
Detecting negative eigenvalues of exact and approximate

Hessian matrices in optimization

Warren Hare ∗ Clément W. Royer †

June 20, 2023

Abstract

Nonconvex minimization algorithms often benefit from the use of second-
order information as represented by the Hessian matrix. When the Hessian at
a critical point possesses negative eigenvalues, the corresponding eigenvectors
can be used to search for further improvement in the objective function value.
Computing such eigenpairs can be computationally challenging, particularly if
the Hessian matrix itself cannot be built directly but must rather be sampled
or approximated. In blackbox optimization, such derivative approximations are
built at a significant cost in terms of function values.

In this paper, we investigate practical approaches to detect negative eigen-
values in Hessian matrices without accessing the full matrix. We propose a gen-
eral framework that begins with the diagonal and gradually builds submatrices
to detect negative curvature. Crucially, our approach works both when exact
Hessian coordinate values are available and when Hessian coordinate values are
approximated. We compare several instances of our framework on a test set of
Hessian matrices from a popular optimization library, and finite-differences ap-
proximations thereof. Our experiments highlight the importance of the variable
order in the problem description, and show that forming submatrices is often
an efficient approach to detect negative curvature.

1 Introduction

This paper considers unconstrained optimization problems of the form

min
x∈Rn

f(x), (1.1)

∗Department of Mathematics, University of British Columbia, Okanagan Campus, Kelowna,
B.C. V1V1V7, Canada (warren.hare@ubc.ca, ORCID 0000-0002-4240-3903). Research partially
supported by NSERC Discovery Grant #2018-03865. Research for this paper supported by France-
Canada Research Funds 2022.

†LAMSADE, CNRS, Université Paris Dauphine-PSL, Place du Maréchal de Lattre de Tassigny,
75016 Paris, France (clement.royer@lamsade.dauphine.fr, ORCID 0000-0003-2452-2172). Re-
search partially supported by Agence Nationale de la Recherche through program ANR-19-P3IA-
0001 (PRAIRIE 3IA Institute). Research for this paper supported by France-Canada Research
Funds 2022.

1

where f : Rn → R is a nonconvex C2 function (C2 means twice continuously differen-
tiable). Due to the nonconvexity of the problem, it is desirable to design algorithms
that converge towards second-order critical points, that is, points where the gradient
vector is 0 and the Hessian matrix does not possess negative curvature. Indeed, if
the Hessian at a critical point has a negative eigenvalue, then better points (in the
sense of having lower function values) can be found by moving along an eigenvector
associated with this eigenvalue. This observation has long been a motivation for de-
signing nonlinear optimization algorithms exploiting negative curvature [11, 18, 19],
and recent advances have focused on schemes with worst-case complexity proper-
ties [4, 8, 21].

Although the above methods possess strong theoretical guarantees, they are more
expensive than other variants that do not rely on negative curvature exploitation. A
standard way of detecting negative curvature consists of evaluating the full Hessian
matrix and computing its minimum eigenvalue. Both the evaluation and the eigen-
value calculation can be viewed as expensive procedures, especially in large dimen-
sions. Matrix-free techniques for computing eigenvalues, such as Krylov subspace
methods, have thus gained traction in the nonlinear optimization community, as
they allow for computing eigenvalue approximations based solely on Hessian-vector
products [5, 10]. This paradigm allows for more tractable variants of second-order
methods, but still requires direct access to (partial) derivative information.

The situation becomes even more challenging while tackling problem (1.1) using
derivative-free (also called blackbox) optimization techniques, where the derivatives
of the objective function are not directly employed [2, 7]. In this setting, the Hes-
sian matrix cannot be directly accessed and one must resort to approximations.
Hessian approximations can be constructed through second-order finite-difference
formulas [9], although, some alternate estimation techniques have also been pro-
posed [15, 16]. If the Hessian approximations are sufficiently accurate, then it is
possible to design derivative-free techniques that exploit (approximate) negative
curvature in order to converge to second-order stationary points [1, 6, 13, 14, 17].

In derivative-free optimization, evaluating the objective function is often the
computational bottleneck and building a full Hessian approximation requires a num-
ber of evaluations that scales quadratically with the dimension. This scaling is not
alleviated by the use of Krylov-type estimates, which scan the full matrix at ev-
ery iteration. For this reason, there remains a need for efficient negative curvature
detection routines in a blackbox setting.

In this research, we explore numerical methods to rapidly determine if a negative
eigenvalue exists. We provide new tools that can be used to both check if second
order optimality is (approximately) obtained (see Theorem 2.8), and to rapidly
determine a descent direction when negative eigenvalues exist (see Theorem 2.9).
Our approach departs from standard numerical linear algebra techniques, such as
Krylov subspace methods, in that it constructs submatrices one element at a time.
As a result, this process is particularly well suited for the blackbox optimization
setting, in which one can obtain an approximate Hessian coefficient at the expense

2

of one or two additional function evaluations. We instantiate our framework based
on several strategies for querying Hessian coefficients or their approximations, which
we validate on matrices extracted from the CUTEst optimization benchmark. Our
experiments reveal that exploiting diagonal information to decide which submatrices
to build can lead to faster detection of negative curvature. Perhaps surprisingly, we
also provide numerical evidence that the order in which the variables are provided
in optimization codes is often a good way of building submatrices, that allows for
rapidly capturing significant negative curvature information. Our results illustrate
the potential benefits of simple negative curvature estimates, even in a blackbox
context.

