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Abstract
The sharp local minimality of feasible points of nonlinear optimization problems is known to
possess a characterization by a strengthened version of the Karush-Kuhn-Tucker conditions,
as long as the Mangasarian-Fromovitz constraint qualification holds. This strengthened condi-
tion is not easy to check algorithmically since it involves the topological interior of some set.
In this paper we derive an algorithmically tractable version of this condition, called strong
Karush-Kuhn-Tucker condition, and we show that the weakest condition under which a feasible
point is a strong Karush-Kuhn-Tucker point for every at this point continuously differentiable
objective function possessing the point as a sharp local minimizer, is the Guignard constraint
qualification. As an application, our results yield an algebraic characterization of strict local
minimizers of linear programs with cardinality constraints.
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1. Introduction

We consider nonlinear optimization problems of the form

P : min
x

f(x) s.t. g(x) ≤ 0, h(x) = 0

with defining functions f ∈ C1(Rn,R), g ∈ C1(Rn,Rp) and h ∈ C1(Rn,Rq). The feasible set of
P will be denoted by X, ∇f(x) stands for the gradient of f at x, and ∇g(x), ∇h(x) are the
(transposed) Jacobians of g and h, respectively, at x. With the active index set A(x̄) = {i ∈
{1, . . . , p} | gi(x̄) = 0} of x̄ the matrix ∇gA(x̄) possesses the columns ∇gi(x̄), i ∈ A(x̄).

We will be interested in necessary and sufficient optimality conditions for sharp local mini-
mizers of P , that is, points x̄ ∈ X for which a neighborhood U and some α > 0 exist with

∀x ∈ X ∩ U : f(x) ≥ f(x̄) + α∥x− x̄∥.

Example 1.1. For n = 2 let f(x) = x1 + x2, g1(x) = −x1, g2(x) = −x2 and g3(x) = x1x2.
It is not hard to see that x̄ = 0 is a sharp local minimizer with respect to the Euclidean norm,
where one may choose U = R2 (i.e., x̄ is even a sharp global minimizer) and α = 1.
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Sharp local minimizers are also called strong [1], strongly unique [2], or strict of order one
[3]. Since sharp local minimizers x̄ of P are local minimizers, under some constraint qualification
they are necessarily Karush-Kuhn-Tucker (KKT) points, that is, there exist λ ∈ Rp and µ ∈ Rq

with

∇f(x̄) +∇gA(x̄)λ+∇h(x̄)µ = 0, λ ≥ 0. (1)

Moreover, since sharp local minimizers are special local minimizers, one may expect that they
also satisfy a strengthened version of the KKT conditions, and that this condition may even
be sufficient for sharp local minimality. Such a condition is given in [1, Th. 3.6] under the
Mangasarian-Fromovitz constraint qualification (MFCQ) at x̄, which assumes rank∇h(x̄) = q
and the existence of some vector d ∈ Rn with ∇gA(x̄)

⊺d < 0 and ∇h(x̄)⊺d = 0. Note that (1)
may be rewritten as

−∇f(x̄) ∈ {∇gA(x̄)λ+∇h(x̄)µ | λ ∈ Rp, µ ∈ Rq, λ ≥ 0}.

Theorem 1.2 ([1]). Let the MFCQ hold at x̄ ∈ X. Then x̄ is a sharp local minimizer of P if
and only if

−∇f(x̄) ∈ int{∇gA(x̄)λ+∇h(x̄)µ | λ ∈ Rp, µ ∈ Rq, λ ≥ 0} (2)

holds.

We remark that condition (2) is also used in [4] for the investigation of unique minimal points
of problems P with convex feasible sets. In the present paper, however, we do not impose any
convexity assumption on P .

The aim of this paper is twofold. Firstly, we will derive an algorithmically more tractable
version of the condition (2) and, secondly, we wish to identify a weakest constraint qualification
under which sharp local minimality is characterized by (2). Both is possible by using techniques
which were introduced for the characterization of sharp minimizers of linear semi-infinite prob-
lems in [5] and, independently, of strict local Pareto optimal points of order one in multicriteria
optimization [6,7].

As, to the best of the authors’ knowledge, the corresponding results in single objective
nonlinear optimization have not been formulated explicitly so far, the present paper first closes
this gap by introducing the concept of strong Karush-Kuhn-Tucker points in Section 2 as well
as the related stationarity condition and constraint qualifications in Section 3. In Section 4 we
show that the Guignard constraint qualification is weakest possible for the characterization of
sharp local minimality by the strong KKT property, and in Section 5 we apply our results to
strict local minimizers of cardinality-constrained linear optimization problems. Section 6 closes
this paper with some final remarks.

2. Strong Karush-Kuhn-Tucker points

In the sequel the following notion will be useful.

Definition 2.1. We call x̄ ∈ X a strong Karush-Kuhn-Tucker point if

rank(∇gA(x̄),∇h(x̄)) = n (3)

holds and if there exist λ ∈ Rp, µ ∈ Rq with

∇f(x̄) +∇gA(x̄)λ+∇h(x̄)µ = 0, λ > 0. (4)
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We remark that (3) is not a constraint qualification (cf. Ex. 4.3 below). The linear in-
dependence constraint qualification (LICQ) rank(∇gA(x̄),∇h(x̄)) = |A(x̄)| + q, the identity
|A(x̄)|+ q = n and the strict complementary slackness condition λ > 0 are sufficient for x̄ ∈ X
to be a strong KKT point. These conditions are, however, not necessary since at strong KKT
points |A(x̄)|+ q > n may hold, and the multipliers λ and µ do not need to be unique.

