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Abstract. We consider a robust optimization problem with continuous decision-dependent5
uncertainty (RO-CDDU), which has two new features: an uncertainty set linearly dependent on6
continuous decision variables and a convex piecewise-linear objective function. We prove that RO-7
CDDU is strongly NP-hard in general and reformulate it into an equivalent mixed-integer nonlinear8
program (MINLP) with a decomposable structure to address the computational challenges. Such9
an MINLP model can be further transformed into a mixed-integer linear program (MILP) using10
extreme points of the dual polyhedron of the uncertainty set. We propose an alternating direction11
algorithm and a column generation algorithm for RO-CDDU. We model a robust demand response12
(DR) management problem in electricity markets as RO-CDDU, where electricity demand reduction13
from users is uncertain and depends on the DR planning decision. Extensive computational results14
demonstrate the promising performance of the proposed algorithms in both speed and solution quality.15
The results also shed light on how different magnitudes of decision-dependent uncertainty affect the16
demand response decision.17

Key words. Robust Optimization, Decision-dependent Uncertainty, Demand Response18

AMS subject classifications. 90C17, 90C1119

1 Introduction Robust optimization (RO) has emerged as a major modeling20

framework for decision-making under uncertainty [9]. In a RO model, the decision-21

maker optimizes the worst-case performance of an objective function within an uncer-22

tainty set. Often the RO problem is a semi-infinite program, which can be reformu-23

lated as the finite-dimensional robust counterpart. We can classify uncertainty models24

into decision-independent and decision-dependent ones. The decision-independent25

uncertainty, called exogenous uncertainty, has been discussed extensively in the lit-26

erature [10; 11; 12]. As stated in [9], for many types of convex uncertainty sets27

independent of decisions, the RO model admits a computationally tractable robust28

counterpart.29

Recently more theoretical developments have focused on the RO formulation with30

decision-dependent uncertainty sets [35], which admits a wide range of applications31

in pricing, scheduling, and electricity demand response [27; 48]. In this paper, we32

consider a class of mixed-integer robust optimization models with a continuous decision-33

dependent uncertainty set (RO-CDDU), which contains two features: (i) the uncertainty34

set depends on the continuous decision variables, and (ii) the objective function is35

piecewise-linear convex. We formulate the RO-CDDU model as follows:36

min
x,y

max
ξ∈Ξ(x)

max
k=1,...,K

fk(x,y, ξ)(1.1a)37
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2 H. CHEN, X. A. SUN, H. YANG

s.t. (x,y) ∈ Ω,(1.1b)38

x ∈ Rnx , y ∈ Zny .(1.1c)3940

In problem (1.1), the feasibility set Ω is a polyhedron defined by m inequalities41

such that Ω =
{

(x,y) ∈ Rnx+ny : Ax + By ≤ r
}

. The uncertainty set Ξ(x) is a42

polyhedron defined by l inequalities: Ξ(x) =
{
ξ ∈ Rnξ : Wξ ≤ h− Tx

}
. The total43

number of pieces in the objective function is K ∈ N+, and the k-th piece fk(x,y, ξ) is44

a linear function fk(x,y, ξ) = a>k x+ b>k y + c>k ξ + dk. The piecewise linear convex45

objective function has been widely used in robust optimization applications, such46

as robust queuing networks [5; 8; 49], operating room scheduling [6], and inventory47

management [7; 31; 45]. In this paper, the piecewise linear objective function is48

motivated by different marginal costs for over- and under-commitment in an electricity49

market demand response application with details in Section 4. Model (1.1) returns50

a decision profile (x,y) that minimizes the worst-scenario cost given the uncertainty51

set. Here the RO-CDDU model (1.1) is different from the RO model with exogenous52

uncertainty, as the uncertainty set Ξ(x) depends on the continuous decision x.53

The literature has extensively discussed robust optimization problems with decision-54

dependent uncertainty (RO-DDU). Reference [35] establishes that a robust linear55

optimization problem with the uncertainty set dependent on decision variables is56

NP-hard by constructing a polynomial reduction from the 3-SAT problem. Reference57

[44] considers a software partitioning problem to minimize the run-time of a computer58

program, in which the scheduling of code execution depends on binary assignment59

decisions. Reference [38] extends the budget uncertainty set of [12] by allowing the60

protection level to be dependent on binary decision variables. Reference [48] proposes61

a decision-dependent uncertainty set as a Minkowski sum of static uncertainty sets.62

Reference [39] proposes a (1 + ε)-approximation algorithm for the robust optimization63

problem with a knapsack uncertainty set. Reference [28] generalizes the dependency64

from binary decision variables to general discrete ones. The uncertainty set dependent65

on discrete decisions with finite dimensions admits a computationally tractable robust66

counterpart that can be represented as a finite union of convex sets. Our work67

establishes that RO-CDDU is strongly NP-hard and characterizes the structure of the68

adversary’s problem that depends on continuous decisions in our algorithm design.69

Another stream of research focuses on endogenous uncertainty in distribution-70

ally robust optimization settings, in which the ambiguity set characterized by the71

probabilistic distributions depends on the previous stages’ decisions. For example,72

Reference [30] explores multiple types of ambiguity sets based on moments, covariance73

matrix, Wasserstein metric, Phi-divergence, and Kolmogorov–Smirnov test, for which74

they derive tractable dual reformulations. Reference [36] develops tractable formula-75

tions for ambiguity sets based on similar statistical distances. Reference [51] has a76

decision-dependent moment-based ambiguity set, and the formulation is extended to a77

multi-stage setting. However, those distributionally robust optimization models still78

require an estimation of the ambiguity set to compute the expectation based on the79

worst-case probability distribution, which may not satisfy the robustness requirement80

in some low-probability high-impact applications [54].81

The formulation of the RO-CDDU model is motivated by the demand response82

management in electricity markets [1]. As the internet-of-things (IoT) and smart83

grid technologies develop, an increasing number of electric appliances, including air84

conditioners and space heaters in residential and commercial buildings, are eligible85
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RO-CDDU 3

for real-time control. This allows flexible electric loads in different locations to be86

aggregated into a sizable portfolio of demand response (DR) resources. A company that87

creates and manages such a portfolio is called a DR aggregator, which balances supply88

and demand in electricity markets by adjusting DR resources’ loads. DR aggregators89

constantly face issues of uncertainty in DR resources [37]: a DR resource commits to90

reducing its electricity consumption by a certain amount for a given time period, but91

the actual reduction can deviate from such a commitment and the deviation often92

depends on the committed reduction amount. If mishandled, this uncertainty can93

cause significant load shedding and financial loss. Therefore, we propose an RO-CDDU94

model, utilizing a convex piecewise-linear function to realistically model electric power95

generation cost functions [50], and develop computationally tractable algorithms for a96

DR aggregator to manage their large portfolios of DR resources.97

We summarize the main contributions of this paper below.98

1. We formulate the RO-CDDU model (1.1) and establish that RO-CDDU in a99

general form is strongly NP-hard.100

2. We establish that problem (1.1) has an equivalent decomposable formulation101

with an uncertainty set specific to each piece of the linear function.102

3. We derive an MINLP formulation for RO-CDDU, and pose two assumptions103

on the dual polyhedron such that RO-CDDU is well-defined. Under those104

assumptions, we reformulate RO-CDDU into an MILP using the extreme105

points of the dual polyhedron. We characterize cases for RO-CDDU to be106

solvable in polynomial time even when the dual polyhedron has an exponential107

number of extreme points, and in addition, we develop two computationally108

efficient algorithms to numerically solve RO-CDDU.109

4. We propose a novel RO-CDDU model for a demand response management110

problem in electricity markets. We present extensive computational experi-111

ments on our proposed algorithms to analyze the robust solution’s properties.112

The paper is organized as follows. In Section 2, we prove that the RO-CDDU prob-113

lem is strongly NP-hard. In Section 3, we discuss model reformulation and algorithm114

design. More specifically, in Section 3.1, we provide an exact MILP formulation for115

the RO-CDDU problem, and characterize the model reformulation for widely-studied116

uncertainty sets. We propose an alternating direction algorithm (ADA) and a column117

generation algorithm (CGA) in Section 3.2, and the McCormick relaxation for a lower118

bound of RO-CDDU in Section 3.3. In Section 4, we discuss the application of our119

model in a demand response scheduling problem in electricity markets and report the120

performance of the computational experiments. Section 5 concludes the paper with a121

summary and future directions of RO-CDDU.122

2 Computational Complexity We are interested in whether the RO-CDDU123

problem could be solved polynomially in O(nα1
x nα2

y mα3nα4

ξ lα5) steps for some αi ≥ 0124

with i = 1, . . . 5. Besides the computational challenges caused by integer variables,125

it remains to show if the continuous decision-dependent uncertainty set makes the126

problem hard to solve. Using a polynomial reduction from the 3-partition problem, we127

prove that RO-CDDU is strongly NP-hard, even with no integer decision variables.128

Theorem 2.1. For any ny ∈ N (including ny = 0), the RO-CDDU problem in129

(1.1) is strongly NP-hard.130

Proof of Theorem 2.1. To prove that model (1.1) is strongly NP-hard for any131
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4 H. CHEN, X. A. SUN, H. YANG

ny ∈ N, we consider a problem instance of (1.1) with nx = KNx for some Nx ∈ N+,132

and for each k = 1, . . . ,K we set the objective function fk(x,y, ξ) as:133

fk(x,y, ξ) = −
Nx∑
i=1

ωixik −
ny∑
j=1

νjyj +

Nx∑
`=1

ξ`k.134

We define feasible region Ω in (1.1b) as Ω = {(x,y) ∈ [0, 1]KNx+ny :
∑Nx
i=1 ωixik +135 ∑ny

j=1 νjyj = W,
∑Nk
i=1 xik = 3,

∑K
k=1 xik = 1} with ωi > 0 for all i = 1, . . . Nx136

and νj > W > 0 for all j = 1, . . . , ny, and the uncertainty set Ξ(x) as Ξ(x) =137

×Nxi=1 ×Kk=1 Ξik(xik), where Ξik(xik) = {ξik ∈ R : ξik ≤ xik, ξik ≤ 1 − xik} for138

i = 1, . . . , Nx and k = 1, . . . ,K. We can rewrite model (1.1) as:139

min
V,x,y

V(2.1a)140

s.t. V ≥
Nx∑
i=1

max
ξik∈Ξik(xik)