The remainder of this paper is organized as follows. Section 1.1 concludes the
introductory part of the paper by recalling some key results about eigenvalues and
symmetric matrices. Section 2 describes our main algorithm and its variant tailored
to derivative-free optimization. Numerical experiments with both variants are pre-
sented in Section 3. Section 4 concludes the paper by discussing future uses of our
approach.

1.1 Background on eigenvalues of symmetric matrices

Throughout this paper we only consider symmetric real-valued matrices, as our
motivation stems from Hessian matrices in optimization over Rn. Given a symmetric
matrix A ∈ Rn×n, we say that B is a principle submatrix of A if B can be constructed
by deleting both the ith row and the ith column of A for some values of i. (Note
that ‘some values of i’ could consist of the empty set, as such A is a principle
submatrix of A.) Principle submatrices play a strong role in eigenvalue analysis, as is
demonstrated by Cauchy’s Interlacing Eigenvalue Theorem. This result is standard
in the linear algebra literature, and has several extensions beyond the symmetric,
real-valued setting [20, Theorem 10.1.1]. It can also be applied when considering
submatrices expressed in a different basis, as in the Lanczos’ method [20, Chapter
13]. In this paper, we will exploit the following form of the theorem.

Theorem 1.1 (Cauchy’s Interlacing Eigenvalue Theorem). Let A ∈ Rn×n be a
symmetric matrix and let B ∈ Rm×m be a principal submatrix of A. Suppose A has
eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn and B has eigenvalues β1 ≤ β2 ≤ . . . ≤ βm. Then,
for each k ∈ {1, 2, . . . ,m}, we have

λk ≤ βk ≤ λk+n−m.

An immediate corollary of Theorem 1.1 is that a matrix is positive definite if
and only if all principle submatrices are positive definite.1 In particular, if the kth

1As A is a principle submatrix of A, if all principle submatrices are positive definite, then
obviously A is positive definite. Conversely, if A is positive definite, then λ1 > 0, so the smallest
eigenvalue of any principle submatrix is strictly positive and thus all principle submatrices are
positive definite.

3

eigenvalue of a principle submatrix is negative, then the kth eigenvalue of the original
matrix is also negative.

Consequently, if we seek to prove that negative eigenvalues exist, then it suffices
to find a principle submatrix with a negative eigenvalue. This observation is the
basis of our main algorithm, which is described in the next section.

2 The Negative Eigenvalue Seeker Algorithm (Nesa)

In this section, we present the Negative Eigenvalue Seeker Algorithm (Nesa), based
on constructing principle submatrices in order to identify a submatrix with a neg-
ative eigenvalue, if any. Section 2.1 details the main version of the algorithm when
exact matrices are used, while Section 2.2 is concerned with a variant of the algo-
rithm dedicated to finite-difference matrix approximations. In both cases, we state
the algorithm in a general fashion. We describe several ways to instantiate the
algorithms in Section 2.3.

2.1 Nesa for exact Hessian matrices

Algorithm 1 (Nesa) describes our approach when the coefficients of A can be eval-
uated directly. The idea behind Nesa is to gradually fill an auxiliary matrix Ã
with coefficients of A. This matrix is initialized to diag(A), i.e., the diagonal matrix
with the same coefficients as A on the diagonal and zeros elsewhere. If any element
of the diagonal, which is a one-by-one submatrix, is sufficiently negative, then the
method terminates immediately. Otherwise, the algorithm selects a coordinate (i, j)
and updates Ã by changing its 0s in coordinates (i, j) and (j, i) to the value in those
coordinates of A. All principle submatrices of A that are stored in Ã and include
the coefficients Ãi,j and Ãj,i are then used to compute an estimate for the minimum
eigenvalue of A. Depending on the value of that estimate, the process either repeats
or stops.

Note that the stopping criterion involves a tolerance on the minimum eigenvalue
of A. When this tolerance is set to 0, as will be the case in our experiments, finding
any nonpositive eigenvalue in a principle submatrix will lead to termination of the
method.

Remark 2.1. In practical implementation of lines 6 and 7, it is easiest to track
which coefficients have been updated and which coefficients have not been updated;
as opposed to selecting coordinate such that Ãi,j ̸= Ai,j.

Furthermore, we do not compute eigenvalues of all principle submatrices in Ci,j,
but restrict ourselves to the largest possible ones with no overlap. Finding such
matrices amounts to finding the largest cliques in a graph, a well-understood problem
in graph theory [3].

Regardless of the choice of ϵ and the way the indices are selected on Line 6 of
Algorithm 1, we can provide guarantees regarding the termination and outputs of
the method. This is the purpose of the two following lemmas.

4

Algorithm 1 Negative Eigenvalue Seeker Algorithm (Nesa)

1: procedure Nesa(A, ϵ)
2: % A ∈ Rn×n symmetric matrix that can be sampled coefficient-wise.
3: % ϵ ≥ 0 stopping parameter (default 0).
4: Initialize Ã = diag(A) and λ = λmin(Ã).
5: while λ ≥ −ϵ & Ã ̸= A do
6: Select (i, j), i > j: a coordinate such that Ãi,j ̸= Ai,j .
7: Update Ãi,j ← Ai,j and Ãj,i ← Ai,j .
8: Compute the set Ci,j of all principle submatrices of A stored in Ã that

include Ai,j and Aj,i.
9: Set λ = min{λmin(C)|C ∈ Ci,j}.

