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ROBUST OPTIMIZATION WITH CONTINUOUS
DECISION-DEPENDENT UNCERTAINTY WITH APPLICATIONS
IN DEMAND RESPONSE PORTFOLIO MANAGEMENT

HONGFAN (KEVIN) CHEN *, XU ANDY SUN T, AND HAOXIANG YANG 1

Abstract. We consider a robust optimization problem with continuous decision-dependent
uncertainty (RO-CDDU), which has two new features: an uncertainty set linearly dependent on
continuous decision variables and a convex piecewise-linear objective function. We prove that RO-
CDDU is strongly N'P-hard in general and reformulate it into an equivalent mixed-integer nonlinear
program (MINLP) with a decomposable structure to address the computational challenges. Such
an MINLP model can be further transformed into a mixed-integer linear program (MILP) using
extreme points of the dual polyhedron of the uncertainty set. We propose an alternating direction
algorithm and a column generation algorithm for RO-CDDU. We model a robust demand response
(DR) management problem in electricity markets as RO-CDDU, where electricity demand reduction
from users is uncertain and depends on the DR planning decision. Extensive computational results
demonstrate the promising performance of the proposed algorithms in both speed and solution quality.
The results also shed light on how different magnitudes of decision-dependent uncertainty affect the
demand response decision.

Key words. Robust Optimization, Decision-dependent Uncertainty, Demand Response
AMS subject classifications. 90C17, 90C11

1 Introduction Robust optimization (RO) has emerged as a major modeling
framework for decision-making under uncertainty [9]. In a RO model, the decision-
maker optimizes the worst-case performance of an objective function within an uncer-
tainty set. Often the RO problem is a semi-infinite program, which can be reformu-
lated as the finite-dimensional robust counterpart. We can classify uncertainty models
into decision-independent and decision-dependent ones. The decision-independent
uncertainty, called exogenous uncertainty, has been discussed extensively in the lit-
erature [10; 11; 12]. As stated in [9], for many types of convex uncertainty sets
independent of decisions, the RO model admits a computationally tractable robust
counterpart.

Recently more theoretical developments have focused on the RO formulation with
decision-dependent uncertainty sets [35], which admits a wide range of applications
in pricing, scheduling, and electricity demand response [27; 48]. In this paper, we
consider a class of mixed-integer robust optimization models with a continuous decision-
dependent uncertainty set (RO-CDDU), which contains two features: (i) the uncertainty
set depends on the continuous decision variables, and (ii) the objective function is
piecewise-linear convex. We formulate the RO-CDDU model as follows:

1.1a min max max z, Y,
( ) z,y ¢cE(x) k=1,....K fu(@,y.£)
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2 H. CHEN, X. A. SUN, H. YANG

(1.1b) st (x,y) €Q,
(1.1c) xeR"™, yeZ.

In problem (1.1), the feasibility set  is a polyhedron defined by m inequalities
such that Q = {(x,y) € R"™ : Az + By < r}. The uncertainty set Z(z) is a
polyhedron defined by [ inequalities: Z(z) = {£€ € R" : W& < h — Tx}. The total
number of pieces in the objective function is K € Ny, and the k-th piece fi(x,y, ) is
a linear function fyx(x,y,€) = a] x + bl y + ¢] € + d. The piecewise linear convex
objective function has been widely used in robust optimization applications, such
as robust queuing networks [5; 8; 49], operating room scheduling [6], and inventory
management [7; 31; 45]. In this paper, the piecewise linear objective function is
motivated by different marginal costs for over- and under-commitment in an electricity
market demand response application with details in Section 4. Model (1.1) returns
a decision profile (x,y) that minimizes the worst-scenario cost given the uncertainty
set. Here the RO-CDDU model (1.1) is different from the RO model with exogenous
uncertainty, as the uncertainty set Z(x) depends on the continuous decision .

The literature has extensively discussed robust optimization problems with decision-
dependent uncertainty (RO-DDU). Reference [35] establishes that a robust linear
optimization problem with the uncertainty set dependent on decision variables is
NP-hard by constructing a polynomial reduction from the 3-SAT problem. Reference
[44] considers a software partitioning problem to minimize the run-time of a computer
program, in which the scheduling of code execution depends on binary assignment
decisions. Reference [38] extends the budget uncertainty set of [12] by allowing the
protection level to be dependent on binary decision variables. Reference [48] proposes
a decision-dependent uncertainty set as a Minkowski sum of static uncertainty sets.
Reference [39] proposes a (1 + ¢)-approximation algorithm for the robust optimization
problem with a knapsack uncertainty set. Reference [28] generalizes the dependency
from binary decision variables to general discrete ones. The uncertainty set dependent
on discrete decisions with finite dimensions admits a computationally tractable robust
counterpart that can be represented as a finite union of convex sets. Our work
establishes that RO-CDDU is strongly AN'P-hard and characterizes the structure of the
adversary’s problem that depends on continuous decisions in our algorithm design.

Another stream of research focuses on endogenous uncertainty in distribution-
ally robust optimization settings, in which the ambiguity set characterized by the
probabilistic distributions depends on the previous stages’ decisions. For example,
Reference [30] explores multiple types of ambiguity sets based on moments, covariance
matrix, Wasserstein metric, Phi-divergence, and Kolmogorov—Smirnov test, for which
they derive tractable dual reformulations. Reference [36] develops tractable formula-
tions for ambiguity sets based on similar statistical distances. Reference [51] has a
decision-dependent moment-based ambiguity set, and the formulation is extended to a
multi-stage setting. However, those distributionally robust optimization models still
require an estimation of the ambiguity set to compute the expectation based on the
worst-case probability distribution, which may not satisfy the robustness requirement
in some low-probability high-impact applications [54].

The formulation of the RO-CDDU model is motivated by the demand response
management in electricity markets [1]. As the internet-of-things (IoT) and smart
grid technologies develop, an increasing number of electric appliances, including air
conditioners and space heaters in residential and commercial buildings, are eligible
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RO-CDDU 3

for real-time control. This allows flexible electric loads in different locations to be
aggregated into a sizable portfolio of demand response (DR) resources. A company that
creates and manages such a portfolio is called a DR aggregator, which balances supply
and demand in electricity markets by adjusting DR resources’ loads. DR aggregators
constantly face issues of uncertainty in DR resources [37]: a DR resource commits to
reducing its electricity consumption by a certain amount for a given time period, but
the actual reduction can deviate from such a commitment and the deviation often
depends on the committed reduction amount. If mishandled, this uncertainty can
cause significant load shedding and financial loss. Therefore, we propose an RO-CDDU
model, utilizing a convex piecewise-linear function to realistically model electric power
generation cost functions [50], and develop computationally tractable algorithms for a
DR aggregator to manage their large portfolios of DR resources.

We summarize the main contributions of this paper below.

1. We formulate the RO-CDDU model (1.1) and establish that RO-CDDU in a
general form is strongly A'P-hard.

2. We establish that problem (1.1) has an equivalent decomposable formulation
with an uncertainty set specific to each piece of the linear function.

3. We derive an MINLP formulation for RO-CDDU, and pose two assumptions
on the dual polyhedron such that RO-CDDU is well-defined. Under those
assumptions, we reformulate RO-CDDU into an MILP using the extreme
points of the dual polyhedron. We characterize cases for RO-CDDU to be
solvable in polynomial time even when the dual polyhedron has an exponential
number of extreme points, and in addition, we develop two computationally
efficient algorithms to numerically solve RO-CDDU.

4. We propose a novel RO-CDDU model for a demand response management
problem in electricity markets. We present extensive computational experi-
ments on our proposed algorithms to analyze the robust solution’s properties.

The paper is organized as follows. In Section 2, we prove that the RO-CDDU prob-
lem is strongly N"P-hard. In Section 3, we discuss model reformulation and algorithm
design. More specifically, in Section 3.1, we provide an exact MILP formulation for
the RO-CDDU problem, and characterize the model reformulation for widely-studied
uncertainty sets. We propose an alternating direction algorithm (ADA) and a column
generation algorithm (CGA) in Section 3.2, and the McCormick relaxation for a lower
bound of RO-CDDU in Section 3.3. In Section 4, we discuss the application of our
model in a demand response scheduling problem in electricity markets and report the
performance of the computational experiments. Section 5 concludes the paper with a
summary and future directions of RO-CDDU.

2 Computational Complexity We are interested in whether the RO-CDDU
problem could be solved polynomially in O(ng!ng2m®ng*1**) steps for some a; > 0
with ¢ = 1,...5. Besides the computational challenges caused by integer variables,
it remains to show if the continuous decision-dependent uncertainty set makes the
problem hard to solve. Using a polynomial reduction from the 3-partition problem, we
prove that RO-CDDU is strongly N'P-hard, even with no integer decision variables.

THEOREM 2.1. For any n, € N (including ny, = 0), the RO-CDDU problem in
(1.1) is strongly N'P-hard.

