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Abstract

Recent work has leveraged the popular distributionally robust optimization
paradigm to combat overfitting in classical logistic regression. While the resulting
classification scheme displays a promising performance in numerical experiments,
it is inherently limited to numerical features. In this paper, we show that distri-
butionally robust logistic regression with mixed (i.e., numerical and categorical)
features, despite amounting to an optimization problem of exponential size, ad-
mits a polynomial-time solution scheme. We subsequently develop a practically
efficient column-and-constraint approach that solves the problem as a sequence of
polynomial-time solvable exponential conic programs. Our model retains many
of the desirable theoretical features of previous works, but—in contrast to the
literature—it does not admit an equivalent representation as a regularized logistic
regression, that is, it represents a genuinely novel variant of logistic regression.
We show that our method outperforms both the unregularized and the regularized
logistic regression on categorical as well as mixed-feature benchmark instances.

1 Introduction

Consider a data set (xi, yi)Ni=1 with feature vectors xi and associated binary labels yi ∈ {−1, 1}.
Classical logistic regression assumes that the labels depend probabilistically on the features via

Prob(y | x) =
[
1 + exp(−y · [β0 + β⊤x])

]−1
,

where the parameters (β0,β) ∈ R1+n are estimated from the empirical risk minimization problem

minimize
(β0,β)

1

N

N∑
i=1

lβ(x
i, yi)

subject to (β0,β) ∈ Rn+1

with the log-loss function lβ(x, y) := log
(
1 + exp

(
−y · [β0 + β⊤x]

))
. Its compelling performance

across many domains, the availability of mature and computationally efficient algorithms as well as
its interpretability have all contributed to the widespread adoption of logistic regression [6, 18, 27].

Similar to other machine learning models, logistic regression is prone to overfitting, especially when
the number of training samples is small relative to the number of considered features. Moreover,
logistic regression can be sensitive to erroneous feature and label values as well as distribution shifts
under which the training and test sets stem from different distributions. In recent years, distributionally
robust (DR) optimization [3, 4] has been proposed to simultaneously address these challenges. To
this end, the DR optimization paradigm models a machine learning task as a zero-sum game between
the decision maker, who seeks to obtain the most accurate model (e.g., the parameter vector β
in a logistic regression), and a fictitious adversary who observes the decision maker’s model and
subsequently selects the worst data-generating distribution in the vicinity of the empirical distribution
formed from the available training data. In this context, the similarity of distributions is commonly
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measured in terms of moment bounds [9, 39], ϕ-divergences such as the Kullback-Leibler divergence
[19, 22] or the Wasserstein distance [15, 25]. It has been observed that in many cases, the resulting
DR machine learning models are equivalent to regularized versions of the same models, in which
case distributionally robustness provides a new perspective on regularizers that are often selected ad
hoc [21, 41]. Most importantly, DR machine learning models often admit computationally efficient
reformulations as finite-dimensional convex optimization problems that can be solved in polynomial
time with off-the-shelf solvers.

In this work we study a DR variant of the logistic regression where the distance between the
empirical distribution and the unknown true data-generating distribution is measured by the popular
Wasserstein (also known as Kantorovich-Rubinstein or earth mover’s) distance [15, 25]. This problem
has been first studied by [31], who show that the resulting DR logistic regression problem admits
an equivalent reformulation as a polynomial-size convex optimization problem if all features are
numerical. Applying similar techniques to the mixed-feature logistic regression problem, which
appears to be most prevalent in practice, would result in an exponential-size convex optimization
problem whose naïve solution with the methods of [31] does not scale to interesting problem sizes
(cf. Section 4). Our contributions may be summarized as follows.

(i) On the theoretical side, we show that the complexity of DR mixed-feature regression
crucially relies on the selected loss function. In particular, for the log-loss function employed
in logistic regression, the problem—despite its natural representation as an exponential-size
convex optimization problem—admits a polynomial-time solution scheme. We also show
that in stark contrast to earlier variants of the problem, our mixed-feature regression does
not admit an equivalent representation as a regularized problem. This provides compelling
evidence that the DR logistic regression problem with mixed features is fundamentally
different to the DR problem with only numerical features.

(ii) On the computational side, we propose a column-and-constraint scheme that solves the DR
mixed-feature logistic regression as a sequence of polynomial-time solvable exponential
conic programs. We show that the key step of our procedure, the identification of the most
violated constraint, can be implemented efficiently for a broad range of metrics, despite its
natural representation as a combinatorial optimization problem. Indeed, identifying the most
violated constraint by brute force is out of the question, while the standard approach [43] of
solving the most violated constraint problem would have an unacceptably high runtime.

(iii) On the numerical side, we show that our column-and-constraint scheme drastically reduces
computation times over a naïve monolithic implementation of the regression problem. We
also show that our model performs favorably on standard categorical and mixed-feature
benchmark instances when compared against classical and regularized logistic regression.

The literature on DR machine learning under the Wasserstein distance is vast and rapidly growing.
Recent works have considered, among others, the use of Wasserstein DR models in multi-label
learning [14], generative adversarial networks [2, 8] and the generation of adversarial examples [40],
density estimation [38] and learning Gaussian mixture models [20], graph-based semi-supervised
learning [35], supervised dimensionality reduction [13] and reinforcement learning [1]. DR has also
been found to help alleviate problems with overfitting [24, 21], label uncertainty [21] and distribution
shifts [37, 36]. We refer to [21] for a recent review of the literature. Our work is most closely related
to [31], and we compare our findings with the results of that work in Section 2.

We proceed as follows. Section 2 defines and analyzes the mixed-feature DR logistic regression
problem, which is solved in Section 3 via column-and-constraint generation. We report numerical
results in Section 4. Auxiliary material and all proofs are relegated to the appendix.

Notation. We define B = {0, 1} and [N ] = {1, . . . , N} for N ∈ N. The set of all probability
distributions supported on a set Ξ is denoted by P0(Ξ), while the Dirac distribution placing unit
probability mass on x ∈ Rn is denoted by δx ∈ P0(Rn). The indicator function 1[E ] attains the value
1 (0) whenever the expression E is (not) satisfied. Finally, we use Roman d to denote differentials
and to distinguish them from the d used to denote distances.
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2 Mixed-Feature DR Logistic Regression

Section 2.1 derives an exponential-size convex programming formulation of the DR logistic regression
problem that serves as the basis of our analysis. Section 2.2 compares our formulation with a naïve
model that treats categorical features as continuous ones. Section 2.3, finally, shows that our
formulation, despite its exponential size, can be solved in polynomial time due to the benign structure
of the log-loss function. It also establishes that in stark contrast to the literature, our formulation does
not reduce to a regularized non-robust logistic regression, that is, it constitutes a genuinely novel
variant of the logistic regression problem.