10: end while
11: Return Ã and λ.
12: end procedure

Lemma 2.2 (Finite termination ofNesa). Nesa terminates after at most n(n−1)/2
iterations.

Proof. Each iteration updates one coordinate (i, j), i > j, with Ãi,j ̸= Ai,j . As there
are at most n(n − 1)/2 such elements that are nonzero, we must have Ã = A after
at most n(n− 1)/2 iterations.

Lemma 2.3 (Output of Nesa). Upon termination of Nesa, the minimum eigen-
value of A is not bigger than λ.

Proof. If Nesa terminates due to Ã = A, then obviously λ = λmin(A) and the
statement is true. If Nesa terminates before Ã = A, the value of λ is by definition
the minimum eigenvalue of a principle submatrix C of A. The result then follows
directly from Theorem 1.1.

2.2 Nesa for approximate Hessians (NesaH̃)

As mentioned in the introduction, we are particularly interested in detecting negative
curvature in a derivative-free setting, where approximate Hessian matrices are built
using function values. In this paper, we focus on the most classical way of building
such matrices via finite differences, as explained in the following definition.

Definition 2.4. Let f : Rn 7→ R be C2 and x ∈ Rn. For a given h > 0, the
finite-difference estimate of ∇2f(x) at x is the matrix H̃(x) such that its diagonal
coefficients are given by

H̃i,i(x) =
f(x+ hei)− 2f(x) + f(x− hei)

h2
i=1,. . . ,n, (2.1)

5

and its off-diagonal coefficients are

H̃i,j(x) =
f(x+ hei + hej)− f(x+ hei)− f(x+ hej) + f(x)

h2
1 ≤ j < i ≤ n.

(2.2)

Based on this approximation, we define a variant of Nesa dedicated to Hes-
sian matrix approximations, called NesaH̃ (Nesa for approximate Hessians) and
described in Algorithm 2.

Algorithm 2 Nesa for approximate Hessians (NesaH̃)

1: procedure NesaH̃(h, ϵ)
2: % h > 0 finite difference parameter.
3: % ϵ ≥ 0 stopping parameter (default 0).
4: Initialize set Ã = 0, then for i = 1, 2, . . . , n set Ãi,i = H̃i,i(x) using (2.1).

Set λ = min{diag(Ã)}.
5: while λ ≥ −ϵ & Ã ̸= H̃ do
6: Select (i, j), i > j: a coordinate such that Ãi,j ̸= H̃i,j , where H̃i,j is

given by (2.2).
7: Update Ãi,j ← H̃i,j and Ãj,i ← H̃i,j .
8: Compute the set Ci,j of all principle submatrices of H̃ stored in Ã that

include H̃i,j and H̃j,i.
9: Set λ = min{λmin(C)|C ∈ Ci,j}.

10: end while
11: Return Ã and λ.
12: end procedure

Remark 2.5. Similar to Nesa, lines 6 and 7 of NesaH̃ are written using expres-

sions checking Ã ̸= H̃ and Ãi,j ̸= H̃i,j, while in practice, we simply keep track of
which (i, j) have been updated. Also similar to Nesa, it suffices to compute principle
submatrices of maximum size only.

Results analogous to those of the previous section can be established for NesaH̃ .
Termination follows from the same argument than in the case of Nesa.

Lemma 2.6 (Finite termination of NesaH̃). NesaH̃ terminates after at most n(n−
1)/2 iterations.

On the other hand, interpreting the output of NesaH̃ requires more analysis
than that of Nesa. First, we require a bound on the error between the eigenvalues
of an approximated Hessian and the eigenvalues of the true Hessian. In the next
lemma, we use Bh(x) to denote the open ball of radius h > 0 centred at x: Bh(x) =
{x′ : ∥x− x′∥ < h}.

6

Lemma 2.7 (Error analysis for Hessian approximation). Let f : Rn 7→ R be C2.
Let x ∈ Rn and h > 0. Suppose that ∇2f is Lipschitz continuous on Bh(x) with
constant L. If H̃ is constructed as in Definition 2.4, then

∥∇2f(x)− H̃∥ ≤ 5

3

√
nLh (2.3)

and

|λmin(∇2f(x))− λmin(H̃)| ≤ 5

3

√
nLh. (2.4)

Proof. Equation (2.3) is a standard result from numerical analysis [9, Lemma 4.2.3].
A bound on the error in approximating the Hessian directly leads to a bound on
the error in approximating the minimum eigenvalue [7, Proposition 10.14], which
immediately leads to equation (2.3).

We can now analyze the guarantees provided by the output of NesaH̃ .

Theorem 2.8 (Output of NesaH̃). Suppose that Algorithm 2 is applied to f, x, h
such that ∇2f is Lipschitz continuous on Bh(x) with constant L. Then, upon termi-
nation of NesaH̃ , the minimum eigenvalue of ∇2f(x) is not bigger than λ+ 5

3

√
nLh.

Proof. By noting that NesaH̃ is simply Nesa applied to H̃, we see that Lemma 2.3

applies and the minimum eigenvalue of H̃ is not bigger than λ. Combining this with
the error bound from Lemma 2.7 concludes the proof.