Proof of Theorem 2.1. To prove that model (1.1) is strongly N'P-hard for any
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€ N, we consider a problem instance of (1.1) with n, = KN, for some N, € N,
and for each k = 1,..., K we set the objective function fi(x,y, &) as

Ny Ny
Jr(z,y,6) = szmzk Zijj +Z£ek.
=1 =1

We define feasible region Q in (1.1b) as Q = {(z,y) € [0, 1]ENeFnu . vazml Wik +
Z;L”l viy; = W, Zf\fl Tip = 3, Zle i, = 1} with w; > 0 for all ¢ = 1,... N,
and v; > W > 0 for all j = 1,...,n,, and the uncertainty set =Z(x) as =(x) =
X xR Ea(wik), where Zi(zik) = {&x € R ¢ & < @i, & < 1 — @y} for
t=1,...,Ny,and k=1,..., K. We can rewrite model (1.1) as:

140(2.1a)  min V

141 (2.1Db) st. V>

Vie,y

Mz

max  {&r} — szmm Zvjyj, Vk=1,...,K,

T &ik€Eik (zik)

N, ny
142 (2.1c) Zwil‘ik+Zijj = W, Vk=1,...,K,

i=1 j=1

Ny
143 (2.1d) Zmik = 3, Vk=1,...,K,

i=1

K
144 (2.1¢) > m =1, Vi=1,...,N,,

k=1
145 (2.1f) 0 < z < 1, Vi=1,...,Nyk=1,....K,
146 (2.1g) 0 <y <1, y €z, Vi=1,...,n,
148 The objective function (2.1a) and constraint (2.1b) together reformulate the ob-
150 jective function in (1.1a). We observe that maxec=(q) C/;ré =>" maxe,, =, (z1) Sik
151 since the uncertainty set Z;;(x;%) is separable for £k = 1,..., K. By definition, we
152 can establish maxg,, ez, (z:,)16ik ) = min{wi, 1 — 24 }. Constraints (2.1c)-(2.1f) char-
153 acterize the feasible region . Constraint (2.1g) specifies bounds and integrality for
154 variables y in constraint (1.1c). Given that v; > W for all j =1,...,n,, any feasible
155 solution should satisfy y; = 0 and we can omit ¥ in our formulation.
156 We denote the decision problem associated with model (2.1) as Q, in which we
157 decide if there exists a feasible solution (V,x,y) such that V = —W. Computing
158 vaz”l maXe,, =, (zix) {&k} and vaz”l w;x;k takes polynomial time in the size of input,
159  so the decision problem is in A"P. We next establish a polynomial reduction from a
160  3-partition problem, Qspqr, to Q by verifying that the answer to Q is “yes” if and only
161 if the answer to Qspqer is “yes”. The 3-partition problem Qs asks if there exists a
162 partition of set S into triplets for S = S; U---USk with |Sg| =3 forallk=1,... | K
163 and S NSy = 0 for all k # k' such that }° 5 w=W foreach k=1,..., K.
164 (=) Suppose the answer to Q is “yes”, i.e., there exists a feasible solution (V, z, y)
165 such that V = —W. We can derive the following inequalities:

@ Nz N ) ©

166 (2.2) Vv > Zmln{l _a/‘ik}7$ik} —Zwixik = Zmln{l :c,k7x,k} w > —-W,

167

i=1 i=1 i=1
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RO-CDDU 5

where step (a) follows directly from constraint (2.1b), and step (b) follows directly from
constraint (2.1c). In step (c), constraint (2.1f) suggests that ZzN:ml min {1 — Z;x, Tip } >
0. Since V' = —W, every inequality in (2.2) holds as an equality. From step (b) we have
vajl wizi, = W. Since step (c) holds as an equality, for each i = 1,..., N, we either
have 1—z;;, = 0 or 5, = 0, i.e., w1, € {0,1}. Weset S = {w; : 2, = 1},VE=1,... | K.
Each S, forms a triplet by constraint (2.1d) and every element w; can find a unique
triplet assignment by constraint (2.1e). The sum of elements of each triplet equals W
by constraint (2.1c) and we obtain a solution to Qszpar.

(<= ) Suppose that the answer to Qg,q, is "yes”, which implies that there exists a
partition of set S into triplets Sy, ..., Sk such that Zwesk w=Wforallk=1,..., K.
We can then construct a tuple (V, x,y) as:

1 if 1‘68 i )
Tig = WSOk o1, Nak=1,....K, y;=0,Yj=1,....,n,, V=-W,
0 otherwise

which is feasible for model (2.1), and thus we can answer “yes” to Q.

In summary, we establish a polynomial reduction from Qsp,, to Q. Since Qszpqy is
strongly N'P-complete, the decision problem Q is also strongly A'P-complete and the
optimization problem RO-CDDU is strongly A'P-hard for all n, € N. B

Theorem 2.1 suggests that the uncertainty set’s dependency on continuous deci-
sions makes RO-CDDU model (1.1) strongly AN'P-hard. This strongly N P-hardness
also leads to the result that RO-CDDU does not admit a fully polynomial-time ap-
proximation scheme (FPTAS) unless P = NP [22]. Note that our complexity result
still holds when there is no integer variable, i.e., n, = 0, or when x is integer.

To improve the computational tractability of RO-CDDU, we first establish a
reformulation of model (1.1) to the following model with a decomposable structure:

(2.3a) min V
V,e,y,z
(2.3b) st. V> alxz+bly+ o+ d, Vek=1,...,K,
(2.3c) zr > max {cZﬁk}, Vek=1,...,K,
&K EE(x)
(2.3d) (x,y) €Q, x e R™, yeZ.

We summarize the connections between model (1.1) and (2.3) in Proposition 2.2 below.

PROPOSITION 2.2. The RO-CDDU problem in (1.1) has the same optimal value
as model (2.3). Any optimal solution to model (2.3) is also optimal to model (1.1).

Proof of Proposition 2.2. We first add an auxiliary variable V' to represent the
objective function of the RO-CDDU model in (1.1), and then lift the decision space
into (V,x,vy) to obtain the following equivalent formulation:

(2.4a) min V

Ve,y,z
T T T
(2.4b) st. Vo= Jnax | max {apz+bry+cg&+dy},
(2.4c) (z,y) €Q, x e R"™, yeZ.

Next, we show that problem (2.4) is equivalent to problem (2.5) below:
(2.5a) min V

Vie,y,z

This manuscript is for review purposes only.
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6 H. CHEN, X. A. SUN, H. YANG

(2.5b) st. V> max {ajz+bly+ 2z +di},

k=1,....K

(2.5¢) Zr > max {CZE;C}, Vk=1,...,K,
£rEE(x)

(2.5d) (z,y) €N, x e R™, yeZm.

To establish the claim, we prove the equivalence between model (2.4) and model (2.5).
First, for problem (2.4), we consider the corresponding optimal solution (z’,y’, 2/, Vi)
where ¢’ satisfies that ¢’ € arg MaXees(p) MaXk=1,..., K {a;w' + b,;'—y’ + c,;'—ﬁ + dk}.
We then let the optimal solution to problem (2.5) be (x*,y*, z*,V5) where &} €
argmax, cz=(z+) {Cx &kt for all k =1,..., K. At optimality, the index k* represents
the piece where maxy—1 . x {a{m* + b;y* + 2+ dk} is achieved.

(= ): We first prove that the optimal value V5 of model (2.5) is greater than or
equal to the optimal value V7* of model (2.4). To establish the claim, we show that

(a)
(2.6a) Ve > k:rrllaxKa;—w*—l—b;y*—i—c;z};—i—dk
2.6b > rxt + by . d
(2.6b) > max afe’ +bly’+ max {ci&}+de
®) T % T % T
(2.6¢) > max max apx” +by" + ¢, &+ di

ec=(z*) k=1,...K

(2.6d) > mn;lenﬂ gIenEa?;) pnax ajx+blytclétrd, = Vi,
xeR"® yeZ"y

where step (a) follows directly from constraints (2.5b) and (2.5¢) in model (2.5). In
step (b), the inequality holds because we can view the function in (2.6¢) as the function
in (2.6b) with additional constraints &, = &€ for all k = 1,..., K, which enables us to
move the maximization operator over £ outside maxg—1,. x. Instep (c), the inequality
follows given that (x*,y*) is only a feasible solution to the minimization problem
in (2.6d) with an optimal objective value V;*, which also leads to the last equality.
Summarizing the observations above, we obtain that V5" > Vj*.

(<=): To establish V}* > V5", we deduce that

« (d) T/ T,/ T et

(2.7a) Vo= k:r?%}.(,l({akm +bpy +ep € +di}

()
2.7b > ra’ +bly " d
( ) > k:Hll,E.i:)‘(’K {aka: + 0,y +§£1§();/){ck5k}+ k}

() (9)
2.7 > Ta* + by N i} £V,
(2.7¢) > k:Hll’E.i.)fK{akw +0,y +gkgl§§*){ck£k}+ k} 2

where in step (d), we plug in the optimal solution (2, y’, V;*) from model (2.4). We
let &’ denote the index where the expression in (2.7a) achieves the maximum and &
denotes the index where the expression in (2.7b) achieves the maximum. We can prove
step (e) by discussing the following two scenarios: (i) if ¥’ = k", then we observe that the
inequality holds with equality given that £’ € arg maxgcz(z {a},@'+b]y'+c &+di };
(ii) if &’ # k", we can show the inequality by contradiction: assuming the inequality
in (2.7b) does not hold, we obtain that

al, x' +bLy + clnbpr + dpr > L max {alz' +by +c & +dy}.

This manuscript is for review purposes only.



245
246

287

288

RO-CDDU 7

However, this contradicts that &€ maximizes the expression in (2.7a), since & is a
feasible solution and achieves a larger value for (2.7a). Therefore, the inequality in
step (e) holds. Step (f) follows from the optimality of solution (x*,y*, z*,Vy") to
model (2.5). Step (g) matches the definition of V5. Therefore, V;* > V5.

