
Lexicographic Branch-and-Bound Column Search

Andreas Bärmann1, Alexander Müller1 and Dieter Weninger1

1 Andreas.Baermann@fau.de
Alexander.AMR.Mueller@fau.de

Dieter.Weninger@fau.de
Lehrstuhl für Analytics & Mixed-Integer Optimization,
Department of Data Science / Department Mathematik,
Friedrich-Alexander-Universität Erlangen-Nürnberg,

Cauerstraße 11, 91058 Erlangen, Germany

Abstract

We present an exact generic method for solving the pricing problem in a column generation ap-
proach, which we call branch-and-bound column search. It searches the space of all feasible columns via
a branch-and-bound tree search and returns all columns with a reduced-cost value below a certain
threshold. The approach is based on an idea from Krumke et al. (2002) for the solution of vehicle rout-
ing problems. In this work, we formalize and generalize this method such that it can be applied to
a large variety of different problem classes. We further derive strong bounds to effectively prune the
search tree, which allows us to significantly speed up the generation of columns and thus reduces the
overall solution time. In addition, we show that our column search methods can be combined with
lexicographic optimization easily and efficiently to solve problems with multiple objectives.

Finally, the theoretical results are corroborated in an extensive computational study for twodifferent
applications: the sequence-dependent cutting stock problem and the optimized assignment of trans-
port orders to employees in a hospital. On the basis of real-world data, we can show in both cases that
it is superior to use the branch-and-bound column search as pricing algorithm in the presented restric-
ted master heuristic than conventional column generation. In particular, for the second application the
heurstic based on the branch-and-bound column search even outperforms both an industry-standard
heuristic for the problem as well as a standard solver on a polynomial-size MIP formulation within a
real-world problem setting.

Keywords: Column Generation, Pricing Problem, Branch-and-Bound Column Search, Lexicographic
Optimization, Cutting Stock Problem, Machine Scheduling

Mathematics Subject Classification: 90C57 – 90C10 – 90C29 – 90C90

Acknowledgements
We are grateful for continuous support from the OrgaCard Siemantel &Alt GmbH and formany fruitful
and stimulating discussionswithKlausMüller, Ralf Alt andRolandRieß. Finally, we acknowledge finan-
cial support by the Bavarian Ministry of Economic Affairs, Regional Development and Energy through
the Center for Analytics – Data – Applications (ADA-Center) within the framework of “BAYERN DI-
GITAL II”.Wewould also like to express our gratitude toWimVancroonenburg, Michele Garraffa, Fabio
Salassa, Greet Vanden Berghe and Tony Wauters for providing us the data for our computational study
on the sequence-dependent cutting stock problem.

1

Andreas.Baermann@fau.de
Alexander.AMR.Mueller@fau.de
Dieter.Weninger@fau.de

1 Introduction
Column generation (CG) has nowadays become a prevalent method to deal with a large number of vari-
ables in linear programs (LP) and mixed-integer programs (MIPs), cf. Lübbecke and Desrosiers (2005). As
its working principle, column generation exploits the fact that the majority of columns will not be part
of an optimal solution, i.e. their associated variables are equal to zero in the optimum anyway. It there-
fore only starts with a subset of columns and generates new ones that have the potential to improve
the current solution, namely columns with negative reduced costs (in case of a minimization problem),
until an optimal solution is reached. At each iteration a restricted master problem (RMP) and a pricing
subproblem are solved, where (RMP) is the continuous relaxation of the original problem formulation –
calledmaster problem (MP) – and is restricted to a small subset of the variables of (MP). The subproblem
aims to find columns with negative reduced costs with respect to the dual solution of the current (RMP)
which then enter the restricted master problem as new columns of the constraint matrix.

The structure of the pricing problem strongly depends on the individual problem at hand, which is
why very often specialized algorithms are derived for its efficient solution. In particular, Krumke et al.
(2002) developed an enumerative method to solve the subproblem for a real-world vehicle dispatching
problem. Their method builds a search tree whose nodes correspond to feasible columns of the master
problem constraintmatrix. In order to reduce the number of nodes to be visited in such a tree, they derive
an efficient application-specific bound for pruning. The resulting solution procedure for this particular
application was then revisited byWestphal and Krumke (2008) and further improved by implementing
an efficient solution method for an auxiliary combinatorial problem that is solved in order to reduce
the search space in the pricing problem. Among others, Friese and Rambau (2006), Van Huigenbosch
et al. (2011) and Hiller et al. (2014) have also used enumerative methods to generate columns. All the
mentioned approaches were developedwith the aim of solving a very specific application. However, we
discovered that the method by Krumke et al. (2002) has the potential to work particularly well not only
for the application studied there, but also in other, very general problem contexts. This motivated us to
develop it towards a generic method for solving pricing subproblems, as outlined in the following.

Contribution Inspired by the work of Krumke et al. (2002), we derive a generally applicable method
called branch-and-bound column search for solving the pricing subproblem in column generation. It can
be used in a wide variety of application areas and problem classes. Our approach enumeratively ex-
plores the search space of feasible columns by building a special kind of enumeration tree containing
columns that could potentially lead to a better solution within the column generation process and are
thus candidates to enter the constraintmatrix of themaster problem. To this end, we develop a dedicated
enumeration algorithm to ensure any column that is required for an optimal solution of the LP-relaxed
master problem is visited. At the same time, our algorithmguarantees that none of the required columns
is enumerated more than once. We further give an extension of this method which is especially suited
for sequence-dependent subproblems, where certain items have to be ordered (as in the travelling sales-
man problem, for example). A pure enumeration of all columns is of course computationally intractable.
Therefore, we prune the search space using provably exact bounds that allow us to dynamically estimate
the reduced cost of all columns in the subtree below a given column in the enumeration process. In this
way, wemanage to prune the search tree effectively and thus considerably accelerate the overall solution
process. The branch-and-bound column search is integrated into a restricted master heuristic (cf. Joncour
et al. (2010)) based on column generation. The heuristic developed in this waymakes it possible to solve
integer problems efficiently and very often even to optimality.

Moreover, we show that our branch-and-bound column search can also be coupled very easily with
a lexicographic optimization approach to solve multi-criteria optimization problems (see e.g. Isermann
(1982)). Due to the additional constraints of the master problems in multi-stage lexicographic optimiz-
ation (cf. Zykina (2004)), wewill see that there even is additional dual information that can be exploited
for the generation of columns in the pricing problem. In particular, columns found in one lexicographic
stage can be used in other stages as well, and the bounds for pruning the search tree can be transferred
to this setting. Further, we present a top-level algorithm for the solution of the master problem that is
able to combine the lexicographic optimization approach very efficiently with our branch-and-bound
column search algorithm.

In an extensive empirical study, we evaluate the efficiency of branch-and-bound column search and
its combinationwith the lexicographic optimization approach at the hand of two indicative applications.
These are the sequence-dependent cutting stock problem and the optimized assignment of transport
orders to employees in a hospital, where the latter is modelled as a machine scheduling problem. Our

2

exposition includes a tutorial on how to compute the pruning bounds in each case. For problem instances
stemming from real-world data, we clearly demonstrate the computational benefits of our method.

Distinction from other enumerative pricing methods Another enumerative approach for the pricing
subproblem in the literature is to use constraint programming (CP), see Hooker and van Hoeve (2018) for
a short overview. Constraint programming is a paradigm for solving combinatorial search problems.
Capone et al. (2010) give an introduction to this technique. Frameworks for using CP to solve pricing
problems with constrained shortest-path problems were presented by Junker et al. (1999) as well as
Yunes et al. (1999) and Yunes et al. (2005). While CP tries to reduce the domains of the variables in or-
der to reduce the search space, which typically is a very application-specific procedure, the central goal
in our approach is to prune the entire search tree using bounds on the reduced costs. Fahle et al. (2002)
and Gendron et al. (2005) describe the idea of a so-called negative-reduced-cost constraint for CP, which
works in a similar fashion, but is again problem-specific. Another frequently used method for solving
the pricing problem is dynamic programming (DP). The idea of dynamic programming is to simplify a
complex problem by breaking it down into simpler subproblems, which are then solved recursively us-
ing the optimal solutions to the subproblems until a solution to the original problem is found. In many
applications, dynamic programming is used to solve pricing problems, which appear as shortest path
problems, see Desrochers et al. (1992), Ceselli et al. (2009) or Engineer et al. (2011). However, dynamic
programming can also be used for generating columns solving other problem classes such as cutting
stock (cf. Cintra et al. (2008)) or bin packing problems (cf. Sadykov and Vanderbeck (2013)). There are
also some parallels between DP and the branch-and-bound column search, but in the method at hand
there are no relationships between the subproblems that have to be solved recursively nor are any op-
timal substructures exploited when solving the pricing problem. Therefore, it is not a typical dynamic
programming method. Another approach for solving the pricing problem is using binary decision dia-
grams (BDD). Binary decision diagrams are directed acyclic graphs that can be generated by reducing
binary decision trees. BDDs have already been used to solve the pricing problem of parallel machine
scheduling problems (cf. Leus andKowalczyk (2016)) and graph colouring problems (cf.Morrison et al.
(2016)).

Structure The remainder of this work is structured as follows. In Section 2, our exposition begins
with the introduction of a generic master problem and the description of the classical approach for
solving the pricing subproblem in a column generation algorithm. Afterwards, Section 3 formalizes
enumerative column generation by defining enumeration trees and devising the method of branch-and-
bound column search. Thenwe explain how these enumeration trees can be efficiently pruned to reduce
the runtime of the corresponding search algorithms. We also investigate one variation of branch-and-
bound column search and explain their integration into a column generation framework. Section 4 then
introduces lexicographical optimization and shows how it can be naturally coupled with branch-and-
bound column search. In Section 5, we present two tutorials to illustrate how to apply the developed
methods to real-world industrial problems, before the superior performance of the presented methods
is shown in a detailed computational study in both cases. We finish with our conclusion in Section 6.

2 A Basic Column Generation Setting
We begin by introducing a very general framework for column generation in which branch-and-bound
column search can be applied. To this end, we define a generic master problem and derive a formula for
the reduced costs of the columns in its LP relaxation which we will use throughout this work.

Notation In the following, vectors x P Rn are always columnvectors, while for rowvectorswewrite xJ.
For a matrix A “ pai,jqi“1,...,m;j“1,...,n P Rmˆn, the i-th row and the j-th column are given by Ai, ¨ :“
pai,1, . . . , ai,nq and A ¨,j –

`

a1,j, . . . , am,j
˘J respectively. Further, for two subsets I Ď t1, . . . , mu and J Ď

t1, . . . , nu let AI,J :“ pai,jqiPI;jPJ denote the submatrix of A consisting only of the rows from I and the
columns from J. The subvectors AI,j and Ai,J are then defined as the column vector AI,j :“ pai,jqiPI for
j P J and the row vector Ai,J :“ pai,jqjPJ for i P I respectively.