Our formulation enjoys strong finite-sample and asymptotic performance guarantees from the litera-
ture. Moreover, despite its exponential size, our model always accommodates worst-case distributions
that exhibit a desirable sparsity pattern. We relegate these results to Appendix A.

2.1 Formulation as an Exponential-Size Convex Program

From now on, we consider a mixed-feature data set {ξi := (xi, zi, yi)}i∈[N ] with n numerical
features xi = (xi

1, . . . , x
i
n) ∈ Rn, m categorical features zi = (zi

1, . . . ,z
i
m) ∈ C(k1)× . . .×C(km)

and a binary label yi ∈ {−1,+1}. Here, C(s) = {z ∈ Bs−1 :
∑

j∈[s−1] zj ≤ 1} for s ∈ N \ {1}
represents the one-hot encoding of a categorical feature with s possible values; in particular, C(2) = B
encodes a binary feature. We denote by C = C(k1)× . . .×C(km) and Ξ = Rn×C×{−1,+1} the
support of the categorical features as well as the data set, respectively, and we let k = k1+. . .+km−m
be the number of slopes used for the all categorical features.

If we had access to the true data-generating distribution P0 ∈ P0(Ξ), we would solve the (non-robust)
logistic regression problem

minimize
β

EP0 [lβ(x, z, y)]

subject to β = (β0,βN,βC) ∈ R1+n+k,

where EP0 denotes the expectation under P0, and where the log-loss function lβ now takes the form

lβ(x, z, y) := log
(
1 + exp

[
−y ·

(
β0 + βN

⊤x+ βC
⊤z
)])

to account for the presence of categorical features. Since the distribution P0 is unknown in practice, the
empirical risk minimization problem replaces P0 with the empirical distribution P̂N := 1

N

∑N
i=1 δξi

that places equal probability mass on all observations {ξi}i∈[N ]. Standard arguments show that
when these observations are i.i.d., the empirical risk minimization problem recovers the logistic
regression under P0 as N −→ ∞. In practice, however, data tends to be scarce, and the empirical
risk minimization problem exhibits an ‘optimism bias’ that is also known as overfitting [6, 18, 27],
the error maximization effect of optimization [10, 23] or the optimizer’s curse [34].

DR logistic regression combats the aforementioned overfitting phenomenon by solving the semi-
infinite optimization problem

minimize
β

sup
Q∈B�(bPN )

EQ [lβ(x, z, y)]

subject to β = (β0,βN,βC) ∈ R1+n+k,

(1)

where the ambiguity set Bϵ(P̂N ) contains all distributions Q in a (soon to be defined) vicinity of the
empirical distribution P̂N , and where the expectation is taken with respect to Q. Problem (1) can be
interpreted as a zero-sum game between the decision maker, who chooses a logistic regression model
parameterized by β, and a fictitious adversary that observes β and subsequently chooses the ‘worst’
distribution (in terms of the incurred log-loss) from Bϵ(P̂N ). Contrary to the classical non-robust
logistic regression, problem (1) guarantees to overestimate the log-loss incurred by β under the
unknown true distribution P0 as long as P0 is contained in Bϵ(P̂N ). On the other hand, problem (1)
recovers the empirical risk minimization problem when the ambiguity set Bϵ(P̂N ) approaches a
singleton set that only contains the empirical distribution P̂N . Note that problem (1) is convex as
the convexity of the logistic regression objective EQ [lβ(x, z, y)] is preserved under the supremum
operator. That said, the problem typically constitutes a semi-infinite program as it comprises finitely
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many decision variables but—if the embedded supremum in the objective is brought to the constraints
via an epigraph reformulation—in�nitely many constraints whenever the ambiguity set harbors
in�nitely many distributions. As such, it is not obvious how the problem can be solved ef�ciently.

In this paper, we choose as ambiguity set the Wasserstein ballB � (bPN ) := f Q 2 P 0(�) :
W( Q; bPN ) � � g of radius� > 0 that is centered at the empirical distributionbPN .
De�nition 1 (Wasserstein Distance). The type-1Wasserstein(Kantorovich-Rubinstein, or earth
mover's) distancebetween two distributionsP 2 P 0(�) andQ 2 P 0(�) is de�ned as

W( Q; P) := inf
� 2P 0 (� 2 )

� Z

� 2
d(� ; � 0) �(d � ; d� 0) : �(d � ; �) = Q(d� ); �(� ; d� 0) = P(d� 0)

�
; (2)

where� = ( x ; z; y) 2 � and� 0 = ( x 0; z0; y0) 2 � , whiled(� ; � 0) is the ground metric on� .

The Wasserstein distance can be interpreted as the minimum cost of movingQ to P whend(� ; � 0) is
the cost of moving a unit mass from� to � 0. The Wasserstein radius� thus imposes a budget on the
transportation cost that the adversary can spend on perturbing the empirical distributionbPN .

We next de�ne the ground metricd that we use throughout the paper.
De�nition 2 (Ground Metric). We measure the distance between two data-points� = ( x ; z; y) 2 �
and� 0 = ( x 0; z0; y0) 2 � with z = ( z1; : : : ; zm ) andz0 = ( z0

1; : : : ; z0
m ) as

d(� ; � 0) := kx � x 0k + dC(z ; z 0) + � � 1[y 6= y0]; (3a)

wherek�k is any rational norm onRn , � > 0 and the metricdC onC satis�es

dC(z; z0) :=

0

@
X

i 2 [m ]

1[z i 6= z0
i ]

1

A

1=p

for somep > 0: (3b)

Intuitively, the ground metricd measures the distance of the numerical featuresx andx 0 by the norm
distancekx � x 0k, whereas the distance of the categorical featuresz andz0 is measured by (a power
of) the number of discrepancies betweenz andz0. Likewise, any discrepancy between the labelsy
andy0 is accounted for by a constant� , which allows for scaling between the features and the labels.