{
ξik
}
−

Nx∑
i=1

ωixik −
ny∑
j=1

νjyj , ∀k = 1, . . . ,K,(2.1b)141

Nx∑
i=1

ωixik +

ny∑
j=1

νjyj = W, ∀k = 1, . . . ,K,(2.1c)142

Nk∑
i=1

xik = 3, ∀k = 1, . . . ,K,(2.1d)143

K∑
k=1

xik = 1, ∀i = 1, . . . , Nx,(2.1e)144

0 ≤ xik ≤ 1, ∀i = 1, . . . , Nx, k = 1, . . . ,K,(2.1f)145

0 ≤ yj ≤ 1, yj ∈ Z, ∀j = 1, . . . , ny.(2.1g)146147

148 The objective function (2.1a) and constraint (2.1b) together reformulate the ob-149

jective function in (1.1a). We observe that maxξ∈Ξ(x) c
>
k ξ =

∑nx
i=1 maxξik∈Ξik(xik) ξik150

since the uncertainty set Ξik(xik) is separable for k = 1, . . . ,K. By definition, we151

can establish maxξik∈Ξik(xik){ξik} = min{xik, 1− xik}. Constraints (2.1c)-(2.1f) char-152

acterize the feasible region Ω. Constraint (2.1g) specifies bounds and integrality for153

variables y in constraint (1.1c). Given that νj > W for all j = 1, . . . , ny, any feasible154

solution should satisfy yj = 0 and we can omit y in our formulation.155

We denote the decision problem associated with model (2.1) as Q, in which we156

decide if there exists a feasible solution (V,x,y) such that V = −W . Computing157 ∑Nx
i=1 maxξik∈Ξik(xik)

{
ξik
}

and
∑Nx
i=1 ωixik takes polynomial time in the size of input,158

so the decision problem is in NP. We next establish a polynomial reduction from a159

3-partition problem, Q3par, to Q by verifying that the answer to Q is “yes” if and only160

if the answer to Q3par is “yes”. The 3-partition problem Q3par asks if there exists a161

partition of set S into triplets for S = S1 ∪ · · · ∪ SK with |Sk| = 3 for all k = 1, . . . ,K162

and Sk ∩ Sk′ = ∅ for all k 6= k′ such that
∑
ω∈Sk ω = W for each k = 1, . . . ,K.163

( =⇒ ) Suppose the answer to Q is “yes”, i.e., there exists a feasible solution (V,x,y)164

such that V = −W . We can derive the following inequalities:165

V
(a)

≥
Nx∑
i=1

min {1− xik, xik} −
Nx∑
i=1

ωixik
(b)
=

nx∑
i=1

min {1− xik, xik} −W
(c)

≥ −W,(2.2)166

167

This manuscript is for review purposes only.



RO-CDDU 5

where step (a) follows directly from constraint (2.1b), and step (b) follows directly from168

constraint (2.1c). In step (c), constraint (2.1f) suggests that
∑Nx
i=1 min {1− xik, xik} ≥169

0. Since V = −W , every inequality in (2.2) holds as an equality. From step (b) we have170 ∑Nx
i=1 ωixik = W . Since step (c) holds as an equality, for each i = 1, . . . , Nx, we either171

have 1−xik = 0 or xik = 0, i.e., xik ∈ {0, 1}. We set Sk = {ωi : xik = 1},∀k = 1, . . . ,K.172

Each Sk forms a triplet by constraint (2.1d) and every element ωi can find a unique173

triplet assignment by constraint (2.1e). The sum of elements of each triplet equals W174

by constraint (2.1c) and we obtain a solution to Q3par.175

(⇐= ) Suppose that the answer to Q3par is ”yes”, which implies that there exists a176

partition of set S into triplets S1, . . . ,SK such that
∑
ω∈Sk ω = W for all k = 1, . . . ,K.177

We can then construct a tuple (V,x,y) as:178

xik =

{
1 if ωi ∈ Sk
0 otherwise

∀i = 1, . . . , Nx, k = 1, . . . ,K, yj = 0, ∀j = 1, . . . , ny, V = −W,179

which is feasible for model (2.1), and thus we can answer “yes” to Q.180

In summary, we establish a polynomial reduction from Q3par to Q. Since Q3par is181

strongly NP-complete, the decision problem Q is also strongly NP-complete and the182

optimization problem RO-CDDU is strongly NP-hard for all ny ∈ N. �183

Theorem 2.1 suggests that the uncertainty set’s dependency on continuous deci-184

sions makes RO-CDDU model (1.1) strongly NP-hard. This strongly NP-hardness185

also leads to the result that RO-CDDU does not admit a fully polynomial-time ap-186

proximation scheme (FPTAS) unless P = NP [22]. Note that our complexity result187

still holds when there is no integer variable, i.e., ny = 0, or when x is integer.188

To improve the computational tractability of RO-CDDU, we first establish a189

reformulation of model (1.1) to the following model with a decomposable structure:190

min
V,x,y,z

V(2.3a)191

s.t. V ≥ a>k x+ b>k y + zk + dk, ∀k = 1, . . . ,K,(2.3b)192

zk ≥ max
ξk∈Ξ(x)

{
c>k ξk

}
, ∀k = 1, . . . ,K,(2.3c)193

(x,y) ∈ Ω, x ∈ Rnx , y ∈ Zny .(2.3d)194195

We summarize the connections between model (1.1) and (2.3) in Proposition 2.2 below.196

Proposition 2.2. The RO-CDDU problem in (1.1) has the same optimal value197

as model (2.3). Any optimal solution to model (2.3) is also optimal to model (1.1).198

Proof of Proposition 2.2. We first add an auxiliary variable V to represent the199

objective function of the RO-CDDU model in (1.1), and then lift the decision space200

into (V,x,y) to obtain the following equivalent formulation:201

min
V,x,y,z

V(2.4a)202

s.t. V = max
ξ∈Ξ(x)

max
k=1,...,K

{
a>k x+ b>k y + c>k ξ + dk

}
,(2.4b)203

(x,y) ∈ Ω, x ∈ Rnx , y ∈ Zny .(2.4c)204205

Next, we show that problem (2.4) is equivalent to problem (2.5) below:206

min
V,x,y,z

V(2.5a)207
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s.t. V ≥ max
k=1,...,K

{
a>k x+ b>k y + zk + dk

}
,(2.5b)208

zk ≥ max
ξk∈Ξ(x)

{
c>k ξk

}
, ∀k = 1, . . . ,K,(2.5c)209

(x,y) ∈ Ω, x ∈ Rnx , y ∈ Zny .(2.5d)210211

To establish the claim, we prove the equivalence between model (2.4) and model (2.5).212

First, for problem (2.4), we consider the corresponding optimal solution (x′,y′, z′, V ∗1 )213

where ξ′ satisfies that ξ′ ∈ arg maxξ∈Ξ(x′) maxk=1,...,K

{
a>k x

′ + b>k y
′ + c>k ξ + dk

}
.214

We then let the optimal solution to problem (2.5) be (x∗,y∗, z∗, V ∗2 ) where ξ∗k ∈215

arg maxξk∈Ξ(x∗)

{
c>k ξk

}
for all k = 1, . . . ,K. At optimality, the index k∗ represents216

the piece where maxk=1,...,K

{
a>k x

∗ + b>k y
∗ + z∗k + dk

}
is achieved.217

( =⇒ ): We first prove that the optimal value V ∗2 of model (2.5) is greater than or218

equal to the optimal value V ∗1 of model (2.4). To establish the claim, we show that219

V ∗2
(a)

≥ max
k=1,...,K

a>k x
∗ + b>k y

∗ + c>k z
∗
k + dk(2.6a)220

≥ max
k=1,...,K

a>k x
∗ + b>k y

∗ + max
ξk∈Ξ(x∗)

{
c>k ξk

}
+ dk(2.6b)221

(b)

≥ max
ξ∈Ξ(x∗)

max
k=1,...,K

a>k x
∗ + b>k y

∗ + c>k ξ + dk(2.6c)222

(c)

≥ min
x,y∈Ω

x∈Rnx ,y∈Zny
max
ξ∈Ξ(x)

max
k=1,...,K

a>k x+ b>k y + c>k ξ + dk = V ∗1 ,(2.6d)223

224

where step (a) follows directly from constraints (2.5b) and (2.5c) in model (2.5). In225

step (b), the inequality holds because we can view the function in (2.6c) as the function226

in (2.6b) with additional constraints ξk = ξ for all k = 1, . . . ,K, which enables us to227

move the maximization operator over ξ outside maxk=1,...,K . In step (c), the inequality228

follows given that (x∗,y∗) is only a feasible solution to the minimization problem229

in (2.6d) with an optimal objective value V ∗1 , which also leads to the last equality.230

Summarizing the observations above, we obtain that V ∗2 ≥ V ∗1 .231

(⇐= ): To establish V ∗1 ≥ V ∗2 , we deduce that232

V ∗1
(d)
= max

k=1,...,K

{
a>k x

′ + b>k y
′ + c>k ξ

′ + dk
}

(2.7a)233

(e)

≥ max
k=1,...,K

{
a>k x

′ + b>k y
′ + max

ξk∈Ξ(x′)

{
c>k ξk

}
+ dk

}
(2.7b)234

(f)

≥ max
k=1,...,K

{
a>k x

∗ + b>k y
∗ + max

ξk∈Ξ(x∗)

{
c>k ξk

}
+ dk

} (g)
= V ∗2 ,(2.7c)235

236

where in step (d), we plug in the optimal solution (x′,y′, V ∗1 ) from model (2.4). We237

let k′ denote the index where the expression in (2.7a) achieves the maximum and k′′238

denotes the index where the expression in (2.7b) achieves the maximum. We can prove239

step (e) by discussing the following two scenarios: (i) if k′ = k′′, then we observe that the240

inequality holds with equality given that ξ′ ∈ arg maxξ∈Ξ(x′)

{
a>k′x

′+b>k′y
′+c>k′ξ+dk′

}
;241

(ii) if k′ 6= k′′, we can show the inequality by contradiction: assuming the inequality242

in (2.7b) does not hold, we obtain that243

a>k′′x
′ + b>k′′y

′ + c>k′′ξk′′ + dk′′ > max
k=1,...,K

{
a>k x

′ + b>k y
′ + c>k ξ

′ + dk
}
.244
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However, this contradicts that ξ′ maximizes the expression in (2.7a), since ξk′′ is a245

feasible solution and achieves a larger value for (2.7a). Therefore, the inequality in246

step (e) holds. Step (f) follows from the optimality of solution (x∗,y∗, z∗, V ∗2 ) to247

model (2.5). Step (g) matches the definition of V ∗2 . Therefore, V ∗1 ≥ V ∗2 .248

Summarizing the two arguments above, we obtain that V ∗1 = V ∗2 . Furthermore,249

(x∗,y∗) is an optimal solution to RO-CDDU model (1.1) based on the observation in250

step (c) that the solution is feasible, which also achieves the optimal value given that251