3

2.1 A Generic Master Problem for Column Generation
We start by introducing a generic setting for column generation by defining a master problem (MP)
which is suitable for many different applications. As this master problem will take the form of a gener-
alized assignment problem, we adopt the common terminology used in this context. We consider a set of
tasks D :“ t1, . . . , |D|u, a set of agents I :“ t|D| ` 1, . . . , mu and a set of feasible plans P :“ t1, . . . , nu with
m, n ă 8. A plan p P P consists of several tasks d P D, where ad,p P Z` indicates if task d is part of
plan p (if ad,p ą 0) and how often this task is to be executed. Further, the parameter ai,p P t0, 1u for a
plan p P P and an agent i P I takes a value of 1, if agent i participates in the execution of plan p. For
most applications, it will be exactly one agent who executes the plan, thus we restrict ourselves to the
case

ř

iPI ai,p “ 1 for all p P P for ease of exposition. Furthermore, parameters bd P Z`, d P D and
bi P Z`, i P I state how often task d needs to be executed in total and how many plans agent i shall
execute. Finally, each plan p P P incurs some non-negative costs cp P R` if it is chosen for execution.
The column generation master problem (MP) is then given by

(MP) min
x

ÿ

pPP

cpxp (1)

s.t.
ÿ

pPP

ad,pxp ě bd @d P D (2)

ÿ

pPP

ai,pxp “ bi @i P I (3)

xp ě 0 @p P P (4)
xp P Z @p P P, (5)

where the decision variables xp P Z`, p P P, determine how often plan p is executed. The prob-
lem contains two types of constraints, indexed by d P D and i P I respectively, with the constraint
matrix A “ paj,pqjPDYI,pPP and the right-hand side b “ pbjqjPDYI . We will later also use the notation
A :“ tA ¨,p PZ

|D|
` ˆ t0, 1u|I|| p P Pu for the set of columns of A. Constraint (2) ensures that task d P D is

executed at least as often as required while Constraint (3) guarantees that each agent i P I executes ex-
actly the required number of plans. The objective function (1) minimizes the overall cost of all executed
plans.

The costs of a plan depend on the contained tasks d P D and the executing agent i P I. Moreover,
in many applications, the costs may also be impacted by other properties of a plan, like the order in
which the tasks are executed. Therefore, we assume that the costs cp of a plan p P P are determined by
a function f : Z|D|

` ˆ t0, 1u|I| ˆR|S| Ñ R`, i.e.

cp – f
`

AD,p, AI,p, wS,p
˘

, (6)

which takes the corresponding column of A and the additional properties of the corresponding plan
as arguments. Here the index set S consists of criteria that affect the costs of a plan p P P and which
depend specifically on the application at hand. The tuple wS,p – pws,pqsPS contains the realizations of
these properties like the order of tasks in a plan, or the scheduling of the tasks. These parameters of a
plan p P P are computed as part of the solution of the pricing subproblem. In the master problem (MP),
they appear only implicitly via the cost function.

Example 2.1 (Cost function). Consider the example of the vehicle routing problem (VRP), which is to be
solved using a column generation approach. In this case, the tasks d P D are customers that need to be visited,
and the agents i P I correspond to the vehicles that have to perform these customer visits along tours p P P.
Obviously, the order of the customers to be visited is an essential structural property of a tour. Using the paramet-
ers wS,p, the costs of a tour p P P can be calculated via the linear function f : Z|D|

` ˆ t0, 1u|I| ˆR|S| Ñ R` with
f px, y, zq ÞÑ cJ

Dx ` cJ
I y ` cJ

S z, i.e.

f pAD,p, AI,p, wS,pq “
ÿ

dPD

cdad,p `
ÿ

iPI

ciai,p `
ÿ

sPS

csws,p,

with S – D ˆ D and weights cd, ci, cs P R, d P D, i P I and s P S. We set wpd1,d2q,p “ 1 if customer d1 P D is
followed by customer d2 P D in tour p P P, and wpd1,d2q,p “ 0 otherwise. The first summand in f then models
costs (or gains) for visiting a customer, the second represents costs for using a vehicle, and the final summand
incorporates the actual routing costs (such as working time or fuel).

4

Remark 2.2. Themaster problem (MP) remains linear even for non-linear cost functions f : Z|D|
` ˆ t0, 1u|I| ˆR|S|

Ñ R, because f itself does not appear in the objective (1), but rather its value at a column pAD,p, AI,pq with
structure wS,p, p P P. Non-linear cost functions can occur, for example, if time windows must be respected in the
problem, i.e. if the tasks d P D must be executed within certain time intervals. Then it is usual to penalize the
delayed execution of a task in the objective function, e.g. via a quadratic penalty term to avoid single very large
delays.

Usually, the number of columns in the constraint matrix A of (MP) is too large to compute them
all in advance. Therefore, column generation is used to dynamically generate the columns during the
solution process. The first aim is then to solve the linear relaxation of (MP). For this purpose, one
typically starts by solving a restricted master problem (RMP), which contains only a small subset P̃ Ă P
of all columns, and inwhich the integrality constraint (5) is neglected. It is solved in each iteration of the
column generation procedure. Obviously, the optimal value of the restricted master problem (RMP) is
bounded from below by 0. Assuming (RMP) is also feasible, there is an optimal dual solution pπ̄D, π̄Iq

to (RMP). Further, let f : Z|D|
` ˆt0, 1u|I| ˆR|S| Ñ R be the cost function of the columns p P P in (MP),

then the reduced costs c̄p for column A ¨,p with p P PzP̃ are calculated as

c̄p – cp ´
ÿ

dPD

ad,pπ̄d ´
ÿ

iPI

ai,pπ̄i
(6)
“ f

`

AD,p, AI,p, wS,p
˘

looooooooooomooooooooooon

primal costs

´
ÿ

dPD

ad,pπ̄d

loooomoooon

cumulative
dual costs of tasks

´
ÿ

iPI

ai,pπ̄i.
loooomoooon

dual costs due to
allocation to agent

The dual costs of a column p P P result from the cumulated dual values π̄d of the tasks d P D forming
the corresponding plan. In contrast, the dual costs corresponding to the set I only depend on the agent
the plan is assigned to. Since we can solve one pricing subproblem for each agent i P I separately, we
can consider the dual cost of each agent as a constant in the corresponding subproblem.

Anew column p P PzP̃ can only improve the current solution of (RMP) if c̄p ă 0. If there is no column
with c̄p ă 0, the optimal value of (RMP) equals the optimal value of the linear relaxation of (MP), cf.
Chvátal (1983). It is the purpose of the pricing subproblem to check whether there are columns with
negative reduced costs. It is a common approach to find new columns using an MIP formulation. A
generic MIP formulation of the pricing problem for the restricted master problem (RMP) can be found
in Appendix A1. In the following section, we will devise branch-and-bound column search as a novel
way to solve the pricing problem, as an alternative to solving an MIP.

3 Branch-and-Bound Column Search
In general, it is computationally very expensive to solve the pricing problem as amixed-integer program.
Therefore, it is often attempted to exploit the problem-specific properties of the subproblem, e.g. in a
cutting-plane procedure, or to solve it with other methods such as dynamic programming, constraint
programming or heuristics. The idea of branch-and-bound column search is to find new columns for (RMP)
by enumerating them within a search tree. Very importantly, it does not only return one improving
column at a time as the traditional approach, but rather a whole set of improving columns whose size
can be adjusted. This allows for a muchmore efficient solution process in many cases as the subproblem
does not have to be called as often and feasible integer solutions to the master problem can be found
earlier. Certainly, a plain enumeration of all possible columns A ¨,p, p P P, is inefficient as there might be
exponentially many. Thus, an important ingredient of our procedure is a strong rule to prune the search
tree. In this section, we describe the details of branch-and-bound column search. Further, we show how
to integrate branch-and-bound column search in a column generation framework in order to solve linear
and mixed-integer programs.

3.1 Enumeration Trees for Column Search
The core of our column generation procedure is a search tree. Starting from an initial column (or plan,
in terms of the generalized assignment problem), which corresponds to the root node vr, all columns
with reduced costs lower than an acceptance threshold θ ď 0 and that belong to feasible plans shall be
generated as nodes of this tree. The acceptance threshold is used both to control the effort of finding
new columns and to regulate the number of columns that should enter the restricted master problem.
Note that it is necessary to set this threshold to θ “ 0 at some point in the procedure to obtain an exact
solution algorithm for the LP relaxation of (MP).

5

In constructing the search tree, only a few (or even only one) column coefficients ad,p, d P D, are
changed between a node and its children, such that the corresponding columns are similar with respect
to their structure and their costs. The columns that are enumerated in our search tree are all selected
from a box inR|D|`|I| that contains all feasible columns. Since the number of those columns is finite, i.e.
|P| ă 8, the following minimum and maximum values

amin
d :“ min

!

ad,p

ˇ

ˇ

ˇ
p P P

)

and amax
d :“ max

!

ad,p

ˇ

ˇ

ˇ
p P P

)

(7)

exist for all d P D, and therefore we can define the box of column candidates as

Ā :“
!

A¨,p P Z|D| ˆ t0, 1u|I|
ˇ

ˇ

ˇ
amin

d ď ad,p ď amax
d , @d P D, p P P̄

)

,

where P̄ is the corresponding index set of columns. Inmany applications, it is relatively easy to calculate
such upper and lower bounds for the entries of AD,¨ as a submatrix of A. Furthermore, for some problem
classes it may also be necessary to determine the minimum or maximum number of tasks in a plan de-
pending on the agent i P I, i.e. amin

d,i – mintad,p | p P P, ai,p “ 1u and amax
d,i – maxtad,p | p P P, ai,p “ 1u.

For ease of exposition, we use the definitions in (7). Note that the set Ā typically also contains infeasible
columns, i.e. for the feasible columns we have A Ď Ā and P Ď P̄.

vr

vp

v p̂

v p̄

Figure 1: Illustration of an enumeration tree.

Prior to describing the essential components of branch-and-bound column search, we formally define
the aforementioned search tree constructed in the process. From now on, we will refer to it as an enu-
meration tree.

Definition 3.1 (Enumeration Tree). Let Ā Ě A be a box of column candidates for master problem (MP) with
corresponding index set P̄ Ě P. Then an enumeration tree T “ pG, ˝q for (MP) is a pair consisting of an
arborescence G “ pV, Eq and a binary operation ˝ : V ˆ 2D Ñ V, where

(i) the set of nodes is some subset

V Ď
␣

vp – pAD,p, AI,p, wS,pq
ˇ

ˇ p P P̄
(

,

(ii) the binary operation ˝ : V ˆ 2D Ñ V fulfils

pvp, v p̂q P E ñ D! D̄ Ď D : vp ˝ D̄ “ v p̂.

The definition above implies that the node set V of an enumeration tree T contains those plans
pA ¨,p, wS,pq with p P P̄ which are candidates for entering the master problem (MP). In order to ob-
tain an exact solution algorithm for (MP), we will construct the enumeration trees in such a way that all
required columns for an optimal solution to the LP relaxation of (MP) are found.

Each edge e “ pvp, v p̂q P E of an enumeration tree T (cf. Figure 1) describes a subset of rows D̄ Ď D
in which the coefficients change between the columns corresponding to its two incident nodes. At each
node vp, it is possible to specify how to get to one of its child nodes v p̂ via the binary operation ˝ and a
subset D̄ Ď D. Thus, the binary operation ˝ can be seen as a description of the type of branching used
and the choice of D̄ describes the branching strategy.

In our enumerative solution approach, wewant to set up an enumeration tree Ti “ pVi, Ei, ˝iq for each
agent i P I. Therefore, in Definition 3.1, an edge from a parent node vp to one of its child nodes v p̂ only
changes the assignment of tasks d P D and concomitantly, of course, the structure of wS,p to wS,p̂. The
assignment of the plans p P P to an agent, which is encoded in the partial column AI,p of the constraint

6

matrix, remains constant for a given tree Ti. Furthermore, we assumed in Section 2.1 that
ř

iPI ai,p “ 1
for all p P P, so we can conclude that AI,p P teiuiPI for all p P P. Therefore, given an agent i P I, we have

@vp “ pAD,p, AI,p, wS,pq P Vi : AI,p “ ei.

We now provide a definition of the distance between a given node vp P V and the root node vr P V
within an enumeration tree T.