We �rst extend the convex optimization model of [31] for the DR continuous-feature logistic regres-
sion to an exponential conic model that accommodates for categorical features.
Theorem 1(Exponential Conic Representation). The DR logistic regression problem(1) admits the
equivalent reformulation

minimize
� ;�; s;u � ;v �

�� +
1
N

X

i 2 [N ]

si

subject to u+
i; z + v+

i; z � 1
(u+

i; z ; 1; � si � �d C(z; z i )) 2 K exp

(v+
i; z ; 1; � yi � N

> x i � yi � C
> z � yi � 0 � si � �d C(z; z i )) 2 K exp

9
=

;
8i 2 [N ]; 8z 2 C

u�
i; z + v�

i; z � 1
(u�

i; z ; 1; � si � �d C(z; z i ) � �� ) 2 K exp

(v�
i; z ; 1; yi � N

> x i + yi � C
> z + yi � 0 � si � �d C(z; z i ) � �� ) 2 K exp

9
=

;
8i 2 [N ]; 8z 2 C

jj � Njj � � �

� = ( � 0; � N; � C) 2 R1+ n + k ; � � 0; s 2 RN

(u+
i; z ; v+

i; z ; u�
i; z ; v�

i; z ) 2 R4; i 2 [N ] andz 2 C
(4)

as a �nite-dimensional exponential conic program, whereKexp denotes theexponential cone

Kexp := cl ( f (a; b; c) : a � b� exp(c=b); a > 0; b > 0g) � R3:

Thesi 's and� that appear in (4) are dual variables that arise from dual of the inner (i.e., sup) problem
in (1). For eachz 2 C andi 2 [N ], (u+

i; z ; v+
i; z ; u�

i; z ; v�
i; z ) is a vector of auxiliary variables that we use

to model softplus constraints that arise from our intermediate analysis of problem (1) (Appendix E).
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Figure 1:Left: Estimates of� for the standard logistic regression, our mixed-feature as well as the
continuous-feature model as a function of the sizeN of the data set. All results are reported as
averages over 2,000 statistically independent runs.Right: Comparison of the empirical distribution
as well as the worst-case distributions for� = 1 under the two DR models forN = 250 samples.
The probabilities are plotted on a log-scale to make small values visible.

Problem(4) is �nite-dimensional and convex. Moreover, since exponential conic programs admit a
self-concordant barrier function, they can be solved in polynomial time relative to their input size
[28]. Due to the presence of categorical features in our regression problem, however, problem(4)
comprises exponentially many variables and constraints, and a naïve solution of(4) would therefore
require anexponentialamount of time. The exponential size of problem(4) renders our formulation
fundamentally different from the model of [31], and it signi�cantly complicates the solution.

2.2 Comparison with Continuous-Feature DR Logistic Regression

Our formulation(4) of the mixed-feature DR logistic regression(1) accounts for categorical features
z 2 C at the expense of an exponential number of variables and constraints. It is therefore tempting
to treat the categorical features as continuous ones and directly apply the continuous-feature-only
reformulation of the DR logistic regression(1) proposed by [31]. In the following, we argue that
such a reformulation would hedge against nonsensical worst-case distributions that in turn lead to
overly conservative regression models. To see this, consider a stylized setting where the data set
(zi ; yi ) i 2 [N ] comprises a single binary featurezi 2 f� 1; +1g that impacts the labelyi 2 f� 1; +1g
via the logistic model

Prob(y j z) = [1 + exp( � y � �z )] � 1

with � = 1 . (While we usezi 2 f 0; 1g in the other sections of the paper, the analysis and results of
this subsection and Appendix B assumedzi 2 f� 1; +1g as this made comparisons with [31] easier.)
We attempt to recover this logistic model in two ways:

1. Mixed-feature model.We employ our DR logistic regression(1) with a single categorical
feature, usingp = 1 and� = 1 in the ground metric (cf. De�nition 2).

2. Continuous-feature model.We employ a variant of problem(1) that treats the categorical
featurezi as a continuous one. We choose as ground metric

d(� ; � 0) :=
1
2

jz � z0j + 1[y 6= y0]:

We therefore use the feature distances1[z 6= z0] in the mixed-feature case and
1
2

jz � z0j in the

continuous-feature case. Note they both attain the value0 (1) for equal (different) feature values.

Figure 1 (left) compares the mean values (dashed lines) as well as the 15% and 85% quantiles (shaded
regions) of� for the standard logistic regression, our mixed-feature as well as the continuous-feature
model as a function of the sizeN of the data set. For both DR models, we employed the same
Wasserstein radius� / 1=

p
N , which is motivated by the �nite sample guarantee presented in the

next section (cf. Theorem 6). The �gure shows that the continuous-feature model excessively shrinks
its estimates of� , thus leading to overly conservative results. In fact, the true parameter value� = 1
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consistently lies outside the con�dence region of the continuous-feature model, independent of the
sample sizeN . This is due to the fact that the continuous-feature model accounts for nonsensical
worst-case distributions under which the categorical feature can take values outside its domain
f� 1; +1g, see Figure 1 (right). In fact, the continuous-feature model places non-zero probability
on an extreme scenario under which the binary featurez 2 f� 1; +1g attains the value15; 312. (In
Appendix B we explain why this value of15; 312arises.) Our mixed-feature model, on the other
hand, restricts the worst-case distribution to the domain of the categorical feature and thus hedges
against realistic distributions only.

We note that in practice, the radius� of the Wasserstein ball will be chosen via cross-validation
(cf. Section 4), in which case our mixed-feature model reliably outperforms the classical logistic
regression on standard benchmark instances. While one may argue that the impact of nonsensical
worst-case distributions in the continuous-feature model is alleviated by the cross-validated radii,
Figure 1 offers strong theoretical and practical reasons against the use of a continuous-feature model
for categorical or mixed-feature problems: The continuous-feature model hedges against a clumsily
perturbed worst-case distribution that introduces a pronounced bias in the estimation. We also note
that another possible approach would be to use the continuous-feature model but to restrict the support
of binary features to[� 1; 1]. Unfortunately, for the log-loss function no tractable reformulation
with support constraints appears to be known; see [32] . Moreover, Section 4 will show that the
mixed-feature model, despite its exponential size, can be solved quickly and reliably with our novel
column-and-constraint approach from Section 3.

2.3 Complexity Analysis

We �rst show that despite its exponential size, the DR logistic regression problem(1) admits a
polynomial-time solution. Key to this perhaps surprising �nding is the shape of the loss function:
while problem(1) is strongly NP-hard (and thus unlikely to admit a polynomial-time solution scheme)
for generic loss functions, it can be solved in polynomial time for the log-loss functionl � employed
in logistic regression.

Theorem 2(Complexity of the DR Logistic Regression (1)).

(i) For generic loss functionsl � , problem(1) is strongly NP-hard even ifn = 0 andN = 1 .

(ii) For the loss functionl � (x ; z; y) = log
�
1 + exp

�
� y �

�
� 0 + � N

> x + � C
> z

���
and the

ground metric of De�nition 2, problem(1) can be solved to� -accuracy in polynomial time.