Summarizing the two arguments above, we obtain that V;* = V5. Furthermore,
(z*,y*) is an optimal solution to RO-CDDU model (1.1) based on the observation in
step (c) that the solution is feasible, which also achieves the optimal value given that
Vs = V. This completes the proof of the claims in this result. B

Proposition 2.2 implies that we can solve model (2.3) instead of model (1.1)
without loss of optimality. Such a reformulation is important as we can obtain a
decomposable structure from model (2.3), while it is hard to do so for model (1.1).
We will explain this structure with more details in Section 3 and consider model (2.3)
in the discussion of RO-CDDU for the rest of the paper.

3 Model Reformulations and Algorithms In the RO-CDDU model (1.1),
the adversarial variable £ influences the value of the piecewise-linear objective function
maxg=1,.. x fr(®,y,&). From Proposition 2.2, we observe that model (2.3), equivalent
to model (1.1), allows us to establish a decomposable structure as in constraint (2.3c),
such that the adversarial variable & is specific to each linear function fi(x,y,&).
However, even with a decomposable structure, Proposition 2.2 presents the fundamental
challenge of solving the RO-CDDU problem: model (2.3) is a semi-infinite mixed-
integer program, and the standard robust counterpart reformulation in Theorem 1.3.4
of [9] cannot be directly applied due to the uncertainty set’s dependency on continuous
decision variables. Another computational challenge is that the set of constraints in
(2.3¢) is nonconvex in decision . Moreover, since the decision vector @ is continuous,
we can neither directly apply the reformulation techniques in [35].

To address the issues above, we reformulate model (2.3) as the following MINLP,
using the strong duality result in Theorem 1.3.4 of [9]:

(3.1a) V;nylri" v

(3.1b) st. V> zx+alx+bly+d, Ve=1,...,K,
(3.1c) 2y > 7 (h—Tx), Vk=1,...,K,
(3.1d) Win, = ¢p, m > 0 Ve=1,...,K,
(3.1e) (x,y) €Q, x e R"™, yeZ™.

The bilinear terms 7] Tx make model (3.1) computationally challenging. In Section 3.1,
by defining the dual polyhedron Hy := {m € R' : W Tx = ¢;, w > 0} from constraint
(3.1d), we first state two assumptions based on the structure of Hy such that the RO-
CDDU problem is well-defined. Under those assumptions, we can further reformulate
model (3.1) as an MILP using the extreme points of Hj. However, the MILP model
is still large-scale and hard to solve. Therefore, we propose an alternating direction
algorithm (ADA) in Section 3.2.1 and a column generation algorithm (CGA) in
Section 3.2.2 to obtain a good feasible solution efficiently. In Section 3.3, we consider
an approximation model based on McCormick relaxation to obtain the lower bound.

3.1 MILP Reformulation Based on the Structure of #; We note that if
the dual polyhedron Hy is an empty set, the adversary’s problem maxg, c=(a) {cl&k}
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in constraint (2.3c) of problem (2.3) is either infeasible or unbounded by the linear
programming duality theory, subject to which the RO-CDDU problem becomes ill-
defined. Thus, we first make the following assumption on #.

ASSUMPTION 1. Hy £ 0,Vk=1,... K.

Since Hj, is contained in Rﬁr and by Assumption 1 it is non-empty, thus it has an
extreme point. So, by Minkowski-Weyl Theorem, we can explicitly represent the dual
polyhedron Hj as:

Nk Mk Nk
(3.2) Hp = {7\’ =Y T+ Y WAk Y wl =1, w’ e RY*, w' € Rfk} ,
s=1 r=1 s=1

where {71} N5, denotes a finite set of points and {Ag,} % denotes a finite set of
rays in Hy, with finite Ny and My for all £ = 1,..., K. The dual polyhedron Hjy
is pointed because 7t > 0, which suggests that it is without loss of generality to let
{fks}évz’“l be the set of extreme points and {Xkr}i\ﬁl be the set of extreme rays for Hy.
With this representation, we further make an assumption on Hj to make model (1.1)
well-defined.

ASSUMPTION 2. X;(h —Tx) >0 foranyk=1,...,K,r=1,..., My and any
(z,y) € Q,

For Assumption 2, if for some solution (&,4) € € we can find a ray Ay, such

that X;—r (h — Tz) < 0, the adversary’s problem (2.3c) is infeasible because its dual
problem is unbounded, i.e., a decision & can be made such that Z() = (. For
RO-CDDU, though decision-dependent, uncertainty should objectively exist and not
be eliminated by the decision. Therefore, we propose Assumption 2 to avoid such
an unreasonable situation, which also matches the real-world setups in the demand
response management problem introduced in Section 4.

Assumptions 1 and 2 ensure that the adversary’s problem maxg, e=(a) {CZ&} in
constraint (2.3¢) is neither unbounded nor infeasible, which are commonly recognized
conditions for decision-independent uncertainty sets [13; 29]. To proceed, we consider
the following characterization of the RO-CDDU problem.

PROPOSITION 3.1. Suppose {Trs}%, and { X, Y25 are respectively the extreme
points and extreme rays of Hy giwen in (3.2) for allk = 1,..., K, Assumptions 1
and 2 hold, and Q is compact. The RO-CDDU problem (1.1) can be reformulated as
the following MILP:

(3.3a) min V

Vie,y,z,u
(3.3b) st. V> zptax+bly+d, Vek=1,...,K,
(3.3¢) 2 > W (h—Tx) — M1 — ), Ve=1,...,K,s=1,..., Ny,
N
(3.3d) Shke = 1, e 0,13 Vk=1,...,K,
s=1
(3.3¢) (z,y) €N, x e R™, yeZm.

Proof of Proposition 3.1. For any feasible solution «, by LP strong duality,
the optimal value of maxgcz(a) cgé on the right hand side of constraint (2.3c) equals

This manuscript is for review purposes only.
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to the optimal value of its dual problem ming, e3;, ;) (b — Tz). Thus, model (2.3) is
equivalent to the following formulation:

(3.4a) min Vv
Viey,zm
(3.4b) st. V> zx+alx+bly+d, Vk=1,...,K,
(3.4c) zx > min w, (h —Tx), Vk=1,...,K,
T EHE
(3.4d) (,y) €Q, z €R™, yeZ™.
For each k = 1,..., K, by the representation of Hj in (3.2), we can write the mini-

mization problem in constraint (3.4c) in an equivalent form:

' _N\T
(3.5a) wrg{i;ll (; WO ys + ; wi)\kr) (h—Tx)
Ny,
(3.5b) st > wl=1, w’ eRY, w' e RY"
s=1
By Assumption 2, at the optimal solution, we have w} = 0 for any r = 1,..., My,

because X;(h —Tx) > 0. Thus, constraint (3.4c) can be reformulated as

3.6 zE > min ) (h — Tx).
( ) ko= 7w E{Trs:s=1,...,Ni} k( )

Since €2 is compact, there exists a finite M so that we obtain model (3.3). B

The dual feasible region Hj can be unbounded, but from Proposition 3.1, the
extreme rays A, will not contribute to the objective value given Assumption 2.
Therefore, we can focus our reformulation on the extreme points 7. Admittedly,
the number of extreme points N; can still be exponential in the problem parameters
(ng, n¢), leading to an exponential number of binary indicators p. As a result, solving
such a large-scale MILP model is still challenging in general. Therefore, we focus on two
widely-used uncertainty sets in the literature: the central-limit-theorem (CLT)-induced
uncertainty set in [5] and the budgeted uncertainty set in [12]. Next, we will show that
RO-CDDU with either uncertainty set admitspolynomially-solvable reformulations
when there are no integer variables.

CLT-induced uncertainty set by [5]. The uncertainty set proposed by [5] is
mainly motivated by the central limit theorem. Based on their work, we consider
a decision-dependent uncertainty set, =7 (), in which the mean value and the

standard deviation of £ are affine functions of the decision variables x:

ne ne
(8.7) (@) = {s eR™: &= (ol +al'2)| <To(s+ ﬂ”w>},
i=1 i=1
where constants a® € R™, B! € R", a! € R" x R" and p°,T,0 € R.. We use
affine functions Y%, (a? —|—a%T:c) and I'o(B° + ﬂlTac) of decision variables « to replace
the random variable’s mean and standard deviation. We proceed to characterize the

conditions in which the RO-CDDU problem is well-defined in Proposition 3.2, establish
a polynomially-sized reformulation, and obtain the optimal value.

This manuscript is for review purposes only.
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PROPOSITION 3.2. The adversary’s problem maxg, c=crLr (g) c} & yields a finite
value, and correspondingly, the RO-CDDU model is well-defined if and only if 3° +
ﬁlTw >0andcpy =+ = Ckne = Ck for some ¢, € R. Under such conditions, for any
feasible solution (x,y) € 2, the optimal value of the k-th adversary’s problem satisfies:

ne
T T
3.8 max cf & = lew] - To(B2+ B ) +cp- al +al ).
38 max ef& = lel To(8"+ 8" @) +o ;( {+a) z)
Proof of Proposition 3.2. Using a standard transformation by introducing two
auxiliary variables u*,u™ > 0, we first write down a linear program reformulation of
the adversary’s problem (P*) and its dual problem (D¥):

ng
p* max Cri&i
( ) £eR™E ut>0,u—>0 ; kit
st ut+u < Fa(,BO + ﬂlTa:), DT
ng ng
_ T
ut—u = Zfi—Z(a?—i—a} x). )
=1 =1
k T - T
D i [F o4 g ] - 01 ol
(D7) o pin om Lo(f7+ 8 x)| —m ;(a +oi )
st. m+m > 0,
m —m2 > 0,
— T2 = Cki, Vi::l,...,’ng.
The dual polyhedron Hy = {(71,72) : 711 > 0,711 > 7o, T > —To, Mo = —Ciy, V i =
1,...,n¢} is nonempty only if ¢y = -+ - = Ckne, Which matches Assumption 1 to make

sure that the adversary’s problem is bounded. Since w1 > |m3| > 0, if T'o(3° —I—,@lT:I;) <
0, 71 can take infinity to make (D¥) unbounded and (P*) infeasible. Therefore,
Ckl = '+ = Ckng and Fa(ﬁo + ,BlT:l:) > 0 are the conditions for the adversary’s
problem (P*), and also the RO-CDDU model, to be well-defined.