Example 2.2. In Example 1.1 we have ∇f(x̄) = (1, 1)⊺, A(x̄) = {1, 2, 3} and ∇gA(x̄) =(
−1 0 0
0 −1 0

)
so that LICQ is violated at x̄ while (3) is satisfied. Indeed, x̄ is even a strong

KKT point with the (nonunique) multiplier λ = (1, 1, 1)⊺ > 0.

We will characterize strong KKT points by means of Tucker’s theorem of the alternative.

Lemma 2.3 ([8]). For matrices A and B, with A being nonvacuous, exactly one of the following
alternatives hold:

a) Ax ≤ 0, Ax ̸= 0, Bx = 0 possesses a solution x.
b) A⊺y +B⊺z = 0, y > 0 possesses a solution (y, z).

The proof of the following characterization is almost identical to the one for the multicriteria
case from [6, Th. 3.4] where, however, a weaker assertion is stated as the result of the proof. A
proof of the same result from the point of view of linear semi-infinite programming is given in
[5, Th. 3.1] and used in, e.g., [9,10]. For completeness we repeat the arguments here. We define
the set C≤(f, x̄) = {d ∈ Rn | ∇f(x̄)⊺d ≤ 0} of (potential) descent directions for f at x̄ ∈ X and
the linearization cone L(g, h, x̄) = {d ∈ Rn | ∇gA(x̄)

⊺d ≤ 0, ∇h(x̄)⊺d = 0} to X at x̄.

Lemma 2.4. A point x̄ is a strong KKT point of P if and only if x̄ ∈ X and C≤(f, x̄) ∩
L(g, h, x̄) = {0} hold.

Proof. With A⊺ = (∇f(x̄),∇gA(x̄)) and B⊺ = ∇h(x̄) we have C≤(f, x̄) ∩ L(g, h, x̄) = {0} if
and only if the system Ad ≤ 0, Bd = 0 possesses only the trivial solution d = 0. The latter
is equivalent to the fact that, both, the system Ad = 0, Bd = 0, d ̸= 0 is unsolvable, and the
system Ad ≤ 0, Ad ̸= 0, Bd = 0 is unsolvable. The unsolvability of the first system is equivalent
to the linear independence of the n rows of the matrix (A⊺, B⊺), that is, to

rank(∇f(x̄),∇gA(x̄),∇h(x̄)) = n. (5)

Moreover, by Lemma 2.3 the second system is unsolvable if and only if there exist κ > 0, λ > 0
with κ∇f(x̄) +∇gA(x̄)λ+∇h(x̄)µ = 0. After division of this equation by κ (and renaming λ)
this is condition (4). Finally, under (4), (5) is equivalent to (3).

The following reformulation of Lemma 2.4 will be useful, where A◦ = {v ∈ Rn | v⊺d ≤ 0 ∀d ∈
A} denotes the polar cone of a cone A ⊆ Rn.

Lemma 2.5. A point x̄ is a strong KKT point of P if and only if x̄ ∈ X and

−∇f(x̄) ∈ intL◦(g, h, x̄) (6)

hold.

Proof. It is well-known that the Farkas lemma yields

L◦(g, h, x̄) = {∇gA(x̄)λ+∇h(x̄)µ | λ ≥ 0, µ ∈ Rq}. (7)

Since L(g, h, x̄) is a closed cone, [11, Ex. 6.22] implies

intL◦(g, h, x̄) = {v ∈ Rn | v⊺d < 0∀d ∈ L(g, h, x̄) \ {0}}. (8)
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Therefore (6) is equivalent to C≤(f, x̄) ∩ L(g, h, x̄) = {0}, and the assertion follows from
Lemma 2.4.

As a direct consequence of Lemma 2.5 and (7) we obtain that condition (2) in Theorem 1.2
is equivalent to x̄ ∈ X being a strong KKT point, where the strong KKT property is easier to
check algorithmically than the topological condition (2).

Theorem 2.6. A point x̄ is a strong KKT point of P if and only if x̄ ∈ X and condition (2)
hold.

Theorem 2.6 allows us to reformulate Theorem 1.2 as the statement that, under the MFCQ
at x̄ ∈ X, this point is a sharp local minimizer of P if and only if it is a strong KKT point.

Remark 2.7. The strong KKT property at x̄ ∈ X admits the following geometric interpretation
which is, however, less suitable for a transparent discussion of constraint qualifications. Indeed, by
Lemma 2.5 we have v ∈ intL◦(g, h, x̄) if and only if x̄ is a strong KKT point for the minimization
of fv(x) := −v⊺x over X. The latter is equivalent to the rank condition (3) and v ∈ {∇gA(x̄)λ+
∇h(x̄)µ | λ > 0, µ ∈ Rq}. Therefore intL◦(g, h, x̄) ̸= ∅ is characterized by (3), and under (3)
one has

intL◦(g, h, x̄) = {∇gA(x̄)λ+∇h(x̄)µ | λ > 0, µ ∈ Rq}. (9)

On the other hand, (4) may hold while (3) is violated, −∇f(x̄) ∈ intL◦(g, h, x̄) can then not
be concluded from (4), and x̄ is not a strong KKT point, but only a strict complementary KKT
point (see Example 4.2 below).