Theorem 2.8 illustrates that detecting negative curvature in an approximate
Hessian matrix can be due to the finite-difference approximation. In derivative-
free optimization, the value of h is often chosen in an adaptive fashion and tends
to decrease as the algorithm unfolds: it is then possible to guarantee that “true”
negative eigenvalues will be detected by the method [13].

When the output of NesaH̃ is (sufficiently) negative, it can also be used to
determine a descent direction from a first-order stationary point.

Theorem 2.9. Let f : Rn 7→ R be C2. Let x̄ ∈ Rn be a first-order stationary point
of f and h > 0. Suppose that ∇2f is Lipschitz continuous on Bh(x̄) with constant
L. Suppose NesaH̃ returns Ã and λ such that λ < −5

3

√
nLh. Let C be a principal

submatrix of H̃ such that λ = λmin(C) and c be the eigenvector of C associated with
λ. Then c defines a direction of decrease for f at x̄.

Proof. Without loss of generality, we write

H̃ =

[
C X⊤

X Z

]
for some matrices X and Z. Define

d =

[
c
0

]
.

7

By definition of d, we have

d⊤H̃d = c⊤Cc = λ∥c∥2 = λ∥d∥2.

Applying Taylor’s theorem to f at x̄ and using that ∇f(x̄) = 0 by definition of x̄,
we have

f(x̄+ τd) = f(x̄) + τ∇f(x̄)⊤d+ τ2

2 d
⊤∇2f(x̄)d+O(∥τ∥3)

= f(x̄) + τ2

2 d
⊤
(
∇2f(x̄)− H̃

)
d+ τ2

2 d
⊤H̃d+O(∥τ∥3)

≤ f(x̄) + τ2

2 ∥∇
2f(x̄)− H̃∥∥d∥2 + τ2

2 λ∥d∥
2 +O(∥τ∥3)

≤ f(x̄) + τ2

2

(
5
3

√
nLh+ λ

)
∥d∥2 +O(∥τ∥3).

Applying λ + 5
3

√
nLh < 0 now shows that f(x̄ + τd) < f(x̄) for sufficiently small

values of τ .

2.3 Selecting coordinates

In this section, we describe several ways to instantiate both Nesa and NesaH̃ by
defining strategies to select coordinates in the process of building submatrices.

Given an n × n matrix, we define such a selection strategy using two ingredi-
ents. The first ingredient is a permutation of the set {1, 2, . . . , n}, while the second
ingredient describes how this permutation is used to define coordinates to select.

We first describe the second ingredient of our approach. Given a permutation
P = [p1, p2, . . . , pn] of {1, . . . , n}, we design two different ways of creating a selection
order called Build 1 and Build 2, respectively described by Algorithm 3 and Algo-
rithm 4. The output of these algorithms (Order) is an ordered list of coordinates
that is used to determine which (i, j) to select in line 6 of Algorithm 1 (respectively
line 8 of Algorithm 2).

Algorithm 3 Build 1

1: procedure Build1(P)
2: % P a permutation of the set {1, 2, . . . , n}

3:
Order = [(p1, p2), (p1, p3), (p1, p4), . . . , (p1, pn),

(p2, p3), (p2, p4), . . . , (p2, pn), . . . , (pn−1, pn)]
4: Return Order
5: end procedure

To understand the difference between these two algorithms, suppose that we
apply Nesa to a 4× 4 matrix using P = {1, 2, 3, 4}. As shown in Figure 1, Build 1
focuses on one row at a time and expands that row until the row is complete. It then
moves to the next available row and repeats the process. Effectively, this is creating
many small principle submatrices at the beginning of the process and then slowly
merging them as the process continues. On the other hand, as illustrated in Figure 2,
Build 2 starts near the diagonal and builds outwards until it the row is complete.

8

Algorithm 4 Build 2

1: procedure Build2(P)
2: % P a permutation of the set {1, 2, . . . , n}

3:
Order = [(p2, p1), (p3, p2), (p3, p1), (p4, p3) . . . , (p4, p1), . . . ,

(pn, pn−1), (pn, pn−2), . . . , (pn, p1)]
4: Return Order
5: end procedure


x1

x2
x3

x4

 −→

x1 1
1 x2

x3
x4

 −→

x1 1 2
1 x2
2 x3

x4

 −→

x1 1 2 3
1 x2
2 x3
3 x4



−→


x1 1 2 3
1 x2 4
2 4 x3
3 x4

 −→

x1 1 2 3
1 x2 4 5
2 4 x3
3 5 x4

 −→

x1 1 2 3
1 x2 4 5
2 4 x3 6
3 5 6 x4


Figure 1: An example of Build 1 working with Nesa will fill out a 4×4 matrix with
P = {1, 2, 3, 4}. The x = [x1, x2, x3, x4]

⊤ on the diagonal are filled out during initial-
ization. Each number represents the iteration of Nesa at which the corresponding
coefficient would be updated.


x1

x2
x3

x4

 −→

x1 1
1 x2

x3
x4

 −→

x1 1
1 x2 2

2 x3
x4

 −→

x1 1 3
1 x2 2
3 2 x3

x4



−→


x1 1 3
1 x2 2
3 2 x3 4

4 x4

 −→

x1 1 3
1 x2 2 5
3 2 x3 4

5 4 x4

 −→

x1 1 3 6
1 x2 2 5
3 2 x3 4
6 5 4 x4


Figure 2: An example of how Build 2 working with Nesa fills out a 4 × 4 matrix
with P = {1, 2, . . . , n}. The x = [x1, x2, x3, x4]

⊤ on the diagonal are filled out
during initialization. Each number represents the iteration of Nesa at which the
corresponding coefficient would be updated.

