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Motivated by the worldwide Covid-19 vaccine procurement, we study an inventory problem with an advance

purchase contract which requires all ordering decisions to be committed at once. In reality, not only the

demand is uncertain, but its distribution can also be ambiguous. Hence, we assume that only the mean and

the variance are known and aim at minimizing the worst-case expected cost. We first show that our inventory

model reduces to a robust conic optimization problem with a finite yet exponentially-sized uncertainty

set. To gain tractability and err on the safe side, we propose two conservative approximations. Then to

measure their approximation quality, we develop a progressive approximation based on a scenario reduction

technique. All of the approximate models are expressed as standard polynomially-sized conic programs, which

scale gracefully and allow us to incorporate additional distributional knowledge via a cone replacement. We

quantify the benefit of committing to advance purchases, and we show that all approximations are close to

being exact. Besides, we analytically derive the worst-case demand distribution and numerically use it to

show that our robust policy is more resilient to the misspecification of the demand distribution than the

state-of-the-art non-robust policies.

Keywords : Inventory management; distributionally robust optimization; conic programming.

1. Introduction

During the past three years, the global population has been rampaged by the spread of Covid-19,

and advance purchase contracts have repeatedly been signed by governments of different countries;

see e.g. Jalelah (2021) and Andres (2022). In such contracts, the governments acting as inventory

managers submit a single advance purchase order to the pharmaceutical companies and specify the

amount of vaccines needed at different times, to acquire sufficient protective vaccines. This episode

has prompted us to revisit the advance purchase agreement in the inventory management problem.

1



Xue, Li, and Rujeerapaiboon
2 Distributionally Robust Inventory Management with Advance Purchase Contracts

Advance purchase contracts have a unique standing and have been scrutinized extensively in the

literature. Suppliers who are on the receiving end of an advance purchase contract can devise an

informed production plan that is less likely disrupted by fluctuating order volumes, and they are

incentivized to innovate (Price et al. 2020). For these reasons, Özer and Wei (2006) and Tang et al.

(2004) argued that the suppliers may assent to offering discounts to attract advance purchases. In

return, inventory managers who are willing to commit early can benefit from the reduced purchasing

cost and the strengthened relationship with the suppliers (Basciftci et al. 2021). Besides, because

of the limited purchasing opportunities, advance purchase represents a norm when dealing with

seasonal goods and products with short life cycles, such as comestibles, electronic gadgets and

apparels; see e.g. Mamani et al. (2017), Tang et al. (2004).

When demands are independent and follow a known distribution, Scarf (1960) derived an inven-

tory policy, famously known as the base-stock policy. Despite its simplicity, the optimal base-stock

policy may not be easy to characterize, and in reality it is impossible to obtain the true demand dis-

tribution. Bertsimas and Thiele (2006), Mamani et al. (2017), Postek et al. (2018) then identified

a robustly optimal advance purchase contract in various settings. Other papers that are similarly

robust while allowing the ordering amounts to be decided adaptively include Ben-Tal et al. (2005),

See and Sim (2010), Postek et al. (2018), Bertsimas et al. (2019) etc.

In this paper, we propose and analyze a novel inventory model that yields a robustly optimal

advance purchase order. Our model specifically aims at minimizing the worst-case expected total

cost (consisting of purchasing, holding and backlogging costs) over all possible demand distributions

that are consistent with a marginal mean and variance. Relying on the duality theory, we first

formulate our distributionally robust inventory problem as a finite convex optimization problem,

however, with an exponential number of constraints. To gain tractability robustly, we propose

‘L-conservative’ and ‘Q-conservative’ approximations. The former is derived by interpreting the

problem as an artificial two-stage robust optimization problem and then restricting each second-

stage decision to follow a linear decision rule (Ben-Tal et al. 2004), whereas the latter is obtained
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via constraint partitioning and a series of interchanges between summation and maximization. In

addition, we come up with a scenario reduction technique (Hadjiyiannis et al. 2011) to develop a

progressive approximation of the model.

For succinctness, we summarize the main contributions of the paper below.

� To our knowledge, we are the first to consider the distributionally robust inventory problem

with advance purchase contracts under the mean-variance ambiguity set of the demand distri-

bution. We reduce the problem to a robust second-order cone program with an exponentially-

sized uncertainty set which is characterized by the unit holding and backlogging costs.

� To gain tractability, we propose L- and Q- conservative approximations as well as a progressive

approximation, all of which are presented compactly as scalable second-order cone programs.

By means of a cone replacement, these conic representations can accommodate additional dis-

tributional information of the demands, such as non-negativity and pairwise uncorrelatedness.

� We exploit the progressive approximation to quantify the optimality gaps of our L- and Q-

conservative solutions. Numerically, these gaps appear insignificant, and thus our inventory

problem can be solved almost exactly. Besides, we verify that our conservative approximations

are tighter than the state-of-the-art alternative inspired by Postek et al. (2018) and prove that

our progressive approximation is tight when the problem consists of two periods.

� We show how our distributionally robust inventory policy is more resilient than the stochastic

policy even when the demand distribution is only slightly contaminated. Additionally, an adap-

tive version of our policy (which is obtained by re-solving the problem repeatedly in a shrinking

horizon fashion) is almost on par with the optimal base-stock policy even when the demand

distribution is known, is correct, and is serially independent.

� Finally, to close the loop we utilize a dataset from a fashion retailer on Amazon to examine a

discount level for an advance purchase agreement that simultaneously enables the inventory

manager to pay less and the supplier to earn more in comparison to the base-stock policy.

Our techniques could have a far-reaching impact on other operational problems of similar nature,

such as an appointment scheduling problem; see Mak et al. (2015) and Padmanabhan et al. (2021).

We refer our readers to Appendix A for a technical comparison between these papers and ours.
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1.1. Literature review

A single-period inventory problem is referred to as a newsvendor problem (Shapiro et al. 2014).

Typically, the solution to the risk-neutral newsvendor problem could be characterized by the inverse

of the cumulative distribution function of the unknown demand, which however is difficult to accu-

rately empirically estimate. Scarf (1958) addressed this issue by seeking to find an optimal decision

that performs best in view of the worst-case distribution amongst all those that share the same

mean and variance. Ben-Tal and Hochman (1976) and Das et al. (2021) then extended this sem-

inal work by exploiting other statistical information. Gallego and Moon (1993) showed that this

ambiguity set is not overly conservative in the sense that, when the demand is normal, the stochas-

tically optimal and the robustly optimal solutions attain similar expected costs. For completeness,

we note that there are other newsvendor models which directly incorporate the historical observa-

tions of the demand and/or other influential features and simultaneously account for the demand

distribution ambiguity, such as Chen and Xie (2021), Lee et al. (2021) and Fu et al. (2021).

For a multi-period problem, a risk-neutral inventory manager also aims at minimizing the total

expected cost. When the demands are serially independent and follow a known distribution, the

purchasing costs consist of a fixed and a linearly variable part, and the holding and the backlogging

costs are linear, Scarf (1960) formulated this problem as a dynamic program and showed that there

exists an optimal base-stock policy which is characterized by a collection of reordering points and

order-up-to levels. In the absence of the fixed ordering cost, it can be further imposed without loss

that these two are the same, and thus the optimal policy simplifies (Bertsekas 1995). Still, even

the determination of this simplified base-stock policy is provably difficult (Halman et al. 2009),

and only a few asymptotic variants admit a reasonably efficient exact solution approach (Veinott

and Wagner 1965, Federgruen and Zipkin 1984, Zheng and Federgruen 1991). For the rest, we may

need a simulation-based method (Fu 1994) or an interpolation technique (Halman et al. 2009).

In reality, the demand distribution is hardly available but is required for the computation of the

optimal policy. Incorporating inaccurate information (e.g. using an empirical distribution in lieu
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of the true demand distribution) in a dynamic program systematically induces error propagation,

which is neither easy to quantify nor to eliminate (Zhang et al. 2021). Retaining the adaptability of

the ordering quantities in later periods, several authors have turned towards robust (e.g. Ben-Tal

et al. 2005) and distributionally robust (e.g. See and Sim 2010, Bertsimas et al. 2019) optimization.

Tractability is ensured when they solved their respective variant of the inventory problem using a

decision rule approximation. Though, Lu and Sturt (2022) showed that the majority of decision rule

coefficients may unexpectedly vanish. Solyalı et al. (2016) relied on a different formulation which is

inspired by the facility layout and knapsack problem to improve the computational efficiency even

when there is a fixed ordering cost. In a similar vein, Chen et al. (2022) proposed a cycle-based

base-stock policy to lessen the financial impact of frequent ordering on the worst-case cost.

Differently from the above, the inventory manager as well as the supplier may have a preference

for an advance purchase contract. When no other distributional information besides the support of

the uncertain demand is available, Bertsimas and Thiele (2006) studied a multi-stage robust inven-

tory problem with an advance purchase contract and identified a robustly optimal policy that

can be interpreted as a base-stock policy, and subsequently, Mamani et al. (2017) determined a

closed-form solution of the same problem when the uncertainty set satisfies a certain symmetrical

criterion. Note that the robust inventory model studied in these papers is overly conservative in the

way it computes the worst-case cost. As a purely robust model, it is also ignorant of almost all

distributional information. To address this, Postek et al. (2018) considered a distributionally robust

inventory approach that accounts for the mean and the mean absolute deviation of the demands.

In this paper, we develop a novel distributionally robust inventory management model to identify

an advance purchase agreement that minimizes the worst-case expected total cost. Comparing to

the above, we aim for our model to be less conservative in two ways. First, similarly to Postek et al.

(2018) we utilize distributionally robust optimization, but we differently adopt the mean-variance

ambiguity set, which has been extensively studied in the literature, see e.g. Delage and Ye (2010),

Zymler et al. (2013). Second, our model either accurately captures the worst-case expected cost or

approximates it with a quantifiable a posteriori bound.
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The remainder of the paper is structured as follows. Section 2 details our distributionally robust

inventory problem and its equivalent reformulations, one of which is used to derive the worst-case

distribution to be exploited in a stress test. Our tractable conservative and progressive approxima-

tions are derived in Section 3, and the conic extensions for some restricted ambiguity sets are given

in Section 4. Finally, experiments in Section 5 are used to measure the quality of the proposed

approximations and to compare our approach with the state-of-the-art benchmarks, and Section 6

reports an additional case study demonstrating the benefit of advance purchase contracts. Section 7

finally concludes the paper. Note that some proofs and discussions are relegated to appendices.

Notation: We use boldface lowercase letters (e.g. v) and uppercase letters (e.g. M) to represent

vectors and matrices, respectively. Specifically, 1 (0) denotes a vector or a matrix of all ones (zeros),

and 1i denotes the i
th canonical basis vector. The set of all real numbers is denoted by R and its

subset of non-negative and strictly positive numbers are denoted by R� and R��, respectively. Sn

represents a set of symmetric matrices in Rn�n. For any A,B P Sn, A©B indicates that A�B

is positive semidefinite. If K is a cone, then K� denotes its dual. For any vector v PRn, diagpvq is

a diagonal matrix in Sn that has elements of v sitting on its main diagonal, and #pv,mq counts

the number of occurrences of m in v, and vm, 1¤m¤ n, is a subvector of v containing its first m

elements, i.e., vm � pv1, . . . , vmqJ. Throughout, a division by zero is allowed and a{0 is defined to

be ��8 if a¡ 0; � 0 if a� 0; ��8 otherwise.

2. Mean-variance inventory model and its finite representations

We consider an uncapacitated inventory system that stores a single product for sale, and we denote

by T the planning horizon as well as by c, h and b the unit ordering, holding and backlogging costs,

respectively. We assume that these cost parameters are positive and that they are time-invariant,

although these are assumptions that could readily be lifted. Supposing that the inventory manager

is risk-neutral, that the demand distribution is perfectly known, and that any unfulfilled order
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could be indefinitely backlogged, facing the uncertain demands ξ � pξ1, . . . , ξT qJ, the inventory

manager would be interested in minimizing the total expected cost, i.e., solving

minimize EP

�
Ţ

t�1

�
cxt�max

 
hytpξtq,�bytpξtq

(	�

subject to x PX , yt :Rt ÞÑR @t P t1, . . . , T u

ytpξtq � yt�1pξt�1q�xt� ξt P-a.s. @t P t1, . . . , T u,

(1)

where x� px1, . . . , xT qJ and y � py1, . . . , yT qJ collect all decision variables representing the order

quantities and the end-of-period inventory levels, respectively, and y0 PR denotes the initial inven-

tory level, which is given. For the ease of exposition, we assume that all orders are instantaneous,

i.e., the lead times are zero. Besides, we follow Bertsimas and Thiele (2006) and Mamani et al.