Remark 2.8. The last step in the proof of Lemma 2.4, which removes the gradient of the
objective function from (5) and thus establishes (3) as a condition purely on the feasible set,
is not possible in the multicriteria setting. There only one of the finitely many gradients of
objective functions could be removed from the condition, so that the rank condition (5), with the
(transposed) Jacobian ∇f(x̄) of the vector-valued objective function f , is usually not stated in
such a reduced from. As a consequence, intL◦(g, h, x̄) may be empty at strong KKT points and,
in particular, strong KKT points even exist for unconstrained multicriteria problems [12].

3. A stationarity condition and constraint qualifications

In Example 1.1 the point x̄ = 0 is, both, a sharp local minimizer and a strong KKT point, while
the MFCQ is violated there. This raises the question whether in Theorem 1.2 the MFCQ can
be replaced by some weaker constraint qualification.

In the following we use the (Bouligand) tangent cone

T (X, x̄) = {d ∈ Rn | ∃ tk ↘ 0, (xk) ⊆ X : lim
k
(xk − x̄)/tk = d}

to X at x̄. The proof of the following result employs similar ideas as the ones of [7, Th. 4.1] and
[1, Th. 3.2].

Lemma 3.1. A point x̄ is a sharp local minimizer of P if and only if x̄ ∈ X and C≤(f, x̄) ∩
T (X, x̄) = {0} hold.

Proof. Let x̄ ∈ X not be a sharp local minimizer of P . Then for each k ∈ N there exists
some xk ∈ X with ∥xk − x̄∥ ≤ 1/k and f(xk) < f(x̄) + (1/k)∥xk − x̄∥. The sequence (tk)
with tk = ∥xk − x̄∥ satisfies tk ↘ 0 and, by the compactness of the unit sphere, without loss
of generality the sequence of directions dk = (xk − x̄)/tk converges to some d ∈ T (X, x̄) with
∥d∥ = 1. Moreover, the differentiability of f yields ∇f(x̄)⊺d = limk(f(x

k) − f(x̄))/tk with
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(f(xk) − f(x̄))/tk < 1/k for all k and, thus, ∇f(x̄)⊺d ≤ 0. This means that d ̸= 0 lies in
C≤(f, x̄) ∩ T (X, x̄) and therefore C≤(f, x̄) ∩ T (X, x̄) ⊋ {0} holds.

On the other hand, let C≤(f, x̄) ∩ T (X, x̄) ⊋ {0} for x̄ ∈ X and choose some d ̸= 0 from
C≤(f, x̄) ∩ T (X, x̄). Then there exist some tk ↘ 0 and (xk) ⊆ X with dk = (xk − x̄)/tk → d.
Assume that x̄ is a sharp local minimizer. Then, with some α > 0, for all sufficiently large k we
have (f(xk)−f(x̄))/tk ≥ (α∥xk− x̄∥)/tk = α∥dk∥. This yields the contradiction 0 ≥ ∇f(x̄)⊺d =
limk(f(x

k)− f(x̄))/tk ≥ α∥d∥ > 0.

Example 3.2. In Example 1.1 we have C≤(f, 0) = {d ∈ R2 | d1 + d2 ≤ 0} and T (X, 0) = X =
(R≥ × {0})∪ ({0} ×R≥). Therefore C≤(f, 0)∩ T (X, 0) = {0} holds, and Lemma 3.1 shows that
x̄ = 0 is a sharp local minimizer, without the need to specify U and α.

As the relation T (X, x̄) ⊆ L(g, h, x̄) is true without further assumptions, the combina-
tion of Lemma 2.4 and Lemma 3.1 yields that being a strong KKT point is sufficient for
x̄ ∈ X to be a sharp local minimizer. If additionally the Abadie constraint qualification (ACQ)
L(g, h, x̄) ⊆ T (X, x̄) holds at x̄, then the same combination implies that being a strong KKT
point is necessary for x̄ ∈ X to be a sharp local minimizer. Therefore, in Theorem 1.2 the MFCQ
can be replaced by the weaker ACQ.

However, in Example 1.1 also the ACQ is violated at x̄ while this point is, both, a sharp
local minimizer and a strong KKT point. To formulate an even weaker constraint qualifcation,
we state a reformulation of Lemma 3.1 which is analogous to the reformulation of Lemma 2.4
by Lemma 2.5. In fact, the proof runs along the same lines, using the closedness of the cone
T (X, x̄).

Lemma 3.3. A point x̄ is a sharp local minimizer of P if and only if x̄ ∈ X and −∇f(x̄) ∈
intT ◦(X, x̄) hold.

Lemma 2.5 and Lemma 3.3 imply that also under the condition

intT ◦(X, x̄) ⊆ intL◦(g, h, x̄) (10)

being a strong KKT point is necessary for x̄ ∈ X to be a sharp local minimizer. Condition (10)
is a consequence of the Guignard constraint qualification (GCQ) T ◦(X, x̄) ⊆ L◦(g, h, x̄) which,
in turn, follows from the ACQ. Hence, in Theorem 1.2 the MFCQ may even be replaced by the
GCQ. The GCQ does hold at x̄ = 0 in Example 1.1, since the sets T ◦(X, x̄) and L◦(g, x̄) both
coincide with {v ∈ R2| v ≤ 0}.

We have thus shown the following result.

Theorem 3.4. Let the GCQ hold at x̄ ∈ X. Then x̄ is a sharp local minimizer of P if and only
if it is a strong KKT point.