Effectively, this creates a principle submatrix and then focuses on expanding the
size of that principle submatrix as rapidly as possible.

We now elaborate on the first ingredient of our strategies, namely the choice of

9

a permutation of {1, . . . , n}, where n is the problem dimension. Since our algorithm
begins with the matrix diagonal, we seek to exploit this information upon selecting
the submatrices to be formed (recall that we only form submatrices when all diago-
nal elements are nonnegative). A naive approach consists in using the natural order
of the indices. Following previous strategies in derivative-free optimization [13], an-
other possibility is to consider the smallest diagonal elements as more promising for
building submatrices with negative curvature, and to give priority to the associated
indices. Conversely, one could prioritize the largest coefficients, in the hopes that
changes regarding these coefficients might have the largest impact. Finally, com-
bining indices corresponding to the smallest and the largest coefficients could also
be beneficial. These considerations lead us to the following four heuristics for the
permutation P :

1. Ordered: P = [1, 2, 3, . . . , n];

2. Smallest to Largest Diagonal Element (S2Lde): Choose P such that

Ap1,p1 ≤ Ap2,p2 ≤ . . . ≤ Apn,pn .

3. Largest to Smallest Diagonal Element (L2Sde): Choose P such that

Ap1,p1 ≥ Ap2,p2 ≥ . . . ≥ Apn,pn .

4. Interlacing Diagonal Elements (Ide): Create P temp as in S2Lde, then set

P = [p
temp
1 , ptempn , p

temp
2 , p

temp
n−1 , . . . , p

temp

⌈n/2⌉],

where ⌈·⌉ rounds-up to the nearest integer.

Note that the Ordered strategy is the only one that does not leverage information
from the matrix. In fact, if the matrix A is randomly generated, there is no reason
to believe that the order of the coefficients matters. However, as we will see in the
next section, this turns out not to be the case on matrices coming from optimization
benchmarks.

3 Experiments using exact and approximate Hessian
matrices

In this section, we investigate the numerical behavior of Nesa and NesaH̃ , equipped
with the heuristics described in Section 2.3. We compare those heuristics on a
matrix test set formed using Hessian matrices arising in the CUTEst library [12].
All implementations are inMatlab(version 9.10.0.1602886, R2021a), and eigenvalue
computations are done using the eig.m command. All implementations are available
on github2.

2https://github.com/clementwroyer/negative-eigs

10

https://github.com/clementwroyer/negative-eigs

3.1 Test Problems

To construct our test problems, we begin with a subset of 49 unconstrained problems
from the CUTEst collection [12] for which the objective function is twice continu-
ously differentiable and the Hessian matrix at the initial point has a negative eigen-
value. The complete problem list, along with their dimensions and classifications, is
given in Table 1.

Despite the diverse nature of the test set, we point out that all of these problems
were created by a human. As we will see later, this is relevant to the performance
of our method.

For each test problem, we ran two iterations of Newton’s method to generate
points x0, x1, and x2, where x0 is the initial point provided in the CUTEst col-
lection. This expands our test set to 147 matrices, of which 134 possess negative
curvature. Out of these 134 matrices, we discard 52 matrices that have negative
diagonal elements, since in that case both Nesa and NesaH̃ terminate without
iterating.

3.2 Using Nesa on exact Hessian matrices

In our first experiment, we apply Nesa to the 82 Hessian matrices computed using
the procedure described in the previous paragraph with ϵ = 0. We compare Build
1 and Build 2 using the 4 permutation heuristics for Nesa, leading us to 8 different
methods. For each problem, we determine which method(s) used the least number
of iterations to detect a negative eigenvalue. Table 3 summarizes the results: we
notice that the percentages are similar for both build types. In both cases, we see a
sharp advantage to selecting coordinates in the standard order {1, . . . , n} as well as
using the smallest-to-largest diagonal elements (S2Lde).

When the problem dimension is small, the number of possible strategies actu-
ally exceeds the number of possible orderings that can be used. Indeed, if n = 2,
then there is actually only 1 possible order for the selection procedure. There are
3! = 6 possible orders for the selection procedure when n = 3. (In general, when
the dimension is n, then there are [(n− 1)n/2]! possible orders for the selection
procedure.) Therefore, we also present the results after discarding two- and three-
dimensional problems (leaving 63 matrices out of 85). The updated percentages are
given in Table 4 and we see that Heuristic 1, Ordered, again results in the overall
best performance.

Before analyzing Table 4, we remark that the best variant of Nesa detects neg-
ative curvature within 2 iterations for 57 out of 82 matrices, which is significantly
faster than the upper bound provided in Lemma 2.2. The worst performance is ob-
served on a matrix from problem VAREIGVL (dimension 10): Nesa terminates in
28 iterations, which still improves over the theoretical maximum of (10× 9)/2 = 45
iterations.

Examining Table 4, perhaps the most surprising result is the performance of the
Ordered heuristic, particularly since the Ordered heuristic does not appear to use

11

Table 1: List of the CUTEst test problems.

