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We propose a new robust actionable prescriptive analytics framework that leverages past data and side

information to minimize a risk-based objective function under distributional ambiguity. Our framework aims

to find a policy that directly transforms the side information into implementable decisions. Specifically, we

focus on developing actionable response policies that offer the benefits of interpretability and implementabil-

ity. To address the potential issue of overfitting to empirical data, we adopt a data-driven robust satisficing

approach that effectively handles uncertainty. We tackle the computational challenge for linear optimization

models with recourse by developing a new tractable safe approximation for robust constraints, accommo-

dating bilinear uncertainty and general norm-based uncertainty sets. Additionally, we introduce a biaffine

recourse adaptation to enhance the quality of the approximation. Furthermore, we present a localized robust

satisficing model that efficiently solves combinatorial optimization problems with tree-based static policies.

Finally, we demonstrate the practical application of our framework through a simulation case study on risk-

minimizing portfolio optimization using past returns as side information. We also provide a simulation case

study on how the framework can be applied to obtain an interpretable policy for allocating taxis to different

demand regions in response to weather information.
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1. Introduction

A business-inspired problem typically involves a decision model that incorporates relevant data

from past realizations of uncertain parameters that influence the decision model, as well as side

information that possesses predictive capabilities regarding those uncertainties. Predictive analyt-
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ics, which focuses on determining the statistical aspects of uncertain outcomes based on the side

information, is complemented by prescriptive analytics, which directly translates the side informa-

tion into actionable decisions.

There has been a significant surge in research on prescriptive analytics models in recent years.

Many of these models adopt a two-step approach known as “predict, then optimize,” as exemplified

by Ferreira et al. (2016) and Glaeser et al. (2019). In these models, decision-makers first predict the

statistical properties of uncertain outcomes using the side information and subsequently employ

these predictions as inputs to an optimization problem, thereby obtaining the optimal decision.

However, the two-step approach could lead to inferior decisions, as elucidated by Liyanage and

Shanthikumar (2005). Tulabandhula and Rudin (2013), Elmachtoub and Grigas (2022), Loke et al.

(2021), among others, have proposed adjustments to the “predict, then optimize” approach by

incorporating aspects of the decision process to the prediction models. Side information is also

used to approximate the conditional distribution of outcome variables, which is then passed on

to the stochastic optimization problem (see, e.g., Hannah et al. 2010, Bertsimas and Kallus 2020,

Srivastava et al. 2021, Esteban-Pérez and Morales 2021). For example, Bertsimas and Kallus (2020)

employ side information to reweigh historical samples through pre-trained machine learning models,

enabling the calibration of stochastic optimization problems when new observations are obtained.

Kallus and Mao (2023) introduce novel approximate splitting criteria to adapt the conditional

distribution for downstream decision problems by training a stochastic optimization forest.

In addition to the “predict, then optimize” approach, some prescriptive analytics models bypass

the prediction step altogether and directly determine the optimal response policy based on side

information. For instance, Ban and Rudin (2019) consider a newsvendor problem with an affine

ordering policy that is obtained by solving an empirical optimization model. Notz and Pibernik

(2022), Bertsimas and Koduri (2022) propose models that enable the search for optimal policies

within a reproducing kernel Hilbert space. Bertsimas et al. (2019a) formulate an optimal prescrip-

tive tree that accommodates discrete decision policies.

Despite the availability of historical data, the decision-maker lacks knowledge of the underlying

probability distribution that generates the data. Several approaches have been proposed in the

literature to mitigate the risk of overfitting when using the empirical distribution to evaluate the

risk-based objective function. Notably, Esfahani and Kuhn (2018) introduce a foundational frame-

work for data-driven distributionally robust optimization, employing an ambiguity set based on the

Wasserstein metric. This framework has gained popularity and found applications in prediction and

optimization models. Interestingly, Gao et al. (2022), Shafieezadeh-Abadeh et al. (2019a), Blanchet

et al. (2019a) show that regularization techniques commonly used in regression and classification

models can also be viewed through the lens of data-driven robust optimization. Another approach
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is the robust satisficing approach proposed by Long et al. (2023), which specifies a target parame-

ter. Similar to regularization and data-driven robust optimization, the target parameter can serve

as a hyper-parameter determined through cross-validation to enhance out-of-sample performance.

There are also extensions of the data-driven robust optimization models to include side infor-

mation. Bertsimas et al. (2023a) estimate the conditional probability distribution of the random

problem parameters using side information before incorporating it in the robust optimization model

(see also, Hao et al. 2020, Kannan et al. 2020, Nguyen et al. 2021, Bertsimas and Van Parys 2021,

Sim et al. 2023). Zhang et al. (2022) solve the optimal non-parametric policy for a distributionally

robust newsvendor problem. Yang et al. (2022) study distributionally robust prescriptive analytics

with a distributional uncertainty set based on a causal transport distance.

In addition to the challenge of handling data uncertainty, the need for interpretability of policies

presents another significant barrier to the widespread adoption of prescriptive analytics in practical

settings. Existing approaches often fail to provide insights into the decision-making process, leaving

stakeholders hesitant to embrace decisions generated by black-box models or policies that, while

technically optimal, are incomprehensible (Arrieta et al. 2020). To address this issue, our paper

focuses on using tree-based static and affine policies, which are actionable policies renowned for their

high interpretability (Bertsimas and Stellato 2021, Lipton 2018). By employing these approaches,

we aim to provide stakeholders with a reasonable interpretation of how and why decisions are being

made, facilitating their acceptance and implementation.

Summary of contributions

(i) We propose a general robust actionable prescriptive analytics framework, solving for an action-

able response policy that offers benefits of both interpretability and implementability. This

policy directly transforms side information into implementable decisions by enforcing policy

feasibility. To avoid overfitting, we adopt the data-driven distributionally robust satisficing

framework to mitigate data uncertainty.

(ii) To tackle the computational challenge from the proposed framework for linear optimization

problems with recourse, we develop a novel tractable safe approximation for robust constraints

with bilinear uncertainty and general norm-based uncertainty sets. These challenges have yet

to be sufficiently addressed in the existing literature. Additionally, we introduce a biaffine

recourse adaptation to enhance the quality of the approximation.

(iii) We propose a localized robust satisficing model that efficiently solves combinatorial optimiza-

tion problems for a tree-based static policy.

(iv) We provide a numerical study on a portfolio optimization problem that aims to minimize the

conditional Value-at-Risk (CVaR), using past returns as side information. We compare the
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out-of-sample performance of the tree-based affine and forest-based policies on simulated and

real data. Surprisingly, despite the simplicity of the tree-based affine policy, we find that it

exhibits superior performance and robustness against noise. We also provide a simulation case

study on how the framework can be applied to obtain an interpretable policy for allocating

taxis to different demand regions in response to weather information.

Our work contributes to the literature on optimizing policy mappings from side information to

decisions. However, it distinguishes itself from existing literature in two key aspects. First, we

consider general two-stage linear optimization problems with fixed recourse, unlike previous papers

that often focus on specific cost functions (Ban and Rudin 2019, Zhang et al. 2022, Yang et al.

2022) or simplified decision scenarios (Bertsimas et al. 2019a). Second, while some papers address

two-stage linear optimization with side information, they either do not explicitly enforce constraint

feasibility, resulting in non-implementable policies potentially (Bertsimas and Koduri 2022, Notz

and Pibernik 2022), or they do not cover robust optimization beyond right-hand side uncertainty

(Bertsimas et al. 2023b). To the best of our knowledge, our paper is the first to provide a framework

for general robust two-stage linear optimization over policies mapping from side information to

implementable decisions.

Notation. We denote by R (R+) the set of real (non-negative) numbers. We use boldface lowercase

letters for vectors (e.g., θ), and calligraphic letters for sets (e.g., X ). For a vector θ ∈Rn, we denote

by diag(θ) ∈Rn×n the diagonal matrix with elements θ. We use | · | to denote the cardinality of a

finite set. We use [n]≜ {1,2, . . . , n} to denote the running index for a positive integer n. We denote

1Z as the indicator function of the set Z, i.e., 1Z(x) equals 1 if x∈Z and 0 otherwise. We denote

by cl(X ) and int(X ) the closure and interior of the set X , respectively. We adopt the convention

that inf ∅=+∞, where ∅ is the empty set. A random variable ṽ is denoted with a tilde sign such

as ṽ ∼ P. We use EP [ṽ] to denote its expectation with respect to its distribution P. We use P0(Z)

to represent the set of all possible distributions for a random vector that has support Z ⊆ Rn.

We use Rn1,n2 and Ln1,n2 to denote the set of all mappings and its sub-class of affine mappings,

respectively, from Rn1 to Rn2 . Specifically, x∈Ln1,n2 implies the expression:

x(u) =x0 +
∑
j∈[n1]

xjuj ∀u∈Rn1

for some xj ∈Rn2 , j ∈ {0, . . . , n1}. It also applies to mapping to a matrix such as F ∈Rn1,n2×n3 , to

represent the mapping F :Rn1→Rn2×n3 . Finally, 0 (1) denotes the vector of all zeros (ones) and

ei denotes the ith basis vector. The dimensions of these vectors should be clear from the context.
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2. Prescriptive analytics with side information

To set up the prescriptive analytics framework, we consider a decision model evaluated on a cost

function g : Rnx × Rnv → R ∪ {∞}, where the input to the first argument is the here-and-now

response decision, while the input to the second argument is the outcome variable, which captures

the model’s uncertainty. We first observe the side information that has some predictive power on

those uncertain outcomes and then make the response decision. In other words, the output of the

prescriptive analytics model is the response policy, x∈X ⊆Rnu,nx , which transforms realized side

information to response decisions. Specifically, the response policy is selected over the actionable

policy set, X , which is designed to facilitate the interpretation of response decisions and ensure

that the model’s constraints are always feasible while maintaining the computational tractability

of the optimization problem. Note that in the context of a prediction model such as regression,

we can associate the cost function with the loss function and the response policy with the target

function optimized over the hypothesis set. Hence, the hypothesis set plays a similar role as the

actionable policy set in facilitating the interpretation of the target function.

We model the data stream as random variables with an unobservable data-generating proba-

bility distribution. Specifically, we use ũ to denote the random side information and ṽ to denote

the random outcome variables, and their support sets are represented by the sets U ⊆ Rnu and

V ⊆ Rnv respectively. For convenience, we also denote the random variable z̃ ≜ (ũ, ṽ) with prob-

ability distribution P⋆ ∈ P0(Z), Z ⊆ U ×V. We assume that the distribution P⋆ is stationary and

does not depend on the response decisions. In an ideal setting with full information and infinite

computational resources, we would solve for optimal response policy in the following optimization

problem,

Z⋆ = min EP⋆ [g(x(ũ), ṽ)]

s.t. x∈X
(1)

where the objective function is the expectation of the random cost function. Hence, the total costs

would be minimized when the ideal optimal response policy is implemented over an infinite period

under identical conditions.

Although the actual data generating distribution P⋆ is unobservable, the decision maker has

access to S historical realizations of the random variable z̃, which we denote by ẑs = (ûs, v̂s),

s ∈ [S]. We denote the empirical distribution by P̂ ∈ P0(Z), z̃ ∼ P̂, such that P̂ [z̃ = ẑs] = 1/S,

s∈ [S]. As an approximation to Problem (1), it is reasonable to use the empirical distribution P̂ to

evaluate the objective function by solving the following empirical optimization problem,

Z0 = min EP̂ [g(x(ũ), ṽ)]

s.t. x∈X .
(2)
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Assumption 1. We assume that the empirical optimization problem (2) is solvable, i.e., there

exists x̂∈X such that

Z0 =
1

S

∑
s∈[S]

g(x̂(ûs), v̂s).