(2017) in imposing that x is chosen here-and-now and the feasible set X �RT
� is uncertainty-free.

In the actual reality, not only ξ is uncertain but its probability distribution P, which needs to

be empirically estimated, is also ambiguous and may only be known to belong to P. Therefore, to

hedge against such an estimation risk, the inventory manager may robustify Problem (1) and solve

minimize max
PPP

EP

�
Ţ

t�1

�
cxt�max

#
h

�
y0�

ţ

τ�1

pxτ � ξτ q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξτ q
�+��

subject to x PX
(2)

Remark 1. The pure robust inventory model studied in, e.g., Bertsimas and Thiele (2006) and

Mamani et al. (2017) assumes that the demands ξ belong to an uncertainty set Ξ. For tractability

reasons, it captures the worst-case holding and backlogging cost in period t P t1, . . . , T u through

max
ξPΞ

#
max

#
h

�
y0�

ţ

τ�1

pxτ � ξτ q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξτ q
�++

.

Here, the nature can adversarially choose different worst-case ξ’s for different t’s. A more faithful

and less conservative model should only allow for a single worst-case ξ to be chosen. We refer our

readers to Gorissen and den Hertog (2013) for a detailed discussion on this subtle intricacy, which

could be overcome by tighter approximations from Gorissen and den Hertog (2013) and Ardestani-

Jaafari and Delage (2016) or by iterative heuristics from Bienstock and Özbay (2008) and Rodrigues
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et al. (2021). To our knowledge, however, these techniques are not directly applicable to the distri-

butionally robust variant considered in this paper. With neither them nor the above simplification,

we could foresee the extra computational burden associated with our inventory model. l

We henceforth express Problem (2) compactly as minxPX fpxq where the objective function f

characterizes the worst-case expected cost incurred from x, i.e.,

fpxq �max
PPP

EP

�
Ţ

t�1

�
cxt�max

#
h

�
y0�

ţ

τ�1

pxτ � ξτ q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξτ q
�+��

. (3)

We note that f is convex but not necessarily easy to evaluate because it involves solving an infinite

optimization problem over the probability distribution P PP. Following the seminal work of Scarf

(1958), we choose to work with the following mean-variance ambiguity set:

P �
"
P PM�pRT q : P pξ PRT q � 1, EPrξts � µ, EPrξ2t s � µ2�σ2 @t� 1, . . . , T

*
, (4)

where M� denotes the cone of all non-negative measures supported on the input set, because these

two summary statistics can be readily estimated empirically. We remark that this basic ambiguity

set allows negative demands to capture possible product returns. When returns are disallowed

(perhaps because of a hygienic reason or the product’s short shelf life), we will consider a restricted

ambiguity set in Section 4.

Under this P, we will first show that the worst-case expected total cost fpxq, with x fixed, can

be determined by solving a finite-optimization problem or its dual. Before presenting these results,

we introduce a cone Kt, t P t1, . . . , T u, that is instrumental to our subsequent analyses.

Kt �
#
pα,β,γq PR��Rt�Rt

� : 4α¥
ţ

τ�1

β2
τ

γτ

+
.

Note that Kt is proper and is representable as an intersection of multiple second-order cones, i.e.,

Kt �
#
pα,β,γq PR��Rt�Rt

� : Dθ PRt
�, α¥

ţ

τ�1

θτ , }pβτ , θτ � γτ qJ}2 ¤ θτ � γτ @τ � 1, . . . , t

+
.

Moreover, we also introduce a discrete set E � th,�buT whose cardinality is 2T . We will use it

to capture the 2T underlying linear lower bounds of the total holding and backlogging cost, which

appears as a part of the objective function of Problems (1) and (2), i.e.,

Ţ

t�1

max
 
hytpξtq,�bytpξtq

(�max
ePE

Ţ

t�1

et

�
y0�

ţ

τ�1

pxτ � ξτ q
�
.
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This exponential complexity arises as a result of that, at the end of each period t P t1, . . . , T u, the

inventory manager will have to pay for either the holding cost if the end-of-period inventory level

is positive or the backlogging cost otherwise.

Theorem 1. We have that

fpxq � minimize c1Jx�α�µ1Jβ�pµ2�σ2q1Jγ

subject to α PR, β PRT , γ PRT

pαpx,eq,βpeq,γq©KT
0 @e P E ,

(5)

where αpx,eq � α� y01Je�
°T

t�1 xt

°T

τ�t eτ , βtpeq � βt�
°T

τ�t eτ , for all x PRT
�.

We can interpret Problem (5) as a robust conic program with an auxiliary uncertain vector e P E .

Note that we can straightforwardly extend Theorem 1 to account for a fixed ordering cost at the

expense of adding relevant step functions to the objective of Problem (5).

2.1. Worst-case demand distribution

This section determines a probability distribution from the ambiguity set P that solves the maxi-

mization problem on the right-hand side of (3), i.e., that attains the worst-case expected cost, for

any x PX . Such a distribution is often used in a stress test (Bertsimas et al. 2010), and it can also

help validate or invalidate the independence assumption typically imposed (e.g. Scarf 1960).

The worst-case distribution could be constructed from the dual of Problem (5) derived below.

Theorem 2. For all x PRT
�, we have that

fpxq � maximize c1Jx�
¸
ePE:

αpeq�0

αpeq
Ţ

t�1

et

�
y0�

ţ

τ�1

�
xτ � βτ peq

αpeq

�

subject to α : E ÞÑR, β : E ÞÑRT , γ : E ÞÑRT

�
αpeq,βpeq,γpeq�©K�

T
0 @e P E (6)¸

ePE

αpeq � 1

¸
ePE

βpeq � µ1

¸
ePE

γpeq � pµ2�σ2q1.
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With K�
T derived in Proposition 1 in Appendix C, we solve Problem (6) to determine an opti-

mal solution pα�,β�,γ�q that satisfies β
�peq � γ�peq � 0, @e P E : α�peq � 0. Note that this extra

condition can be imposed without any loss of optimality (see Lemma 1 in Appendix C). Then, for

any e P E such that α�peq � 0, we construct a probability distribution Pe,ε PM�pRT q, ε P p0,1q, via

Pe,ε
�
ξ� ξe,ε�� 1� ε and Pe,ε

�
ξ� ξe,ε

	
� ε, (7)

where the atoms ξe,ε PRT and ξ
e,ε PRT are chosen as

ξe,ε
t
� β

�

t peq
α�peq �

c
ε

1� ε

b
α�peqγ�t peq� pβ

�

t peqq2
α�peq @t� 1, . . . , T,

ξ
e,ε

t � β
�

t peq
α�peq �

c
1� ε
ε

b
α�peqγ�t peq� pβ

�

t peqq2
α�peq @t� 1, . . . , T.

Note that

b
α�peqγ�t peq� pβ

�

t peqq2 is well-defined because the term inside is non-negative, which is

due to the characterization of K�
T from Proposition 1 provided in Appendix C. Next, we construct

a mixture distribution

Pε �
¸

ePE:α�peq¡0

α�peqPe,ε (8)

and assert that this demand distribution attains the worst-case inventory cost in (3) as ε Ó 0.

Theorem 3. The demand distribution Pε, ε P p0,1q, has the following properties:

� Pε PP for all ε P p0,1q,

� limεÓ0EPε

�°T

t�1max
!
h
�
y0�

°t

τ�1pxτ � ξτ q
	
,�b

�
y0�

°t

τ�1pxτ � ξτ q
	)�

� fpxq� c1Jx.

Under the constructed worst-case distribution, the demands appear to be highly dependent across

time periods, and we verify this claim in Section 5. An ambiguity-averse inventory manager should

hence be heedful of the stochastic independence, which is typically assumed.

3. Efficiently solvable approximation

Theorems 1 and 2 ensure that we can evaluate fpxq by solving a finite convex optimization problem.

Nevertheless, the difficulty arises when T gets large as the uncertainty set E is exponentially-sized.

In this section, we provide two distinct ways of approximating fpxq from above. One is a result of
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interpreting Problem (5) as an artificial two-stage robust optimization problem and restricting the

second-stage decisions using affine adaptation, whereas the other is due to constraint categorization

and a series of interchanges between maximization and summation. To measure their respective

optimality gap, we also propose a progressive approximation based on scenario reduction.

3.1. Efficiently solvable conservative approximation

Our first approximation, f Lpxq, leverages Theorem 1 to express fpxq as the optimal objective value

of a two-stage robust optimization problem and then apply a linear decision rule approximation to

the second-stage decisions to derive the following upper bound on fpxq.

f Lpxq � minimize c1Jx�α�µ1Jβ�pµ2�σ2q1Jγ

subject to α PR, β PRT , γ PRT , κ PR2T�1
� , pπt,π

u
t ,π

v
t q PR�RT �RT @t� 1, . . . , T

pπt�κt,π
u
t ,π

v
t q©KT

0 @t� 1, . . . , T�
πt� y0�

ţ

τ�1

xτ �κT�t,π
u
t �p1, . . . ,1,0, . . . ,0qJ,πv

t

�
©KT

0 @t� 1, . . . , T�
α�hTy0�h

Ţ

t�1

xtpT � t� 1q� pb�hq
Ţ

t�1

πt�κ2T�1,

β�pb�hq
Ţ

t�1

πu
t �hpT,T � 1, . . . ,1qJ,γ�pb�hq

Ţ

t�1

πv
t

�
©KT

0,

where the vector p1, . . . ,1,0, . . . ,0qJ in the third line of constraints has t components equal to one

and T � t components equal to zero.

Theorem 4 (L-conservative approximation). We have that fpxq ¤ f Lpxq for all x PRT
�.

Proof. We first re-express the robust constraints of Problem (5), which characterizes fpxq, as:

min
ePE

max
ωPR

tω : pαpx,eq,βpeq,γq©KT
pω,0,0qu ¥ 0.

Then, by dualizing the maximization problem on the left-hand side of this inequality, we attain:

min
ePE

min
u,vPRT

!
αpx,eq�uJβpeq�γJv : p1,u,vq©K�

T
0
)
¥ 0

ðñ min
u,vPRT

!
γJv�min

ePE

 
αpx,eq�uJβpeq( : p1,u,vq©K�

T
0
)
¥ 0

ðñ min
u,vPRT

"
γJv� min

ePconvpEq

 
αpx,eq�uJβpeq( : p1,u,vq©K�

T
0

*
¥ 0,

(9)
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where the second equivalence is because αpx,eq and βpeq are linear in e and because any solvable

linear program has a vertex solution. Next, we expand the inner minimization problem over e as

minimize

�
α� y01Je�

Ţ

t�1

xt

Ţ

τ�t

eτ

�
�
�
βJu�

Ţ

t�1

ut

Ţ

τ�t

eτ

�

subject to e¥�b1, e¤ h1

thanks to the definition of αpx,eq, βpeq and E , which admits a dual:

maximize α�βJu� b1Jϕ�h1Jψ

subject to ϕ PRT
�, ψ PRT

�

ϕt�ψt ��y0�
°t

τ�1puτ �xτ q @t� 1, . . . , T.

Replacing the inner minimization problem in (9) with its dual, we have that, for all x PRT
�,

fpxq � minimize c1Jx�α�µ1Jβ�pµ2�σ2q1Jγ

subject to α PR, β PRT , γ PRT , ϕ :R2T ÞÑRT
�, ψ :R2T ÞÑRT

�

α�βJu�γJv¥ b1Jϕpu,vq�h1Jψpu,vq

@pu,vq : p1,u,vq PK�
T

y0�ϕtpu,vq�ψtpu,vq �
ţ

τ�1

puτ �xτ q @t� 1, . . . , T

@pu,vq : p1,u,vq PK�
T .