V ∗2 = V ∗1 . This completes the proof of the claims in this result. �252

Proposition 2.2 implies that we can solve model (2.3) instead of model (1.1)253

without loss of optimality. Such a reformulation is important as we can obtain a254

decomposable structure from model (2.3), while it is hard to do so for model (1.1).255

We will explain this structure with more details in Section 3 and consider model (2.3)256

in the discussion of RO-CDDU for the rest of the paper.257

3 Model Reformulations and Algorithms In the RO-CDDU model (1.1),258

the adversarial variable ξ influences the value of the piecewise-linear objective function259

maxk=1,...,K fk(x,y, ξ). From Proposition 2.2, we observe that model (2.3), equivalent260

to model (1.1), allows us to establish a decomposable structure as in constraint (2.3c),261

such that the adversarial variable ξk is specific to each linear function fk(x,y, ξ).262

However, even with a decomposable structure, Proposition 2.2 presents the fundamental263

challenge of solving the RO-CDDU problem: model (2.3) is a semi-infinite mixed-264

integer program, and the standard robust counterpart reformulation in Theorem 1.3.4265

of [9] cannot be directly applied due to the uncertainty set’s dependency on continuous266

decision variables. Another computational challenge is that the set of constraints in267

(2.3c) is nonconvex in decision x. Moreover, since the decision vector x is continuous,268

we can neither directly apply the reformulation techniques in [35].269

To address the issues above, we reformulate model (2.3) as the following MINLP,270

using the strong duality result in Theorem 1.3.4 of [9]:271

min
V,x,y,z,π

V(3.1a)272

s.t. V ≥ zk + a>k x+ b>k y + dk, ∀k = 1, . . . ,K,(3.1b)273

zk ≥ π>k (h− Tx), ∀k = 1, . . . ,K,(3.1c)274

W>πk = ck, πk ≥ 0 ∀k = 1, . . . ,K,(3.1d)275

(x,y) ∈ Ω, x ∈ Rnx , y ∈ Zny .(3.1e)276277

The bilinear terms π>k Txmake model (3.1) computationally challenging. In Section 3.1,278

by defining the dual polyhedron Hk := {π ∈ Rl : W>π = ck, π ≥ 0} from constraint279

(3.1d), we first state two assumptions based on the structure of Hk such that the RO-280

CDDU problem is well-defined. Under those assumptions, we can further reformulate281

model (3.1) as an MILP using the extreme points of Hk. However, the MILP model282

is still large-scale and hard to solve. Therefore, we propose an alternating direction283

algorithm (ADA) in Section 3.2.1 and a column generation algorithm (CGA) in284

Section 3.2.2 to obtain a good feasible solution efficiently. In Section 3.3, we consider285

an approximation model based on McCormick relaxation to obtain the lower bound.286

3.1 MILP Reformulation Based on the Structure of Hk We note that if287

the dual polyhedron Hk is an empty set, the adversary’s problem maxξk∈Ξ(x)

{
c>k ξk

}
288

This manuscript is for review purposes only.



8 H. CHEN, X. A. SUN, H. YANG

in constraint (2.3c) of problem (2.3) is either infeasible or unbounded by the linear289

programming duality theory, subject to which the RO-CDDU problem becomes ill-290

defined. Thus, we first make the following assumption on Hk.291

Assumption 1. Hk 6= ∅,∀k = 1, . . . ,K.292

Since Hk is contained in Rl+ and by Assumption 1 it is non-empty, thus it has an293

extreme point. So, by Minkowski-Weyl Theorem, we can explicitly represent the dual294

polyhedron Hk as:295

(3.2) Hk =

{
π =

Nk∑
s=1

w0
sπks +

Mk∑
r=1

w1
rλkr :

Nk∑
s=1

w0
s = 1, w0 ∈ RNk+ , w1 ∈ RMk

+

}
,296

where {πks}Nks=1 denotes a finite set of points and {λkr}Mk
r=1 denotes a finite set of297

rays in Hk, with finite Nk and Mk for all k = 1, . . . ,K. The dual polyhedron Hk298

is pointed because π ≥ 0, which suggests that it is without loss of generality to let299

{πks}Nks=1 be the set of extreme points and {λkr}Mk
r=1 be the set of extreme rays for Hk.300

With this representation, we further make an assumption on Hk to make model (1.1)301

well-defined.302

Assumption 2. λ
>
kr(h − Tx) ≥ 0 for any k = 1, . . . ,K, r = 1, . . . ,Mk and any303

(x,y) ∈ Ω,304

For Assumption 2, if for some solution (x̂, ŷ) ∈ Ω we can find a ray λkr such305

that λ
>
kr(h − T x̂) < 0, the adversary’s problem (2.3c) is infeasible because its dual306

problem is unbounded, i.e., a decision x̂ can be made such that Ξ(x̂) = ∅. For307

RO-CDDU, though decision-dependent, uncertainty should objectively exist and not308

be eliminated by the decision. Therefore, we propose Assumption 2 to avoid such309

an unreasonable situation, which also matches the real-world setups in the demand310

response management problem introduced in Section 4.311

Assumptions 1 and 2 ensure that the adversary’s problem maxξk∈Ξ(x)

{
c>k ξk

}
in312

constraint (2.3c) is neither unbounded nor infeasible, which are commonly recognized313

conditions for decision-independent uncertainty sets [13; 29]. To proceed, we consider314

the following characterization of the RO-CDDU problem.315

Proposition 3.1. Suppose {πks}Nks=1 and {λkr}Mk
r=1 are respectively the extreme316

points and extreme rays of Hk given in (3.2) for all k = 1, . . . ,K, Assumptions 1317

and 2 hold, and Ω is compact. The RO-CDDU problem (1.1) can be reformulated as318

the following MILP:319

min
V,x,y,z,µ

V(3.3a)320

s.t. V ≥ zk + a>k x+ b>k y + dk, ∀k = 1, . . . ,K,(3.3b)321

zk ≥ π>ks(h− Tx)−M(1− µks), ∀k = 1, . . . ,K, s = 1, . . . , Nk,(3.3c)322

Nk∑
s=1

µks = 1, µk ∈ {0, 1}Nk , ∀k = 1, . . . ,K,(3.3d)323

(x,y) ∈ Ω, x ∈ Rnx , y ∈ Zny .(3.3e)324325

Proof of Proposition 3.1. For any feasible solution x, by LP strong duality,326

the optimal value of maxξ∈Ξ(x) c
>
k ξ on the right hand side of constraint (2.3c) equals327

This manuscript is for review purposes only.



RO-CDDU 9

to the optimal value of its dual problem minπk∈Hk π
>
k (h− Tx). Thus, model (2.3) is328

equivalent to the following formulation:329

min
V,x,y,z,π

V(3.4a)330

s.t. V ≥ zk + a>k x+ b>k y + dk, ∀k = 1, . . . ,K,(3.4b)331

zk ≥ min
πk∈Hk

π>k (h− Tx), ∀k = 1, . . . ,K,(3.4c)332

(x,y) ∈ Ω, x ∈ Rnx , y ∈ Zny .(3.4d)333334

For each k = 1, . . . ,K, by the representation of Hk in (3.2), we can write the mini-335

mization problem in constraint (3.4c) in an equivalent form:336

min
w0,w1

( Nk∑
s=1

w0
sπks +

Mk∑
r=1

w1
rλkr

)>
(h− Tx)(3.5a)337

s.t.

Nk∑
s=1

w0
s = 1, w0 ∈ RNk+ , w1 ∈ RMk

+ .(3.5b)338

339

By Assumption 2, at the optimal solution, we have w1
r = 0 for any r = 1, . . . ,Mk340

because λ
>
kr(h− Tx) ≥ 0. Thus, constraint (3.4c) can be reformulated as341

(3.6) zk ≥ min
πk∈{πks:s=1,...,Nk}

π>k (h− Tx).342

Since Ω is compact, there exists a finite M so that we obtain model (3.3). �343

The dual feasible region Hk can be unbounded, but from Proposition 3.1, the344

extreme rays λks will not contribute to the objective value given Assumption 2.345

Therefore, we can focus our reformulation on the extreme points πks. Admittedly,346

the number of extreme points Nk can still be exponential in the problem parameters347

(nx, nξ), leading to an exponential number of binary indicators µ. As a result, solving348

such a large-scale MILP model is still challenging in general. Therefore, we focus on two349

widely-used uncertainty sets in the literature: the central-limit-theorem (CLT)-induced350

uncertainty set in [5] and the budgeted uncertainty set in [12]. Next, we will show that351

RO-CDDU with either uncertainty set admitspolynomially-solvable reformulations352

when there are no integer variables.353

CLT-induced uncertainty set by [5]. The uncertainty set proposed by [5] is354

mainly motivated by the central limit theorem. Based on their work, we consider355

a decision-dependent uncertainty set, ΞCLT (x), in which the mean value and the356

standard deviation of ξ are affine functions of the decision variables x:357

(3.7) ΞCLT (x) :=

{
ξ ∈ Rnξ :

∣∣∣ nξ∑
i=1

ξi −
nξ∑
i=1

(α0
i +α1

i
>
x)
∣∣∣ ≤ Γσ(β0 + β1>x)

}
,358

where constants α0 ∈ Rnξ , β1 ∈ Rnx , α1 ∈ Rnξ × Rnx and β0,Γ, σ ∈ R+. We use359

affine functions
∑nξ
i=1(α0

i +α1
i
>
x) and Γσ(β0 +β1>x) of decision variables x to replace360

the random variable’s mean and standard deviation. We proceed to characterize the361

conditions in which the RO-CDDU problem is well-defined in Proposition 3.2, establish362

a polynomially-sized reformulation, and obtain the optimal value.363
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Proposition 3.2. The adversary’s problem maxξk∈ΞCLT (x) c
>
k ξk yields a finite364

value, and correspondingly, the RO-CDDU model is well-defined if and only if β0 +365

β1>x ≥ 0 and ck1 = · · · = cknξ = ck for some ck ∈ R. Under such conditions, for any366

feasible solution (x,y) ∈ Ω, the optimal value of the k-th adversary’s problem satisfies:367

368

(3.8) max
ξk∈ΞCLT (x)

c>k ξk = |ck| · Γσ(β0 + β1>x) + ck ·
nξ∑
i=1

(α0
i +α1

i
>
x).369

Proof of Proposition 3.2. Using a standard transformation by introducing two370

auxiliary variables u+, u− ≥ 0, we first write down a linear program reformulation of371

the adversary’s problem (P k) and its dual problem (Dk):372

(P k) max
ξ∈Rnξ ,u+≥0,u−≥0

nξ∑
i=1

ckiξi373

s.t. u+ + u− ≤ Γσ(β0 + β1>x), : π1374

u+ − u− =

nξ∑
i=1

ξi −
nξ∑
i=1

(α0
i +α1

i
>
x). : π2375

(Dk) min
π1≥0,π2∈R

π1

[
Γσ(β0 + β1>x)

