M)

a+ 0,00
for k=1ton,—1do
if af = (4,5) ¢ M then ¢ < 0
if dj, > d;/2 then
L¢<—¢+Mj
ifp>nthena<+—a+1, ¢+ ¢—n

return «

let w;/n € [0,1),n > 0, be a rational multiplier defined for customer i € €. Then, the cut is as
follows:

SIS Y P [z })
reR | i€C qeD;: N 1€C N
q>0

We developed a computational approach, inspired by the work of Pecin et al. (2017b), to
determine which multipliers to consider (see Appendix A) and, again, we rely on the limited-
memory technique to reduce the impact of SRCIs on solution time. Each limited-memory SRCI

(Im-SRCI) >~ cq B(r, p,m, M), > {Ziee %W is associated with an arc memory M C A. Algorithm
2 shows the computation of function S(r, u,n, M). From its definition, it follows that

Blropn M) = |3% By (20)
1€C geD;: n
q>0

for any M C A. Therefore, Im-SRCIs are valid for the problem.

Algorithm 2: Function S(r, p, n, M)

B+ 0,90
for k=1ton,—1do
if af = (4,5) ¢ M then ¢ < 0
if dj, > 0 then
L%D%%/fuj
ify<0Othen S+ fS+1, v+ 1Y+

return

4.3.4 Limited-memory strong k-path inequalities.

Finally, we adapt the limited-memory technique to inequalities (2). Each limited-memory strong k-
path inequality (Im-SKPI) -, . v(r, S, M), > [> ¢ di/Q] is associated with a set S of customers
and an arc memory M C A\ {(i,)} j3cs- The memory can only include arcs with at least one
node outside set S. Algorithm 3 presents the pseudocode to compute ~(r, S, M). Based on its

14

definition, we have that ~(r,S,M) > h,g for any M C A. Thus, lm-SKPIs are valid for the
problem. In Algorithm 3, the value o is used to “remember” visits to set S. If o = 0, set S has not
yet been visited or a visit has been already “forgotten” as the memory has been left. If o = 1/2, set
S has been visited and is still “remembered”. These specific values, 0 and 1/2, have been chosen
as they are used later in (24).

Algorithm 3: Function ~(r, S, M)

¥+ 0,0+0
for k=1ton,—1do
if vp_ ; € Sandv] &S then o<+ 1/2
if af ¢ M then o <0
if vp_, &5 and v € S then
oc—o—1/2
Lifaz—l/chenw(—’y—i—La%O

return vy

5 Branch-cut-and-price algorithm

In this section, we describe the branch-cut-and-price (BCP) algorithm to solve Formulation (FK)
for a fixed K € {0,1,2,..., Kpax}, together with the valid inequalities presented in Section 4.3.
The linear relaxation of (FK), or the master problem, is solved by the column generation procedure.
On every iteration of this procedure, the restricted master problem (RMP) is solved considering a
restricted subset of variables @, others being fixed to zero. Let (7, p,(,€,7) be an optimal dual
solution of the RMP. The dual value 7; > 0 corresponds to Constraint (9) if i € C(K) and to
Constraint (6) if ¢ € €\ C(K). If K < 1 then Constraints (6) and (9) are not defined, and we
assume 7; = 0 for all # € C. Let O be the set of active RCIs, and let S° C € define rounded
capacity inequality o € O with dual value p, > 0. Let §(S°) also be the set of arcs in A which
have exactly one node in S°. Let P be the set of active Im-SRPIs, and tuple (uP,nP, MP) defines
limited-memory subset-row packing inequality p € P with dual value fp < 0. Let U be the set
of active Im-SRCIs, and tuple (u*,n*, M") defines limited-memory subset-row covering inequality
u € U with dual value &, > 0. Let W be the set of active Im-SKPIs, and pair (S*, M) defines
limited-memory strong k-path inequality w € W with dual value 7, > 0.

5.1 Pricing problem

To determine whether the current solution to the RMP is optimal for the master problem, we must
find the minimum reduced cost among all variables 6,, r € RE. We represent set RX of routes as
resource-constrained paths in multi-graph §'(K) = (V, A’(K)). Every arc (4, j) in the original graph
§ is replaced by multiple arcs (4,7,¢), ¢ € D;(K), between nodes i and j in §'(K). Sets D;(K)
are defined in (11) and (12) for K > 2. We set D;(0) = {0} and D;(1) = {g} for all j € €, and
Dyp11(K) = {0} for all K > 0. We define disposable time and capacity resources with accumulated
resource consumption bounds [e;, [;] and [0, Q], respectively, for every node i € V. The time resource
consumption of every arc (4, j, q) € A’ equals t;;, and the capacity resource consumption of this arc

15

equals ¢. Thus, the set of resource-feasible paths in multigraph §'(K) corresponds to the set of
routes in RX. The capacity resource is redundant for & = 0 and may be skipped.
The reduced cost ¢; j 4) of every arc (i, j,q) € A'(K) equals

0, if K <2,
Chja) =Cij— Y. Po—1 k(j,q.K)-7;, i K>2andjeCK), (21)
(i,{)ﬁ?(éo) a7, if K>2andjee)\CK),

where k(j,q, K) is equal to the value k that satisfies (kK)d; <g< [Iéd T

Let Al (K) be the set of arcs traversed by the resource- Constralned path in §/(K), corresponding
to a route r € R¥. Then, the reduced cost & of the resource-constrained path r and its related

variable 6, is equal to

&= Y Cigg—palnpP i, MP)G= > B pt gt M= Y (8 M) Ty, (22)

(4,5,9) €AL(K) peP uel wEW

To find the resource-constrained path r in §'(K) corresponding to the best reduced cost, we
use the bucket-graph based bidirectional labeling algorithm proposed by Sadykov, Uchoa, and
Pessoa (2021). Every label L represents a partial path §'(K), which is either forward (starting
from node 0) or backward (starting from node n + 1). Every label L is characterized by a vector
(eh, vl th g, ¢ 4, o), where " is the reduced cost of the partial path, v is the terminating
node, and t and ¢¥ are the accumulated time and capacity resource consumption, respectively.
Finally, ¢%, 9, and o’ are vectors of states corresponding to active limited-memory cuts. The
lengths of these vectors are |P|, |U|, and |[W|. These states are computed in the same way as in
Functions «, 8, and v presented in Section 4.3. To adapt the bucket-graph labeling algorithm to our
problem, we must define label initialization, extension, domination, and concatenation functions.

The initial forward label is defined as (0, 0, g, 0,0, 0, 0), and the initial backward label is defined
as (0,0,0,41,Q,0,0,0). In the backward labeling algorithm, the direction of arcs is reversed. The
function that extends a label L’ in the forward or the backward direction along an arc a = (i, 4, q),
such that i = v~ to obtain label L, is presented in Algorithm 4. It returns true if extension is
feasible. For ease of presentation, we define yufj = pb . | = 0 for every p € P and puff = pit,; = 0 for
every u € U.

A label L dominates label L' if v& = vL/, gk < g%, b < L (qL > ¢~ and t£ >t~ for backward

labels), and
SN o+ D bt > A< (23)

peP: uel: , wEW:/
!
pL>oL P>l oi>oy

For a set of labels £ and a label L/, the bucket-graph labeling algorithm uses inequality el <
miny ¢, ¢ as a sufficient condition for nondomination of label L’ by any label in £. This sufficient
condition remains valid in our case since Ep <Oforallpe P, & >0foraluecU,and 7, >0 for
allw e W.