Actionable policy set

The response policy is optimized over the actionable policy set, which takes the general form,

X = {x∈A|A(u)x(u)≤ b(u),x(u)∈D, ∀u∈ U } ,

for some feasible set, D⊆Rnx , mappings A and b to appropriate dimensions of matrix and vector

respectively, and a sub-class of mappings A ⊆ Rnu,nx that would facilitate interpretation of the

policy. Note that apart from the linear constraints that must be satisfied for all possible realization

of the side information, the feasible set D can also enforce nonlinear constraints, such as discrete

constraints commonly used in practice. We posit that the actionable policy set should endow with

the following desirable properties:

• Interpretability: The response policy should be intuitive and easy to understand and inter-

pret.

• Implementability: Every response decision induced by the policy must satisfy the con-

straints mandated by the prescriptive analytics model. It should also be computationally

tractable to optimize policies over the actionable policy set.

The property of interpretability is crucial, as it enhances the degree to which a human can discern

the rationale behind a data-driven decision and understand its implications (Bertsimas and Stel-

lato 2021). A policy endowed with greater transparency also facilitates the model calibration for

improving the quality of various decisions or predictions (Lipton 2018).

Additionally, it is important to equip the decision-maker with the ability to elucidate why spe-

cific choices are made, especially when responding to side information (Arrieta et al. 2020). An

unconventional correlation might be an intriguing new discovery, but more often than not, it can

be traced back to issues with the data. Correcting such data-related problems often nullifies the

correlation. Certain policy mappings, such as affine mappings, which are prevalent in statistical and

econometric analyses, and tree-based mappings, typically employed in decision analysis, boast high

interpretability. One noteworthy example is the regression tree, which synthesizes these two highly

interpretable mappings. While there is an array of machine learning models like neural networks

and ensemble models, their interpretability is not given. Therefore, these models are not within

our purview for consideration.

Successful implementation of prescriptive analytics models often requires communicating the

response policies to stakeholders. The implementable property ensures that the response decisions
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can be implemented in practice. For instance, they can include capacity constraints and restrict

that ordering quantities must satisfy non-negative. In contrast, a hypothesis set in a predictive

analytics model does not need to adhere to this property because target functions are typically

not the prescribed solutions. Finally, the implementability property should also ensure that the

optimal response policy can be obtained with reasonable computational efforts.

Tree-based policies

We focus on tree-based policies; specifically, we consider a decision tree on the side information

with L leaf nodes that is constructed by splitting the support U into L non-overlapping and

bounded subsets, Uℓ ⊆U , ℓ∈ [L]. Specifically, each subset is a nonempty bounded hyper-rectangular

polyhedron, which may not be closed such that

cl(Uℓ) = {u∈Rnu | uℓ ≤u≤ ūℓ}.

Each node ℓ ∈ [L] can be associated with a set of historical samples Sℓ ⊆ [S] such that Sℓ = {s ∈
[S] | ûs ∈ Uℓ}, and the hyper-rectangular support Vℓ ⊆V is given by

Vℓ = {v ∈Rnv | vℓ ≤ v≤ v̄ℓ},

such that v̂s ∈ Vℓ for all s ∈ Sℓ, ℓ ∈ [L]. Therefore, we also can express Z = ∪ℓ∈[L]Zℓ, where Zℓ =

Uℓ ×Vℓ. To some degree, this also captures a relation between side information and the outcome

variables. We next define the sub-class of tree-based static mappings as follows,

T n1,n2 ≜

x∈Rn1,n2

∣∣∣∣∣∣ ∃x
0
ℓ ∈Rn2 , ℓ∈ [L] :

x(u) =x0
ℓ if u∈ Uℓ for some ℓ∈ [L]

 ,

and the sub-class of tree-based affine mappings as follows,

T̄ n1,n2 ≜

x∈Rn1,n2

∣∣∣∣∣∣ ∃xℓ ∈Ln1,n2 , ℓ∈ [L] :

x(u) =xℓ(u) if u∈ Uℓ for some ℓ∈ [L]

 .

The choice of the sub-class of mappings A has ramifications on the computational tractability of

the overall optimization problem in ensuring the feasibility of the model’s constraints. In particular,

the sub-class of tree-based static mappings allows us to include more sophisticated constraints

within the actionable policy set. When A= T nu,nx , we can let A and b be affine mappings, and we

express the empirical optimization problem of Problem (2), as the following robust optimization

problem,

Z0 = min
1

S

∑
ℓ∈[L]

∑
s∈Sℓ

g(x0
ℓ , v̂s)

s.t. A(u)x0
ℓ ≤ b(u) ∀u∈ Uℓ, ℓ∈ [L]

x0
ℓ ∈D ∀ℓ∈ [L].

(3)
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The sub-class of tree-based affine mappings, i.e., A = T̄ nu,nx would maintain a computationally

tractable format when D=Rnx , A is a static mapping and b is an affine mapping. Note that the

ubiquitous affine policy analogous to the affine target function in linear regression is a special case

of a tree-based affine mapping with one leaf node, L= 1. Accordingly, we can express the empirical

optimization problem of Problem (2), as the following robust optimization problem,

Z0 = min
1

S

∑
ℓ∈[L]

∑
s∈Sℓ

g(xℓ(ûs), v̂s)

s.t. Axℓ(u)≤ b(u) ∀u∈ Uℓ, ℓ∈ [L]

xℓ ∈Lnu,nx ∀ℓ∈ [L].

(4)

Since the support sets Uℓ, ℓ ∈ [L] are nonempty and bounded, we can replace Uℓ with its closure

when solving the robust constraints. It is important to note that the set of robust constraints is

an important feature in prescriptive analytics, which could ensure that the coefficients associated

with affine mappings are also bounded. Hence, issues such as identifiability, which could arise in a

regression model, may not pose a problem.

Constructing a tree from data

Similar to the classical classification and regression tree (CART) procedure, we can construct the

policy tree using the binary recursive partitioning heuristics, which is an iterative procedure that

splits the data into partitions or branches. At each split, we need to determine a side information

index and a threshold such that the samples at one node are divided into two groups. The split

should be determined based on the best performance on the empirical optimization models, i.e.,

Problem (3) for the tree-based static policy and Problem (4) for the tree-based affine policy. For

instance, for the tree-based affine policy, at each node ℓ ∈ [L] and side information index i ∈ [nu],

we solve for ω∗
ℓi = arg min

ω∈Ωℓi

ζℓi(ω), where Ωℓi is a discrete subset within the interior of [uℓi, ūℓi], and

ζℓi(ω)≜ min

 ∑
s∈Sℓi(ω)

g(x1(ûs), v̂s)+
∑

s∈Sℓ\Sℓi(ω)

g(x2(ûs), v̂s)


s.t. Ax1(u)≤ b(u) ∀u∈ Uℓi(ω)

Ax2(u)≤ b(u) ∀u∈ Uℓ\Uℓi(ω)

x1,x2 ∈Lnu,nx ,

(5)

with Uℓi(ω) ≜ {u ∈ Uℓ | ui ≤ ω} and Sℓi(ω) ≜ {s ∈ Sℓ | ûs ∈ Uℓ,i(ω)}. Note that Problem (5) is

typically a tractable optimization problem, which allows us to determine ω∗
ℓi efficiently by solving

all instances of the problem for ω ∈ Ωℓi. Observe that Uℓi(∞) = Uℓ and ζℓi(ω) ≤ ζℓi(∞) for all

ω ∈ [uℓi, ūℓi]. Hence, the next node and side information index to split is determined by

(ℓ∗, i∗) = arg max
ℓ∈[L],i∈[nu]

{ζℓi(∞)− ζℓi(ω
∗
ℓi)},
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which corresponds to the greatest reduction in the objective value in the empirical optimization

model after the split. After that, we continue splitting each partition into smaller groups as the

heuristics move up each branch. We summarize the binary recursive partitioning algorithm below:

1. Initialize Λ← 1, U1←U , and the desired number of leaf nodes L> 1.

2. For every ℓ∈ [Λ] and i∈ [nu], determine ω∗
ℓi = arg min

ω∈Ωℓi

ζℓi(ω).

3. Determine (ℓ∗, i∗) = arg max
ℓ∈[Λ],i∈[nu]

{ζℓi(∞)− ζℓi(ω
∗
ℓi)}.

4. If Λ<L, then:

• Create UΛ+1←Uℓ∗\Uℓ∗i∗(ω∗
ℓ∗i∗)

• Replace Uℓ∗←Uℓ∗i∗(ω∗
ℓ∗i∗).

• Set Λ←Λ+1

• Proceed to Step 2

5. Algorithm terminates with Uℓ for ℓ∈ [L].
We can adopt a cross-validation procedure to determine the desired number of leaf nodes. Let

L̄ be the maximum number of leaf nodes to consider. Next, we apply the binary recursive parti-

tioning algorithm for each L∈ [L̄] to determine the tree structure with L leaf nodes. Among the L̄

different tree structures, we use a K-fold cross-validation procedure to determine the desired tree

configuration. For this purpose, we split the historical data into K non-overlapping testing data

sets. For each k ∈ [K], the k-th training data set comprises the historical data without the k-th

testing data set. Subsequently, for a given tree configuration, we solve the empirical optimization

problems on the training sets and evaluate the performance of the response policies on their corre-

sponding testing data sets. For each L∈ [L̄], we record the average out-of-sample performance over

the K iterations, and we select the tree configuration that gives the best average out-of-sample

performance.

3. Robust optimization and satisficing

It has been well-known that solutions from empirical optimization models would have inferior out-

of-sample results (Smith and Winkler 2006). To address the issue of overfitting, Esfahani and Kuhn

(2018) propose a framework for data-driven robust optimization by incorporating an ambiguity

set of probability distributions that are proximal to the empirical distribution with respect to the

Wasserstein metric. Likewise, we consider the following data-driven robust optimization problem

min sup
P∈F(Γ)

EP [g(x(ũ), ṽ)]

s.t. x∈X ,
(6)

where the ambiguity set is defined by the type-I Wasserstein distance as follows

F(Γ)≜

P∈P0(Z)

∣∣∣∣∣∣ (ũ, ṽ)∼ P

∆(P, P̂)≤ Γ

 ,
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and

∆(P, P̂)≜ inf
Q∈P0(Z2)

{
EQ [∥ũ− ũ1∥+ ∥ṽ− ṽ1∥]

∣∣∣ (ũ, ṽ, ũ1, ṽ1)∼Q, (ũ, ṽ)∼ P, (ũ1, ṽ1)∼ P̂
}
.

The confidence guarantees that the true distribution, P⋆, resides within the Wassterstein-based

ambiguity set, F(Γ) has been established in Fournier and Guillin (2015). In this context, if the

true data-generating distribution P⋆ (where (ũ, ṽ)∼ P⋆) is a light-tailed distribution, and PS is the

distribution guiding the dispersion of independent samples (ûs, v̂s), with s ∈ [S], drawn from P⋆.

