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We introduce a novel approach to prescriptive analytics that leverages robust satisficing techniques to deter-

mine optimal decisions in situations of risk ambiguity and prediction uncertainty. Our decision model relies

on a reward function that incorporates uncertain parameters, which can be partially predicted using available

side information. However, the accuracy of the linear prediction model depends on the quality of regression

coefficient estimates derived from the available data. To achieve a desired level of fragility, we begin by estab-

lishing a target relative to the predict-then-optimize objective and solve a residual-based robust satisficing

model. Next, we solve a new estimation-fortified robust satisficing model that minimizes the influence of

estimation uncertainty while ensuring that the estimated fragility of the solution in achieving a less ambi-

tious guarding target falls below the level for the desired target. Our approach is supported by statistical

justifications, and we propose tractable models for various scenarios, such as saddle functions, two-stage

linear optimization problems, and decision-dependent predictions. We demonstrate the effectiveness of our

approach through case studies involving a wine portfolio investment problem and a multi-product pricing

problem using real-world data. Our numerical studies show that our approach outperforms the predict-then-

optimize approach in achieving higher expected rewards and at lower risks when evaluated on the actual

distribution. Notably, we observe significant improvements over the benchmarks, particularly in cases of

limited data availability.
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1. Introduction

A prescriptive analytics model uses data and leverages predictive analytics to help managers make

better decisions to improve their objectives, such as increasing profits or reducing costs. The inputs
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to such a model usually involve some uncertain parameters at the time of decision-making. Histor-

ical data contains information about past realizations of the uncertain parameters and other side

information that have predictive powers of the parameters’ future outcomes. With the ever-growing

importance of analytics, there has been an increase in research on incorporating additional infor-

mation into optimization models (see, e.g., Gao et al. 2017, Ho and Hanasusanto 2019, Bertsimas

et al. 2023), which have been effective in enhancing the quality of solutions in diverse applications

such as inventory management (Ban and Rudin 2019), vehicle pre-allocation (Hao et al. 2020),

product procurement (Ban et al. 2019), and portfolio optimization (Kannan et al. 2020, Nguyen

et al. 2021).

A major stream of prescriptive analytics models follows a two-step predict-then-optimize

approach (e.g., Craig and Raman 2016, Ferreira et al. 2016, Glaeser et al. 2019, Siegel and Wag-

ner 2021). The basic predict-then-optimize approach first forecasts the expected values of the

observable parameters using available side information, and subsequently uses them as inputs to

the optimization problem. However, it has been well established that the approach of separating

prediction from optimization would often yield solutions that perform poorly (see, for example,

Liyanage and Shanthikumar 2005, Smith and Winkler 2006, Ramamurthy et al. 2012, Mundru 2019,

Liu et al. 2021). Therefore, researchers have proposed improvements to the predict-then-optimize

model by incorporating the decision model’s objective into the parameter estimation process for

the prediction model (Tulabandhula and Rudin 2013, Loke et al. 2021, Elmachtoub and Grigas

2022). When applied in stochastic optimization, the predict-then-optimize approach estimates the

conditional distribution of observable parameters before incorporating the predicted distribution

in the optimization phase (Hannah et al. 2010, Bertsimas and Kallus 2020, Grigas et al. 2021,

Srivastava et al. 2021, Kannan et al. 2022). For instance, Srivastava et al. (2021) present a generic

stochastic optimization model that uses side information to estimate the conditional expectation

through kernel regression.

The ultimate goal of a prescriptive analytics model is to improve decision-making; the manager

is only concerned with the impact of their objectives resulting from implementing the decision

recommended by the prescriptive analytics model. Smith and Winkler (2006), who coin the term,

Optimizer’s Curse, note that the naive predict-then-optimize model is optimistically biased and

can perform poorly in the out-of-sample performance. To address overfitting problems in data-

driven optimization, Mohajerin Esfahani and Kuhn (2018) propose the seminal data-driven robust

optimization model that characterizes its ambiguity set using the Wasserstein distance metric. Gao

et al. (2017), Blanchet et al. (2019), and Shafieezadeh-Abadeh et al. (2019) also establish that when

applied to regression and classification models, these data-driven robust optimization approaches

bear similarities with regularization techniques. Consequently, the idea of incorporating conditional
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distributions using side information has also been adopted in data-driven robust optimization (see,

e.g., Hao et al. 2020, Nguyen et al. 2021, Wang et al. 2021, Bertsimas and Van Parys 2022, Esteban-

Pérez and Morales 2022). Kannan et al. (2020) propose a distributionally robust optimization

model under ambiguity sets constructed with empirical prediction residuals. Bertsimas et al. (2023)

use side information to estimate the conditional probability distribution of the uncertain outcomes

before incorporating it into the data-driven robust optimization model. Nguyen et al. (2021) present

a data-driven robust optimization model for conditional decision-making using side information,

and they illustrate the advantages of their model in portfolio optimization problems.

Most prescriptive analytics tools are focused on utility maximization. Schwartz et al. (2011)

argue that utility maximization may be self-deceptive when the decisions are made under prob-

abilistic ambiguity and estimation uncertainty. They propose robust satisficing as an alternative

to utility maximization. The goal is to maximize the robustness to the uncertainty of achieving a

satisfactory target. As articulated by Simon (1955), target satisficing, as opposed to utility maxi-

mization, is prevalent in human decision making, especially in complex situations facing risks and

uncertainty. In an empirical study, Mao (1970) concluded that managers would consider risk as

“the prospect of not meeting some target rate of return.” More recently, a survey of 74 executive

MBA students conducted by Chen and Tang (2022) found that over 90% of them reported that

their companies set profit targets in every accounting period. Brown and Sim (2009) axiomatize a

family of satisficing decision criteria that have an embedded preference for diversification, which is

sensible and consistent with risk-aversion behavior. Some applications that are based on the satis-

ficing criteria include routing under travel times uncertainty (Zhang et al. 2021), project selection

with uncertain returns (Hall et al. 2015), and project management in meeting cost targets (Goh

and Hall 2013).

In the context of satisficing, Long et al. (2023) propose a data-driven robust satisficing model that

determines the best possible here-and-now decision to achieve a target expected reward under risk

ambiguity. In this paper, we incorporate a prediction model using the residual-based approach of

Kannan et al. (2020) and propose new robust satisficing models that mitigate both risk ambiguity

and prediction uncertainty. We adopt a linear prediction model due to its widespread use in the

literature (see, e.g., Tulabandhula and Rudin 2013, Liu et al. 2021, Elmachtoub and Grigas 2022,

Ho-Nguyen and Kılınç-Karzan 2022). When side information is available in the form of predictions

made by other learners, the linear model can be interpreted as an ensemble model where the linear

coefficients represent the weights of individual predictions. The accuracy of the linear prediction

model depends on how well the regression coefficients can be estimated from data. The joint

prediction and robust optimization model proposed by Zhu et al. (2022) is relevant to our work.
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While they incorporate a prediction model and account for estimation uncertainty, they do not

include risk ambiguity and can only focus on deterministic optimization models.

In our approach, we first establish the target relative to the predict-then-optimize objective and

solve a residual-based robust satisficing model to obtain an acceptable level of fragility. Subse-

quently, we solve a new estimation-fortified robust satisficing model that minimizes the influence

of estimation uncertainty as much as possible while ensuring that the estimated fragility of the

solution in achieving a less ambitious guarding target falls below the level for the desired tar-

get. We provide statistical justifications for the robust satisficing models and formulate tractable

models when the reward function is a saddle function, and for a two-stage linear optimization

problem. We also propose tractable models when the prediction is decision-dependent. We use

real data in case studies featuring a wine portfolio investment problem and a multi-product pric-

ing problem. Through these numerical studies, we elucidate the benefits of our approach over the

predict-then-optimize approach; when evaluated on the actual distribution, our approach achieves

higher expected rewards and at lower risk. We observe consistent and significant improvement over

the benchmarks, and the improvements are more pronounced when there is limited data.

Notation. We use boldface lowercase letters for vectors (e.g., θ), and calligraphic letters for sets

(e.g., X ). We use [N ] to denote the running index {1,2, . . . ,N} for N a known integer. We let RN

(RN+ ) represent the space of N -dimensional real (non-negative) number, and SN (SN++) represent

the space of N by N symmetric (positive definite) matrices. We use A � 0 to denote a positive

semidefinite matrix A. A random variable ṽ is denoted with a tilde sign such as ṽ ∼ P, P ∈ P0,

where P0 represents the set of all possible distributions. For a multivariate random variable, we use

P0(Z) to represent the set of all distributions for the multivariate random variable with support

Z ⊆RN . Specifically, we use z̃ ∼ P, P ∈ P0(Z) to define z̃ as a multivariate random variable with

support Z and distribution P. We use EP [ṽ] to denote the expectation of a random variable, ṽ∼ P,

over its distribution. Finally, 0 (1) denotes the vector of all zeros (ones) and ei denotes the ith

basis vector. The dimensions of these vectors should be clear from the context.

2. Data-driven decision model with prediction

We consider a data-driven decision model with a reward function f(x,z) :X ×Z →R, where the

input to the first argument is the here-and-now decision x∈X ⊆RD, and the input to the second

argument z ∈ Z ⊆ RN represents the uncertain input parameters whose risky outcomes can be

partially predicted from the current side information. The input parameters of the problem are

collectively denoted by the random variable z̃ with an unobservable distribution z̃ ∼ P?, P? ∈P0(Z).

The current side information is represented by a J-dimensional vector u ∈ U ⊆ RJ . The linear



Sim et al.: The Analytics of Robust Satisficing 5

prediction map h(w,u) : RM ×U → RN , which is linear in w ∈ RM , provides the prediction of z̃

such that

z̃ :=h(w?,u) +H(u)ε̃,

for some unobservable regression coefficients w? ∈W ⊆RM and random prediction errors, ε̃. The

matrix H(u)∈ SN++ is a positive definite matrix for all u∈ U , which we use to model some elemen-

tary form of heteroscedasticity such as H(u) =
∑

n∈[N ] unene
>
n , for u∈RJ++. To obtain a tractable

model, the matrix H(u) should be deterministic and independent of the unobservable parameters.

In the case of homoscedasticity, we have H(u) = I.

To illustrate the versatility of the linear prediction map, we can also extend it to cluster-wise

prediction, such as a linear regression tree. In this case, U is a partition of L sets of clusters,

U = U1 ∪ · · · ∪ UL, and

h(w,u) =
∑

`∈[L]:u∈U`

h`(w`,u),

where w= (w1, . . . ,wL), and h`(w`,u), `∈ [L], are separate linear maps of w`. In a simple predic-

tion tree, we have h`(w`,u) =w`, w` ∈RN , `∈ [L]. The side information can also be the prediction

outputs from L different experts or machine learning models u1, . . . ,uL ∈RN , such as a forest of

prediction trees, which can then be affinely combined to achieve a superior ensemble prediction as

follows:

h(w,u) =
∑
`∈[L]

w`u` +wL+11N ,

where u= (u1, . . . ,uL).

We can estimate the regression coefficients and the statistics of the prediction errors from the

historical records of the input parameters and the side information. Specifically, we denote ũ as the

J-dimensional random variable associated with the side information and ṽ as the random outcome

associated with the input parameters without revealing the side information. The unobservable

joint distribution is denoted by (ũ, ṽ) ∼ Q?, Q? ∈ P0(U × Z). The residual associated with the

regression coefficients w ∈W is a composite random variable given by

ζ̃(w) :=H(ũ)−1(ṽ−h(w, ũ)).

Assumption 1. We assume that the random residual ζ̃(w?), evaluated at the actual regression

coefficients w? ∈W, is statistically independent of the side information ũ.

Under the assumption, the distribution of ζ̃(w?) does not depend on the realization of ũ. Hence,

the prediction errors and residuals have the same distribution.
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Given the realization of the side information, ũ=u, the decision maker should ideally solve the

following optimization problem,

Z? = max
x∈X

EQ? [f(x, ṽ)|ũ=u]

= max
x∈X

EP? [f(x, z̃)] .
(1)

However, the actual regression coefficients w? and the actual distributions Q?, P? are unobservable,

which would prohibit the modeler from obtaining the actual optimal solution.

Predict-then-optimize model

To solve Problem (1) approximately, we first need to estimate the regression coefficients for the

linear prediction model from the data. The data set D = {(ûs, v̂s)}s∈[S] comprises S realizations

of the historical input parameters, v̂s ∈ Z and the respective realizations of the side information

ûs ∈ U . With a given prediction loss function, ρ, such as the sum of the squared prediction errors

with regularization penalty, the estimation problem solves the following optimization problem,

ŵ ∈ arg min
w∈W

ρ(w;D) (2)

to determine the estimate, ŵ. If the estimation process is consistent, then ŵ would not be too far

away from w? when there are sufficient samples. However, when the data is collected over time, we

may not have sufficient samples for this purpose. For example, in the case of ordinary least square

estimation, to achieve a medium effect of the coefficient of determination, for example, R2 = 0.07,

Green (1991) proposes the number of samples S ≥ 50+8×N× (1+J+N). Suppose N = 10, J = 2;

we would require S ≥ 1090, which translates to over 20 years of weekly collected samples. In many

practical circumstances, we may not have the number of samples to achieve the desired prediction

accuracy.