Name Dimension Nature Name Dimension Nature

ALLINITU 4 Academic BIGGS6 6 Academic
BOX3 3 Academic BRYBND 10 Academic

DENSCHND 3 Academic DENSCHNE 3 Academic
DIXMAANA 15 Academic DIXMAANB 15 Academic
DIXMAANC 15 Academic DIXMAAND 15 Academic
DIXMAANE 15 Academic DIXMAANF 15 Academic
DIXMAANG 15 Academic DIXMAANH 15 Academic
DIXMAANI 15 Academic DIXMAANJ 15 Academic
DIXMAANK 15 Academic DIXMAANL 15 Academic
ENGVAL2 3 Academic EXPFIT 2 Academic
FMINSURF 16 Modeling FREUROTH 10 Modeling
GROWTHLS 3 Academic GULF 3 Modeling

HAIRY 2 Academic HATFLDD 3 Academic
HATFLDE 3 Academic HEART6LS 6 Modeling
HEART8LS 8 Modeling HELIX 3 Academic
HIMMELBB 2 Academic HIMMELBG 2 Academic

HUMPS 2 Academic KOWOSB 4 Modeling
LOGHAIRY 2 Academic MEYER3 3 Real
MSQRTALS 4 Academic MSQRTBLS 9 Academic
OSBORNEA 5 Modeling OSBORNEB 11 Modeling
PENALTY3 50 Academic SCOSINE 10 Academic
SINQUAD 50 Academic SPARSINE 10 Academic
SPMSRTLS 28 Academic VAREIGVL 10 Academic
VIBRBEAM 8 Modeling WATSON 12 Academic

YFITU 3 Modeling

Table 2: Problem list with CUTEst classification [12]. Academic nature means that
the problem was constructed by researchers for the academic purpose of testing one
or more algorithms. Modeling nature means that the problems was constructed as
part of a modeling exercise, but the solution is not used in a genuine practical ap-
plication. Real nature means that the problem was constructed from an application
for purposes other than testing algorithms.

any information about the problem to make its decision. However, we conjecture
that the Ordered heuristic is in fact using a very powerful piece of information
about the problem: when creating test problems, researchers naturally order the
variables from most impactful to least impactful. We further argue that this is
even more pronounced when practitioners are constructing real-world problems, as
models are naturally built starting from the most impactful variables. To check

12

Ordered S2Lde L2Sde Ide

Build 1 59.8 50.0 26.8 35.4
Build 2 58.5 56.1 31.7 41.5

Table 3: Percentage of problems where each build type and permutation heuris-
tic resulted in the least number of iterations to detect a negative eigenvalue (82
matrices).

Ordered: S2Lde L2Sde Ide

Build 1 50.0 38.3 13.3 13.3
Build 2 48.3 46.7 20.0 21.7

Table 4: Percentage of problems of dimension 4 and higher where each build type
and permutation heuristic resulted in the least number of iterations to detect a
negative eigenvalue (60 matrices).

our hypothesis, we thus consider the test set of 60 matrices, but we apply a random
permutation matrix to all matrices in order to re-order the variables prior to applying
our heuristics. The results appear in Table 5, and show that the ordering {1, . . . , n}
is no longer beneficial compared to our heuristic consisting in selecting the lowest-
curvature coordinate. We note, however, that the percentages are slightly in favor
of Build 2, especially for the Ordered and S2Lde heuristics. Recall that Build 2
promotes the construction of large submatrices, that are likely to be used by our
algorithm for better eigenvalue estimation. The results of Table 5 therefore suggest
that Build 2 is a better strategy on average.

Ordered: S2Lde L2Sde Ide

Build 1 13.3 46.7 15.0 10.0
Build 2 21.7 48.3 16.7 15.0

Table 5: Percentage of problems of dimension 4 and higher where each build type and
heuristic resulted used the least number of iterations to detect a negative eigenvalue.
(60 matrices after random shuffling of the variables).

To further check how the use of these specific variables helps in structuring the
Hessian matrix, we also applied a random orthogonal transformation to the variables
in each problem prior to applying our heuristics. The results appear in Table 6, and
concern 61 matrices3. In that setting, the four strategies become more on par with
one another using Build 1, while only the first two maintain a good performance
using Build 2. Interestingly, combining Build 2 with the Ordered heuristic emerges

3This number differs from the previous ones because applying an orthogonal transformation does
not preserve the sign of the diagonal elements.

13

as the best variant.

Ordered: S2Lde L2Sde Ide

Build 1 11.5 18.0 6.6 16.4
Build 2 49.2 41.0 9.8 16.4

Table 6: Percentage of problems dimension 4 and higher where each build type and
heuristic resulted used the least number of iterations to detect a negative eigenvalue
(61 matrices after random orthogonal transformation).

3.3 Using NesaH̃ on finite-difference Hessian approximations

In this section, we investigate the behavior of NesaH̃ applied with ϵ = 0. To
this end, we repeat the experiment in Subsection 2.1 assuming we are only given
access to the objective function of the 49 test problems. We thus compute finite-
difference estimates of the 147 Hessian matrices from the previous section using
the formulas given in Definition 2.4, an oracle for the objective function as well
as the points corresponding to the exact matrices described in Section 3.1. For
each matrix to approximate, we use three different values for the finite-difference
parameter h, namely {10−2, 10−4, 10−6}. We note that, due to approximation errors,
the finite difference Hessian approximation failed to have negative curvature 4 times
for h = 10−2 and 3 times for h = 10−6. Overall, we obtain 231 test matrices
with both negative curvature and no negative diagonal elements, 171 of which have
dimension at least 4.