Then for any Γ> 0, the probability that the divergence ∆(P⋆, P̂) exceeds Γ, as governed by PS, will

decrease exponentially towards zero as the sample size, S, increases. Esfahani and Kuhn (2018)

adopt the concentration results in Fournier and Guillin (2015) to derive a finite-sample guarantee.

Although tighter results have also been established in Blanchet et al. (2019b), Shafieezadeh-Abadeh

et al. (2019b), Si et al. (2020), and Gao (2022), as these bounds are implicitly derived, they are

typically not used in practice to determine the size of the Wasserstein ambiguity set, Γ. Moreover,

it is impossible to know the parameters for the bounds or whether the data is independently

generated. Instead, like the regularization term in machine learning models, the parameter Γ is a

hyper-parameter that should be determined via cross-validation techniques.

From the results of Esfahani and Kuhn (2018), we can reformulate Problem (6) as a robust

optimization problem,

ZΓ = min κΓ+
1

S

∑
s∈[S]

ts

s.t. sup
(u,v)∈Z

{g(x(u),v)−κ(∥v− v̂s∥+ ∥u− ûs∥)} ≤ ts ∀s∈ [S]

x∈X , κ≥ 0.

(7)

Long et al. (2023) propose a robust satisficing model that can also be used to address the issue

of overfitting in data-driven optimization problems. Instead of sizing the ambiguity set with Γ, the

robust satisficing model is specified by a target τ ≥Z0, which is easier to interpret than Γ. In this

context, we can formulate the robust satisficing model as the following optimization problem,

min κ

s.t. sup
P∈P0(Z)

{
EP [g(x(ũ), ṽ)]−κ∆(P, P̂)

}
≤ τ

x∈X , κ≥ 0,

(8)

or equivalently as the following robust optimization problem,

κτ = min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

ts ≥ sup
(u,v)∈Z

{g(x(u),v)−κ(∥v− v̂s∥+ ∥u− ûs∥)} ∀s∈ [S]

x∈X , κ≥ 0.

(9)
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We establish the feasibility of the robust satisficing model.

Theorem 1. Suppose Assumption 1 holds and the function g(x(u),v) is Lipschitz continuous

with respect to u and v such that

g(x(u1),v1)− g(x(u2),v2)≤ L̄(∥u1−u2∥+ ∥v1−v2∥) ∀x∈X ,u1,u2 ∈ U ,v1,v2 ∈ V.

Then, the robust satisficing model, Problem (9), is feasible for all τ ≥ Z0 for some κτ ≤ L̄, where

Z0 is the optimal value to Problem (2).

Proof. The proof is relegated to Appendix A.

We next note that the robust satisficing model naturally results in an out-of-sample performance

guarantee via the concentration of empirical measures.

Proposition 1. Under the feasibility condition of Theorem 1, for any τ ≥Z0, the optimal solu-

tion of Problem (9) satisfies the following:

PS [EP⋆ [g(x(ũ), ṽ)]> τ +κτΓ]≤ PS
[
∆(P⋆, P̂)> Γ

]
∀Γ≥ 0.

Proposition 1 provides the statistical justification of the robust satisficing model from the target

attainment perspective. Reducing this violation probability is consistent with obtaining the lowest

possible κτ , which the robust satisficing model minimizes. We also refer interested readers to

Sim et al. (2023), regarding the connections between robust optimization and robust satisficing

regarding their consistency analysis.

Apart from being more intuitive to interpret, the performance benefits of robust satisficing over

its robust optimization counterpart have also been demonstrated in Long et al. (2023), Ramachan-

dra et al. (2021). When applied to regression and classification problems, Sim et al. (2021) demon-

strate with well-known data sets that the robust satisficing approach would generally outperform

the robust optimization approach when the respective target and size parameters are determined

via cross-validation. The process of tuning the target parameter has been also discussed in Sim

et al. (2023), where the target parameter is determined by a K-fold cross-validation procedure to

improve out-of-sample performance.

The pending question now is whether we can efficiently solve Problem (9), which can be equiv-

alently written as the following:

κτ = min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

ts ≥ sup
(u,v)∈Zℓ

{g(xℓ(u),v)−κ(∥v− v̂s∥+ ∥u− ûs∥)} ∀s∈ [S], ℓ∈ [L]

x∈X , κ≥ 0.

(10)
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To obtain a tractable exact formulation, we consider the case where g is a saddle function, i.e.,

g(x,v) is convex in x for any given v ∈ V. It is upper-semicontinuous and concave in v for any given

x∈D. When we focus on tree-based static mapping, i.e.,A= T nx,nu , the above can be reformulated

as a modest-sized convex optimization problem if g is a saddle function. However, when we focus

on tree-based affine mapping, i.e., A= T̄ nx,nu , we would further require that g(x(u),v) should be

jointly concave in (u,v) for any affine mapping x. In the following, we consider the case where the

cost function g is represented as a linear optimization with recourse, where we illustrate suitable

approximations under a tree-based affine policy and tractable exact reformulations under special

cases.

4. Linear optimization with recourse

Linear optimization is arguably the most important optimization format used in practice. As in

the stochastic optimization literature, we consider the cost function g of the form of a linear

optimization problem with fixed recourse as follows

g(x,v) = min d⊤y

s.t. F (v)x+By≥ f(v)

y ∈Rny ,

(11)

where F ∈Lnv ,nf×nx and f ∈Lnv ,nf . Since the decision y in Problem (11) is made after observing

the response decision x and outcome variables v, we call y the recourse decision. We assume

complete recourse, i.e., for any w ∈Rnf , there exists a y ∈Rny such that By≥w.

Similar to the approach of Long et al. (2023), we can express the exact robust satisficing problem

as the following adaptive robust optimization problem

min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

d⊤yℓs(u,v, σ, ν)−κ(σ+ ν)≤ ts ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

F (v)x(u)+Byℓs(u,v, σ, ν)≥ f(v) ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

x∈X , κ≥ 0

yℓs ∈Rnu+nv+2,ny ∀ℓ∈ [L], s∈ [S]

(12)

where the lifted uncertainty sets are defined as

Z̄ℓs ≜ {(u,v, σ, ν)∈ Uℓ×Vℓ×R×R | σ≥ ∥u− ûs∥, ν ≥ ∥v− v̂s∥}

for all ℓ∈ [L], s∈ [S].
When Problem (11) has only “right-hand-side” uncertainty, the matrix F does not depend

on v, i.e., F (v) = F 0. This simplification ensures that the function g(xℓ(u),v) is jointly convex
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with respect to (u,v), for any affine mapping xℓ. This has been well-studied in the literature.

In particular, we can directly apply Long et al. (2023), Bertsimas et al. (2023b) to obtain a safe

tractable approximation to the robust satisficing problem.

Example 1 (Joint production and procurement problem). We consider a joint produc-

tion and procurement problem with nx products and nr resources. The actionable policy set that

characterizes the production and procurement constraints is given by

X =
{
(x,r)∈ T̄ nu,nx+nr | Ax(u)≤ r(u),x(u)≥ 0,r(u)≥ 0 ∀u∈ U

}
,

where x and r represent the respective production and procurement decisions. The historical

samples of the side information and demands are denoted by (ûs, v̂s), s ∈ [S]. The total cost

associated with procuring r, and subtracting the sales revenue for demand v, assuming zero salvage

values for unmet demands, is given by

g(x,r,v) = c⊤r−
∑
i∈[nx]

pimin{xi, vi}

=
∑
i∈[nx]

max

{
1

nx

c⊤r− pixi,
1

nx

c⊤r− pivi

}
,

or equivalently

g(x,r,v) = min 1⊤y

s.t. Px−Cr+y≥ 0

−Cr+y≥−Pv,

where P =diag(p) and C = 1
nx
1c⊤. This is a complete recourse problem with only right-hand-side

uncertainty. Hence, we have the flexibility to use the tree-based affine response policy and propose

the following safe tractable approximation for the robust satisficing problem,

min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

1⊤yℓs(u,v, σ, ν)−κσ−κν ≤ ts ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

Pxℓ(u)+yℓs(u,v, σ, ν)≥Crℓ(u) ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

yℓs(u,v, σ, ν)≥Crℓ(u)−Pv ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

Axℓ(u)≤ r(u) ∀u∈ Uℓ, ℓ∈ [L]

xℓ(u)≥ 0,rℓ(u)≥ 0 ∀u∈ Uℓ, ℓ∈ [L]

yℓs ∈Lnu+nv+2,ny ∀ℓ∈ [L], s∈ [S]

xℓ ∈Lnu,nx ,rℓ ∈Lnu,nr ∀ℓ∈ [L]

κ≥ 0,

(13)
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which can be easily implemented in RSOME developed by Chen et al. (2020). Since this problem

has complete recourse, following the analysis of Long et al. (2023), Problem (13) is feasible for

any chosen target τ greater than the optimum objective value of the corresponding empirical

optimization problem. Moreover, the approximation is exact if nx = 1.

Similarly, under the tree-based static policy, A= T nu,nx , we can also use the same approach to

provide a safe tractable approximation for the robust satisficing problem. Hence, we consider the

general model of Problem (11) with F ∈Lnv ,nf×nx and under the tree-based affine response policy,

A= T̄ nu,nx . To obtain a tractable safe approximation, we first consider the following lifted affine

recourse adaptation (Bertsimas et al. 2019b, Chen et al. 2020) as follows,

min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

d⊤yℓs(u,v, σ, ν)−κ(σ+ ν)≤ ts ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

F (v)xℓ(u)+Byℓs(u,v, σ, ν)≥ f(v) ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

x∈X , κ≥ 0

yℓs ∈Lnu+nv+2,ny ∀ℓ∈ [L], s∈ [S].

(14)

However, Problem (14) remains intractable due to the bilinear uncertainty in v and u in some

of the robust constraints. Although there are tractable safe approximations for robust constraints

with bilinear uncertainty under the assumptions of at least one of the uncertainty sets being

polyhedral (de Ruiter et al. 2022, Zhen et al. 2022a,b), they do not apply to the robust constraints

in Problem (14) involving non-polyhedral uncertainty sets for both uncertain parameters because

the norms used in Z̄ℓs can be general norms. To our knowledge, existing literature on multi-stage

robust linear optimization such as Bertsimas et al. (2023b) does not address such robust constraints

either. To tackle this challenge, we extend the existing dualization technique with affine recourse

approximation (Zhen et al. 2022b) to derive a tractable safe approximation for Problem (14) in

Theorem 2 by leveraging the structure of Z̄ℓs and the positive homogeneity of the norms.