Definition 3.2 (Depth of a Node). Let T “ pV, E, ˝q be an enumeration tree with root node vr P V and let
vp P V be an arbitrary node in T. Then the depth ϕppq of vp in T is defined as the number of edges of the unique
directed path from vr to vp.

Using the notion of depth, we can order the nodes of an enumeration tree as follows. Let T “ pV, E, ˝q

be an enumeration tree with root node vr P V and let vl P V. Further, let P “ pvr, . . . , v p̄, . . . , vlq be the
unique path from vr to vl . If ϕppq ă ϕpp̄q holds for two nodes vp, v p̄ on P , we write vp ďT v p̄, and we
say vp is an ascendant of v p̄ or v p̄ is a descendant of vp.

In the remainder, we focus on a specific class of enumeration trees, as defined next.

Definition 3.3 (Monotonically Increasing Enumeration Tree). An enumeration tree T is called monoton-
ically increasing if for any two nodes vp “ pAD,p, AI,p, wS,pq, v p̄ “ pAD,p̄, AI,p̄, wS,p̄q P V with vp ďT v p̄ the
following condition is fulfilled componentwise:

AD,p ď AD,p̄.

In the following sections, we will describe how monotonically increasing enumeration trees can be
used effectively to solve the pricing subproblem of a column generation algorithm. In order to describe
an exact solution algorithm for the pricing problem, it is necessary to ensure that the method finds all
plans p P P with negative reduced costs.

Definition 3.4 (Complete Enumeration Tree). Let pπ̄D, π̄Iq P R|D| ˆR|I| be an optimal solution of the dual
subproblem (RDP). Then an enumeration tree Ti “ pVi, Ei, ˝iq of an agent i P I is called complete if it contains
all nodes vp “ pAD,p, ei, wS,pq P Vi with i P I and p P P whose corresponding columns pAD,p, eiq are feasible for
master problem (MP) and which have negative reduced costs c̄p ă 0, i.e.

␣

vp “ pAD,p, ei, wS,pq
ˇ

ˇ A ¨,p P A, c̄p ă 0, p P P
(

Ď Vi.

In order to show at the end of the column generation procedure that an optimal solution of the
LP relaxation of (MP) has been found, it is necessary to verify that no further columns with negative
reduced costs exist. To this end, we will use the definition of the complete enumeration tree. After all, if
our column search constructs a complete enumeration tree at some point in the procedure and if this tree
does not contain any columns with negative reduced costs, then we also know that the optimal solution
of (RMP) found in the last iteration is also an optimal solution of the LP relaxation of (MP).

3.2 Determination of Lower Bounds for the Reduced Costs in a Branch
The pricing subproblemmust be solved alternatelywith themaster problem at each iteration of a column
generation procedure to find new columns with negative reduced costs. Similarly, the enumeration
trees Ti “ pVi, Ei, ˝iq with i P I must also be reconstructed in each iteration of the column generation
procedure. In most cases, of course, it is far too time-consuming to construct the tree completely with all
feasible columns which have negative reduced costs, or even only those whose reduced costs are lower
than the given acceptance threshold θ ď 0. Consequently, it is necessary to prune certain subtrees in
the course of the enumeration process for which we can prove that they do not contain any columns
with reduced costs lower than θ and thus no columns that enter the master problem. The main idea
is therefore to estimate at a node vp in the enumeration process by how much the reduced costs in the
subtree under this node vp can still change. If we know, based on the estimate, that there are no columns
with reduced costs lower than θ among the descendants of this node vp, the corresponding subtree can
be pruned without loosing the global optimality of the procedure.

In our method, it is important to construct monotonically increasing enumeration trees for each
agent i P I. Thus, for describing an edge between a parent node vp P Vi and its child node v p̂ P Vi,
we only use one concrete realization of the binary operation ˝i. With this specific operation, denoted
by ‘i : Vi ˆ 2D Ñ Vi, a child node v p̂ is constructed from its parent node vp by increasing the number
of executions of one specific task d̄ P D from plan p to plan p̂ by one and by adjusting the structural

7

properties wS,p to wS,p̂ appropriately. In our example of the (VRP), this would mean that a tour p̂ is
constructed from another tour p by adding exactly one customer d̄ P D to tour p.

For monotonically increasing enumeration trees Ti “ pVi, Ei, ‘iq, i P I, we observe that it is possible
to calculate the depth ϕppq of a node vp P Vi as

ϕppq “
ÿ

dPD

ad,p ´ ad,r, (8)

with r as the index of the root node vr “ pAD,r, AI,r, wS,rq P Vi.
A possibility to control the search effort for new columns is to construct not every child node v p̂ for

a node vp P Vi, but only child nodes for a specifically chosen subset D̃ Ď D of row coefficients. For
example, one possible criterion to determine the tasks d P D̃ Ď D is to choose the |D̃| tasks with the
highest dual costs π̄d, d P D. Furthermore, it is possible to modulate the effort by only generating
plans up to a certain maximum number of tasks. With the chosen binary operation ‘, this means that
the enumeration tree Ti is only constructed up to a certain search depth ℓ. These two strategies can
provide performance advantages in the overall column generation procedure as we will see later in
Section 3.4. Similar considerations have already been made in Krumke et al. (2002) and Westphal and
Krumke (2008) for the special case of the vehicle dispatching problem. The principle of estimating
reduced costs explained there is now formalized and, especially, generalized to arbitrary optimization
problems for the first time.

Now, we provide two lower bounds on the reduced cost c̄ p̄ of all columns p̄ P P that are descendants
of a node vp P Vi, p P P, i.e. vp ďTi v p̄. First, we consider a generic lower bound that can always be used,
regardless of the concrete application under consideration, if the problem to be solved has the described
generalized assignment structure (cf. Section 2.1).

Definition 3.5 (Generic Total Maximal Gain). Let Ti “ pVi, Ei, ˝iq with i P I be a monotonically increasing
enumeration tree for the generation of new columns of master problem (MP). Let π̄ be an optimal solution of the
restricted dual problem (RDP), and let amax

d :“ maxtad,p | p P Pu be an upper bound for the column entries ad,p
for all d P D̃, p P P, where D̃ Ď D. Then the generic total maximal gain of a node vp P Vi with depth ϕppq,
p P P, for a specific search depth ℓ is defined as follows:

gtmgpp, ℓ, D̃, π̄q – max
χPZD̃

$

&

%

ÿ

dPD̃

π̄dχd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď χd ď pamax
d ´ ad,pq, d P D̃,

ÿ

dPD̃

χd ď ℓ ´ ϕppq

,

.

-

.

The generic total maximal gain can be seen as the maximum value by which the reduced cost c̄p of
a column p P P at the corresponding node vp can still decrease by adding at most ℓ ´ ϕppq additional
tasks from a given subset D̃ Ď D if the primal costs would not increase at all.

Thus, with the generic total maximal gain it is now possible to calculate the aforementioned lower
bound on the reduced costs c p̄ of all nodes v p̄ with vp ďT v p̄ which have a maximum node depth of
ϕpp̄q ď ℓ and which arise by solely adding tasks from the subset D̃.

Theorem 3.6. Let Ti “ pVi, Ei, ˝iq be a monotonically increasing enumeration tree for some i P I, and let vp, v p̄ P

Vi be any two nodes with vp ďTi v p̄ and ϕpp̄q ď ℓ where ad,p “ ad,p̄ for all d P DzD̃ (i.e. node v p̄ only has
additional tasks from subset D̃). Furthermore, the cost function f is monotonically increasing, i.e. for vp ďTi v p̄
we have f pv p̄q ě f pvpq. Then a lower bound for the reduced costs c̄ p̄ of node v p̄ P Vi is given by

c̄ p̄ ě c̄p ´ gtmgpp, ℓ, D̃, π̄q.

Proof. Let c̄ p̄ and c̄p be the reduced costs of two columns p̄, p P P such that the properties of the claim
are fulfilled. Then it is possible to bound the reduced costs c̄ p̄ from below in the following way:

c̄ p̄ “ c p̄ ´
ÿ

dPD

ad,p̄π̄d ´
ÿ

iPI

ai,p̄π̄i

(6)
“ f pv p̄q ´

ÿ

dPD

ad,p̄π̄d ´
ÿ

iPI

ai,p̄π̄i

ě f pvpq ´
ÿ

dPD

pad,p̄ ´ ad,pqπ̄d ´
ÿ

dPD

ad,pπ̄d ´
ÿ

iPI

ai,pπ̄i

“ f pvpq ´
ÿ

dPD

ad,pπ̄d ´
ÿ

iPI

ai,pπ̄i

loooooooooooooooooomoooooooooooooooooon

“c̄p

´
ÿ

dPD

pad,p̄ ´ ad,pqπ̄d

8

ad,p“ad,p̄
@dPDzD̃

“ c̄p ´
ÿ

dPD̃

pad,p̄ ´ ad,pqπ̄d

ě c̄p ´ max
χPZD̃

$

&

%

ÿ

dPD̃

π̄dχd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď χd ď pamax
d ´ ad,pq, d P D̃

ÿ

dPD̃

χd ď ℓ ´ ϕppq

,

.

-

“ c̄p ´ gtmgpp, ℓ, D̃, π̄q.

The first inequality holds, because function f is monotonically increasing w.r.t. to the enumeration tree
and ai,p̄ “ ai,p for all i P I. The second inequality is correct, because from here on we no longer consider
a specific node v p̄, but the node with minimal reduced costs which can be reached by adding the best
tasks d P D̃ with respect to the dual costs and up to a depth of ℓ.

The generic total maximum gain does not contain any information about the objective function f .
The only assumption is that f grows monotonically as more tasks are added to a plan. However, it is
highly plausible for a master problem like (MP) with set-covering condition (3), that additional tasks in
a plan at least do not reduce the total cost. This assumption that can be fulfilled easily makes the generic
lower bound applicable independently of the concrete application.

In the following, a lower bound will be introduced that contains additional information about the
objective function of the concrete application. This should make the new bound more effective, i.e. it
should be possible to cut off larger parts of the enumeration tree than with the generic total maximum
gain. However, the bound is to be derived in a generic framework so that its use can still be transferred
to all applications with the generalized assignment structure. In order to calculate this lower bound,
we use a family of application-specific functions F “ pFdqdPD with Fd : Zˆ

Ť

iPI Vi Ñ R` to obtain lower
estimates of the costs of a task d P D within a node vp P Vi, p P P, in an enumeration tree Ti, i P I. For the
vehicle routing problem from Example 2.1, we can simply choose Fdpad,p̄ ´ ad,p, vpq “ cd ¨ pad,p̄ ´ ad,pq for
each customer d P D to determine the costs exactly. In the example of the vehicle routing problem, there
is an additional cost for returning to the depot after visiting the last customer, which is not represented in
any of the functions Fd. Therefore, in general the estimation has to include further constantsC “ pCpqpPP,
with Cp P R`, that cover such additional costs in a node vp P

Ť

iPI Vi, p P P. The family of functions F
and constants C has to fulfil the following bound for the primal costs:

f
`

AD,p̄, AI,p̄, wS,p̄
˘

ě f
`

AD,p, AI,p, wS,p
˘

`
ÿ

dPD

Fd

´

ad,p̄ ´ ad,p, pAD,p, AI,p, wS,pq

¯

` Cp, (9)

where vp, v p̄ P Vi such that vp ďTi v p̄, i P I. Furthermore, we demand that Fdp0, vpq “ 0 for all d P D.
If we consider the reduced cost c̄p “ cp ´

ř

dPD ad,pπ̄d ´
ř

iPI ai,pπ̄i at a given node vp, then for any
task d̄ P D the following observation can be made. If Fd̄p1, vpq ě π̄d̄, the reduced costs will increase
by adding one additional task d̄ to the current plan at node vp, as function Fd̄ underestimates the cost
contribution of task d̄ P D to the primal costs cp of column p. However, if π̄d̄ ą Fd̄p1, vpq for some d̄ P D,
then the reduced cost may also decrease if ad̄,p is increased by one. In order to calculate the next lower
bound for the reduced costs, one must determine by howmuch the reduced costs can still change in this
way when constructing a descendant of node vp, i.e. how small the reduced costs c̄ p̄ for nodes vp ďTi v p̄
can still become by adding further tasks d P D to plan p P P.