Our next step entails simplifying this new exact characterization of fpxq by replacing the adaptive

decisions ψtpu,vq by y0� ϕtpu,vq �
°t

τ�1pxτ � uτ q, 1¤ t¤ T . We can then obtain a conservative

approximation by restricting each ϕtpu,vq to an affine form: ϕtpu,vq � πt�uJπu
t �vJπv

t for some

linear decision rule coefficients πt PR, πu
t PRT , πv

t PRT . As a result, we have the following upper

bound of fpxq that involves only here-and-now decisions.

minimize c1Jx�α�µ1Jβ�pµ2�σ2q1Jγ

subject to α PR, β PRT , γ PRT , pπt,π
u
t ,π

v
t q PR�RT �RT @t� 1, . . . , T

πt�uJπu
t �vJπv

t ¥ 0 @pu,vq : p1,u,vq PK�
T , t� 1, . . . , T
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πt� y0�
ţ

τ�1

xτ �uJπu
t �

ţ

τ�1

uτ �vJπv
t ¥ 0 @pu,vq : p1,u,vq PK�

T , t� 1, . . . , T

α�hTy0�h
Ţ

t�1

xtpT � t� 1q� pb�hq
Ţ

t�1

πt�uJ
�
β�pb�hq

Ţ

t�1

πu
t

�

�h
Ţ

t�1

utpT � t� 1q�vJ
�
γ�pb�hq

Ţ

t�1

πv
t

�
¥ 0 @pu,vq : p1,u,vq PK�

T .

Leveraging the primal-dual pair involving cone KT familiar from a derivation leading to (9), we

can derive the robust counterpart of the first constraint as follows.

min
u,v

 
πt�uJπu

t �vJπv
t : p1,u,vq PK�

T

(¥ 0 ðñ max
κt

tκt : pπt�κt,π
u
t ,π

v
t q PKT u ¥ 0

ðñ pπt�κt,π
u
t ,π

v
t q©KT

0 Dκt PR�.

Applying the same routine for the remaining constraints, which are similarly linear in the conically

constrained uncertain parameters u and v, completes the proof. l

We emphasize that the linear decision rule approximation adopted here is different than those

used in the earlier papers, such as Ben-Tal et al. (2005), See and Sim (2010), and Bertsimas et al.

(2019), because unlike theirs our main operational decisions x PX are to be chosen here and now.

We only apply the affine restriction to the artificial wait-and-see decisions ϕ and ψ in the proof

of Theorem 4, which we introduce as a means to capture the worst-case expected total cost fpxq.

Note that the L-conservative approximation f Lpxq involves only the primal cone KT and that we

only use the dual cone K�
T to construct the worst-case demand distribution; see Section 2.1.

Next, we derive an alternative conservative approximation of fpxq which is obtained by constraint

categorization and a series of interchanges between maximization and summation:

f Qpxq � minimize c1Jx�α�µ1Jβ�pµ2�σ2q1Jγ

subject to α PR, β PRT , γ PRT , λ0, . . . ,λT PRT

α� by0pT � kq�hy0k¥ 1Jλk @k� 0, . . . , T�
λk
t �xt

°T

τ�t qekτ , βtpqekq, γt	©K1
0 @k� 0, . . . , T @t� 1, . . . , T�

λk
t �xt

°T

τ�t pekτ , βtppekq, γt	©K1
0 @k� 0, . . . , T @t� 1, . . . , T,

(10)
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where the auxiliary vectors pek PRT and qek PRT are defined through

pek � p�b, . . . ,�b,�h, . . . ,�hlooooomooooon
k components

qJ and qek � p�h, . . . ,�hlooooomooooon
k components

,�b, . . . ,�bqJ.

The correctness of this upper bound is validated in the next theorem.

Theorem 5 (Q-conservative approximation). We have that fpxq ¤ f Qpxq for all x PRT
�.

Proof. It is sufficient to show that, for any pα,β,γ,λ0, . . . ,λT q that is feasible in Problem (10),

pα,β,γq is feasible in Problem (5). To achieve this, we first observe that, for each k P t0, . . . , T u

and t P t1, . . . , T u, the two K1-inequalities of Problem (10) imply that

4λk
t ¥ max

#
βtpqekq2
γt

� 4xt

Ţ

τ�t

qekτ , βtppekq2
γt

� 4xt

Ţ

τ�t

pekτ
+
.

Next, fixing the index k P t0, . . . , T u, summing up the above inequality over t P t1, . . . , T u and finally

using the remaining (linear) constraint of Problem (10) results in

4α� 4by0pT � kq� 4hy0k ¥
Ţ

t�1

max

#
βtpqekq2
γt

� 4xt

Ţ

τ�t

qekτ , βtppekq2
γt

� 4xt

Ţ

τ�t

pekτ
+

�
Ţ

t�1

max
ePE

#
βtpeq2
γt

� 4xt

Ţ

τ�t

eτ : #pe, hq � k
+

¥ max
ePE

#
Ţ

t�1

�
βtpeq2
γt

� 4xt

Ţ

τ�t

eτ

�
: #pe, hq � k

+
,

where the equality holds because the quadratic expression βtpeq
2

γt
� 4xt

°T

τ�t eτ is convex in
°T

τ�t eτ

and hence its maximum value over the discrete feasible set te P E : #pe, hq � ku is attained when

e� pek or e� qek, and the last inequality follows as a result of the interchange between summation

and maximization. A slight rearrangement of terms further yields

min
ePE

#
4α� 4y01

Je� 4
Ţ

t�1

xt

Ţ

τ�t

eτ �
Ţ

t�1

βtpeq2
γt

: #pe, hq � k
+
¥ 0 @k� 0, . . . , T

ðñ pαpx,eq,βpeq,γq©KT
0 @e P E : #pe, hq � k @k� 0, . . . , T

ðñ pαpx,eq,βpeq,γq©KT
0 @e P E

and correspondingly the feasibility of pα,β,γq in Problem in (5). The proof is now completed. l
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Remark 2. Another way to upper bound fpxq is to use a larger ambiguity set, such as

pP �
#
P PM�pRT q : P �ξ PRT

�� 1, EP

�
ţ

τ�1

ξτ

�
� tµ, EP

������ ţ

τ�1

ξτ � tµ
�����
�
¤ tσ @t� 1, . . . , T

+
�P

which describes the means and the mean absolute deviations of the cumulative demands. Inspired

by Postek et al. (2018), we could then derive the following analytical bound for fpxq:

f MADpxq � c1Jx�
Ţ

t�1

max

#
h

�
y0�

ţ

τ�1

xt� tµ
�
,�b

�
y0�

ţ

τ�1

xt� tµ
�+

� σT pT � 1qph� bq
4

.

Though, we numerically confirm that this bound is significantly inferior to both f Lpxq and f Qpxq.

Besides, regardless of σ, an x P X that minimizes f MAD is evidently the same as the solution of a

deterministic optimization problem which uses µ in lieu of each ξt, and thus the nominal solution

is the most robust in view of the enlarged ambiguity set. The same observation does not hold true

for the original mean-variance ambiguity set P. l

3.2. Efficiently solvable progressive approximation

Previously, we have proposed two conservative approximations for fpxq, x PRT
�, with however no

way of quantifying how accurate they are. We now complement our earlier results with a progressive

approximation fpxq which itself is another optimization problem whose size grows linearly with T :

fpxq � minimize c1Jx�α�µ1Jβ�pµ2�σ2q1Jγ

subject to α PR, β PRT , γ PRT

�
αpx, qekq,βpqekq,γ�©KT

0 @k� 0, . . . , T,

where, for any x PRT
� and e P E , αpx,eq and βpeq are defined as in Theorem 1.

Theorem 6 (Progressive approximation). We have that fpxq ¥ fpxq for all x PRT
�.

Proof. This is an immediate consequence of Theorem 1 as we can interpret fpxq as the optimal

objective value of Problem (5) with the uncertain vector e P E and fpxq as the optimal objective

value of the same robust program with, however, a smaller uncertainty set tqe0, . . . , qeT u � E . l

To motivate the rationale behind this progressive approximation, we consider a stylised example

of a two-period distributionally robust uncapacitated inventory problem where the inventory is ini-

tially empty and show that optimizing fpxq and fpxq attain the same optimal objective value.
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Theorem 7. When T � 2 and y0 � 0, we have that minxPRT
�
fpxq �minxPRT

�
fpxq.

As a progressive approximation, its optimal solution x� is not necessarily optimal in Problem (2).

Even when T � 2, Theorem 7 could only imply that argminxPR2
�
fpxq � argminxPR2

�
fpxq and this

subset relationship could be strict. We thus propose to use a conservative approximation which is

due to Theorem 4 or Theorem 5 to obtain an approximate optimal solution x� and approximate

the associated worst-case cost fpx�q by rfpx�q, fpx�qs as well as upper bound the optimality gap

fpx�q� fpx�q by fpx�q� fpx�q. To avoid overloading the notation, we will henceforth use x�L and

x�Q to denote the L- and the Q-conservative solutions, respectively, in the remainder of the paper.

4. Plug-and-play conic extensions

We now consider how to reduce the conservatism of the proposed distributionally robust inventory

model and its approximations by injecting additional distributional information besides the mean

and the variance. The results in this section primarily rely on the conic representations of our base

and approximate models, which are the consequences of Theorems 1, 4, and 6. The main idea is

that when the ambiguity set is shrunk, a new cone is derived and used in lieu of KT in our earlier

results. We refer to this cone replacement as a plug-and-play feature of the studied inventory model.

4.1. Non-negative support

When returns are not allowed, naturally demands are non-negative with probability one, and to

incorporate this information, we may consider the shrunk ambiguity set

P: �
"
P PM�pRT

�q : P �ξ PRT
�

�� 1, EPrξts � µ, EPrξ2t s � µ2�σ2 @t� 1, . . . , T

*
,

and the less conservative cost function

f :pxq �max
PPP:

EP

�
Ţ

t�1

�
cxt�max

#
h

�
y0�

ţ

τ�1

pxτ � ξτ q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξτ q
�+��

.

In this case, Theorems 1, 4 and 6 readily extend by replacing the original cone KT therein with

K:
T �

 pα,β,γq PR��RT �RT
� : Dpδ,θq PRT

��RT
�, α¥ 1Jθ, pθt, βt� δt, γtq PK1 @t� 1, . . . , T

(
.

One could verify thatKT �K:
T , which is a sign of reduced conservatism. We establish the correctness

of this new cone in view of the exact model below.
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Theorem 8. We have that

f :pxq � minimize c1Jx�α�µ1Jβ�pµ2�σ2q1Jγ

subject to α PR, β PRT , γ PRT

pαpx,eq,βpeq,γq©K:
T
0 @e P E ,

where αpx,eq and βpeq are defined as in Theorem 1, for all x PRT
�.

Though, it appears in our experiments that the difference between minxPX fpxq and minxPX f
:pxq

is not significant. Hence, the non-negativity of ξ may not be a crucial factor to consider.

4.2. Uncorrelated demands

Next, we consider a scenario of uncorrelated demands, which itself could be an approximation of

independence. Analogously to Section 4.1, we focus on the following restricted ambiguity set

PK �

$''''''&''''''%
P PM�pRT q :

P pξ PRT q � 1

EPrξts � µ, EPrξ2t s � µ2�σ2 @t� 1, . . . , T

EPrξsξts � µ2 @ps, tq : 1¤ s  t¤ T

,//////.//////-
and the corresponding less conservative cost function

fKpxq �max
PPPK

EP

�
Ţ

t�1

�
cxt�max

#
h

�
y0�

ţ

τ�1

pxτ � ξτ q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξτ q
�+��

.

For the subsequent results, we use the following proper cone

KK
T �

$'&'%pα,β,γ,Θq PR��RT �RT
��ST :

���diagpγq�Θ 1
2
β

1
2
βJ α

���© 0

,/./- .