]
− π2

[ nξ∑
i=1

(α0
i +α1

i
>
x)

]
376

s.t. π1 + π2 ≥ 0,377

π1 − π2 ≥ 0,378

− π2 = cki, ∀ i = 1, . . . , nξ.379380

The dual polyhedron Hk = {(π1, π2) : π1 ≥ 0, π1 ≥ π2, π1 ≥ −π2, π2 = −cki,∀ i =381

1, . . . , nξ} is nonempty only if ck1 = · · · = cknξ , which matches Assumption 1 to make382

sure that the adversary’s problem is bounded. Since π1 ≥ |π2| ≥ 0, if Γσ(β0 +β1>x) <383

0, π1 can take infinity to make (Dk) unbounded and (P k) infeasible. Therefore,384

ck1 = · · · = cknξ and Γσ(β0 + β1>x) ≥ 0 are the conditions for the adversary’s385

problem (P k), and also the RO-CDDU model, to be well-defined.386

On the other hand, if ck1 = · · · = cknξ = ck and Γσ(β0 +β1>x) ≥ 0, we can always387

find an optimal solution to (Dk) as π1 = |ck| and π2 = −ck. It is straightforward388

to see that π2 has to be fixed at −ck by the equality constraint. The coefficient for389

π1 is nonnegative and thus π1 should take the minimum value, which is the larger390

of ck and −ck, i.e., |ck|. By LP strong duality, the existence of such an optimal391

solution also suggests that the adversary’s problem can achieve an optimal value at392

ck ·
∑nξ
i=1(α0

i +α1
i
>
x) + |ck| · Γσ(β0 + β1>x), and RO-CDDU is well-defined. �393

Based on the characterization above, we only need to consider the unique extreme394

point of (Dk), π1 = |ck|, π2 = ck, to develop the following MILP reformulation for the395

RO-CDDU with a CLT-induced uncertainty set:396

min
V,z,x,µ

V(3.9a)397

s.t. V ≥ zk + a>k x+ b>k y + dk, ∀k = 1, . . . ,K,(3.9b)398

zk ≥ ck ·
nξ∑
i=1

(α0
i +α1

i
>
x) + |ck|

[
Γσ(β0 + β1>x)

]
, ∀k = 1, . . . ,K,(3.9c)399

(x,y) ∈ Ω, x ∈ Rn, y ∈ Zny .(3.9d)400
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401

We note that model (3.9) admits polynomially-sized constraints, which also reduces402

the computational concerns in the branch-and-bound algorithm in the MILP problem.403

Without any integer variables y, the RO-CDDU problem becomes polynomially solvable404

under the CLT-induced uncertainty set.405

Budgeted uncertainty set by [12]. We consider the widely-studied budgeted406

uncertainty set in the literature [3; 18; 42], which was first proposed by [12]. Given407

positive integers T and nξ = nx = nT , we define a budgeted uncertainty set ΞB(x) =408

×Tt=1ΞBt (xt), in which ΞBt (xt) is defined as:409

ΞBt (xt) :=

{
ξt ∈ Rn : − α0

it − α1
itxit ≤ ξit ≤ β0

it + β1
itxit, ∀i = 1, . . . , n,410

n∑
i=1

∣∣ξit∣∣ ≤ ζt +
∣∣ω>t xt∣∣},(3.10)411

412

where α0
t ,α

1
t ,β

0
t ,β

1
t ∈ Rn+, ζt ∈ R+, ωt ∈ Rn. Parameter t = 1, . . . , T indexes each413

piece in the Cartesian product of the uncertainty set. This formulation with nξ = nx414

is motivated by the multi-period model for the demand response application detailed415

in Section 4 but can be easily extended to the case where nξ 6= nx. Notice that the416

Cartesian product admits a decomposable structure naturally, which is established in417

the following lemma.418

Lemma 3.3. Given the uncertainty set ΞB(x) = ×Tt=1ΞBt (xt) with ΞBt (xt) defined419

in (3.10), we have that maxξ∈ΞB(x) c
>
k ξ =

∑T
t=1 maxξt∈ΞBt (xt) c

>
ktξt.420

Proof of Lemma 3.3. We prove the lemma from two sides:421

On one side, we first observe that maxξ∈ΞB(x) c
>
k ξ = maxξ∈ΞB(x)

∑T
t=1 c

>
ktξt ≤422 ∑T

t=1 maxξt∈ΞBt (xt) c
>
ktξt, because an optimal solution ξt is chosen for each optimization423

problem maxξt∈ΞBt (xt) c
>
ktξt with t = 1, . . . , T .424

On the other side, let ξ∗t be the optimal solution to problem maxξt∈ΞBt (xt) c
>
ktξt for425

all t = 1, . . . , T . By definition of Ξ(x) in (3.10), solution ξ∗ = (ξ∗t )Tt=1 is feasible to prob-426

lem maxξ∈ΞB(x) c
>
k ξ. So, we obtain that maxξ∈ΞB(x) c

>
k ξ ≥

∑T
t=1 maxξt∈ΞBt (xt) c

>
ktξt.427

Combining the two observations above, we conclude that maxξ∈ΞB(x) c
>
k ξ =428 ∑T

t=1 maxξt∈ΞBt (xt) c
>
ktξt. �429

Lemma 3.3 suggests that the uncertainty set ×Tt=1ΞBt (xt) allows us to decompose430

problem maxξ∈ΞB(x) c
>
k ξ into T independent adversary’s problems. Using the standard431

linearization technique by letting ξit = ξ+
it − ξ

−
it where ξ+

it , ξ
−
it ≥ 0, we can write the432

adversary’s problem for a given t = 1, . . . , T as an equivalent linear program in ξt:433

(P kt) max
ξ+t ,ξ

−
t ≥0

c>kt(ξ
+
t − ξ−t )(3.11a)434

s.t. ξ+it − ξ
−
it ≤ β

0
it + β1

itxit, ∀i = 1, . . . , n, : π1i(3.11b)435

ξ+it − ξ
−
it ≥ −α

0
it − α1

itxit, ∀i = 1, . . . , n, : π2i(3.11c)436

n∑
i=1

(
ξ+it + ξ−it

)
≤ ζt +

∣∣ω>t xt∣∣. : π3(3.11d)437

438
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We derive the dual problem of model (3.11) as:439

(Dkt) min
π1≥0,π2≤0

π3≥0

n∑
i=1

[
π1i

(
β0
it + β1

itxit
)
− π2i

(
α0
it + α1

itxit
)]

+ π3(ζt +
∣∣ω>t xt∣∣)(3.12a)440

s.t. π1i + π2i + π3 ≥ ckit, ∀i = 1, . . . , n,(3.12b)441

− π1i − π2i + π3 ≥ −ckit ∀i = 1, . . . , n.(3.12c)442443

444 We show that the feasible region Hkt corresponding to model (3.12) has an445

exponential number of extreme points in n via the following lemma. Without loss446

of generality, we can assume that the cost coefficients ckt are different, nonzero, and447

aligned in ascending order of their absolute values, i.e., 0 < |ck1t| < · · · < |cknt|. In448

addition, we also set ck0t := 0 for simplicity of notations.449

Lemma 3.4. We let the tuple (π∗1 ,π
∗
2 , π
∗
3) denote an extreme point for polyhedron450

Hkt. We can obtain a subset of extreme points satisfying the following conditions451

(i) for some j∗ = 1, . . . , n, π∗3 = |ckj∗t|;452

(ii) for any i = 1, . . . , n,453

• if i = j∗, π∗1i = π∗2i = 0;454

• if i > j∗, (π∗1i, π
∗
2i) =

{
(ckit − π∗3 , 0), if ckit > 0,

(0, ckit + π∗3), if ckit < 0;
455

• if i ≤ j∗, (π∗1i, π
∗
2i) ∈ {(0, 0), (0, ckit − π∗3), (ckit + π∗3 , 0)}.456

Proof of Lemma 3.4. To verify that the proposed point (π∗1 ,π
∗
2 , π
∗
3) is an extreme457

point, we enumerate the following possibilities of linear independence conditions for458

the dual linear program for each i = 1, . . . , n:459

• for i = j∗, by setting up π∗1i = π∗2i = 0, three inequalities π1i ≥ 0, π2i ≤ 0 and460

π1i + π2i + π3 ≥ ckit (if ckit > 0) or −π1i − π2i + π3 ≥ −ckit (if ckit < 0) hold461

as equality;462

• for i > j∗, if ckit > 0, by setting up π∗i1 = ckit−π∗3 and π∗2 = 0, two inequalities463

π2i ≤ 0 and π1i + π2i + π3 ≥ ckit hold as equality; if ckit < 0, by setting up464

π∗i2 = ckit+π
∗
3 and π∗1 = 0, two inequalities π1i ≥ 0 and −π1i−π2i+π3 ≥ −ckit465

hold as equality;466

• for i < j∗:467

– at π∗1i = π∗2i = 0, two inequalities π∗1i ≥ 0 and π∗2i ≤ 0 hold as equality;468

– at π∗1i = 0, π∗2i = ckit − π∗3 , π∗1i ≥ 0 and π1i + π2i + π3 ≥ ckit hold as469

equality;470

– at π∗2i = 0, π∗1i = ckit + π∗3 , π∗2i ≤ 0 and −π1i − π2i + π3 ≥ −ckit hold as471

equality.472

The solution (π∗1 ,π
∗
2 , π
∗
3) is feasible by construction, at which there are 2n + 1 lin-473

early independent inequality constraints holding as equality. Therefore, the solution474

(π∗1 ,π
∗
2 , π
∗
3) is a basic feasible solution, and thus an extreme point for Hkt. For each475

j∗ = 1, . . . , n, we can yield at least 3j
∗−1 extreme points, three for each i < j∗ − 1.476

This makes the total number of constructed extreme points, which is only a subset of477

all extreme points for Hkt, at least
∑n
j∗=1 3j

∗−1 = 3n−1
2 . Therefore, the number of478

extreme points for Hkt satisfies Ω(3n) and is exponential in parameter n. �479

We now establish Theorem 3.5 to show that we only need to consider a polynomial480

subset of extreme points to obtain the optimal solution to model (3.12).481
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Theorem 3.5. For any k = 1, . . . ,K, t = 1, . . . , T , the optimal solution to (Dkt)482

is within a subset of the extreme points:483 {
(π1,π2, π3) : π3 = |ckjt|,484

π1i = (|ckit| − π3)+ · 1ckit>0,485

π2i = −(|ckit| − π3)+ · 1ckit<0, ∀ i = 1, . . . , n
}n
j=0

,(3.13)486
487

where we let 1A be the indicator function of statement A and (ψ)+ := max{ψ, 0}.488