Definition 3.7 (Total Maximal Gain). Let Ti “ pVi, Ei, ˝iq with i P I be a monotonically increasing enumera-
tion tree for the generation of new columns of master problem (MP). Let F “ pFdqdPD with Fd : Zˆ

Ť

iPI Vi Ñ R`

further be a family of functions and pCpqpPP with Cp P R` a family of constants which together fulfil (9), let π̄ be
an optimal solution of the restricted dual problem (RDP), and let amax

d :“ maxtad,p | p P Pu be an upper bound
for the column entries ad,p for all d P D̃, p P P, where D̃ Ď D. Then the total maximal gain of a node vp P Vi
with depth ϕppq, p P P, for a specific search depth ℓ is defined as follows:

tmgpp, ℓ, D̃, π̄; F, Cq –

max
χPZD̃

$

&

%

ÿ

dPD̃

`

π̄dχd ´ Fd
`

χd, vp
˘˘

´ Cp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď χd ď pamax
d ´ ad,pq, d P D̃,

ÿ

dPD̃

χd ď ℓ ´ ϕppq

,

.

-

.

The total maximal gain can again be seen as the maximum value by which the reduced cost c̄p of
a column p P P at the corresponding node vp can still decrease by adding at most ℓ ´ ϕppq additional
tasks from a given subset D̃ Ď D. In contrast to the generic total maximum gain, primal costs are now
also taken into account. With the total maximal gain it is now possible to calculate a new lower bound.

9

Theorem 3.8. Let Ti “ pVi, Ei, ˝iq be a monotonically increasing enumeration tree for some i P I, and let vp, v p̄ P

Vi be any two nodes with vp ďTi v p̄ and ϕpp̄q ď ℓ where ad,p “ ad,p̄ for all d P DzD̃ (i.e. node v p̄ only has
additional tasks from subset D̃). Furthermore, let F “ pFdqdPD be a family of functions and C “ pCpqpPP a family
of constants providing lower bounds for the cost cp of a plan p P P, given by a specific function f , as in (9). Then
a lower bound for the reduced costs c̄ p̄ of node v p̄ P Vi is given by

c̄ p̄ ě c̄p ´ tmgpp, ℓ, D̃, π̄; F, Cq.

Proof. Let c̄ p̄ and c̄p be the reduced costs of two columns p̄, p P P such that the properties of the claim
are fulfilled. Then it is possible to bound the reduced costs c̄ p̄ from below in the following way:

c̄ p̄ “ c p̄ ´
ÿ

dPD

ad,p̄π̄d ´
ÿ

iPI

ai,p̄π̄i

(6)
“ f

`

AD,p̄, AI,p̄, wS,p̄
˘

´
ÿ

dPD

ad,p̄π̄d ´
ÿ

iPI

ai,p̄π̄i

ai,p̄“ai,p
“ f

´´

pad,p̄ ´ ad,pq ` ad,p

¯

dPD
, AI,p, wS,p̄

¯

´
ÿ

dPD

pad,p̄ ´ ad,pqπ̄d ´
ÿ

dPD

ad,pπ̄d ´
ÿ

iPI

ai,pπ̄i

(9)
ě

ÿ

dPD

Fd

´

ad,p̄ ´ ad,p, vp

¯

´ Cp ´
ÿ

dPD

pad,p̄ ´ ad,pqπ̄d

` f
`

AD,p, AI,p, wS,p
˘

´
ÿ

dPD

ad,pπ̄d ´
ÿ

iPI

ai,pπ̄i

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“c̄p

ad,p“ad,p̄
@dPDzD̃

“ c̄p `
ÿ

dPD̃

Fd

´

ad,p̄ ´ ad,p, vp

¯

´
ÿ

dPD̃

pad,p̄ ´ ad,pqπ̄d ´ Cp

ě c̄p ´ max
χPZD̃

$

&

%

ÿ

dPD̃

`

π̄dχd ´ Fdpχd, vpq
˘

´ Cp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď χd ď pamax
d ´ ad,pq, d P D̃

ÿ

dPD̃

χd ď ℓ ´ ϕppq

,

.

-

“ c̄p ´ tmgpp, ℓ, D̃, π̄; F, Cq.

The second inequality holds, because from here on we no longer consider a specific node v p̄, but the
node with minimal reduced costs which can be reached by adding the best tasks d P D̃ with respect to
the reduced costs and up to a depth of ℓ.

Certainly, an essential ingredient for awell-performing implementation of branch-and-bound column
search with total maximal gain tmg is the quality of the lower bounds calculated via functions F and
constants C. The better they estimate the difference in primal costs of the corresponding nodes, i.e. the
smaller f pv p̄q ´ f pvpq ´

ř

dPD Fdpad,p̄ ´ ad,p, vpq ´ Cp ě 0 is, the better the bound c̄p ´ tmgpp, ℓ, D̃, π̄; F, Cq

can be used to prune the enumeration trees Ti, i P I, and the fewer nodes have to be visited explicitly
in the overall procedure. Another important requirement is that the auxiliary optimization problem for
calculating the total maximal gain at a given node vp in an enumeration tree can be solved efficiently.
There is a trade-off here, because if it is faster to enumerate the remaining descendants of vp than to com-
pute the above bound, then it is clearly not efficient to prune the tree at this point of the enumeration
process.

3.3 Branch-and-Bound Column Search
for Monotonically Increasing Enumeration Trees

Wewill now introduce a branch-and-bound column search algorithm that buildsmonotonically increas-
ing enumeration trees Ti “ pVi, Ei, ‘iq for agents i P I.

We only consider an algorithm where the sequence of tasks in a plan is the defining attribute of the
structure wS,p and thus also constitutive for the cost cp of this plan. We will refer to this as a sequence-
dependent enumeration (SDE). In Appendix A.2, there is an analogous description of a branch-and-bound
colum search, where the order of the tasks within a plan has no effect on the costs of this plan. Al-
gorithm 1 enumerates feasible plans p P P of amaster problem (MP) based on the principle of a breadth-
first search algorithm. To this end, all sequences of tasks d P D̃ for a given agent i P I in a box Ā are
generated within an enumeration tree Ti “ pVi, Ei, ‘iq until a specific search depth ℓ (cf. Figure 2). As

10

input parameters for Algorithm 1, we have a subset of all tasks D̃ that limits the breadth of Ti. The
search depth ℓ specifies up to which node depth ϕppq nodes vp with p P P̄ are to be enumerated. Later,
we will see (cf. Section 3.4) that this can also help to improve the performance of the column generation
algorithm. The other input parameters of BaB – SDE are the corresponding agent i P I for which we
want to generate new plans, the bounds amin

d and amax
d for all d P D̃ that define our column boxes Ā, the

acceptance threshold θ ď 0 to control the number of columns that enter (MP) and finally the optimal
dual solution π̄ P R|D|`|I| in the current iteration of the column generation procedure.
Algorithm 1: BaB – SDE
Input : A subset of tasks D̃ Ď D, bounds for column entries pamin

d , amax
d q @d P D̃, agent i P I,

search depth ℓ, optimal solution π̄ P R|D|`|I| of pRDPq, acceptance threshold θ.
Output: An enumeration tree Ti and a set of all columns C with reduced costs smaller than θ

and a node depth of at most ℓ.
1 Initialize:
2 r Ð 0, ad,r Ð 0 @d P D, Sr Ð H.
3 wS,r Ð Determine by Sr and application context
4 vr Ð pAD,r, ei, wS,rq

5 Q Ð tru, C Ð H, Vi Ð tvru, Ei Ð H

6 while Q ‰ H do
7 Choose p P Q.
8 Q Ð Qztpu.
9 for d P D̃ do
10 if ad,p ă amax

d then
11 pnew Ð p ` 1

// Apply binary operation vpnew “ vp ‘i tdu

12 AD,pnew Ð AD,p, Spnew Ð Sp
13 ad,pnew Ð ad,p ` 1
14 wSo ,pnew Ð wSo ,pnew

15 wpd,kmax
p `1q,pnew

Ð 1, kmax
p – maxtk P t1, . . . , ℓmaxu |

ř

dPD̃ wpd,kq,p “ 1u

16 Choose wS,pnew P argminwPR|S|
␣

f pAD,pnew , ei, wq | wSo “ wSo ,pnew

(

17 vpnew Ð pAD,pnew , ei, wS,pnew q

// Add new node vpnew to tree Ti

18 Vi Ð Vi Y tvpnewu

19 Ei Ð Ei Y tpvp, vpnewqu

20 c̄pnew “ f pvpnew q ´
ř

dPD ad,pnew π̄d ´ π̄i
// Check for reduced costs and feasibility

21 if c̄pnew ă θ and A ¨,pnew P A then
22 C Ð C Y tvpnew u

23 end
// Check for bounding due to reduced costs or node depth

24 if lb ă θ then
25 if ϕppnewq ă ℓ then
26 Q Ð Q Y pnew
27 end
28 end
29 end
30 end
31 end
32 return Ti “ pVi, Ei, ‘iq, C

The starting point of Algorithm 1 is the root node vr “ pAD,r, ei, wS,rq, where all coefficients are set
to ad,r “ 0. The set Q is used, like in the breadth-first search, as a queue to apply the first-in-first-out
principle. The initially empty set C is filled over the course of the procedure with all generated columns
A ¨,p that have reduced costs lower than the acceptance threshold θ and that are feasible plans for the
application (i.e. A ¨,p P A). As long as the set Q is not empty, starting from a current node vp, child
nodes vpnew are created by increasing the coefficients ad,p by 1 according to the binary operation ‘i for
each task d P D̃. This is done for all tasks d P D̃ for which ad,p ă amax

d holds. Then the structure wS,pnew

of the new node vpnew for pnew P P̄ must be determined.

11

Since we consider a sequence-dependent enumeration algorithm, the order of tasks d P D̃ must
be stored somehow for a node vp. To this end, we introduce the subset So Ď S of structural criteria
(cf. Section 2.1) with which the order of tasks within a plan p can be modelled. This means that for
So – D ˆ t1, . . . , ℓmaxu we have binary variables wpd,kq,p P t0, 1u with pd, kq P So, where

wpd,kq,p “

#

1, if task d is executed at position k in plan p,
0, otherwise.

The first node is initialized with ws,r “ 0 for all s P So. In Lines 14 and 15, the order of the tasks is
updated according to the newly added task. That is, the sequence of tasks wSo ,pnew of the child node
vpnew is formed from the sequence wSo ,p of the parent node by appending the corresponding task d at
the end of the sequence. Among all structures that contain this order, the cost-minimal structure for the
node vpnew is then determined in line 16. Our experience has shown that the minimum cost structure in
the application context is usually relatively easy or fast to determine and therefore this is not a crucial
criterion for the performance of the method.