For a given vector of regression coefficients, w ∈ W, it is also convenient to define the map

ζ̂ :W× [S]→RN ,

ζ̂(w, s) :=H(ûs)
−1 (v̂s−h(w, ûs)) ,

to show the dependency of the empirical residuals on the regression coefficients. Likewise, we also

define the following map ẑ :W×U × [S]→RN ,

ẑ(w,u, s) :=h(w,u) +H(u)ζ̂(w, s) =h(w,u)− g(w,u,us) +H(u)H(ûs)
−1v̂s,

where the map g :W×U ×U , which is linear in w, is defined as

g(w,u, ûs) :=H(u)H(ûs)
−1h(w, ûs).
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Hence, ẑ(w,u, s) describes how the predicted empirical samples would change if the historical side

information, ûs, were to be replaced by the current side information u under w. In the case of

homoscedasticity, we have g(w,u, ûs) = h(w, ûs). Accordingly, for a given w ∈W, we define the

corresponding predicted empirical distribution P̂w ∈ P0(RN) such that P̂w [z̃ = ẑ(w,u, s)] = 1/S

for all s∈ [S].

For a given estimate of the regression coefficients ŵ, Problem (1) can be approximated by solving

the predict-then-optimize model as follows:

Ẑ = max EP̂ŵ
[f (x, z̃)]

s.t. x∈X

= max
1

S

∑
s∈[S]

f (x, ẑ(ŵ,u, s))

s.t. x∈X ,

(3)

where the objective function is evaluated on the corresponding predicted empirical distribution

associated with the estimated regression coefficients, ŵ. Kannan et al. (2022) provide an in-depth

analysis of this approach, including the results on convergence rate and finite sample guarantee.

Indeed, how well Problem (3) would approximate Problem (1) would depend on, among other

things, how well we can estimate the regression coefficients of the linear prediction map. We also

note that while the predict-then-optimize model appears reasonable, it may result in suboptimal

solutions. For instance, Liyanage and Shanthikumar (2005) show that an unbiased estimate for

the optimal order quantity obtained from separating estimation and optimization in a newsvendor

problem leads to suboptimal solutions. This is because estimates are obtained by minimizing loss

function that only focuses on the fitting accuracy to historical data; yet higher fitting accuracy does

not translate into better performance in the subsequent optimization (see, e.g., Mundru 2019, Loke

et al. 2021, Elmachtoub and Grigas 2022). We also observe this phenomenon in our computational

studies. Therefore, it is essential to account for the influence of prediction inaccuracy on the reward

function.

3. Robust satisficing models

To account for risk ambiguity when evaluating the reward function using the predicted empir-

ical distribution, we first consider the hugely popular data-driven robust optimization model of

Mohajerin Esfahani and Kuhn (2018):

ẐΓ = max inf
P∈BΓ

EP [f(x, z̃)]

s.t. x∈X ,
(4)
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where the ambiguity set is defined as follows:

BΓ :=
{
P∈P0(Z)

∣∣∣∆(P, P̂)≤ Γ
}
,

and

∆(P1,P2) := inf
Q∈P0(RN×RN )

{
EQ

[
‖z̃− ξ̃‖

] ∣∣∣ (z̃, ξ̃)∼Q, z̃ ∼ P1, ξ̃∼ P2

}
,

is the type-1 Wasserstein distance metric.

Suppose the actual data-generating distribution P?, z̃ ∼ P? is a light-tailed distribution and PS

is the distribution that governs the distribution of independent samples ẑ1, . . . , ẑS drawn from P?,

which constitutes the empirical distribution P̂. Fournier and Guillin (2015) show that

PS
[
∆(P?, P̂)> Γ

]
≤

{
c1 exp(−c2SΓmax{N,2}) if 0< Γ≤ 1,

c1 exp(−c2SΓα) if Γ> 1,
(5)

for some α > 1 that characterizes the light tail distribution, and positive constants, c1 and c2.

Consequently, Mohajerin Esfahani and Kuhn (2018) observe that if Γ is chosen in the order

of S−1/max{N,2}, then the underlying data-generating distribution P? would be contained in the

Wasserstein ball with high probability. Tighter results with milder dependence on N have been

established in Blanchet et al. (2019), Shafieezadeh-Abadeh et al. (2019), and Si et al. (2020). Laud-

ably, the consistency analysis of Gao (2022) resolves the “curse of dimensionality” by reducing

the dependence on N and showing that a non-asymptotic rate of S−1/2 would suffice to achieve

consistency for the data-driven robust optimization problem.

Using the same metric, Long et al. (2023) propose the robust satisficing model that is specified

by a target expected reward, τ as follows:

Kτ = min κ

s.t. τ −EP [f(x, z̃)]≤ κ∆(P, P̂) ∀P∈P0(Z),

x∈X , κ≥ 0.

(6)

The robust satisficing model constrains the target shortfall by employing the fragility parameter,

κ, which is multiplied by the Wasserstein distance that measures the discrepancy between an

ambiguous distribution and the empirical distribution.

Consistency analysis of robust satisficing

Consistency analysis in the robust satisficing framework requires optimizing the expected reward

asymptotically by fine-tuning the target as the dataset expands. Though Long et al. (2023) have

yet to analyze consistency, they show that the optimal solution to the robust satisficing problem

with target τ has the following profile of confidence bounds:

PS [τ −EP? [f(x, z̃)]>Kτr]≤ PS
[
∆(P?, P̂)> r

]
∀r≥ 0. (7)
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As a target reference for analyzing consistency, we focus on the empirical optimization problem,

Ẑ = max
x∈X

EP̂ [f(x, z̃)] , (8)

for which its analysis of convergence to optimality has well been studied (see, e.g., Kleywegt et al.

2002). Suppose x̂ is the optimal solution to the robust satisficing problem for τ = Ẑ, and Γ is the

size of the Wasserstein ball such that

PS
[
∆(P?, P̂)> Γ

]
≤ ε,

for some ε > 0, then we have the following confidence bound:

PS
[
Ẑ −EP? [f(x̂, z̃)]>KẐΓ

]
≤ PS

[
∆(P?, P̂)> Γ

]
≤ ε.

Hence, by choosing τ = Ẑ, consistency can be achieved if, as the sample size expands, KẐΓ dimin-

ishes to zero at a rate that preserves the confidence bound of the Wasserstein ball. We also require

that KẐ ≤ L̄ for some positive constant L̄, which is the case if the reward function is Lipschitz con-

tinuous (see Theorem 3). We can also optimize for a target τ ≤ Ẑ that strengthens this confidence

bound.

Theorem 1. Suppose we choose τ = Ẑ − η̂Γ, where η̂ is the optimal solution to the following

minimization problem,

K̂ = min
η≥0
{η+KẐ−ηΓ},

so that K̂ ≤KẐ. Then the optimal solution of the robust satisficing problem with target τ satisfies

the confidence bound:

PS
[
Ẑ −EP? [f(x, z̃)]> K̂Γ

]
≤ ε.

Moreover, the optimal solution coincides with the corresponding robust optimization solution with

size parameter Γ such that ẐΓ = Ẑ − K̂Γ≤ τ .

Theorem 1 introduces an adaptive adjustment of the target in consistency analysis as the dataset

grows, ultimately resulting in the asymptotic optimization of the expected reward through robust

satisficing. More importantly, this finding suggests that the consistency analysis of robust satisficing

can be adapted to align with any of the well-established consistency analysis of data-driven robust

optimization problems documented in the current literature. Notably, the results from Gao (2022)

indicate that choosing the target τ = Ẑ − η̂Γ, with Γ changing at a rate of S−1/2, is adequate for

achieving consistency.

Due to the challenge in determining Γ from theoretical bounds, the consistency analysis suggests

an alternative method for setting τ . We propose choosing τ = Ẑ − χσ̂/
√
S, where σ̂ represents
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the sample standard deviation of the empirical reward associated with the optimal solution to the

empirical optimization problem (8), and χ≥ 0 serves as a confidence parameter. Compared to the

size of the Wasserstein ball, Γ, the confidence parameter, χ, is also more interpretable and intuitive

to specify, and can also be established using cross-validation techniques, whenever it is feasible to

so do.

Fragility and target trade-offs

Beyond consistency, it is crucial to develop optimization models accounting for changing condi-

tions and imperfect data, with the aim of enhancing robustness and reducing solution fragility.

This includes handling limited data samples or non-independent samples due to imperfect data

collection. For instance, DeMiguel et al. (2009) found that the mean-variance strategy required an

estimation window of over 3,000 months to outperform the equal-weighted portfolio, indicating a

scarcity of samples that are statistically independent, especially when they are collected over time.

Long et al. (2023) interpret the objective of the robust satisficing model as the fragility level

of the optimal solution in its ability to achieve the specified target. Specifically, the fragility of a

solution x ∈ X in achieving the target τ , evaluated on the referenced distribution Q ∈ P0(RN), is

defined as follows:

κ(x, τ,Q) := min κ

s.t. τ −EP [f(x, z̃)]≤ κ∆(P,Q) ∀P∈P0(Z),

κ≥ 0.

(9)

Hence, Kτ = minx∈X{κ(x, τ, P̂)}. Observe that the lower the fragility of a solution, the less the

expected target shortfalls would be impacted by the disparity of the referenced distribution from

a different distribution. In particular, when κ(x, τ, P̂) = 0, then the target τ would always be

attainable by the solution, i.e.,

τ ≤ f(x,z) ∀z ∈Z,

which also implies that

κ(x, τ,Q) = 0 ∀Q∈P0(RN).

We remark that increasing the number of samples may not necessarily reduce the fragility of the

optimal solution since it depends on the extent of the expected reward falling short of the target

due to distributional shift. A carefully chosen target value can enhance the solution’s resilience to

distributional changes, and cross-validation may be used to determine this value. We also explore

the benefits of using a finite sample confidence bound for less ideal sampling environment to justify

the robust satisficing model and understand its performance under realistic conditions.
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Theorem 2. Consider the random variable z̃ ∼ P? and the joint random variable

(z̃, ẑ1, . . . , ẑS)∼Q, Q∈P0(ZS+1). Suppose for all s∈ [S], EQ [‖z̃− ẑs‖]≤ µ and Σ is the covariance

matrix of the random variable, (Ez̃∼P? [‖z̃− ẑ1‖] , . . . ,Ez̃∼P? [‖z̃− ẑS‖]). Then, the optimal solution

to the robust satisficing problem (6) in which τ ≤ Ẑ has the following profile of confidence bounds:

Q [τ −EP? [f(x, z̃)]>µKτr]≤
1>Σ1

1>Σ1 +µ2S2(r− 1)2
∀r≥ 1.

Example 1. To provide a numerical illustration of Theorem 2, we consider a 50-dimensional

multivariate standard normal distributed random variable z̃ ∼ P? and use the `2-norm to specify the

Wasserstein metric. By simulation, we obtain the mean and standard deviation of Ez̃∼P?
[
‖z̃− ξ̃‖2

]
,

where (z̃, ξ̃)∼ P? × P?, which are approximately µ= 9.95 and σ = 1.0, respectively. Suppose Σ =

σ2 (ρ11>+ (1− ρ)I) and ρ= 0.1, the optimal solutions to the robust satisficing problem (6) with

S = 100 would have the following profile of confidence bounds:

Q [τ −EP? [f(x, z̃)]>µKτr]≤


1.0 if r= 1.0

1.2× 10−3 if r= 1.5

3.0× 10−4 if r= 2.0.

In the aforementioned example, a proportional reduction in the fragility of the solution can have a

substantial impact on its robustness against significant deviations from the target expected reward.

While it may be practically prohibitive or costly to improve the confidence of target attainment

by collecting more samples or reducing the dependency of samples, we can still reduce the fragility

by setting a less ambitious target, τ and letting the robust satisficing model determine the least

fragile solution for that target accordingly.

Proposition 1. Suppose X is a convex set and the reward function f(x,z) is concave in x∈X
for all z ∈Z. Let τλ = (1−λ)Z +λẐ, λ∈ [0,1], where Z is the worst-case reward given by

Z = max
x∈X

min
z∈Z

f(x,z).

Then,

Kτλ ≤ λKẐ .

Proposition 1 highlights the trade-offs between setting ambitious targets and the fragility of

solutions in achieving those targets. Setting a target that is always achievable, such as τ = Z,

may be overly conservative, while choosing an overly ambitious target like τ = Ẑ would likely lead

to disappointment in the outcome. For instance, under the condition of Theorem 2, the optimal

solution to the robust satisficing problem (6) in which τ = τλ has the following profile of confidence

bounds:
Q [τλ−EP? [f(x, z̃)]>λµKẐr] ≤ Q

[
τλ−EP? [f(x, z̃)]>µKτλr

]
≤ 1>Σ1

1>Σ1 +µ2S2(r− 1)2
∀r≥ 1.
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Hence, selecting a target τ somewhere between these extremes can proportionally reduce the

fragility of the solution, rendering the trade-offs manageable and explainable even under imperfect

sampling conditions. The computational studies of Long et al. (2023), Sim et al. (2021), as well

as in the present paper, show that by setting the target close to the objective of the empirical

optimization model, Ẑ, we can often improve the out-of-sample performance over the empirical

optimization model.