Proof of Theorem 3.5. We show that π3 can only take n + 1 possible values489

{|ckjt|}nj=0 by discussing the following two cases will not happen in an optimal solution490

to (Dkt):491

(i) π3 > maxj=1,...,n{|ckjt|}: suppose π3 > maxj=1,...,n{|ckjt|} in the optimal492

solution. Decision variables π1i and π2i should take value 0 to achieve the493

minimum value for the objective function of Dkt. We can construct π3 =494

maxj=1,...,n{|ckjt|}, which will yield a strictly better objective value. This495

contradiction suggests that in the optimal solution, π3 ≤ maxj=1,...,n{|ckjt|}.496

(ii) |ck(j−1)t| < π3 < |ckjt|: suppose π3 ∈ (|ck(j−1)t|, |ckjt|) in the optimal solution.497

To reach the minimum, we need to have π1 = π2 = 0 for i = 1, . . . , j − 1 and498

π1 = |ckit| − π3, π2 = 0 if ckit > 0 or π1 = 0, π2 = −|ckit|+ π3 for i = j, . . . , n.499

Therefore, we can express the objective value as:500
n∑
i=j

[
(|ckit| − π3)

(
(β0
it + β1

itxit) · 1ckit>0 + (α0
it + α1

itxit) · 1ckit<0

)]
501

+ π3(ζt +
∣∣ω>t xt∣∣)502503

The objective value is an affine function of π3. We let φ = (ζt +
∣∣ω>t xt∣∣)−504 (

(β0
it + β1

itxit) · 1ckit>0 + (α0
it + α1

itxit) · 1ckit<0

)
denote the linear coefficient505

of π3. If φ < 0, π̃3 = |ckjt| yields a strictly better objective than the optimal506

π3, while if φ > 0, π̃3 = |ck(j−1)t| yields a strictly better objective. Both cases507

contradict the assumption that π3is part of the optimal solution. When φ = 0,508

the objective value remains the same with either π̃3 = |ck(j−1)t| or π̃3 = |ckjt|509

and we can equivalently consider π̃3.510

By excluding the two cases above, we are left with a finite set of values for π3, {|ckjt|}nj=0.511

For a candidate solution with π3 = |ckjt| given j, we can realign constraints (3.12b)512

and (3.12c) as ckit − |ckjt| ≤ π1i + π2i ≤ ckit + |ckjt|. We can enumerate the following513

cases to show that either π1i = 0 or π2i = 0:514

(i) ckit < 0, i < j: here ckit+|ckjt| > 0 and ckit−|ckjt| < 0, since π1i

(
β0
it + β1

itxit
)

515

and −π2i

(
α0
it + α1

itxit
)

are both nonnegative, we have π1i = π2i = 0 at516

optimality;517

(ii) ckit < 0, i > j: here ckit + |ckjt| < 0 and ckit − |ckjt| < 0, to minimize the518

objective value, we have π1i = 0, π2i = ckit + |ckjt| at optimality;519

(iii) ckit > 0, i < j: here ckit+|ckjt| > 0 and ckit−|ckjt| < 0, since π1i

(
β0
it + β1

itxit
)

520

and −π2i

(
α0
it + α1

itxit
)

are both nonnegative, we have π1i = π2i = 0 at521

optimality;522

(iv) ckit > 0, i > j: here ckit + |ckjt| > 0 and ckit − |ckjt| > 0, to minimize the523

objective value, we have π1i = ckit − |ckjt|, π2i = 0 at optimality.524
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Summarizing the four cases above, we can write the closed-form solution as π3 = |ckjt|525

and for each i = 1, . . . , n, π1i = (|ckit|− |ckjt|)+ ·1ckit>0, and π2i = −(|ckit|− |ckjt|)+ ·526

1ckit<0, given a specific j = 0, . . . , n. Therefore, we conclude that the dual optimal527

solution can only come from the finite set stated in Theorem 3.5. �528

Theorem 3.5 establishes that for each piece t, the optimal value of adversary’s529

problem maxξt∈ΞBt (xt) c
>
ktξt subject to a budgeted uncertainty set ΞBt (xt) can be530

expressed as the minimum of n+ 1 linear functions, instead of an exponential number531

based on Lemma 3.4. By Proposition 3.1, we can establish the following MILP model:532

min
V,z,x,µ

V(3.14a)533

s.t. V ≥
T∑
t=1

zkt + a>k x+ b>k y + dk, ∀k = 1, . . . ,K,(3.14b)534

zkt ≥
n∑
i=1

[
(|ckit| − |ckjt|)+ · 1ckit>0

(
β0
it + β1

itxit
)
.535

+ (|ckit| − |ckjt|)+ · 1ckit<0

(
α0
it + α1

itxit
) ]

536

+ |ckjt|(ζt + e`ω
>
t xt)−M(1− µkjt),537

∀j = 0, . . . , n, k = 1, . . . ,K, t = 1, . . . , T, ` = 1, 2(3.14c)538

n∑
j=0

µkjt = 1, ∀k = 1, . . . ,K, t = 1, . . . , T,(3.14d)539

µjkt ∈ {0, 1}, ∀j = 0, . . . , n, k = 1, . . . ,K, t = 1, . . . , T,(3.14e)540

(x,y) ∈ Ω, x ∈ Rnx , y ∈ Zny .(3.14f)541542

We use the parameters e1 = 1 and e2 = −1, to linearize the absolute value of543

ω>t xt. Constraint (3.14c) is equivalent to constraint (3.3c) with πks substituted by544

the candidate dual solutions in (3.13). Recall that a major computational challenge545

for the MILP problem in (3.3) is that the number of binary variable µ in (3.3c) may546

be exponential in (nx, nξ). Under the budgeted uncertainty set in (3.10), Theorem 3.5547

shows that it is without loss of optimality to consider a subset of binary variable µ548

with polynomial size given a fixed number of function pieces K in RO-CDDU model549

(1.1) and a fixed number T of budgeted uncertainty sets, ΞB(x) = ×Tt=1ΞBt (xt), which550

can reduce the computational burden in the branch-and-bound algorithm when solving551

for the MILP problem.552

Furthermore, we note the polynomial solvability for problem (3.14) with fixed553

parameters (T,K) and without any integer variables such that ny = 0.554

Corollary 3.6. Under the budgeted uncertainty set (3.10), when there are no555

integer variables y (i.e., ny = 0), for fixed K,T ∈ N+, model (3.14) has a polynomial556

run-time in parameters n.557

Proof of Corollary 3.6. By Theorem 3.5, we only need n+ 1 steps to enumerate558

all candidate solutions. Therefore, it takes (n+ 1)KT steps to enumerate all feasible559

dual solution candidates µ. Given that ny = 0, for a specific feasible candidate µ,560

model (3.14) is reduced to a linear program, which can be solved by the interior point561

method in O(n3.5
x ) steps [24]. With nx = nT , as a result, model (3.14) could be solved562

in O((nT )3.5(n+ 1)KT ) steps. �563

Together with Proposition 3.1, Corollary 3.6 provides a sufficient condition for564
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RO-CDDU with a budgeted uncertainty set to be solved polynomially in input size n:565

after eliminating the integer variable y, adversary’s problem maxξ∈Ξ(x) c
>
k ξ needs to566

admit a corresponding dual feasible region with effectively a polynomial number of567

extreme points to consider.568

3.2 Algorithms to solve RO-CDDU We consider two algorithms in this569

section to solve the RO-CDDU reformulation (3.1): an alternating direction algorithm570

(ADA) and a column generation algorithm (CGA). For the demand response problem571

in subsequent Section 4, we numerically demonstrate that both ADA and CGA achieve572

tight optimality gap with a shorter run-time compared to solving the MILP (3.3)573

directly with the commercial solver.574

3.2.1 Alternating Direction Algorithm In ADA, we iteratively search for575

the feasible solutions to model (3.1) in the subspace of π and x in constraint (3.1c).576

This is equivalent to keeping one vector π for constraints (3.3c) in each iteration. We577

present ADA in Algorithm 3.1.578

Algorithm 3.1 Alternating Direction Algorithm (ADA)

1: Initialization: s = 0 and (x0,y0) ∈ Ω, y0 ∈ Zny
2: repeat
3: for k = 1, . . . ,K do
4: Solve model (3.15) and obtain an optimal solution πs+1

k :

(3.15) min π>(h− Txs) s.t. π ∈ Hk.

5: end for

6: Let zs+1
k = πs+1

k

>
(h− Txs) and V

s+1
= maxk=1,...,K z

s+1
k + a>k x

s + b>k y
s + dk.

7: Solve

min
V,z,x,y

V(3.16a)

s.t. V ≥ zk + a>k x+ b>k y + dk, ∀k,(3.16b)

zk ≥ (πs+1
k )>(h− Tx), ∀k,(3.16c)

(x,y) ∈ Ω,(3.16d)

x ∈ Rnx , y ∈ Zny .(3.16e)

8: Obtain an optimal solution (V s+1,zs+1,xs+1,ys+1) of (3.16).
9: s← s+ 1

10: until convergence criterion is met.