Based on node vpnew , it is then possible to calculate the reduced costs c̄pnew of the new column
pnew P P̄. If node vpnew contains a feasible column for the master problem with sufficiently small re-
duced costs, it is included in C. If the lower bound lb, computed as c̄pnew ´ gtmgppnew, ℓ, D̃, π̄q or
c̄pnew ´ tmgppnew, ℓ, D̃, π̄; F, Cq, is smaller than the acceptance threshold θ, it is also possible that des-
cendants of node vpnew have reduced costs smaller than θ. Thus, we cannot prune the enumeration tree
and node vpnew is added to Q. Otherwise, we know from Theorem 3.6 (respective Theorem 3.8) that the
reduced costs of the descendants of vpnew are greater than or equal to c̄pnew ´ tmgppnew, ℓ, D̃, π̄; F, Cq and
thus also greater than or equal to the acceptance threshold, such that we can prune the tree at this node.
That is, pnew is not added to Q (cf. Lines 25 – 28).

vr
[0, 0, 0]

v1
[1, 0, 0]

d1

v2
[0, 1, 0]

d2

v3
[0, 0, 1]

d3

v4
[2, 0, 0]

d1

v5
[1, 1, 0]

d2

v6
[1, 0, 1]

d3

v7
[1, 1, 0]

d1

v8
[0, 1, 1]

d3

v9
[1, 0, 1]

d1

v10
[0, 1, 1]

d2

v11
[2, 1, 0]

d2

v12
[2, 0, 1]

d3

v13
[2, 1, 0]

d1

v14
[1, 1, 1]

d3

v15
[2, 0, 1]

d1

v16
[1, 1, 1]

d2

v17
[2, 1, 0]

d1

v18
[1, 1, 1]

d3

v19
[1, 1, 1]

d1

v20
[2, 0, 1]

d1

v21
[1, 1, 1]

d2

v22
[1, 1, 1]

d1

v23
[2, 1, 1]

d3

v24
[2, 1, 1]

d2

v25
[2, 1, 1]

d3

v26
[2, 1, 1]

d1

v27
[2, 1, 1]

d2

v28
[2, 1, 1]

d1

v29
[2, 1, 1]

d3

v30
[2, 1, 1]

d1

v31
[2, 1, 1]

d1

v32
[2, 1, 1]

d2

v33
[2, 1, 1]

d1

v34
[2, 1, 1]

d1

Figure 2: Illustration of an enumeration tree Ti for a specific agent i P I, with D̃ “ pd1, d2, d3q and
amax

d1
“ 2, amax

d2
“ amax

d3
“ 1, constructed in the sequence-dependent enumeration algorithm BaB – SDE.

Next we show that the graph Ti constructed in BaB – SDE is indeed a tree, which implies that no
column is enumeratedmore than once. We say that two nodes vp, v p̄ are equal if AD,p “ AD,p̄, AI,p “ AI,p̄
and if wSo ,p “ wSo ,p̄.

Lemma 3.9. The graph Ti “ pVi, Ei, ‘iq constructed by Algorithm BaB – SDE is an arborescence, i.e. for the
initial node vr P Vi in the algorithm and for any two nodes vp, v p̄ P Vi there are connecting pathsP – pvr, . . . , vpq,
P̄ – pvr, . . . , v p̄q in Ti and we have

vp “ v p̄ ñ P “ P̄ ,

and every node vp is visited exactly once via its unique path P in BaB – SDE.

Proof. Every newly built node vpnew in Algorithm 1 is connected to one previously constructed node vp.
Since vr is the initial node in the algorithm, it follows inductively that every node is connected to vr.
It remains to show that vp “ v p̄ implies P “ P̄ . If the paths are of different length, the sum over all
coefficients

ř

dPD̃ ad,p ‰
ř

dPD̃ ad,p̄ is different for vp and v p̄, such that vp ‰ v p̄. Now, suppose there are
two different paths P , P̄ from vr to the same node vp “ v p̄ which have the same length. Let vp̌ P P and
v p̂ P P̄ be the first nodes where P and P̄ differ, which also means wSo ,p̌ ‰ wSo ,p̂. As a descendant of
a node is formed by appending additional tasks to the existing task sequence of this node, cf. Line 15,
vp̌ P P and v p̂ P P̄ cannot have common descendants. Furthermore, we can rule out that one path is

12

traversedmore than once, because each task d P D̃ is only added at most once to every node. This proves
the claim.

At some point in the column generation procedure, it is necessary to verify that BaB – SDE visits
all nodes whose columns have negative reduced costs in order to preserve the exactness of the method.
Therefore, we show now that Algorithm 1 can enumerate all feasible columns with negative reduced
costs for a specific setting of input parameters.

Theorem 3.10. Consider a master problem (MP) for a problem class where the sequence of tasks in a plan p P

P affects its costs cp, and let π̄ P R|D|`|I| be an optimal solution of the restricted dual problem (RDP). If the
acceptance threshold is θ “ 0, the search depth is ℓ “ ℓmax and the tuple D̃ contains all tasks d P D, i.e. D̃ “ D,
then Algorithm BaB – SDE constructs a complete enumeration tree Ti “ pVi, Ei, ‘iq for an agent i P I (cf.
Definition 3.4).

Proof. ByLemma 3.9, the graph constructed inAlgorithmBaB – SDE is a tree. This tree is also an enumer-
ation tree, since the nodes Vi generated by this algorithm are obviously columns for the master problem
(MP), and by construction of the algorithm (cf. Lines 13 and 19), Condition (ii) of Definition 3.1 is also
satisfied. Thus, we only have to show that it is also a complete enumeration tree. Let pAD,p̄, eiq be an
arbitrary column with structure wS,p̄ that has negative reduced costs c p̄, where n̄ –

ř

dPD ad,p̄ ď ℓmax
and ad,p̄ ď amax

d for all d P D. w.l.o.g., let the tasks d P D with ad,p̄ ą 0 be denominated in such a way
that for the sequence of tasks in plan p̄ we have wpd1,1q,p̄ “ 1, wpd2,2q,p̄ “ 1, . . . , wpdn̄ ,n̄q,p̄ “ 1 and ws,p̄ “ 0
for all other s P So “ D ˆ t1, . . . , ℓmaxu.

We will show how BaB – SDE traverses the path from root node vr to v p̄ and thus prove the claim.
Starting at vr, r “ 0, with an empty column A ¨,r “ pp0qdPD, eiq, and ws,r “ 0 for all s P So, the algorithm
iterates over all tasks in the order given by tuple D̃. Thus, and since ad1,r “ 0 ă amax

d , it will build column
vp1 at task d1 where onlywpd1,1q,p1

“ 1 in sequencewSo ,p1 . At some later point, AlgorithmBaB – SDE takes
index p1 corresponding to node vp1 from Q, iterates again over all d P D, until d2 is reached. Then also
wpd2,2q,p2

will be set to 1, and this way node vp2 is built. This continues until node v p̄ has been generated.
By Theorem 3.8, we have for all ascendants v p̂ of the chosen node v p̄ that c̄ p̂ ´ tmgpp̂, ℓ, D̃, π̄; F, Cq ă c p̄
ă 0. Due to the choice of binary operation ‘, we also know that ϕpp̂q ă ϕpp̄q ď ℓmax, which then implies
that neither the ascendant nodes v p̂ nor the chosen node v p̄ are pruned in Lines 25 – 28 of BaB – SDE.
Having arbitrarily chosen column A ¨,p̄ with structure wS,p̄, this proves the claim.

We have now shown a very generic version of the branch-and-bound column search, namely BaB –
SDE. In order to demonstrate the broad applicability of branch-and-bound column search, we discuss
in Appendix A.3 a selection of problem classes (sequence dependent and sequence independent) for
which it can be used to solve the pricing subproblem.

3.4 The Top-Level Column Generation Algorithm
In this section, we introduce the top-level algorithm that describes the interaction between a master
problem (MP) and the branch-and-bound column search as solution algorithm of the pricing problem.
We also discuss certain implementation techniques, to improve the performance of the column genera-
tion approach. The upper-level procedure that controls the master and the subproblem is presented in
Algorithm 2.

The input of Algorithm 2 is a problem instance of master problem (MP), cf. Section 2.1. The corres-
ponding pricing subproblem is solved by buildingmonotonically increasing enumeration trees as shown
in Section 3.3. Thus, the coefficient bounds amin

d and amax
d as well as the parameters search depth ℓ

and search breadth β with their respective step lengths ςℓ and ςβ together with the maximum search
length ℓmax are also passed to Algorithm 2. The initial values of ℓ and β as well as the parameters ςℓ, ςβ

and ℓmax should be chosen beforehand, depending on the application at hand.
At the initialization, the acceptance threshold θ is set to zero. A feasible initial solution to (MP) is

either already given or computed by an application-specific starting heuristic and is then stored in Ã
and the auxiliary set gen. The set Ã, with Ã Ď A Ď Ā, contains all columns generated in the overall
procedure, whereas gen Ď Ã includes only those columns that are enumerated within the current call
of branch-and-bound column search. The enumeration process starts by computing an optimal solu-
tion x˚

LP to the current restricted master problem (RMP) with columns P̃ (cf. line 7). Concomitantly,
the solution π̄ P R|D|`|I| to the dual problem (RDP) is computed. Then the tasks d P D are sorted (by
primal cost, dual cost, reduced cost or by another application-specific criterion) and the best tasks are
stored in the determined order in tuple D̃.

13

After that, the actual column generation takes place, using either Algorithm BaB – SDE. By passing
only a subset D̃ of tasks and by limiting the maximum number of tasks in a plan via parameter ℓ, the
tree Ti “ pVi, Ei, ‘iq, i P I, is not built completely. However, the tree Ti of course becomes deeper the
higher ℓ is set in the course of the algorithm. Also, the larger the cut-off parameter β is chosen, the
wider the tree becomes. The regulation of the search breadth alone is already known through methods
such as beam search (cf. Sabuncuoglu and Bayiz (1999)). With the branch-and-bound column search,
however, both the search width and the search depth are regulated at the same time. The parameter θ
is chosen adaptively to control the number of new columns in the master problem by adding only those
columns A ¨,p̃, p̃ P P that fulfil c̄ p̃ ă θ. In addition, the enumeration tree below a node v p̃ with p̃ P P is
pruned if c̄ p̃ ´ tmgpp̃, ℓ, D̃, π̄; F, Cq ě θ.

Algorithm 2: Enumerative Column Generation Scheme
Input : An instance pA, b, c, D, I, Pq of master problem (MP), coefficients bounds amin

d and amax
d

for the columns, an initial search depth ℓ and breadth β, step lengths ςℓ and ςβ and a
maximal search depth ℓmax.

Output: An optimal solution to the LP relaxation of (MP) and one feasible integer solution of
this problem instance

1 Initialize:
2 θ Ð 0
3 Ã, P̃ Ð Apply starting heuristic to (MP) to generate initial columns with corresp. index set
4 gen Ð Ã
5 while ℓ ă ℓmax ` 1 or β ă |D| ` 1 do
6 while |gen| ą 0 or θ ă 0 do
7 x˚

LP Ð Solution of (RMP) with P̃
8 π̄ Ð Optimal dual solution of (RDP)
9 D̃ Ð The tuple arising from sorting tasks d P D and cutting after β-th task

10 for i P I do
11 Ti, gen Ð BaB – SDE(D̃, pamin

d , amax
d qdPD, i, ℓ,π̄, θ)

12 Ã Ð Ã Y gen
13 Update index set P̃ of Ã
14 // Reduce acceptance threshold if too many columns were generated

15 Update θ depending on the number of generated columns in gen
16 end
17 end
18 ℓ Ð min tℓ ` ςℓ, ℓmaxu and β Ð min

␣

β ` ςβ, |D|
(

19 end
20 x˚ Ð Solution of (MP) with column indices P̃
21 return Optimal solution x˚

LP to the LP relaxation of (MP), feasible solution x˚ to (MP)

If gen “ H and the acceptance threshold has been set to θ “ 0 in a given iteration of the inner while
loop, then all columns with negative reduced costs up to the given depth and breadth have been enu-
merated. At this point, the search space of the tree is expanded. To this end, the parameters ℓ and β are
increased by step lengths ςℓ and ςβ, respectively. This is done until the maximal search depth ℓmax and
the maximal search breadth |D| have been reached. The algorithm terminates with a complete enumer-
ation tree (cf. Theorem A.5 and Theorem 3.10), such that the solution x˚

LP produced by Algorithm 2 is
indeed LP-optimal.