Recall that an optimization problem is solved to� -accuracy if a� -suboptimal solution is identi�ed that
satis�es all constraints modulo a violation of at most� . The consideration of� -accurate solutions is
standard in the numerical solution of nonlinear programs where an optimal solution may be irrational.

A by now well-known result shows that whenm = 0 (no categorical features), the DR logistic
regression problem(1) reduces to a classical logistic regression with an additional regularization
termk� x k� in the objective function when the output label weight� in De�nition 2 approaches1
[31, 32]. We next show that this reduction to a classical regularized logistic regression no longer
holds in our problem setting when categorical features are present.

Theorem 3(Absence of a Reformulation as a Regularized Problem). Even when the output label
weight� approaches1 in the DR logistic regression(1), problem(1) does not admit an equivalent
reformulation

minimize
�

EbPN
[l � (x ; z; y)] + R(� )

subject to � = ( � 0; � N; � C) 2 R1+ n + k ;

as a classical regularized logistic regressionfor any regularizerR : R1+ n + k ! R.

Note that Theorem 3 does not only preclude the existence of a speci�c regularizer, but it excludes the
existence ofanyregularizer, no matter how complex its dependence on� might be. We are not aware
of any prior results of this form in the literature. Some insight for the result in Theorem 3 may be
found via the special case we consider in its proof in Appendix E and in Remark 2 that follows it.
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Algorithm 1 Column-and-Constraint Generation Scheme for Problem (4).

Set LB0 = �1 and UB0 = + 1
Choose (possibly empty) subsetsW + ; W � � [N ] � C
while LBt 6= UBt do

Let � ? be the optimal value and(� ; �; s; u � ; v � ) be a minimizer of problem (4) where:
• the �rst constraint set is only enforced for all(i; z) 2 W + ;
• the second constraint set is only enforced for all(i; z) 2 W � ;
• we only include those(u+

i; z ; v+
i; z ) for which (i; z) 2 W + ;

• we only include those(u�
i; z ; v�

i; z ) for which (i; z) 2 W � .

Identify a most violated index(i + ; z+ ) of the �rst constraint set in (4) and add it toW +

Identify a most violated index(i � ; z � ) of the second constraint set in (4) and add it toW �

Let #+ and#� be the violations of(i + ; z+ ) and(i � ; z � ), respectively
Update LBt = � ? and UBt = min f UBt � 1; � ? + log(1 + max f #+ ; #� g)g
Updatet = t + 1

end while

Algorithm 2 Identi�cation of Most Violated Constraints in the Reduced Problem (4).

for j 2 f 1; : : : ; mg do
Find a feature valuez?

j that minimizesyi � � C;j
> z j across allz j 2 C(kj ) n f z i

j g
end for
Let � : [m] ! [m] be an ordering such that

yi
� ( j ) � � C;� ( j )

> (z?
� ( j ) � z i

� ( j ) ) � yi
� ( j 0) � � C;� ( j 0)

> (z?
� ( j 0) � z i

� ( j 0) ) 81 � j � j 0 � m

SetW = ;
for � 2 f 0; 1; : : : ; mg do

UpdateW = W [ f zg, wherez j = z?
j if � (j ) � � andz j = z i

j otherwise
end for
Determine the most violated constraint from the candidate setW

3 Column-and-Constraint Solution Scheme

Our DR logistic regression problem(4) comprises exponentially many variables and constraints,
which renders its solution as a monolithic exponential conic program challenging. Instead, Algo-
rithm 1 employs a column-and-constraint generation scheme,e.g., [43], that alternates between(i) the
solution of relaxations of problem(4) that omit most of its variables and constraints and(ii) adding
those variables and constraints that promise to maximally tighten the relaxations.

Theorem 4. Algorithm 1 solves problem(4) in �nitely many iterations. Moreover,LBt andUBt
constitute monotone sequences of lower and upper bounds on the optimal value of problem(4).

A key step in Algorithm 1 is the identi�cation of most violated indices(i; z) 2 [N ]� C of the �rst and
second constraint set in the reduced DR regression problem(4) for a �xed solution(� ; �; s; u � ; v � ).
For the �rst constraint set in(4), the identi�cation of such indices requires for each data pointi 2 [N ]
the solution of the combinatorial problem

maximize
z

min
u + ;v +

�
u+ + v+ :

�
(u+ ; 1; � si � �d C(z; z i )) 2 K exp

(v+ ; 1; � yi � N
> x i � yi � C

> z � yi � 0 � si � �d C(z; z i )) 2 K exp

��

subject to z 2 C;
(5)

where an optimal value greater than1 corresponds to a violated constraint; an analogous problem can
be de�ned for the second constraint set in(4). Despite its combinatorial nature, the above problem
can be solved ef�ciently by means of Algorithm 2.

Theorem 5. Algorithm 2 identi�es a most violated constraint for a given data-pointi 2 [N ] in time
O(k + n + m2).
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Figure 2: Runtime comparison between our column-and-constraint scheme and a naïve solution of
problem (4) as a monolithic exponential conic program.Left: Runtimes form = 10 binary features
as a function of the numberN of data points.Middle: Runtimes forN = 50 as a function ofm.
Right: Runtimes of our column-and-constraint scheme only for varying combinations ofm andN . In
all graphs, shaded regions correspond to 10%-90% con�dence regions and bold lines report median
values over50statistically independent runs. Note the log-scale in the plots.

Algorithm 2 �rst determines for each categorical featurez j , j = 1 ; : : : ; m, the feature valuez?
j 2

C(kj ) n f z i
j g that,ceteris paribus, contributes to a maximal constraint violation in timeO(k). The

subsequent step sorts the different featuresj = 1 ; : : : ; m in descending order of their contribution to
constraint violations in timeO(m logm). The last step of Algorithm 2, �nally, constructs the most
violated constraintz across those in which� = 0 ; : : : ; m categorical feature values deviate fromz i

and subsequently picks the most violated constraint of these in timeO(n + m2). We note that the
overall complexity ofO(k + n + m2) can be reduced toO(k + n + m logm) by a clever use of data
structures in the �nal step; for ease of exposition, we omit the details. Finally, since Algorithm 2 is
applied to each data pointi 2 [N ], the overall complexity increases by a factor ofN . We provide
additional intuition behind Algorithm 2 immediately before the proof of Theorem 5 in Appendix E.