As (10) is a consequence of the GCQ, one may ask why in Theorem 3.4 the GCQ is not
replaced by this potentially weaker condition. Indeed, in the subsequent section we will show
that the GCQ is the weakest condition under which sharp local minimality can be characterized
by the strong KKT property. Therefore the condition (10) cannot be strictly weaker than the
GCQ.

The following explicit proof of this result sheds some more light on the underlying reason.
Observe that T ◦(X, x̄) coincides with the regular normal cone N̂(X, x̄) to X at x̄ [11], so that the
GCQ at x̄ may be rewritten as N̂(X, x̄) ⊆ L◦(g, h, x̄), and (10) as int N̂(X, x̄) ⊆ intL◦(g, h, x̄).

In this notation Lemma 3.3 states that x̄ is a sharp local minimizer if and only if x̄ ∈ X and
−∇f(x̄) ∈ int N̂(X, x̄) hold. Thus we are only interested in the case int N̂(X, x̄) ̸= ∅.

Proposition 3.5. For int N̂(X, x̄) ̸= ∅ the condition (10) implies the GCQ at x̄.

Proof. For int N̂(X, x̄) ̸= ∅ the convex set N̂(X, x̄) and, under (10), also L◦(g, h, x̄) are full
dimensional, so that their relative interiors coincide with their interiors. Therefore [13, Th. 6.3]
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implies cl int N̂(X, x̄) = cl N̂(X, x̄) = N̂(X, x̄) as well as cl intL◦(g, h, x̄) = clL◦(g, h, x̄) =
L◦(g, h, x̄), where the respective second identities follow from the closedness of polar cones.
Since (10) yields cl int N̂(X, x̄) ⊆ cl intL◦(g, h, x̄), the GCQ follows.

We remark that (10) is trivially fulfilled at any x̄ ∈ X with int N̂(X, x̄) = ∅. In this case the
GCQ may be violated at x̄, as the example X = {x ∈ R2 | x31 ≤ 0} with x̄ = 0 shows.

4. The weakest constraint qualification

Recall from [14] that the GCQ is the weakest condition under which a point x̄ ∈ X is a KKT
point for every f ∈ F(X, x̄), where F(X, x̄) denotes the set of at x̄ continuously differentiable
functions possessing x̄ as a local minimizer on X.

In view of Theorem 3.4 and Proposition 3.5 the GCQ at x̄ may also be the weakest condition
under which a point x̄ ∈ X is a strong KKT point for every f ∈ Fs(X, x̄), where Fs(X, x̄) denotes
the set of at x̄ continuously differentiable functions possessing x̄ as a sharp local minimizer on
X. The following result verifies this.

Theorem 4.1. The weakest condition under which a point x̄ ∈ X is a strong KKT point for
every f ∈ Fs(X, x̄) is the GCQ at x̄.

Proof. By Theorem 3.4 the GCQ at x̄ is some condition under which x̄ is a strong KKT point
for every f ∈ Fs(X, x̄). On the other hand, let x̄ be a strong KKT point for every f ∈ Fs(X, x̄).
We will show that then the GCQ N̂(X, x̄) ⊆ L◦(g, h, x̄) necessarily holds at x̄.

In a first step we show that under the current assumption the GCQ trivially holds at x̄
in the case int N̂(X, x̄) = ∅, since then no continuously differentiable function f can possess
x̄ as a sharp local minimizer. Indeed, Lemma 3.3 would then imply −∇f(x̄) ∈ int N̂(X, x̄), in
contradiction to int N̂(X, x̄) = ∅. This implies Fs(X, x̄) = ∅ and, therefore, the trivial correctness
of the assertion.

In the remainder of the proof let int N̂(X, x̄) ̸= ∅. Then by Proposition 3.5 it is sufficient to
show (10) for the proof of the GCQ at x̄. Indeed, choose v ∈ int N̂(X, x̄). By Lemma 3.3 the linear
function fv(x) = −v⊺x possesses x̄ as a sharp local minimizer on X, implying fv ∈ Fs(X, x̄).
By assumption x̄ is then also a strong KKT point of fv on X, that is, rank(∇gA(x̄),∇h(x̄)) = n
holds and there exist λ > 0 and µ with

v = ∇gA(x̄)λ+∇h(x̄)µ.

For all d ∈ L(g, h, x̄) \ {0} this implies

v⊺d = λ⊺∇gA(x̄)
⊺d+ µ⊺∇h(x̄)⊺d ≤ 0.

Moreover, in the case v⊺d = 0 we would obtain

0 = λ⊺∇gA(x̄)
⊺d+ µ⊺∇h(x̄)⊺d

which, in view of λ > 0, is only possible for ∇gA(x̄)
⊺d = 0. Therefore we arrive at

d⊺(∇gA(x̄),∇h(x̄)) = 0. The rank condition (3) implies d = 0, which contradicts the choice
d ̸= 0. We have thus shown v⊺d < 0 for all d ∈ L(g, h, x̄) \ {0}. By (8) this means
v ∈ intL◦(g, h, x̄), so that (10) is shown, and the proof is complete.

The following examples illustrate two situations of a sharp local minimizer at which the GCQ
is violated.