Table 7 presents our results when the four heuristics are used. Similarly to
Tables 3 and 4, we observe that the Ordered strategy leads to the fastest negative
curvature detection.

Group Matrices Ordered S2Lde L2Sde Ide

Build 1, Prob. Dim. ≥ 4, all h 171 54.4 38.0 10.5 14.6
Build 1, Prob. Dim. ≥ 4, h = 10−2 56 55.4 37.5 17.9 19.6
Build 1, Prob. Dim. ≥ 4, h = 10−4 57 54.4 40.4 3.5 12.3
Build 1, Prob. Dim. ≥ 4, h = 10−6 58 53.4 36.2 10.3 12.1

Build 2, Prob. Dim. ≥ 4, all h 171 53.2 47.4 13.5 23.4
Build 2, Prob. Dim. ≥ 4, h = 10−2 56 53.6 46.4 16.1 26.8
Build 2, Prob. Dim. ≥ 4, h = 10−4 57 52.6 50.9 10.5 22.8
Build 2, Prob. Dim. ≥ 4, h = 10−6 58 53.4 44.8 13.8 20.7

Table 7: Percentage of problems of dimension 4 and higher where each build type and
heuristic resulted in the least number of iterations to detect a negative eigenvalue
(171 finite-difference matrices).

We begin by commenting that the best variant of NesaH̃ detects negative cur-

14

vature within 2 iterations on 100 matrices out of the 171 considered in the tables,
thereby using significantly less function evaluations than the upper bound provided
in Lemma 2.6. The worst case again corresponds to problem VAREIGVL (dimension
10), where NesaH̃ uses 48 function evaluations. This is still notably less than the
65 function evaluations that would be required to approximate the entire Hessian.

As in the previous section, we repeat the experiment with a random reordering
of the problem variables, so as to measure the significance of this ordering. Table 8
presents the results. As in Section 2.1, we observe that the performance of the
Ordered heuristic drops drastically in favor of the S2Lde one.

Group Matrices Ordered S2Lde L2Sde Ide

Build 1, Prob. Dim. ≥ 4, all h 171 12.9 44.4 12.3 13.5
Build 1, Prob. Dim. ≥ 4, h = 10−2 56 16.1 44.6 19.6 17.9
Build 1, Prob. Dim. ≥ 4, h = 10−4 57 12.3 45.6 5.3 10.5
Build 1, Prob. Dim. ≥ 4, h = 10−6 58 10.3 43.1 12.1 12.1

Build 2, Prob. Dim. ≥ 4, all h 171 17.5 46.2 13.5 20.5
Build 2, Prob. Dim. ≥ 4, h = 10−2 56 19.6 46.4 16.1 23.2
Build 2, Prob. Dim. ≥ 4, h = 10−4 57 17.5 47.4 10.5 21.1
Build 2, Prob. Dim. ≥ 4, h = 10−6 58 15.5 44.8 13.8 17.2

Table 8: Percentage of problems of dimension 4 and higher where each build type and
heuristic resulted in the least number of iterations to detect a negative eigenvalue
(171 matrices after random shuffling of the variables).

We also apply a random orthogonal transformation prior to applying our heuris-
tics, leading to 235 matrices with negative curvature and no negative diagonal ele-
ments. Among those matrices, 177 are of dimension larger than or equal to 4. The
results appear in Table 9: once the orthogonal transformation is applied, we see
all heuristics performing similarly for Build 1, whereas the combination of Ordered
and Build 2 outperforms the other variants. As such, we argue that the Ordered

heuristic is in fact the best choice of heuristic from this list.

3.4 Comparison with all possible orderings

As a final experiment, we investigate whether there might exist another (as yet
undiscovered) heuristic that might outperform the Ordered heuristic. To do this,
we ran Nesa and NesaH̃ with every possible ordering on matrices associated with
the problems with dimensions between 4 and 8. Overall, we obtained 36 matrices
without negative diagonal elements.

Table 10 details the results. For 26 problems out of 36, solving the problem using
the Ordered heuristics requires at worst two more iterations compared to using the
Best possible ordering. The Ordered heuristic thus emerges as a very reasonable
choice that is unlikely to be outperformed by any simple heuristic, especially in small
dimensions.

15

Group Matrices Ordered S2Lde L2Sde Ide

Build 1, Prob. Dim. ≥ 4, all h 177 10.2 16.4 5.6 16.9
Build 1, Prob. Dim. ≥ 4, h = 10−2 55 10.9 16.4 5.5 18.2
Build 1, Prob. Dim. ≥ 4, h = 10−4 61 11.5 18.0 6.6 16.4
Build 1, Prob. Dim. ≥ 4, h = 10−6 61 8.2 14.8 4.9 16.4

Build 2, Prob. Dim. ≥ 4, all h 177 50.8 36.2 11.3 17.5
Build 2, Prob. Dim. ≥ 4, h = 10−2 55 52.7 34.5 9.1 18.2
Build 2, Prob. Dim. ≥ 4, h = 10−4 61 50.8 36.1 13.1 18.0
Build 2, Prob. Dim. ≥ 4, h = 10−6 61 49.2 37.7 11.5 16.4

Table 9: Percentage of problems of dimension 4 and higher where each build type and
heuristic resulted in the least number of iterations to detect a negative eigenvalue
(177 finite-difference matrices with a random orthogonal transformation).