Residual-based robust satisficing model

Following from Kannan et al. (2020), we can also extend the robust satisficing model of Long

et al. (2023) to incorporate the prediction model by replacing the empirical distribution P̂, with

the predicted empirical distribution P̂ŵ as follows,

Kτ = min κ

s.t. τ −EP [f(x, z̃)]≤ κ∆(P, P̂ŵ) ∀P∈P0(Z),

x∈X , κ≥ 0,

(10)

which can be equivalently reformulated as the following robust optimization problem,

Kτ = min κ

s.t. τ ≤ 1

S

∑
s∈[S]

(f(x,zs) +κ‖zs− ẑ(ŵ,u, s)‖) ∀zs ∈Z, s∈ [S],

x∈X , κ≥ 0.

(11)

Similar to Kannan et al. (2020), we call Problem (10) the residual-based robust satisficing model.

We assume that Problem (11) is solvable and focus on the reward function f(x,z) that is Lipschitz

continuous with respect to z, with maximum Lipschitz constant of L̄ for all x∈X .

Theorem 3. The residual-based robust satisficing problem (11) is feasible for all τ ≤ Ẑ and

Kτ ≤ L̄. Moreover, suppose P̂ŵ ∈P0(Z) and τ = Ẑ, then its optimal solution is also optimal in the

predict-then-optimization problem (3).

We next show how the Wasserstein distance metric might deviate when the regression coefficients

differ from ŵ.

Proposition 2. For all w ∈W, P∈P0(Z),

|∆(P, P̂ŵ)−∆(P, P̂w)| ≤ 1

S

∑
s∈[S]

‖h(w− ŵ,u)− g(w− ŵ,u, ûs)‖.

Consequently, we introduce the estimation distance metric for evaluating how much regression

coefficients ŵ might deviate from their true values w∗.
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Definition 1 (Estimation distance metric). An estimation distance metric Υ : RM → R+

is a norm or a semi-norm that satisfies

θ̄= max
Υ(r)=1

 1

S

∑
s∈[S]

‖h(r,u)− g(r,u, ûs)‖

<∞, (12)

so that for all w ∈W, P∈P0(Z),

|∆(P, P̂ŵ)−∆(P, P̂w)| ≤ θ̄Υ(w− ŵ).

Note that unlike a norm, a semi-norm does not have the positive-definite property and Υ(r) = 0

does not necessarily imply r = 0. As a special case, we define the nominal estimation distance

metric as

Ῡ(r) :=
1

S

∑
s∈[S]

‖h(r,u)− g(r,u, ûs)‖ , (13)

which yields θ̄= 1. If the estimation problem is identifiable, then the estimation distance metric

Υ(r) =
1

S

∑
s∈[S]

‖h(r, ûs)‖ , (14)

would be a norm. We call this the prediction-based estimation distance metric because it is derived

from evaluating the empirical prediction inaccuracy associated with the estimation uncertainty.

Unlike the nominal estimation distance metric, the prediction-based estimation distance metric

does not depend on the current side information, u.

Proposition 3. Under Assumption 1, let Q? ∈P0(U×Z) be the joint distribution of the random

variable (ũ, ṽ), (ũ, ṽ)∼Q? and after observing u, we have z̃ ∼ P?. Accordingly, we let QS be the

distribution that governs the distribution of S samples of (ûs, v̂s), for s∈ [S] independently drawn

from Q?. The vector of regression coefficients ŵ is obtained from solving Problem (2) using (ûs, v̂s),

s∈ [S]. We also let PS denote the distribution that governs the distribution ẑ(w?,u, s) for s∈ [S].

The optimal solution of the residual-based robust satisficing problem (10) in which τ ≤ Ẑ, has the

following profile of confidence bounds:

QS
[
τ −EP? [f(x, z̃)]>Kτ (r+ θ̄Υ(w?− ŵ))

]
≤ PS

[
∆(P?, P̂w?)> r

]
∀r≥ 0.

Proposition 3 provides insight into how the probability of target attainment in the residual-based

robust satisficing model is connected to the finite sample confidence guarantee of the Wasserstein

ball, as analyzed in Fournier and Guillin (2015), as well as the accuracy of the estimated regression

coefficients evaluated using the estimation distance metric. By minimizing κ to the lowest value

of Kτ , the residual-based robust satisficing model is doing its best to reduce the impact of risk

ambiguity and estimation uncertainty on the target shortfall.
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We note that the accuracy of the prediction model is a crucial factor that affects the target

shortfall, and significant estimation uncertainty can profoundly impact the target shortfall. This

contrasts the robust satisficing model proposed by Long et al. (2023), which does not consider a

prediction model. Ignoring estimation uncertainty can be problematic when the accuracy of pre-

dictions depends on how well the underlying regression coefficients can be estimated from available

data. When the estimation uncertainty is high, it would increase the risks of target shortfalls at

larger magnitudes.

We note that, following the same reasoning as in Theorem 1, the consistency analysis of the

residual-based robust satisficing problem can be related to the analysis of its corresponding residual-

based robust optimization problem, as examined in Kannan et al. (2020). Additionally, Theorem 2

can be extended to investigate the optimal solution of the residual-based robust satisficing model

under suboptimal sampling conditions. However, addressing estimation uncertainty would yield

even greater benefits.

Estimation-fortified robust satisficing model

For a given solution x ∈ X , and target τ , the actual fragility κ(x, τ, P̂w∗) with respect to P̂w? is

unobservable. Nevertheless, we can still evaluate the estimated fragility, κ(x, τ, P̂ŵ) with respect

to the predicted empirical distribution P̂ŵ. However, although the optimal solutions generated

by the residual-based robust satisficing model may result in the lowest estimated fragility, the

actual fragility may still be higher. To provide extended flexibility for reducing the influence of

estimation uncertainty, we introduce a less ambitious guarding target denoted by τ ≤ τ and propose

a new model. We explore solutions in a neighborhood where the estimated fragility with respect

to the guarding target is bounded by Kτ . Our aim is to find the most robust solutions within

this neighborhood that are least affected by estimation uncertainty. The model, referred to as the

estimation-fortified robust satisficing model, is formulated as follows:

Θτ,τ = min θ

s.t. τ −EP [f(x, z̃)]≤Kτ

(
∆(P, P̂w) + θΥ(ŵ−w)

)
∀P∈P0(Z),w ∈W,

x∈X , θ≥ 0,

(15)

which can be reformulated equivalently as the following robust optimization problem,

Θτ,τ = min θ

s.t. τ ≤ 1

S

∑
s∈[S]

(f(x,zs) +Kτ (‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w)))

∀w ∈W,zs ∈Z, s∈ [S],

x∈X , θ≥ 0.

(16)
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Theorem 4. The estimation-fortified robust satisficing problem (15) is feasible for τ ≤ τ ≤ Ẑ
and Θτ,τ ≤ θ̄. Suppose Problem (16) is solvable, then the following properties hold:

• For any feasible solution x,

κ(x, τ ,Pŵ)≤Kτ .

• If Θτ,τ = 0, then the optimal solution x̂ satisfies

κ(x̂, τ ,Pw)≤Kτ ∀w ∈W.

• Under the same conditions of Proposition 3, the optimal solution x̂ has the following profile

of confidence bounds:

QS [τ −EP? [f(x̂, z̃)]>Kτ (r+ Θτ,τΥ(w?− ŵ))]≤ PS
[
∆(P?, P̂w?)> r

]
∀r≥ 0.

Theorem 4 shows that the feasible solution of the estimation-fortified robust satisficing model

guarantees an estimated fragility for the guarding target τ is at most Kτ . This means that when we

set τ = τ , the solution of the estimation-fortified robust satisficing model also solves the residual-

based robust satisficing problem. However, by adjusting the distance between the guarding tar-

get and the desired target, the estimation-fortified robust satisficing model has the potential of

improving the robustness of the solution in achieving the desired target by accounting for various

degrees of estimation uncertainty. Therefore, the estimation-fortified robust satisficing model com-

plements the robust satisficing model by offering a more flexible approach to managing estimation

uncertainty. Due to Theorem 3, we note that setting τ = Ẑ enables the estimation-fortified robust

satisficing model to improve the predict-then-optimize solution against estimation uncertainty.

It is important to note that the estimation-fortified robust satisficing model does not guarantee a

solution that always achieves the guarding target. When the objective is set to zero, the estimated

fragility of the optimal solutions with respect to the guarding target is bounded by a constant

value, represented by Kτ , regardless of the regression coefficients. However, even with this bound,

it is not certain that the guarding target will almost surely be achieved by these optimal solutions.

It is worth noting that if Kτ = 0, then Θτ,τ = 0, and it is unnecessary to solve the estimation-

fortified robust satisficing model if we have already found a robust solution that can almost surely

achieve the target, τ . Nonetheless, whenever Kτ > 0, the estimation-fortified robust satisficing

model complements the residual-based robust satisficing model, making its solution less sensitive

to estimation uncertainty in achieving the target τ .

In addition, Theorem 4 offers statistical support for the estimation-fortified robust satisficing

model by relating to the convergence of the Wasserstein metric in an ideal sampling environment.

This model minimizes the influence of estimation uncertainty by reducing θ to the lowest value of

Θτ,τ , which helps limit the risk of falling short of the guarding target τ .
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Predict, optimize, satisfice, then fortify

In formulating the estimation-fortified robust satisficing problem, one should prescribe model

parameters based on outputs from three baseline models. We summarize the four-step process as

follows.

1. Predict. Solve the estimation model, Problem (2), to obtain the baseline estimates ŵ of the

regression coefficients for the linear prediction model.

2. Optimize. Solve the predict-then-optimize model, Problem (3), to determine the baseline

return, Ẑ.

3. Satisfice. Set a target τ ≤ Ẑ. Solve the residual-based robust satisficing problem (10) and

obtain the minimum estimated fragility level Kτ . If Kτ = 0, then return the corresponding

optimal solution and the process stops here.

4. Fortify. Set a guarding target τ ≤ τ . Solve the estimation-fortified robust satisficing prob-

lem (15) for the guarding target τ and estimated fragility level Kτ . Return the corresponding

optimal solution.

The final solution of the four-step process minimizes the influence of estimation uncertainty as

much as possible while ensuring that the estimated fragility of the solution in achieving a less

ambitious guarding target, τ falls below the level for the desired target, τ . To enhance the model’s

out-of-sample performance in practical scenarios, it is advisable to determine the desired values

of the target parameters τ ≤ τ ≤ Ẑ through cross-validation, whenever feasible. As we will see in

our computational studies, the four-step process significantly improves the out-of-sample expected

reward over the predict-then-optimization solution.

4. Tractable optimization models

To obtain a tractable exact formulation for Problem (16), we focus on the case where the reward

function f(x,z) is a saddle function.

Definition 2 (Saddle reward function). We say that the reward function f(x,z) is a sad-

dle function if and only if for a given x ∈ X , the function is lower-semicontinuous and convex in

z ∈Z, and for a given z ∈Z, the function is concave in x∈X .

We can reformulate the robust optimization problem (16) as a deterministic modest-sized convex

optimization problem (see, e.g., Ben-Tal et al. 2015).

Unfortunately, solving the estimation-fortified robust satisficing model would lead to a more

complex model than the residual-based robust satisficing model. Even with f(x,z) = min{a>z,0}
and Z =RN , the exact representation of the robust constraints is

τ ≤ 1

S

∑
s∈[S]

(
min{a>zs,0}+Kτ (‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w))

)
∀w ∈W,zs ∈RN , s∈ [S],
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and it is equivalent to

τ ≤ min
w∈W

zs∈RN,s∈[S]

 1

S

∑
s∈S

a>zs +
Kτ

S

∑
s∈[S]

(‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w))

 ∀S ⊆ [S],

which has an exponential number of robust linear constraints. In contrast, the constraint of the

residual-based robust satisficing problem has the following exact representation

τ ≤ 1

S

∑
s∈[S]

(
min{a>zs,0}+κ (‖zs− ẑ(ŵ,u, s)‖)

)
∀zs ∈RN , s∈ [S],

which does not require to evaluate over w ∈W, and could be tractably computed as follows,

τ ≤ 1

S

∑
s∈[S]

(
min

{
min
zs∈RN

{
a>zs +κ‖zs− ẑ(ŵ,u, s)‖

}
,0

})
.

We will next present how we can provide a tractable safe approximation to handle reward functions

that are concave piecewise affine in the uncertain parameters.

Linear optimization with recourse

We can extend the framework to address adaptive linear optimization under risk ambiguity and

estimation uncertainty, which opens up a plethora of useful applications. Here, x ∈ X ⊆ RD rep-

resents the here-and-now variables, and f(x,z) represents the total two-stage reward function by

solving a linear optimization problem after z ∈Z has been realized as follows:

f(x,z) = max d>y

s.t. A(z)x+By≤ b(z),

y ∈RD2 ,

(17)

where A :RN →RM×D and b :RN →RM are affine maps of z as defined below:

A(z) :=A0 +
∑
i∈[N ]

Aizi, b(z) := b0 +
∑
i∈[N ]

bizi.