Note that model (3.15) is an LP and (3.16) is an MILP. We can show that579

the sequence of value functions {(V s, V s) : s = 1, 2, . . . } is convergent due to the580

monotonicity of the optimal values.581

Theorem 3.7. Suppose the model (3.1) has a finite global optimal value V ∗. The582

sequence of the objective function values, {(V s, V s) : s = 1, 2, . . . }, generated by583

Algorithm 3.1, is monotonically nonincreasing, i.e. V
s+1 ≥ V s+1 ≥ V s+2 ≥ V ∗ for all584

s ≥ 0. Hence, {V s, V s} converges to a finite value, which is an upper bound on V ∗.585

Proof of Theorem 3.7. From the minimization problems (3.15) and (3.16) in586

iteration s, we obtain a feasible solution vector (V s,xs,ys, zs,πs) to model (3.1),587

which implies that the global optimal value V ∗ of model (3.1) serves as a lower bound588
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of the sequence {V 1
, V 1, V

2
, V 2, . . . }.589

Moreover, noting that (V s,xs,ys, zs) is a feasible solution to problem (3.16)590

from iteration s given πs, in iteration s + 1, we can establish that V
s+1 ≤ V s591

from minimization problem (3.15). Next, in minimization problem (3.16), solution592

vector (V
s+1

,xs,ys, zs+1) is a feasible solution given the updated πs+1 from problem593

(3.15). Thus, we have V s+1 ≤ V
s+1

and the sequence of {V 1
, V 1, V

2
, V 2, . . . } is a594

nonincreasing sequence bounded from below by V ∗, and thus is convergent. �595

The algorithm searches for solution πk in a subset of the extreme points for Hk and596

the convergent process obtains a feasible solution to model (3.1) in every iteration. The597

sequence {V s} is possible to converge to a suboptimal value, but we show in Section 4598

that ADA can achieve good feasible solutions quickly. We show in the subsequent599

discussion that ADA could be further improved with the budgeted uncertainty set.600

Improved ADA with the budgeted uncertainty set. We consider the bud-601

geted uncertainty set in (3.10). When we solve adversary’s problem (3.15), we leverage602

the special structures in Theorem 3.5, with which solving model (3.15) only requires603

verifying n+ 1 solution candidates.604

Corollary 3.8. Given the budgeted uncertainty set defined in (3.10), the follow-605

ing π solves model (3.15): for any k = 1, . . . ,K, t = 1, . . . , T ,606

π∗kt ∈ arg min
j=0,...,n

{ n∑
i=1

[
(|ckit| − π3)+

(
(β0
it + β1

itxit) · 1ckit>0 + (α0
it + α1

itxit) · 1ckit<0

)]
607

+ π3(ζt +
∣∣ω>t xt∣∣) :608

π1i = (|ckit| − π3)+ · 1ckit>0, ∀i = 1, . . . , n,609

π2i = (|ckit| − π3)+ · 1ckit<0, ∀i = 1, . . . , n,610

π3 =
∣∣ckjt∣∣}.(3.17)611

612

Proof of Corollary 3.8. The proof follows directly from the proof of Theorem 3.5613

that it is without loss of optimality to only consider the subset of the extreme points614

in (3.17) of the dual polyhedron for problem (Dkt) from (3.13). �615

Based on Corollary 3.8, we simplify the optimization of model (3.15) to a search616

process. In (3.17), solution π3 takes one of the values from {|ck1t|, . . . , |cknt|, 0} and617

π1 and π2 can be subsequently decided. Since there are only n+ 1 solution candidates618

for π3 for each k = 1, . . . ,K and t = 1, . . . , T , we only need to make nKT comparisons619

to find the optimal solution π.620

3.2.2 Column Generation Algorithm We propose a Column Generation621

Algorithm (CGA) for problem (3.1). CGA has been proposed to solve robust opti-622

mization problems in the literature [4; 52]. CGA starts from a master problem with623

an incomplete set of variables and calls certain oracles to compute the next variable to624

append to the master problem. In many cases, the number of critical variables added625

to the master problem is small, which makes the algorithm computationally tractable.626

We adopt the idea of CGA to solve model (3.1) and present CGA in Algorithm 3.2.627

In Algorithm 3.2, in contrast to ADA that only preserves the most recent solution628

π̂k in each iteration, CGA appends π̂k to a solution set Πk, preserves more elements629

This manuscript is for review purposes only.



RO-CDDU 17

Algorithm 3.2 Column Generation Algorithm

1: Initialization: an initial set of extreme points Πk of Hk of cardinality Nk = |Πk|
2: repeat
3: Solve model (3.3) with πks ∈ Πk, s = 1, . . . , Nk, obtain the feasible solution x̂, ŷ and

the objective value V̂ ;
4: for k = 1, . . . ,K do
5: Solve model (3.18) and obtain an optimal extreme point π̂:

(3.18) min π>(h− T x̂) s.t. π ∈ Hk.

6: if π̂ /∈ Πk then
7: Append π̂ to Πk, Nk ← Nk + 1, Uk = false
8: else
9: Uk = true

10: end if
11: end for
12: until ∩Kk=1Uk = true.

in the solution set Πk, and creates more opportunities to find better solutions than630

ADA does. Similar to Algorithm 3.1, given that Πk is a subset of the extreme points631

in polyhedron Hk, CGA terminates with a subset of variables µks, which yields the632

finite convergence result as follows:633

Corollary 3.9. Algorithm 3.2 terminates after finite steps with a feasible solution634

to model (3.3).635

Proof of Corollary 3.9. The proof follows from the same monotonicity arguments636

as in Theorem 3.7. In each iteration, for k = 1, . . . ,K, an extreme point of Hk is637

added to Πk. As the number of elements in Πk increases monotonically, the objective638

value of model (3.3) decreases monotonically. Given that the number of extreme points639

for Hk is finite, this leads to convergence of CGA. �640

We again leverage the monotonicity property to prove this convergence result.641

When Algorithm 3.2 terminates, solution (x̂, ŷ) may be suboptimal for problem (3.1).642

Despite this, the numerical performance for the demand response problem in Section 4643

shows that CGA consistently reaches the global optimum. Given the budgeted uncer-644

tainty set in (3.10), we can also simplify solving model (3.18) based on Corollary 3.8,645

which further improves the speed of Algorithm 3.2.646

3.3 Lower Bound from McCormick Relaxation To approximate the prob-647

lem (3.1) from below, we consider the McCormick relaxation proposed in [32] to648

approximate the bilinear terms. We point to [20; 25; 33] for reference of theory and649

applications on McCormick approximation. Without loss of generality, we assume that650

Ω and Hk are compact, and thus the decision variables (x,π) are bounded. Suppose651

the technology matrix T has l rows. We define the lower bound of (x,π) by (
¯
x,

¯
π)652

where
¯
x = (

¯
x1, . . . ,

¯
xnx) and

¯
πk = (

¯
πk1, . . . ,

¯
πkl). Similarly, we define the upper bound653

of (x,π) by (x,π) where xi = (x1, . . . , xnx) and πk = (πk1, . . . , πkl). Constraint654

(3.1c) can be approximated by the McCormick relaxation below: for any k = 1, . . . ,K,655
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j = 1, . . . , l, i = 1, . . . , nx, we have656

zk ≥ π>k h−
nx∑
i=1

l∑
j=1

Tjiqkji,(3.19a)657

qkji ≥ πkj
¯
xi + xi

¯
πkj −

¯
πkj

¯
xi,(3.19b)658

qkji ≥ πkjxi + xiπkj − πkjxi,(3.19c)659

qkji ≤ πkj
¯
xi + xiπkj − πkj

¯
xi,(3.19d)660

qkji ≤ πkjxi + xi
¯
πkj −

¯
πkjxi.(3.19e)661662

663 We can further refine constraints (3.19b) - (3.19e) if we partition the intervals of664

x and π into more pieces. It will result in a disjunctive MILP formulation, in which665

only one subset of (x,π) is selected. The McCormick relaxation will be tightened666

when the number of partitions increases. In this approach, we could approximate the667

RO-CDDU problem in (1.1) with arbitrary precision. However, in this MILP problem,668

the size of disjunctive constraints grows in the order of M2, where M represents the669

number of partitions. For example, for large-scale instances in Section 4, it would be670

intractable to solve this MILP problem with multiple partitions. Therefore, we use671

the formulation in (3.19) with M = 1 to generate a lower bound for model (3.1).672

4 Application in Demand Response Portfolio Management673

4.1 Modeling Background In electricity markets, consumers who can reduce674

or shift their electricity usage during certain periods are considered DR resources. DR675

resources have gained more attention in recent years to help power system operators676

balance supply and demand, lower generation costs, and improve system efficiency [1;677

26]. A DR portfolio can have thousands of DR resources of various characteristics,678

such as the ability to respond to load reduction under the variance of the demands [21].679

Proper scheduling is necessary and challenging [34; 41]. For DR scheduling optimization,680

Reference [47] proposed a deterministic optimization model to solve the automatic load681

management problem in a smart home. Reference [23] developed a forward market682

clearing algorithm for the demand flexibility problem with the goal of co-optimizing683

the scheduling cost and the system security. Reference [40] characterized a novel684

control approach based on online optimization to manage the operations of responsive685

electrical appliances. The impact of uncertainty has also been extensively studied. For686

example, various robust optimization models with exogenous price uncertainty are687

proposed in [15; 16].688

There are three main players in a DR event: the system operator, the DR689

aggregator, and the DR resources. The DR aggregator gains revenue from the system690

operator for providing the required demand reduction. At the same time, it offers691

payment to the participating DR resources in its portfolio [21]. Each DR resource692

has a set of operational characteristics to be respected during a DR event. Figure 1693

illustrates these key characteristics on a scheduled dispatch trajectory of a DR resource.694

The key constraints include three parts as follows:695

(1) Reduction constraints: DR resource i has a capacity xmax
i and minimum696

commitment requirement xmin
i . Since we consider active demand reduction,697

we assume xmin
i ≥ 0.698

(2) Ramping constraints: DR resource i has ramping limits r+
i and r−i .699
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Fig. 1: The dynamics of a DR resource and realization uncertainty.

(3) Smoothness constraints: every time the demand reduction level of DR resource700

i increases (decreases), it cannot decrease (increase) before at least Tui (T di )701

periods due to DR resource’s inertia.702

4.2 The Deterministic Model We take the perspective of the DR aggregator,703

who earns revenue ci from committing DR resource i for a unit demand reduction.704

There is a required level of demand reduction for the DR aggregator based on contracts705

with the system operator. A mismatch of DR amount leads to a penalty at any time t:706

(i) if the total reduction level is less than the required level, the unit under-commitment707

cost for the DR aggregator induced by refund, contractual penalty, and loss of market,708

is st; (ii) if the total load reduction level exceeds the required level, the unit over-709

commitment cost caused by value loss of DR resources, is ht. The DR aggregator aims710

to maximize its profit by committing the right portfolio of DR resources.711

We let Dt be the required total demand reduction level at time t, which is a712

deterministic parameter known to the DR aggregator. Let x = (xit), in which xit713

is the demand reduction level for resource i at the beginning of time t. For the DR714

aggregator, the total cost includes the over-commitment cost, the under-commitment715

cost, and the commitment revenue, which can be expressed as:716

T∑
t=1

[
ht

( n∑
i=1

xit −Dt

)+

+ st

(
Dt −

n∑
i=1

xit

)+

−
n∑
i=1

cixit

]
,(4.1)717

718

where (x)+ := max(x, 0). The objective function is a piecewise-linear convex function.719