The partial paths represented by a forward label L and a backward label L can be concatenated

along an arc (i, j,q) € A’ if i = v, j = ol ¢V 4+q < ¢ tL—FtU < tL. The reduced cost c(L L,i,j, q)

16

Algorithm 4: Extension of label L’ along arc a = (4, j,q) € A’ to obtain label L
el e 4 ey, vl pF — oF Yl — P ol — ol
if forward direction then

b — ¢ 4 g, L« max{tl +t;;,e;}

| if q¢" > Q or t* > |, then return false

if L is a backward label then

gt qL/ —q, tF + min{tF — tii i}

| if g <0 or t¥ < e; then return false

for pe P do

if (4,j) & MP? then qﬁg +0

if ¢ > d;/2 then
L by < O + 1

if oL > 1P then gzﬁzf <—gz5£—77p7 el <—6L—§p

for w € U do

if (i,j) ¢ M* then L < 0
if ¢ > 0 then
Lw%—d}ﬁ—u}‘

if ¢ <0 then L« oL +nu, el ek -¢,

for w € W do

if i € S¥ and j € S* then ok « 1/2
if (i,j) ¢ M* then o + 0

if i ¢ S* and j € S* then

L ob+ ol —1/2

if o, = —1/2 then oy <0, ¢ ¢t -7,

return true

of the path obtained by such concatenation can be computed as

&L, L1, 5,q) = & + € jg + O — S Gt D Lt D Tt Y Tw (24)

pEP: ueU: weW: weW:
(4,))EMP, (4,4)eM, (4,)EM™, {i,j}Csw
Ligboge wbwwkzne oltol=1

The bucket-graph labeling algorithm uses a lower bound on the reduced cost of any path ob-
tained by concatenation along an arc a = (4, j,q) of a forward label L and any backward label in a
given set L. We use the following lower bound in our case:

mine(L, L,4,j,q) = ¢ + &1 9 +minc" + > 7. (25)
LeLl LeLl weW:
{i.j}cse

Bound (25) is valid since the part related to limited-memory cuts in (24) is nonnegative.

5.2 Cut separation

To separate the RCIs, we use four algorithms presented in Lysgaard, Letchford, and Eglese (2004):
i) the connected components heuristic; ii) the max-flow-based algorithm, which separates fractional

17

capacity inequalities; iii) the greedy construction heuristic; and iv) the heuristic which inspects the
pool of previously generated inequalities and performs a fast local search for each of them.

Our approach for separating the strong k-path inequalities is as follows. First, we use a greedy
construction heuristic similar to that for the separation of RCIs. Then, the separation of fractional
strong k-path inequalities is performed by finding the minimum cut in the flow graph, similar to
that described in Section 3. This graph is based on the current fractional solution @ and the set of
routes R = {r € R¥ : 4, > 0}. The capacity of each arc (0,) connecting the source to route node r
is set to @f,. After finding the minimum cut in the flow graph, the candidate set S C € of customers
is constructed according to the proof of Theorem 4.1. As shown by the theorem, this separation
algorithm is exact for integer solutions 8. Finally, we use a variant of the connected components
heuristic called the route-based algorithm proposed by Archetti, Bouchard, and Desaulniers (2011).

We separate only 3-row subset-row packing and covering cuts. Preliminary experiments have
indicated that cuts with more rows do not significantly improve the quality of the linear relaxation
on average, but they do have a noticeable impact on the computation time. The 3-row cuts are
separated by the enumeration of all triples of customers. Elementarity cuts (17) are also separated
by enumeration.

The limited memory for strong k-path inequalities and subset-row cuts is obtained in the same
way as proposed by Pecin et al. (2017b). For each violated cut, a minimal memory is generated
such that the coefficients of the route variables 6, > 0 in the limited-memory cut are equal to
coefficients of these variables in the full-memory cut.

5.3 Other algorithmic components

Our BCP algorithm incorporates the following algorithmic enhancements.

e In the labeling algorithm, labels are stored in buckets according to their consumption of the
capacity resource (SDVRP) or the time resource (SDVRPTW). To reduce the number of
dominance checks, we employ the bucket-graph based labeling algorithm (Sadykov, Uchoa,
and Pessoa 2021). Before using the exact labeling algorithm, we utilize the labeling heuristic,
which retains only the best label (according to reduced cost) in each bucket.

e As previously mentioned, elementarity constraints are not enforced in the labeling algorithm.
Instead, we impose partial elementarity by using the ng-path relaxation introduced by Bal-
dacci, Mingozzi, and Roberti (2011). For a given customer ¢ € C, its ng-neighborhood consists
of the eight closest customers, including i itself.

e To improve the convergence of column generation, we use the automatic dual price smooth-
ing stabilization technique. The dual solution provided to the pricing problem is a convex
combination of the optimal dual solution of the current RMP and the dual solution that has
yielded the best Lagrangian bound thus far. The convex combination multiplier is dynami-
cally adjusted using the approach proposed by Pessoa et al. (2018).

e Following each convergence of column generation, the bucket graph used in the labeling
algorithm is filtered based on a reduced cost argument. A bucket arc, defined by a bucket
and an outgoing arc, is eliminated if it can be proven that there does not exist an improving
solution that includes any route passing through this bucket arc.

18

e After bucket arc elimination, we run the elementary route enumeration procedure. This
procedure, initially developed by Baldacci, Christofides, and Mingozzi (2008) for classic VRPs,
involves enumerating all elementary routes with reduced cost smaller than the current primal-
dual gap, i.e. all routes which may participate in an improving solution. After successful
enumeration, the pricing problem is solved by inspection instead of the labeling algorithm. If
the number of enumerated routes is less than three thousand, the node is finished by solving
the master problem as a MIP.

Additional details regarding these enhancements can be found in Sadykov, Uchoa, and Pessoa
(2021). The labeling procedure is a dynamic-programming-based algorithm that keeps the best
partial route for each customer visit pattern (and each endpoint) as a state. Since the number of
possible patterns can grow exponentially with n, it uses a reduced cost argument to prune a large
number of states. In split delivery variants, the maintained states depend not only on the visited
customers but also on the corresponding delivery quantities. This is because partial routes that
visit the same set of customers but with different delivery quantities cannot dominate each other.
While at most 2" visit patterns are possible in classic VRPs, this number increases to (K + 1)"
in SDVRPs when using the proposed formulations. Therefore, the route enumeration procedure
becomes impractical for K > 2, and it is only used for formulations (F0), (F1), and (F2).

Finally, we employ the ILS-based matheuristic proposed by Alvarez and Munari (2022) to
generate initial upper bounds for the optimal values of the instances. Before launching our BCP
algorithm, we run the matheuristic with a time limit set to t = 8[41°82(%/16)] seconds. For example,
the time limits are 24, 80, and 320 seconds for instances with 25, 50, and 100 customers, respectively.
The value of the best solution (plus a small epsilon) is then used as the initial upper bound in the
BCP algorithm. A high-quality upper bound is extremely useful for bucket arc elimination and
elementary route enumeration.

5.4 Branching

If no violated cutting planes are found for the current fractional solution, or the tailing off condition
is met, we proceed to branching. The tailing off condition is satisfied under two conditions: 1) when
the primal-dual gap decreases by less than 1.5% in three rounds of cut separation, which do not
have to be consecutive; or 2) when the average exact pricing time exceeds 10 seconds.

We use two branching strategies, described as follows. Let Z;; = >, cqx x;jér. First, we branch
on expressions Zj; + Zj; for all {i,j} C € (i.e., edges between customers), Zo; + Zjn41 for all
i € C (i.e., edges between the depot and customers), and >, ¢ 3(Z0; + Zin+1) (i-e., the number of
used vehicles). The best branching expression is determined using the multiphase strong branching
scheme described by Sadykov, Uchoa, and Pessoa (2021).

If none of the above expressions is fractional for the current solution 8, we perform the following
Ryan&Foster (Ryan and Foster 1981, Desrochers and Soumis 1989) branching. We find a pair
{i,j} C € such that > gx.} . =2 0, is fractional and impose the constraint that customers
i and j should be on the same route in one branch and on different routes in another branch.
These constraints are imposed in the pricing problem by introducing additional binary resources.
Desaulniers (2010) showed that the combination of branching on edges and Ryan&Foster branching
is sufficient to fulfill the integrality requirements for route variables 8. Again, the best Ryan&Foster
branching pair is determined using the multiphase strong branching.