We assume that Problem (17) has complete recourse, i.e., for every t ∈RM , there exists y ∈RD2

such that By≤ t. The corresponding predict-then-optimize model is given by:

Ẑ = max
1

S

∑
s∈[S]

d>ys

s.t. A(ẑ(ŵ,u, s))x+Bys ≤ b(ẑ(ŵ,u, s)) ∀s∈ [S],

ys ∈RD2 ∀s∈ [S],

x∈X .
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Although the residual-based robust satisficing problem is a harder problem, we can adopt the

tractable safe approximation of Long et al. (2023) as follows,

K̄τ = min κ

s.t. τ ≤ 1

S

∑
s∈[S]

(
d>ys(zs, φs) +κφs

)
∀(zs, φs)∈ Z̄s, s∈ [S],

A(zs)x+Bys(zs, φ)≤ b(zs) ∀(zs, φs)∈ Z̄s, s∈ [S],

ys ∈LN+1,D2 ∀s∈ [S],

x∈X , k≥ 0,

(18)

where

Z̄s := {(zs, φs)∈Z ×R | φs ≥ ‖zs− ẑ(ŵ,u, s)‖},

and

LN,P :=

{
y :RN →RP

∣∣∣ y(z) = y0 +
∑
i∈[N ]

yizi for some yi ∈RP , i∈ [N ]∪{0}
}
.

Note that since this is a safe approximation, we have K̄τ ≥Kτ . More importantly, if Problem (17)

has complete recourse, then the approximation is also feasible for any target τ ≤ Ẑ. Moreover, in

the same vein of Theorem 3, we can also establish that if P̂ŵ ∈P0(Z) and τ = Ẑ, then its optimal

solution is also optimal in the predict-then-optimization problem.

The estimation-fortified robust satisficing problem (16) has an equivalent adaptive linear opti-

mization problem

Θτ,τ = min θ

s.t. τ ≤ 1

S

∑
s∈[S]

(
d>y(zs) + K̄τ (‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w))

)
∀w ∈W,zs ∈Z, s∈ [S],

A(z)x+By(z)≤ b(z) ∀z ∈Z,

y :RN →RD2 ,

x∈X , θ≥ 0.

(19)

Accordingly, we propose a compatible safe tractable approximation of the estimation-fortified

robust satisficing problem.

Θ̄τ,τ = min θ

s.t. τ ≤ 1

S

∑
s∈[S]

(
d>ys(zs, φs) + K̄τη

)
∀
(
η, (zs, φs)s∈[S]

)
∈ Z̄(θ),

A(zs)x+Bys(zs, φs)≤ b(zs) ∀(zs, φs)∈ Z̄s, s∈ [S],

ys ∈LN+1,D2 ∀s∈ [S],

x∈X , θ ∈ [0, ϑ̄],

(20)
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where

Z̄(θ) :=


(
η, (zs, φs)s∈[S]

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η ∈R, (zs, φs)∈ Z̄s ∀s∈ [S]

η≥ 1

S

∑
s∈[S]

(‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w))

η≥ θ

ϑ̄S

∑
s∈[S]

φs

for some w ∈W


,

for any fixed ϑ̄, ϑ̄ ≥ θ̄. Note that we can choose ϑ̄ = 1 for any estimation distance metric that

dominates the nominal metric, i.e., for all r ∈RM , Υ(r)≥ Ῡ(r).

Theorem 5. Problem (20) is a conservative approximation of the estimation-fortified robust

satisficing problem (19). Moreover, any feasible solution of Problem (18) would also be feasible

in Problem (20). Furthermore, if τ = τ , then any feasible solution of Problem (20) would also be

optimal in solution in Problem (18).

Theorem 5 demonstrates the compatibility of the safe approximations for both robust satisficing

models, which is essential for the four-step process. Although not an exact approach, if P̂ŵ ∈P0(Z)

and τ = τ = Ẑ, the safe approximation of the estimation-fortified robust satisficing problem could

still provide optimal solutions that are also optimal in the predict-then-optimization problem.

Observe that unlike the safe approximation of the residual-based robust satisficing problem,

Problem (20) has an uncertainty set Z̄(θ) that is dependent on the decision variable θ. Since the set

Z̄(θ) is non-increasing in θ, we can solve Problem (20) by binary search on θ. In each sub-problem,

we solve the following maximization problem

Tτ (θ) = max t

s.t. t≤ 1

S

∑
s∈[S]

(
d>ys(zs, φs) + K̄τη

)
∀
(
η, (zs, φs)s∈[S]

)
∈ Z̄(θ),

A(zs)x+Bys(zs, φs)≤ b(zs) ∀(zs, φs)∈ Z̄s, s∈ [S],

ys ∈LN+1,D2 ∀s∈ [S],

x∈X ,

(21)

so that Θ̄τ,τ = min{θ|τ ≤ Tτ (θ), θ ∈ [0, ϑ̄]}.

Decision-dependent prediction

There are many well-motivated examples that incorporate decisions as inputs to the prediction,

such as multi-product pricing problems. We can extend the model when u is part of the here-and-

now decisions from the joint feasibility set (x,u)∈Y, Y ⊆X ×Ū , Ū ⊆ U . Suppose Ū is a discrete set;

we can exhaustively enumerate u∈ Ū and solve each robust satisficing problem using the prediction

from u. We can also explore mixed integer optimization methods to formulate the problem. Suppose
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Ū is a convex set, to obtain a tractable convex optimization problem, we have to ensure that the

uncertain parameters associated with the robust satisficing model are not dependent on u. We

require Z =RN and homoscedasticity, so that g(w,u, ûs) =h(w, ûs).

The residual-based robust satisficing has the following equivalent representation,

Kτ = min κ

s.t. τ ≤ 1

S

∑
s∈[S]

(f(x,zs) +κ‖zs− ẑ(ŵ,u, s)‖) ∀zs ∈RN , s∈ [S],

(x,u)∈Y, κ≥ 0.

With the change of variables, zs =h(ŵ,u) + εs, we obtain

Kτ = min κ

s.t. τ ≤ 1

S

∑
s∈[S]

(
f(x,h(ŵ,u) + εs) +κ

(
‖εs− ζ̂(ŵ, s)‖

))
∀εs ∈RN , s∈ [S],

(x,u)∈Y, κ≥ 0.

(22)

Accordingly, the estimation-fortified robust satisficing problem is,

Θτ,τ = min θ

s.t. τ ≤ 1

S

∑
s∈[S]

(f(x,zs) +Kτ (‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w))) ∀zs ∈RN ,w ∈W, s∈ [S],

(x,u)∈Y, θ≥ 0.

Ostensibly, we cannot consider the nominal estimation distance metric for the estimation-fortified

robust satisficing model because of its dependency on u. If the estimation problem is identifiable,

the prediction-based estimation distance metric is also a viable option.

With the change of variables, zs =h(w,u) + εs, we obtain

Θτ,τ = min θ

s.t. τ ≤ 1

S

∑
s∈[S]

(
f(x,h(w,u) + εs) +Kτ

(
‖εs− ζ̂(w, s)‖+ θΥ(ŵ−w)

))
∀εs ∈RN ,w ∈W, s∈ [S],

(x,u)∈Y, θ≥ 0.

(23)

For Problem (23) to be tractable convex optimization problems, the reward function has to be a

saddle function, and f(x,h(w,u) + εs) has to be jointly concave in (x,u) for all w ∈W. In our

second application, we provide an example of multi-product pricing to illustrate this.

Given that predictions are decision-dependent, we cannot assume that empirical samples are

drawn independently. Nevertheless, Theorem 2 offer valuable insights into the robustness of the

robust satisficing solutions in the less ideal sampling environment. The robust satisficing models

strive to minimize the negative impact of risk ambiguity and estimation uncertainty, achieving
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an empirically attainable target, τ ≤ Ẑ. Although cross-validation is inapplicable due to decision-

dependent predictions, we can set τ = Ẑ to compare with the predict-then-optimize solution. To

establish a guarding target, we can define τ = Ẑ−χσ̂/
√
S, where σ̂ represents the sample standard

deviation of the predict-then-optimize solution’s estimated reward, and χ≥ 0 corresponds to the

specified confidence level, such as χ= 2. This method proves effective for the multi-product pricing

problem explored in Section 6.

5. Application I: Wine portfolio investment problem

We consider a stylized wine portfolio investment problem, which determines the portfolio of wines

to procure from a collection of N different types of wines to achieve an expected revenue of τ when

the portfolio of wines is sold at the end of the investment period. It has well been known that

the future price of wine highly depends on some observable factors such as regions and weather

parameters (see, e.g., Oczkowski 2016, Hekimoğlu et al. 2017). Hence, each wine type n∈ [N ] can

be associated with a vector of side information, un, that could be used to predict its future price.

We can employ the standard log-linear specification for modeling the price of wine n, denoted as

pn (see, e.g., Oczkowski 2016, Hekimoğlu and Kazaz 2020):

z̃n = log pn =w>un + ε̃n,

which is also known as the “Bordeaux Equation” developed by Ashenfelter et al. (1995) and

Ashenfelter (2008). A collection of S observation pairs (v̂s, ûs), s ∈ [S], where v̂s = log(p̂s) and p̂s

is the price of wine that is associated with side information ûs.

Predict-then-optimize model. Given a normalized budget of one, the predict-then-optimize

(PO) model would solve the following optimization problem,

Ẑ = max
∑
n∈[N ]

xn exp
(
ŵ>un

)
r̂

s.t. c>x≤ 1,

x≥ 0,

(24)

where cn, n∈ [N ] is the unit cost of type n wine and

r̂=
1

S

∑
s∈[S]

p̂s exp
(
−ŵ>ûs

)
is the average price variation that is attributed to the empirical residuals. We note that this

simplification of Problem (3) applies only when the uncertain parameters appear linearly in the

objective and the empirical residuals are perfectly correlated among different wine types.
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Residual-based robust models. Kannan et al. (2020) use Wasserstein-based ambiguity sets

constructed from sample residuals and propose the residual-based robust optimization (RO) model

as follows:
max τ

s.t. EP

[ ∑
n∈[N ]

xn exp(z̃n)

]
≥ τ ∀P∈FΓ,

x∈X ,

where

FΓ :=
{
P∈P0(RN)

∣∣∣∆(P, P̂ŵ)≤ Γ
}
,

and P̂ŵ is the predicted empirical distribution where ξ̃∼ P̂ indicates

P̂
[
ξ̃n = ŵ>un + v̂s− ŵ>ûs

]
=

1

S
∀n∈ [N ], s∈ [S].

Under `1-norm, the residual-based RO is equivalent to the following problem,

max τ −κΓ

s.t. τ ≤ 1

S

∑
s∈[S]

∑
n∈[N ]

min
z∈R

{
xn exp(z) +κ|z− (ŵ>un + v̂s− ŵ>ûs)|

} ,

x∈X , κ≥ 0.

For a given revenue target and under `1-norm, τ < Ẑ, the residual-based robust satisficing (RS)

model is given as follows:

Kτ = min κ

s.t. τ ≤ 1

S

∑
s∈[S]

∑
n∈[N ]

(
xn exp

(
zs,n
)

+κ
(
|zs,n− (ŵ>un + v̂s− ŵ>ûs)|

))
∀zs ∈RN , s∈ [S],

c>x≤ 1,

x≥ 0, κ≥ 0.

(25)

Estimation-fortified robust satisficing model. We use an `2-norm estimation distance met-

ric, so the corresponding estimation-fortified (EF) robust satisficing model is

Θτ,τ = min θ

s.t. τ ≤ 1

S

∑
s∈[S]

∑
n∈[N ]

(
xn exp

(
zs,n
)

+Kτ |zs,n− (w>un + v̂s−w>ûs)|
)

+ θKτ‖ŵ−w‖2

∀w ∈RJ ,zs ∈RN , s∈ [S],

c>x≤ 1,

x≥ 0, θ≥ 0.

(26)
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Theorem 6. The RS model (25) has the following explicit formulation,

Kτ = min κ

s.t.
1

S

∑
s∈[S]

∑
n∈[N ]

(
φs,n(ŵ>un + v̂s− ŵ>ûs)−βs,n

)
≥ τ,

φs,n log (φs,n/xn)≤ φs,n +βs,n ∀s∈ [S], n∈ [N ],

‖φs‖∞ ≤ κ ∀s∈ [S],

c>x≤ 1,

x≥ 0, κ≥ 0,

φs ∈RN+ ,βs ∈RN ∀s∈ [S].

(27)

The EF model (26) has the following explicit formulation,

Θτ,τ = min θ

s.t.
1

S

∑
s∈[S]

∑
n∈[N ]

(
φs,nv̂s−βs,n)−η>ŵ≥ τ ,

1

S

∑
s∈[S]

∑
n∈[N ]

φs,n(un− ûs) +η= 0,

φs,n log (φs,n/xn)≤ φs,n +βs,n ∀s∈ [S], n∈ [N ],

‖φs‖∞ ≤Kτ ∀s∈ [S],

‖η‖2 ≤ θKτ ,

c>x≤ 1,

x≥ 0, θ≥ 0,η ∈RJ ,

φs ∈RN+ ,βs ∈RN ∀s∈ [S].

(28)

We follow the convention that 0 log(0/t) = 0 if t≥ 0. Model (28) is a conic optimization problem

involving exponential cones, which is currently supported in the commercial solver MOSEK (ApS

2021).