Example 4.2. In Example 1.1 let us replace the function g1(x) = −x1 by g̃1(x) = −x31 and
set g̃2 := g2, g̃3 := g3. Then the set X remains unchanged, so that x̄ = 0 is still a sharp local
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Xx̄N̂(X, x̄)

L◦(g̃, x̄)

(a) Example 4.2

Xx̄N̂(X, x̄)

L◦(ĝ, x̄)

(b) Example 4.3

Figure 1.: Normal cones and polars of linearization cones

minimizer, and we still have N̂(X, x̄) = {v ∈ R2| v ≤ 0}. On the other hand, the linearization
cone becomes L(g̃, x̄) = {d ∈ R2| d2 ≥ 0} with the polar cone L◦(g̃, x̄) = {v ∈ R2| v1 = 0, v2 ≤ 0}
(Fig. 1a). Hence the GCQ is violated at x̄.

By Theorem 4.1 there exists at least one function f ∈ Fs(X, x̄) for which x̄ is not a strong
KKT point. Indeed the function f(x) = x1 + x2 from Example 1.1 serves this purpose, where
neither condition (3) nor (4) can be fulfilled (x̄ is only a Fritz-John point).

In fact, by Lemma 3.3 the set Fs(X, x̄) contains exactly the at x̄ continuously differentiable
functions f with ∇f(x̄) > 0, but due to intL◦(g̃, x̄) = ∅ and Lemma 2.5, x̄ is not a strong
KKT point for any of them. For the latter conclusion one may also argue that (3) is violated
independently of the choice of f , so that intL◦(g̃, x̄) is empty and x̄ can thus not be a strong
KKT point for any f . With respect to Remark 2.7 note, however, that x̄ is a strict complementary
KKT point for f(x) = x2 on X.

The next example verifies that the violation of GCQ at x̄ does not force the violation of (3)
(as in Example 4.2), so that intL◦(g, x̄) is then nonempty and x̄ is a strong KKT point at least
for some f ∈ Fs(X, x̄).

Example 4.3. In Example 1.1 we replace the functions g1 and g2 by ĝ1(x) = −x31, ĝ2(x) = −x32,
set ĝ3(x) := g3(x) = x1x2, and add the constraints ĝ4(x) = −2x1 − x2 ≤ 0 and ĝ5(x) =
−x1 − 2x2 ≤ 0. The set X then still remains the same, x̄ = 0 is a sharp local minimizer, and
N̂(X, x̄) = {v ∈ R2| v ≤ 0} holds. The linearization cone, however, becomes L(ĝ, x̄) = {d ∈
R2| ĝ4(d) ≤ 0, ĝ5(d) ≤ 0} with the polar cone L◦(ĝ, x̄) = {v ∈ R2| 2v1 ≤ v2 ≤ v1/2} (Fig. 1b).
Hence again the GCQ is violated at x̄.

As in Example 4.2, by Lemma 3.3 the set Fs(X, x̄) contains exactly the at x̄ continuously
differentiable functions f with ∇f(x̄) > 0. Moreover, by Lemma 2.5 x̄ is a strong KKT point if
and only if −∇f(x̄) ∈ intL◦(g̃, x̄) = {v ∈ R2| 2v1 < v2 < v1/2} holds. Thus, for f(x) = x1 + x2
from Example 1.1 x̄ is a strong KKT point, while for f̂(x) = 3x1 + x2 with f̂ ∈ Fs(X, x̄) it is
not.

5. Application to cardinality-constrained linear programs

In linear programming every unique minimizer is a vertex of the feasible set and, hence, satisfies
the rank condition (3). Moreover, since the Goldman-Tucker theorem [15] states that every
solvable linear program possesses a strictly complementary optimal point, any unique minimizer
is strictly complementary and, thus, satisfies (4). Therefore, in linear programming every unique
minimizer is a strong KKT point. An alternative line of arguments for this result uses that
unique minimizers of linear programs are necessarily sharp. Since the ACQ and, thus, the GCQ
are satisfied everywhere in a polyhedral set, by Theorem 3.4 the unique minimizers of linear
programs are even characterized by the strong KKT property. The latter also implies that a
basic optimal point is strictly complementary if and only if it is the only optimal point [16],
since this may be rephrased as the fact that minimizers with (3) satisfy (4) if and only if they
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are unique, and since minimizers of linear programs are characterized as KKT points.
The above characterization of unique (global) minimizers as strong KKT points in the case of

LPs also holds for more general problem classes in a local version, as formulated in the following
result. Recall that a local minimizer x̄ is called strict if f(x) > f(x̄) holds for all x ∈ X ∩ U for
some neighborhood U of x̄. A global minimizer is strict if and only if it is unique. Every sharp
local minimizer is strict, while a strict local minimizer need not be sharp.

The following theorem is an immediate consequence of Theorem 3.4.

Theorem 5.1. Consider a nonlinear optimization problem P satisfying the following properties:

a) The GCQ holds everywhere in the feasible set X.
b) Every strict local minimizer of P is sharp.

Then x̄ is a strict local minimizer of P if and only if it is a strong KKT point.

From Example 1.1 one may expect that assumptions a and b from Theorem 5.1 hold for
all linear programs with complementarity constraints (LPCCs [17,18]). The following example
shows that this is not the case.