To enhance the quality of branching candidates, we employ the multiphase strong branching

19

procedure. In phase zero, we select a maximum of 100 candidates from the most fractional pairs
{i,7} and from the branching history. Then, in phase one, for each candidate and each branch,
we only resolve the restricted master problem without conducting any column generation. Up to
five best candidates (according to the product rule) are chosen for phase two, where only heuristic
column generation is performed. Finally, the best candidate is selected, also considering the product
rule. Further information on the multiphase strong branching can be found in Pecin et al. (2017b),
Sadykov, Uchoa, and Pessoa (2021).

6 Computational results

In this section, we numerically investigate the strength of the proposed family of formulations
and verify the performance of our BPC algorithm using benchmark instances with and without
time windows. The algorithm is coded in the C++ programming language on top of the generic
BCP library BaPCod (Sadykov and Vanderbeck 2021) with its VRPSolver extension (Pessoa et al.
2020), containing the implementation of the labeling algorithm for the SPPRC. We use IBM CPLEX
version 20.1, as the general-purpose LP and MIP solver. We performed the numerical evaluation
of our BCP algorithm on a server with nodes having the 2.6GHz Cascade Lake Intel Xeon Skylake
Gold 6240 processor with 36 cores and 196 GB of RAM. Up to 36 instances were run in parallel on
each node, each run using a single core.

6.1 Instances

We benchmark our algorithm on standard literature test instances of the SDVRPTW and SDVRP.
For the SDVRPTW, we use the same instances that were previously tested in Desaulniers (2010),
Archetti, Bouchard, and Desaulniers (2011), Bianchessi, Drexl, and Irnich (2019), Munari and
Savelsbergh (2022). These instances are derived from the classic Solomon’s VRPTW instances
with 50 and 100 customers (56 instances of each size). To create the SDVRPTW instances, we
modify the original instances to allow for split deliveries and impose a vehicle capacity constraint
of 30, 50, and 100 units. Therefore, there are 168 instances for each size.

We also use modified SDVRPTW instances. First, we generate instances with 75 customers
by removing the last 25 customers from instances with 100 customers, resulting in 168 instances.
Secondly, we create new instances by modifying instances with § = 10 (these are all instances in
class C, and instances in class RC with 50 customers). For this, we add a random integer value
in the range of [—3,3] to the demand of each customer i € C such that d; € [1.2din, 0.8dmax]-
Then we verify whether ¢ = 1 and that the value [, - d;/30] remains the same as in the original
instance. We regenerated each instance until these two conditions are verified. We denote these
new instances as 50P, 75P, and 100P, depending on the instance size. There are 201 instances of
this kind. Thus, the total number of instances is 705.

Following a similar approach as presented in Bianchessi and Irnich (2019), we preprocess the
instances using the following steps. Firstly, we round the travel times to one decimal place. Next,
we replace the travel time of each arc with the shortest path between its tail and head nodes.
Lastly, we add the service time of the tail node to the travel time of each arc.

For the SDVRP, we use the same four classes of instances tested in Archetti, Bianchessi, and
Speranza (2014), Ozbaygin, Karasan, and Yaman (2018), Gouveia, Leitner, and Ruthmair (2023),
Munari and Savelsbergh (2022). First class SD contains 21 instances, having from 8 to 288 cus-

20

tomers. Second class S contains 14 instances, having from 50 to 100 customers. The third class
p contains 42 instances, having from 50 to 199 customers. Finally, fourth class eil contains 11 in-
stances having from 21 to 100 customers. Each instance has four variations depending on whether
distances (and travel costs) are rounded and whether the number of vehicles is fixed to the min-
imum possible number. Instances with unlimited and limited fleet are referred to as UF and LF,
respectively, if distances are considered to be Euclidean distances. Similarly, we use UF-r and LF-r
to refer to instances with rounded Euclidean distances.

6.2 Strength of formulations (FK) for different values K

First, we numerically investigate the dependency of the quality of the lower bound and the solution
time of the master problem on value K. As a reminder, the master problem is the linear relaxation
of Formulation (FK) enriched by cutting planes. The master problem is solved by applying the
column and cut generation procedure. It terminates either when no violated cutting planes are
found or when the tailing-off criterion is satisfied. In this experiment, we set the initial upper
bound equal to the optimal value of the instance. We do so to exclude the random impact of
improving the primal solution during the column and cut generation procedure.

This investigation is performed using the SDVRPTW test instances from the literature with
50 customers. All optimal solutions for these instances were obtained by us during preliminary
experiments. The instances are categorized into two groups based on the value of Ky,.x. The first
group contains instances in classes C and RC, for which Kpax = 4. We tested Formulations (F0),
(F1), (F2), and (F4) for these instances. The second group consists of instances in class R for
which Kpax = 36. We tested Formulations (F0), (F1), (F2), (F4), (F8), (F16), and (F36) for these
instances.

In Figure 3, we show the plots for different instance groups and different values of the vehicle
capacity. In these plots, Gap is the average difference between the optimal value and the lower
bound of the master problem, expressed as a percentage of the former (right scale), and Time is
the average solution time in seconds of the column and cut generation procedure (left scale).

As expected, the strength of the master problem increases (the optimality gap decreases) with
increasing value K. However, this decrease in the gap is steeper for instances with a smaller vehicle
capacity (@ = 30 and @ = 50) and less steep for instances with longer routes (@ = 100). The
optimality gap is almost nullified for K = K. for instances with small K,x. For instances in
class R, the gap remains significant even for K = Ky ax.

The decrease of the solution time with the increase of value K for instances in the first group
is less intuitive. This outcome occurs because the linear relaxation of (FKyy,x) becomes stronger
with the increase in value K and thus a smaller number of cut generation rounds is necessary to
attain convergence. In addition, the size of graph §/(K) remains reasonable since K,y is still
small. Thus, Formulation (FK,.x) is a clear choice for instances in the first group.

The selection of the most suitable formulation for instances in the second group is not as
obvious. It is evident that Formulations (FO) and (F1) are dominated by (F2) in terms of both the
optimality gap and solution time. However, when K increases beyond the value of 2, the solution
time increases due to a larger size of graph §/(K), while the optimality gap decreases. A slight
increase in the gap between (F16) and (F36) for @ = 100 is attributed to the termination criterion
at the root, which depends on the time taken by the route generation subproblem.

There is a clear trade-off between the root primal-dual gap and the root solution time. However,
the slope gradient varies depending on the vehicle capacities, i.e., for instances with different average

21

C, RC. Q = 30 C, RC. Q = 100
120 0.6 120 0.6 120 ‘ ‘ 0.6
A G
100 0.5 100 0.5 100 | ap(%) g 5
—&—Time(s)
—~ 80 0.4 80 0.4 80 .
SN— 50
§ 601 0.3 60 0.3 60 g
& 40 0.2 40 0.2 40 O
20 0.1 20 0.1 20
2.8 800
2.1 600
1 S
1.4 400 5
5
0.7 200
M

|
01 2 4 8 16 36 36
K

Figure 3: Dependency of the optimality gap and the solution time of master problem on value K

route lengths. When routes are short on average, the decrease in the optimality gap is steep as
the value of K increases, while the increase in solution time is not as significant. The opposite
outcome occurs for instances with relatively long routes (@ = 100): the gain in terms of the
optimality gap for large values of K is small compared to K = 2, whereas the loss in terms of
the solution time is very large and reaches one order of magnitude for large values of K. This
observation may indicate that Formulation (FK,.x) should be chosen for instances with smaller
vehicle capacity, while Formulation (F2) is more suitable for instances with larger vehicle capacity.
This intuition is confirmed by the next round of experiments, in which we solve the benchmark and
novel SDVRPTW instances using our BCP algorithm on Formulations (F2) and (FKpax)-

6.3 BCP performance for the SDVRPTW instances

We first test the impact of new families of cutting planes on the BCP performance for the SD-
VRPTW instances. In all tested BCP variants, we use rounded capacity cuts and limited-memory
subset-row cuts with three rows, as these cuts are shown to be beneficial in previous studies. Thus,
we compare the following variants of the BCP algorithm.

e BCPmax,; — BCP over formulation (FK) with all cutting planes.

e BCPmax,;_skpr — BCP over formulation (FK,.x) with all cutting planes except limited-
memory strong k-path inequalities.