On the other hand, if ¢y = - -+ = cxp, = cx and Fa(ﬁo—i—ﬂlTx) > 0, we can always
find an optimal solution to (Dk) as m = |¢g| and m = —cg. It is straightforward
to see that w5 has to be fixed at —c; by the equality constraint. The coefficient for
w1 is nonnegative and thus m; should take the minimum value, which is the larger
of ¢, and —¢g, i.e., |cg|. By LP strong duality, the existence of such an optimal
solution also suggests that the adversary’s problem can achieve an optimal value at
ek Yot (ad + a}T:B) + |ex| - To(B° + ,C‘]lTalr:)7 and RO-CDDU is well-defined. W

Based on the characterization above, we only need to consider the unique extreme
point of (D¥), w1 = |ex|, ™2 = ¢k, to develop the following MILP reformulation for the
RO-CDDU with a CLT-induced uncertainty set:

(3.92) min V

Vz,x,n
(3.9b) st. V> zk—i—a;—w—i—bzy—i—dk, Vk=1,...,K,
- T T
(3.9¢) > kY (o0 +ag w)+|6k|[1“0(ﬂ°+51 a:)], VE=1,...,K,
i=1

(3.9d) (z,y) €Q, z€R", yeZ"™.

This manuscript is for review purposes only.
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We note that model (3.9) admits polynomially-sized constraints, which also reduces
the computational concerns in the branch-and-bound algorithm in the MILP problem.
Without any integer variables y, the RO-CDDU problem becomes polynomially solvable
under the CLT-induced uncertainty set.

Budgeted uncertainty set by [12]. We consider the widely-studied budgeted
uncertainty set in the literature [3; 18; 42], which was first proposed by [12]. Given
positive integers 7' and ng = n, = nT, we define a budgeted uncertainty set =8 (x) =
xI_ ZB(x;), in which 2B (z;) is defined as:

2P (1) = {st ER™:  —af, —ajwy <& < By + Buwa, Vi=1,...m,
n
(3.10) Dl <G+ wawt|},
i=1
where af, a}, 32,8} € R%, ¢ € Ry, wy € R". Parameter t = 1,...,T indexes each

piece in the Cartesian product of the uncertainty set. This formulation with ne = n,
is motivated by the multi-period model for the demand response application detailed
in Section 4 but can be easily extended to the case where n¢ # n,. Notice that the
Cartesian product admits a decomposable structure naturally, which is established in
the following lemma.

LEMMA 3.3. Given the uncertainty set =8 (x) = xI_ =B (x;) with 2B (x;) defined
. T T T
in (3.10), we have that maxgczp (z) Cx § = D ;) MAXg, 2B (z,) Cpyt-

Proof of Lemma 3.3. We prove the lemma from two sides:

On one side, we first observe that maxgczs (q4) el &= maxec=5 (q) Ethl el & <
Zthl MaXe, c=F (,) cthﬁt, because an optimal solution &; is chosen for each optimization
problem maxg, c=5 (4, c,;'—tﬁt witht=1,...,T.

On the other side, let & be the optimal solution to problem MaXe, c=F (x,) c—krtﬁt for
allt =1,...,T. By definition of Z(z) in (3.10), solution £* = (&;)]_, is feasible to prob-
lem maxgczs (o) c,;ré. So, we obtain that maxecz5(4) cgﬁ > Zthl MaXe, c=5 (z,) c;tgt.

Combining the two observations above, we conclude that maxgczs (a) & =
T T
D=1 maXe, c=5 (x,) cp - B
Lemma 3.3 suggests that the uncertainty set x._;=5(x;) allows us to decompose
problem maxgc=a () cl{ into T independent adversary’s problems. Using the standard

linearization technique by letting &;; = 5;{ — ¢, where fi';, & = 0, we can write the

adversary’s problem for a given t = 1,...,T as an equivalent linear program in &;:
(3.11a) (Pkt) max c;—t(ﬁj &)

& e, >0
(3.11b) st &F — &, < B+ Bhwit, Vi=1,...,n, T
(3.11¢) & — &, > —ad — o, Vi=1,...,n, DT,
(3.11d) D+ ) <G+ |wl ®- E

i=1

This manuscript is for review purposes only.
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12 H. CHEN, X. A. SUN, H. YANG

We derive the dual problem of model (3.11) as:

n

(3.12a) (D*)  min > [mi (B + Biwa) — ma (afr + airwin) ] + m(G+ |wi @)

w1 >0,m2<0 “
w320 i=1
(3.12b) s.b. T + M2 + T3 > Crit, Vi=1,...,n,
(3.12C) — My — M2 + T3 > —Clit Yi=1,...,n.

We show that the feasible region Hj; corresponding to model (3.12) has an
exponential number of extreme points in n via the following lemma. Without loss
of generality, we can assume that the cost coefficients ¢y are different, nonzero, and
aligned in ascending order of their absolute values, i.e., 0 < |cg1| < -+ < |Cknt|. In
addition, we also set cyq; := 0 for simplicity of notations.

LEMMA 3.4. We let the tuple (75,5, m5) denote an extreme point for polyhedron
Hit. We can obtain a subset of extreme points satisfying the following conditions

(1) for some j* =1,...,n, m§ = |ckj~
(i) foranyi=1,...,n,

N A * * .
o ifi=j", n};, =73 =0;

)

Ckit — ﬂ'?’;a 0)7 Zf Ckit > 07
0, crit +73), if crir <O0;
b Zfz <J% (ﬂ-iki’ﬂ.éki) € {<0’0)’ (Ovckit - ﬂ-z’:)’ (Ckit + 77570)}'

e e (
o ifi>j*, (7}, m5) = (

Proof of Lemma 3.4. To verify that the proposed point (7§, 7w}, 75) is an extreme
point, we enumerate the following possibilities of linear independence conditions for
the dual linear program for each i =1,...,n:

o for ¢ = j*, by setting up 7}, = 73; = 0, three inequalities m1; > 0, mo; < 0 and
1+ Toi + T3 > crir (if cgie > 0) or —my; — T2 + 73 > —cpit (if cpir < 0) hold
as equality;

o fori > j* if i > 0, by setting up 7}; = cgie — 73 and 75 = 0, two inequalities
mo; < 0 and 7y; + mo; + w3 > gy hold as equality; if ¢ < 0, by setting up
T = crir+m5 and 77 = 0, two inequalities m1; > 0 and —my; — T2 +73 > —Ciir
hold as equality;

o for i < j*:

— at 7}; = m5; = 0, two inequalities 77; > 0 and 73, < 0 hold as equality;

— at nj; = 0,73, = cpit — 73, 7}; > 0 and my; + mo; + T3 > ¢y hold as
equality;

— at 73, = 0,7}, = crit + 75, m5; < 0 and —my; — mo; + 3 > —cpye hold as
equality.

The solution (77,75, 73) is feasible by construction, at which there are 2n + 1 lin-
early independent inequality constraints holding as equality. Therefore, the solution
(75,5, m3) is a basic feasible solution, and thus an extreme point for H:. For each
j* =1,...,n, we can yield at least 37" ~! extreme points, three for each i < j* — 1.
This makes the total number of constructed extreme points, which is only a subset of
all extreme points for Hy;, at least Z;'L*:l 31 = 3—2_1 Therefore, the number of
extreme points for Hy, satisfies (3™) and is exponential in parameter n. W

We now establish Theorem 3.5 to show that we only need to consider a polynomial
subset of extreme points to obtain the optimal solution to model (3.12).

This manuscript is for review purposes only.
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RO-CDDU 13

THEOREM 3.5. Forany k=1,...,K,t=1,...,T, the optimal solution to (D*")
s within a subset of the extreme points:

(3.13)

{(771’772771-3): T3 = |ckjt|7
i = (leki| — 773)Jr Ay >0,
n
w2 = —(|Ckitl *W3)+']lc;€it<0’ Vi= 17,,.,n}_ 0’
j=

where we let 1 4 be the indicator function of statement A and ()" = max{1,0}.

Proof of Theorem 3.5. We show that 73 can only take n + 1 possible values
{lexjel}j—o by discussing the following two cases will not happen in an optimal solution

to (DF):

(i)

g > max;j—1,.. n{|ckjt|}: suppose w3 > maxj—i . n{|ck;¢|} in the optimal
solution. Decision variables 71; and m; should take value 0 to achieve the
minimum value for the objective function of D*. We can construct 73 =
max;=1,.n{|ck;|}, which will yield a strictly better objective value. This
contradiction suggests that in the optimal solution, w3 < maszl’”_,nﬂckjt\}.
ck(j—1)e] < T3 < |crje|: suppose 3 € (|cg(j—1)el, |ckje|) in the optimal solution.
To reach the minimum, we need to have 1y = mp =0fori=1,...,7 — 1 and
T = |ekit| — w3, M2 = 0 if cpge > 0 or mp = 0,0 = —|Cpie| + 73 for i = 4,...,n.
Therefore, we can express the objective value as:

n

D [lewiel = m3) ((BS + Biewit) - Leysy >0 + (s + airie) - Leyyp<0)]

1=y

+73(G + |wi @)

The objective value is an affine function of 75. We let ¢ = ((; + |w, @) —
(8% + Bhwi) - Lepy>0 + (@ + afyxiy) - 1e,,,<0) denote the linear coefficient
of mg. If ¢ <0, T3 = |cy;¢| yields a strictly better objective than the optimal
73, while if ¢ > 0, T3 = |cp(j—1)¢| yields a strictly better objective. Both cases
contradict the assumption that msis part of the optimal solution. When ¢ = 0,
the objective value remains the same with either 73 = [cj(j_1)| or T3 = |cpj¢]
and we can equivalently consider 73.