Complicated operational constraints, such as startup, shutdown, and ramping limits,720

can cause a mismatch in DR scheduling. We let the binary variables uit indicate721

whether resource i is committed at time t. We also set two binary ramping indicators722

wit and vit such that wit = 1 if xit − xi(t−1) ≥ 0, and vit = 1 if xit − xi(t−1) ≤ 0. We723

propose the following novel deterministic model for DR portfolio management:724

min
x,u,v,w

f(x)(4.2a)725

s.t. xmin
i uit ≤ xit ≤ xmax

i uit, ∀i = 1, . . . , n, t = 1, . . . , T,(4.2b)726

− r−i uit ≤ xi(t+1) − xit ≤ r+i ui(t+1), ∀i = 1, . . . , n, t = 1, . . . , T − 1,(4.2c)727

xit − xi(t−1) ≤Mwit, ∀i = 1, . . . , n, t = 2, . . . , T,(4.2d)728

xiτ − xi(τ−1) ≥ −M(1− wit), ∀i = 1, . . . , n, t = 1, . . . , T,(4.2e)729

τ = t, . . . ,min(t+ Tui − 1, T ),730

xit − xi(t−1) ≥ −Mvit, ∀i = 1, . . . , n, t = 2, . . . , T,(4.2f)731

xiτ − xi(τ−1) ≤M(1− vit), ∀i = 1, . . . , n, t = 1, . . . , T,(4.2g)732
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τ = t, . . . ,min(t+ T di − 1, T ),733

uit, wit, vit ∈ {0, 1}, ∀i = 1, . . . , n, t = 1, . . . , T.(4.2h)734735

In constraint (4.2b), when a DR resource is committed (uit = 1), the reduction736

amount xit has to be bounded from above and below. Constraint (4.2c) defines the737

maximum and minimum ramping rates for committed resource i at time t, because the738

DR aggregator needs to respect the smoothness characteristics in scheduling demand739

reduction. In constraints (4.2d) and (4.2e), if resource i increases its commitment at any740

time t, it has to keep the non-decreasing trend for a minimum of Tui periods. Similarly,741

constraints (4.2f) and (4.2g) require that if resource i decreases its commitment at742

any time t, it has to keep the non-increasing trend for at least T di periods. The big-M743

parameter M stands for a large positive real number. The proposed model (4.2) is a744

novel formulation for DR portfolio management that explicitly models the detailed745

commitment cycle dynamics of DR resources. It also considers a piecewise linear cost746

function which can balance the over- and under-commitment costs for DR aggregators.747

4.3 Robust Demand Response Model In a DR event, the aggregator sched-748

ules the reduction level for each resource. However, unlike conventional generators, the749

demand reduction of DR resources can have significant uncertainty due to unexpected750

factors in operations and market conditions. The final realized reduction level of a751

DR resource may be different from the one scheduled.752

We model the final realization of demand reduction as x̃it = xit + ξit, where ξit753

represents the implementation noise bounded in the uncertainty set below:754

Ξt(xt) =

ξt = (∆x1t, . . . ,∆xnt) :
−αixit ≤ ξit ≤ βixit, ∀i = 1, . . . , n∑n
i=1

∣∣ξit∣∣ ≤ Γt
∑n
i=1 x

max
i , ∀t = 1, . . . , T

 ,(4.3)755

756

where α,β ∈ Rn+. The proposed uncertainty set captures the positive correlation757

between the implementation noise and the scheduled commitment, which is pointed758

out in the demand response literature [46; 53]. Since a resource with a large capacity759

can sometimes commit a small demand reduction, such an uncertainty model (4.3) can760

avoid the over-conservativeness caused by decision-independent uncertainty in which761

the uncertainty range is only proportional to the resource’s capacity. Moreover, we762

use Γt to capture the DR aggregator’s conservativeness level and the risk preference in763

uncertainty. It is worth noting that the uncertainty set formulation (4.3) is a special764

case of the budgeted uncertainty set (3.10) with α0
t = β0

t = ωt = 0.765

Similar to the objective function in (4.1), we define the objective function of the766

robust DR problem as the following piecewise-linear function:767

(4.4) f(x, ξ) =

T∑
t=1

{
ht

( n∑
i=1

(xit+ξit)−Dt
)+

+st

(
Dt−

n∑
i=1

(xit+ξit)

)+

−
n∑
i=1

ci(xit+ξit)

}
.768

Given (4.3) and (4.4), we formulate the robust DR portfolio management problem769

with the framework of RO-CDDU in (1.1). Notice that the condition xmin
i ≥ 0 for any770

i = 1, . . . , n will guarantee that Assumption 2 holds for any feasible x because the771

dual minimization problem of maxξ∈Ξ(x) f(x, ξ) is lower bounded by 0.772

min
x,u,v,w

max
ξ∈Ξ(x)

f(x, ξ)(4.5a)773

s.t. (x,u,v,w) satisfies (4.2b)-(4.2h).(4.5b)774775
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The rest of this section covers the computational experiments solving model (4.5).776

In Section 4.4, we detail the setups for our numerical experiments. In Section 4.5,777

we demonstrate the performance of ADA and CGA. We numerically benchmark the778

objective value obtained by ADA and CGA against the lower bound obtained from (i)779

the McCormick relaxation of formulation (3.1), (ii) the best objective value of (3.1),780

and (iii) the best objective value of (3.3), with both (ii) and (iii) solved within a781

fixed time span. In Section 4.6, we investigate how the robust solutions obtained with782

different uncertainty budgets Γt perform under a stochastic setting.783

4.4 Experiment Setup We construct two test cases for the numerical experi-784

ments, one with simulated DR resources’ parameters and the other with real-world785

data. For both cases, we let the time horizon length T = 9 and use a time-invariant786

parameter Γ for the uncertainty budget such that Γt = Γ for all t = 1, . . . , T .787

Table 1: Parameter setups for the simulated DR resources, with U{a, b} representing
binary distribution between bounds a and b and U [a, b] representing continuous uniform
distribution between bounds a and b

Parameters
Setting

Type A Type B Type C

ci (Uc ∼ U [0, 2]) 22 + 2Uc 20 + 2Uc 18 + 2Uc

αi = βi 0.5 0.3 0.1

xmax
i 15 + Ux, Ux ∼ U{0, 5}
xmin
i 4 +

¯
Ux,

¯
Ux ∼ U{0, 1}

r+i 5 + Ur, Ur ∼ U{0, 2}
r−i 5 +

¯
Ur,

¯
Ur ∼ U{0, 2}

Tui 2 + Ue, Ue ∼ U{0, 2}
Tdi 2 +

¯
Ue,

¯
Ue ∼ U{0, 2}

Parameters Setting

Dt

Low

6n if t = 4, 5, 6

0 otherwise

High

15n if t = 4, 5, 6

0 otherwise

st
Low 1000 + Us, Us ∼ U [0, 500]

High 1000 + Us, Us ∼ U [0, 500]

ht ht = 30 + Uh, Uh ∼ U [0, 5]

The detailed parameter setups of the simulated test case are shown in Table 1. We788

assume variations of resources’ power reduction commitments are positively correlated789

to profitability, which is common in risk-return analysis [14]. We simulate three types790

of resources: A, B, and C. In the order from A to C, resources have increasing unit791

revenue ci, but also bear an increasing operational uncertainty, measured by βi − αi.792

We set resources’ uncertainty bounds homogeneous within each type. The ramping793

rates and capacity limits are randomly generated from uniform distributions.794

Based on the current industry practice, we let ht > ci because too much supply795

impairs DRs’ economic value and causes power system instability [21; 43]. We set a796

substantially higher under-commitment cost st >> ci, because a shortage of power797

supply can lead to severe contractual penalties from system operators who suffer from798

power outage, credibility damage, and potential loss of market share to competitors.799

We set two levels of under-commitment costs st (high and low) and demands Dt (high800

and low) to approximate different market conditions and load profiles.801

We further group 20 DR resources as a cluster, since they may be correlated in802

realistic power systems [50]. Within a cluster, we assume that the binary ramping803

decisions are the same for every resource in all time periods: all resources in a cluster804

need to increase/decrease their response output together. This reduces the number of805

binary variables and helps solve the problem computationally.806

For the second test case with real data, we obtain the DR resources’ parameters807
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from the electricity demand data of 115 buildings on the University of Southern808

California (USC) campus, which are modeled as DR resources in [2]. The USC data809

has rather heterogeneous resource capacities compared to the simulated data, where810

the largest generator has a generation capacity 1000 times larger than the smallest one.811

We list the detailed parameter setup based on the USC data in a GitHub repository.1812

Since the dataset contains independent buildings, we do not cluster the resources to813

align our test case with reality.814

The optimization models specific to the DR problem follow the constructions in815

Section 3 and are implemented using JuMP package v0.22.1 [17] in Julia v1.6.2, with816

bilinear, linear, and mixed-integer programs solved by Gurobi 9.5.0 [19]. All tests are817

run on a server with 30 Intel Xeon cores at 2.6 GHz and 128 GB of RAM.818

4.5 Computational Performance Analysis We discuss the computational819

performance of the proposed methods to solve the robust DR model in (4.4), which820

includes directly solving the MINLP model (3.1) with bilinear terms, solving the exact821

MILP formulation, ADA, CGA, and the McCormick relaxation for a lower bound.822

We record the computational performance in Table 2, with a setting of low demand,823

low under-commitment penalty cost and Γ = 0.05. We record the negative objective824

values (row “-Obj”), the run-time (row “Time”), and the optimality gap information.825

For the bilinear formulation and the exact MILP formulation, we set a run-time limit826

as 18,000 seconds, and we record the gap information output by Gurobi when the827

solution process terminates either by reaching optimality or the time limit (row “Gap”).828

The objective values in ADA/CGA/MILP correspond to some feasible solutions and829

provide upper bounds for model (4.5). The upper bounds and the lower bound are830

obtained by solving the McCormick relaxation model to form an optimality gap (row831

“MC Gap”).