4 Numerical Results

Section 4.1 �rst compares the runtimes of our column-and-constraint scheme from Section 3 with
those of solving the DR logistic regression problem(4) naïvely as a monolithic exponential conic
program. We subsequently compare the classi�cation performance of problem(1) with those of a
classical unregularized and regularized logistic regression on standard benchmark instances with
categorical features (Section 4.2) and mixed features (Appendix C).

All algorithms were implemented in Julia [5] (MIT license) and executed on Intel Xeon 2.66GHz
processors with 8GB memory in single-core mode. We use MOSEK 9.3 [26] (commercial) to solve
all exponential conic programs through JuMP [12] (MPL2 License). (We note the open source solvers
Ipopt and CVXOpt could be used instead of MOSEK.) All source codes and detailed results are
available on GitHub (https://github.com/selvi-aras/WassersteinLR ).

4.1 Runtime Comparison with Monolithic Formulation

We �rst compare the computation times of our column-and-constraint scheme from Section 3 with
those of solving the DR logistic regression problem(4) naïvely as a monolithic exponential conic
program. To this end, we randomly generate synthetic logistic regression instances with varying
numbersN of data points andm of binary features. While Figure 2 (left) shows that both approaches
scale similarly in the numberN of data points, Figure 2 (middle) reveals that the solution of the
monolithic formulation scales exponentially in the numberm of binary features. In contrast, our
column-and-constraint scheme scales gracefully in both the numberN of data points and the number
m of binary features (cf. Figure 2, right). A similar behavior can be observed with more general,
non-binary categorical features; we omit the results due to space constraints.

4.2 Performance on Categorical-Feature Instances

We next compare the classi�cation performance (in terms of the out-of-sample classi�cation error) of
our unregularized (`DRO') and Lasso-regularized (`r-DRO') DR logistic regression problem(1) with
those of a classical unregularized (`LR') as well as Lasso-regularized (`r-LR'), mass transportation-
regularized (MT) [31, 32], and robust Wasserstein pro�le inference-regularized (PI) [7] logistic
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Data Set N k m LR DRO (� = 1 ) DRO (� = m) r-LR r-DRO (� = 1 ) r-DRO (� = m) MT (� = 1 ) MT (� = m) PI (� = 0 :05)

breast-cancer 277 42 9 29.56% 29.15% 28.55%†‡ 29.05% 29.16% 28.82% 29.44% 29.40% 29.33%
spect 267 22 22 18.81% 17.72% 17.51% 17.79% 18.38% 15.83%†‡ 18.49% 18.74% 20.60%
monks-3 554 11 6 2.07% 2.08% 2.10% 2.14% 2.19% 2.13% 2.15% 2.15% 37.87%
tic-tac-toe 958 18 9 1.92% 1.69% 1.67%† 1.68% 1.68% 1.69% 1.72% 1.81% 30.02%
kr-vs-kp 3,196 37 36 2.64% 2.66% 2.64% 2.69% 2.66% 2.66% 2.77% 2.74% 12.85%
balance-scale? 625 16 4 0.85% 0.82% 0.72% 0.73% 0.71% 0.64%†‡ 0.72% 0.69% 36.10%
hayes-roth? 160 11 4 17.00% 16.31% 16.09%†‡ 18.66% 18.19% 17.78% 17.50% 16.38% 37.59%
lymphography? 148 42 18 21.17% 17.83% 16.72%†‡ 17.38% 17.52% 17.03% 19.41% 17.83% 20.00%
car? 1,728 15 6 4.73% 4.73% 4.73% 4.99% 4.76% 4.87% 4.73% 4.77% 15.37%
splices? 3,189 229 60 6.80% 5.92%†‡ 6.66% 6.22% 5.99% 6.02% 6.57% 6.87% 11.08%
house-votes-84 435 32 16 6.60% 4.43% 5.37% 4.54% 4.41% 5.16% 4.78% 5.54% 4.26%†
hiv 6,590 152 8 5.94% 5.93% 5.92% 5.90%† 5.90%† 5.90%† 6.04% 6.03% 20.45%
primacy-tumor? 339 25 17 13.93% 13.66% 13.76% 14.51% 14.06% 14.19% 13.87% 13.85% 19.18%
audiology? 226 92 69 14.18% 14.03% 14.40% 3.11% 2.80%†‡ 3.91% 12.64% 7.49% 15.49%

Table 1: Classi�cation errors of unregularized as well as Lasso-, mass transportation-, and pro�le
inference-regularized variants of the classical logistic regression and our DR regression on UCI
benchmark instances with categorical features only. The smallest error within each model group
(unregularized vs. regularized) is highlighted in italics, whereas the smallest error overall (across
all groups) is printed in bold. The dagger (†) and double dagger (‡) symbols next to the best model
denote statistically signi�cant improvements over LR and the second best model, respectively.

regression on the 14 most popular UCI data sets that only contain categorical features having more
than 30 rows [11] (varying licenses). Instances with multiple output labels are indicated with a star;
we convert them into instances with binary output labels by distinguishing between the majority class
vs. all other classes. The instances vary in the numberN of data points, the numberm of categorical
features as well as, accordingly, the numberk of slopes considered in the one-hot encoding of the
categorical features (cf. Section 2.1). All results are reported as means over 100 random training
set-test set splits (80%:20%). The radius� 2 f 0; 10� 5; : : : ; 10� 4; : : : ; 1g of the Wasserstein ball
as well as the Lasso penalty
 2 f 0; 1

2 � 10� 5; : : : ; 1
2 � 10� 4; : : : ; 1

2 g are selected via 5-fold cross-
validation. We consider two variants of our DR logistic regression that employ a different output label
weight (� = 1 vs. � = m) in the ground metric (cf. De�nition 2). The results are reported in Table 1.
(Run-times and are provided in Appendix D where we also describe how statistical signi�cance was
assessed.) The table shows that for the unregularized model, the classical logistic regression achieves
the lowest classi�cation error in 21% of the instances, whereas our DR logistic regression achieve
the lowest classi�cation error in 36% and 79% of the instances for� = 1 ; m, respectively. (The
double-counting of ties means these percentages don't sum to 100%.) For the regularized model,
the results change to 14% (classical logistic regression) vs. 57% (each of our models). Within the
numerical-feature Wasserstein DRO benchmarks, PI achieves the lowest classi�cation error in 14%
of the instances, whereas MT achieves in 42% and 57% of the instances for� = 1 ; m, respectively.
Globally, one of our methods is the winning approach in 12 out of 14 datasets (in the remaining 2
they are the second best approach without statistically signi�cant inferiority). In 9 of the datasets
our methods win strictly (without a tie), and in 7 of these datasets the improvements are statistically
signi�cant over all other approaches.