Example 5.2. [19, Ex. 3] Let

X = {x ∈ R3| x1, x2 ≥ 0, x1x2 ≤ 0, −4x1 + x3 ≤ 0, −4x2 + x3 ≤ 0}

and x̄ = 0. Then T (X, x̄) = X and

L(g, x̄) = {d ∈ R3| d1, d2 ≥ 0, −4d1 + d3 ≤ 0, −4d2 + d3 ≤ 0}

hold. Since the vector (−1,−1, 1)⊺ lies in T ◦(X, x̄), but not in L◦(g, x̄) (due to (1, 1, 3)⊺ ∈
L(g, x̄)), the GCQ is violated at x̄. In particular, the minimization of f(x) = x1 + x2 − x3 over
X constitutes an LPCC at whose unique global minimizer x̄ the GCQ is violated. In fact, x̄ is
not even a KKT point, let alone a strong one.

It turns out, however, that an application relevant subclass of LPCCs can be treated by
Theorem 5.1, namely cardinality-constrained linear programs (CCLPs). They possess the form

CCLP : min
x∈Rn

c⊺x s.t. Ax ≤ α, Bx = β, ∥x∥0 ≤ κ,

where the number ∥x∥0 of nonzero entries of the vector x is bounded above by some κ ∈
{1, . . . , n− 1}. In [20] the continuous relaxation

RCCLP : min
(x,y)∈Rn×Rn

c⊺x s.t. Ax ≤ α, Bx = β,

e⊺y ≥ n− κ,

0 ≤ y ≤ e,

xiyi = 0, i = 1, . . . , n

of a mixed-integer reformulation of CCLP is studied, where e denotes the all-ones vector in Rn.
Note that RCCLP is an LPCC if the system Ax ≤ α includes nonnegativity constraints on x.
By [20, Th. 3.2] a point x̄ is a global minimizer of CCLP if and only if there exists some ȳ ∈ Rn

such that (x̄, ȳ) is a global minimizer of RCCLP.
By [20, Cor. 4.5] the GCQ holds everywhere in the feasible set of RCCLP, so that we have

the following result.

Lemma 5.3. Every problem RCCLP satisfies condition a from Theorem 5.1.

For the proof of condition b in Theorem 5.1 we recall the local patch structure of the feasible
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set Z of RCCLP presented in [20]. For z̄ := (x̄, ȳ) ∈ Z we define the active index sets

I±0(z̄) = {i ∈ {1, . . . , n}| x̄i ̸= 0, ȳi = 0},
I00(z̄) = {i ∈ {1, . . . , n}| x̄i = 0, ȳi = 0},
I0+(z̄) = {i ∈ {1, . . . , n}| x̄i = 0, ȳi ∈ (0, 1)},
I01(z̄) = {i ∈ {1, . . . , n}| x̄i = 0, ȳi = 1},

and for each I ⊆ I00(z̄) the local patch

ZI(z̄) = {(x, y) ∈ Rn × Rn| Ax ≤ α, Bx = β, e⊺y ≥ n− κ,

xi = 0, yi ∈ [0, 1], i ∈ I0+(z̄) ∪ I01(z̄) ∪ I,

yi = 0, i ∈ I±0(z̄) ∪ (I00(z̄) \ I)}.

Lemma 5.4. [20, Prop. 4.1, Lem. 4.2] Every z̄ ∈ Z possesses some neighborhood U with

U ∩ Z = U ∩
⋃

I⊆I00(z̄)

ZI(z̄), (11)

and the tangent cone to Z at z̄ satisfies

T (Z, z̄) =
⋃

I⊆I00(z̄)

T (ZI(z̄), z̄). (12)

Lemma 5.5. Every problem RCCLP satisfies condition b from Theorem 5.1.

Proof. Let z̄ = (x̄, ȳ) be a strict local minimizer of RCCLP. Then the standard stationarity
condition for local minimizers of nonlinear optimization problems (i.e., B-stationarity in the
terminology of MPCCs) yields −c ∈ N̂(Z, z̄). For −c ∈ int N̂(Z, z̄) Lemma 3.3 implies that z̄ is
a sharp local minimizer. Thus it remains to show that −c ∈ bd N̂(Z, z̄) results in a contradiction
to z̄ being a strict local minimizer.

Indeed, by

int N̂(Z, z̄) = intT ◦(Z, z̄) = {v ∈ Rn | v⊺d < 0∀d ∈ T (Z, z̄) \ {0}}

and the closedness of N̂(Z, z̄), from −c ∈ bd N̂(Z, z̄) we obtain the existence of some d ∈
T (Z, z̄) \ {0} with c⊺d = 0. In view of (12) there exists some I ⊆ I00(z̄) with d ∈ T (ZI(z̄), z̄).
Since the patch ZI(z̄) is a polyhedral set, together with (11) we obtain z̄ + td ∈ ZI(z̄) ⊆ Z
for all sufficiently small t > 0. Due to c⊺(z̄ + td) = c⊺z̄ this rules out that z̄ is a strict local
minimizer.

Lemma 5.3 and Lemma 5.5 together with Theorem 5.1 yield the main result of this section.

Theorem 5.6. In any problem RCCLP the set of strict local minimizers coincides with the set
of strong KKT points.