Case study

In this case study, we use the data on wine prices from Chapter 1 of The Analytics Edge (Bertsimas

et al. 2016, p7), as shown in Table 1. This data set contains the historical log of prices of vintage

and weather data from 1952 to 1980 (the prices of wine in 1954 and 1956 are missing and do not

appear in the data set). Due to the limited data availability, we randomly select the data of N = 5

products as testing data and the rest as training data so that S = 22. Unfortunately, we do not

have the price of each wine at different vintage years, which could be used to infer the cost of

wine at the point of investment. Hence, in our numerical study, we generate the cost cn = ϑnpn

for n ∈ [N ], where ϑn is randomly generated from a uniform distribution in [0.3,0.6]. We then

use the training sample to obtain estimates ŵ. Subsequently, we solve the PO model (24), and
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Table 1 Vintage and weather data from The Analytics Edge (Bertsimas et al. 2016, p7).

Vintage Price Log of Price Winter Rain (ml) AGST (◦C ) Harvest Rain (ml) Age of Vintage (yrs)

1952 0.3684 -0.99868 600 17.1167 160 31

1953 0.6348 -0.45440 690 16.7333 80 30

1955 0.4458 -0.80796 502 17.1500 130 28

1957 0.2211 -1.50926 420 16.1333 110 26

1958 0.1797 -1.71655 582 16.4167 187 25

1959 0.6584 -0.41800 485 17.4833 187 24

1960 0.1388 -1.97491 763 16.4167 290 23

1961 1.0000 0.00000 830 17.3333 38 22

1962 0.3310 -1.10572 697 16.3000 52 21

1963 0.1685 -1.78098 608 15.7167 155 20

1964 0.3059 -1.18435 402 17.2667 96 19

1965 0.1063 -2.24194 602 15.3667 267 18

1966 0.4726 -0.74943 819 16.5333 86 17

1967 0.1913 -1.65388 714 16.2333 118 16

1968 0.1054 -2.25018 610 16.2000 292 15

1969 0.1167 -2.14784 575 16.5500 244 14

1970 0.4044 -0.90544 622 16.6667 89 13

1971 0.2724 -1.30031 551 16.7667 112 12

1972 0.1014 -2.28879 536 14.9833 158 11

1973 0.1561 -1.85700 376 17.0667 123 10

1974 0.1108 -2.19958 574 16.3000 184 9

1975 0.3007 -1.20168 572 16.9500 171 8

1976 0.2534 -1.37264 418 17.6500 247 7

1977 0.1070 -2.23503 821 15.5833 87 6

1978 0.2704 -1.30769 763 15.8167 51 5

1979 0.2145 -1.53960 717 16.1667 122 4

1980 0.1359 -1.99582 578 16.0000 74 3

obtain xPO and Ẑ. The revenues generated by investment decisions are then evaluated on the same

test data set. We repeat this process for 100 iterations and derive the simulated expected return,

defined as the expected revenue subtracted by the budget of one. We also evaluate the out-of-

sample performance improvement on expected return between the two models. For example, the

percentage improvement of the EF model against the PO model is denoted as EF−PO
PO

%.

We solve all the models using RSOME (a python-based algebraic modeling package, see Chen and

Xiong (2023) and https://xiongpengnus.github.io/rsome/), which can handle exponential cones

with the MOSEK solver.

Diversification of wine portfolio. The PO model would recommend investing in a single wine

type that exhibits the highest predicted expected return. This approach is both naive and risky.

https://xiongpengnus.github.io/rsome/
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Table 2 An example of wine investment portfolios obtained by different models.

Vintage Cost
Predicted
Return

Actual
Return

Cost ·x?PO

Cost ·x?RS

ϕ= 0.60 ϕ= 0.70 ϕ= 0.80 ϕ= 0.90 ϕ= 1.0

1959 0.243 1.489 2.711 0.000 0.200 0.182 0.000 0.000 0.000

1962 0.152 2.491 2.172 1.000 0.200 0.231 0.440 0.614 1.000

1963 0.097 1.517 1.742 0.000 0.200 0.190 0.128 0.000 0.000

1965 0.046 1.471 2.287 0.000 0.200 0.170 0.000 0.000 0.000

1966 0.203 1.990 2.330 0.000 0.200 0.227 0.432 0.386 0.000

Realized return 2.172 2.248 2.244 2.185 2.233 2.172

While it is possible to incorporate risk aversion into the PO model, diversification may not occur

because the predicted empirical returns among different types of wines are perfectly correlated.

In contrast, the robust optimization models will yield diversified wine investment portfolios. For

instance, in Table 2, we show that reducing ϕ can lead to a more diversified wine investment

portfolio in the RS model. Interestingly, when the target is sufficiently low, the optimally robust

portfolio becomes an equal-weighted portfolio, which despite its simplicity, is known to perform

robustly well in actual portfolio optimization (DeMiguel et al. 2009).

PO versus RO and RS. We vary Γ ∈ {0, 0.1, . . . , 1.9, 2.0} and solve the RO model (27) to

obtain xRO for each Γ. For the RS model, we let τ = ϕẐ and vary the target multiplier ϕ ∈

{0.70, 0.71, . . . , 0.99, 0.999} to obtain the corresponding xRS for each ϕ. Note that since the RS

model would be infeasible when τ > Ẑ, to avoid numerical issues in the optimization problem, we

set the largest value of ϕ to 0.999 instead of 1.0. Note that if ϕ→ 1.0 (Γ→ 0), then the solution

xRS (xRO) converges to xPO. In Figure 1, we plot the out-of-sample performance improvement

against PO on the expected return achieved by RO (left) and RS (right). We note that RO’s

performance improvement curve exhibits a less smooth trajectory compared to RS. Additionally,

we can find a reasonable range of ϕ ∈ [0.8,1] where RS achieves a notable improvement in out-

of-sample performance over the PO model. This range of parameters leading to improvements

aligns with the ranges reported in recent computation studies of robust satisficing models (Long

et al. 2023). Improvement by RO occurs for a range of radius parameters Γ ∈ [0,0.5]. However,

we note that the range of radius parameters leading to improvement is specific to the problem at

hand. Without cross-validation, it would be challenging to identify suitable values of Γ that would

significantly improve over the predict-and-optimization solution.

PO versus RS and EF. To demonstrate the benefits of addressing estimation uncertainty,

we compare the performance of the solutions obtained by PO, RS, and EF models. For the RS

model, we record its maximum percentage improvement on the expected return against PO, as



26 Sim et al.: The Analytics of Robust Satisficing

0.0 0.4 0.8 1.2 1.6 2.0
Γ

−4

−2

0

2

RO
−
PO

PO

RO

0.70 0.80 0.90 1.00
φ

−4

−2

0

2

RS
−
PO

PO
%

RS

Figure 1 Out-of-sample performance improvement on the expected return of RO (left) and RS (right) against

PO.
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Figure 2 Out-of-sample percentage of improvement on the expected return of EF against PO (dashed line with

?) and the maximum percentage of improvement on the expected return of RS against PO (dashed

line with .).

shown in the right panel of Figure 1. For the EF model, we let τ = Ẑ and solve Problem (27) to

obtain KẐ . Subsequently, given Kτ = KẐ , we vary the guarding target τ = αẐ for some tuning

parameter α ∈ {0.70, 0.71, . . . 0.99, 0.999} and solve Problem (28) to obtain the xEF for each α.

Note that α→ 1.0 leads to the optimal PO wine portfolio investment decisions. The percentage

improvements on the expected return of EF with respect to PO are presented in Figure 2, which

also includes the maximum percentage improvement achieved by RS with respect to PO.

We observe that EF outperforms PO in terms of the out-of-sample expected returns for most

instances of α ∈ [0.75,1]. Besides, there exists a range of α values such that EF has a higher

expected return than RS. These findings highlight the performance benefits obtained by fortifying

the solution against estimation uncertainty.

Return-risk profiles of EF and RS. We extend more numerical experiments that benchmark

RS under various target parameters ϕ ∈ {0.80,0.81, . . . ,0.99,0.999}. For each RS with target τ =
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Figure 3 Out-of-sample percentage of improvement on the expected return (left) and the percentage of improve-

ment on the standard deviation of expected return (right) of EF against RS for different ϕ.

φẐ, we obtain a series of solutions from the corresponding EF model under a set of parameter

values α ∈ {0.70,0.71, . . . ,0.999}. We report the out-of-sample improvement achieved by EF with

respect to RS in terms of the expected return and its standard deviation in Figure 3. For clarity

of the plot, we only include results for ϕ ∈ {0.80,0.84,0.88,0.90,0.92, . . . ,0.98,0.999}. For targets

τ ≥ 0.9Ẑ, we observe that decreasing the guarding target for a fixed target always leads to a

reduction in the standard deviation. Furthermore, we have identified certain regions where setting

a marginally lower guarding target in EF can lead to an improvement in the expected reward over

RS. In these regions, the EF model dominates the RS model with the same target in terms of

risk profile, achieving higher expected returns and lower standard deviation. In particular, when

compared to the predict-and-optimize solution, which corresponds to both the RS and EF models

at ϕ= α= 1, the EF model with ϕ= 1 and α= 0.9 can generate portfolios that exhibit more than a

2% increase in expected returns, while simultaneously decreasing the standard deviations by 13%.

However, we do not observe the dominance of EF over RS when ϕ falls below 0.90. An intuitive

explanation is that when the target falls below this level, the impact of risk ambiguity addressed

in the RS model would have compensated for the influence of estimation uncertainty that the EF

model tries to address.

These findings highlight the importance of carefully selecting the target and guarding target

to achieve the desired balance between risk and reward. In the EF-Opt model, we consider only

the α parameter that yields the best out-of-sample expected reward for each target τ = ϕẐ. The

left panel of Figure 4 plots the return-risk frontiers and compares the EF-Opt and RS models

for various ϕ. By minimizing the impact of estimation uncertainty, the EF models can further

extend the reach of the efficient frontier and achieve higher expected returns. In the right panel

of Figure 4, we plot the corresponding optimal α∗ under different values of ϕ used in plotting the
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EF-Opt frontier. From the right panel of Figure 4, we propose the following heuristic of setting the

parameter value α for each ϕ:

α(ϕ) = min

{
1, α+

1−ϕ
1−ϕ

(1−α)

}
.

Here, α(1) = α and α(ϕ) = 1. For this example, we can use α= 0.9 and ϕ= 0.9 to set α heuristically,

potentially leading to higher expected revenues at similar risks as observed from the return-risk

frontiers.
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Figure 4 Return-risk frontiers of EF-Opt and RS for ϕ∈ [0.80,1] and the best α∗ with respect to ϕ.

6. Application II: Multi-product pricing problem

In the second application, we investigate a classical multi-product pricing problem (Lim et al.

2008, Kluberg and Perakis 2012, Federgruen and Hu 2015) using historical data that we can use

to forecast the demands of products from their prices. A retailer sells N products in the market

with demand z̃n for product n∈ [N ], which is a function of price p∈ [p, p̄]⊆RN as follows,

z̃n =wn + q>n p+ ε̃n,

where qn,wn, n ∈ [N ], are some unobservable but deterministic parameters. This linear demand

model is widely used in pricing problems (see, e.g., Thiele 2009, Lu et al. 2014) and is shown

to be “somewhat surprisingly, quite useful” (Besbes and Zeevi 2015). The total expected revenue

EP [f(p,w+Qp+ ε̃)] can be expressed as

EP [f(p,w+Qp+ ε̃)] =EP
[
p>w+p>Qp+p>ε̃

]
.

The retailer has S historical observation pairs, {(p̂s, v̂s), s∈ [S]}, which enable her to solve the

robust satisficing model that incorporates prediction under endogenous pricing.
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We consider the multiproduct residual-based robust satisficing (RS) problem as follows:

Kτ = min κ

s.t. τ ≤ 1

S

∑
s∈[S]

(
f(p, ŵ+ Q̂p+ εs) +κ

∥∥∥εs− v̂s + ŵ+ Q̂p̂s

∥∥∥) ∀εs ∈RN , s∈ [S],

p∈ [p, p̄], κ≥ 0.

(29)

We use the prediction-based estimation distance metric,

Υ(w,Q) =
1

S

∑
s∈[S]

‖w+Qp̂s‖,

which yields reasonably good performance in our numerical study. We solve the following multi-

product estimation-fortified (EF) robust satisficing model,

Θτ,τ = min θ

s.t. τ ≤ 1

S

∑
s∈[S]

(
f(p,w+Qp+ εs) +Kτ

(
‖εs− v̂s +w+Qp̂s‖+ θ‖w− ŵ+ (Q− Q̂)p̂s‖

))
∀εs ∈RN , (w,Q)∈W, s∈ [S],

p∈ [p, p̄], θ≥ 0,

(30)

where W is specified as

W =
{

(w,Q)∈RN×(1+N)
∣∣ Q+Q> � 0

}
.

Here, we mandate Q +Q> � 0 (i.e., negative semidefinite), which is a common assumption in

multi-product pricing literature (see, for example, Kluberg and Perakis 2012, Federgruen and Hu

2015, Armstrong and Vickers 2018).