22

e BCPmax,;_srcr — BCP over formulation (FK,ax) with all cutting planes except limited-
memory subset-row covering inequalities.

e BCPmax,_skpi—srct — BCP over formulation (FK.x) with all cutting planes except
limited-memory subset-row covering inequalities and strong k-path inequalities.

e BCP2,; — BCP over formulation (F2) with all cutting planes.

e BCP2,_srcr — BCP over formulation (F2) with all cutting planes except limited-memory
subset-row covering inequalities.

We do not consider variants of BCP2 without strong k-path inequalities as these inequalities
are necessary for the validity of formulation (F2).

We would like to note that variant BCPmax,;_skpr_srcr can be obtained equivalently by
defining an appropriate VRPSolver model (Pessoa et al. 2020). In this model, two vertices are
defined for each customer: one representing deliveries exceeding half the demand and another
representing smaller deliveries. For each customer, its packing set includes only the first vertex,
but its elementarity set includes both vertices. Multiple arcs are defined between pairs of vertices,
with one arc for each possible delivery quantity, corresponding to the head vertex of the arc.
Ryan&Foster branching is defined on elementarity sets, and not on packing sets as usual. Definition
of resources is the same as for the CVRP and VRPTW. Enumeration should be turned off as the
sufficient condition defined in Pessoa et al. (2020) is not satisfied.

Table 1 presents the results obtained from different BCP variants, aggregated across all SD-
VRPTW instances. We use the standard time limit of one hour for the combined matheuristic and
BCP execution. The columns show the BCP variant used, the total number of instances solved to
optimality, the geometric mean BCP time (which excludes the matheuristic time), the arithmetic
mean BCP time, the average primal-dual gap in the root node, and the average final primal-dual
gap. The geometric mean times are included as, compared with arithmetic means, they are less
affected by extreme values, which in this case correspond to large computation times for the open
instances.

Table 1: Aggregated results for different BCP variants for all 705 SDVRPTW instances (one-hour
time limit)

BCP variant Opt Geom. time(s) Time(s) Root gap(%) Final gap(%)
BCPmaxan_stl_SRCI 361 360.40 1837.16 087 0.72
BCPmaxan_skpr 358 362.56 1865.11 0.86 0.72
BCPmaxai—srcr 368 354.53 1820.09 0.84 0.70
BCPmaxan 363 349.39 1828.03 0.82 0.69
BCP2a1-srcer 273 734.92 2243.48 2.42 2.00
BCP2a1 273 730.12 2238.13 2.39 1.93

We can see from Table 1 that both new families of cuts contribute to reducing the average root
and final gaps. Moreover, the inclusion of strong k-path inequalities leads to an increased number
of instances solved to optimality. However, subset-row covering inequalities do not allow us to solve
more instances to optimality. Thus, we do not use these cuts in the subsequent experiments.

Concerning formulations (F2) and (FKpax), it is evident that the latter is more efficient. How-
ever, it does not dominate the former as there are instances, and even instance classes, that

23

are better solved by (F2). Thus, Table 2 presents a detailed comparison between the variants
BCPmax,_grcr and BCP2,;_sror- The results in this table are aggregated by instance class,
instance size, and vehicle capacity. The columns show the instance class, the number of customers
(n), the vehicle capacity (@), and the number of instances in the group (#). The instances in
groups “P” are the modified ones. Then, for both BCP variants, the table displays the average
number of nodes in the BCP tree, the average final optimality gap, the arithmetic mean pure BCP
time in seconds, and the number of instances solved to optimality. The last two columns indicate
(for the literature instances) the number of instances for which the best literature lower bounds
are improved, and the number of instances solved to optimality for the first time. The last two
lines in Table 2 aggregate statistics for all instances (Total) and for a selected subset of instances
(FKmax-Hard). These selected instances have @ = 100 and Kp,ax > 10, specifically instances 50P,
75P and 100P in class C, instances 50P, 75 and 100 in class RC, and all instances in class R.
They are particularly hard for the fully discretized formulation (FKax), as the size of multi-graph
G'(Kmax) is large and routes are long.

Although variant BCPmax,;_gsgrcr is significantly more efficient than variant BCP2,_srcr, the
latter performs better for instances in this subset. Variant BCP2,_srcr solves 16 more instances
to optimality in this subset, and is on average 14.48% faster for it.

Comparing our results with the literature, our best configuration solves 214 instances within
one hour, surpassing the 127 instances solved by Munari and Savelsbergh (2022), the 109 instances
solved by Bianchessi, Drexl, and Irnich (2019), and the 94 instances solved by Archetti, Bouchard,
and Desaulniers (2011). In total, 84 instances are solved to optimality for the first time by at least
one of the configurations.

We emphasize the exceptional results for instances in class C with 100 customers by configura-
tion K = Kpax. All 51 instances are solved to optimality in a relatively short time, whereas only
seven of them were previously solved in the literature within a one-hour time limit and all of them
for Q = 100. These results allow us to suggest that instances with small K, .« are easier to solve
than instances with large K ax, such as instances in class R with 50 and 100 customers and in
class RC with 100 customers. Note that the difficulty of instances in class RC depends on their
size: Kmax = 40 for instances with 100 customers and K,.x = 4 for instances with 50 customers.
The detailed results are presented in the supplementary materials (E-Companion).

If one is interested in understanding how the parameter K affects the number of split customers
in the solutions and the average number of visits each split customer receives, Appendix C provides
aggregated results in a format similar to Table 2. In summary, the percentage of split customers
remains below 30% for all tested instances, even with small capacities. The number of splits per split
customer is rarely greater than one, indicating that split customers generally receive a maximum
of 2 visits. Additionally, information about the quantity of inequalities of each class added to the
master problem is also provided.

6.4 BCP performance for the SDVRP instances

We evaluate three variants of our BCP algorithm using the complete test set of SDVRP instances.
These variants are BCPmax,_srci, BCP2a1_srcr, and BCP10,_sgrcr, with the latter corre-
sponding to a BCP implementation based on formulation (F10) and incorporating all cutting planes
except limited-memory subset-row covering inequalities. As is common in the literature, a time
limit of two hours is imposed for these instances, which includes the initial matheuristic time.

24

Table 2: Aggregated results for two BCP variants for SDVRPTW instances (one-hour time limit)

Class 0 Q " BCP2,)1_src1 BCPmax,1—sror Improvement
Nodes Gap(%) Time(s) Opt Nodes Gap(%) Time(s) Opt LB* Opt*

30 17 7.9 0.03 566.68 16 1.0 0.00 1.72 17 0 0

50 50 17 18.8 0.00 53.54 17 1.0 0.00 1.36 17 0 0

100 17 3.5 0.00 20.31 17 1.9 0.00 7.24 17 0 0

30 17 138.8 0.15 2179.03 10 121.0 0.10 1384.95 12 - -

50P 50 17 145.6 0.59 1817.09 9 21.1 0.00 571.65 17 - -

100 17 70.5 0.04 797.56 16 32.9 0.21 1598.33 13 - -

30 17 235.8 0.60 3392.34 3 5.1 0.00 13.85 17 - -

C 75 50 17 159.6 0.44 1706.02 9 3.7 0.00 14.22 17 - -
100 17 104.4 0.32 1531.32 11 8.5 0.00 65.51 17 - -

30 17 52.3 1.29 3425.55 0 100.2 0.53 3424.89 0 - -

5P 50 17 58.1 1.89 3424.65 0 37.0 0.98 3348.80 1 - -

100 17 48.5 1.52 3365.44 2 7.0 1.57 3429.93 1 - -

30 17 131.5 0.62 3281.85 0 3.6 0.00 24.76 17 15 15

100 50 17 168.9 0.69 3280.58 0 10.1 0.00 79.29 17 17 17

100 17 32.9 0.02 750.23 16 2.5 0.00 39.60 17 14 14

30 17 36.5 5.18 3282.42 0 29.1 1.32 3284.38 0 - -

100P 50 17 31.5 2.68 3282.01 0 8.3 1.50 3290.51 0 - -

100 17 24.1 1.47 2890.75 5 2.9 1.90 3363.90 0 - -

30 23 311.8 2.25 3520.69 0 157.5 0.23 2028.55 18 11 7

50 50 23 350.5 1.47 2621.81 8 51.5 0.00 894.13 23 12 12
100 23 51.1 0.00 499.80 23 27.5 0.10 1212.18 20 17 17