From an application point of view a result would be even more interesting which states that
the set of strict local minimizers of any problem CCLP coincides with the set of strong KKT
points of RCCLP. However, this cannot be expected, since [20, Ex. 2, Ex. 3] show that RCCLP
may possess spurious local minimizers, that is, local minimizers (x̄, ȳ) for which x̄ is not a local
minimizer of CCLP. While these examples employ a nonlinear objective function, the following
example shows by a similar construction that this effect persists for CCLPs, and also that a
sharp global minimizer of CCLP does not need to correspond to a sharp global minimizer of
RCCLP.
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Example 5.7. The problem

CCLP : min
x∈R3

x1 s.t. ∥x∥1 ≤ 1, ∥x∥0 ≤ 2

possesses the sharp global minimizer x̄ = (−1, 0, 0)⊺. Any corresponding ȳ ∈ R3 such that (x̄, ȳ)
is a global minimizer of

RCCLP : min
(x,y)∈R3×R3

x1 s.t. ∥x∥1 ≤ 1, e⊺y ≥ 1, 0 ≤ y ≤ e, xiyi = 0, i = 1, . . . , n,

needs to satisfy ȳ1 = 0, ȳ2, ȳ3 ∈ [0, 1] and ȳ2 + ȳ3 ≥ 1. Since the choices of ȳ2 and ȳ3 are
nonunique, (x̄, ȳ) is a nonstrict global minimizer of RCCLP and therefore not a sharp global
minimizer. More explicitly, for no ȳ ∈ R3 such that (x̄, ȳ) is a global minimizer of RCCLP there
exist a neighborhood U of (x̄, ȳ) and some α > 0 such that f(x) ≥ f(x̄)+α∥(x, y)− (x̄, ȳ)∥ holds
for all (x, y) ∈ Z ∩ U .

Moreover, the point (x̃, ỹ) with x̃ = (0, 0, 0)⊺ and ỹ = (1, 0, 0)⊺ is feasible for RCCLP with
objective value f(x̃) = 0, and for every feasible point (x, y) from a sufficiently small neighborhood
of (x̃, ỹ) the condition y1 ̸= 0 enforces x1 = 0 and, therefore f(x) = 0 = f(x̃). Hence (x̃, ỹ) is a
local minimizer of RCCLP, while it is easily seen that x̃ is not a local minimizer of CCLP.

In Example 5.7 the cardinality constraint ∥x∥0 ≤ 2 is inactive at x̄. As observed in [20,
Prop. 3.5], better results can be formulated for feasible points x ∈ X of CCLP with ∥x∥0 = κ.
This is due to the fact that, with S = {i ∈ I|xi ̸= 0} denoting the support of x, for (x, y) ∈ Z
the constraints of RCCLP imply yS = 0, 0 ≤ ySc ≤ e and e⊺ySc ≥ n− κ, where the value e⊺ySc

ranges in the interval [0, |Sc|] = [0, n − ∥x∥0]. Therefore, in the case ∥x∥0 = κ the point y is
uniquely determined to y(x) with yS(x) = 0 and ySc(x) = e. On the other hand, for ∥x∥0 < κ
the condition (x, y) ∈ Z possesses more than one solution y.

By [20, Th. 3.4] for every local minimizer x of CCLP there exists some y ∈ Rn such that
(x, y) is a local minimizer of RCCLP. In the case ∥x∥0 = κ this means that (x, y(x)) is a local
minimizer of RCCLP. Moreover, by [20, Th. 3.6] for any local minimizer (x, y) with ∥x∥0 = κ the
point x is a local minimizer of CCLP. Therefore, a point x with ∥x∥0 = κ is a local minimizer of
CCLP if and only if (x, y(x)) is a local minimizer of RCCLP. Strengthening the latter statement
to strict local minimizers yields the following result.

Corollary 5.8. For any problem CCLP the set of strict local minimizers x̄ with ∥x̄∥0 = κ
coincides with the set of strong KKT points (x̄, ȳ) of RCCLP with ∥x̄∥0 = κ.

Proof. In view of Theorem 5.6 the set of strong KKT points (x̄, ȳ) of RCCLP with ∥x̄∥0 = κ
coincides with the set of strict local minimizers (x̄, ȳ) of RCCLP with ∥x̄∥0 = κ. Hence it remains
to show the mentioned correspondence between strict local minimizers of CCLP and RCCLP.
The proof of this part uses similar arguments as the ones presented in [20] .

Indeed, let x̄ be a strict local minimizer of CCLP with ∥x̄∥0 = κ. Then there exists a
neighborhood U of x̄ such that f(x) > f(x̄) holds for all x ∈ U ∩P with ∥x∥0 ≤ κ, where we put
P = {x ∈ Rn | Ax ≤ α, Bx = β}. As seen above, the point (x̄, y(x̄)) is feasible for RCCLP. With
the neighborhood V := {y ∈ Rn | ∥y − y(x̄)∥∞ < 1/2} of y(x̄) all points (x, y) ∈ (U × V ) ∩ Z
satisfy x ∈ U ∩ P and yi ̸= 0 for all i ∈ Sc. The latter implies xSc = 0 and therefore ∥x∥0 ≤ κ.
By assumption we have f(x) > f(x̄), so that (x̄, y(x̄)) is a strict local minimizer of RCCLP with
∥x̄∥0 = κ.