By excluding the two cases above, we are left with a finite set of values for 73, {|cx;¢|}7—o-
For a candidate solution with w3 = |cxj¢| given j, we can realign constraints (3.12b)
and (3.12¢) as crit — |crje] < m1i + T2 < it + |ckje|. We can enumerate the following

cases to show that either m1; = 0 or my; = O:

(i)

kit < 0,7 < j: here cpi+|ckje] > 0 and ey —|exje| < 0, since my; (,B?t + 61'1t37it)
and —mo; (oz?t —l—a}txit) are both nonnegative, we have m; = my; = 0 at
optimality;

ckit < 0,4 > j: here cpir + |crje] < 0 and cgie — |cgje| < 0, to minimize the
objective value, we have m1; = 0, To; = cpit + |crj¢| at optimality;

it > 0,1 < j: here cpit+|crje| > 0 and crir —|cxje| < 0, since 7y, (ﬁ?t + Bilta:it)
and —mo; (a?t +azlt33,»t) are both nonnegative, we have m; = m; = 0 at
optimality;

ckit > 0,4 > j: here i + |ckje] > 0 and cgie — |cgje] > 0, to minimize the
objective value, we have m1; = ¢yt — |crji|, m2; = 0 at optimality.

This manuscript is for review purposes only.



ot

3

O N N N

[\
oo

o Ov O Ot

529
530
531

532

14 H. CHEN, X. A. SUN, H. YANG

Summarizing the four cases above, we can write the closed-form solution as m3 = |cxjq
and for each i = 1,...,n, m1; = (|cgit] — [chje])T - Loy, >0, and mo; = —(|egir| — [crje]) T
1.,. <o, given a specific j = 0,...,n. Therefore, we conclude that the dual optimal
solution can only come from the finite set stated in Theorem 3.5. B

Theorem 3.5 establishes that for each piece ¢, the optimal value of adversary’s
problem maxg, c=2 g, ;& subject to a budgeted uncertainty set =2 (z;) can be
expressed as the minimum of n + 1 linear functions, instead of an exponential number
based on Lemma 3.4. By Proposition 3.1, we can establish the following MILP model:

(3.14a) min V
Vz,x,p
T
(3.14b) st. V> > zutaizt+blyt+de, Vk=1,.. K,
t=1

n
2kt 2 Z [(‘Ckn| — lewje]) - Deyy>0 (B + Biewir) -
=1

+ (Jerit] = lerje) T - Legip<o (afs + Olr}txit)}

+ Jerjel (G + eow! @) — M(1 — prje),

(3.14c) Vi=0,....nk=1,....K,t=1,..., T, =1,2
(3.14d) > g =1, Vk=1,...,K,t=1,...,T,
j=0
3.14e st € {0,1}, Vj=0,....nk=1,....K,t=1,...,T,
J
(3.14f) (,y) €Q, x e R™, yeZ™.
We use the parameters e; = 1 and e5 = —1, to linearize the absolute value of

w, ;. Constraint (3.14c) is equivalent to constraint (3.3c) with 7ry, substituted by
the candidate dual solutions in (3.13). Recall that a major computational challenge
for the MILP problem in (3.3) is that the number of binary variable g in (3.3c) may
be exponential in (n,, ne¢). Under the budgeted uncertainty set in (3.10), Theorem 3.5
shows that it is without loss of optimality to consider a subset of binary variable p
with polynomial size given a fixed number of function pieces K in RO-CDDU model
(1.1) and a fixed number T of budgeted uncertainty sets, Z2(x) = x_;Z8(x;), which
can reduce the computational burden in the branch-and-bound algorithm when solving
for the MILP problem.

Furthermore, we note the polynomial solvability for problem (3.14) with fixed
parameters (7', K) and without any integer variables such that n, = 0.

COROLLARY 3.6. Under the budgeted uncertainty set (3.10), when there are no
integer variables y (i.e., ny =0), for fized K,T € N4, model (3.14) has a polynomial
run-time in parameters n.

Proof of Corollary 3.6. By Theorem 3.5, we only need n + 1 steps to enumerate
all candidate solutions. Therefore, it takes (n + 1)%7 steps to enumerate all feasible
dual solution candidates p. Given that n, = 0, for a specific feasible candidate p,
model (3.14) is reduced to a linear program, which can be solved by the interior point
method in O(n3?) steps [24]. With n, = nT, as a result, model (3.14) could be solved
in O((nT)35(n + 1)X7T) steps. B

Together with Proposition 3.1, Corollary 3.6 provides a sufficient condition for

This manuscript is for review purposes only.
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RO-CDDU with a budgeted uncertainty set to be solved polynomially in input size n:
after eliminating the integer variable y, adversary’s problem maxgcz(a) CZ& needs to
admit a corresponding dual feasible region with effectively a polynomial number of
extreme points to consider.

3.2 Algorithms to solve RO-CDDU We consider two algorithms in this
section to solve the RO-CDDU reformulation (3.1): an alternating direction algorithm
(ADA) and a column generation algorithm (CGA). For the demand response problem
in subsequent Section 4, we numerically demonstrate that both ADA and CGA achieve
tight optimality gap with a shorter run-time compared to solving the MILP (3.3)
directly with the commercial solver.

3.2.1 Alternating Direction Algorithm In ADA, we iteratively search for
the feasible solutions to model (3.1) in the subspace of 7 and @ in constraint (3.1c).
This is equivalent to keeping one vector 7 for constraints (3.3c) in each iteration. We
present ADA in Algorithm 3.1.

Algorithm 3.1 Alternating Direction Algorithm (ADA)

1: Initialization: s = 0 and (z°,9°) € Q, y° € Z™

2: repeat

33 fork=1,...,K do

4: Solve model (3.15) and obtain an optimal solution 7w *":
(3.15) min 7' (h—Txz®) st. w ¢ Hy.

5: end for

6: Let EZ'H = 7TZ+1T(h — Tx®) and Vet = maxg—1,... K ?Z-H + a;—ms + b;—’ys + d.
7: Solve

(3.16a) Vrinily Vv

(3.16b) st. V> zr+alax+by+d, 3
(3.16¢) ze > (mi™) T (h—Te), vk,
(3.16d) (z,y) € Q,

(3.16¢) xeR"™, yeZ.

8:  Obtain an optimal solution (VT 2T "t 4"+1) of (3.16).
9: s<s+1
10: until convergence criterion is met.

Note that model (3.15) is an LP and (3.16) is an MILP. We can show that
the sequence of value functions {(VS,VS) i s =1,2,...} is convergent due to the
monotonicity of the optimal values.

THEOREM 3.7. Suppose the model (3.1) has a finite global optimal value V*. The
sequence of the objective function values, {(V°,V*) : s = 1,2,...}, generated by
Algorithm 3.1, is monotonically nonincreasing, i.e. ot >yt > 7o > V* for all

s > 0. Hence, {VS, Vs} converges to a finite value, which is an upper bound on V*.

Proof of Theorem 3.7. From the minimization problems (3.15) and (3.16) in
iteration s, we obtain a feasible solution vector (V* &® y® z° #*®) to model (3.1),
which implies that the global optimal value V* of model (3.1) serves as a lower bound
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16 H. CHEN, X. A. SUN, H. YANG

of the sequence {Vl, Vl,VQ, V2. b

Moreover, noting that (V*, x° y*, z°) is a feasible solution to problem (3.16)
from iteration s given 7%, in iteration s + 1, we can establish that VSH < Vs
from minimization problem (3.15). Next, in minimization problem (3.16), solution

—s+1 : . . . . .
vector (VS+ ,x8 y®, zSH) is a feasible solution given the updated 75*! from problem

(3.15). Thus, we have Vst < 7T and the sequence of {Vl,Vl,VQ,VQ, ... }is a
nonincreasing sequence bounded from below by V*, and thus is convergent. B

The algorithm searches for solution 7% in a subset of the extreme points for H; and
the convergent process obtains a feasible solution to model (3.1) in every iteration. The
sequence {V*} is possible to converge to a suboptimal value, but we show in Section 4
that ADA can achieve good feasible solutions quickly. We show in the subsequent
discussion that ADA could be further improved with the budgeted uncertainty set.

Improved ADA with the budgeted uncertainty set. We consider the bud-
geted uncertainty set in (3.10). When we solve adversary’s problem (3.15), we leverage
the special structures in Theorem 3.5, with which solving model (3.15) only requires
verifying n 4 1 solution candidates.