Table 2: Different algorithms’ time performance to solve model (4.5)

Test Case
Simulated Data USC

n = 5 n = 50 n = 200 n = 400 n = 800 n = 1200 n = 115

Bilinear

-Obj ($) 1221 12649 52198 95347 202024 279261 386912
Time (sec.) 6.8 > 18000 > 18000 > 18000 > 18000 > 18000 > 18000
Gap (%) 0.00 0.70 0.71 0.53 6.69 12.25 0.74
MC Gap (%) 0.00 0.85 0.79 0.69 1.16 0.74 1.60

MILP

-Obj ($) 1221 12649 52198 95347 202695 279189 387765
Time (sec.) 4.2 631.1 > 18000 > 18000 > 18000 > 18000 384.1
Gap (%) 0.00 0.01 1.42 3.09 4.67 14.73 0.01
MC Gap (%) 0.00 0.85 0.79 0.69 0.84 0.77 1.38

ADA
-Obj ($) 1221 12649 52198 95347 202695 279266 387763
Time (sec.) 0.6 2.3 18.7 44.0 263.6 165.9 3.7
MC Gap (%) 0.00 0.85 0.79 0.69 0.84 0.74 1.38

CGA
-Obj ($) 1221 12649 52198 95347 202695 279266 387765
Time (sec.) 0.6 26.7 255.6 302.4 2187.0 5883.8 855.0
MC Gap (%) 0.00 0.85 0.79 0.69 0.84 0.74 1.38

MC
-Obj ($) 1221 12758 52615 96011 204405 281346 393203
Time (sec.) 0.2 3.8 101.1 407.6 7824.4 > 18000 2.1832

From Table 2, we observe that the MC gap is less than 2% for all test cases, which833

indicates that the upper bounds and the lower bounds are close to the true optimum.834

In addition, for all cases in Table 2, ADA and CGA achieve close solutions, with some835

minimal differences caused by numerical precision when terminating the optimization836

process. Since ADA and CGA solve different sequences of the mixed-integer programs837

1https://github.com/haoxiangyang89/RO-CDDU
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with the relative termination gap set at 10−4, they can terminate at different solutions838

within the termination gap. Table 2 shows that ADA is significantly faster than CGA839

when they achieve the same solution. On the other hand, the exact bilinear/MILP840

formulation takes an extended period of time to solve for large test cases. For example,841

in test cases with n ≥ 200, no experiment terminates at the default tolerance level842

within five hours. When the bilinear/MILP solution process terminates due to the843

time limit, it can achieve the same solution quality as the ones obtained by ADA/CGA844

in smaller problem instances (n ≤ 800), but it does not yield solutions as good as from845

ADA and CGA in the largest case (n = 1200). We observe from the Gurobi log file846

that the lower bound increases slowly and many nodes are generated towards the end847

of the branch-and-bound process. This effect is more apparent when n is large because848

each resource only contributes to a small share of demand. Many resources with849

similar unit profits can be considered substitutes, which leads to different solutions850

with similar objective values. The similarity of DR resources makes it difficult to851

prune nodes in the branch-and-bound tree. This is also reflected in the USC test852

case: the MILP solves much faster even with a larger n and no clustering, because the853

resources are heterogeneous in both capacity and unit profit. Note that this issue can854

be alleviated by further clustering the resources: instead of only clustering resources’855

ramping decisions, a DR operator can ask the clustered resources to output the same856

percentage of their capacity. This is equivalent to reducing the number of resources,857

which is shown to be computationally effective in Table 2.858

A natural question from the results in Table 2 is that since ADA obtains the same859

solution at a faster speed compared to CGA, should we always prefer ADA to CGA?860

In Table 3, we show that in many simulated test cases with n = 20 and all resources861

in one cluster, ADA can end at a suboptimal point with an optimality gap as large862

as 19%, but CGA consistently reaches optimality for the same cases. Although CGA863

takes a longer time to converge, its optimality is validated in all test cases we run as it864

obtains the same optimal values as the MILP model in (3.3). The gap between CGA865

and ADA is more prominent in the high demand cases. Since more resources need to866

be utilized in those instances, solution structures can be more complicated with more867

non-zero commitment, which makes ADA more likely to land in a suboptimal solution.868

Table 3: Impact of uncertainty set budget parameter Γ on computational performance
(n = 20). Notation V denotes the objective value of model (4.5). Superscripts A and
C stand for “ADA” and “CGA”. We omit the optimal values of MILP since they are
identical to CGA’s. All tests (ADA/CGA/MILP) take less than 10 seconds to finish.

Cost-
Obj.

Γ
Demand

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Setting ($)

Low- −V A 5746 5438 5131 4826 4531 4241 3958 3676 3439 3206

Low −V C 5746 5438 5131 4826 4531 4241 3958 3676 3439 3206

Low- −V A 11572 10972 10386 9809 9238 8668 8106 8658 8117 7608

High −V C 12562 11995 11436 10883 10335 9777 9217 8658 8117 7608

High- −V A 5231 4883 4539 4201 3875 3551 3231 2914 2665 2415

Low −V C 5231 4883 4539 4201 3875 3551 3231 2914 2665 2415

High- −V A 9534 8872 8221 7587 6965 6342 5714 6449 5880 5318

High −V C 11799 10091 9487 8888 8287 7680 7061 6449 5880 5318
869

From Table 3, we observe that the negative optimal value decreases almost linearly870

as the conservativeness level Γ increases. This result implies that the optimal dual871

variable for the budget constraint is approximately a constant. The slope of the linear872
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relationship characterizes the value of the budget limit. Such a value increases when873

the under-commitment penalty becomes higher. We also notice that the increasing874

demand increases the profit with a diminishing marginal benefit. While in the high875

demand case, in which the total demand is 2.33 times larger than in the low demand876

case, the optimal profit ratio is less than 2.33. This is mainly caused by the following877

two factors: (i) as the demand increases, we need to schedule less-profitable resources,878

which brings down the marginal profit; (ii) more resource commitment comes with a879

larger magnitude of uncertainty, which negatively affects the marginal profit.880

4.6 Solution Analysis In this section, we examine the property of the solution881

to model (4.5), generated by CGA, to understand how the robust solution improves882

the demand response performance under uncertainty.883

Favoring DR resources with less uncertainty. Figure 2 shows the percentage884

of commitment from each type of resources in the test cases with n = 800 and885

Γ ∈ [0, 0.1]. We observe that type-A resources are generally favored in the deterministic886

solution due to their high unit profit. However, as the uncertainty budget Γ increases,887

the utilization rate of less uncertain resources increases. The robust optimization888

model returns more conservative solutions by committing more type-B and type-C889

resources. This demonstrates the ability of the robust DR model to balance between890

the nominal profit and the operational uncertainty. In the low demand setting, since891

the demand is only 30% of the total capacity, there is relatively more freedom to choose892

from different types of DR resources, which leads to a more diverse portfolio of DR893

resources. On the other hand, the higher demand setting requires more participation894

of all types of resources, which brings the commitment percentages closer.895

Increasing total reduction. Since the under-commitment cost is significantly896

higher than the over-commitment cost, strategically committing resources above the897

required reduction level substantially reduces the likelihood of the under-commitment898

penalty in actual operations. We observe that the robust DR model is able to do so to899

avoid the negative impact of the worst-case scenarios. As shown in Figure 3, the total900

scheduled DR level of the robust solutions is higher during the peak time, while the901

deterministic solution satisfies the demand exactly.902

Table 4: Reduction comparison between resources with different uncertainty levels
using real-world data

Resource ID αi Total reduction for Γ = 0.01 vs. Γ = 0.05
13 0.235 -42.9
16 0.225 -21.2
20 0.045 667.1

We also observe the same properties with the USC dataset, as illustrated by903

the following example. The total demand response level is 2859.0 for time period904

t ∈ {4, 5, 6} when Γ = 0.01, but it increases to 3095.3 for Γ = 0.05. Resources 13905

and 16 have the largest and the second largest αi and βi, which means they have the906

largest operational uncertainty. Their commitment decreases as Γ increases, while907

the total demand response level increases. This gap is filled by deploying more stable908

resources such as resource 20. The numerical results are displayed in Table 4.909

Next, we study the profit performance of the robust DR solutions obtained with910

uncertainty budget Γ in a stochastic setting. For such setting, we assume that the911
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(a) (b)

(c) (d)

Fig. 2: Allocation proportion of three types of DR resources vs. different Γ under the
setting of: (a) low demand level and low shortage cost; (b) low demand level and high
shortage cost; (c) high demand level and low shortage cost; (d) high demand level and
high shortage cost. The point Γ = 0 corresponds to the deterministic DR solution.

uncertain load ξit = ρitxit, given a demand response solution x, where the uncertainty912

coefficient ρit follows a uniform distribution within the interval [−αi, βi] for every913

i = 1, . . . , n and t = 1, . . . , T . We generate 5,000 samples of ρ to create a load profile914

using Monte Carlo simulation, with which we evaluate the cost obtained for the given915

solution x. The experiment serves the purpose of an out-of-sample test as the load916

scenario may lie outside of the uncertainty set proposed in (4.3). Figure 4 shows917

the mean out-of-sample costs of the robust solutions in four demand-cost settings.918

The x-axis captures different uncertainty budgets Γ. Figure 4 shows that because919

of the severe shortage penalty, the robust DR solutions display better results than920

the deterministic solution. The mean out-of-sample profit improves significantly even921

when we consider a small uncertainty budget Γ = 0.01. Combined with the results922

from Figure 2 and 3, Figure 4 shows that the solution with Γ = 0.01 does not increase923

the total commitment by much, but it slightly changes the proportion of DR resource924

types. This significantly improves the out-of-sample expected profit. The result further925

shows that achieving robustness may not necessarily always require a large reserve of926

resources. A smart commitment allocation can improve the overall robustness with927

a lean operation. As the uncertainty budget increases, the solution becomes more928

conservative, and thus the profit peaks at a certain level and then decreases. Only929

under the “high demand, high shortage cost” setting, such peak is at Γ = 0.02 and in930

every other case, the robust solution with Γ = 0.01 achieves the best out-of-sample931

performance.932
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(a) (b)

(c) (d)

Fig. 3: Comparison of demand response amount between the deterministic solution
and robust solutions with three different Γ under the setting of: (a) low demand level
and low shortage cost; (b) low demand level and high shortage cost; (c) high demand
level and low shortage cost; (d) high demand level and high shortage cost. Nominal
demand is represented using a blue dashed Line.

Fig. 4: Mean out-of-sample profit vs. Γ under the setting of: (i) low demand level
and low shortage cost; (ii) low demand level and high shortage cost; (iii) high demand
level and low shortage cost; (iv) high demand level and high shortage cost. The point
Γ = 0 corresponds to the deterministic DR solution.

5 Conclusions In this paper, we propose the RO-CDDU model and show that933

it is strongly NP-hard. The original RO-CDDU model can be formulated as an934

MINLP and we investigate the structure of the dual polyhedron for the adversary’s935

problem such that RO-CDDU is well-defined. Meanwhile, we develop an equivalent936
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MILP reformulation using extreme points of the dual polyhedron and show two special937

uncertainty sets with polynomial solvability. We develop an alternating direction938

algorithm and a column generation algorithm to obtain feasible solutions and upper939

bounds for RO-CDDU. We compare the upper bounds with the lower bound obtained940

by solving a McCormick relaxation. Then, we propose a novel RO-CDDU model for941

portfolio management of demand response resources in electricity markets, where the942

realization of demand response is uncertain and depends on the demand response943

decision. The proposed ADA algorithm can obtain good solutions efficiently in most944

test cases. The proposed CGA algorithm further improves on the solution quality of945

ADA and obtains global optimal solutions in all test cases.946
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