On the other hand, let (x̄, ȳ) be a strict local minimizer of RCCLP with ∥x̄∥0 = κ. This
implies ȳ = y(x̄), and there exist neighborhoods U of x̄ and V of y(x̄) with f(x) > f(x̄) for all
(x, y) ∈ (U × V ) ∩ Z. We will show that f(x) > f(x̄) holds for all x ∈ U ∩ P with ∥x∥0 ≤ κ,
which completes the proof. In fact, for sufficiently small U all x ∈ U fulfill xi ̸= 0, i ∈ S. This
yields ∥x∥0 = κ for all x ∈ U with ∥x∥0 ≤ κ, and the supports of x and x̄ need to coincide.
As a consequence, also y(x) and y(x̄) coincide, so that all x ∈ U ∩ P with ∥x∥0 ≤ κ fulfill
(x, y(x)) = (x, y(x̄)) ∈ (U × V ) ∩ Z, and f(x) > f(x̄) follows.
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We mention that generically the cardinality constraint is active at minimizers of cardinali-
ty-constrained nonlinear optimization problems with twice continuously differentiable defining
functions [21, Th. 4]. While this does not necessarily imply the same result for CCLPs, it sug-
gests that also the cardinality assumption of Corollary 5.8 may be satisfied for CCLPs with
defining functions in general position and can, thus, be considered a weak assumption.

6. Final remarks

The nonuniqueness of the minimal point set of RCCLP in Example 5.7 suggests to study ex-
tensions of the present investigation to the concept of weak sharp minima [22], which takes
nonuniqueness into account. A different route to the study of sharp minimizers of CCLPs via
RCCLPs would be the introduction of partial sharpness for problems which depend on two
groups of decision variables, x and y, where the first order growth condition is only measured
with respect to x. We leave such extensions to future research.

Acknowledgements

We thank Christian Kanzow for pointing out the overall validity of the Guignard constraint
qualification in the relaxed reformulation of mathematical programs with cardinality constraints.
Moreover, we are indebted to Tim Hoheisel and to Georg Still for helpful comments on earlier
versions of this manuscript.

Statements and Declarations

The authors did not receive support from any organization for the submitted work. The authors
have no competing interests to declare that are relevant to the content of this article. Data
sharing not applicable to this article as no datasets were generated or analysed during the
current study.

References

[1] Still G, Streng M. Optimality conditions in smooth nonlinear programming. Journal of
Optimization Theory and Applications. 1996;90(3):483–515.

[2] Cromme L. Strong uniqueness: A far-reaching criterion for the convergence analysis of
iterative procedures. Numerische Mathematik. 1978;29(2):179–193.

[3] Ward D. Characterizations of strict local minima and necessary conditions for weak sharp
minima. Journal of Optimization Theory and Applications. 1994;80:551–571.

[4] Al-Khayyal F, Kyparisis J. Finite convergence of algorithms for nonlinear programs and vari-
ational inequalities. Journal of Optimization Theory and Applications. 1991;70(2):319–332.

[5] Fischer T. Strong unicity and alternation for linear optimization. Journal of Optimization
Theory and Applications. 1991;69(2):251–267.

[6] Giorgi G, Jiménez B, Novo V. A note on first-order sufficient optimality conditions for pareto
problems. Numerical Functional Analysis and Optimization. 2008;29(9-10):1108–1113.

[7] Jiménez B, Novo V. First and second order sufficient conditions for strict minimality in
nonsmooth vector optimization. Journal of Mathematical Analysis and Applications. 2003;
284(2):496–510.

[8] Mangasarian O. Nonlinear programming. SIAM; 1994.
[9] Dür M, Jargalsaikhan B, Still G. First order solutions in conic programming. Mathematical

Methods of Operations Research. 2015;82(2):123–142.

11



[10] Goberna M, López M, Todorov M. Unicity in linear optimization. Journal of Optimization
Theory and Applications. 1995;86(1):37–56.

[11] Rockafellar R, Wets R. Variational analysis. Springer Science & Business Media; 2009.
[12] Stein O, Volk M. Generalized polarity and weakest constraint qualifications in multiobjec-

tive optimization. Optimization Online; 2022. Preprint.
[13] Rockafellar R. Convex analysis. Princeton University Press; 1970.
[14] Gould F, Tolle J. A necessary and sufficient qualification for constrained optimization.

SIAM Journal on Applied Mathematics. 1971;20(2):164–172.
[15] Goldman A, Tucker A. Theory of linear programming. In: Linear inequalities and related

systems. Princeton University Press; 1956. p. 53–97.
[16] Greenberg H. An analysis of degeneracy. Nav Res Logist Q. 1986;33:635–655.
[17] Hu J, Mitchell J, Pang JS, et al. On linear programs with linear complementarity con-

straints. Journal of Global Optimization. 2012;53:29–51.
[18] Yu B, Mitchell J, Pang JS. Solving linear programs with complementarity constraints using

branch-and-cut. Mathematical Programming Computation. 2019;11(2):267–310.
[19] Scheel H, Scholtes S. Mathematical programs with complementarity constraints: Stationar-

ity, optimality, and sensitivity. Mathematics of Operations Research. 2000;25(1):1–22.
[20] Burdakov O, Kanzow C, Schwartz A. Mathematical programs with cardinality constraints:

reformulation by complementarity-type conditions and a regularization method. SIAM Jour-
nal on Optimization. 2016;26(1):397–425.

[21] Lämmel S, Shikhman V. Cardinality-constrained optimization problems in general position
and beyond. Pure and Applied Functional Analysis. to appear;.

[22] Burke J, Ferris M. Weak sharp minima in mathematical programming. SIAM Journal on
Control and Optimization. 1993;31(5):1340–1359.

12


	1 Introduction
	2 Strong Karush-Kuhn-Tucker points
	3 A stationarity condition and constraint qualifications
	4 The weakest constraint qualification
	5 Application to cardinality-constrained linear programs
	6 Final remarks