COROLLARY 3.8. Given the budgeted uncertainty set defined in (3.10), the follow-
ing ™ solves model (3.15): foranyk=1,..., K, t=1,...,T,

Ty € argmin { > [(\Ckitl —m3)" ((53 + Bivwit) - Loy, >0 + (i + aigie) ILcm<0)}

7j=0,...,n i—1

+ 73 (Ce + |wi ) :

i = (|Ckit| 77r3)+ Aeyi>0, Vi=1,...,m,
mai = (Jewit] = m3)" Leyco, Vi=1,...,n,
(3.17) m3 = |ijt\}-

Proof of Corollary 3.8. The proof follows directly from the proof of Theorem 3.5
that it is without loss of optimality to only consider the subset of the extreme points
in (3.17) of the dual polyhedron for problem (D*!) from (3.13). B

Based on Corollary 3.8, we simplify the optimization of model (3.15) to a search
process. In (3.17), solution 73 takes one of the values from {|cg1¢|, ..., |cknt|,0} and
71 and 7o can be subsequently decided. Since there are only n + 1 solution candidates
for w3 foreach k =1,..., K and t = 1,...,T, we only need to make nK'T comparisons
to find the optimal solution 7r.

3.2.2 Column Generation Algorithm We propose a Column Generation
Algorithm (CGA) for problem (3.1). CGA has been proposed to solve robust opti-
mization problems in the literature [4; 52]. CGA starts from a master problem with
an incomplete set of variables and calls certain oracles to compute the next variable to
append to the master problem. In many cases, the number of critical variables added
to the master problem is small, which makes the algorithm computationally tractable.
We adopt the idea of CGA to solve model (3.1) and present CGA in Algorithm 3.2.

In Algorithm 3.2, in contrast to ADA that only preserves the most recent solution
7). in each iteration, CGA appends 7y to a solution set Ilj, preserves more elements
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Algorithm 3.2 Column Generation Algorithm

1: Initialization: an initial set of extreme points I of Hy of cardinality Ny = |IIj|

2: repeat

3:  Solve model (3.3) with 7, € Ik, s = 1,..., N, obtain the feasible solution &,y and
the objective value V;

4. fork=1,...,K do

5: Solve model (3.18) and obtain an optimal extreme point 7:

(3.18) min 7' (h—T&) st. 7€ Hy.

if & ¢ Il then
Append 7 to Iy, Ny < Ni + 1, U, = false
else
Ui = true
10: end if
11: end for
12: until ﬁiilUk = true.

in the solution set Ilj, and creates more opportunities to find better solutions than
ADA does. Similar to Algorithm 3.1, given that IIj is a subset of the extreme points
in polyhedron Hj, CGA terminates with a subset of variables pgs, which yields the
finite convergence result as follows:

COROLLARY 3.9. Algorithm 3.2 terminates after finite steps with a feasible solution
to model (3.3).

Proof of Corollary 3.9. The proof follows from the same monotonicity arguments
as in Theorem 3.7. In each iteration, for £k = 1,..., K, an extreme point of Hj is
added to II;. As the number of elements in II; increases monotonically, the objective
value of model (3.3) decreases monotonically. Given that the number of extreme points
for Hy is finite, this leads to convergence of CGA.

We again leverage the monotonicity property to prove this convergence result.
When Algorithm 3.2 terminates, solution (&,¢) may be suboptimal for problem (3.1).
Despite this, the numerical performance for the demand response problem in Section 4
shows that CGA consistently reaches the global optimum. Given the budgeted uncer-
tainty set in (3.10), we can also simplify solving model (3.18) based on Corollary 3.8,
which further improves the speed of Algorithm 3.2.

3.3 Lower Bound from McCormick Relaxation To approximate the prob-
lem (3.1) from below, we consider the McCormick relaxation proposed in [32] to
approximate the bilinear terms. We point to [20; 25; 33] for reference of theory and
applications on McCormick approximation. Without loss of generality, we assume that
Q and Hj, are compact, and thus the decision variables (x,7) are bounded. Suppose
the technology matrix T has | rows. We define the lower bound of (z,7) by (x, )
where & = (21, ...,2Z,,) and w, = (Tk1,. .., Tr). Similarly, we define the upper bound
of (z,m) by (T, 7) where T, = (T1,...,%n,) and T = (Tg1,...,7x). Constraint
(3.1¢) can be approximated by the McCormick relaxation below: for any k =1,..., K,
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i=1,...,l,t=1,...,n,, we have
ne 1
(3.19a) 2, > wph— Z ZTinkji,
i=1j=1
(3.19b) Qkji = ThjTi + TiThj — ThiTi,
(3.19¢) Qrji = ThjTi + TiThj — TkjTi,
(3.19d) Qrji < ThjZs + TiThj — ThjZe,
(3.19¢) Qrji < TiTi + TiTgj — ThjTse

We can further refine constraints (3.19b) - (3.19¢) if we partition the intervals of
x and 7 into more pieces. It will result in a disjunctive MILP formulation, in which
only one subset of (x, ) is selected. The McCormick relaxation will be tightened
when the number of partitions increases. In this approach, we could approximate the
RO-CDDU problem in (1.1) with arbitrary precision. However, in this MILP problem,
the size of disjunctive constraints grows in the order of M2, where M represents the
number of partitions. For example, for large-scale instances in Section 4, it would be
intractable to solve this MILP problem with multiple partitions. Therefore, we use
the formulation in (3.19) with M =1 to generate a lower bound for model (3.1).

4 Application in Demand Response Portfolio Management

4.1 Modeling Background In electricity markets, consumers who can reduce
or shift their electricity usage during certain periods are considered DR resources. DR
resources have gained more attention in recent years to help power system operators
balance supply and demand, lower generation costs, and improve system efficiency [1;
26]. A DR portfolio can have thousands of DR resources of various characteristics,
such as the ability to respond to load reduction under the variance of the demands [21].
Proper scheduling is necessary and challenging [34; 41]. For DR scheduling optimization,
Reference [47] proposed a deterministic optimization model to solve the automatic load
management problem in a smart home. Reference [23] developed a forward market
clearing algorithm for the demand flexibility problem with the goal of co-optimizing
the scheduling cost and the system security. Reference [40] characterized a novel
control approach based on online optimization to manage the operations of responsive
electrical appliances. The impact of uncertainty has also been extensively studied. For
example, various robust optimization models with exogenous price uncertainty are
proposed in [15; 16].

There are three main players in a DR event: the system operator, the DR
aggregator, and the DR resources. The DR aggregator gains revenue from the system
operator for providing the required demand reduction. At the same time, it offers
payment to the participating DR resources in its portfolio [21]. Each DR resource
has a set of operational characteristics to be respected during a DR event. Figure 1
illustrates these key characteristics on a scheduled dispatch trajectory of a DR resource.
The key constraints include three parts as follows:

max

(1) Reduction constraints: DR resource i has a capacity z"** and minimum
commitment requirement 2. Since we consider active demand reduction,
we assume ™8 > 0.

(2) Ramping constraints: DR resource ¢ has ramping limits r;" and r; .
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DR event

1+ B)xie
Rl

Fig. 1: The dynamics of a DR resource and realization uncertainty.

(3) Smoothness constraints: every time the demand reduction level of DR resource
i increases (decreases), it cannot decrease (increase) before at least T (T1)
periods due to DR resource’s inertia.

4.2 The Deterministic Model We take the perspective of the DR aggregator,
who earns revenue ¢; from committing DR resource ¢ for a unit demand reduction.
There is a required level of demand reduction for the DR aggregator based on contracts
with the system operator. A mismatch of DR amount leads to a penalty at any time ¢:
(i) if the total reduction level is less than the required level, the unit under-commitment
cost for the DR aggregator induced by refund, contractual penalty, and loss of market,
is s¢; (ii) if the total load reduction level exceeds the required level, the unit over-
commitment cost caused by value loss of DR resources, is h;. The DR aggregator aims
to maximize its profit by committing the right portfolio of DR resources.

We let D; be the required total demand reduction level at time ¢, which is a
deterministic parameter known to the DR aggregator. Let @ = (z;;), in which x;
is the demand reduction level for resource i at the beginning of time ¢. For the DR
aggregator, the total cost includes the over-commitment cost, the under-commitment
cost, and the commitment revenue, which can be expressed as:

TR o] (1) R N (S A S el

t=1 i=1

where ()" := max(z,0). The objective function is a piecewise-linear convex function.
Complicated operational constraints, such as startup, shutdown, and ramping limits,
can cause a mismatch in DR scheduling. We let the binary variables u;; indicate
whether resource ¢ is committed at time ¢. We also set two binary ramping indicators
w;t and vy such that wy = 1if 244 — 254-1) 2 0, and vy = 1 if 254 — 255-1) < 0. We
propose the following novel deterministic model for DR portfolio management:

(4.2a) min  f(x)

@,u,v,w
(4.2b) st 2wy <z < 2P, Vi=1,...,n, t=1,...,T,
(4.2¢) — i Uit < Ti(e41) — Tie < rj'ui(H_l), Vi=1,...,n, t=1,...,T—1,
(4.2d) Tit — Ti—1) < Mwit, Vi=1,...,n, t=2,...,T,
(4.2¢) Tir — Ti(r—1) = —M (1 — wst), Vi=1,...,n, t=1,...,T,
T=t,...,min(t+71; —1,7T),
(4.2f) Tit — Tip—1) > —Muit, Vi=1,...,n, t=2,...,T,

(4.2¢g) Tir — Ti(r—1) < M(1 —vit), Vi=1,...,n, t=1,...,T,
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r=t,...,mn(t+ T8 —1,T),
(4.2h) Wit, Wit, Vit € {0, 1}, Vi=1,...,n, t=1,...,T.