Theorem 9. We have that

fKpxq � minimize c1Jx�α�µ1Jβ�pµ2�σ2q1Jγ�µ21JΘ1

subject to α PR, β PRT , γ PRT , Θ P ST

pαpx,eq,βpeq,γ,Θq©KK
T
0 @e P E

diagpΘq � 0,

where αpx,eq and βpeq are defined as in Theorem 1, for all x PRT
�.
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The above exact formulation is a correlation-aware counterpart of Theorem 1, which readily leads

us to a progressive approximation akin to Theorem 6. For the conservative approximation, we can

have the following result, which is a counterpart of Theorem 4. We could also note from the Schur

Complement Lemma that pα,β,γ,0q PKK
T if and only if pα,β,γq PKT .

Theorem 10. We have that

fKpxq ¤ minimize c1Jx�α�µ1Jβ�pµ2�σ2q1Jγ�µ21JΘ1

subject to α PR, β PRT , γ PRT , Θ P ST , κ PR2T�1
� ,

pπt,π
u
t ,π

v
t ,Π

w
t q PR�RT �RT �ST @t� 1, . . . , T

pπt�κt,π
u
t ,π

v
t ,Π

w
t q©KK

T
0 @t� 1, . . . , T�

πt� y0�
ţ

τ�1

xτ �κT�t,π
u
t �p1, . . . ,1,0, . . . ,0qJ,πv

t ,Π
w
t

�
©KK

T
0

@t� 1, . . . , T�
α�hTy0�h

Ţ

t�1

xtpT � t� 1q� pb�hq
Ţ

t�1

πt�κ2T�1,

β�pb�hq
Ţ

t�1

πu
t �hpT,T � 1, . . . ,1qJ,

γ�pb�hq
Ţ

t�1

πv
t ,Θ�pb�hq

Ţ

t�1

Πw
t

�
©KK

T
0

diagpΘq � 0,

where the vector p1, . . . ,1,0, . . . ,0qJ in the third line of constraints has t components equal to one

and T � t components equal to zero, for all x PRT
�.

It is observed that both the progressive and the L-conservative approximation of minxPX f
Kpxq

are still close and that minxPX f
Kpxq could be significantly smaller than minxPX fpxq. Therefore, if

the demands appear to be serially uncorrelated, adopting the extended models with the cone KK

lessens conservatism of the robust model.
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5. Numerical experiments

In this section, we will compare the solutions of our distributionally robust inventory model with

those of the state-of-the-art benchmarks which have access to the (possibly incorrect) demand

distribution. In addition, we also assess the quality of our conservative and progressive approxima-

tions. Finally, we perform a sensitivity analysis with respect to the cost parameters: c, b, and h.

5.1. Comparison with benchmarking approaches

We compare the exact minimizer x� of minxPX fpxq, which due to Theorem 1 is representable as

a finite second-order cone program, with the solutions of two stochastic inventory problems. First,

we refer to the minimizer of

minimize EP

�
Ţ

t�1

�
cxt�max

#
h

�
y0�

ţ

τ�1

pxτ � ξτ q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξτ q
�+��

subject to x PX

as a stochastic solution and that of

minimize EP

�
Ţ

t�1

�
cxtpξt�1q�max

#
h

�
y0�

ţ

τ�1

pxτ pξτ�1q� ξτ q
�
,

�b
�
y0�

ţ

τ�1

pxτ pξτ�1q� ξτ q
�+��

subject to
�
x1, x2pξ1q, . . . , xT pξT�1q�J PX P-a.s.

as an adaptive solution. In this experiment, we set aside computational tractability and are only

concerned with the quality of different solutions. Note that tractability will be the focus of our

next experiment concerning the proposed approximations. Throughout, it is assumed that X �RT
�

and the demands are serially independent and identically distributed with

P
�
ξt � ξL

�� pL and P
�
ξt � ξH

�� pH @t P t1, . . . , T u

for some ppL, ξL, pH, ξHq such that ξH ¡ ξL, pL and pH are both non-negative, and they sum up to

one. It is known from (Scarf 1960) that the adaptive solution follows a base-stock policy denoted by

S� PRT , whereas the stochastic solution denoted by x̃� has been recently studied by Basciftci et al.

(2021). When P is the true demand distribution, the base-stock policy S� yields a lower expected
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total cost than the stochastic solution x̃�, and the latter yields a lower expected total cost than the

proposed robust solution x�. As this premise however is likely untrue, we perform a stress test by

determining the expected total cost corresponding to x� and x̃� under the contaminated probability

distribution Pλ � p1�λqP�λPwc, where λ P r0,1s represents the contamination level and Pwc is the

demand distribution that (approximately) attains the worst-case expected total cost when x� x̃�

(ε� 10�4 is used). Note that, unlike P, Pwc does not generate serially independent demands.

We consider two plausible scenarios: (i) when it is likely for the demand to be small but there can

be a rare surge and (ii) when it is likely for the demand to be large but there might be a rare drop.

As a representative of scenario (i), we set pL � 0.7, pH � 0.3, ξL � 30 and ξH � 70. Even though it

is more likely for the demands to be small, the inventory manager should still prepare for a sudden

surge in demand, which may force him or her to backlog the unmet demands. This is particularly

crucial when backlogging is expensive, and to investigate this effect we set b� 3¡ 1� h and c� 8.

As a representative of scenario (ii), we similarly set pL � 0.3, pH � 0.7 and retain ξL � 30, ξH � 70.

For this case, we are particularly concerned with the possible drop in the demands and the high

holding cost, and we thus set h� 3¡ 1� b and c� 3. As none of these optimization problems are

tractable, we choose to work with a relatively small T � 6, and we further assume that the initial

inventory is y0 � 0. Managerial insight: Results for these two scenarios are reported in Figure 1

(left) and Figure 1 (right), respectively, from which it can be observed that the robust policy x�

is more resilient to the misspecification of demand distribution. Besides, the contamination level

λ at which the robust solution starts to outperform the stochastic solution is given by 11.85% for

scenario (i) and by 34.78% for scenario (ii), respectively.

Next, we similarly compare our robust solution with the base-stock policy S�. However, since the

base-stock policy is adaptive and thus at an advantageous position, we execute our robust policy

in a shrinking horizon fashion to facilitate a fairer comparison. Put differently, for the first period

we solve minxPX fpxq to determine x� but only implement the here-and-now decision x�1. For the

second period, we resolve the same optimization problem with the updated initial inventory and
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Figure 1 Comparison between our distributionally robust and the stochastic solutions under different

contaminated demand distributions in terms of the expected total cost (solid line) and the expected total cost

� 1
2
standard deviation (upper/lower dashed line)

with the number of periods reduced by one, and we only implement the here-and-now ordering

decision again, and so on and so forth; see e.g. Solyalı et al. (2016) and Mamani et al. (2017). We

evaluate both the adaptive robust and the base-stock policies under different contaminated demand

distributions Pλ, λ P r0,1s, where we substitute for Pwc the worst-case demand distribution when

x�EPr�x�s with �
x� representing (adaptive) ordering decisions equivalent to S�. For both scenarios

(i) and (ii), when λ� 0 (and thus Pλ � P), the base-stock policy (which is known to be optimal

under this distributional setting) is superior to the adaptive robust policy.Managerial insight: As

the out-of-sample distribution deviates further from the in-sample distribution, Figure 2 shows that

the adaptive robust policy becomes increasingly competitive and eventually outperforms the base-

stock policy, which highlights the resilience of the proposed robust policies even in the adaptive

setting. We also remark that the differences between the two policies are more prominent in scenario

(ii), see Figure 2 (right), where the adaptive robust policy seems to have an inadvertent variance

reduction effect for the distribution of the total cost. Finally, we can also relate Figure 2 to its

non-adaptive counterpart, i.e., Figure 1. While we indeed observe that the adaptive robust and

the base-stock solutions yield a smaller expected cost than the robust and the stochastic solutions,

respectively, the reduction is not monumental. Thus, when T is only moderately large, determining

the adaptive robust and/or the base-stock policy may not be a worthwhile pursuit considering the

other benefits of agreeing to an advance purchase, which we discuss more in Section 6.
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Figure 2 Comparison between our adaptive distributionally robust and the adaptive (i.e., base-stock) solutions

under different contaminated demand distributions in terms of the expected total cost (solid line) and the

expected total cost � 1
2
standard deviation (upper/lower dashed line)

5.2. Quality of the proposed approximations

To validate the performance of our proposed approximations, we experiment with randomly gen-

erated problem instances. Without loss of generality, we set the unit ordering cost c and the mean

demand µ to be one. We then independently choose the unit holding cost h and the unit backlog-

ging cost b from a uniform distribution Upr0,1sq as well as the demand’s standard deviation σ from

Upr0,2sq. For each T P t10,20,30,40,50u, we set y0 � 0 and run fifty random experiments in total.

Note that, when T ¥ 20, minxPX fpxq cannot be solved exactly within a time limit of 12 hours using

MOSEK ApS (2019) and YALMIP interface (Löfberg 2004) on a 2.90GHz i7-10700 CPU machine

with 16GB RAM, which implies the need for scalable approximate solution methods.

First, we would like to show that the L-approximation due to Theorem 4 dominates the approxi-

mation from Remark 2, but it is still (marginally) inferior to the Q-approximation due to Theorem 5.

For convenience, we denote the optimizers of minxPX f Lpxq, minxPX f Qpxq and minxPX f MADpxq by x�L,

x�Q and x�MAD, respectively. Figure 3 (left) shows, for each fixed T , the mean as well as the 10% and

90% quantiles of the approximate worst-case expected costs, namely f Lpx�Lq and f MADpx�MADq. The dif-

ference between the L- and the Q-approximations is not as discernible, and as a result, we measure

the improvement of Q over L (in terms of conservativeness) by

f Lpx�Lq� f Qpx�Qq
f Qpx�Qq

,
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Figure 3 Measurements of our approximation quality: (left) the approximate worst-case expected costs (f Lpx
�
Lq

and f MADpx
�
MADq), (middle) improvement in conservativeness of x�Q over x�L , and (right) our conservative bound on

the relative optimality gap of x�Q .

which is then visualized in Figure 3 (middle). Last but not least, we want to quantify how close x�Q

is to being optimal in view of the original problem minxPX fpxq. To this end, we define the relative

optimality gap of Q as pfpx�Qq� fpx�qq{fpx�q and propose to upper bound it by

fpx�Qq� fpx�q
fpx�q ¤ f Qpx�Qq� fpx�q

fpx�q ¤ f Qpx�Qq� fpx�q
fpx�q ,

and the rightmost expression, dependent only on the approximate worst-case expected total costs,

could be computed efficiently even for a large T . Evidently, Figure 3 (right) indicates that the opti-

mality gap always almost vanishes highlighting the efficacy of both our conservative and progressive

approximations. Managerial insight: On average, x�Q is slightly less conservative than x�L, and

through transitivity, it is significantly less conservative than x�MAD especially as T gets large. More

importantly, x�Q is close to being robustly optimal, which implies that our distributionally robust

inventory problem can be efficiently solved almost exactly. While x�L appears to be a (slightly)

poorer substitute of x�Q, it is still useful as it can cater for additional information more readily and

is thus more receptive to changes; see Section 4.

Given the quality of the proposed progressive approximation, we can use the underlying scenario-

reduction idea to construct an approximate worst-case distribution by solving a variant of Prob-

lem (6) with the exponentially-sized uncertainty set E replaced by qE � tqe0, . . . , qeT u. In this case,

the construction of the approximate worst-case distribution is dependent on the optimally cho-

sen α� : qE ÞÑ R, β� : qE ÞÑ RT , γ� : qE ÞÑ RT . While the construction of the distribution described
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Figure 4 Correlation matrices of the (approximate) worst-case demand distributions.

in (7) and (8) indicates that demands should be statistically dependent in the worst-case, we pro-

vide evidence asserting a stronger statement that they are in fact highly correlated (i.e., they are

strongly linearly dependent). As an illustrative example, we set c� 1, h� 1, b� 1{3, T � 20, y0 � 0,

µ� 1 and consider different σ P t?0.001,
?
0.005,

?
0.025u. For each of the parameter settings, we

compute the x�Q and the corresponding (approximate) worst-case distribution accordingly to the

described procedure. Managerial insight: We visualize the resultant correlation matrices with

heatmaps in Figure 4 and find that there exists a breakpoint t� P t1, . . . , T u such that the demands

ξ1, . . . , ξt� are almost perfectly positively correlated and so are the remaining demands ξt��1, . . . , ξT .

