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1 Introduction

The n1 × n2 × n3 points problem [10] is a three-dimensional extension of the classic nine-dot
problem that appeared in Sam Loyd’s Cyclopedia of Puzzles (see [8], p. 301). It is related to the
well-known NP-hard traveling salesman problem (TSP), minimizing the number of turns in the
tour instead of the total distance traveled [1, 13].

Given n1 · n2 · n3 points in R3, our goal is to visit all of them (at least once) with a polygonal
chain that has the minimum number of line segments connected at their endpoints (links or
generically lines), the so-called minimum-link covering trail [2–4, 7]. In particular, we are
interested in the best solutions to the nontrivial n1 × n2 × n3 dots problem, where (by definition)
1 ≤ n1 ≤ n2 ≤ n3 and n3 < 6.

Let hl(n1, n2, n3) ≤ h(n1, n2, n3) ≤ hu(n1, n2, n3) be the length of the covering trail with
the minimum number of links for the n1 × n2 × n3 points problem, we define the best known
upper bound as hu(n1, n2, n3) ≥ h(n1, n2, n3), and we denote as hl(n1, n2, n3) ≤ h(n1, n2, n3)

the proved lower bound.
Now, for simple configurations, the same problem has already been solved [2]. In details, if

n1 = 1 and n2 < n3, then h(n1, n2, n3) = 2 · n2 − 1, while h(n1, n2, n3) = 2 · n2 − 2 as long as
n1 = 1, n2 ≥ 3, and n3 = n2 [5].

Hence, by assuming n1 = 2 and n3 > 2, it can be easily proved that

h(2, n2, n3) = 2 · h(1, n2, n3) + 1 =

4 · n2 − 1 iff n2 < n3

4 · n2 − 3 iff n2 = n3

. (1)
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Figure 1: A trivial Hamiltonian path that completely solves the 2× 3× 5 points puzzle (avoiding
self-intersections).

Figure 2: Another example of a trivial pattern: solving the 2× 5× 5 points puzzle.

Therefore, the present paper aims to solve the ten above-mentioned nontrivial cases where the
current upper bound does not match the proved lower bound.
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2 Improving the solution of the n1 ×n2 ×n3 points problem
for n3 < 6

In this complex brain challenge we need to stretch our pattern recognition [6,9] in order to find a
plastic strategy that improves the known upper bounds [2, 10] for the most interesting cases (and
the 3× 3× 3 problem, which is the three-dimensional extension of the immortal nine-dot puzzle,
is by far the most valuable one [11]), avoiding those standardized methods which are based on
fixed patterns that lead to suboptimal covering paths, as the approach presented in [7, 10].

Theorem 1. Let (n1, n2, n3) be a triplet of integers satisfying 2 < n1 ≤ n2 ≤ n3. Then, a lower
bound for the n1 × n2 × n3 problem is given by

hl(n1, n2, n3) =

⌈
2 · n1 · n2 · n3 + n2 − n3 − 2

n2 + n3 − 2

⌉
. (2)

Proof. Let {0, 1, . . . , n1 − 1} × {0, 1, . . . , n2 − 1} × {0, 1, . . . , n3 − 1} be a set of n1 · n2 · n3

points, in the Euclidean vector space R3, such that 3 ≤ n1 ≤ n2 ≤ n3.
We immediately notice that, for any given positive integer t, we have (n2−1)+(n3−1)

2
≥

⌈ t
2⌉·(n2−1)+⌊ t

2⌋·(n3−1)

t
, and consequently there does not exist any polygonal chain of 1 + t links

that visits more than n3 +
(n2−1)+(n3−1)

2
· t points of the given n1 × n2 × n3 regular grid.

Thus,

n1 · n2 · n3 ≤ n3 +
n2 + n3 − 2

2
· (h(n1, n2, n3)− 1) . (3)

Hence,

h(n1, n2, n3) ≥
2 · n1 · n2 · n3 + n2 − n3 − 2

n2 + n3 − 2
.

Since h(n1, n2, n3) is a natural number (and given the fact that h(n1, n2, n3) ≥ hl(n1, n2, n3)

must hold by definition), we can finally set

hl(n1, n2, n3) :=

⌈
2 · n1 · n2 · n3 + n2 − n3 − 2

n2 + n3 − 2

⌉
, (4)

and this concludes the proof of the theorem.