5 Conclusions

We proposed a new DR mixed-feature logistic regression model where the proximity between
the empirical distribution and the unknown true data-generating distribution is measured by the
popular Wasserstein distance. Despite its exponential-size formulation, we prove that the underlying
optimization problem can be solved in polynomial time, and we develop a practically ef�cient
column-and-constraint generation scheme for its solution. The promising performance of our model
is demonstrated in numerical experiments on standard benchmark instances. We note that our column-
and-constraint scheme readily extends to other DR mixed-feature machine learning models such
as linear regression, support vector machines and decision trees. Applying our algorithm in those
settings is a promising direction for future research. A further interesting direction is the development
of tailored solution schemes rather than using off-the-shelf solvers for solving our DR mixed-feature
logistic regression problem.
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Appendix A: Performance Guarantees

Wasserstein ambiguity sets bene�t from measure concentration results that characterize the rate at
which the empirical distributionbPN converges to the unknown true distributionP0. In the following,
we review existing results from the literature to characterize the �nite sample and asymptotic
guarantees of our DR logistic regression (1).

Theorem 6(Finite Sample Guarantee). Assume thatP0 is light-tailed, that is,EP0 [exp(k� ka)] � A
for somea > 1 andA > 0. Then there arec1; c2 > 0 only depending onP0 through the light-tail
parametersa, A and the feature space dimensions(n; m) such that any optimizer� ? to (1) satis�es

[P0]N
 

EP0 [l � ? (x ; z; y)] � sup
Q2 B � (bPN )

EQ [l � ? (x ; z; y)]

!

� 1 � �

for any con�dence level� 2 (0; 1) and Wasserstein ball radius

� �
�

log(c1=� )
c2N

� 1= max f m + n +1 ; 2g

�1
�
N �

log(c1=� )
c2

�
+

�
log(c1=� )

c2N

� 1=�

�1
�
N <

log(c1=� )
c2

�
:

Recall that[P0]N in the statement of Theorem 6 refers to theN -fold product distribution of
P0 that governs the data setf � i g[i 2 N ] upon which the optimizer(s)� ? of problem (1) de-
pend(s) viabPN . Theorem 6 shows that with arbitrarily high probability1 � � , the optimal
value supQ2 B � (bPN ) EQ [l � ? (x ; z; y)] of our DR logistic regression(1) overestimates the loss
EP0 [l � ? (x ; z; y)] incurred by any optimal solution� ? under the unknown true distributionP0

as long as the radius� of the Wasserstein ballB � (bPN ) is suf�ciently large. Since the categorical
features attain �nitely many different values, the bound of Theorem 6 can be sharpened by replacing
m + n + 1 with n + 1 if the constantsa andA are adapted accordingly. We emphasize that the decay
rate ofO(N � 1=(n +1) ) in Theorem 6 is essentially optimal; see [21, §3].

To study the asymptotic consistency of problem(1) as well as the existence of sparse worst-case
distributions, we �rst introduce a technical assumption.

De�nition 3 (Growth Condition). We say that the DR logistic regression(1) satis�es thegrowth
conditionif (i) the hypotheses� are restricted to a bounded setH � R1+ n + k ; and (ii) there is
� 0 2 � andC > 0 such thatl � (� ) � C[1 + d(� ; � 0)] across all� 2 H and� 2 � .

Lemma 1. If we restrict the hypotheses� to a bounded setH � R1+ n + k , then the DR logistic
regression(1) satis�es the growth condition of De�nition 3.

We are now in the position to study the asymptotic consistency of problem (1).

Theorem 7(Asymptotic Consistency). Under the assumptions of Theorem 6, we have

sup
Q2 B� N (bPN )

EQ [l � ? (x ; z; y)] �!
N !1

EP0 [l � ? (x ; z; y)] P0-a.s.

whenever(� N ; � N ) is set according to Theorem 6 for allN 2 N,
P

N � N < 1 , limN !1 � N = 0 ,
and the growth condition in De�nition 3 is satis�ed.

Theorem 7 shows that the DR logistic regression(1) achieves asymptotic consistency if the
(un-)con�denceparameter� and the radius� of the Wasserstein ball are reduced simultaneously.
Thus, any optimal solution to(1) converges to the optimal solution of the (non-robust) logistic
regression under the unknown true distributionP0 when the size of the data set increases.

The proof of Theorem 1 shows that the optimization problem characterizing the worst-case distribution
Q? 2 B � (bPN ) comprises exponentially many decision variables. It is therefore natural to investigate
the complexity of worst-case distributions to our DR logistic regression(1). The next result shows
that there exist worst-case distributions that exhibit a desirable sparsity pattern: their numbers of
atoms scale with the number of data samples.
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Theorem 8(Existence of Sparse Worst-Case Distributions). Assume that the growth condition in
De�nition 3 is satis�ed. Then there are worst-case distributionsQ? 2 B � (bPN ) satisfying

EQ? [l � ? (x ; z; y)] = sup
Q2 B � (bPN )

EQ [l � ? (x ; z; y)]

such thatQ? is supported on at mostN + 1 atoms.

Our performance guarantees in this section scale with the dimension of the feature space as we seek
for a high con�dence of the unknown true distribution being contained in our ambiguity setB � (bPN ).
A dimension-independent performance guarantee can be obtained along the lines of [7] if one instead
only seeks for a high con�dence of the unknown true model� ? being contained in the union of
optimal classi�ers corresponding to the individual distributionsP contained inB � (bPN ). We refer to
[44] for a detailed review of the achievable performance guarantees of Wasserstein ambiguity sets
with respect to the dimension of the feature space.

Appendix B: Finding the Worst Distribution in Example of Section 2.2

We provide further details here on the derivation of the worst distribution associated with the
benchmark in Section 2.2 where we treat the (only) binary feature as a numerical feature and use the
DR logistic regression algorithm of [31]. We have a single binary featurez 2 f� 1; 1g and there is
no intercept term so the log-loss function isl � (z; y) = log(1 + exp( � � � y � z)) . The true unknown
value of� is � = 1 , we have a data set(zi ; yi ) i 2 [N ], and we takep = 1 , � = 1 (distance metric
parameters), and� = 1=(2

p
N ). We would like to solve the worst distribution problem

sup
Q2 B � (bPN )

EQ [l � (z; y)] : (6)

We can do this by considering the following problem taken from [32, Thm 20] and adopted for our
speci�c setting:

maximize
�; f � i gi 2 [N ]

� +
1
N

NX

i =1

�
(1 � � i )l � (zi ; yi ) + � i l � (zi ; � yi )

�

subject to � +
1
N

NX

i =1

� i = � � 


0 � � i � 1; i 2 [N ]

� � 0:

(7)

It is parametrized by some
 2 [0; minf �; 1g] and [32, Thm 20] show that its optimal value for
the case
 = 0 coincides with the optimal value of problem(6). Furthermore, if we denote by
(� ?(
 ); f � ?

i (
 )gi 2 [N ]) the optimal solutions to (7), then the sequence of probability distributions

Q
 =
1
N

NX

i =2

�
(1 � � ?

i (
 )) � (z i ;y i ) + � ?
i (
 )� (z i ;� y i )

�
+

� (
 )
N

� (z1 + � ? ( 
 ) N
� ( 
 ) ;y 1 )

+
1 � � (
 )

N

�
(1 � � ?