Theorem 7. When Q̂+ Q̂> � 0, the multiproduct RS problem (29) can be reformulated as the

following explicit semidefinite optimization problem:

Kτ = min κ

s.t. τ ≤ 1

2
(Q̂+ Q̂>) •Y +

1

S

∑
s∈[S]

p>
(
v̂s− Q̂p̂s

)
, Y p

p> 1

� 0,

‖p‖∗ ≤ κ,

Y ∈ SN ,p∈ [p, p̄], κ≥ 0.

(31)
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The multiproduct EF problem (30) can be reformulated as the following explicit semidefinite opti-

mization problem:

Θτ,τ = min θ

s.t.
1

S

∑
s∈[S]

(
p>v̂s + t>s ŵ+ t>s Q̂p̂s

)
≥ τ , Y p

p> 1

� 0,

Y =
1

S

∑
s∈[S]

(p+ ts)p̂
>
s ,

1

S

∑
s∈[S]

ts = 0,

‖p‖∗ ≤Kτ ,

‖ts‖∗ ≤Kτθ ∀s∈ [S],

ts ∈RN ∀s∈ [S],

Y ∈ SN ,p∈ [p, p̄],

θ≥ 0.

(32)

Theorem 7 states that the residual-based multiproduct pricing problem can be solved as a

semidefinite programming problem. The estimation-fortified multiproduct pricing problem can be

cast as a convex conic optimization problem, despite the presence of endogenous pricing decisions

in demand estimation. Specifically, if we choose the `1-norm for the Wasserstein and the prediction

discrepancy metrics, then Problem (32) would have only one semidefinite constraint and the rest

are linear constraints. In contrast, if we use the `2-norm, there would be one semidefinite constraint

and S + 1 second-order-cone constraints. As such, the resulting Problem (32) can be practically

solved by available solvers such as MOSEK and SDPT3 (Toh et al. 1999).

Benchmark models. We benchmark the performance of our proposed model against the

predict-then-optimize (PO) model:

Ẑ = max
p∈[p,p̄]

p>Q̂p+p>ŵ+
1

S

∑
s∈[S]

p>ε̂s

 , (33)

where ε̂s = v̂s − Q̂p̂s − ŵ is the empirical residual and Q̂ and ŵ are estimated parameters using

regression approaches such as least square (LS), LASSO, or Ridge regression. We can formulate

Problem (33) as a convex quadratic optimization problem if Q̂+ Q̂> is a negative semidefinite

matrix. Otherwise, Problem (33) would not be a convex optimization problem, and we do not

know how to solve such problems optimally with a reasonable computational effort. Note that even

though the actual Q? +Q?> is negative semidefinite, the estimated Q̂+ Q̂> may not necessarily
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be a negative semidefinite matrix. As such, in our case study, we impose a negative semidefinite

constraint on Q̂+ Q̂> when we obtain their estimates from data. For instance, in the case of LS,

we solve the following constrained least square optimization problem:

(ŵ, Q̂) = arg min
w;Q+Q>�0

 1

S

∑
s∈[S]

‖w+Qp̂s− v̂s‖22

 . (34)

Data-driven and confidence-adjusted guarding target. Because of the endogenous out-

comes, it would not be possible to perform cross-validation on the target parameter in the robust

satisficing problem. To benchmark against the predict-then-optimize solution, we set τ = Ẑ. The

retailer may set the guarding target relative to the expected revenue generated by PO via a con-

fidence level that the actual expected revenue might exceed this target. Specifically, for a given

confidence level, χ, we propose the setting guarding target τ , τ = Ẑ − χσ̂/
√
S, where pPO is the

optimal price of the PO problem (33), σ̂ =
√∑

s∈[S]

(
(ε̂s−

∑
s∈S ε̂s/S)>pPO

)2
/(S− 1) is the sam-

ple standard deviation, and χ is a parameter directly associated with the confidence level, e.g.,

χ ∈ {1,2,3,4}. In this way, we can obtain a guarding target revenue that is closely related to the

historical data and the confidence level specified by the decision maker, regardless of the size of

the data. As we will demonstrate in our case study comparison, for an appropriate range of con-

fidence intervals, the EF model with a confidence-adjusted guarding target significantly improves

the average revenue against the PO model in out-of-sample tests.

In what follows, we conduct a case study to demonstrate the effectiveness of our proposed EF

model. We first demonstrate that higher prediction accuracy in the prediction model may not lead

to better performance in the subsequent optimization model. Specifically, we compare PO models

with prediction estimates obtained from LS, Ridge, and LASSO regression. By choosing PO with

LS as a benchmark, we explore the performance of the EF model according to expected revenue.

The case study was conducted in CVX (a MATLAB-based algebraic modeling package, see in

http://cvxr.com/cvx/), using the MOSEK solver.

Case study

We investigate the value of our proposed model by applying it to a real-world data set of an

international cosmetics company. This data set was acquired from Perakis et al. (2023), where they

selected twelve skin care products based on the sales volume. For more details of the selection of

the products, please refer to Perakis et al. (2023). Similar to Perakis et al. (2023), we sequentially

partition the twelve selected products into five groups, each containing four products. For example,

group 1 contains products 1 - 4, group 2 includes products 3 - 6, and so forth. Hence, we emulate

the random selection of four products in each group. This data set spans nearly a decade (from

August 2007 to September 2016), and we have 3055 samples to estimate the parameters w and Q.

http://cvxr.com/cvx/
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Given the span of the data, we assume that the estimates (w and Q) are the actual parameters

(i.e., w? and Q?). Using data sets, when the parameters are estimated via ordinary least squares,

we verify that Q? +Q?> are negative semidefinite matrices.

Subsequently, we randomly select S ∈ {50,100,150,200,250} price samples from historical data,

denoted as (p̂s)s∈[S], and its associated demands (v̂s)s∈[S]. As such, we have 5×5 = 25 experiments

with varying product groups and sample sizes. For each experiment, we conduct 100 iterations and

evaluate the average results.

Within each iteration, we first select S training samples from the data and estimate Q̂ and ŵ

by solving Problem (34). The nominal estimates Q̂ and ŵ then serve as the input parameters to

the RS model. Then, we solve the PO model to obtain pPO, Ẑ, and σS. We also solve the PO

model with actual parameters w? and Q? to obtain the optimal price p?. We denote this model as

the true model and will use it to normalize the outputs, including the mean revenue and standard

deviation of other models. We then solve the RS model on the training data with τ = Ẑ and solve

the EF model with τ = Ẑ −χσS and obtain the optimal prices.

For a given price, p, we can obtain the expected revenue and the standard deviation of the

revenue as p>µ(p) and
√
p>Σp, respectively. Here, µ(p) =w? +Q?p is the mean demand that

associates with price p, and Σ is the covariance matrix of ε̃, the sample of which can be derived

from ε̂s = v̂s −Q?p̂s −w? for s ∈ [S] over the entire data set. We then normalize the expected

revenue and standard deviation of the EF model with corresponding counterparts of the true model.

Finally, we average over all the iterations to obtain the average normalized revenue and standard

deviation.

The perils of the PO model. We first investigate the performance of the PO model with

estimates obtained from LS, Ridge, and LASSO regression. The performance comparison is sum-

marized in Figure 5, where we also include the prediction accuracy of the three estimates. The

metrics of LASSO and Ridge regressions are normalized with respect to the corresponding metrics

of the PO model.

Figure 5 demonstrates that the PO model with estimates from Ridge regression leads to lower

expected revenue on average compared to that with estimates from LS regression—as shown in the

upper left panel of the figure—though the former improves the prediction accuracy across all the

groups and samples, as elucidated by the upper right panel. Because we do not observe sparsity

in w? and Q? from our data set, it is reasonable to believe that LASSO regression is not a good

candidate as the underlying prediction model. As we illustrate in the lower left panel, the PO

model with estimates from LASSO regression has poorer performance compared to the PO model

with estimates obtained from LS regression. Incidentally, the difference is the most significant when
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Figure 5 Out-of-sample percentage of improvement of PO with Ridge estimates against PO with LS estimates

on expected revenue (upper left) and mean squared error (upper right), and that of PO with LASSO

estimates against PO with LS estimates on expected revenue (lower left) and mean squared error

(lower right).

the sample size is small. In this scenario, LASSO regression has the best improvement in terms

of prediction mean squared error compared to LS regression. This comparison exemplifies that

higher prediction accuracy may not necessarily contribute to better performance in the subsequent

optimization model. As such, in what follows, we only benchmark on the PO model with estimates

from LS regression.

Computation time of RS and EF. We first demonstrate the computational tractability of

both the RS and EF model. Table 3 summarizes the average computation times of the RS and EF

models under different numbers of products and sample sizes when χ= 1.0. We can see that the

computation time for EF mildly increases with the number of products N and modestly increases

with the sample size S, and the computation time for RS is around 0.35 seconds across all the

settings, indicating that both the RS and EF models are computationally scalable.

Performance comparison between EF and PO. We now compare the performance of the

PO model with the EF model for χ= 1. The performance comparison of the out-of-sample average

revenue is summarized in Figure 6. We observe that EF outperforms PO in most of the experiments
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Table 3 Computation time (s) of the RB and EF models under different groups and sample sizes.

Group size (N)

Sample size (S)

50 100 150 200 250

RS EF RS EF RS EF RS EF RS EF

4 0.39 1.45 0.37 2.16 0.35 2.93 0.35 3.66 0.36 4.72

6 0.37 1.42 0.36 2.32 0.35 3.04 0.36 3.93 0.34 4.75

8 0.35 1.38 0.39 2.43 0.38 3.42 0.37 4.22 0.36 5.18

10 0.36 1.68 0.35 2.68 0.33 3.75 0.34 4.93 0.34 6.12

12 0.35 1.76 0.38 2.84 0.36 4.00 0.35 5.21 0.34 6.60

(20/25). The average improvement is 4.30% over all the experiments, and the improvement can be

as much as 13.90% for Group 2 when S = 50. This demonstrates the benefits of accounting for the

estimation uncertainty. Figure 6 also illustrates how the expected revenue changes with the size of

the training sample. In general, the revenue improvement of EF over PO increases as the sample

size decreases. This is partly due to the substantially low prediction accuracy when the sample size

is small, while EF is robust to adversarial scenarios. Thus, the improvement is more pronounced

when limited data is available for prediction.

50 100 150 200 250
-2

0

2

4

6

8

10

12

14

16
Group = 1

Group = 2

Group = 3

Group = 4

Group = 5

Figure 6 Percentage of improvement on expected revenue of EF against PO in the out-of-sample test for χ= 1.

The impact of confidence level χ. We conduct the experiments under other confidence lev-

els χ ∈ {1,2,3,4}. The performance comparisons are summarized in the left panel of Figure 7,

where each box describes the out-of-sample distribution of the percentage improvement in expected

revenue of EF over PO. For each χ ∈ {1,2,3,4}, the test instances include experiments on all

five product groups and sample sizes S ∈ {50,100,150,200,250}, i.e., there are 25 data points for

each box. From the box plot, we can see that EF consistently outperforms both PO in terms

of the median of the expected revenues. This further confirms the robustness of our EF model
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Figure 7 Percentage of improvement on expected revenue of EF against PO in the out-of-sample test varying

χ∈ {1,2,3,4} (left) and N ∈ {4,5,6,7,8} (right).

after accounting for the estimation uncertainty of the regression coefficients. In addition, perfor-

mance improvement over the predict-then-optimize approach is not very sensitive to the choice of

confidence level, χ.

The impact of the number of products N . All previous experiments are conducted with

each group containing four products. We now explore how the number of products in each group,

N ∈ {4,5,6,7,8}, affects the performance of the EF and PO models. For example, if N = 5, group 1

contains products 1-5, group 2 includes products 3-7, and so forth. We fix χ= 1 and conduct exper-

iments for all five product groups and sample sizes S ∈ {50,100,150,200,250} as before; hence,

there are in total 25 experiments for each N ∈ {4,5,6,7,8}. We summarize the percentage improve-

ment on the expected revenue of EF against PO in the right panel of Figure 7. We can see that

EF consistently outperforms PO in terms of the median of the expected value, the improvement is

more salient when there are more products. This further substantiates the benefits of incorporating

estimation uncertainty in the robust satisficing model.

In summary, our estimation-fortified robust satisficing model could offer solutions to the multi-

product pricing problem that result in higher expected revenues compared to the solutions obtained

by the predict-then-optimize approach.

7. Conclusion

In conclusion, we have proposed a novel prescriptive analytics approach that leverages an

estimation-fortified robust satisficing model to manage risk ambiguity and prediction uncertainty in

decision-making. Our approach incorporates uncertain parameters in the form of linear predictions

using side information. The accuracy of the prediction depends on the estimation of regression

coefficients, which is almost never correct under limited data. Our proposed approach aims to
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address such estimation uncertainty. Through case studies on wine portfolio investment and multi-

product pricing problems, we have demonstrated the effectiveness of our approach in achieving

higher expected rewards compared to the predict-then-optimize approach when evaluated on the

actual distribution. Our approach consistently outperforms benchmarks, particularly when data is

limited. Overall, the proposed estimation-fortified robust satisficing model offers a tractable and

statistically justified approach for various management decision-making scenarios when facing sad-

dle reward functions, two-stage linear optimization problems, and decision-dependent predictions.
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A. Proof of Results

Proof of Theorem 1. Observe that the optimal solution of the robust satisficing problem with

τ = Ẑ − η̂Γ also satisfies the following bound:

PS
[
Ẑ −EP? [f(x, z̃)]> K̂Γ

]
= PS

[
Ẑ −EP? [f(x, z̃)]> (η̂+Kτ )Γ

]
= PS [τ −EP? [f(x, z̃)]>KτΓ]

≤ PS
[
∆(P?, P̂)> Γ

]
≤ ε.