Table 1 lists the best results known at the present date, and a direct proof follows for each
stated nontrivial upper bound.
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n1 n2 n3 Best Lower
bound hl

Best Upper
bound hu

Discovered by Gap
(hu−hl)

2 2 2 6 6 Koki Goma, proved in Aug.
2021 (see [12])

0

2 2 3 7 7 trivial 0
2 3 3 9 9 trivial 0
3 3 3 13 13 Marco Ripà, proved in June

2020 (see [11])
0

2 2 3 7 7 trivial 0
2 3 4 11 11 trivial 0
2 4 4 13 13 trivial 0
3 3 4 14 15 Marco Ripà, June 2019 1
3 4 4 16 19 Marco Ripà, June 2019 3
4 4 4 21 23 Marco Ripà, 2019 (see

NNTDM, 25(2), p. 70, Fig. 1)
2

2 2 5 7 7 trivial 0
2 3 5 11 11 trivial 0
2 4 5 15 15 trivial 0
2 5 5 17 17 trivial 0
3 3 5 15 16 Marco Ripà, June 2019 1
3 4 5 17 20 Marco Ripà, June 2019 3
3 5 5 19 24 Marco Ripà, June 2019 5
4 4 5 23 26 Marco Ripà, June 2019 3
4 5 5 25 31 Marco Ripà, June 2019 6
5 5 5 31 36 Marco Ripà, July 2019 5

Table 1: Current solutions to the n1 × n2 × n3 points problem, where n1 ≤ n2 ≤ n3 < 6.

Figures 3 to 12 show the patterns used to solve the n1 × n2 × n3 puzzle (case-by-case).
In particular, by combining (2) with the original results shown in Figures 3, 4, and 7, we

obtain a formal proof for the crucial 3 × 3 × 3 points problem, as well as very tight bounds for
the 3× 3× 4 and 3× 3× 5 cases.
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Figure 3: The k-dimensional 3× 3× · · · × 3 puzzle has been explicitly solved for every k ∈ Z+

(since hu(3, 3, . . . , 3) = hl(3, 3, . . . , 3) =
3k−1
2

, see [11]). In particular, Ripà provided the above
solution for the three-dimensional case on June 19, 2020, and it is optimal by Corollary 1.

Corollary 1. With regard to the 3× 3× 3 points problem, the lower bound and the upper bound
satisfy

hl(3, 3, 3) = hu(3, 3, 3) = 13. (5)

Proof. The covering trail for the 3 × 3 × 3 case shown in Figure 3 consists of 13 straight lines
connected at their endpoints, and Eq. (2) gives hl(3, 3, 3) =

33−1
3−1

= 13.
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Figure 4: Best known (non-crossing) covering path for the 3× 3× 4 puzzle. 15 = hu = hl + 1.
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Figure 5: Best known (non-crossing) covering path for the 3× 4× 4 puzzle. 19 = hu = hl + 3.

Figure 6: An original covering path for the 4× 4× 4 puzzle. 23 = hu = hl + 2.
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Figure 7: Best known (non-crossing) covering path for the 3× 3× 5 puzzle. 16 = hu = hl + 1.

Figure 8: Best known (non-crossing) covering path for the 3× 4× 5 puzzle, consisting of
20 = hu = hl + 3 lines.
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Figure 9: Best known covering path for the 3× 5× 5 puzzle. 24 = hu = hl + 5.

Figure 10: Best known covering path for the 4× 4× 5 puzzle. 26 = hu = hl + 3.
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Figure 11: Best known upper bound for the 4× 5× 5 puzzle. 31 = hu = hl + 6.

Figure 12: Best known upper bound of the 5× 5× 5 puzzle. 36 = hu = hl + 5.

Lastly, it is interesting to note that the reduced value of hu(n1, n2, n3) can also improve
the upper bound of the generalized k-dimensional puzzle. For example, we can apply the
aforementioned 3D patterns to the generalized n1 × n2 × · · · × nk points problem using the
simple method described in [10].

For any given k ≥ 4, assuming nk ≤ nk−1 ≤ · · · ≤ n4 ≤ n1 ≤ n2 ≤ n3, we can conclude
that

h(n1, n2, n3, . . . , nk) ≤ (hu(n1, n2, n3) + 1) ·
k∏

j=4

nj − 1. (6)
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3 Conclusion

In the present paper, we have drastically reduced the gap hu(n1, n2, n3)−hl(n1, n2, n3) for every
previously unsolved puzzle such that n3 < 6.

We do not know if any of the patterns shown in Figures 4 to 12 represent optimal solutions
since (by definition) hl(n1, n2, n3) ≤ h(n1, n2, n3). Therefore, some open questions about the
NP-complete [2] n1 × n2 × n3 points problem still wait to be answered, and the research aiming
to cancel the gap hu(n1, n2, n3)− hl(n1, n2, n3), at least for every n3 ≤ 5, is not over yet.
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