One could think of t� as the period with a transitional shift, e.g., a sudden surge or a sudden drop

in the demands over time, which could be due to emergency or seasonal fluctuations as well as the

availability of substitute products. Recent examples include Covid-19 vaccines and energy supplies.

This observation remains unchanged with different parameter settings, and it sheds light on the

potential benefit of using the uncorrelated ambiguity set PK instead of P when justified.

5.3. Ordering pattern and sensitivity analysis

In this experiment, we are interested in comparing the stochastic solution with our robust solution,

but this time we consider a demand distribution P which is serially independent and is characterized

by ξt �N pµ,σ2q, @t, as opposed to the two-point distribution previously considered. The objective

here is to understand the ordering patterns of both. The computation of the stochastic solution x̃�

becomes more challenging but could still be achieved by using a projected gradient method (Polyak

1987), which iteratively constructs a new solution by following the gradient descent direction,

derived in Appendix B, and projecting it on the feasible set X �RT
� when necessary.
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For tractability purposes, we approximate our robust solution x� by its conservative estimate x�Q.

Figure 5 (left) shows the total order of both solutions, i.e., 1Jx̃� and 1Jx�Q when T � 20, c � 1,

b� 0.5, y0 � 0, µ� 1 and σ � 0.5 for varying h P t0, . . . ,1u. Similarly, Figure 5 (right) shows the

total order of both solutions for the same set of parameters with the exception that now h is fixed

at 0.5 and b is varied in t0, . . . ,1u. As expected, when the holding cost increases, both solutions

order less, and when it is expensive to backlog, both solutions order more. From the figure, in

comparison to the stochastic solution, it can be seen that the robust solution is more receptive to

the changes in h and b, which we attribute to the fact that the change in h and b has an impact on

the worst-case demand distribution but not on the nominal normal distribution. Note that each

bar consists of two parts: the darker-shaded part represents the total order made in the first half

of the planning horizon (t P t1, . . . , T {2u), whereas the lighter-shaded part represents that made in

the second half (t P tT {2�1, . . . , T u). Managerial insight: For both solutions, at least half of the

total order is made in the first half of the planning horizon. The ratio between the first-half and the

second-half order of the robust solution appears significantly greater than that of the stochastic

solution. Hence, a stakeholder who supplies products to an inventory manager adopting our robust

policy can better utilize its production capacities in the second half for other purposes including

manufacturing the same products and selling them to other stores at a higher price.
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Figure 5 Total order comparison between our robust and the stochastic solutions under the normality and

independence assumption.
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6. Closing the loop: Is there an advantage to commit early?

An advance purchase discount (Tang et al. 2004) is often used by a supplier to incentivize some

inventory managers to commit their purchase orders early. In this case study, we aim to answer the

question: could both the supplier and the inventory manager simultaneously benefit from striking

an early deal with a discount? Perhaps surprisingly, the answer is positive.

In our case study, we use a dataset from Babyonlinedress, a fast-fashion e-retailer that through

Amazon sells wedding gowns and full dresses, which was made available in (Sun et al. 2021). Partly,

this dataset is concerned with the distribution of products from Amazon, which we could regard

as our inventory, for overseas deliveries. Within the dataset, there are 79 products whose demand

appears to follow a two-point distribution. For each of such products, the demand distribution P

satisfies P pξt � ξLq � pL and P pξt � ξHq � pH, @t P t1, . . . , T u, where T � 6, ξL � 0 and ξH could be

normalized to one for numerical convenience and we estimate pL and pH using a sample estimator.

We then sort the products into four equally-sized groups, with the last group containing just 19

products, based on the value of pH in an ascending order. While the unit purchasing and the holding

cost, c and h, can be readily extracted, the dataset does not provide the unit backlogging cost. To

circumvent, we choose the average of “returned commission fee” as our b.

As an inventory manager, we consider two possibilities of a purchase order. First, we consider an

online policy, namely the base-stock policy S�, and we also consider an advance purchase agreement

whose order quantities x� are robustly optimal. We further assume that the supplier is willing

to offer us a discount from t0%,5%, . . . ,50%u for the unit purchasing cost provided that we are

committed to an advance purchase. As a result, for each product, x� depends on the discounted c.

From the supplier side, we compare its earning from x� to the expected total revenue generated

by the base-stock policy, where the expectation is taken with respect to the in-sample two-point

distribution P. In other words, we intentionally put the proposed robust policy x� at a disadvantage

because here the robustness is uncalled for. Table 1 then reports the improvement in terms of the

supplier’s earning of the robust policy relative to that of the base-stock policy:

p1� discountq1Jx��EPr1J�x�s
EPr1J�x�s

� 100%;
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Figure 6 Distribution of the optimal discount levels for all products when adopting our robust solution.

see Section 5 for the definition of
�
x�. In Table 1, the numbers are averaged across different prod-

ucts within the same group. Note that, with discounts, the supplier could earn more because the

inventory manager (i.e., Babyonlinedress) may be tempted to order more; however, such benefit

diminishes if the discount level is too high. For visualization, we use boldface numbers to indicate

where the robust policy outperforms the base-stock policy even when there is no misspecification of

the demand distribution. On the contrary, one could observe that the products of Group 4 do not

generate significant additional revenue to the supplier when the discount is offered. This is because

when pH is high, Babyonlinedress should prepare to face the demand regardless of the discount

level. In this case, the supplier could earn maximally by offering little to no discount. For the sake

of comprehensiveness, Figure 6 shows the optimal discount levels for all 79 products.

Discount level 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Group 1 �16.00 �0.07 15.91 32.86 46.17 55.70 62.76 68.62 73.50 78.78 83.03

Group 2 �6.72 5.74 15.85 22.29 26.59 30.49 35.63 41.42 46.09 49.15 50.29

Group 3 �7.07 �1.67 2.16 4.62 6.99 9.88 12.93 15.15 15.85 15.13 13.17

Group 4 �16.81 �15.25 �14.55 �14.66 �14.53 �14.90 �15.86 �17.42 �19.24 �21.41 �24.18
Table 1 Supplier’s revenue improvement (%) of the robust solution relative to the base-stock policy for

different product groups at different discount levels.

Similarly, we also analyze the impact of discounts on the inventory management cost. Table 2

reports the improvement in the expected purchasing, holding and backlogging cost of the robust

policy (at different discount levels) relative to that of the base-stock policy (which receives no dis-

count). We again use boldface fonts to indicate where the robust inventory policy is less costly
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Discount level 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Group 1 �31.08 �33.37 �35.10 �36.49 �36.90 �36.17 �34.43 �31.94 �28.66 �24.76 �19.98
Group 2 �21.64 �21.15 �19.95 �17.99 �15.41 �12.32 �9.21 �5.55 �1.18 3.76 8.45

Group 3 �11.89 �9.62 �7.10 �4.29 �1.32 1.76 5.15 8.95 12.89 16.50 20.18

Group 4 �5.99 �2.94 0.43 3.81 7.50 11.15 15.05 19.07 22.89 26.85 31.26

Table 2 Inventory manager’s cost improvement (%) of the robust solution relative to the base-stock policy for

different product groups at different discount levels.

than the base-stock policy. It is intuitive that, with a higher discount, the robust inventory policy

becomes more cost-efficient. Though, we remark that this is not necessarily the case for products in

Group 1 because the robust policy minimizes the expected cost under the worst-case distribution,

which could greatly deviates from the nominal demand distribution P. Indeed, when pH is small,

the base-stock policy may order little whereas the robust policy may order relatively more to avoid

backlogging. Incidentally, this also explains the exorbitant numbers seen in the top row of Table 1.

Managerial insight: Finally, we note that, for 33 out of 79 products under consideration, there

exists a discount level such that, through the advance purchase agreement, the inventory manager

pays less and simultaneously the supplier earns more in comparison to the base-stock policy, which

has access to the true demand distribution.

7. Conclusions

Concerning with advance purchase contracts which are prevalent for acquiring pharmaceutical, gad-

get and fashion products, we study a new robust inventory model under the mean-variance ambi-

guity set whose objective is to minimize the worst-case expected total cost. Innately, this problem

does not appear tractable; hence, several high-quality approximations (both conservative and pro-

gressive) which are amendable to additional distributional information are proposed. Our numerical

experiments and case studies show that not only the proposed inventory policies are efficiently-

computable and resilient but they can also save costs and generate higher revenues for the suppliers.
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Appendix

A. Comparison to Mak et al. (2015) and Padmanabhan et al. (2021)

Theorem 1 reveals that, for any fixed y0 PR and x PX at optimality,
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, (11)

where the optimization problem over e P E on the right-hand side constitutes a convex maximization problem.

Mak et al. (2015) and Padmanabhan et al. (2021) recently encountered a similar optimization problem when

analyzing a robust appointment scheduling model, where they have
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#
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(12)

for suitably defined functions g1, . . . , gT that are convex in e. Subsequently, they express (12) as a mixed-

integer binary program with a totally unimodular constraint matrix so that the binarity requirement can be

lifted. We cannot however directly express (11) as an instance of (12) because of the term
°T

t�1 et
°t

τ�1 ξτ �°T

t�1 ξt
°T

τ�t
eτ . Although we can use a variable transformation ηt �

°T

τ�t
eτ , t P t1, . . . , T u, and ηT�1 � 0 and

replace each et with ηt� ηt�1 so that
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+

for suitable functions sg1, . . . ,sgT that are convex in e, such a transformation appears to prevent us from

following the steps in Mak et al. (2015) to obtain a polynomially-sized exact reformulation of Problem (5).

B. Gradient of the total expected cost under normal demands

To supplement the experiment details outlined in Section 5.3, we consider the case where the demands tξtuTt�1

are independent and normally distributed. For the ease of exposition, we introduce the cumulative demands

ζt �
°t

τ�1 ξτ , @t. It follows that ζt is a normal random variable with the following density function

ftpzq � 1

σ
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2tπ
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�
�pz� tµq

2

2tσ2



.

Besides, we denote the cumulative distribution function of ζt by Ft. By its definition, the stochastic solution

x̃� minimizes an objective gpxq which equals
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Note that, even though the above objective function g is convex in x, its explicit characterization involves

the Gauss error function erfpzq � 2?
π

³z
�8 expp�u2q du; see e.g. Glaisher (1871). Despite this complication,

however, the gradient of g can be easily determined as
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Ţ

τ�t

Fτ py0�x1� . . .�xτ q,

where the third equality holds because of the Fundamental Theorem of Calculus.

C. Omitted proofs and auxiliary technical results

Proof of Theorem 1. Starting from its definition in (3), we may characterize the function f as the optimal

objective value of a generalized moment problem, i.e.,

fpxq� c1Jx � max

»
RT

max
ePE

Ţ

t�1

et

�
y0�

ţ

τ�1

pxτ � ξτ q
�
Ppdξq

s.t. P PM�pRT q»
RT

Ppdξq � 1»
RT

ξtPpdξq � µ @t� 1, . . . , T»
RT

ξ2t Ppdξq � µ2�σ2 @t� 1, . . . , T.

(13)

By assigning the dual variables α to the normalization constraint, each βt to each of the first-order moment

constraints, and each γt to each of the second-order moment constraints and invoking strong duality due

to Shapiro (2001, Proposition 3.4), we find a minimization problem that attains the same optimal objective

value as the above maximization problem:

min α�µ1Jβ�pµ2�σ2q1Jγ
s.t. α PR, β PRT , γ PRT

α�
Ţ

t�1

βtξt�
Ţ

t�1

γtξ
2
t ¥

Ţ

t�1

et

�
y0�

ţ

τ�1

pxτ � ξτ q
�

@e P E @ξ PRT .

Note that the inequality constraint in the above minimization problem could be rearranged as�
α� y01Je�

Ţ

t�1

et

ţ

τ�1

xτ

�
�
�

Ţ

t�1

βtξt�
Ţ

t�1

et

ţ

τ�1

ξτ

�
�

Ţ

t�1

γtξ
2
t ¥ 0 @e P E @ξ PRT

ðñ αpx,eq�
Ţ

t�1

βtpeqξt�
Ţ

t�1

γtξ
2
t ¥ 0 @e P E @ξ PRT .