We note that

K̂ = min
η≥0
{η+KẐ−ηΓ} ≤KẐ .

For the second part of the theorem, Mohajerin Esfahani and Kuhn (2018) show that the data-driven

robust optimization problem (4) has an equivalent formulation,

ẐΓ = max τ −Γκ

s.t. τ ≤ 1

S

∑
s∈[S]

(f(x,zs) +κ‖zs− ẑs‖) ∀zs ∈Z, s∈ [S],

x∈X , κ≥ 0, τ ∈R.

Observe that the solution τ must satisfy

τ ≤ 1

S

∑
s∈[S]

f(x, ẑs),

which implies τ ≤ Ẑ. Hence, with a change of variable, τ = Ẑ − ηΓ, η ≥ 0, we obtain the following

equivalent formulation,

ẐΓ = max Ẑ −Γ(η+κ)

s.t. Ẑ − ηΓ≤ 1

S

∑
s∈[S]

(f(x,zs) +κ‖zs− ẑs‖) ∀zs ∈Z, s∈ [S],

x∈X , κ≥ 0, η≥ 0.

We also note that

K̂ = min η+κ

s.t. Ẑ − ηΓ≤ 1

S

∑
s∈[S]

(f(x,zs) +κ‖zs− ẑs‖) ∀zs ∈Z, s∈ [S],

x∈X , κ≥ 0, η≥ 0.

Therefore ẐΓ = Ẑ −ΓK̂. Now observe that, since ẐΓ = Ẑ −Γη̂−ΓKẐ−η̂Γ, we have

ẐΓ = max Ẑ − η̂Γ−Γκ

s.t. Ẑ − η̂Γ≤ 1

S

∑
s∈[S]

(f(x,zs) +κ‖zs− ẑs‖) ∀zs ∈Z, s∈ [S],

x∈X , κ≥ 0,
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which has the same set of optimal solutions as the robust satisficing problem,

Kτ = min κ

s.t. τ ≤ 1

S

∑
s∈[S]

(f(x,zs) +κ‖zs− ẑs‖) ∀zs ∈Z, s∈ [S],

x∈X , κ≥ 0,

(35)

in which τ = Ẑ − η̂Γ. �

Proof of Theorem 2. Note that the optimal solutions to the robust satisfiicing problem (6)

satisfy,

τ −EP [f(x, z̃)]≤Kτ∆(P, P̂) ∀P∈P0(Z),

or equivalently,

τ ≤ 1

S

∑
s∈[S]

(f(x,zs) +Kτ‖zs− ẑs‖) ∀zs ∈Z, s∈ [S].

Therefore, for any z ∈Z,

τ − f(x,z)≤ 1

S

∑
s∈[S]

Kτ‖z− ẑs‖,

which implies,

τ −EP? [f(x, z̃)]≤ 1

S

∑
s∈[S]

KτEP? [‖z̃− ẑs‖] .

Hence, for all r≥ 1,

Q [τ −EP? [f(x, z̃)]>µKτr] ≤ Q

 1

S

∑
s∈[S]

Ez̃∼P? [‖z̃− ẑs‖]≥ µr


≤ Q

∑
s∈[S]

(Ez̃∼P? [‖z̃− ẑs‖]−EQ [‖z̃− ẑs‖])≥ Sµ(r− 1)


≤ 1>Σ1

1>Σ1 +µ2S2(r− 1)2
,

where the last inequality follows from one-sided Chebyshev’s inequality.

�

Proof of Proposition 1. Observe that KZ = 0. Moreover, since X is convex and f(x,z) is con-

cave in x∈X for all z ∈Z, this implies that Kτ is convex and non-decreasing in τ . Therefore, for

any τλ = (1−λ)Z +λẐ, λ∈ [0,1] we have

Kτλ ≤ (1−λ)KZ +λKẐ

= λKẐ .

�
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Proof of Theorem 3. For any τ ≤ Ẑ, there exists some x̄ such that

τ ≤ 1

S

∑
s∈[S]

f(x̄, ẑs),

where we define ẑs = ẑ(ŵ,u, s) for simplicity. Then, for any κ≥ L̄, we have

1

S

∑
s∈[S]

(f(x̄,zs) +κ‖zs− ẑs‖)≥
1

S

∑
s∈[S]

(
f(x̄, ẑs)− L̄‖zs− ẑs‖+κ‖zs− ẑs‖

)
≥ τ.

Hence, x̄ is feasible with some Kτ ≤ L̄.

Next, we will verify the second part of this theorem. Let (x†, κ†) be the optimal solution to

Problem (11) for target Ẑ. Then, from the constraint of Problem (11), we have

Ẑ ≤ 1

S

∑
s∈[S]

(
f(x†,zs) +κ†‖zs− ẑ(ŵ,u, s)‖

)
∀zs ∈Z, s∈ [S],

=⇒ Ẑ ≤ 1

S

∑
s∈[S]

(
f(x†,zs) +κ†‖zs− ẑ(ŵ,u, s)‖

)
∀zs = ẑ(ŵ,u, s), s∈ [S],

=⇒ Ẑ ≤ 1

S

∑
s∈[S]

f(x†, ẑ(ŵ,u, s)) = Ẑ,

which completes the proof. �

Proof of Proposition 2. It suffices to show that for all w ∈W and zs ∈Z,

1

S

∑
s∈[S]

‖zs− ẑ(ŵ,u, s)‖

≤ 1

S

∑
s∈[S]

‖zs− ẑ(w,u, s)‖+
1

S

∑
s∈[S]

‖ẑ(w,u, s)− ẑ(ŵ,u, s)‖

=
1

S

∑
s∈[S]

‖zs− ẑ(w,u, s)‖+
1

S

∑
s∈[S]

‖h(w− ŵ,u)− g(w− ŵ,u, ûs)‖,

and that

1

S

∑
s∈[S]

‖zs− ẑ(ŵ,u, s)‖

≥ 1

S

∑
s∈[S]

‖zs− ẑ(w,u, s)‖− 1

S

∑
s∈[S]

‖ẑ(w,u, s)− ẑ(ŵ,u, s)‖

=
1

S

∑
s∈[S]

‖zs− ẑ(w,u, s)‖− 1

S

∑
s∈[S]

‖h(w− ŵ,u)− g(w− ŵ,u, ûs)‖.
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Now, note that

∆(P, P̂w)−∆(P, P̂ŵ)

= inf
Q1s,s∈[S]

 1

S

∑
s∈[S]

EQ1s
[‖z̃1− ẑ(w,u, s)‖]

− inf
Q2s,s∈[S]

 1

S

∑
s∈[S]

EQ2s
[‖z̃2− ẑ(ŵ,u, s)‖]


≥ inf

Q1s,s∈[S]

 1

S

∑
s∈[S]

EQ1s
[‖z̃1− ẑ(w,u, s)‖−‖z̃1− ẑ(ŵ,u, s)‖]


= inf

zs,s∈[S]

 1

S

∑
s∈[S]

(‖zs− ẑ(w,u, s)‖−‖zs− ẑ(ŵ,u, s)‖)


≥ − 1

S

∑
s∈[S]

‖h(w− ŵ,u)− g(w− ŵ,u, ûs)‖.

The last equality follows by noting the worst-case distribution is a point-mass. Similarly, we have

∆(P, P̂ŵ)−∆(P, P̂w)≥− 1

S

∑
s∈[S]

‖h(w− ŵ,u)− g(w− ŵ,u, ûs)‖.

This completes the proof. �

Proof of Proposition 3. From the definition of the estimation distance metric, we have

∆(P?, P̂ŵ)≤∆(P?, P̂w?) + θ̄Υ(w?− ŵ).

From the constraint of the residual-based robust satisficing problem (10), we have

τ −EP? [f(x, z̃)]≤Kτ∆(P?, P̂ŵ)≤Kτ

(
r+ θ̄Υ(w?− ŵ)

)
,

for all r≥∆(P?, P̂w?). Therefore, for all r≥ 0,

QS
[
EP? [f(x, z̃)]< τ −Kτ

(
r+ θ̄Υ(w∗− ŵ)

)]
≤ PS

[
∆(P?, P̂w?)> r

]
.

�

Proof of Theorem 4. It suffices to show that the optimal solution of the residual-based robust

satisficing problem (11), x̄ is also feasible in Problem (16) for θ= θ̄. From the proof of Proposition 2,

we can establish that

1

S

∑
s∈[S]

‖zs− ẑ(ŵ,u, s)‖ ≤ 1

S

∑
s∈[S]

‖zs− ẑ(w,u, s)‖+
1

S

∑
s∈[S]

‖h(w− ŵ,u)− g(w− ŵ,u, ûs)‖

≤ 1

S

∑
s∈[S]

‖zs− ẑ(w,u, s)‖+ θ̄Υ(w− ŵ) ∀w ∈W.
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Hence,

τ ≤ 1

S

∑
s∈[S]

(f(x̄,zs) +Kτ‖zs− ẑ(ŵ,u, s)‖) ∀zs ∈Z, s∈ [S]

=⇒ τ ≤ 1

S

∑
s∈[S]

(f(x̄,zs) +Kτ‖zs− ẑ(ŵ,u, s)‖) ∀zs ∈Z, s∈ [S]

=⇒ τ ≤ 1

S

∑
s∈[S]

(
f(x̄,zs) +Kτ

(
‖zs− ẑ(w,u, s)‖+ θ̄Υ(w− ŵ)

))
∀w ∈W,zs ∈Z, s∈ [S]

=⇒ τ ≤ 1

S

∑
s∈[S]

(
f(x̄,zs) +Kτ

(
‖zs− ẑ(w,u, s)‖+ θ̄Υ(w− ŵ)

))
∀w ∈W,zs ∈Z, s∈ [S].

Hence, x̄ is feasible in Problem (16), and Θτ,τ ≤ θ̄.

Let x be a feasible solution of Problem (16). Observe that Υ(ŵ− ŵ) = 0; hence,

τ ≤ 1

S

∑
s∈[S]

(f(x,zs) +Kτ (‖zs− ẑ(w,u, s)‖+ θΥ(w− ŵ))) ∀w ∈W,zs ∈Z, s∈ [S]

=⇒ τ ≤ 1

S

∑
s∈[S]

(f(x,zs) +Kτ (‖zs− ẑ(ŵ,u, s)‖)) ∀zs ∈Z, s∈ [S].

Therefore, κ(x, τ , P̂ŵ)≤Kτ .

Now, let x̂ be the optimal solution of Problem (16) in which Θτ,τ = 0. From the constraint of

Problem (16), we have for all w ∈W,

τ ≤ 1

S

∑
s∈[S]

(f(x̂,zs) +Kτ (‖zs− ẑ(w,u, s)‖)) ∀zs ∈Z, s∈ [S],

indicating that κ(x̂, τ , P̂w)≤Kτ .

Now we focus on the last part of the theorem where x̂ is the optimal solution of Problem (16).

From the constraint of Problem (15), we have

τ −EP? [f(x̂, z̃)]≤Kτ

(
∆(P?, P̂w?) + Θτ,τΥ(w?− ŵ)

)
≤Kτ (r+ Θτ,τΥ(w?− ŵ)) ,

for all r≥∆(P?, P̂w?). Therefore, for all r≥ 0,

QS [EP? [f(x̂, z̃)]< τ −Kτ (r+ Θτ,τΥ(w∗− ŵ))] ≤ PS
[
∆(P?, P̂w?)> r

]
.

�
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Proof of Theorem 5. From Theorem 4, we note that Θτ,τ ≤ θ̄ ≤ ϑ̄. Next, we observe that for

any θ ∈ [0, ϑ̄],

1

S

∑
s∈[S]

‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w)

=
1

S

∑
s∈[S]

‖zs− ẑ(w,u, s)‖+ θ̄
θ

θ̄
Υ(ŵ−w)

≥ 1

S

∑
s∈[S]

‖zs− ẑ(w,u, s)‖+
θ

θ̄

1

S

∑
s∈[S]

‖h(ŵ−w,u)− g(ŵ−w,u, ûs)‖

≥ θ

ϑ̄

1

S

∑
s∈[S]

‖zs− ẑ(w,u, s)‖+
θ

ϑ̄

1

S

∑
s∈[S]

‖h(ŵ−w,u)− g(ŵ−w,u, ûs)‖

≥ θ

ϑ̄

1

S

∑
s∈[S]

‖zs− ẑ(w,u, s) +h(ŵ−w,u)− g(ŵ−w,u, ûs)‖

=
θ

ϑ̄

1

S

∑
s∈[S]

‖zs− ẑ(ŵ,u, s)‖.