Iterations for Ordered minus iterations for Best 0 1 2 3 4 5 6 7 8

Number of problems 11 8 7 3 3 0 2 0 2

Table 10: Comparison of the Ordered heuristic with the best ordering on 36 matrices
(exact and finite-differences) with dimensions 4 to 8 and no diagonal elements.

4 Concluding remarks

We proposed an algorithm to detect negative eigenvalues in matrices, that proceeds
by building submatrices given partial information. The method is guaranteed to
terminate in a finite number of steps, and comes with provable guarantees on its
outputs. We have proposed eight variants of our algorithm based on two build
strategies and four natural heuristics. The variants were compared on a benchmark
of Hessian matrices from the CUTEst library and their approximations through finite
differences. Our experiments illustrate that considering the variables in order of
appearance in the problem definition is often a insightful strategy to detect negative
curvature without forming the entire matrix, that remains efficient on average when
coupled with a strategy aiming at building large principle submatrices. Our software
implementation, along with scripts to repeat the experiments herein, is available on
github 4. The recommended settings apply Build 2 and the Ordered heuristic.

Possible developments of our method would include dynamic modifications of
our heuristics, that would exploit the new information available through the sub-
matrices. Although our experiments suggest that the benefit might be limited in
small dimensions, it could lead to provably lower error bounds. Investigating the
performance of our algorithm on approximate Hessians computed via alternate for-
mulae is also an interesting avenue for future work. Another perspective of this
work consists in incorporating our algorithm into a DFO routine that could exploit
negative curvature. This will be the subject of future research.

4https://github.com/clementwroyer/negative-eigs

16

https://github.com/clementwroyer/negative-eigs

Acknowledgements

The authors are grateful to two anonymous referees, whose insightful comments lead
to improvements in the Nesa and NesaH̃ algorithms.

References

[1] M. A. Abramson, L. Frimannslund, and T. Steihaug. A subclass of generating
set search with convergence to second-order stationary points. Optim. Methods
Softw., 29:900–918, 2014.

[2] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer
Series in Operations Research and Financial Engineering. Springer International
Publishing, 2017.

[3] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Communications of the ACM, 16:575–577, 1973.

[4] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Complexity bounds for second-order
optimality in unconstrained optimization. J. Complexity, 28:93–108, 2012.

[5] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, 2000.

[6] A. R. Conn, K. Scheinberg, and L. N. Vicente. Global convergence of general
derivative-free trust-region algorithms to first- and second-order critical points.
SIAM J. Optim., 20:387–415, 2009.

[7] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free
Optimization. MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[8] F. E. Curtis, Z. Lubberts, and D. P. Robinson. Concise complexity analyses for
trust region methods. Optim. Lett., 12:1713–1724, 2018.

[9] J. E. Dennis Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations. Classics in Applied Mathematics. SIAM,
1996.

[10] G. Fasano and S. Lucidi. A nonmonotone truncated Newton-Krylov method
exploiting negative curvature directions, for large-scale unconstrained optimiza-
tion. Optim. Lett., 3:521–535, 2009.

[11] D. Goldfarb. Curvilinear path steplength algorithms for minimization which
use directions of negative curvature. Math. Program., 18:31–40, 1980.

[12] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a Constrained and
Unconstrained Testing Environment with safe threads. Comput. Optim. Appl.,
60:545–557, 2015.

17

[13] S. Gratton, C. W. Royer, and L. N. Vicente. A second-order globally convergent
direct-search method and its worst-case complexity. Optimization, 65:1105–
1128, 2016.

[14] S. Gratton, C. W. Royer, and L. N. Vicente. A decoupled first/second-order
steps technique for nonconvex nonlinear unconstrained optimization with im-
proved complexity bounds. Math. Program., 179:195–222, 2020.

[15] W. Hare, G. Jarry-Bolduc, and C. Planiden. Hessian approximations.
arXiv:2011.02584, 2020.

[16] W. Hare and K. Srivastava. Applying complex-step derivative approximations
in model-based derivative-free optimization. Technical Report, 2020.

[17] D. Júdice. Trust-Region Methods without using Derivatives: Worst Case Com-
plexity and the Non-smooth Case. PhD thesis, Dept. Mathematics, Univ. Coim-
bra, 2015.

[18] G. P. McCormick. A modification of Armijo step-size rule for negative curva-
ture. Math. Program., 13:111–115, 1977.

[19] J.J. Moré and D. C. Sorensen. On the use of directions of negative curvature
in a modified Newton method. Math. Program., 16:1–20, 1979.

[20] B. N. Partlett. The symmetric eigenvalue problem. Society for Industrial and
Applied Mathematics, Philadelphia, 1998.

[21] C. W. Royer and S. J. Wright. Complexity analysis of second-order line-search
algorithms for smooth nonconvex optimization. SIAM J. Optim., 28:1448–1477,
2018.

18

	Introduction
	Background on eigenvalues of symmetric matrices

	The Negative Eigenvalue Seeker Algorithm (Nesa)
	Nesa for exact Hessian matrices
	Nesa for approximate Hessians (Nesa)
	Selecting coordinates

	Experiments using exact and approximate Hessian matrices
	Test Problems
	Using Nesa on exact Hessian matrices
	Using Nesa on finite-difference Hessian approximations
	Comparison with all possible orderings

	Concluding remarks