The above approach is intended to ensure fast convergence of the solution process for the LP re-
laxation of (MP). To summarize, its main ideas are (i) pricing on an initially small, but dynamically
increasing search space by adapting search breadth β and search depth ℓ, (ii) controlling the number of
accepted columns on the basis of a dynamically adapted threshold θ and (iii) variation in the way the
search space in the enumeration tree is scanned by changing the search criterion. Krumke et al. (2002)
formulated these ideas and developed a specialized scheme for solving vehicle routing problems based
on these principles, which they call dynamic pricing control. Its advantages are the following: (i) At the
beginning of the procedure, the optimal solutions of the dual program (RDP) are updated frequently.
(ii) For the same reason, the effort to find new columns is initially low when the dual variables are not
yet in good shape, i.e. oscillating still a lot (see e.g. Lübbecke and Desrosiers (2005)). (iii) We retrieve
a feasible integer solution early in the solution process and update it regularly. (iv) At the final stage
of the procedure, when the dual information has become more reliable, the whole enumeration tree is
traversed and thus the procedure is guaranteed to find LP optimal solutions in the end. In the present
work, we have generalized their approach for vehicle routing to a generic framework which can now be
applied to a much larger variety of problem classes.

14

4 Lexicographic Optimization
We now extend the generic column generation approach from the previous section to the case of multi-
objective optimization problems. To this end, we use the principle of lexicographic optimization for solving
problems with multiple, possibly conflicting optimization goals (see Zykina (2004) for details). We will
discuss howbranch-and-bound column search can be combinedwith thismethod. Further, wewill show
how bounds on reduced costs for pruning the enumeration tree can be calculated across the different
levels of the lexicographic optimization approach. Finally, wemodify Algorithm 2 such that it is suitable
for solving lexicographic problems efficiently.

4.1 Basic Principle of the Lexicographic Optimization Approach
In a multi-objective optimization problem, different optimization goals are to be considered, each with
a corresponding objective function vector σk P Rn, k P t1, . . . , Ku. A common approach to balance these
goals is to weight the objective vectors with parameters ωk P Rn, k P t1, . . . , Ku and then aggregate them
to obtain one single objective function. This is called the blended approach or weighted-sum method, and a
generic model for this approach could be formulated as follows (cf. Ehrgott (2005)):

(PB) min
ξ

K
ÿ

k“1

ωk σJ
k ξ

s.t. ξ P X.

Here ξ P Rn are the variables and X Ď R
n represents the feasible set. The blended approach is par-

ticularly suitable if the components of the objective function are measured in the same unit or if it is
possible to convert them into one another. However, if this is not the case, lexicographic optimization is
often better suited for modelling the respective multi-criteria optimization problem. In this approach,
the individual objectives are optimized strictly in a predetermined, so-called lexicographic or hierarchical
order (cf. Rentmeesters et al. (1996)). If we assume that the descending order of priority of the objectives
σ1, . . . , σK is given via their index, the lexicographic optimization approach creates the following chain
of optimization problems:

(PL1) min
ξ

σJ
1 ξ

s.t. ξ P X
α1ě1
ÝÑ

(PL2) min
ξ

σJ
2 ξ

s.t. ξ P X

σJ
1 ξ ď α1Z1

α2,...,αm´1ě1
ÝÑ

(PLK) min
ξ

σJ
K ξ

s.t. ξ P X

σJ
k ξ ď αkZk @k P L,

with L – t1, . . . , K ´ 1u. At first we solve optimization problem (PL1) with objective function σ1. We
store its optimal objective value Z1 and solve the second optimization problem (PL2) with objective
function vector σ2 and so on. At each lexicographic level k P t2, . . . , Ku, an additional constraint σJ

k´1ξ ď

αk´1Zk´1 with αk´1 ě 1 is added to problem (PLk) to ensure that the objective value of the higher
level deteriorates at most by a factor of αk´1. In this way, it is also possible to weight the lexicographic
levels against each other by calibrating the parameter αk´1, k P t2, . . . , Ku. A solution ξ˚ P X is called
lexicographically optimal (in case ofminimization) for levels k “ 1, . . . , K if σJ

k ξ˚ ď αkσJ
k ξ, k “ 1, . . . , K ´ 1,

and σJ
K ξ˚ ď σJ

K ξ for all ξ P X. This is a common extension to the definition of lexicographical optimality
by Isermann (1982).

A main advantage of the lexicographic optimization approach compared to other methods of multi-
objective optimization is that the results are easier to interpret, because the different levels in the lexico-
graphic approach have been optimized separately. Thus, in many applications it is desirable to define a
direct prioritization for the different optimization goals. Furthermore, with the lexicographic approach
it is possible to avoid the parametrized weighting of optimization goals in the objective function, which
can lead to numerical problems, because the parameters often vary greatly in magnitude to reflect the
prioritization (see e.g. Schewe et al. (2020) in the context of penalizing violations of feasibility in penalty
alternating direction methods).

4.2 Combination of Lexicographic Optimization and the Enumerative Approach
Wenowshowhow touse columngeneration via branch-and-bound column search to solve lexicographic
optimization problems efficiently. The two main ideas are reusing columns between different lexico-
graphic levels and specific bounds we derive for pruning the enumeration tree in a given level.

15

The master problem introduced in Section 2.1 can be seen as the first level of a lexicographic opti-
mization approach. In general, for the k-th lexicographic level, the master problem can be formulated as

pMPkq min
x

ÿ

pPP̃

ck
pxp

s.t.
ÿ

pPP̃

ad,pxp ě bd @d P D

ÿ

pPP̃

ai,pxp “ bi @i P I

ÿ

pPP̃

cl
pxp ď αlZl @l P L (10)

xp P Z` @p P P,
with index sets D and I, the constraint matrix A and a column set P as in (MP). The column costs for a
column p P P in the current level k P t1, . . . , Ku are given by ck

p P R, and for the prior levels by cl
p P R

with l P L – t1, . . . , k ´ 1u.
For the purpose of column generation, we again consider the restricted master problem (RMPk),

which contains only a subset of columns P̃ Ď P. For the dual problem of the linear relaxation of (RMPk),
we have

(RDPk) max
π,µ

ÿ

dPD

bdπd `
ÿ

iPI

biπi ´
ÿ

lPL

αlZlµl

s.t.
ÿ

dPD

ad,pπd `
ÿ

iPI

ai,pπi ´
ÿ

lPL

cl
pµl ď ck

p @p P P̃

πd, µl ě 0 @d P D, @l P L,

where the additional dual variables µl with l P L are for the objective constraints (10). The optimal solu-
tion pπ̄D, π̄I , µ̄Lq to (RDPk) is then used to calculate the reduced costs c̄k

p for new columns A ¨,p, p P PzP̃,
as follows:

c̄k
p – ck

p ´
ÿ

dPD

ad,pπ̄d ´
ÿ

iPI

ai,pπ̄i `
ÿ

lPL

cl
pµ̄l

(6)
“ fk

`

AD,p, AI,p
˘

loooooooomoooooooon

primal costs

´
ÿ

dPD

ad,pπ̄d

loooomoooon

dual costs by
cumulating dual values of tasks

´
ÿ

iPI: ai,p“1

π̄i

looooomooooon

dual costs through
allocation to agent

`
ÿ

lPL

fl
`

AD,p, AI,p
˘

µ̄l ,
loooooooooooomoooooooooooon

dual costs due to
lexicographic optimization

(11)

where fk, fl : Z|D|
` ˆ t0, 1u|I| ˆR|S| Ñ R` with l P L “ t1, . . . , k ´ 1u and k P t2, . . . , Ku are primal cost

functions as described in (6).
A decisive benefit of combining lexicographic optimization with branch-and-bound column search

is that we can use the synergy effects resulting from the fact that the generated columns can be used
for all levels of the approach. This means that columns generated in different levels of the lexicographic
approach are stored in one common pool of columns and thus also contribute to the progress of the
solution process in the other lexicographic levels. This is because the calculation of the reduced costs (11)
in the k-th level takes into account not only the dual costs of this level, but also the dual information of
all k ´ 1 previous levels. To the best of our knowledge, there is no prior published work that combines
enumerative column generation with lexicographic optimization in this way.

Despite the benefits arising from lexicographic optimization, it will be necessary tomake the enumer-
ation process efficient for all lexicographic levels. Therefore, we will prune the resulting enumeration
trees by determining lower bounds for the reduced costs of all levels. As the generic total maximum
gain can be used independently of the concrete application, objective functions are also not explicitly
necessary for the calculation of the generic total maximum gain. (cf. Definition 3.5). Thus, there is no
need to adapt it for lexicographic optimization. Since it is easy to see that the generic total maximal gain
can also be used in its original form of Definition 3.5 to calculate lower bounds on the reduced costs for
lexicographic optimization, we will not provide explicit proofs here. Thus, we only provide a generaliz-
ation of Definition 3.7. That is, we introduce the total maximal gain in an arbitrary lexicographic level k
by incorporating the dual information from the lexicographic levels 1, . . . , k ´ 1.

Definition 4.1 (Lexicographic TotalMaximalGain). Let Tk
i “ pVk

i , Ek
i , ˝k

i qwith agent i P I be amonotonically
increasing enumeration tree for the generation of new columns of master problem pMPkq in the k-th lexicographic
level. For lexicographic levels l P L Y tku with L “ t1, . . . , k ´ 1u, let Fl “ pFl

dqdPD with Fl
d : Zˆ

Ť

iPI V l
i Ñ R`

16

further be a family of functions and Cl “ pCl
pqpPP with Cl

p P R` a family of constants which together fulfil (9). Let
pπ̄d, µ̄lq for pd, lq P D̃ ˆ L be optimal solutions to the restricted dual problem pRDPkq, and let amax

d – maxtad,p |

p P Pu be an upper bound for the column entries ad,p for all d P D̃, p P P, where D̃ Ď D. Then the lexikographic
total maximal gain of a node vp P Vk

i in lexicographic level k with depth ϕppq, p P P, for a specific search depth ℓ
is defined as follows:

tmgk

´

p, ℓ, D̃, π̄, µ̄; pFlqlPLYtku, pClqlPLYtku

¯

–

max
χPZD̃

$

&

%

ÿ

dPD̃

˜

π̄dχd ´ Fk
d pχd, vpq ´

ÿ

lPL

µ̄l Fl
dpχd, vpq

¸

´ Ck
p ´

ÿ

lPL

µ̄lCl
p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď χd ď padmax ´ ad,pq, d P D̃,
ÿ

dPD̃

χd ď ℓ ´ ϕppq

,

.

-

.

The lexicographic totalmaximal gain can be interpreted as themaximumvalue bywhich the reduced
costs at a specific node vp P Vk

i , p P P̄, i P I, in the k-th lexicographic level can still decrease by adding at
most ℓ ´ ϕppq tasks d from a specific subset D̃. This definition allows us to determine a lower bound on
the reduced costs of all descendant nodes of vp in the enumeration tree Tk

i for agent i P I in lexicographic
level k P K which have a maximum node depth of ϕpp̄q ď ℓ and which arise by solely adding tasks from
subset D̃.