In constraint (4.2b), when a DR resource is committed (u;; = 1), the reduction
amount xz;; has to be bounded from above and below. Constraint (4.2c) defines the
maximum and minimum ramping rates for committed resource 7 at time ¢, because the
DR aggregator needs to respect the smoothness characteristics in scheduling demand
reduction. In constraints (4.2d) and (4.2e), if resource 7 increases its commitment at any
time ¢, it has to keep the non-decreasing trend for a minimum of T;* periods. Similarly,
constraints (4.2f) and (4.2g) require that if resource ¢ decreases its commitment at
any time ¢, it has to keep the non-increasing trend for at least T periods. The big-M
parameter M stands for a large positive real number. The proposed model (4.2) is a
novel formulation for DR portfolio management that explicitly models the detailed
commitment cycle dynamics of DR resources. It also considers a piecewise linear cost
function which can balance the over- and under-commitment costs for DR aggregators.

4.3 Robust Demand Response Model In a DR event, the aggregator sched-
ules the reduction level for each resource. However, unlike conventional generators, the
demand reduction of DR resources can have significant uncertainty due to unexpected
factors in operations and market conditions. The final realized reduction level of a
DR resource may be different from the one scheduled.

We model the final realization of demand reduction as Z;; = x;+ + &+, where &
represents the implementation noise bounded in the uncertainty set below:

— Qi T4t S fit S ,Bi:vit, Vi = 1, N 1
(43) Et(ZBt) = ét = (Amlt, .o .7A$L‘nt) : s
S| ST X0 @™, ve=1,...,T

where o, 8 € R’}. The proposed uncertainty set captures the positive correlation

between the implementation noise and the scheduled commitment, which is pointed
out in the demand response literature [46; 53]. Since a resource with a large capacity
can sometimes commit a small demand reduction, such an uncertainty model (4.3) can
avoid the over-conservativeness caused by decision-independent uncertainty in which
the uncertainty range is only proportional to the resource’s capacity. Moreover, we
use I'; to capture the DR aggregator’s conservativeness level and the risk preference in
uncertainty. It is worth noting that the uncertainty set formulation (4.3) is a special
case of the budgeted uncertainty set (3.10) with af = 8 = w; = 0.

Similar to the objective function in (4.1), we define the objective function of the
robust DR problem as the following piecewise-linear function:

(44) (€)= XTj{h (Stwuren-nc) +s (Dt—znj<m+su>)+—icmw)}.

t=1 i=1 i=1 i=1

Given (4.3) and (4.4), we formulate the robust DR portfolio management problem
with the framework of RO-CDDU in (1.1). Notice that the condition ™" > 0 for any
i =1,...,n will guarantee that Assumption 2 holds for any feasible « because the
dual minimization problem of max¢c=(z) f(x,§) is lower bounded by 0.

(4.5a) min  max  f(x,§)
z,u,v,w EEE(x)
(4.5b) s.t. (z,u,v,w) satisfies (4.2b)-(4.2h).

This manuscript is for review purposes only.



776
T
778
779
780
781
782

783

784
785
786

787

RO-CDDU 21

The rest of this section covers the computational experiments solving model (4.5).
In Section 4.4, we detail the setups for our numerical experiments. In Section 4.5,
we demonstrate the performance of ADA and CGA. We numerically benchmark the
objective value obtained by ADA and CGA against the lower bound obtained from (i)
the McCormick relaxation of formulation (3.1), (ii) the best objective value of (3.1),
and (iii) the best objective value of (3.3), with both (ii) and (iii) solved within a
fixed time span. In Section 4.6, we investigate how the robust solutions obtained with
different uncertainty budgets I'; perform under a stochastic setting.

4.4 Experiment Setup We construct two test cases for the numerical experi-
ments, one with simulated DR resources’ parameters and the other with real-world
data. For both cases, we let the time horizon length 7" =9 and use a time-invariant
parameter I' for the uncertainty budget such that I'y =T forall t =1,...,T.

Table 1: Parameter setups for the simulated DR resources, with ¢{a,b} representing
binary distribution between bounds a and b and Ula, b] representing continuous uniform
distribution between bounds a and b

Setting Parameters Setting
Parameters
Type A Type B Type C 6n ift=4,5,6

c; (U. ~UJ[0,2]) 22 + 2U, 20 + 2U, 18 + 2U. Low 0 otherwise
a; = [ 0.5 0.3 0.1 D,
gmax 15+ Uy, Ug ~ U{0,5} High 15n ift=4,5,6
m;n‘n 44 U,, U, ~U{0,1} 0 otherwise
rF 54+0U,, U, ~u{0,2} s, | Low | 1000+Us, Uy ~ U0,500]
T, 5+ U, Ur ~U{0,2} High 1000 + U,, Us ~ U0, 500]
T 2+ U, U. ~U{0,2} he ht = 30 4+ Uy, U, ~ UJ0, 5]
T 24 Ue, Ue ~U{0,2}

The detailed parameter setups of the simulated test case are shown in Table 1. We
assume variations of resources’ power reduction commitments are positively correlated
to profitability, which is common in risk-return analysis [14]. We simulate three types
of resources: A, B, and C. In the order from A to C, resources have increasing unit
revenue c¢;, but also bear an increasing operational uncertainty, measured by 3; — .
We set resources’ uncertainty bounds homogeneous within each type. The ramping
rates and capacity limits are randomly generated from uniform distributions.

Based on the current industry practice, we let h; > ¢; because too much supply
impairs DRs’ economic value and causes power system instability [21; 43]. We set a
substantially higher under-commitment cost s; >> ¢;, because a shortage of power
supply can lead to severe contractual penalties from system operators who suffer from
power outage, credibility damage, and potential loss of market share to competitors.
We set two levels of under-commitment costs s; (high and low) and demands D; (high
and low) to approximate different market conditions and load profiles.

We further group 20 DR resources as a cluster, since they may be correlated in
realistic power systems [50]. Within a cluster, we assume that the binary ramping
decisions are the same for every resource in all time periods: all resources in a cluster
need to increase/decrease their response output together. This reduces the number of
binary variables and helps solve the problem computationally.

For the second test case with real data, we obtain the DR resources’ parameters
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from the electricity demand data of 115 buildings on the University of Southern
California (USC) campus, which are modeled as DR resources in [2]. The USC data
has rather heterogeneous resource capacities compared to the simulated data, where
the largest generator has a generation capacity 1000 times larger than the smallest one.
We list the detailed parameter setup based on the USC data in a GitHub repository.’
Since the dataset contains independent buildings, we do not cluster the resources to
align our test case with reality.

The optimization models specific to the DR problem follow the constructions in
Section 3 and are implemented using JuMP package v0.22.1 [17] in Julia v1.6.2, with
bilinear, linear, and mixed-integer programs solved by Gurobi 9.5.0 [19]. All tests are
run on a server with 30 Intel Xeon cores at 2.6 GHz and 128 GB of RAM.

4.5 Computational Performance Analysis We discuss the computational
performance of the proposed methods to solve the robust DR model in (4.4), which
includes directly solving the MINLP model (3.1) with bilinear terms, solving the exact
MILP formulation, ADA, CGA, and the McCormick relaxation for a lower bound.

We record the computational performance in Table 2, with a setting of low demand,
low under-commitment penalty cost and I' = 0.05. We record the negative objective
values (row “-Obj”), the run-time (row “Time”), and the optimality gap information.
For the bilinear formulation and the exact MILP formulation, we set a run-time limit
as 18,000 seconds, and we record the gap information output by Gurobi when the
solution process terminates either by reaching optimality or the time limit (row “Gap”).
The objective values in ADA/CGA/MILP correspond to some feasible solutions and
provide upper bounds for model (4.5). The upper bounds and the lower bound are
obtained by solving the McCormick relaxation model to form an optimality gap (row
“MC Gap”).

Table 2: Different algorithms’ time performance to solve model (4.5)

Test Case Simulated Data USC
n=5 n=>50 n = 200 n = 400 n = 800 n = 1200 | n =115
-Obj () 1221 12649 52198 95347 202024 279261 386912
Bilinear Time (sec.) 6.8 > 18000 > 18000 > 18000 > 18000 > 18000 > 18000
Gap (%) 0.00 0.70 0.71 0.53 6.69 12.25 0.74
MC Gap (%) 0.00 0.85 0.79 0.69 1.16 0.74 1.60
-Obj ($) 1221 12649 52198 95347 202695 279189 387765
MILP Time (sec.) 4.2 631.1 > 18000 > 18000 > 18000 > 18000 384.1
Gap (%) 0.00 0.01 1.42 3.09 4.67 14.73 0.01
MC Gap (%) 0.00 0.85 0.79 0.69 0.84 0.77 1.38
-Obj (%) 1221 12649 52198 95347 202695 279266 387763
ADA Time (sec.) 0.6 2.3 18.7 44.0 263.6 165.9 3.7
MC Gap (%) 0.00 0.85 0.79 0.69 0.84 0.74 1.38
-Obj (%) 1221 12649 52198 95347 202695 279266 387765
CGA Time (sec.) 0.6 26.7 255.6 302.4 2187.0 5883.8 855.0
MC Gap (%) 0.00 0.85 0.79 0.69 0.84 0.74 1.38
MC -Obj (%) 1221 12758 52615 96011 204405 281346 393203
Time (sec.) 0.2 3.8 101.1 407.6 7824.4 > 18000 2.1

From Table 2, we observe that the MC gap is less than 2% for all test cases, which
indicates that the upper bounds and the lower bounds are close to the true optimum.
In addition, for all cases in Table 2, ADA and CGA achieve close solutions, with some
minimal differences caused by numerical precision when terminating the optimization
process. Since ADA and CGA solve different sequences of the mixed-integer programs