R 30 23 61.4 5.50 3425.53 0 43.8 2.05 3427.79 0 - -

75 50 23 94.7 4.20 3425.25 0 30.5 1.63 3365.12 1 -

100 23 96.0 1.39 2586.37 9 11.3 1.04 2811.71 6 - -

30 23 45.1 8.34 3282.81 0 22.5 2.39 3285.66 0 23 0

100 50 23 44.0 6.04 3281.88 0 8.2 2.40 3310.98 0 23 0

100 23 40.0 2.58 2886.52 3 3.5 2.08 3045.91 3 22 2

30 16 1.3 0.00 730.15 16 1.0 0.00 2.02 16 0 0

50 50 16 1.0 0.00 3.49 16 1.0 0.00 1.07 16 0 0

100 16 1.0 0.00 1.61 16 1.0 0.00 1.34 16 0 0

30 16 2.5 0.00 70.61 16 247.8 0.01 689.98 13 - -

50P 50 16 6.5 0.00 67.58 16 8.9 0.00 260.60 16 - -

RC 100 16 4.8 0.00 27.19 16 5.3 0.03 667.98 15 - -
30 16 64.4 1.31 3426.25 0 78.5 0.33 3142.91 3 - -

75 50 16 1194 1.33 3424.76 0 41.5 0.46 3292.30 2 -

100 16 166.6 1.09 3032.95 3 6.9 1.51 3118.69 3 - -

30 16 29.6 7.29 3283.99 0 17.1 0.52 3285.50 0 16 0

100 50 16 27.9 6.35 3283.95 0 7.1 0.77 3293.45 0 16 0

100 16 59.0 6.35 3312.55 0 2.5 1.81 3388.61 0 14 0

Total 705 2243.48 273 1820.09 368 200 84
F Kmax-Hard 168 2138.39 77 2500.46 61 92 19

25

Table 3 presents a summary of the results obtained from testing the three BCP variants. Recall
that we consider four versions of the original test set of 88 SDVRP instances, obtained by the
combination of unlimited- and limited-fleet and Euclidean and rounded Euclidean distances (as
described in Section 6.1). The results in the table are aggregated based on each version, instance
class, and BCP variant. The table includes the average number of nodes processed in the branch-
and-bound tree, the average final primal-dual gap, the arithmetic mean of the pure BCP time
and the number of instances solved to optimality. For the BCPmax,_srcr variant, there is an
additional column indicating the number of instances for which the column generation procedure
of the root node did not terminate within the time limit. For other variants, column generation
always terminated successfully.

Table 3: Results of three BCP variants for the SDVRP instances (two-hour time limit)
BCP2,-srar BCP10a1-sror BCPmaxan-srcr
Nodes Gap(%) Time(s) Opt Nodes Gap(%) Time(s) Opt Nodes Gap(%) Time(s) Opt CG limit

Version Class #

eil 11 499 090 3804.82 6 3.7 029 3368.29 8 9.5 0.15 3448.62 4 5
LFy P 42 33.1 51.27 643991 1 39.6 13.71 6352.99 3 11.0 298 6232.28 3 2
S 14 646 396 5903.60 3 90.6 197 5796.95 3 35.1 1.94 5468.34 3 0
SO 21 281 428 3836.35 9 111.6 0.66 2726.69 12 111.8 0.66 2713.10 12 0
eil 11 535 099 3819.96 5 37.7 034 3367.02 7 4.5 0.73 3890.60 3 4
p P 42 355 4580 6437.22 1 33.0 1234 6273.83 2 11.6 3.09 6489.90 3 0
S 14 787 418 573895 3 98.7 2.03 5742.96 4 49.9 2.05 5619.90 5 0
SD 21 342 6.17 398420 9 27.0 0.68 2493.28 13 288 0.68 2489.94 13 0
eil 11 623 110 3826.63 5 426 0.26 333040 9 25,5 0.62 381257 5 3
UFr P 42 334 5348 644365 1 371 1297 6300.30 2 125 271 631480 3 1
S 14 674 3.54 603097 2 1023 1.79 5723.07 3 23.0 1.19 5466.32 3 1
SD 21 30.2 4.85 4010.23 8 413 051 2711.24 12 454 051 2717.05 12 0
eil 11 705 1.12 382147 5 42.3 0.38 3356.50 7 29.5 0.73 3464.70 4 4
up P 42 372 4570 6437.30 1 38.8 12.16 6426.74 2 10.3 2.78 6403.94 3 0
S 14 811 371 577864 3 1136 1.73 5669.97 4 36.3 136 5376.13 4 2
SO 21 315 6.04 4009.51 8 1276 0.62 3170.29 11 1442 0.62 3173.21 11 0
Total 352 43.0 2549 542846 70 57.0 6.59 5019.03 102 33.0 1.92 5026.39 91 22

The results presented in Table 3 clearly indicate that the best performing BCP variant for the
SDVRP instances is BCP10,;_srci- The detailed results obtained with this variant can be found
in the supplementary materials (E-Companion). Variant BCPmax,y_gsrcr is ranked second overall.
However, its robustness is limited as it fails to obtain even a lower bound for certain instances with
very large values of Kiyax. Variant BCP10,;_srcr solved to optimality 102 instances, including
fourteen instances for which optimality was proved for the first time. We compare these numbers
with the state-of-the-art branch-and-cut algorithms proposed by Munari and Savelsbergh (2022)
and Gouveia, Leitner, and Ruthmair (2023). We observe that the latter achieved optimality for
106 instances out of a total of 352 instances. Our algorithm improved the best known lower bounds
for 116 instances, accounting for nearly 50% of the previously unsolved instances. For the smaller
test set of 224 instances considered by Munari and Savelsbergh (2022), our algorithm achieved
optimality for 96 instances, surpassing the results presented in the aforementioned paper by 11
instances. Furthermore, our algorithm improved the best known lower bounds for 51 instances in
the reduced set of 108 previously open instances.

26

Table 4 provides aggregated results for variant BCP10,1_grc1. For each class of instances, we
show the number of instances solved to optimality, the number of improved lower bounds compared
to the literature, and the number of instances solved to optimality for the first time. Appendix
B contains aggregated statistics on the solutions, including the percentage of split customers, and
information on the number of cuts added to the master problem.

Table 4: Aggregated results of variant BCP10,_srcr for the SDVRP instances (two-hour time
limit)

LF-r LF UF-r UF
Class #
Opt LB* Opt* Opt LB* Opt* Opt LB* Opt” Opt LB* Opt*
eil 11 8 5 2 7 6 2 9 5 3 7 6 2
P 42 3 16 1 2 9 0 2 16 0 2 7 0
S 14 3 2 0 4 1 0 3 5 0 4 2 0
SD 21 12 9 1 13 9 1 12 9 1 11 9 1
Total 88 26 32 4 26 25 3 26 35 4 24 24 3

7 Conclusions

We have introduced a new family of partially discretized route-based formulations, denoted as
(FK), for split delivery vehicle routing problems. Here, K represents the maximum number of
different delivery quantities allowed when visiting a customer. We have shown experimentally that
as K increases, the formulation becomes stronger but might become more challenging to solve. In
the strongest fully discretized formulation (FK,.x), all possible delivery quantities are considered.