Theorem 2. The robust constraint

q⊤
1 u+ q⊤

2 v+v⊤Q3u≤ q4σ+ q5ν+ q6, ∀(u,v, σ, ν)∈ Z̄ℓs (15)
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has a tractable safe approximation (q1,q2,Q3, q4, q5, q6)∈Qℓs where

Qℓs ≜



(q1,q2,Q3,

q4, q5, q6)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(q1,q2,Q3, q4, q5, q6)∈Rnu ×Rnv ×Rnv×nu ×R+×R+×R

∃θ,λ,λ∈Rnu ,p,p∈Rnv ,P ,P ,Γ,Γ,Θ∈Rnv×nu :

q⊤
1 ûs + q⊤

2 v̂s + v̂⊤
s Q3ûs +(p+P ûs)

⊤(vℓ− v̂s)

+(p+P ûs)
⊤(v̂s−vℓ)+λ

⊤
(uℓ− ûs)+λ⊤(ûs−uℓ)≤ q6

∥q1 +P
⊤
(vℓ− v̂s)+P⊤(v̂s−vℓ)+Q⊤

3 v̂s−λ+λ∥∗ ≤ q4

∥q2−p+p+Θuℓ− (Θ−Q3 +P −P )uℓ∥∗ +(uℓ−uℓ)
⊤θ≤ q5∑

i∈[nu]

∥Θei∥∗ei ≤ θ∑
i∈[nu]

∥(Θ−Q3 +P −P )ei∥∗ei ≤ θ

p−Γuℓ +(P +Γ)uℓ ≥ 0

P +Γ≥ 0

p−Γuℓ +(P +Γ)uℓ ≥ 0

P +Γ≥ 0

Γ≥ 0,Γ≥ 0,λ≥ 0,λ≥ 0



. (16)

Moreover, the following properties of Qℓs hold:

(a) If (q1,q2,Q3, q4, q5, q6)∈Qℓs then it is also feasible in Constraint (15). The converse is true if

Q3 = 0.

(b) If q⊤
1 ûs + q⊤

2 v̂s + v̂⊤
s Q3ûs ≤ q6, there exists q4, q5 ∈R+ such that (q1,q2,Q3, q4, q5, q6)∈Qℓs.

Proof. The proof is relegated to Appendix A.
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Based on Theorem 2, we propose the following tractable safe approximation of Problem (14).

min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

d⊤yℓs(u,v, σ, ν)−κ(σ+ ν)≤ ts ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

(qk1
ℓs ,q

k2
ℓs ,Q

k3
ℓs , q

k4
ℓs , q

k5
ℓs , q

k6
ℓs )∈Qℓs

qk1
ℓs =−

∑
i∈[nu]

eie
⊤
k (F

0xi
ℓ +Byi

ℓs)

qk2
ℓs =

∑
j∈[nv ]

eje
⊤
k (f

j −F jx0
ℓ −Bynu+j

ℓs )

Qk3
ℓs =−

∑
i∈[nu]

∑
j∈[nv ]

eje
⊤
k

(
F jxi

ℓ

)
e⊤
i

qk4ℓs = e⊤
k Bynu+nv+1

ℓs

qk5ℓs = e⊤
k Bynu+nv+2

ℓs

qk6ℓs = e⊤
k (F

0x0
ℓ +By0

ℓs−f 0)



∀ℓ∈ [L], s∈ [S], k ∈ [nf ]

x∈X , κ≥ 0

yℓs ∈Lnu+nv+2,ny ∀ℓ∈ [L], s∈ [S].

(17)

Observe that Property (a) of Qℓs in Theorem 2 implies that the approximation (16) is exact without

bilinear uncertainty. Hence, Problem (17) is a generalization of the special cases without the bilinear

uncertainty in the robust constraints. It is important to note that if the norm is a polyhedral

norm such as the ℓ1 and ℓ∞ norm, then Problem (17) would retain the same computationally

attractive format as a linear optimization problem. Property (b) in Theorem 2 has ramifications

on the feasibility of the approximate robust satisficing problem when a reasonable target τ >Z0 is

chosen, as we present in the following result.

Theorem 3. Suppose Assumption 1 holds, Problem (11) has complete recourse, and ûs ∈ int(Uℓ)

for each ℓ∈ [L], s∈ Sℓ. Then for any τ >Z0, there exist reduced affine mappings yℓs ∈Lnu+nv+2,ny ,

s∈ [S], ℓ∈ [L] such that

yℓs(u,v, σ, ν) = yℓs(0,0, σ, ν) ∀(u,v, σ, ν)∈Rnu+nv+2,

that are feasible in Problem (17). Moreover, When ny = 1, and d ̸= 0, then the reduced affine

mappings of the form

yℓs(u,v, σ, ν) = (ts +κσ+κν)/d ∀s∈ [S], ℓ∈ [L]

is optimal in Problem (17).

Proof. The proof is relegated to Appendix A.
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Remark 1. Theorem 3 extends Theorem 7 in Long et al. (2023) to two-stage linear optimization

with side information. The feasibility result implies that the reduced affine mappings do not limit

the choice of targets τ >Z0 for the decision maker, which is important for adjusting robustness.

Remark 2. Note the existence of the reduced affine mappings that ensure feasibility is a new

insight that has not been observed in Bertsimas et al. (2019b), Long et al. (2023) because their

corresponding recourse function has the following two-stage representation:

g(x,v) = c(v)⊤x+ min
y∈Rny

{
d⊤y |F (v)x+By≥ f(v)

}
.

If we can subsume the first stage cost to the recourse optimization problem without increasing the

number of recourse variables, we would also improve the approximation quality via affine recourse

adaptation. Specifically, if d ̸= 0 then we can formulate

g(x,v) = min
y∈Rny

{
d⊤y | F̄ (v)x+By≥ f(v)

}
,

where F̄ (v) =F (v)− 1
dr
Berc(v)

⊤, for some r ∈ [ny] such that dr ̸= 0 (see also Example 1).

Example 2 (Portfolio optimization). We consider a data-driven portfolio optimization

problem with nx stocks. The historical samples of the side information and random returns are

denoted by (ûs, v̂s), s∈ [S]. We minimize the conditional value-at-risk (CVaR) of the portfolio,

Cϵ
P
[
ṽ⊤x(ũ)

]
where CVaR is defined as

Cϵ
P [z̃]≜ inf

η∈R

{
η+

1

ϵ
EP

[
(−z̃− η)

+
]}

with ϵ∈ (0,1). Equivalently, we can write the problem as

g((x, η),v) =min
y∈R

{
y | y≥ η− (η+v⊤x)/ϵ, y≥ η

}
.

We observe that the function g((x(u), η),v) is no longer jointly convex in (u,v) for A= T̄ nu,nx ,

X =
{
(x, η)∈ T̄ nu,nx ×R

∣∣ 1⊤x(u) = 1,x(u)≥ 0, ∀u∈ U
}
.



Chen et al.: Robust Actionable Prescriptive Analytics

18

Observe that this is a complete recourse problem with ny = 1; hence, from Theorem 3, we can use

the reduced tree-based affine mapping to formulate the robust satisficing problem as follows,

min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

ts +κ(σ+ ν)≥ η− (η+v⊤x(u))/ϵ ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

ts +κ(σ+ ν)≥ η ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

1⊤xℓ(u) = 1 ∀u∈ Uℓ, ℓ∈ [L]

xℓ(u)≥ 0 ∀u∈ Uℓ, ℓ∈ [L]

xℓ ∈Lnu,nx ∀ℓ∈ [L]

t∈RS, η ∈R, κ≥ 0.

Observe that, since κ≥ 0,

ts +κ(σ+ ν)≥ η ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

=⇒ ts +κ(σ+ ν)≥ η ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ Sℓ
=⇒ ts ≥ η ∀s∈ [S]

=⇒ ts +κ(σ+ ν)≥ η ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

We can apply Theorem 2 to obtain a safe tractable approximation that guarantees a solution for

any reasonably chosen target, τ >Z0, as follows,

min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ(
0,−x0

ℓ/ϵ,−Xℓ/ϵ,κ,κ, ts− η+ η/ϵ
)
∈Qℓs ∀ℓ∈ [L], s∈ [S]

ts ≥ η ∀s∈ [S]

1⊤(x0
ℓ +Xℓu) = 1 ∀u∈ Uℓ, ℓ∈ [L]

x0
ℓ +Xℓu≥ 0 ∀u∈ Uℓ, ℓ∈ [L]

x0
ℓ ∈Rnx ,Xℓ ∈Rnx×nu ∀ℓ∈ [L]

t∈RS, η ∈R, κ≥ 0.

(18)

where we write xℓ(u) =x0
ℓ +Xℓu for each ℓ∈ [L].

We note that there is a distinction between the recourse adaptation mapping and the actionable

response policy. Specifically, the actionable response policy is optimized over the actionable policy

set to determine the actual response decisions directly and intuitively from the side information.

In contrast, the recourse adaptation mapping aims to provide a tractable approximation to the

adaptive robust optimization models. After the outcome variables v have been realized, instead of
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using the recourse adaptation, we should solve for the optimal recourse y directly from Problem (11)

(see discussions in Bertsimas et al. 2019b). Since the purpose of the recourse adaptation mapping

is purely computational, it would not be necessary to consider its interpretability.

Biaffine recourse adaptation

To further improve the solutions to the adaptive robust optimization problems, various extensions

of the affine adaptations have been proposed in the literature (see, e.g., Ben-Tal et al. 2004, Chen

et al. 2008, Goh and Sim 2010, Georghiou et al. 2015, Kuhn et al. 2011, Bertsimas et al. 2019b,

Zhen et al. 2018), which can also be applied here. Inspired by the biaffine perturbation of our

robust models, we propose a new biaffine recourse adaptation tailored to improve the solution to

Problem (12). We first introduced the following sub-class of bilinear mappings:

Bnu,nv ,ny ≜

y ∈Rnu+nv ,ny

∣∣∣∣∣∣∣
∃yij ∈Rny ∀i∈ [nu], j ∈ [nv] :

y(u,v) =
∑
i∈[nu]

∑
j∈[nv ]

yijuivj ∀u∈Rnu ,v ∈Rnv

 .

Accordingly, we consider lifted biaffine recourse adaptation as follows,

min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

d⊤ (yℓs(u,v, σ, ν)+ ȳℓs(u,v))−κ(σ+ ν)≤ ts ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

F (v)xℓ(u)+B (yℓs(u,v, σ, ν)+ ȳℓs(u,v))≥ f(v) ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

x∈X , κ≥ 0

yℓs ∈Lnu+nv+2,ny , ȳℓs ∈Bnu,nv ,ny ∀ℓ∈ [L], s∈ [S].

(19)

Although Theorem 3 shows that there exists a reduced affine recourse adaptation that is optimal

in complete recourse and ny = 1, it is still essential to consider the more complex model when

ny ≥ 2. For instance, suppose the cost function is given by

g(x,v) = min
y∈R2

{
y1 + y2 | y1 ≥ f⊤(v)x, y2 ≥−f⊤(v)x

}
which is a complete recourse problem with ny = 2. Observe that for any x ∈ T̄ nu,nx , we have

g(x(u),v) = 0 for all (u,v) ∈ Z. Indeed, the optimal recourse adaptation can be replicated in

Problem (19), when

yℓ1(u,v, σ, ν)+ ȳℓ1(u,v, σ) = f⊤(v)xℓ(u)

yℓ2(u,v, σ, ν)+ ȳℓ2(u,v, σ) =−f⊤(v)xℓ(u)

∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

but not in the simpler model of Problem (14).
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Based on Theorem 2, the tractable safe approximation of Problem (19) is given by

min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

(qk1
ℓs ,q

k2
ℓs ,Q

k3
ℓs , q

k4
ℓs , q

k5
ℓs , q

k6
ℓs )∈Qℓs ∀ℓ∈ [L], s∈ [S], k ∈ {0}∪ [nf ]

q01
ℓs =

∑
i∈[nu]

d⊤yi
s,ℓei

q02
ℓs =

∑
j∈[nv ]

d⊤ynu+j
s,ℓ ej

Q03
ℓs =

∑
i∈[nu]

∑
j∈[nv ]

d⊤ȳij
s,ℓeje

⊤
i

q04ℓs = κ−d⊤ynu+nv+1
s,ℓ

q05ℓs = κ−d⊤ynu+nv+2
s,ℓ

q06ℓs = ts−d⊤y0
ℓs



∀ℓ∈ [L], s∈ [S]

qk1
ℓs =−

∑
i∈[nu]

eie
⊤
k (F

0xi
ℓ +Byi

ℓs)

qk2
ℓs =

∑
j∈[nv ]

eje
⊤
k (f

j −F jx0
ℓ −Bynu+j

ℓs )

Qk3
ℓs =−

∑
i∈[nu]

∑
j∈[nv ]

eje
⊤
k

(
F jxi

ℓ +Bȳij
ℓs

)
e⊤
i

qk4ℓs = e⊤
k Bynu+nv+1

ℓs

qk5ℓs = e⊤
k Bynu+nv+2

ℓs

qk6ℓs = e⊤
k (F

0x0
ℓ +By0

ℓs−f 0)



∀ℓ∈ [L], s∈ [S], k ∈ [nf ]

x∈X , κ≥ 0

yℓs ∈Lnu+nv+2,ny , ȳℓs ∈Bnu,nv ,ny ∀ℓ∈ [L], s∈ [S].