1(
 )) � (z1 ;y 1 ) + � ?
1(
 )� (z1 ;� y1 )

�
(8)

where� (
 ) := 
= (� ?(
 ) + 2 � � + 
 ), constructs an asymptotically optimal solution to problem(6)
as
 # 0. In order to explicitly characterize this sequence, we derive a closed-form solution to
problem (7). Using the equality constraint to substitute for� in the objective in (8) yields

maximize
f � i gi 2 [N ]

� � 
 �
1
N

NX

i =1

� i +
1
N

NX

i =1

�
(1 � � i )l � (zi ; yi ) + � i l � (zi ; � yi )

�

subject to 0 � � i � 1; i 2 [N ]

� � 
 �
1
N

NX

i =1

� i :
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Ignoring the constant terms in the objective and re-arranging terms yields

maximize
f � i gi 2 [N ]

NX

i =1

� i
�
� 1 + l � (zi ; � yi ) � l � (zi ; yi )

�

subject to 0 � � i � 1; i 2 [N ]

� � 
 �
1
N

NX

i =1

� i :

Sincezi 2 f� 1; +1g; i 2 [N ] holds, we havel � (zi ; � yi ) � l � (zi ; yi ) 2 f� 1; +1g, which implies
that the coef�cients of� i in the objective function are non-positive. Hence,� ?

i = 0 ; i 2 [N ] is an
optimal solution to the problem. This implies� ?

i (
 ) = 0 ; i 2 [N ] and� ?(
 ) = � � 
 are optimal in
problem (7).

We can then observe from(8) that the worst distribution places1=N mass on each data pointi =
2; : : : ; N , and the remaining1=N mass is distributed as:(1 � � (
 ))=N mass on the data pointi = 1
and� (
 )=N mass on the point(z1+ ( � � 
 )N


= 2 ; y1) which isnot in the data-set and in fact is an infeasible
point. In our experiments, we take
 = 10 � 3, because the optimal value of problem(7) numerically
converges after this value, and one can then verify that in the setting we work with (N = 250) a mass

of 10� 3

500 is placed on the point with featurez1 + ( � � 
 )N

= 2 = 1 +

( 1
1

p
N

� 10� 3 )N

10� 3 =2 u 15; 312and label
y1. This summarizes the speci�c approach we took to obtain the worst distribution in Figure 1 and
demonstrates the key problem that arises with treating categorical variables as numerical.

Appendix C: Numerical Results on UCI Data-Sets with Mixed Features

We repeat the experiment of the Section 4.2 for the �ve most popular mixed-feature instances of the
UCI data set [11]. The results are reported in Table 2. The conclusions are qualitatively similar to
those of Section 4.2. We highlight, however, that now only two of the lowest classi�cation errors are
achieved by one of the non-robust models, whereas the lowest classi�cation error in each instance is
obtained by at least one of the robust models we propose.

Data Set N n k m LR DRO (� = 1 ) DRO (� = m) r-LR r-DRO (� = 1 ) r-DRO (� = m)

credit-approval 690 6 36 9 14.13% 13.77% 13.04% 14.13% 14.13% 13.04%
annealing? 798 6 46 32 2.52% 2.83% 2.52% 2.20% 1.89% 1.89%
contraceptive? 1,473 2 15 7 33.16% 33.16% 33.16% 32.82% 32.99% 32.82%
hepatite 155 6 23 13 16.13% 16.13% 19.35% 19.35% 17.74% 16.13%
cylinder-bands 539 19 43 15 23.36% 21.50% 21.50% 23.36% 21.50% 22.43%

Table 2: Classi�cation errors of unregularized and Lasso-regularized variants of the classical logistic
regression and our DR regression on UCI benchmark instances with mixed features. We use the same
notation and highlighting conventions as in Table 1.

Appendix D: Further Details on Numerical Experiments

Throughout the numerical experiments, we �xedp = 1 in the ground metric (cf. De�nition 2).

Synthetic data sets:In Section 4.1 we generate synthetic data sets withN data points andm binary
features. The data generation process is summarized in Algorithm 3.

UCI data sets: The datasets of Sections 4.2 and Appendix C were taken from the UCI repository
[11]. Missing values (NaNs) were encoded as a new category of the corresponding feature; the dataset
breast-canceris an exception, where rows with missing values were dropped. Some data sets include
features that are derivatives of the labels, primary keys of the instances (e.g., theauidologydata
set), or they have features with only one possible category (e.g., theannealingandcylinder-bands
data sets). We removed such features manually. We also removed rows that were readily identi�ed
as erroneous (e.g., two rows incylinder-bandshad less columns than required). Data sets with
multi-class (i.e., non-binary) labels were converted to binary labels by distinguishing between the
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Algorithm 3 Construction of synthetic data sets in Section 4.1.

Sample the components of� 0 and� C i.i.d. from a standard normal distribution
Normalize� 0 and� C by dividing them withk� k2, where� = ( � 0; � C)
for i 2 f 1; : : : ; N g do

Constructz i 2 C(2) � : : : � C(2) by samplingz i � f 0; 1gm uniformly at random
Findpi , the probability of thei th data point having label+1 , by using the `true'� 0 and� C:

pi =
�
1 + exp( � [� 0 + � C

> z i ])
� � 1

Sampleyi 2 f� 1; 1g from a Bernoulli distribution with parameterpi

end for
The synthetic data set is the collection of data pointsf (z i ; yi )gi 2 [N ] constructed above

majority label class and all other classes. If a data set includes separate training and test sets, we
merged them and subsequently applied our training set-test set split as described in the main paper.
As per standard practice, we randomly permuted the rows of each data set before conducting the splits
into training and test sets. For the detailed data processing steps, we refer to the GitHub repository
accompanying this paper, which also contains a sample Python 3 script.1