The proposed formulations rely on a new property that holds true for at least one optimal solu-
tion of the problem. This property provides a minimum delivery quantity derived from the customer
demand and vehicle capacity, enabling a reduction in Ky, for certain instances. Consequently,
this reduction improves the computational efficiency of the strongest formulation. This property
has the potential to benefit other formulations, as well as other exact and heuristic approaches in
the literature.

To effectively solve the formulations, we have designed a BCP algorithm that resorts to new
and state-of-the-art algorithmic improvements. Specifically, we have developed the limited-memory
variant of subset-row covering inequalities and strong k-path inequalities, mitigating the influence
of non-robust valid inequalities. Moreover, we have shown how to consider them while solving the
pricing problem that dynamically generates the route variables.

Experimental results on the benchmark instances of the SDVRPTW highlight the excellent
performance of our BCP algorithm. In total, 84 instances are solved to optimality for the first time,
including many instances with 50 customers and all instances with 100 customers and a small value
of Kpmax. Formulation (FKp,,x) demonstrates the best average performance. However, formulation
(F2) is more efficient for instances with long routes and a large value of Ky,x. Formulation (F10)
stands as the best choice for the SDVRP instances (i.e., instances without time windows). Several
SDVRP instances were solved to optimality for the first time, and the best known lower bounds were
improved for many or them. In comparison with the literature, our BCP algorithm is especially
efficient for instances with longer routes. Based on these findings, the proposed formulations and
BCP algorithm establish a new state-of-the-art for the SDVRPTW, and are highly competitive with

27

the best approaches in the literature for the SDVRP. These results indicate that column generation-
based approaches can offer comparable or superior performance compared to pure branch-and-cut
approaches.

We believe there are interesting future research topics related to improving and extending our
solution approach. For example, the master problem of our strongest formulation (FKy,ax) may
take a long time to be solved, especially for instances with long routes. One possible way to make it
faster is to avoid the discretization of delivery quantities since it reduces the size of the graph in the
pricing problem. This can be done, e.g., by inserting load flow variables into the master problem, as
proposed by Munari and Savelsbergh (2020), or by defining extreme delivery patterns together with
the generation of routes, as introduced by Desaulniers (2010). Another possible improvement to
our BCP algorithm concerns the insufficient strength of Formulation (FK,,x) for instances with a
relatively large value of K,x. Root optimality gaps may still be high for such instances, even after
adding non-robust cuts. One should search for other families of valid inequalities. Separation of
cuts based on Chvéatal-Gomory rounding of demand covering constraints with different multipliers
might be useful to reduce optimality gaps. Thus, developing efficient separation algorithms for such
cuts is a promising research direction.

The proposed solution approach could be extended to other variants with additional attributes,
such as multiple depots (Gouveia, Leitner, and Ruthmair 2023), heterogeneous fleet (Belfiore and
Yoshizaki 2009), pickup and delivery (Casazza, Ceselli, and Wolfler Calvo 2021), and others. Such
extensions could be made following the generic modeling approach by Pessoa et al. (2020). Of
course, the numerical efficiency of these extensions remains to be seen for each variant separately.
Another important extension concerns the case in which the service time for a customer depends
on delivery quantity. This dependence might come from non-negligible loading or unloading times
(Li et al. 2020).

Acknowledgments

The experiments presented in this paper were performed using the PlaFRIM experimental testbed,
supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil
Régional d’Aquitaine (see https://www.plafrim.fr/).

Pedro Munari is supported by the Sao Paulo Research Foundation (FAPESP) [grant numbers
19/23596-2, 16/01860-1, 13/07375-0]; and the National Council for Scientific and Technological
Development (CNPqg-Brazil) [grant number 313220/2020-4].

Teobaldo Bulhoes is supported by the National Council for Scientific and Technological Devel-
opment (CNPg-Brazil) [grant number 314088/2021-0].

Artur Pessoa is supported by the National Council for Scientific and Technological Development
(CNPg-Brazil) [grant number 306033/2019-4]

Isaac Balster is supported by the French region Nouvelle Aquitaine [project AAPR2020A-2020-
8601810].

We thank Eduardo Uchoa for fruitful discussions, which helped us to start this work.

We would like to thank the associated editor and referees who helped us to improve the quality
of the manuscript.

28

Appendix

A Subset-row inequalities

In this appendix we provide further details on the subset-row cuts defined in Section 4.

A.1 Subset-row packing inequalities

Inequalities (15) can be referred to as 3SRPIs since they were derived from exactly three packing
inequalities in (14), i.e., from a set of multipliers in which there are exactly three nonzero numerators
;. To find strong SRPIs, Pecin et al. (2017b) performed a computational study of the complete
set partitioning polytope C'SPP—(p), defined below together with the related complete set packing
polytope C'SPP<(p) and complete set covering polytope C'SPP=(p).

CSPP_(p) = Conv {Byz = 1,z € {0,1}* 7'} (26)
CSPP<(p) = Conv {Byz < 1,z € {0,1}* '} (27)
CSPPs(p) = Conv { By > 1,z € {0,1}* 7'} (28)

In the definition of these polytopes, B, is a binary matrix with p rows and all distinct 2 —1 nonzero
columns, and 1 represents the p-dimensional all-ones vector. Due to the combinatorial explosion of
their approach, the authors managed to study the C'SPP—_(p) only for p < 5, and they concluded
that the SRPIs associated with the following set of multipliers are facet inducing:

111
oBrows:();

2°2°2
2111
® 4 rows: <7,7,7,7>;
3’33 3
22111 31111 32211 22111 33221
® 5 rows: (777)77777)7(777777777)7<777777777)7(7777777)7>)<777)77777)7
4°4°4°4°4 4°4°4°4"4 55 9555 3’333 3 4°4°4°4°4

(11111) (11111)
272727272/)°\37373733/°
Later, Bulhoes et al. (2018) determined new families of multipliers that induce facets of C.SP P—(p)

for arbitrarily large values of p, and they showed that, with very few exceptions, every facet-inducing
inequality for C'SPP<(p) is also facet inducing for C'SPP-(p), and vice versa.

Observation 5 The existence of routes r € R with nonbinary coefficients in (14) has no impact
on the strength of the multipliers found by Pecin et al. (2017b) and Bulhdes et al. (2018).

This follows from such routes not being part of an integer solution.

A.2 Subset-row covering inequalities

We developed a computational approach to analyze the complete set covering polytope C'SP P> (p)
(see (28)) in the spirit of the work by Pecin et al. (2017b). Despite the inferior scalability of this

29

approach for CSPP=(p) due to a larger number of extreme points, we managed to find the following
multipliers, the associated SRCIs of which are facet-inducing:

111
® 3 rows: <7,7,7);
2°2°2

2221 1111
e 4 rows: (7777777)7(7777777>;
3’33 3 33 3 3

11111 11122 22222 11111 11223
o (30 G129 G DGR D GRS

2'2'2'2°2)°\3'3°3'3°3)'\3°3°3° 33 \wrrva)\ ey
<1§§§§> (2?§§§) (11?%%) <1222%> (2%%%%)
47474’474 9 4’474747 Y 57575757 ? 575757575 ? 57575’575 *

Observation 6 In contrast to the packing case, one might find stronger SRCIs by analyzing a
generalization of CSPP=(p) in which the extreme points are not necessarily binary.

Preliminary experiments showed that the large number of extreme points of this generalized
polytope renders our computational approach impractical.

B Aggregated statistics for benchmark SDVRP tests

Table 5 aggregates statistics on the benchmark tests with formulation BCP10,;_srci. For each
test configuration and instance class, we list the percentage of partially discretized customers in
column “Part. Disc.(%)”, the percentage of customers with splits in the column “Split cust.(%)”,
the average number of splits per split customer in the column “Splits”, the total of cuts added to
the master in the column “# Cuts”, as well as for each inequality, the specific quantity of cuts
added in columns “# R1C”, “# CAP” and “# SKP”. At last, column “Opt” counts the number
of optimal solutions found.