(20)

5. A localized tree-based model

Under the tree-based policy, the size of Problem (10) grows linearly with the product S×L. This

can pose computational challenges, particularly when dealing with large data size S. To alleviate

this issue, we propose a localized tree-based robust satisficing model associated with the hyper-

parameter, θ > 0, as follows:

κτ = min κ

s.t. sup
w∈W

∑
ℓ∈[L]

wℓ

(
sup

P∈P0(Zℓ)

{
EP [g(x(ũ), ṽ)]−κ∆(P, P̂ℓ)

})
−κθ∥w− ŵ∥1

≤ τ

x∈X , κ≥ 0,

(21)



Chen et al.: Robust Actionable Prescriptive Analytics

21

where ŵℓ = |Sℓ|/S, ℓ ∈ [L],W = {w ∈ RL
+|1⊤w = 1}, and P̂ℓ denotes the empirical distribution of

(ũ, ṽ), conditional on ũ∈ Uℓ. We have the following equivalent formulation of Problem (21),

κτ = min κ

s.t. sup
w∈W

∑
ℓ∈[L]

wℓrℓ−κθ∥w− ŵ∥1

≤ τ

1

|Sℓ|
∑
s∈Sℓ

ts ≤ rℓ ∀ℓ∈ [L]

sup
(u,v)∈Zℓ

{g(x(u),v)−κ(∥u− ûs∥+ ∥v− v̂s∥)} ≤ ts ∀ℓ∈ [L], s∈ Sℓ

x∈X , κ≥ 0.

(22)

Note that the number of constraints of Problem (22) is reduced to the magnitude of S =
∑

ℓ∈[L] |Sℓ|.

To establish the feasibility of Problem (22), we focus on Lipschitz continuous cost function g and

derive a counterpart of Theorem 1 under the tree-based policy set. We first define

Z0,ℓ = min
xℓ∈X

1

|Sℓ|
∑
s∈Sℓ

g(xℓ(ûs), v̂s),

and let Z0 =
∑

ℓ∈[L] ŵℓZ0,ℓ denote the optimal value of the empirical optimization model.

Theorem 4. Suppose g(x(u),v) is Lipschitz continuous with respect to u and v with a max-

imum Lipschitz constant of L̄ for any mapping x ∈ X . Then, the robust satisficing model, Prob-

lem (22), is feasible for all τ ≥Z0 for some κτ ≤max{L̄,maxℓ∈[L]{|Z0,ℓ|}/θ}.

Proof. The proof is relegated to Appendix A.

Analogous to Proposition 1, we can derive the following result on target shortfall avoidance and

target attainment asymptotic guarantees.

Theorem 5. Suppose the feasibility condition of Theorem 4 holds. For any τ ≥ Z0 and Γ≥ 0,

the optimal solution of Problem (21) satisfies

PS [EP⋆ [g(x(ũ), ṽ)]> τ +κτΓ]≤ min
γ1+γ2=Γ

∑
ℓ∈[L]

PSℓ

[
∆(P⋆

ℓ , P̂ℓ)>γ1

]
+2L exp

(
−2Sγ2

2

L2θ2

) ,

where PSℓ is the distribution that governs the distribution of independent samples (ûs, v̂s), s∈ Sℓ.

Proof. The proof is relegated to Appendix A.

Theorem 5 demonstrates that the theoretical likelihood limit diminishes exponentially towards

zero as the quantity of samples increases. This suggests a robust performance by the model when

dealing with large datasets. Furthermore, the most significant degree of robustness in our localized

robust satisficing model aligns with optimizing for the smallest conceivable value of κ. Despite
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these findings, the theorem does not offer direct instructions on selecting the optimal values for the

hyper-parameters, θ and τ . As in previous cases, these parameters should be determined through

cross-validation, a robust method for estimating the performance of a model on an independent

dataset.

The computational benefits of the localized tree-based model cannot be understated, as we

demonstrate an important application in combinatorial optimization problems. We first observe

that, under the tree-based static response policy,

sup
u∈Uℓ,v∈Vℓ

{
g(x0

ℓ ,v)−κ∥u− ûs∥−κ∥v− v̂s∥
}
= sup

v∈Vℓ

{
g(x0

ℓ ,v)−κ∥v− v̂s∥
}
,

because ûs ∈ Uℓ for all s∈ Sℓ.

Example 3 (Combinatorial optimization). Consider the following localized empirical com-

binatorial optimization problem,

Z0 =min
∑
ℓ∈[L]

ŵℓ

 1

|Sℓ|
∑
s∈Sℓ

∑
n∈[nx]

cnv̂snxℓn


s.t. xℓ ∈D ∀ℓ∈ [L],

where the cost function is g(x,v) =
∑

n∈[nx]
cnvnxn, for some c≥ 0 and D⊆ {0,1}nx . Note that the

objective function is separable in xℓ for ℓ∈ [L]; one could solve L combinatorial problems,

min
xℓ∈Dℓ

 1

|Sℓ|
∑
s∈Sℓ

∑
n∈[nx]

cnv̂snxℓn

 ,

to determine the optimal decisions xℓ, ℓ∈ [L]. Hence, if the underlying combinatorial optimization

problem is computationally tractable, the localized empirical combinatorial optimization problem

is also tractable.

Accordingly, the localized robust satisficing combinatorial model with side information can be

written as

min κ

s.t. sup
w∈W

∑
ℓ∈[L]

wℓrℓ−κθ∥w− ŵ∥

≤ τ

1

|Sℓ|
∑
s∈Sℓ

sup
v∈Vℓ

 ∑
n∈[nx]

cnvnxℓn−κ∥v− v̂s∥


≤ rℓ ∀ℓ∈ [L], s∈ Sℓ

xℓ ∈D ∀ℓ∈ [L]

κ≥ 0.

(23)
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Hence, following the same analysis as Long et al. (2023), suppose the norm is given by ℓ1-

norm and recall that Vℓ = [vℓ, v̄ℓ] for all ℓ ∈ [L], then Problem (23) admits the following explicit

formulation:

min κ

s.t. sup
w∈W

∑
ℓ∈[L]

wℓ

(
d⊤
ℓ (κ)xℓ

)
−κθ∥w− ŵ∥

≤ τ

xℓ ∈D ∀ℓ∈ [L]

κ≥ 0,

where

dℓn(κ) =
1

|Sℓ|
∑
s∈Sℓ

(cnv̂sn +(cn−κ)+(v̄ℓn− v̂sn)) ∀n∈ [nx].

Because dℓ(κ) is non-increasing in κ, the above problem can be solved via a bisection search where

each subproblem involves solving L individual combinatorial optimization problems with linear

cost functions.

6. Numerical study on portfolio optimization

In this section, we present the computational results of the CVaR-based portfolio optimization

problem, as introduced in Example 2. Our numerical study focuses on the robust satisficing model

with side information under a tree-based affine response policy, i.e., Model (18). We denote the

solution to this model for a tree with L leaf nodes as the “RobustTreeAffine” policy. It is worth

noting that when the tree has only one leaf node, we refer to the solution as the “RobustAffine”

policy. We set the target τ in Model (18) as ZAffine
0 + α, where α > 0 denotes a relative target

margin, and ZAffine
0 is the optimal value of the following empirical optimization problem,

ZAffine
0 = min

1

S

∑
ℓ∈[L]

∑
s∈Sℓ

tℓs

s.t. tℓs ≥ η− η+ v̂⊤
s xℓ(ûs)

ϵ
∀ℓ∈ [L], s∈ Sℓ

tℓs ≥ η ∀ℓ∈ [L], s∈ Sℓ
1⊤xℓ(ûs) = 1 ∀ℓ∈ [L], s∈ Sℓ
xℓ(ûs)≥ 0 ∀ℓ∈ [L], s∈ Sℓ
tℓs ∈R ∀ℓ∈ [L], s∈ Sℓ
xℓ ∈Lnu,nx ∀ℓ∈ [L].

(24)

We compare our proposed model, Problem (18), with two benchmarks. The first one is the

“Forest” policy, which is obtained from the StochOptForest algorithm via apx-soln criteria (Kallus
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and Mao 2023). The second one is the “RobustStatic” policy, which is the solution to the following

robust satisficing model without side information,

min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

ts +κν ≥ η− (η+v⊤x)/ϵ ∀(v, ν)∈ V̄s
ts +κν ≥ η ∀(v, ν)∈ V̄s
1⊤x= 1

x∈Rnx
+ , t∈RS, η ∈R, κ≥ 0.

(25)

We set the target τ in Model (25) as ZStatic
0 +α for some target margin α > 0, and ZStatic

0 is the

optimal value of the empirical optimization model ignoring side information,

ZStatic
0 =min

1

S

∑
s∈[S]

ts

s.t. ts ≥ η− (η+ v̂⊤
s x)/ϵ

ts ≥ η

1⊤x= 1

x∈Rnx
+ , t∈RS, η ∈R.

(26)

The solution to Model (26) is called the “EOStatic” policy.

Simulated data

We next present the results of numerical experiments based on simulated data using the same setup

as Kallus and Mao (2023). Our simulation includes nx = 3 stocks and nu = 10 covariates, with a

fixed risk level ϵ= 0.2. We independently generate each component of the side information û from

a standard normal distribution and generate the returns in the following way:

ṽ1 = 1+0.2exp(ũ1)−LN(0,1− 0.51[−3,−1](ũ2))

ṽ2 = 1− 0.2ũ1−LN(0,1− 0.51[−1,1](ũ2))

ṽ3 = 1+0.2|ũ1| −LN(0,1− 0.51[1,3](ũ2))

where LN(µ,σ2) is a log-normal distribution with parameters µ and σ.

To mimic daily returns over the past three months, six months, one year, or one year and a half,

we generate a training set {ûs, v̂s}s∈[S] consists of S ∈ {63,126,252,378} independent identically

distributed (i.i.d.) samples. Then we implement different approaches and obtain the corresponding

policies. For the robust satisficing models, we select α∈ {0,0.01,0.02,0.03,0.04,0.05} and limit the

number of leaf nodes to 4. We train the tree in our model based on the algorithm described in
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Figure 1 CVaR comparison under Kallus and Mao (2023)’s setting
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Section 2. We compute the out-of-sample CVaR for each policy using the test set { ˆ̄us, ˆ̄vs}s∈[10000].