Thttps://github.com/haoxiangyang89/R0O-CDDU
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with the relative termination gap set at 10~#, they can terminate at different solutions
within the termination gap. Table 2 shows that ADA is significantly faster than CGA
when they achieve the same solution. On the other hand, the exact bilinear/MILP
formulation takes an extended period of time to solve for large test cases. For example,
in test cases with n > 200, no experiment terminates at the default tolerance level
within five hours. When the bilinear/MILP solution process terminates due to the
time limit, it can achieve the same solution quality as the ones obtained by ADA/CGA
in smaller problem instances (n < 800), but it does not yield solutions as good as from
ADA and CGA in the largest case (n = 1200). We observe from the Gurobi log file
that the lower bound increases slowly and many nodes are generated towards the end
of the branch-and-bound process. This effect is more apparent when n is large because
each resource only contributes to a small share of demand. Many resources with
similar unit profits can be considered substitutes, which leads to different solutions
with similar objective values. The similarity of DR resources makes it difficult to
prune nodes in the branch-and-bound tree. This is also reflected in the USC test
case: the MILP solves much faster even with a larger n and no clustering, because the
resources are heterogeneous in both capacity and unit profit. Note that this issue can
be alleviated by further clustering the resources: instead of only clustering resources’
ramping decisions, a DR operator can ask the clustered resources to output the same
percentage of their capacity. This is equivalent to reducing the number of resources,
which is shown to be computationally effective in Table 2.

A natural question from the results in Table 2 is that since ADA obtains the same
solution at a faster speed compared to CGA, should we always prefer ADA to CGA?
In Table 3, we show that in many simulated test cases with n = 20 and all resources
in one cluster, ADA can end at a suboptimal point with an optimality gap as large
as 19%, but CGA consistently reaches optimality for the same cases. Although CGA
takes a longer time to converge, its optimality is validated in all test cases we run as it
obtains the same optimal values as the MILP model in (3.3). The gap between CGA
and ADA is more prominent in the high demand cases. Since more resources need to
be utilized in those instances, solution structures can be more complicated with more
non-zero commitment, which makes ADA more likely to land in a suboptimal solution.

Table 3: Impact of uncertainty set budget parameter I' on computational performance
(n = 20). Notation V' denotes the objective value of model (4.5). Superscripts A and
C stand for “ADA” and “CGA”. We omit the optimal values of MILP since they are
identical to CGA’s. All tests (ADA/CGA/MILP) take less than 10 seconds to finish.

Cost- . T

Demand Obj.

Setting (%) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Low- —vAa 5746 5438 5131 4826 4531 4241 3958 3676 3439 3206
Low —ve® 5746 5438 5131 4826 4531 4241 3958 3676 3439 3206
Low- —vA 11572 10972 10386 9809 9238 8668 8106 8658 8117 7608
High -ve 12562 11995 11436 10883 10335 9777 9217 8658 8117 7608
High- —va 5231 4883 4539 4201 3875 3551 3231 2914 2665 2415
Low —-ve® 5231 4883 4539 4201 3875 3551 3231 2914 2665 2415
High- —vA 9534 8872 8221 7587 6965 6342 5714 6449 5880 5318
High -ve 11799 10091 9487 8888 8287 7680 7061 6449 5880 5318

From Table 3, we observe that the negative optimal value decreases almost linearly
as the conservativeness level I' increases. This result implies that the optimal dual
variable for the budget constraint is approximately a constant. The slope of the linear
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relationship characterizes the value of the budget limit. Such a value increases when
the under-commitment penalty becomes higher. We also notice that the increasing
demand increases the profit with a diminishing marginal benefit. While in the high
demand case, in which the total demand is 2.33 times larger than in the low demand
case, the optimal profit ratio is less than 2.33. This is mainly caused by the following
two factors: (i) as the demand increases, we need to schedule less-profitable resources,
which brings down the marginal profit; (ii) more resource commitment comes with a
larger magnitude of uncertainty, which negatively affects the marginal profit.

4.6 Solution Analysis In this section, we examine the property of the solution
to model (4.5), generated by CGA, to understand how the robust solution improves
the demand response performance under uncertainty.

Favoring DR resources with less uncertainty. Figure 2 shows the percentage
of commitment from each type of resources in the test cases with n = 800 and
T € [0,0.1]. We observe that type-A resources are generally favored in the deterministic
solution due to their high unit profit. However, as the uncertainty budget I' increases,
the utilization rate of less uncertain resources increases. The robust optimization
model returns more conservative solutions by committing more type-B and type-C
resources. This demonstrates the ability of the robust DR model to balance between
the nominal profit and the operational uncertainty. In the low demand setting, since
the demand is only 30% of the total capacity, there is relatively more freedom to choose
from different types of DR resources, which leads to a more diverse portfolio of DR,
resources. On the other hand, the higher demand setting requires more participation
of all types of resources, which brings the commitment percentages closer.

Increasing total reduction. Since the under-commitment cost is significantly
higher than the over-commitment cost, strategically committing resources above the
required reduction level substantially reduces the likelihood of the under-commitment
penalty in actual operations. We observe that the robust DR model is able to do so to
avoid the negative impact of the worst-case scenarios. As shown in Figure 3, the total
scheduled DR level of the robust solutions is higher during the peak time, while the
deterministic solution satisfies the demand exactly.

Table 4: Reduction comparison between resources with different uncertainty levels
using real-world data

Resource ID o Total reduction for I' = 0.01 vs. I' = 0.05
13 0.235 -42.9
16 0.225 -21.2
20 0.045 667.1

We also observe the same properties with the USC dataset, as illustrated by
the following example. The total demand response level is 2859.0 for time period
t € {4,5,6} when I = 0.01, but it increases to 3095.3 for I' = 0.05. Resources 13
and 16 have the largest and the second largest «; and f3;, which means they have the
largest operational uncertainty. Their commitment decreases as I' increases, while
the total demand response level increases. This gap is filled by deploying more stable
resources such as resource 20. The numerical results are displayed in Table 4.

Next, we study the profit performance of the robust DR solutions obtained with
uncertainty budget I' in a stochastic setting. For such setting, we assume that the
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Fig. 2: Allocation proportion of three types of DR resources vs. different I" under the
setting of: (a) low demand level and low shortage cost; (b) low demand level and high
shortage cost; (c) high demand level and low shortage cost; (d) high demand level and
high shortage cost. The point I' = 0 corresponds to the deterministic DR solution.

uncertain load &;; = p;1 ¢, given a demand response solution x, where the uncertainty
coefficient p;; follows a uniform distribution within the interval [—a;, 8;] for every
i=1,...,nand t =1,...,T. We generate 5,000 samples of p to create a load profile
using Monte Carlo simulation, with which we evaluate the cost obtained for the given
solution @. The experiment serves the purpose of an out-of-sample test as the load
scenario may lie outside of the uncertainty set proposed in (4.3). Figure 4 shows
the mean out-of-sample costs of the robust solutions in four demand-cost settings.
The x-axis captures different uncertainty budgets I'. Figure 4 shows that because
of the severe shortage penalty, the robust DR solutions display better results than
the deterministic solution. The mean out-of-sample profit improves significantly even
when we consider a small uncertainty budget I' = 0.01. Combined with the results
from Figure 2 and 3, Figure 4 shows that the solution with I' = 0.01 does not increase
the total commitment by much, but it slightly changes the proportion of DR resource
types. This significantly improves the out-of-sample expected profit. The result further
shows that achieving robustness may not necessarily always require a large reserve of
resources. A smart commitment allocation can improve the overall robustness with
a lean operation. As the uncertainty budget increases, the solution becomes more
conservative, and thus the profit peaks at a certain level and then decreases. Only
under the “high demand, high shortage cost” setting, such peak is at I' = 0.02 and in
every other case, the robust solution with I' = 0.01 achieves the best out-of-sample
performance.
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Fig. 3: Comparison of demand response amount between the deterministic solution
and robust solutions with three different I' under the setting of: (a) low demand level
and low shortage cost; (b) low demand level and high shortage cost; (¢) high demand
level and low shortage cost; (d) high demand level and high shortage cost. Nominal
demand is represented using a blue dashed Line.
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Fig. 4: Mean out-of-sample profit vs. T' under the setting of: (i) low demand level
and low shortage cost; (ii) low demand level and high shortage cost; (iii) high demand
level and low shortage cost; (iv) high demand level and high shortage cost. The point
I" = 0 corresponds to the deterministic DR, solution.

5 Conclusions In this paper, we propose the RO-CDDU model and show that
it is strongly N"P-hard. The original RO-CDDU model can be formulated as an
MINLP and we investigate the structure of the dual polyhedron for the adversary’s
problem such that RO-CDDU is well-defined. Meanwhile, we develop an equivalent
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MILP reformulation using extreme points of the dual polyhedron and show two special
uncertainty sets with polynomial solvability. We develop an alternating direction
algorithm and a column generation algorithm to obtain feasible solutions and upper
bounds for RO-CDDU. We compare the upper bounds with the lower bound obtained
by solving a McCormick relaxation. Then, we propose a novel RO-CDDU model for
portfolio management of demand response resources in electricity markets, where the
realization of demand response is uncertain and depends on the demand response
decision. The proposed ADA algorithm can obtain good solutions efficiently in most
test cases. The proposed CGA algorithm further improves on the solution quality of
ADA and obtains global optimal solutions in all test cases.
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