Theorem 4.2. Let Tk
i “ pVk

i , Ek
i , ˝k

i q be a monotonically increasing enumeration tree in the k-th lexicographic
level for some agent i P I, and let vp, v p̄ P Vi be any two nodes with vp ďTi v p̄ and ϕpp̄q ď ℓ, where ad,p “ ad,p̄
for all d P DzD̃ (i.e. node v p̄ only has additional tasks from subset D̃). For lexicographic levels l P L Y tku with
L “ t1, . . . , k ´ 1u, let Fl “ pFl

dqdPD be a family of functions and Cl “ pCl
dqdPD a family of constants providing

lower bounds for the cost cl
p of a plan p P P, given by specific functions fl , as in (9). Then a lower bound for the

reduced costs c̄k
p̄ of node v p̄ P Vk

i is given by

c̄k
p̄ ě c̄k

p ´ tmgkpp, ℓ, D̃, π̄, µ̄; pFlqlPLYtku, pClqlPLYtkuq.

Proof. Let c̄k
p̄ and ck

p be the reduced costs of two columns p, p̄ P P in the k-th lexicographic level such that
the properties of the claim are fulfilled. Then it is possible to bound the reduced costs c̄k

p̄ from below in
the following way:

c̄k
p̄ “ ck

p̄ ´
ÿ

dPD

ad,p̄π̄d ´
ÿ

iPI

ai,p̄π̄i `
ÿ

lPL

cl
p̄µ̄l

ai,p̄“ai,p
“ fk

´´

pad,p̄ ´ ad,pq ` ad,p

¯

dPD
, AI,p, wS,p̄

¯

´
ÿ

dPD

pad,p̄ ´ ad,pqπ̄d ´
ÿ

dPD

ad,pπ̄d ´
ÿ

iPI

ai,pπ̄i

`
ÿ

lPL

µ̄l fl

´´

pad,p̄ ´ ad,pq ` ad,p

¯

dPD
, AI,p, wS,p̄

¯

(9)
ě

ÿ

dPD

´

Fk
d pad,p̄ ´ ad,p, vpq

¯

` Ck
p ´

ÿ

dPD

pad,p̄ ´ ad,pqπ̄d `
ÿ

lPL

µ̄l

˜

ÿ

dPD

´

Fl
dpad,p̄ ´ ad,p, vpq

¯

` Cl
p

¸

` fk
`

AD,p, AI,p, wS,p
˘

´
ÿ

dPD

ad,pπ̄d ´
ÿ

iPI

ai,pπ̄i `
ÿ

lPL

µ̄l fl
`

AD,p, AI,p, wS,p
˘

loomoon

(6)
“ c̄k

p

“c̄k
p `

ÿ

dPD̃

´

Fk
d pad,p̄ ´ ad,p, vpq

¯

` Ck
p ´

ÿ

dPD̃

pad,p̄ ´ ad,pqπ̄d `
ÿ

lPL

µ̄l

¨

˝

ÿ

dPD̃

Fl
dpad,p̄ ´ ad,p, vpq ` Cl

p

˛

‚

ě c̄k
p ´ max

χPZD̃

$

&

%

ÿ

dPD̃

˜

π̄dχd ´ Fk
d
`

χd, vp
˘

´
ÿ

lPL

Fl
dpχd, vpqµ̄l

¸

´ Ck
p ´

ÿ

lPL

µ̄lCl
p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď χd ď pamax
d ´ ad,pq, d P D̃,

ÿ

dPD̃

χd ď ℓ ´ ϕppq

,

.

-

“ c̄p ´ tmgkpp, ℓ, D̃, π̄, µ̄; pFlqlPLYtku, pClqlPLYtkuq.

17

The second inequality holds, because we no longer consider a specific node v p̄, but the node with min-
imal reduced costs.

The above result allows us to construct an extension of Algorithm 2 that computes a lexicographically
optimal solution for the LP relaxation of the multi-objective optimization problem (MPk).

Algorithm 3: Lexicographic Column Generation Scheme
Input : An instance of master problems (MPk) for k P t1, . . . , Ku, coefficient bounds amin

d and
amax

d for the columns, an initial search depth ℓ and breadth β, step lengths ςℓ and ςβ

and a maximal search depth ℓmax.
Output: A lexicographically optimal solution to the LP relaxation of (MPk) for k P t1, . . . , Ku

and a feasible integer solution of this problem instance.
1 Initialize:
2 θ Ð 0
3 D̃, P̃ Ð Apply starting heuristic to (MP1) to generate initial columns with corresponding

index set
4 gen Ð Ã.
5 while ℓ ă ℓmax ` 1 or β ă |D| ` 1 do

// Execute Column Enumeration for each lexicographic level

6 for k “ 1, . . . , K do
7 while |gen| ą 0 or θ ă 0 do
8 x˚

k,LP :“ Solution of pRMPkq with P̃
9 π̄, µ̄ Ð Optimal dual solution of pRDPkq

10 D̃, D̃ Ð The tuple arising from sorting tasks d P D and cutting after β-th task.
11 for i P I do
12 // Depending on application, choose BaB – SDE or BaB – SIDE

13 Ti, gen ÐBaB-Column-Search (D̃, pamin
d , amax

d qdPD̃, i, ℓ,(π̄, µ̄), θ)
14 Ã Ð Ã Y gen
15 Update index set P̃ of Ã
16 Update θ depending on the number of generated columns in gen
17 end
18 end
19 end
20 ℓ Ð min tℓ ` ςℓ, ℓmaxu and β Ð min

␣

β ` ςβ, |D|
(

21 end
22 for k “ 1, . . . , K do
23 x˚

k :“ Solution of pMPkq with P̃
24 end
25 return Lexicographically optimal solution x˚

K,LP to the LP relaxation of levels (MPk) with
k P t1, . . . , Ku, feasible solution x˚

K to (MPK).

The idea of this algorithm is to solve all lexicographic levels of the optimization problem. This
requires an additional for-loop compared to Algorithm 2 which iterates over all lexicographic levels
k P t1, . . . , Ku, see Lines 6–19. In this way, the branch-and-bound column search is performed for all
levels k “ 1, . . . , K within a specific search depth ℓ and search breadth β. The bounds on the reduced
costs in the branch-and-bound column search algorithm are calculated using the (generic) total max-
imal gain for the respective lexicographic level. The columns generated in each level are stored in one
common set Ã, which means that the columns generated on one lexicographic level are used for solving
the restricted master problems of all other levels as well. In each column generation iteration, the LP
relaxation (RMPk), k “ 1, . . . , K is solved (cf. Line 8). For ℓ ă ℓmax and β ă |D|, upper bounds are sup-
plied to the actual optimal solutions, since not all columns in (RMPk) necessary for an optimal solution
are considered at this point in the algorithm. These upper bounds are then used as Zk for the next level
(RMPk`1). When the algorithm reaches the final stage, i.e. ℓ “ ℓmax and β “ |D|, then the solutions from
line 8 are also optimal solutions of the LP relaxations. Due to the fact that in the last lexicographic level
all cost functions fk, k P t1, . . . , K ´ 1u are considered, cf. Section 4.1, the solution to the LP relaxation
pRMPKq is lexicographically optimal. In line 23, an integer solution is calculated for all lexicographic
levels based on all generated columns. The heuristic solution of one lexicographic level (MPk) is then
used as Zk (cf. Constraint (10)) for the other levels. Although only an heuristic integer solution of a
lexicographic problem is calculated this way, it has been shown in the application (cf. Section 5.4) that
in many cases a lexicographic optimal solution was found.

18

5 Real-World Benchmarks
We demonstrate the efficiency of branch-and-bound column search at the hand of two real-world ap-
plications. The first one is the cutting stock problem with sequence-dependent cut losses (SDCSP).
Here we focus on branch-and-bound column search as an alternative solution algorithm for the pri-
cing problem compared to ordinary column generation via an MIP subproblem. In this application
problem, we also consider only the total maximal gain tmg with application-specific functions F and C
and not the completely generic gtmg. Second, we study a very generic version of the parallel machine
scheduling problem (PMSP) to show the efficient coupling of branch-and-bound column search with
lexicographic optimization. We will use PMSP to model and solve a problem arising in the optimization
of intra-hospital transports, using real-world data from two different German hospitals. Here we will
also compare the two pruning methods – total maximal gain and generic total maximal gain. In both
applications, we observe significant improvements in solution quality compared to standard solution
approaches.

Our implementation uses the Python API of Gurobi 9.1.1 (see Gurobi Optimization, Inc. (2021)) for
the solution of all LPs, IPs andMIPs arising in this computational study. As far as possiblewe continue to
use the notation from the previous sections and concretize the generic algorithmic framework devised
before to problem-specific solution approaches. Their derivation takes the form of a tutorial for the
application of branch-and-bound column search in practice.

5.1 The Cutting Stock Problem with Sequence-Dependent Cut Losses
In the cutting stock problemwith sequence-dependent cut losses (SDCSP), a given set of items D :“ t1, . . . , |D|u
is to be cut off from an unbounded number of larger stock items. Each item d P D has a length ld P R`,
and we need to satisfy a given demand bd P Z`. Each stock item has a length of L P R`. In the one-
dimensional case, sequence-dependent cut losses can occur, for example, if the items are not all cut at
the same angle from the stock item. For more information on the problem see Lewis et al. (2011) and
Garraffa et al. (2016).

In this application, the restricted master problem pRMPCSq, and its corresponding dual problem
pRDPCSq have the following form:

pRMPCSq min
x

ÿ

pPP̃

cpxp (12)

s.t.
ÿ

pPP̃

ad,p xp ě bd @d P D (13)

xp ě 0 @p P P̃,

pRDPCSq max
π

ÿ

dPD

bdπd

s.t.
ÿ

dPD

ad,p πd ď cp @p P P̃

πd ě 0 @d P D.

The cost of a pattern p P P is given by cp :“ pM ´ pL ´ lpqq, where lp P R` is the length of cutting pat-
tern p P P, M is a sufficiently large number, and ad,p P Z` is the number of times item d P D occurs in
pattern p P P. Constraint (13) ensures that the demand of all items d P D is fulfilled, and objective func-
tion (12) first minimizes the number of patterns used and then maximizes the sum of the leftovers of
stock items (we use a formulation with weighted objectives as opposed to a lexicographic optimization
here in order to obtain results comparable with those of the solution approach chosen in Garraffa et al.
(2016)).

The sequence of items within a pattern is modelled via structure variables wS,p P Z`. We define
S – D´ ˆ D` with D´ – D Y tt´u and D` – D Y tt`u, where t´, t` are artificial items with lengths
lt´ :“ lt` :“ 0 that enable the modelling of cut losses at the start and the end of each pattern. The cut
losses which arise when placing two items next to each other are given by cd1,d2 P R` for all pd1, d2q P

S. Then the length lp of a pattern p P P is defined as the length of all items in this pattern together
with all corresponding cut losses, i.e. lp –

ř

pd1,d2qPS cd1,d2 wpd1,d2q,p `
ř

dPD ldad,p, where wpd1,d2q,p ą 0
if item sequence pd1, d2q P S is part of pattern p and wpd1,d2q,p “ 0 otherwise. The total cost of all used
patterns is then calculated in objective function (12), where the individual pattern costs are given via
fCS : Z|D| ˆR|S| Ñ R, pAD,p, wS,pq ÞÑ cp.