We repeat this procedure 100 times and report the average results in Figure 1.

We observe that simple policies like RobustStatic and RobustAffine perform the best when

the training size is small (S = 63), as they avoid overfitting the limited data. However, as the

training size increases, there is little improvement in the performance of these simple policies,

suggesting underfitting when the training size is relatively large (S ≥ 126). In contrast, the perfor-

mance of more complex policies improves significantly as the number of training samples increases.

When the training size is relatively large (S ≥ 126), the RobustTreeAffine policy outperforms the

RobustStatic policy, demonstrating the benefits of using side information. Perhaps surprisingly,

the RobustTreeAffine policies also outperform the Forest policy when S ≥ 126, indicating that a

simple tree with fewer than four leaf nodes is sufficient to provide high-quality solutions. This phe-

nomenon can be partially explained by the modeling philosophy, as the Forest policy attempts to

evaluate out-of-sample CVaR based on a large set of return realizations corresponding to the same

observed side information, optimizing the conditional CVaR over possible portfolios. However, we

can only collect one out-of-sample daily return realization for the given side information, as the

side information changes every day. Therefore, we assess the out-of-sample unconditional CVaR

based on pairs of different side information and their corresponding returns. As a result, the Forest

policy may not necessarily be optimal, as we illustrate in our numerical comparisons.

A low signal-noise ratio setting

According to Gu et al. (2020), the out-of-sample R2 for monthly return prediction is below 1% using

well-tuned random forest, gradient boost, or neural networks, indicating a much lower signal-noise
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Figure 2 CVaR comparison in a low signal-noise ratio setting
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ratio for the real-world setting than in the simulation considered above. Thus, we are motivated

to explore a low signal-noise simulation setting, which we achieve by introducing an independent

noise term LN(0,0.8). Specifically, the data-generating process becomes:

ṽ1 = 1+0.2exp(ũ1)−LN(0,1− 0.51[−3,−1](ũ2))−LN(0,0.8)

ṽ2 = 1− 0.2ũ1−LN(0,1− 0.51[−1,1](ũ2))−LN(0,0.8)

ṽ3 = 1+0.2|ũ1| −LN(0,1− 0.51[1,3](ũ2))−LN(0,0.8).

We conduct the same experiment as before and vary α∈ {0,0.1,0.2,0.3,0.4,0.5} to increase robust-

ness given the low signal-noise ratio. We report the numerical results in Figure 2.

We observe that all robust satisficing policies, including RobustStatic, RobustAffine, and Robust-

TreeAffine policies, can achieve a lower CVaR by increasing the target margin α to some extent.

This finding highlights the importance of incorporating robustness into the optimization problem,

which is attained in our model by setting a less ambitious CVaR target. It suggests it can pro-

vide a better solution to the portfolio problem in a low signal-noise ratio setting. Moreover, we

observe similar results to those in Figure 1. Specifically, simple policies, such as RobustStatic, and

RobustAffine, outperform complex policies when the training size is relatively small (S ≤ 252). We

require more observations to learn complex policies effectively as the signal-noise ratio decreases.

When the training size is S = 378, complex policies can achieve a lower CVaR than more straightfor-

ward policies. This observation indicates that the Forest and RobustTreeAffine policies can better

utilize side information as the training size increases.
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Figure 3 CVaR comparison based on the S&P data

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1.18

1.19

1.20

1.21

1.22

CV
aR

Out-of-sample CVaR comparison when S = 63

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
1.170

1.175

1.180

1.185

1.190

1.195

1.200

1.205

1.210
Out-of-sample CVaR comparison when S = 126

Forest
EOStatic
RobustStatic
RobustAffine

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1.1625

1.1650

1.1675

1.1700

1.1725

1.1750

1.1775

1.1800

1.1825

CV
aR

Out-of-sample CVaR comparison when S = 252

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
1.1575

1.1600

1.1625

1.1650

1.1675

1.1700

1.1725

1.1750

1.1775

Out-of-sample CVaR comparison when S = 378

Real-world dataset

In the next set of numerical experiments, we consider using real data based on five stocks in the

S&P500 from January 01, 2010, to January 01, 2020. We utilize the short-term (last 21 days or

one month) average return and standard deviation as side information, as empirical studies by

Medhat and Schmeling (2022) and Moreira and Muir (2017) have demonstrated that leveraging

such information can lead to high risk-adjusted returns.

We conduct the experiments in a rolling horizon manner with a time window of 21 periods. At

the beginning of a time window (time t), we use the dataset Ht ≜ {ûs, v̂s}t−1
s=t−S as the training set.

We consider various training sizes, S ∈ {63,126,252,378}. We obtain different policies using the

training set and apply them to the next 21 periods (t, t+1, . . . , t+20). After obtaining the returns,

we set t← t+21 and repeat the above procedure 30 times. This process yields 630 out-of-sample

returns for each policy, and we calculate the corresponding CVaR. To mitigate the impact of the

selected stocks, we randomly sample five stocks 20 times and report the average of 20 out-of-sample

CVaRs in Figure 3. Hence, we fix L= 1 and focus on the benefits of the RobustAffine policy.

Similar to the findings in Figure 2, we observe that when the sample size is relatively small

(S ≤ 126), the RobustStatic policy outperforms the RobustAffine policy, indicating the difficulty

in leveraging side information in a low signal-noise ratio setting with limited data. However, as

the sample size increases, the performance of the RobustAffine policy improves. For the largest

training size (S = 378), the RobustAffine policy outperforms the RobustStatic policy for a wide
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range of target parameters α, highlighting the benefits of incorporating side information even in a

low signal-noise ratio setting. Additionally, we note that the RobustAffine policy outperforms the

Forest policy across all experiments, which is consistent with previous simulation results.

7. A case study on interpretable taxi allocation

To illustrate the interpretability of the proposed framework, we examine a taxi allocation problem

based on the work of Hao et al. (2020), where a taxi operator manages a fleet of taxis and must

allocate them across various service regions. Some regions experience a surplus of taxis, while others

face a shortage. In this context, we define a region with an abundance of taxi supply as a “supply

region” and a region with an insufficient number of taxis to meet passenger demands as a “demand

region”. The taxi operator can address this supply-demand imbalance by deploying taxis from the

supply regions to fulfill uncertain demands in the demand regions.

We represent the maximum number of taxis that can be deployed from a supply region i∈ [I] to
the demand regions as qi. Additionally, we denote the uncertain demand for taxis at each demand

region j ∈ [J ] as ṽj. Using real data from a taxi operator provider in Singapore, Hao et al. (2020)

elucidate that weather information, specifically the level of precipitation (measured in millimeters),

has some predictive power on the demands of taxis in the different demand regions of the city.

Therefore, we use the level of precipitation as the side information and denote it by a univariate

random variable ũ.

Let xij represent the number of taxis allocated from supply region i ∈ [I] to demand region

j ∈ [J ], and let cij denote the associated unit allocation cost. The allocation decision x can adapt

to the side information ũ. It is important to note that demands can only be satisfied when taxis are

available from the supply region. Consequently, the number of taxi demands satisfied at demand

region j ∈ [J ] is given by the minimum between the sum of xij(ũ) over all i∈ [I] and ṽj. We assume

that the decision-maker does not incur any cost for unmet demands and earns a revenue of rj

for fulfilling each demand at demand region j ∈ [J ]. We formulate the taxi allocation problem as

follows,

min EP [g(x(ũ), ṽ)]

s.t
∑
j∈[J]

xij(u)≤ qi ∀u∈ U , i∈ [I]

x(u)≥ 0 ∀u∈ U

(27)

where the cost function g can be written as the optimal value of a linear optimization problem,

g(x,v) = min
∑
j∈[J]

yj

s.t yj ≥
∑
i∈[I]

(cij − rj)xij ∀j ∈ [J ]

yj ≥
∑
i∈[I]

cijxij − rjvj ∀j ∈ [J ].
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Given the historical samples of the side information and demand (ûs, v̂s), s∈ [S], the corresponding
robust satisficing taxi allocation model with side information is as follows,

min κ

s.t.
1

S

∑
s∈[S]

ts ≤ τ

1⊤yℓs(u,v, σ, ν)−κσ−κν ≤ ts ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

yℓs,j(u,v, σ, ν)≥
∑
i∈[I]

(cij − rj)xℓ,ij(u) ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S], j ∈ [J ]

yℓs,j(u,v, σ, ν)≥
∑
i∈[I]

cijxℓ,ij(u)− rjvj ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S], j ∈ [J ]∑
j∈[J]

xℓ,ij(u)≤ qi ∀u∈ Uℓ, ℓ∈ [L], i∈ [I]

xℓ(u)≥ 0 ∀u∈ Uℓ, ℓ∈ [L]

yℓs ∈Lnu+nv+2,ny ∀ℓ∈ [L], s∈ [S]

xℓ ∈Lnu,nx ∀ℓ∈ [L]

κ≥ 0.

(28)

Note that the recourse problem in this case study has only right-hand-side uncertainty. As we have

discussed at the beginning of Section 4, the reformulation of Problem (28) directly follows from

Long et al. (2023); hence, we omit the reformulation here. As a benchmark model, we consider the

robust satisficing model without side information, i.e., the response policy is a tree-based static

policy with L= 1.

Data generation. Similar to the simulation experiment conducted in Hao et al. (2020), we

make the following assumptions: I = 1 and J = 5. The cost and revenue parameters are set as

cj = 3 and rj = 0.05(12.5− 0.5j) + cj for each j ∈ [J ]. The mean and standard deviation of u are

denoted as µu = 10 and σu = 0.3µu, respectively. We assume that the support set of u falls within

the interval Iu = [1,19]. We divide the interval Iu into nd = 4 non-overlapping subsets of the same

length and denote the i-th subset as Iiu = [ui, ui] for each i∈ [nd].

In our model, we consider nd linear demand functions, vi(u, ϵ̃i) =wi
0 +wi

1u+ ϵ̃i, where i∈ [nd].

We randomly generate w̄ from the uniform distribution on [0,1]J and set wi
1 = (1+0.2i)w̄ for each

i∈ [nd]. For the intercept w
i
0, we set w

1
0 = 10×1 and wi

0 =wi−1
0 +uiw

i−1
1 −uiw

i
1 for i∈ {2, . . . , nd}.

The error term ϵ̃i has a zero mean, and its variance is δi
e = 0.1µi

v, where µi
v =wi

0 +wi
1µu. The

support set of the demand is a box, Iv ≜ [w1 +w1
1u1,w

nd +w
nd
1 und

]. Next, we set the supply

capacity as q= 0.5×1⊤(w
nd
0 +w

nd
1 und

). Note that such a supply capacity q is only half of the total

mean demand when u= und
; hence, we may not satisfy the total expected demand when u is large.

To generate samples for training and evaluation, we randomly generate S = 60 samples of ûs.