C Aggregated statistics for benchmark SDVRPTW tests

Table 6 aggregates statistics on the benchmark tests and the results obtained with formulations
BCP2,1_srcr and BCPmax,1_srcr. For each class of instances, we list ¢, the percentage of partially
discretized customers in column “Part. Disc.(%)” (only for variant BCP2,)_grci), the percentage
of customers with splits in the column “Split cust.(%)”, the average number of splits per split
customer in the column “Splits”, the total of cuts added to the master in the column “# Cuts”,
as well as for each inequality, the specific quantity of cuts added in columns “# R1C”, “# CAP”
and “# SKP”. At last, column “Opt” counts the number of optimal solutions found.

30

Table 5: Aggregated statistics on the number of partially discretized customers, splits per split
customer and cuts for the SDVRP (two-hours time limit)

BCP10a1-srct

Configuration Class #
Part. Disc.(%) Split cust.(%) # Splits # Cuts # R1C # CAP # SKP Opt
eil 11 73.4 3.3 1.2 9664 4369 1945 3349 8
LF.r P 42 91.9 28.2 1.2 7969 850 4238 2880 3
S 14 85.7 18.3 1.2 15419 1564 7971 5884 3
SD 21 0.0 53.6 1.1 6062 309 3425 2329 12
eil 11 73.4 3.1 1.0 10085 4799 1775 3512 7
LF P 42 91.9 27.4 1.1 7623 576 4467 2580 2
S 14 85.7 17.0 1.2 17206 1557 10057 5592 4
SD 21 0.0 53.8 1.0 5037 116 3159 1761 13
eil 11 73.4 2.5 1.1 9941 5039 1955 2947 9
UF-r P 42 91.9 24.8 1.3 7814 748 4227 2839 2
S 14 85.7 15.0 1.3 15362 1573 8831 4958 3
SD 21 0.0 51.4 1.1 7618 262 4516 2840 12
eil 11 73.4 2.2 1.0 8160 4161 1636 2363 7
UF P 42 91.9 23.9 1.2 7677 607 4527 2543 2
S 14 85.7 16.1 1.2 17399 1666 10677 5056 4
SD 21 0.0 50.3 1.1 26057 298 18958 6801 11

31

0 88T 6LT 1.8 L€ 11 a1 0 196¢ 8L¥9 181¢ TE9eT 1T L1 0'66 9T 1 00T
0 129 10ST 8cT 08€T 11 19 0 1898 G99¢T T18 v91€T 1T L9 0'66 9T 1 0% 00T
0 £98¢ vEqL 8T 6LSTT 1 L°LT 0 LE6VT 1€69T €0LT 1LG€€ 11 L°LT 0'66 9T 1 og
€ 80€ 444 689 8€3T 01 1% € £989 GEVL qI8e £110C 0T £¢ 0°00T 9T 1 00T
4 £9€2 Tvse 6LY 7899 01 6 0 TOTVI 96E€T AR £798¢€ 01 e 0°00T 9T 1 0%)
€ T196 VLVVE 08¢ 99€¥E 01 R 0 16€8C OVF9E agel 18199 01 gql 0°00T 9T 1 og
a1 zLe 90g 96% £L6 1 8'9 91 503 197 121 <7 T1 a9 0°00T 9T 1 001 ou
91 0% 9601 Tl zlel 01 gzl 91 18€ 2192 9z 696¢ 01 82T 0'00T 91 T 0§ dOS
€1 029 L8LT 9z £EVT 1 g'LT 91 v0gT vove og v 11 VLT 0°00T 9T 1 o¢
91 4 69 0z 18 01 €1 91 0 as T 98 01 €1 0'92 91 0T 001
91 0 L6T 0 L61 01 0'¢g 91 0 8¢ 0 8¢ 01 ag 0'92 91 0T 0% og
91 0 299 0 299 01 0'€T 91 16 88T 4 98¢ 01 €T 092 91 01 oO¢
€ €81 181 44 182 01 1% € arLe 606¢ 62LE €geTl 01 12 0'96 € 1 001
0 009 vi8 L8¢ 1291 1 901 0 9016 9e8V1 8101 09672 11 901 0'96 €¢ 1 0% 001
0 8621 £€82 0zg 6797 z1 292 0 0LTST 70691 62T vogee o1 z'92 0'96 €¢ 1 o¢
9 979 609 Q9T 1292 1 ze 6 909¥ T16S 9€£9¢ gqT9T 11 e 0'96 € 1 001
1 86.LT [43%4 1) 7991 1 76 0 FITIT €891C 2 A 001¥€ 11T z6 0'96 €¢ 1 0% aL
0 818¢ 62€9 L8€ 79201 T1 9'7¢ 0 8L90% 9899¢ Tv6 90€L¥ T'1 97¢ 0'96 €¢ 1 o0¢ o
0z 8201 867 6902 98g¢e 01 Le 4 6591 8061 90€T TL8¢ 01 ¥ 0'96 €c 1 00T
€T GTET $59C 029 662G T1 701 8 LE€8T LETLT TIve 988.L¥ 1 z'6 0'96 €¢ T 0% 0s
ST 1002 80VST 90L SI1ET 01 0°¢g 0 F6TIE 88€F9 0geT 21696 01 £'€g 0°96 €g 1 o¢
0 16T €87 e1e 2601 01 ¥'g < $0zE €799 0281 L9211 01 89 0°00T LT T 00T
0 €38 0€8T 70€ 986¢ 1 921 0 TSITT TE€LST 596 8V8LT 1T 92T 0°00T LT 1 0§ d00tT
0 T96¢ 0TGL £2C 86901 T1 6'GC 0 1gSLT 9€10% 00€T1 LS68¢€ T'1 6'G¢ 0°00T LT 1 0
LT avT T8¢ eIt 8e8 01 1T 91 0TV [eletesd 6LE1 GGTL 01 11 0'2¢ LT 0T 00T
LT 19% 1661 i [erdtd 01 187 0 98TTT T6VTh ge9T £189¢ 01 8T 0'2¢ LT 0T 0% 00T
LT 80T 1891 4 06LT 01 70T 0 GGLGE TTS9T 682 2988 01 00T 0'2¢ LT 0T 0
1) 799 1€8 022¢ 11 1€ 4 £Vl 1£09 L61€ TLVIT 11T 44 0°00T LT 1 001
1 Viagd 9267 L18 €818 11 9'6 0 16811 L923T 198 G867E 1T 8'8 0°00T LT 1 0§ dSL
0 9769 026ST 7o 6TEET T 162 0 8212¢ TSTI6T 029 626TS T 44 0°00T LT T og
L1 £9% 8€9 S0L 908T 0T TT 1T TILY $0LS 8TTF 96971 0T L0 £1¢ LT 0T 00T
L1 €11 188 44 FPOT 0T 6'C 6 0698 €6L7E SOFT 88LFF 0T 4 €'1e LT 0T 0%) o)
L1 AR €ELT g 088T 0T 61T € 0S%9€ TTEES ¥29 96£06 0T 8'TT £'1e LT 0T oOg
€1 1911 (4 [4a4 [did 0T 0¥ 91 0gge 00€T 908% 9g€8 0T ['h4 0°00T LT T 00T
L1 898 1611 4 (4144 0T 8'cT 6 19€8 6LTST Az 180L% T g'1T 0°00T LT 1T 0§ dos
TT 889G LIETT a9T TL0LT 11T 192 0T Tggez 080€€ 20¢ 88692 T a'9g 0°00T LT T og
L1 LTT 444 0LT TIS 0T g0 L1 29T 78¢ LT €69 0T g0 0'8T LT 0T 00T
L1 0 292 0 192 01 8¢ L1 6L 8VET 9. £00€ 0T 8'g 0'8T LT 0T o0¢ 0g
L1 0 ave 0 avs 01 6'6 91 ov9 1.2€ 9 [4dits 0T 66 0'8T LT 0T O0f
O IS # dAVO # OIH # smp # syudg # (%) sno jdg WO dMS # dAVO # OTd # smD # suds # (%) asno ydg (%) 0s1q Hed
b O uw ssep

IDYUS— :dx\mﬂ:&om

IOUS -1z 30 g

(3t ewry amoy-auo) M ILJIYACS 2Y? I0J $Ind pue Iawogsnd 31[ds
1ad sq11ds ‘siewo)sno pPozIaI1osip A[[eijied jo IaquInu 9y} UO SO13sIeIS Pajredei83y :9 o[qe],

32

References

Alvarez A, Munari P, 2022 Heuristic approaches for split delivery vehicle routing problems. Technical report,
number 8790, Operations Research Group, Production Engineering Department, Federal University of
Sao Carlos - Brazil.