Xue, Li, and Rujeerapaiboon
Distributionally Robust Inventory Management with Advance Purchase Contracts 35

For any fixed e P E , as the above quadratic inequality holds for every ξ PRT , it follows that γt must be non-

negative. Furthermore, if γt vanishes, then so does βtpeq. Denoting by T the index set tt P t1, . . . , T u : γt ¡ 0u,
we can re-express the considered quadratic inequality as

αpx,eq�
¸
tPT

βtpeqξt�
¸
tPT

γtξ
2
t ¥ 0 @ξ PRT

ðñ αpx,eq�
¸
tPT

γt

��
ξt� βtpeq

2γt


2

� βtpeq2
4γ2

t

�
¥ 0 @ξ PRT

ðñ 4αpx,eq ¥
¸
tPT

βtpeq2
γt

�
Ţ

t�1

βtpeq2
γt

,

and the proof is completed by recalling the definition of the cone KT . l

Proof of Theorem 2. Leveraging the exact characterization of the worst-case expected cost fpxq from

Theorem 1, we assign a set of dual variables
�
αpeq,βpeq,γpeq� PK�

T to the conic constraint in Problem (5)

that is associated with each e P E :
pαpx,eq,βpeq,γq©KT

0

ðñ
�
α� y01Je�

Ţ

t�1

xt

Ţ

τ�t

eτ , β1�
Ţ

τ�1

eτ , β2�
Ţ

τ�2

eτ , . . . , βT � eT , γ1, γ2, . . . , γT
�
©KT

0,

and obtain the following dual formulation of Problem (5):

fpxq � maximize c1Jx�
¸
ePE

αpeq
�
y01

Je�
Ţ

t�1

xt

Ţ

τ�t

eτ

�
�
¸
ePE

Ţ

t�1

βtpeq
Ţ

τ�t

eτ

subject to α : E ÞÑR, β : E ÞÑRT , γ : E ÞÑRT�
αpeq,βpeq,γpeq�©K�

T
0 @e P E¸

ePE
αpeq � 1¸

ePE
βpeq � µ1¸

ePE
γpeq � pµ2�σ2q1.

By noting that the objective function of the above optimization problem, when evaluated at any feasible

pα,β,γq, could be re-expressed as

c1Jx�
¸
ePE:

αpeq�0

αpeq
�
y01

Je�
Ţ

t�1

�
xt� βtpeq

αpeq

 Ţ

τ�t

eτ

�
�

¸
ePE:

αpeq�0

Ţ

t�1

βtpeq
Ţ

τ�t

eτ

� c1Jx�
¸
ePE:

αpeq�0

αpeq
�
y01

Je�
Ţ

t�1

et

ţ

τ�1

�
xτ � βτ peq

αpeq

�

� c1Jx�
¸
ePE:

αpeq�0

αpeq
�

Ţ

t�1

et

�
y0�

ţ

τ�1

�
xτ � βτ peq

αpeq

��

,

where the first equality holds because βpeq � 0 whenever αpeq � 0 (see Proposition 1), the proof is completed.

l

The characterization of Problem (6) involves the cone K�
T that is dual to KT . In order to solve this problem,

we need the exact description of the dual cone, which is given next.
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Proposition 1. We have that

K�
t �

#
pα,β,γq PR��Rt�Rt

� : α¥ max
τPt1,...,tu

β
2

τ

γτ

+
. (14)

Proof of Proposition 1. We denote the set given on the right-hand side of (14) by K1
t. So as to show that

K�
t �K1

t, it suffices to prove that K1
t �K�

t (step 1) and K�
t �K1

t (step 2).

For the first part, we consider an arbitrary pα,β,γq PKt and pα,β,γq PK1
t. It follows that

αα�γJγ ¥ 1

4
α

ţ

τ�1

β2
τ

γτ
�

ţ

τ�1

γτγτ ¥
ţ

τ�1

�
β2
τβ

2

τ

4γτγτ

� γτγτ

�
¥ �

ţ

τ�1

βτβτ � �βJβ,

where the last inequality holds because
β2
τβ

2
τ

4γτγτ
� γτγτ ¥ |βτβτ |, @τ . Indeed, due to the relationship between

arithmetic and geometric means this latter inequality holds whenever γτ and γτ are both strictly positive.

If γτ � 0 then βτ � 0, and if γτ � 0 then βγ � 0. In both cases, the same inequality is still valid. The above

derivation implies that K�
t contains K1

t inside. Conversely, consider an arbitrary pα,β,γq PK�
t . It holds that

αα�βJβ�γJγ ¥ 0 @pα,β,γq PKt.

As p1,0,0q P Kt, it necessarily follows from the above inequality that α ¥ 0. Similarly as p0,0,1τ q P Kt,

@τ P t1, . . . , tu, it necessarily follows that γτ ¥ 0. Moreover, for any fixed τ P t1, . . . , tu, if βτ � 0, then γτ ¡ 0.

Suppose otherwise for the sake of a contradiction that there exists pα,β,γq PK�
t such that βτ � 0 and γτ � 0,

then as �
α,�βτ1τ ,

β
2

τ

4α
1τ

�
PKt @α¡ 0,

it must follow that αα�β2

τ ¥ 0 for any α¡ 0. This resultant inequality however cannot hold true because α

could be arbitrarily close to zero. Assuming now that βτ � 0 and γτ ¡ 0, we hence find�
γ2
τ

β
2

τ

,�2γτ

βτ

1τ ,1τ

�
PKt,

and consequently,

α
γ2
τ

β
2

τ

�βτ

2γτ

βτ

� γτ ¥ 0 ùñ α¥ β
2

τ

γτ

.

As α¥ 0, the same conclusion can also be reached even if βτ � 0. Since the above inequality holds for any

τ P t1, . . . , tu, we may conclude that K�
t is contained in K1

t. Combining both halves of the argument yields

the desired result. l

The proof of Theorem 3 relies heavily on the following two technical lemmas.

Lemma 1. There exists an optimal solution pα�,β�,γ�q of Problem (6) such that β
�peq � γ�peq � 0, @e P

E : α�peq � 0.

Proof of Lemma 1. Denote by pα:,β:,γ:q an arbitrary optimal solution of Problem (6) and by E0 a

subset of E which contains all scenarios e such that α:peq � 0. Note that E0 must be strictly contained in

E and there must exist a scenario e: P EzE0 such that α:pe:q is strictly positive. Then, we construct a new

solution pα�,β�,γ�q with α� � α:, β� �β:, and

γ�peq �

$'&'%
γ:peq�°

e1PE0 γ
:pe1q if e� e:,

0 if e P E0,

γ:peq if e P EzpE0Yte:uq.
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It is readily seen that
°

ePE γ
�peq �°

ePE γ
:peq � pµ2�σ2q1, pα�pe:q,β�pe:q,γ�pe:qq PK�

T and that all other

constraints remain satisfied by this newly constructed solution. Since γ does not appear in the objective

function of Problem (6), we may thus conclude that pα�,β�,γ�q is feasible and optimal. The proof is then

completed by noting that β
�peq automatically vanishes whenever α�peq does. l

Lemma 2. Any optimal solution pα�,β�,γ�q of Problem (6) satisfies

et

�
y0�

ţ

τ�1

�
xτ � β

�
τ peq
α�peq

��
�max

#
h

�
y0�

ţ

τ�1

�
xτ � β

�
τ peq
α�peq

��
,�b

�
y0�

ţ

τ�1

�
xτ � β

�
τ peq
α�peq

��+
for any t P t1, . . . , T u and any e P E such that α�peq ¡ 0.

Proof of Lemma 2. Consider any scenario e P E such that α�peq ¡ 0. To simplify the exposition, we

abbreviate (and slightly abuse the notation) the dual optimal solution α�peq,β�peq, γ�peq by α�, β
�
, γ�,

respectively.1 Besides, we denote by pα�,β�,γ�q an optimal solution of the primal problem (5). The KKT

optimality condition of this primal-dual pair includes a complementary slackness condition which necessarily

holds and reads

α�

�
α�� y01Je�

Ţ

t�1

xt

Ţ

τ�t

eτ

�
�

Ţ

t�1

β
�
t

�
β�t �

Ţ

τ�t

eτ

�
�

Ţ

t�1

γ�tγ
�
t � 0

ðñ α�

�
y01

Je�
Ţ

t�1

xt

Ţ

τ�t

eτ

�
�

Ţ

t�1

β
�
t

Ţ

τ�t

eτ � α�α��pβ�qJβ��pγ�qJγ�

ðñ α�
Ţ

t�1

et

�
y0�

ţ

τ�1

�
xτ � β

�
τ

α�

��
� α�α��pβ�qJβ��pγ�qJγ�.

For any time period t1 P t1, . . . , T u, it thus follows that

α�et1

�
y0�

t1¸
τ�1

�
xτ � β

�
τ

α�

��

� α�α��pβ�qJβ��pγ�qJγ��α�
¸
t�t1

et

�
y0�

ţ

τ�1

�
xτ � β

�
τ

α�

��

� α�
���α�� y0 ¸

t�t1

et�
Ţ

t�1

xt

¸
τ¥t
τ�t1

eτ

��
� Ţ

t�1

β
�
t

���β�t � ¸
τ¥t
τ�t1

eτ

��
� Ţ

t�1

γ�tγ
�
t .

(15)

Next, we collect the coefficients of the dual solution on the right-hand side of the above equation

ζ �

���α�� y0 ¸
t�t1

et�
Ţ

t�1

xt

¸
τ¥t
τ�t1

eτ , β
�
1 �

¸
τ¥1
τ�t1

eτ , . . . , β
�
T �

¸
τ¥T
τ�t1

eτ , γ
�
1, . . . , γ

�
T

��

J

and observe that ζ can be expressed as a convex combination of the following two vectors

ζ �
�
α�� y01Je�

Ţ

t�1

xt

Ţ

τ�t

eτ , β
�
1 �

Ţ

τ�1

eτ , β
�
2 �

Ţ

τ�2

eτ , . . . , β
�
T � eT , γ�1, γ�2, . . . , γ�T

�J

ζ �
�
α�� y01Je�

Ţ

t�1

xt

Ţ

τ�t

eτ , β
�
1 �

Ţ

τ�1

eτ , β
�
2 �

Ţ

τ�2

eτ , . . . , β
�
T � eT , γ�1, γ�2, . . . , γ�T

�J

,

1 That is we drop their dependency on e.
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where the scenarios e and e are characterized by

et � et � et @t P t1, . . . , T uztt1u and et1 ��h as well as et1 ��b.

In particular, we can express ζ as b
h�b
ζ� h

h�b
ζ. Note that the feasibility of pα�,β�,γ�q in view of Problem (5)

implies that ζ,ζ PKT . As KT constitutes a convex cone, we have that ζ PKT and

et1

�
y0�

t1¸
τ�1

�
xτ � β

�
τ

α�

��
¥ 0

because pα�,β�,γ�q PK�
T and because of (15). The above inequality and the fact that et1 P t�h,�bu, together,

finally completes the proof. l

We are now ready to utilize the Lemma 1 and Lemma 2 to establish the proof of Theorem 3.

Proof of Theorem 3. To establish that the mixture distribution Pε belongs to the ambiguity set P, we

first compute from (7) the first two moments of each probability distribution component

EPe,ε rξts � β
�
t peq
α�peq and EPe,ε

�
ξ2t
�� γ�t peq

α�peq @t P t1, . . . , T u.

Subsequently, from (8) we obtain

EPε rξts �
¸
ePE:

α�peq¡0

β
�
t peq �

¸
ePE

β
�
t peq � µ and EPε

�
ξ2t
�� ¸

ePE:
α�peq¡0

γ�t peq �
¸
ePE

γ�t peq � µ2�σ2

for any t P t1, . . . , T u because of Lemma 1, and we can conclude that Pε PP.