The conservative approximation follows from observing that for any feasible solution in Prob-

lem (20), f(x,zs)≥ d>ys(zs, φs) for all zs ∈Z, φs ≥ ‖zs− ẑ(ŵ,u, s)‖, s∈ [S]. Hence,

f(x,zs)≥ d>ys(zs, φs) ∀(η, (zs, φs)s∈[S])∈ Z̄(θ),

and for any feasible θ ∈ [0, ϑ̄],

τ ≤ 1

S

∑
s∈[S]

(
d>ys(zs, φs) + K̄τη

)
∀(η, (zs, φs)s∈[S])∈ Z̄(θ)

=⇒ τ ≤ 1

S

∑
s∈[S]

(
f(x,zs) + K̄τη

)
∀(η, (zs, φs)s∈[S])∈ Z̄(θ)

=⇒ τ ≤ 1

S

∑
s∈[S]

f(x,zs) + K̄τ

(
max

{
1

S

∑
s∈[S]

(‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w)),

1

S

∑
s∈[S]

θ

ϑ̄
‖zs− ẑ(ŵ,u, s)‖

})
∀w ∈W,zs ∈Z, s∈ [S]

=⇒ τ ≤ 1

S

∑
s∈[S]

(
f(x,zs) + K̄τ (‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w))

)
∀w ∈W,zs ∈Z, s∈ [S].

The last inequality follows from the inequality established at the beginning of this proof.

Now, we prove the second part of the theorem. For any feasible solution of Problem (18), x̄∈X

and ȳs ∈LN+1,D2 , for all s∈ [S], we have

τ ≤ 1

S

∑
s∈[S]

(
d>ȳs(zs, φs) + K̄τφs

)
∀(zs, φs)∈ Z̄s, s∈ [S],

A(z)x̄+Bȳs(z, φ)≤ b(z) ∀(z, φ)∈ Z̄s, s∈ [S].
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Next, observe that

η≥ 1

S

∑
s∈[S]

θ

ϑ̄
φs ∀(η, (zs, φs)s∈[S])∈ Z̄(θ),

indicating

η≥ 1

S

∑
s∈[S]

φs ∀(η, (zs, φs)s∈[S])∈ Z̄ϑ̄.

Therefore, for any (η, (zs, φs)s∈[S])∈ Z̄ϑ̄, we have

τ ≤ τ ≤ 1

S

∑
s∈[S]

(
d>ȳs(zs, φs) + K̄τφs

)
≤ 1

S

∑
s∈[S]

(
d>ȳs(zs, φs) + K̄τη

)
.

Hence, solutions x̄ and ȳs, s∈ [S] are also feasible to Problem (20) for some θ≤ ϑ̄.

For the third part of the theorem, we note that when τ = τ , then for any feasible solution of

Problem (20), x̂∈X , θ ∈ [0, ϑ̄], and ŷs ∈LN+1,D2 , for all s∈ [S], we have

τ ≤ 1

S

∑
s∈[S]

(
d>ŷs(zs, φs) + K̄τη

)
∀
(
η, (zs, φs)s∈[S]

)
∈ Z̄(θ),

A(zs)x̂+Bŷs(zs, φs)≤ b(zs) ∀(zs, φs)∈ Z̄s, s∈ [S].

Moreover,

Z̄(θ) =


(
η, (zs, φs)s∈[S]

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η ∈R, (zs, φs)∈ Z̄s ∀s∈ [S]

η≥ 1

S

∑
s∈[S]

(‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w))

η≥ θ

ϑ̄S

∑
s∈[S]

φs

for some w ∈W



⊇



(
η, (zs, φs)s∈[S]

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η ∈R, (zs, φs)∈ Z̄s ∀s∈ [S]

η≥ 1

S

∑
s∈[S]

(‖zs− ẑ(w,u, s)‖+ θΥ(ŵ−w))

η≥ θ

ϑ̄S

∑
s∈[S]

φs

w= ŵ, η=
1

S

∑
s∈[S]

φs


=

(η, (zs, φs)s∈[S]

) ∣∣∣∣∣∣∣
η ∈R, (zs, φs)∈ Z̄s ∀s∈ [S]

η=
1

S

∑
s∈[S]

φs

 .

Hence, we have

τ ≤ 1

S

∑
s∈[S]

(
d>ŷs(zs, φs) + K̄τη

)
∀
(
η, (zs, φs)s∈[S]

)
∈ Z̄(θ)

=⇒ τ ≤ 1

S

∑
s∈[S]

(
d>ŷs(zs, φs) + K̄τφs

)
∀(zs, φs)∈ Z̄s, s∈ [S].
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Therefore, solutions x̂ and ŷs, s∈ [S] are also optimal to Problem (18) in which κ= K̄τ .

�

Proof of Theorem 6. Consider the following optimization problem,

inf
1

S

∑
s∈[S]

∑
n∈[N ]

(
xn exp

(
zs,n
)

+κ
(
|zs,n− (ŵ>un + v̂s− ŵ>ûs)|

))
s.t. zs ∈RN ∀s∈ [S],

which is equivalent to

inf
1

S

∑
s∈[S]

(
x>as +κ‖bs‖1

)
s.t. exp

(
zs,n
)
≤ as,n ∀n∈ [N ], s∈ [S],

bs,n = zs,n− (ŵ>un + v̂s− ŵ>ûs) ∀n∈ [N ], s∈ [S],

zs,bs ∈RN ,as ≥ 0 ∀s∈ [S].

We can obtain the dual problem of the above problem as follows,

sup
∑
s∈[S]

∑
n∈[N ]

(
φs,n(ŵ>un + v̂s− ŵ>ûs)−βs,n

)
s.t. ‖φs‖∞ ≤ κ/S ∀s∈ [S],

−ds,n log (−Sds,n/xn) + ds,n−βs,n ≤ 0 ∀s∈ [S], n∈ [N ],

ds +φs = 0 ∀s∈ [S],

ds ∈RN− ,βs,φs ∈RN ∀s∈ [S].

Therefore, for the residual-based robust satisficing model,

Kτ = min κ

s.t. τ ≤ 1

S

∑
s∈[S]

∑
n∈[N ]

(
xn exp

(
zs,n
)

+κ
(
|zs,n− (ŵ>un + v̂s− ŵ>ûs)|

))
∀zs ∈RN , s∈ [S],

c>x≤ 1,

x≥ 0, κ≥ 0,

(36)

we can equivalently and explicitly reformulate it as

min κ

s.t.
∑
s∈[S]

∑
n∈[N ]

(
φs,n(ŵ>un + v̂s− ŵ>ûs)−βs,n

)
≥ τ,

‖φs‖∞ ≤ κ/S ∀s∈ [S],

−ds,n log (−Sds,n/xn) + ds,n−βs,n ≤ 0 ∀s∈ [S], n∈ [N ],

ds +φs = 0 ∀s∈ [S],

ds ∈RN− ,βs,φs ∈RN ∀s∈ [S],

c>x≤ 1,

x≥ 0, κ≥ 0.



Sim et al.: The Analytics of Robust Satisficing 49

This model can be further simplified as

min κ

s.t.
1

S

∑
s∈[S]

∑
n∈[N ]

(
φs,n(ŵ>un + v̂s− ŵ>ûs)−βs,n

)
≥ τ,

‖φs‖∞ ≤ κ ∀s∈ [S],

φs,n log (φs,n/xn)≤ φs,n +βs,n ∀s∈ [S], n∈ [N ],

φs ∈RN+ ,βs ∈RN ∀s∈ [S],

c>x≤ 1,

x≥ 0, κ≥ 0.

Similarly, for the estimation-fortified robust satisficing model, we first consider the following

optimization problem,

inf
1

S

∑
s∈[S]

∑
n∈[N ]

(
xn exp

(
zs,n
)

+Kτ |zs,n− (w>un + v̂s−w>ûs)|
)

+Kτθ‖ŵ−w‖2

s.t. w ∈RJ ,

zs ∈RN ∀s∈ [S].

The right-hand side of the first constraint is equivalent to

inf
1

S

∑
s∈[S]

(
a>s x+Kτ‖bs‖1

)
+Kτθ‖ζ‖2

s.t. exp
(
zs,n
)
≤ as,n ∀n∈ [N ], s∈ [S],

bs,n = zs,n− (w>un + v̂s−w>ûs) ∀n∈ [N ], s∈ [S],

zs,bs ∈RN ,as ≥ 0 ∀s∈ [S],

ζ = ŵ−w,

w,ζ ∈RJ .

We can obtain its dual problem as follows,

sup
∑
s∈[S]

∑
n∈[N ]

(
φs,nv̂s−βs,n)−η>ŵ

s.t.
∑
s∈[S]

∑
n∈[N ]

φs,n(un− ûs) +η= 0,

‖φs‖∞ ≤Kτ/S ∀s∈ [S],

‖η‖2 ≤ θKτ ,

−ds,n log (−Sds,n/xn) + ds,n−βs,n ≤ 0 ∀s∈ [S], n∈ [N ],

ds +φs = 0 ∀s∈ [S],

ds ∈RN− ,βs,φs ∈RN ∀s∈ [S],

η ∈RJ .
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Hence, we can equivalently reformulate Problem (26) as follows,

Θτ,τ = min θ

s.t.
1

S

∑
s∈[S]

∑
n∈[N ]

(
φs,nv̂s−βs,n)−η>ŵ≥ τ ,

1

S

∑
s∈[S]

∑
n∈[N ]

φs,n(un− ûs) +η= 0,

φs,n log (φs,n/xn)≤ φs,n +βs,n ∀s∈ [S], n∈ [N ],

‖φs‖∞ ≤Kτ ∀s∈ [S],

‖η‖2 ≤ θKτ ,

c>x≤ 1,

x≥ 0, θ≥ 0,η ∈RJ ,

φs ∈RN+ ,βs ∈RN ∀s∈ [S].

(37)

This completes the proof. �

Proof of Theorem 7. For the residual-based multiproduct pricing problem, given κ, the robust

counterpart of the robust satisficing constraint of Problem (29) is the following convex (quadratic)

optimization problem with only equality constraints:

inf p>ŵ+p>Q̂p+
1

S

∑
s∈[S]

(
p>εs +κ‖bs‖

)
s.t. bs = εs− v̂s + ŵ+ Q̂p̂s ∀s∈ [S],

εs ∈RN ∀s∈ [S].

The equivalent dual problem is given by

sup p>Q̂p+
1

S

∑
s∈[S]

p>
(
v̂s− Q̂p̂s

)
s.t. ‖p‖∗ ≤ κ.

This problem can be equivalently written as

sup
1

2
(Q̂+ Q̂>) •Y +

1

S

∑
s∈[S]

p>
(
v̂s− Q̂p̂s

)
s.t.

 Y p

p> 1

� 0,

Y ∈ SN ,‖p‖∗ ≤ κ.

Substituting this dual problem into Problem (29) yields the final optimization problem.
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For the estimation-fortified multiproduct pricing problem, note that Problem (30) has the fol-

lowing equivalent form:

min θ

s.t. inf
(ε1,...,εS ,w,Q)∈Z̄

 1

S

∑
s∈[S]

(
p>(w+Qp+ εs) +κ‖εs− v̂s +w+Qp̂s‖+Kτθ‖ŵ−w+ (Q̂−Q)p̂s‖

)≥ τ ,
p∈ [p, p̄], θ≥ 0, λ≥ 0,

where

Z̄ = {(ε1, . . . ,εS,w,Q) | ε1, . . . ,εS ∈RN ,w ∈RN ,Q+Q> � 0}.

Given p∈ [p, p̄] and κ≥ 0, the LHS of the robust constraint can be written as

inf
1

2
P •pp>+w>p+

1

S

∑
s∈[S]

(
p>εs+ Kτ (‖ηs‖+ θ‖φs‖))

s.t. P =Q+Q>,

ηs = εs− v̂s +w+Qp̂s ∀s∈ [S],

φs = ŵ−w+ (Q̂−Q)p̂s ∀s∈ [S],

εs,ηs,φs ∈RN ∀s∈ [S],

P � 0,w ∈RN ,Q∈RN×N .

(38)

We write the dual of Problem (38) as the following:

sup
∑
s∈[S]

(
− r>s v̂s + t>s (ŵ+ Q̂p̂s)

)
s.t.

 Y p

p> 1

� 0,

Y +
∑
s∈[S]

(rs− ts)p̂>s = 0,

p+
∑
s∈[S]

(rs− ts) = 0,

p+Srs = 0 ∀s∈ [S],

‖rs‖∗ ≤Kτ/S ∀s∈ [S],

‖ts‖∗ ≤Kτθ/S ∀s∈ [S],

rs, ts ∈RN ∀s∈ [S],

Y ∈ SN .
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Hence, Problem (30) can be reformulated as follows,

Θτ,τ = min θ

s.t.
1

S

∑
s∈[S]

(
p>v̂s + t>s ŵ+ t>s Q̂p̂s

)
≥ τ , Y p

p> 1

� 0,

Y =
1

S

∑
s∈[S]

(p+ ts)p̂
>
s ,

1

S

∑
s∈[S]

ts = 0,

‖p‖∗ ≤Kτ ,

‖ts‖∗ ≤Kτθ ∀s∈ [S],

ts ∈RN ∀s∈ [S],

Y ∈ SN ,p∈ [p, p̄],

θ≥ 0.

This completes the proof. �
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