Implementation of the column-and-constraint generation scheme:In our implementation, we
switch between solving the primal and dual exponential conic reformulation of the DR logistic
regression problem, as we found that sometimes the dual problem can be solved more easily than
the primal. We have further implemented an `easing' step in the column-and-constraint generation
scheme that periodically deletes constraints fromW + andW � whose slacks exceed a pre-speci�ed
threshold. To this end, note that the constraintsu+

i; z + v+
i; z � 1, (i; z) 2 W + , in the relaxations of

the exponential conic reformulation(4) have a slack ranging between0 and1 by construction. We
implemented variants of our column-and-constraint generation scheme that conduct easing steps either
every200iterations or in iterationt = 100 � 1:5k , k 2 N. We have also implemented variants that
keep the slack threshold constant at0:05and where this threshold starts at0:02and is subsequently
increased by0:02 in each easing step. In all of our variants, a constraint is deleted at most once, that
is, it is no longer considered for deletion if it has been reintroduced after a prior deletion. This ensures
that Algorithm 1 terminates in �nite time without cycling. Analogous steps have been implemented
for the constraintsu�

i; z + v�
i; z � 1, (i; z) 2 W � .

Determining statistical Signi�cance: In the numerical experiments of Section 4.2 we compare the
means of100out-of-sample errors attained by several logistic regression methods and also identify
which methods appeared to be statistically signi�cant. In Table 1, for example, a dagger (†) symbol
next to the winning approach denotes statistically signi�cant error improvement over the standard
logistic regression (`LR') and a double dagger (‡) symbol denotes such improvement over the second
best approach. Note that if the winning approach is a variant of the DRO methods we propose, then
the second best approach is taken over the methods excluding our methods for a fair comparison.

We add a dagger (†) to the winning approach according to the following approach. Firstly, we
subtract (element-wise) the vector of errors attained by standard logistic regression from the vector
of errors attained by the winning approach. Each element of the new vector is the `additional error'
the winning approach has compared to the standard logistic regression. We then try to reject the
hypothesis (at5%-signi�cance level) that this additional error is non-negative (i.e., we try to reject
the hypothesis that the standard logistic regression is at least as good). To this end, we compute the
t-statistic for the mean of the additional errors vector with a hypothesis mean of0 and sample size of
100. We then compute the cumulative probability of this value via a one-sided t-test (with100� 1
degrees of freedom) to obtain a p-value. If this value is less than0:05, then we reject the hypothesis,
concluding that the improvement is signi�cant. Note that, with this approach we implicitly assume the
out-of-sample errors are independent, which is typically not the case [29]. Hence, we acknowledge
that these tests of signi�cance are only approximate. The presence of a double dagger is determined
analogously.

Computing environment: We implemented all algorithms in Julia using MOSEK's exponential
cone solver as well as JuMP to interact with the solver. We used the high performance computing

1https://github.com/selvi-aras/WassersteinLR
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Data Set N k m LR DRO (� = 1 ) DRO (� = m) r-LR r-DRO (� = 1 ) r-DRO (� = m) MT (� = 1 ) MT (� = m) PI (� = 0 :05)

breast-cancer 277 42 9 0.06 218.61 214.83 0.07 15.19 20.52 0.08 0.09 0.02 + 0.07
spect 267 22 22 0.08 32.05 38.95 0.07 20.81 35.50 0.07 0.09 0.02 + 0.03
monks-3 554 11 6 0.12 46.83 42.59 0.08 31.04 42.53 0.12 0.14 0.03 + 0.02
tic-tac-toe 958 18 9 0.20 71.26 69.80 0.13 61.88 64.33 0.23 0.27 0.06 + 0.04
kr-vs-kp 3,196 37 36 1.65 217.98 40.64 0.71 21.79 11.29 2.11 2.87 0.34 + 0.08
balance-scale? 625 16 4 0.15 13.60 17.41 0.19 19.74 24.04 0.21 0.19 0.03 + 0.03
hayes-roth? 160 11 4 0.06 3.67 3.92 0.02 1.12 0.85 0.06 0.06 0.01 + 0.02
lymphography? 148 42 18 0.09 145.46 154.69 0.03 4.83 11.91 0.08 0.09 0.01 + 0.07
car? 1,728 15 6 0.46 168.09 112.33 0.28 210.35 181.63 0.57 0.52 0.11 + 0.05
splices? 3,189 229 60 4.25 4,246.36 4,393.97 1.48 1,169.80 453.73 6.13 10.21 1.55 + 1.77
house-votes-84 435 32 16 0.18 88.56 105.66 0.06 21.6 20.71 0.12 0.16 0.03 + 0.08
hiv 6,590 152 8 8.44 2,874.62 1,598.83 2.20 2,119.26 768.01 10.94 12.93 2.18 + 1.14
primacy-tumor? 339 25 17 0.22 61.75 57.81 0.06 11.93 13.21 0.08 0.12 0.02 + 0.04
audiology? 226 92 69 0.05 18.52 16.10 0.04 9.19 5.28 0.11 0.13 0.04 + 0.16

Table 3: Mean runtimes (in seconds) associated with Table 1.

cluster of Imperial College London, which runs a Linux operating system as well as Portable Batch
System (PBS) for scheduling the jobs. We ran our experiments as batch jobs on Intel Xeon 2.66GHz
processors with 8GB memory in single-core and single-thread mode. The job descriptions as well as
all PBS commands are included in the GitHub repository.

Runtimes corresponding to Table 1:Table 3 presents the mean runtimes of each method on every
dataset for the experiments corresponding to Table 1. Here, the times reported for `LR' and `MT' are
the times the solver took to solve the corresponding optimization problems. The times corresponding
to `DRO' methods we propose are the total solver times summed for each sub-problem solved
during the column-and-constraint generation scheme, including the identi�cation of the most violated
constraints. The times corresponding to `PI' display the solution time to solve the regularized logistic
regression problems plus the time it takes to identify the regularization parameter as proposed in [7].
The columns of Table 3 are identical to those in Table 1.

Error bars of the experiments: Figures 3 and 4 report the error distributions corresponding to the
experiments of Tables 1 and 2, respectively. In these �gures, each of the six sub-plots reports the
errors of a speci�c model (e.g., regularized DRO with� = 1 ). In each sub-plot, the horizontal axis
lists the considered data sets, and the vertical axis visualizes the 100 test errors in box-and-whisker
representation (where the boxes enclose the25%and75%quartiles).
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Figure 3: Error bars for the unregularized (left column) and regularized (right column) methods on
the considered UCI datasets with categorical features.
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