Archetti C, Bianchessi N, Speranza MG, 2011 A column generation approach for the split delivery vehicle
routing problem. Networks 58(4):241-254.

Archetti C, Bianchessi N, Speranza MG, 2014 Branch-and-cut algorithms for the split delivery vehicle routing
problem. European Journal of Operational Research 238(3):685-698.

Archetti C, Bouchard M, Desaulniers G, 2011 Enhanced branch and price and cut for vehicle routing with
split deliveries and time windows. Transportation Science 45:285-298.

Archetti C, Savelsbergh MWP, Speranza MG, 2006 Worst-case analysis for split delivery vehicle routing
problems. Transportation Science 40:226-234.

Baldacci R, Christofides N, Mingozzi A, 2008 An exact algorithm for the vehicle routing problem based on
the set partitioning formulation with additional cuts. Mathematical Programming 115:351-385.

Baldacci R, Mingozzi A, Roberti R, 2011 New route relaxation and pricing strategies for the vehicle routing
problem. Operations Research 59(5):1269-1283.

Bektag T, Laporte G, 2011 The pollution-routing problem. Transportation Research Part B: Methodological
45:1232-1250.

Belfiore P, Yoshizaki HTY, 2009 Scatter search for a real-life heterogeneous fleet vehicle routing problem with
time windows and split deliveries in brazil. European Journal of Operational Research 199(3):750-758.

Bianchessi N, Drexl M, Irnich S, 2019 The split delivery vehicle routing problem with time windows and
customer inconvenience constraints. Transportation Science 53:1067-1084.

Bianchessi N, Irnich S, 2019 Branch-and-cut for the split delivery vehicle routing problem with time windows.
Transportation Science 53:442-462.

Braekers K, Ramaekers K, Nieuwenhuyse IV, 2016 The vehicle routing problem: State of the art classification
and review. Computers & Industrial Engineering 99:300-313.

Bulhoes T, Pessoa A, Protti F, Uchoa E, 2018 On the complete set packing and set partitioning polytopes:
Properties and rank 1 facets. Operations Research Letters 46(4):389-392.

Casazza M, Ceselli A, Wolfler Calvo R, 2021 A route decomposition approach for the single commodity
split pickup and split delivery vehicle routing problem. European Journal of Operational Research
289(3):897-911.

Desaulniers G, 2010 Branch-and-price-and-cut for the split-delivery vehicle routing problem with time
windows. Operations Research 58:179-192.

Desrochers M, Soumis F, 1989 A column generation approach to the urban transit crew scheduling problem.
Transportation Science 23:1-13.

Dror M, Trudeau P, 1989 Savings by split delivery routing. Transportation Science 23:141-145.

Dror M, Trudeau P, 1990 Split delivery routing. Naval Research Logistics (NRL) 37:383-402.

Feillet D, Dejax P, Gendreau M, Gueguen C, 2006 Vehicle routing with time windows and split deliveries.
Technical report, Laboratoire d’Informatique d’Avignon.

Frizzell PW, Giffin JW, 1995 The split delivery vehicle scheduling problem with time windows and grid
network distances. Computers & Operations Research 22(6):655-667.

Gouveia L, Leitner M, Ruthmair M, 2023 Multi-depot routing with split deliveries: Models and a
branch-and-cut algorithm. Transportation Science 57:512-530.

Ho SC, Haugland D, 2004 A tabu search heuristic for the vehicle routing problem with time windows and
split deliveries. Computers & Operations Research 31(12):1947-1964.

33

Jepsen M, Petersen B, Spoorendonk S, Pisinger D, 2008 Subset-row inequalities applied to the vehicle-routing
problem with time windows. Operations Research 56(2):497-511.

Jin M, Liu K, Eksioglu B, 2008 A column generation approach for the split delivery vehicle routing problem.
Operations Research Letters 36(2):265-270.

Laporte G, Nobert Y, 1983 A branch and bound algorithm for the capacitated vehicle routing problem.
Operations-Research-Spektrum 5(2):77-85.

Li J, Qin H, Baldacci R, Zhu W, 2020 Branch-and-price-and-cut for the synchronized vehicle routing problem
with split delivery, proportional service time and multiple time windows. Transportation Research Part

E: Logistics and Transportation Review 140:101955.

Luo Z, Qin H, Zhu W, Lim A, 2017 Branch and price and cut for the split-delivery vehicle routing problem
with time windows and linear weight-related cost. Transportation Science 51:668—687.

Lysgaard J, Letchford AN, Eglese RW, 2004 A new branch-and-cut algorithm for the capacitated vehicle
routing problem. Mathematical Programming 100:423-445.

Moreno L, De Aragao MP, Uchoa E, 2010 Improved lower bounds for the split delivery vehicle routing
problem. Operations Research Letters 38(4):302-306.

Mullaseril P, Dror M, 1996 A set covering approach for directed node and arc routing problems with split
deliveries and time windows. Technical report, MIS department, University of Arizona, Tucson, Arizona.

Mullaseril PA, Dror M, Leung J, 1997 Split-delivery routeing heuristics in livestock feed distribution. Journal
of the Operational Research Society 48(2):107-116.

Munari P, Savelsbergh M, 2020 A column generation-based heuristic for the split delivery vehicle routing
problem with time windows. SN Operations Research Forum 1(4):1-24.

Munari P, Savelsbergh M, 2022 Compact formulations for split delivery routing problems. Transportation
Science 56:1022-1043.

Ozbaygin G, Karasan O, Yaman H, 2018 New exact solution approaches for the split delivery vehicle routing
problem. EURO Journal on Computational Optimization 6:85-115.

Pecin D, Pessoa A, Poggi M, Uchoa E, 2017a Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation 9(1):61-100.

Pecin D, Pessoa A, Poggi M, Uchoa E, Santos H, 2017b Limited memory rank-1 cuts for vehicle routing
problems. Operations Research Letters 45(3):206-209.

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F, 2018 Automation and combination of linear-programming
based stabilization techniques in column generation. INFORMS Journal on Computing 30(2):339-360.

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F, 2020 A generic exact solver for vehicle routing and related
problems. Mathematical Programming 183:483-523.

Ryan DM, Foster BA, 1981 An integer programming approach to scheduling. Computer scheduling of public
transport: Urban passenger vehicle and crew scheduling 269-280.

Sadykov R, Uchoa E, Pessoa A, 2021 A bucket graph—based labeling algorithm with application to vehicle
routing. Transportation Science 55(1):4-28.

Sadykov R, Vanderbeck F, 2021 BaPCod — a generic Branch-And-Price Code. Technical report HAL-
03340548, Inria Bordeaux — Sud-Ouest.

Shapiro JF, 2007 Modeling the supply chain, volume 2 (Thomson Brooks/Cole).

Toth P, Vigo D, 2014 Vehicle Routing: Problems, Methods and Applications (Society for Industrial and
Applied Mathematics), second edition.

Weil A, 1983 Number Theory: an approach through history. From Hammurapi to Legendre.
(Boston/Basel/Stuttgart: Birkh&user).

34