By construction, it similarly follows that

EPe,ε

�
Ţ

t�1

max

#
h

�
y0�

ţ

τ�1

pxτ � ξτ q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξτ q
�+�

� p1� εq
Ţ

t�1

max

#
h

�
y0�

ţ

τ�1

pxτ � ξe,ετ
q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξe,ετ
q
�+

�

ε
Ţ

t�1

max

#
h

�
y0�

ţ

τ�1

pxτ � ξe,ετ q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξe,ετ q
�+

.

Since limεÓ0 εξ
e,ε

τ � 0 for all τ P t1, . . . , T u, we further find

lim
εÓ0

EPe,ε

�
Ţ

t�1

max

#
h

�
y0�

ţ

τ�1

pxτ � ξτ q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξτ q
�+�

� lim
εÓ0

Ţ

t�1

max

#
h

�
y0�

ţ

τ�1

pxτ � ξe,ετ
q
�
,�b

�
y0�

ţ

τ�1

pxτ � ξe,ετ
q
�+

�
Ţ

t�1

max

#
h

�
y0�

ţ

τ�1

�
xτ � β

�
τ peq
α�peq

��
,�b

�
y0�

ţ

τ�1

�
xτ � β

�
τ peq
α�peq

��+

�
Ţ

t�1

et

�
y0�

ţ

τ�1

�
xτ � β

�
τ peq
α�peq

��
,

where the last equality is due to Lemma 2. Utilizing the fact that Pε is a mixture of Pe,ε and invoking

Theorem 2 complete the proof. l

Similarly, the proof of Theorem 7 builds on two technical lemmas, which we present below.
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Lemma 3. Given a PR� and b, c PR, it holds that

min
zPR

 
az2� bz� c( � c� b2

4a
.

Proof of Lemma 3. When a � 0 and b � 0, the minimization problem is unbounded. When a � 0 but

b� 0, the optimal objective value trivially evaluates to c which coincides with the right-hand side because

of our convention that 0{0� 0. Finally, when a¡ 0, it is a routine exercise to verify that the minimizer z� is

� b
2a

and hence the statement follows again. l

Lemma 4. For a,q PRn such that 1Jq� 1, it holds that�
ņ

i�1

qia
2
i

�
�
�

ņ

i�1

qiai

�2

�
¸

1¤i j¤n

qiqjpai� ajq2.

Proof of Lemma 4. The statement can be verified algebraically as�
ņ

i�1

qia
2
i

�
�
�

ņ

i�1

qiai

�2

�
�

ņ

i�1

qia
2
i

��
ņ

i�1

qi

�
�
�

ņ

i�1

qiai

�2

�
�

ņ

i�1

q2i a
2
i �

¸
1¤i j¤n

qiqjpa2i � a2j q
�
�
�

ņ

i�1

q2i a
2
i �

¸
1¤i j¤n

2qiqjaiaj

�

�
¸

1¤i j¤n

qiqjpa2i � a2j � 2aiajq �
¸

1¤i j¤n

qiqjpai� ajq2.

The proof is then completed. l

We are now ready to utilize Lemmas 3 and 4 to validate Theorem 7.

Proof of Theorem 7. Thanks to Theorem 1, when T � 2 and y0 � 0, minxPRT
�
fpxq could be expanded to

minimize cpx1�x2q�α�µpβ1�β2q� pµ2�σ2qpγ1� γ2q (16a)

subject to x1 PR�, x2 PR�, α PR, β1 PR, β2 PR, γ1 PR�, γ2 PR� (16b)

α� 2hx1�hx2�pβ1� 2hq2{4γ1�pβ2�hq2{4γ2 ¥ 0 (16c)

α� 2bx1� bx2�pβ1� 2bq2{4γ1�pβ2� bq2{4γ2 ¥ 0 (16d)

α�pb�hqx1�hx2�pβ1�h� bq2{4γ1�pβ2�hq2{4γ2 ¥ 0 (16e)

α�pb�hqx1� bx2�pβ1�h� bq2{4γ1�pβ2� bq2{4γ2 ¥ 0, (16f)

where the four constraints correspond to e� ph,hqJ � qe2, e� p�b,�bqJ � qe0, e� p�b,hqJ and e� ph,�bqJ �qe1, respectively. To prove that minxPRT
�
fpxq �minxPRT

�
fpxq, it suffices to show that the constraint (16e)

that is corresponding to the scenario e � p�b,hqJ is redundant and can be removed without any impact

on the optimal objective value. To achieve this, we will derive the dual problem of Problem (16) by letting

q P R4
� be a collection of Lagrange multipliers of the four constraints in Problem (16) respectively, and we

will show that at optimality q�3, which is the multiplier of the constraint (16e), vanishes.

The Lagrangian function associated with Problem (16) reads

Lpx, α,β,γ,qq � cpx1�x2q�α�µpβ1�β2q� pµ2�σ2qpγ1� γ2q�
q1
�
α� 2hx1�hx2�pβ1� 2hq2{4γ1�pβ2�hq2{4γ2

��
q2
�
α� 2bx1� bx2�pβ1� 2bq2{4γ1�pβ2� bq2{4γ2

��
q3
�
α�pb�hqx1�hx2�pβ1�h� bq2{4γ1�pβ2�hq2{4γ2

��
q4
�
α�pb�hqx1� bx2�pβ1�h� bq2{4γ1�pβ2� bq2{4γ2

�
.
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The dual problem is thus

max
q¥0

min
x¥0,γ¥0,α,β

Lpx, α,β,γ,qq.

For the inner minimization to be bounded from below with respect to the choice of x1, the inequality

c� 2hq1� 2bq2�ph� bqq3�ph� bqq4 ¥ 0 must hold. With respect to the choice of x2 and α, the inequality

c� hq1 � bq2 � hq3 � bq4 ¥ 0 and the equality q1 � q2 � q3 � q4 � 1 must similarly hold, respectively. These

three conditions then show up explicitly as constraints in the dual problem of Problem (16).

After eliminating x and α, the Lagrangian L can be decomposed into two parts:

1

4γ1

�
4µβ1γ1� q1pβ1� 2hq2� q2pβ1� 2bq2� q3pβ1�h� bq2� q4pβ1�h� bq2

��pµ2�σ2qγ1,

which depends only on β1, γ1,q and is thus abbreviated as L1pβ1, γ1,qq, and
1

4γ2

�
4µβ2γ2� q1pβ2�hq2� q2pβ2� bq2� q3pβ2�hq2� q4pβ2� bq2

��pµ2�σ2qγ2,

which depends solely on β2, γ2,q and we shall abbreviate it as L2pβ2, γ2,qq.
Next, we invoke Lemma 3 to minimize L1pβ1, γ1,qq over β1 and find that the minimum objective is

pµ2�σ2qγ1� 1

4γ1

�
4q1h

2� 4q2b
2� q3ph� bq2� q4ph� bq2�

1

4
p4µγ1� 4q1h� 4q2b� 2q3ph� bq� 2q4ph� bqq2

�
.

(17)

Utilizing Lemma 3 again to minimize L2pβ2, γ2,qq over β2 yields the minimum objective of

pµ2�σ2qγ2� 1

4γ2

�
q1h

2� q2b2� q3h2� q4b2� 1

4
p4µγ2� 2q1h� 2q2b� 2q3h� 2q4bq2

�
. (18)

We subsequently leverage Lemma 4 with a� p2h,�2b,h� b,h� bqJ to simplify minβ1
L1pβ1, γ1,qq from (17)

further to

γ1σ
2�µ p2q1h� 2q2b� q3ph� bq� q4ph� bqq� 1

4γ1
ph� bq2 p4q1q2� q1q3� q1q4� q2q3� q2q4q , (19)

and with a� ph,�b,h,�bqJ to simplify minβ2
L2pβ2, γ2,qq from (18) further to

γ2σ
2�µ pq1h� q2b� q3h� q4bq� 1

4γ2
ph� bq2 pq1q2� q1q4� q2q3� q3q4q . (20)

From (19) and (20), we respectively use the arithmetic mean–geometric mean inequality to argue that

minγ1¥0,β1
L1pβ1, γ1,qq is equal to

σph� bq
a
4q1q2� q1q3� q1q4� q2q3� q2q4�µ p2q1h� 2q2b� q3ph� bq� q4ph� bqq

and that minγ2¥0,β2
L2pβ2, γ2,qq is equal to

σph� bq?q1q2� q1q4� q2q3� q3q4�µ pq1h� q2b� q3h� q4bq .

The summation of minγ1¥0,β1
L1pβ1, γ1,qq and minγ2¥0,β2

L2pβ2, γ2,qq gives rise to the dual objective, and

as a consequence the dual problem of Problem (16) reads

maximize ph� bqσ
�a

4q1q2� q1q3� q1q4� q2q3� q2q4�
?
q1q2� q1q4� q2q3� q3q4

	
�
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µ p3hq1� 3bq2�p2h� bqq3�ph� 2bqq4q (21a)

subject to q1, q2, q3, q4 ¥ 0 (21b)

q1� q2� q3� q4 � 1 (21c)

c� 2hq1� 2bq2�ph� bqq3�ph� bqq4 ¥ 0 (21d)

c�hq1� bq2�hq3� bq4 ¥ 0. (21e)

To show that q�3 � 0, we divide our analysis into two cases depending on the value of q�4.

Case 1 (q�4 ¡ 0): Suppose for the sake of a contradiction that q�3 ¡ 0 and consider an alternative solution

q: � pq�1 � δ, q�2 � δ, q�3 � δ, q�4 � δq for some sufficiently small δ ¡ 0 such that q: remains in the nonnegative

orthant. It can be directly verified that q: is feasible in Problem (21). Besides, it holds that

q:1q
:
2� q:1q:4� q:2q:3� q:3q:4 � pq�1� δqpq�2� δq� pq�1� δqpq�4� δq� pq�2� δqpq�3� δq� pq�3� δqpq�4� δq

� q�1q
�
2� q�1q�4� q�2q�3� q�3q�4

and that

4q:1q
:
2� q:1q:3� q:1q:4� q:2q:3� q:2q:4 � 4pq�1� δqpq�2� δq� pq�1� δqpq�3� δq� pq�1� δqpq�4� δq�

pq�2� δqpq�3� δq� pq�2� δqpq�4� δq
� 4q�1q

�
2� q�1q�3� q�1q�4� q�2q�3� q�2q�4� 2δ

as well as that

3hq:1� 3bq:2�p2h� bqq:3�ph� 2bqq:4 � 3hpq�1� δq� 3bpq�2� δq� p2h� bqpq�3� δq� ph� 2bqpq�4� δq
� 3hq�1� 3bq�2�p2h� bqq�3�ph� 2bqq�4.

Together, the above three observations imply that q: attains an objective function value that is strictly

larger than q�, which in turn contradicts with the supposed optimality of q� and therefore renders q�3 ¡ 0

impossible to materialize.