For each s∈ [S], we randomly generate samples of the error term, ϵ̂s, from the multivariate normal
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Table 1 Revenue improvement in ten random sample instances

Sample instance 1 2 3 4 5 6 7 8 9 10 Average

RS 34.16 34.54 34.48 34.20 34.34 34.54 34.59 34.56 34.08 34.64 34.41

RN 32.52 31.90 32.46 32.40 32.49 32.15 32.44 32.24 32.44 32.53 32.36

RS−RN

RN 5.04% 8.28% 6.23% 5.53% 5.67% 7.42% 6.62% 7.20% 5.05% 6.49% 6.35%

distribution N (0,diag(δj∗
e )) if ûs ∈ Ij

∗
u for some j∗ ∈ [nd]. The demand sample with observation ûs

is then v̂s = vj∗(ûs, ϵ̂s) =wj∗

0 +wj∗

1 ûs+ ϵ̂s. We truncate demand samples so that they fall into the

support set Iv. Then, {(ûs, v̂s), s ∈ [S]} constitutes our training samples. We generate 10,000 test

samples with the same procedure to evaluate the out-of-sample performance.

Evaluation of revenue improvement. We first generate the tree structures with L∈ [4] using

the binary recursive partitioning algorithm in Section 2. Based on cross-validation, we fix the

number of leaf nodes as L= 2. Then, we calibrate the target parameter in our robust satisficing

model (28) by selecting the target margin α ∈ [0,4] via a 5-fold cross-validation combined with a

Golden search procedure. We solve the benchmark robust satisficing model without side information

via the same cross-validation procedure. In our numerical experiments, we solve the two models

with ten different training data sets and test them on the same set of test data of size 10,000.

Let RS and RN denote the out-of-sample revenue of the robust satisficing models with tree-based

affine policy and the benchmark robust satisficing model (with static policy ignoring side informa-

tion), respectively. We compute the revenue ratio between the two models, RS

RN , and summarize the

results in Table 1. We note that the average revenue ratio over the ten random instances is 1.064,

indicating an improvement in revenue of 6.4%. A significant reason for the improvement is that the

solutions to the prescriptive analytics model with side information can adapt to the precipitation

data to better align with the demands. This is similarly observed in the portfolio optimization

example in the previous section.

Interpretable taxi allocation policy. The impact of precipitation on our optimal taxi allo-

cation policy is substantial, as illustrated by the first random instance’s optimal response policy

shown in Figure 4. One immediate advantage of the tree-based affine allocation policy is its real-

time adaptability to realized precipitation information. The policy, consisting of intercepts and

coefficients, is easily understandable and interpretable. The non-negligible magnitudes of the coef-

ficients indicate the strong influence of precipitation information on the allocation quantities.

Note that the mean demands at all demand regions increase with precipitation u. When u falls

within the first leaf node, the overall demands do not overwhelm the supply capacity q. Hence, it

is reasonable to see positive coefficients, i.e., we should deploy more taxis to all demand regions
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Figure 4 Illustration of the tree-based affine allocation policy
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as u increases. An interesting observation arises when u lies within the second leaf node: the

coefficients of the affine allocation policy for demand regions 4 and 5 become negative, seemingly

contradicting the general trend of increasing demands with u. However, this behavior can be

explained by considering the limited supply capacity q. In this scenario, the overall mean demand

becomes overwhelming, requiring the system to prioritize which demands to fulfill. Given that the

unit revenue earned from satisfying demand in a particular demand region j ∈ [J ] decreases as j

increases, it becomes optimal to sacrifice some demands from demand regions 4 and 5 in order to

meet as many demands as possible in the earlier demand regions. This intuitive and interpretable

allocation policy highlights the practical usefulness of the robust actionable prescriptive analytics

framework for managers and practitioners.

To elucidate the difference between our adaptive allocation policy and the static policy of the

benchmark robust satisficing model ignoring side information, we visualize them in Figure 5. Specif-

ically, we plot the allocation quantities for two instances: û∗
1 and û∗

2, which lie in leaf nodes one

and two, respectively. We set the covariate values as û∗
1 =

1+u∗

2
and û∗

2 =
19+u∗

2
, where u∗ is the

cutoff value that divides the samples into two leaf nodes. The corresponding allocation quantities

x1(û
∗
1) and x2(û

∗
2) are presented in Figure 5. The most notable difference is that our policy pri-

oritizes demands at the first three demand regions when u lies in the second leaf node due to the

overwhelming total demand. This demonstrates the benefits of having a response policy that could

leverage the side information with some predictive powers for uncertain demands.
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Figure 5 Illustration of allocation quantities of robust satisficing with (S) and without (N) side information.
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A. Proofs

Proof of Theorem 1. Let x̂ be an optimal solution to Problem (2). For any (us,vs)∈Z, s∈ [S],

we have

g(x̂(us),vs)−κ(∥vs− v̂s∥+ ∥us− ûs∥)

= g(x̂(ûs), v̂s)+ (g(x̂(us),vs)− g(x̂(ûs), v̂s)−κ(∥vs− v̂s∥+ ∥us− ûs∥))

≤ g(x̂(ûs), v̂s)+ (L̄−κ)(∥us− ûs∥+ ∥vs− v̂s∥).

For any κ≥ L̄ and (us,vs)∈Z, s∈ [S], we have

1

S

∑
s∈[S]

(g(x̂(us),vs)−κ(∥vs− v̂s∥+ ∥us− ûs∥))≤
1

S

∑
s∈[S]

g(x̂(ûs), v̂s) =Z0 ≤ τ.

Hence, it follows that Problem (9) is feasible for some κτ ≤ L̄. □

Proof of Theorem 2. We first observe q4 and q5 are necessarily non-negative; otherwise, Con-

straint (15) is never feasible. Then we dualize v to obtain the following equivalence

sup
(u,v,σ,ν)∈Z̄ℓs

{
q⊤
1 u+ q⊤

2 v+v⊤Q3u− q4σ− q5ν
}

= sup
u∈Uℓ,v∈Vℓ

{
q⊤
1 u+ q⊤

2 v+v⊤Q3u− q4∥u− ûs∥− q5∥v− v̂s∥
}

= sup
u∈Uℓ

inf
ρ≥0,ρ≥0

{
q⊤
1 u+ρ⊤vℓ−ρ⊤vℓ +(q2 +Q3u+ρ−ρ)⊤v̂s− q4∥u− ûs∥ : ∥q2 +Q3u−ρ+ρ∥∗ ≤ q5

}
.

The left-hand side of the above constraint can be viewed as an adaptive robust optimization

problem with uncertain parameter u and recourse variable ρ,ρ:

inf sup
u∈Uℓ

{
q⊤
1 u+ρ(u)⊤vℓ−ρ(u)⊤vℓ +(q2 +Q3u+ρ(u)−ρ(u))⊤v̂s− q4∥u− ûs∥

}
s.t. ∥q2 +Q3u−ρ(u)+ρ(u)∥∗ ≤ q5

ρ(u)≥ 0,ρ(u)≥ 0

ρ,ρ∈Rnu,nv .

We apply affine recourse adaptation ρ(u) = p+Pu, ρ(u) = p+Pu to obtain its safe approximation

of the robust constraint (15):

sup
u∈Uℓ

{
q⊤
1 u+(p+Pu)⊤vℓ− (p+Pu)⊤vℓ +(q2 +Q3u+p+Pu−p−Pu)⊤v̂s− q4∥u− ûs∥

}
≤ q6

sup
u∈Uℓ

{
∥q2 +Q3u−p−Pu+p+Pu∥∗

}
≤ q5

inf
u∈Uℓ

{
e⊤
i (p+Pu)

}
≥ 0 ∀i∈ [nv]

inf
u∈Uℓ

{
e⊤
i (p+Pu)

}
≥ 0 ∀i∈ [nv]

(29)
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for some p,p∈Rnv ,P ,P ∈Rnv×nu . By dualizing variable u, the first robust constraint of (29) has

the following equivalence

q⊤
1 ûs + q⊤

2 v̂s + v̂⊤
s Q3ûs +(p+P ûs)

⊤(vℓ− v̂s)

+(p+P ûs)
⊤(v̂s−vℓ)+λ

⊤
(uℓ− ûs)+λ⊤(ûs−uℓ)≤ q6

∥q1 +P
⊤
(vℓ− v̂s)+P⊤(v̂s−vℓ)+Q⊤

3 v̂s−λ+λ∥∗ ≤ q4

λ≥ 0,λ≥ 0

(30)

by strong duality. Similarly, the last two sets of robust constraints of (29) are equivalent to the

existence of Γ,Γ∈Rnv×nu such that

p−Γuℓ +(P +Γ)uℓ ≥ 0

Γ≥ 0,P +Γ≥ 0

p−Γuℓ +(P +Γ)uℓ ≥ 0

Γ≥ 0,P +Γ≥ 0.

(31)

For the second robust constraint of (29), we have the following equivalence

sup
u∈Uℓ

{
∥q2 +Q3u−p−Pu+p+Pu∥∗

}
≤ q5

⇐⇒ sup
u∈Uℓ,∥γ∥≤1

{
γ⊤(q2 +Q3u−p−Pu+p+Pu)

}
≤ q5

⇐⇒ sup
∥γ∥≤1

inf
θ≥0,θ≥0

{
γ⊤(q2−p+p)+u⊤

ℓ θ−u⊤
ℓ θ : (Q3−P +P )⊤γ = θ−θ

}
≤ q5

where the first equivalence is by the definition of the dual norm, and the second is by strong duality.

The problem can be regarded as an adaptive robust optimization with uncertainty γ and recourse

variable θ,θ. However, we can still apply affine recourse adaptation

θ(γ) = θ+Θ⊤γ, θ(γ) = θ+Θ⊤γ− (Q3−P +P )⊤γ

for some θ ∈Rnu ,Θ∈Rnv×nu to obtain a conservative approximation as follows,

γ⊤(q2−p+p)+ (θ+Θ⊤γ)⊤uℓ− (θ+(Θ−Q3 +P −P )⊤γ)⊤uℓ ≤ q5 ∀∥γ∥ ≤ 1

θ+Θ⊤γ ≥ 0 ∀∥γ∥ ≤ 1

θ+(Θ−Q3 +P −P )⊤γ ≥ 0 ∀∥γ∥ ≤ 1,

which is equivalent to

∥q2−p+p+Θuℓ− (Θ−Q3 +P −P )uℓ∥∗ +(uℓ−uℓ)
⊤θ≤ q5

θ≥
∑
i∈[nu]

∥Θei∥∗ei

θ≥
∑
i∈[nu]

∥(Θ−Q3 +P −P )ei∥∗ei.

(32)
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Combining the equations (30), (31), (32) together and noting they hold for each s∈ [S], we obtain

the tractable formulation (16).

We have already established the conservative approximation of Constraint (15). When Q3 = 0,

the converse is true by noticing that the Constraint (15) is affine in the uncertain parameters so

that we have its exact reformulation:

∃λ,λ∈Rnu
+ ,p,p∈Rnv

+ :

q⊤
1 ûs + q⊤

2 v̂s +p⊤(vℓ− v̂s)+p⊤(v̂s−vℓ)+λ
⊤
(uℓ− ûs)+λ⊤(ûs−uℓ)≤ q6

∥q1−λ+λ∥∗ ≤ q5

∥q2−p+p∥∗ ≤ q4

based on the standard duality approach. Clearly (q1,q2,0, q4, q5, q6)∈Qℓs by setting P =P =Γ=

Γ=Θ= 0 and θ= 0 in Equation (16).