Case 2 (q�4 � 0): Next, we consider the other case with vanishing q�4. Under this condition, Problem (21)

simplifies to a trivariate optimization problem:

maximize ph� bqσ
�a

4q1q2� q1q3� q2q3�
?
q1q2� q2q3

	
�µ p3hq1� 3bq2�p2h� bqq3q

subject to q1, q2, q3 ¥ 0

q1� q2� q3 � 1

c� 2hq1� 2bq2�ph� bqq3 ¥ 0

c�hq1� bq2�hq3 ¥ 0

and subsequently to a bivariate optimization problem (barring the shifting and positive scaling of the objec-

tive function):

maximize σ
�a

q1� q2�pq1� q2q2�
a
q2p1� q2q

	
�µ p2q2� q1q (22a)

subject to q1, q2 ¥ 0 (22b)

q1� q2 ¤ 1 (22c)

q2� q1 ¤ c�h� b
h� b (22d)
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q2 ¤ c�h
h� b . (22e)

We remark that Problem (22) constitutes a concave maximization problem because square root function is

concave and increasing and a quadratic function with a non-positive leading coefficient is also concave. In view

of Problem (22), our original goal to establish that q�3 � 0 is tantamount to showing that the constraint (22c)

is binding at optimality. We begin by arguing that the constraint (22e) cannot be binding because otherwise

it would hold that

q�1� q�2 ¥ 2q�2�
c�h� b
h� b � 2pc�hq

h� b � c�h� b
h� b ¡ 1,

where the first inequality is due to (22d) and hence a contradiction. Therefore, the constraint (22e) can be

omitted without any loss of optimality. Suppose next that the constraint (22d) is binding, Problem (22)

simplifies (barring again the shifting and positive scaling of the objective function) to the following univariate

concave maximization problem:

maximize

d
2q2� c�h� b

h� b �
�
c�h� b
h� b


2

�
a
q2p1� q2q� rq2

subject to max

"
c�h� b
h� b ,0

*
¤ q2 ¤ 2h� c

2h� 2b
,

(23)

where r is a positive constant equal to µ

σ
. In Problem (23), the lower bound of q2 ensures that both q1 and

q2 are nonnegative, whereas the upper bound ensures that q1 � q2 ¤ 1, which is an explicit constraint in

Problem (22). To show that (22c) is a binding constraint, it suffices to show that the upper bound 2h�c
2h�2b

is

attained by q�2, and to achieve this we will show that the objective function of (23) is increasing in q2 over

its admissible range. Observe that Problem (23) can only be feasible when 2b¥ c, which we shall assume,

and the derivative of the objective function denoted by g(23) is:

Bg(23)
Bq2 � 1c

2q2� c�h�b
h�b

�
�

c�h�b
h�b

	2
� 1� 2q2

2
a
q2p1� q2q

� r

� h� ba
2q2ph� bq2�pc�h� bqp2h� cq

� 1� 2q2

2
a
q2p1� q2q

� r.

When q2 � 2h�c
2h�2b

,

Bg(23)
Bq2

����
q2� 2h�c

2h�2b

� h� baph� bqp2h� cq� pc�h� bqp2h� cq �
pb�h� cq{ph� bqap2h� cqp2b� cq{ph� bq2 � r

� h� bap2h� cqp2b� cq �
b�h� cap2h� cqp2b� cq � r

�
c

2b� c
2h� c � r

¡ 0.

By its concavity, g(23) is increasing in q2 P
�
max

!
c�h�b
h�b

,0
)
, 2h�c
2h�2b

�
and as a result q�3 indeed vanishes.

Henceforth, we can assume without any loss of optimality that constraints (22d) and (22e) are not binding.

If at optimality the constraint (22c) is also not binding (i.e., if q�3 ¡ 0), it must be possible to identify q�

that is optimal in Problem (22) by solving

maximize
a
q1� q2�pq1� q2q2�

a
q2p1� q2q� r p2q2� q1q

subject to 0¤ q1 ¤ 1, 0¤ q2 ¤ 1.
(24)
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Note that the square roots are well-defined over the feasible region as q1 � q2 ¥ |q1 � q2| ¥ pq1 � q2q2. By a

familiar argument that we use to analyze Problem (22) earlier, Problem (24) remains a concave maximization

problem. Then, by expressing its objective function g(24) as

g(24)pq1, q2q �
a
q1p1� q1q� q2p1� q2q� 2q1q2�

a
q2p1� q2q� r p2q2� q1q

and noting that the mapping q2 ÞÑ q2p1� q2q is strictly increasing over the interval r0, 1
2
s, it necessarily holds

that q�2 ¥ 1
2
. Next, we derive the partial derivative of g(24) with respect to q1:

Bg(24)
Bq1 � 1� 2q1� 2q2

2
a
q1� q2�pq1� q2q2

� r.

When q2 is chosen optimally as q�2, we can determine the values of q1 such that the above partial derivative

vanishes as follows:

p1� 2q1� 2q�2q2 � 4r2
�
q1� q�2�pq1� q�2q2

�
ðñ 4pq�2� q1q2� 4pq�2� q1q� 1 � 8r2q�2� 4r2pq�2� q1q� 4r2pq�2� q1q2

ðñ 4p1� r2qpq�2� q1q2� 4p1� r2qpq�2� q1q� 1� 8r2q�2 � 0

ðñ q�2� q1 ��
1

2
� 1

2

c
r2p1� 8q�2q

1� r2

ðñ q1 � q�2�
1

2
	 1

2

c
r2p1� 8q�2q

1� r2 .

The above two values of q1 together with the boundary points (i.e., 0 and 1) are the candidate values for q�1.

However, as q�2 ¥ 1
2
and as q�1 � q�2 ¤ 1, we can rule out the values of q�1 that are greater than 1

2
. Hence, we

find that q�1 P t0, q:1u, where q:1 � q�2 � 1
2
� 1

2

b
r2p1�8q�2q

1�r2
. We can now divide our remaining analysis into two

subcases.

Case 2a (q�1 � 0): In this case, as g(24) is concave in q1 we have q:1 ¤ 0. We will assume here that q:1   0

and treat the remaining possibility of q�1 � q:1 � 0 in Case 2b. Here, Problem (24) reduces to a univariate

optimization problem in q2. By a slight abuse of notation, we denote the resulting objective g(24)p0, q2q by
g(24)pq2q, and we find

Bg(24)
Bq2 � 1� 2q2a

q2p1� q2q
� 2r.

This gradient simply evaluates to 2r ¡ 0 when q2 � 1
2
, and it evaluates to a negative number when

q2 approaches one from below. By the intermediate value theorem, there exists a value of q2 P
�
1
2
,1
�
such

that the gradient vanishes. Since g(24) is concave in q2, it then follows that

1� 2q�2a
q�2p1� q�2q

� 2r � 0 ùñ r � 2q�2� 1

2
a
q�2p1� q�2q

ùñ
c

r2

1� r2 � 2q�2� 1.

As a result, we obtain that

q�2�
1

2
� 1

2
p2q�2� 1q

a
1� 8q�2 � q:1   0 ùñ p2q�2� 1q2   p2q�2� 1q2p1� 8q�2q.

The latter inequality implies that 32pq�2q2pq�2 � 1q ¡ 0, which is an impossible consequence in view of the

feasibility of Problem (24).
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Case 2b (q�1 � q:1): Regardless of the value of q1, we find

Bg(24)
Bq2 � 1� 2q1� 2q2

2
a
q1� q2�pq1� q2q2

� 1� 2q2

2
a
q2p1� q2q

� 2r.

Similarly to the above case, for any fixed q1 ¤ 1
2
, there exists a value of q2 P

�
1
2
,1
�
such that this gradient

vanishes, and thus at optimality, we have

1� 2q�1� 2q�2
2
a
q�1� q�2�pq�1� q�2q2

� 1� 2q�2
2
a
q�2p1� q�2q

� 2r � 0. (25)

Note that, as q�1 � q:1, it follows that

2
a
q�1� q�2�pq�1� q�2q2 � 2

gffe2q�2�
1

2
� 1

2

c
r2p1� 8q�2q

1� r2 � 1

4

�
1�

c
r2p1� 8q�2q

1� r2
�2

�
c

1� 8q�2
1� r2

and that

1� 2q�1� 2q�2 � 2� r
c

1� 8q�2
1� r2 .

Substituting these observations into (25), we obtain

2

d
1� r2
1� 8q�2

� 1� 2q�2
2
a
q�2p1� q�2q

� r� 0 ùñ r  2q�2� 1

2
a
q�2p1� q�2q

ùñ
c

r2

1� r2   2q�2� 1,

where the rightmost implication holds because the mapping r ÞÑ
b

r2

1�r2
is increasing in r P r0,8q. As the

inequality q1� q2 ¤ 1 is an explicit constraint of Problem (23), which is supposed to be non-binding, it must

strictly hold when q1 � q�1 and q2 � q�2. Hence,

2q�2�
1

2
� 1

2

c
r2p1� 8q�2q

1� r2 � q�1� q�2   1 ùñ p4q�2� 1q2   p2q�2� 1q2p1� 8q�2q.

The latter can hold only if 4q�2pq�2� 1qp8q�2� 3q ¡ 0 and hence a contradiction.

We thus conclude that, in all cases, it is impossible for q�3 to be a strictly positive number and complete

the proof. l

Proof of Theorem 8. From an argument widely parallel to the proof of Theorem 1, we have that

f :pxq� c1Jx� minimize α�µ1Jβ�pµ2�σ2q1Jγ
subject to α PR, β PRT , γ PRT

αpx,eq�
Ţ

t�1

βtpeqξt�
Ţ

t�1

γtξ
2
t ¥ 0 @e P E @ξ PRT

�.

For each fixed e P E , the robust constraint holds for all ξ PRT
� iff there exists θ PRT such that

αpx,eq ¥ 1Jθ and θt�βtpeqξt� γtξ2t ¥ 0 @ξt ¥ 0 @t� 1, . . . , T.

Note that it immediately holds that each θt must be non-negative for otherwise the robust quadratic con-

straint fails to hold when ξt � 0. Furthermore, by the virtue of S-lemma, each of these robust quadratic

constraints holds iff there exists a δt ¥ 0, t� 1, . . . , T , such that�
γt

1
2
βtpeq

1
2
βtpeq θt

�
©S2

�
δt

�
0 1

2
1
2

0

�
ðñ

"
γt ¥ 0, θt ¥ 0

4γtθt ¥ pβtpeq� δtq2

ðñ
"
γt ¥ 0, θt ¥ 0
pθt, βtpeq� δt, γtq©K1

0.

By leveraging the definition of K:
T , we finally complete the proof. l
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Proof of Theorem 9. From an argument widely parallel to the proof of Theorem 1, we have that

fKpxq� c1Jx� minimize α�µ1Jβ�pµ2�σ2q1Jγ�µ2
¸

1¤s t¤T

θst

subject to α PR, β PRT , γ PRT , Θ PRT�T

αpx,eq�
Ţ

t�1

βtpeqξt�
Ţ

t�1

γtξ
2
t �

¸
1¤s t¤T

θstξsξt ¥ 0 @e P E @ξ PRT ,

where each θst is a dual variable assigned to the constraint that ensures ξs and ξt are uncorrelated. Note

that θst with s¥ t does not enter the above optimization problem.

Without any loss of optimality, we replace each θst, s  t, with 2θst and assign θss � 0 for all s and θst � θts
for all pairs ps, tq such that s¡ t resulting in an equivalent problem of the form

fKpxq� c1Jx� minimize α�µ1Jβ�pµ2�σ2q1Jγ�µ21JΘ1

subject to α PR, β PRT , γ PRT , Θ P ST

αpx,eq�
Ţ

t�1

βtpeqξt�
Ţ

t�1

γtξ
2
t � ξJΘξ¥ 0 @e P E @ξ PRT

diagpΘq � 0.

For any fixed e P E , it can be recognized that the robust quadratic constraint (which has to hold for all

ξ PRT ) is equivalent to�
ξ
1

�J �
diagpγq�Θ 1

2
βpeq

1
2
βpeqJ αpx,eq

��
ξ
1

�
¥ 0 @ξ PRT ðñ

�
diagpγq�Θ 1

2
βpeq

1
2
βpeqJ αpx,eq

�
© 0.

This latest observation together with the definition of KK
T completes the proof. l

Proof of Theorem 10. The proof widely parallels to that of Theorem 4, where we reexpress the problem

from Theorem 9 as an artificial two-stage robust optimization problem

fKpxq � minimize c1Jx�α�µ1Jβ�pµ2�σ2q1Jγ�µ21JΘ1

subject to α PR, β PRT , γ PRT ,Θ P ST , ϕ :R2T�T2 ÞÑRT
�, ψ :R2T�T2 ÞÑRT

�

α�βJu�γJv� ⟨Θ,W⟩¥ b1Jϕpu,v,Wq�h1Jψpu,v,Wq
@pu,v,Wq : p1,u,v,Wq P pKK

T q�

y0�ϕtpu,v,Wq�ψtpu,v,Wq �
ţ

τ�1

puτ �xτ q @t� 1, . . . , T

@pu,v,Wq : p1,u,v,Wq P pKK
T q�

diagpΘq � 0.

(26)

Restricting the second-stage decision variables with a linear decision rule, where the additional decision

variables Πw
t , t� 1, . . . , T , characterize the sensitivity of ϕ in Problem (26) with respect to W, and leveraging

the primal-dual pair complete the proof. l