To show the second property, we can take p = p = 0,λ = λ = 0,P = P = Γ = Γ = Θ =

0, q4 = ∥q1 + Q⊤
3 v̂s∥∗, θ =

∑
i∈[nu]

∥Q3ei∥∗ei and q5 = ∥q2 + Q3uℓ∥∗ + (uℓ − uℓ)
⊤θ to ensure

(q1,q2,Q3, q4, q5, q6)∈Qℓs.

□

Proof of Theorem 3. For any x∈ T̄ nu,nx , let ℓ∗(s)∈ [L] such that ûs ∈ int(Uℓ∗(s)) for each s∈ [S],

we have
1

S

∑
s∈[S]

ts ≤ τ

d⊤ŷs ≤ ts ∀s∈ [S]

F (v̂s)xℓ∗(s)(ûs)+Bŷs ≥ f(v̂s) ∀s∈ [S]

for some ŷs ∈Rny , s∈ [S]. We take y0
ℓ∗(s)s = ŷs and yi

ℓ∗(s)s = 0 for each i∈ [nu +nv] so that

d⊤y0
ℓ∗(s)s = d⊤ŷs ≤ ts

qk1⊤
ℓ∗(s)sûs + qk2⊤

ℓ∗(s)sv̂s + v̂⊤
s Q

k3
ℓ∗(s)sûs− qk6ℓ∗(s)s = e⊤

k

(
f(v̂s)−F (v̂s)xℓ∗(s)(ûs)−Bŷs

)
≤ 0 ∀k ∈ [nf ].

Therefore, Property (b) in Theorem 2 implies the existence of λℓ∗(s)s, µℓ∗(s)s ∈R+ and ζℓ∗(s)s,ξℓ∗(s)s ∈

Rnf
+ such that

(0,0,0, λℓ∗(s)s, µℓ∗(s)s, ts−d⊤y0
ℓ∗(s)s)∈Qℓ∗(s)s(

qk1
ℓ∗(s)s,q

k2
ℓ∗(s)s,Q

k3
ℓ∗(s)s,e

⊤
k ζℓ∗(s)s,e

⊤
k ξℓ∗(s)s, q

k6
ℓ∗(s)s

)
∈Qℓ∗(s)s ∀k ∈ [nf ].

By the complete recourse assumption, there exists αℓ∗(s)s,βℓ∗(s)s ∈Ry such that Bαℓ∗(s)s ≥ ζℓ∗(s)s

and Bβℓ∗(s)s ≥ ξℓ∗(s)s. Then we have(
qk1
ℓ∗(s)s,q

k2
ℓ∗(s)s,Q

k3
ℓ∗(s)s,e

⊤
k Bαℓ∗(s)s,e

⊤
k Bβℓ∗(s)s, q

k6
ℓ∗(s)s

)
∈Qℓ∗(s)s ∀k ∈ [nf ].
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Then we take ynu+nv+1
ℓ∗(s)s =αℓ∗(s)s, y

nu+nv+2
ℓ∗(s)s =βℓ∗(s)s and

κ≥ κ̄≜max
s∈[S]

{
max

{
λℓ∗(s)s +d⊤ynu+nv+1

ℓ∗(s)s , µℓ∗(s)s +d⊤ynu+nv+2
ℓ∗(s)s

}}
to ensure (0,0,0, κ−d⊤ynu+nv+1

ℓ∗(s)s , κ−d⊤ynu+nv+2
ℓ∗(s)s , ts−d⊤y0

ℓ∗(s)s)∈Qℓ∗(s)s, which is equivalent to

d⊤yℓ∗(s)s(u,v, σ, ν)−κ(σ+ ν)≤ ts, ∀(u,v, σ, ν)∈ Z̄ℓ∗(s)s

by Property (a) in Theorem 2.

For ℓ∈ [L]\{ℓ∗(s)}, by complete recourse assumption there exists ŷℓs such that

Bŷℓs ≥ f(v̂s)−F (v̂s)xℓ(ûs)

Let y0
ℓs = ŷℓs and yi

ℓs = 0 for each i∈ [nu+nv]. By a similar argument as above, there exist ynu+nv+1
ℓs

and ynu+nv+2
ℓs such that

(
qk1
ℓs ,q

k2
ℓs ,Q

k3
ℓs ,e

⊤
k Bynu+nv+1

ℓs ,e⊤
k Bynu+nv+2

ℓs , qk6ℓs
)
∈Qℓs, ∀k ∈ [nf ].

It remains to show there exists κ≥ κ̄ such that

d⊤y0
ℓs− ts ≤

(
κ−d⊤ynu+nv+1

ℓs

)
σ+

(
κ−d⊤ynu+nv+2

ℓs

)
ν ∀(u,v, σ, ν)∈ Z̄ℓs.

Indeed, it suffices to take

κ= |κ̄|+max
s∈[S]

max
ℓ∈[L]\{ℓ∗(s)}

{
|d⊤ynu+nv+1

ℓs |+ |d⊤y0
ℓs− ts|

infu∈Uℓ
∥u− ûs∥

+ |d⊤ynu+nv+2
ℓs |

}
where infu∈Uℓ

∥u− ûs∥> 0 for any s∈ [S], ℓ∈ [L]\{ℓ∗(s)} because ûs /∈ cl(Uℓ). It follows that

inf
(u,v,σ,ν)∈Z̄ℓs

(
κ−d⊤ynu+nv+1

ℓs

)
σ+

(
κ−d⊤ynu+nv+2

ℓs

)
ν

= inf
u∈Uℓ,v∈Vℓ

(
κ−d⊤ynu+nv+1

ℓs

)
∥u− ûs∥+

(
κ−d⊤ynu+nv+2

ℓs

)
∥v− v̂s∥

≥ inf
u∈Uℓ

(
κ−d⊤ynu+nv+1

ℓs

)
∥u− ûs∥

≥ inf
u∈Uℓ

|d⊤y0
ℓs− ts| · ∥u− ûs∥

infu∈Uℓ
∥u− ûs∥

≥ d⊤y0
ℓs− ts.

When ny = 1, we must have B > 0 or B < 0 because of the complete recourse assumption.

Without loss of generality, we assume B = [b1, ..., bnf
]⊤ > 0 and d > 0 to avoid trivial cases. For

Problem (12), the recourse function yℓs(u,v, σ, ν) must satisfy the constraints

dyℓs(u,v, σ, ν)≤ ts +κσ+κν ∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S]

yℓs(u,v, σ, ν)≥ max
k∈[nf ]

{
(e⊤

k f(v)−e⊤
k F (v)xℓ(u))/bk

}
∀(u,v, σ, ν)∈ Z̄ℓs, ℓ∈ [L], s∈ [S],
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which indicates the optimal recourse function for any s∈ [S], ℓ∈ [L] would be

yℓs(u,v, σ, ν) = (ts +κσ+κν)/d,

which is affine in σ and ν and does not depend on u or v. Therefore, there exist reduced affine

mappings yℓs that are optimal for Problem (12) and hence solve Problem (17). □

Proof of Theorem 4. Let x†
ℓ be an optimal solution that achieves Z0,ℓ, for ℓ ∈ [L]. For any

(us,vs)∈Zℓ, s∈ [S], ℓ∈ [L], we have

g(x†
ℓ(us),vs)−κ(∥vs− v̂s∥+ ∥us− ûs∥)

≤ g(x†
ℓ(ûs), v̂s)+ (L̄−κ)(∥us− ûs∥+ ∥vs− v̂s∥).

Then, for any κ≥ L̄, we have

1

|Sℓ|
∑
s∈Sℓ

sup
(us,vs)∈Zℓ

{
g(x†

ℓ(us),vs)−κ(∥vs− v̂s∥+ ∥us− ûs∥)
}
≤ 1

|Sℓ|
∑
s∈Sℓ

g(x†
ℓ(ûs), v̂s) =Z0,ℓ.

Now, consider any w ∈W and rℓ =Z0,ℓ for ℓ∈ [L], we have

w⊤r−κθ∥w− ŵ∥1 ≤ ŵ⊤r+(∥r∥∞−κθ)∥w− ŵ∥1.

If κ further satisfies κ≥maxℓ∈[L] {|rℓ|}/θ, we have

sup
w∈W

∑
ℓ∈[L]

wℓrℓ−κθ∥w− ŵ∥1

≤ ŵ⊤r=Z0 ≤ τ.

Hence, it follows that Problem (22) is feasible for some κτ ≤max{L̄,maxℓ∈[L] {|Z0,ℓ|}/θ}. □

Proof of Theorem 5. For any feasible solutions to Problem (21), we have

∑
ℓ∈[L]

w⋆
ℓ

(
EP⋆

ℓ
[g(x(ũ), ṽ)]−κτ∆(P⋆

ℓ , P̂ℓ)
)
−κτθ∥w⋆− ŵ∥1 ≤ τ,
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where w⋆
ℓ = P⋆ [ũ∈ Uℓ] and P⋆

ℓ is the true conditional distribution of ṽ given ũ∈ Uℓ. Hence, for all

Γ≥ 0, we have

PS [EP⋆ [g(x(ũ), ṽ)]> τ +κτΓ]

= PS

∑
ℓ∈[L]

w⋆
ℓEP⋆

ℓ
[g(x(ũ), ṽ)]> τ +κτΓ


≤ PS

∑
ℓ∈[L]

w⋆
ℓ∆(P⋆

ℓ , P̂ℓ)+ θ∥w⋆− ŵ∥1 > Γ


≤ min

γ1+γ2=Γ

PS

∑
ℓ∈[L]

w⋆
ℓ∆(P⋆

ℓ , P̂ℓ)>γ1

+PS [θ∥w⋆− ŵ∥1 >γ2]


≤ min

γ1+γ2=Γ

{
PS

[
max
ℓ∈[L]

∆(P⋆
ℓ , P̂ℓ)>γ1

]
+PS [θ∥w⋆− ŵ∥1 >γ2]

}
≤ min

γ1+γ2=Γ

∑
ℓ∈[L]

PSℓ

[
∆(P⋆

ℓ , P̂ℓ)>γ1

]
+PS [θ∥w⋆− ŵ∥1 >γ2]


≤ min

γ1+γ2=Γ

∑
ℓ∈[L]

PSℓ

[
∆(P⋆

ℓ , P̂ℓ)>γ1

]
+2L exp

(
−2Sγ2

2

L2θ2

) .

The last inequality follows from

PS [θ∥w⋆− ŵ∥1 >γ2]

≤ PS [|w⋆
ℓ − ŵℓ|>γ2/(ℓθ) for some ℓ∈ [L]]

≤
∑
ℓ∈[L]

PS

[∣∣∣∣∣
∑

s∈[S] 1Uℓ
(ûs)

S
−EPS

[∑
s∈[S] 1Uℓ

(ûs)

S

]∣∣∣∣∣> γ2
Lθ

]
(Union bound)

≤
∑
ℓ∈[L]

2exp

(
−2Sγ2

2

L2θ2

)
(Hoeffding’s inequality)

= 2L exp

(
−2Sγ2

2

L2θ2

)
.

Therefore, for any τ ≥Z0, x and κτ feasible in Problem (21) and Γ≥ 0, we have

PS [EP⋆ [g(x(ũ), ṽ)]> τ +κτΓ]≤ min
γ1+γ2=Γ

∑
ℓ∈[L]

PSℓ

[
∆(P⋆

ℓ , P̂ℓ)>γ1

]
+2L exp

(
−2Sγ2

2

L2θ2

) ,

for all Γ≥ 0. □