As a first step in the overall solution approach, we want to solve the LP-relaxed master problem that
contains all columns in P Ą P̃. The columns that are not yet part of (RMPCS), i.e. p P PzP̃, and that are
necessary for an LP-optimal solution, still have to be generated. To this end, we calculate the reduced
costs of these columns via c̄p – cp ´

ř

dPD ad,pπ̄d, with π̄d, d P D, as the optimal solution to pRDPCSq.
When solving the problem via branch-and-bound column search, an enumeration tree T “ pV, E, ‘q is
built as described in Section 3.1. In this application, the enumeration tree contains cutting patterns froma

19

box Ā – tAD,p P Z|D| | amin
d ď ad,p ď amax

d , @d P D, p P P̄u, represented as nodes vp – pAD,p, wS,pq P V
with p P P̄ Ą P.

To copewith the large number of possible columns, an efficient pruning of the enumeration tree as de-
rived in Section 3.2 is necessary. For SDCSP, the idea is to exclude certain patterns p P P̄ in the enumera-
tion process based on their reduced costs c̄p and their total length lp. For this purpose, we define a family
of functions FCS “ pFCS

d qdPD to estimate the primal costs from below that arise when an item d P D is ad-
ded to pattern p P P̄ with FCS

d : Zˆ V Ñ R, given via pχd, pAD,p, wS,pqq ÞÑ

´

ld ` min
!

cd̂,d

ˇ

ˇ

ˇ
d̂ P D̂p

)¯

¨ χd,
where

D̂p –

#

!

d P D
ˇ

ˇ

ˇ
wpd,t`q,p “ 1 _ ad,p ă amax

d

)

, if AD,p ‰ 0

D´, otherwise.

If pattern p contains at least one item, then D̂p consists of the last item in p and of all items that could
still be added to p. Otherwise, if pattern p is empty, then D̂p consists of all items in D´. The func-
tion FCS

d bounds the cut loss from below that occurs before item d and adds its length ld. To rep-
resent the cut loss after the last item in p, we also define a family of constants CCS “ pCCS

p qpPP̄ with
CCS

p – ´
ř

dPD cd,t` wpd,t`q,p. Analogously as in (9), we can now bound the primal costs of an arbitrary
descendent v p̄ of vp from below as follows:

fCSpv p̄q “ M ´

ˆ

L ´
ÿ

pd1,d2qPS

cd1,d2 wpd1,d2q,p̄ ´
ÿ

dPD

ldad,p̄

˙

“ M ´

ˆ

L ´
ÿ

pd1,d2qPS

cd1,d2pwpd1,d2q,p̄ ´ wpd1,d2q,pq ´
ÿ

pd1,d2qPS

cd1,d2 wpd1,d2q,p

´
ÿ

dPD

ldpad,p̄ ´ ad,pq ´
ÿ

dPD

ldad,p

˙

“ fCSpvpq `
ÿ

dPD

ldpad,p̄ ´ ad,pq `
ÿ

pd1,d2qPS

cd1,d2pwpd1,d2q,p̄ ´ wpd1,d2q,pq

ě fCSpvpq `
ÿ

dPD`

´

ld ` min
!

cd̂,d

ˇ

ˇ

ˇ
d̂ P D̂p

)¯

pad,p̄ ´ ad,pq ´
ÿ

dPD

cd,t` wpd,t`q,p

“ fCSpvpq `
ÿ

dPD

FCS
d pad,p̄ ´ ad,pq ` CCS

p .

By Theorem 3.8, we can prune all descendant nodes v p̄ of vp in the enumeration tree if

c̄p ´ tmgcutpp, ℓ, D̃, π̄; FCS, CCSq ě 0 (14)

ô c̄p ´ max

$

&

%

ÿ

dPD̃

´

π̄dχd ´ FCS
d pχd, vpq

¯

` CCS
p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď χd ď amax
d ´ ad,p, d P D̃,

ÿ

dPD̃

χd ď ℓ ´ ϕppq

,

.

-

ě 0,

because then there are no more patterns with negative reduced costs in the subtree below node vp.
In this application, items are cut out of a set of stock items that have all the same length L. The

patterns become progressively longer the deeper they lie in enumeration tree T “ pV, E, ‘q, because
at each edge we append one new item to the previous pattern via the binary operation ‘. Thus, it is
possible to prune the enumeration tree below an already generated pattern p P P by using a bound on
the length of the patterns. More precisely, we know that all descendant patterns p̄ P P̄ of p P P for which
we have l p̄ ą L are infeasible. Since this is the only restriction on the feasibility of cutting patterns, this
is equivalent to the statement that all feasible patterns p̄ P P fulfil

l p̄ “
ÿ

pd1,d2qPS

cd1,d2 wpd1,d2q,p̄ `
ÿ

dPD

ldad,p̄ ď L

ô lp ´
ÿ

dPD

cd,t` wpd,t`q,p `
ÿ

pd1,d2qPS

cd1,d2pwpd1,d2q,p̄ ´ wpd1,d2q,pq `
ÿ

dPD

ldpad,p̄ ´ ad,pq ď L

ô
ÿ

dPD

ldpad,p̄ ´ ad,pq ď L ´ lp `
ÿ

dPD

cd,t` wpd,t`q,p
looooooooooooooomooooooooooooooon

already known at node vp

´
ÿ

pd1,d2qPS

cd1,d2pwpd1,d2q,p̄ ´ wpd1,d2q,pq

loooooooooooooooooooooomoooooooooooooooooooooon

p˚q

“: L̂p. (15)

20

The first part of the right-hand side of inequality (15) is already known at node vp in the enumeration
tree, and the second part p˚q can be bounded from below by mintcdp ,d | d P Du ` mintcd,t` | d P Du,
where dp P D with wpdp ,t`q,p “ 1. If we define

L̄p – L ´ lp `
ÿ

dPD

cd,t` wpd,t`q,p ´ min
!

cdp ,d

ˇ

ˇ

ˇ
d P D

)

´ min
␣

cd,t`

ˇ

ˇ d P D
(

, (16)

where again dp P D, with wpdp ,t`q,p “ 1, we have L̂p ď L̄p, from which we obtain
#

χ P Z|D|
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

dPD

ldχd ď L̂p, 0 ď χd ď amax
d , d P D

+

Ď

#

χ P Z|D|
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

dPD

ldχd ď L̄p, 0 ď χd ď amax
d , d P D

+

.

This means that all cutting patterns p̄ P P̄ with vp ďT v p̄ can be pruned via (16) if we have

ld ą L̄p @d P td P D | ad,p ă amax
d u. (17)

Note that it is also possible to combine the total maximal gain and the above lower bound to prune all
descendant nodes v p̄ of vp if

c̄p ´ max

#

ÿ

dPD

´

π̄d ´ FCSpχd, vpq

¯

χd ` CCS
p

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

dPD

ldχd ď L̄p, ad,p ď χd ď amax
d , d P D

+

ě 0. (18)

In order to compute the bound in (18), it is necessary to solve an auxiliary knapsack problem. This com-
bined bound (18) is stronger than the two previously presented bounds in (14) and (17), but it is also
more expensive w.r.t. to computation time. Indeed, since this knapsack problem proved to be too com-
putationally intensive in our tests, we decided to use a weaker bound which is nevertheless stronger
than the other two bounds in (14) and (17) individually and which is not much harder to compute in
practice. The details of the calculation of this bound can be found in Appendix A.5.

5.2 Computational Results for the (SDCSP)
We now present a computational study for the sequence-dependent cutting stock problem using real-
world data sets by Garraffa et al. (2016), stemming from the so-called truss cutting problem (TCP). It
originates from the roofing industry, where trapezoidal profiles of the same width have to be cut from
wooden boards to minimize waste. Lewis et al. (2011) show that the (TCP) is actually a special case of
the (2D-CSP). However, it can also be formulated as a one dimensional (CSP), see Garraffa et al. (2016).
All computations in this section have been executed on a computing cluster using compute nodes with
Intel Xeon E3-1240 v6 3.7GHzprocessors and 32GBRAM, using 4 cores. Formore details, seeRegionales
Rechenzentrum Erlangen (2022).

In the following, we compare the quality of the solutions obtained via six different methods for solv-
ing this (SDCSP). The first, very naive method, labelled SSH in Table 1, is a simple heuristic that was
only intended to generate feasible initial solutions. The idea of this heuristic is to fill the patterns with
the required items one after the other, as they are ordered in the input data set. As soon as a pattern has
exceeded the stock item length, a new stock item is opened. The method VC is our reimplementation of
the column generation heuristic presented in Garraffa et al. (2016). Note that we could not reproduce
their computational results exactly, as the authors did not describe all details of the approach. From
the next method onwards, all algorithms are exact solution algorithms w.r.t. the LP relaxation of the
master problem. In MIP-Sub, a classical column generation approach was implemented, i.e. the sub-
problem was solved via an MIP solver, and SSH is used as a starting heuristic (see Appendix A.4 for the
precise MIP model). A pure branch-and-bound column search proved to be computationally too time-
consuming because of the relatively high number of non-zeroes in the required columns. However,
solving the subproblem with branch-and-bound column search only up to a certain maximal search
depth and switching to an MIP solver beyond this depth proved to be a very effective approach overall.
This procedure, calledHybrid, also uses SSH as a starting heuristic. Finally, we also tested theMIP-based
subproblem and the hybrid column generation together with VC as a starting heuristic, which gives rise
to the methods VC+MIP and VC+Hybrid respectively.

We evaluate these methods on the 1200 problem random instances fromGarraffa et al. (2016), which
are divided into 5 classes of 240 instances each. These classes contain instances with a fixed number of

21

SSH VC MIP-Sub Hybrid VC+MIP VC+Hybrid
Class Obj Opt Obj Opt Obj Opt Obj Opt Obj Opt Obj Opt
100 11035 13 10650 62 10298 201 10261 230 10265 228 10254 239
200 21537 94 20607 51 19933 219 19916 236 19919 233 19917 235
300 32914 4 31537 113 30496 211 30472 233 30475 232 30468 239
400 44117 3 41921 43 40849 217 40831 235 40834 232 40829 237
500 55458 5 53017 112 51399 217 51377 234 51382 233 51376 239
ř

165061 119 157732 381 152975 1065 152857 1164 152875 1158 152844 1189.0
% 9.9 31.8 88.8 97.0 96.5 99.1

Table 1: Comparison of objective function values for the solution methods SSH, VC, MIP-Sub, Hybrid,
VC+MIP and VC+Hybrid for the (SDCSP) on 1200 real-world instances of the (TCP).

items to be cut out, where the number of items increases between the classes from 100 to 500. In the
columns named Obj, we compare how many stock items were needed in the solutions produced by the
different methods, summed over all instances of a class.

The columns Opt indicate the number of instances that were solved to optimality w.r.t. the integer
formulation of the master problem. We consider here the solutions of the integer master problem x˚,
which is calculated based on the columns generated for the optimal solution of the LP relaxation x˚

LP
(cf. the output of Algorithm 2). If the number of used stock items in the integer solution x˚ equals the
number of used stock items in the LP solution, or if the difference of those two values is at most 1, we
know that the corresponding instance has been solved to optimality.

First, it becomes obvious that the simple heuristic SSH produces considerably worse solutions than
the much more elaborate scheme VC. The generic heuristic Hybrid, which is based on the branch-and-
bound column search, delivers about 3.2% better results regarding the objective function thanVC, which
is a heurstic specialised for the SDCSP. WhileMIP-Sub is able to solve 88.8%of the instances to optimality,
the Hybrid scheme is even optimal for 97.0% of all instances. With regard to the objective function,
this still means better results of approx. 0.1%. By using VC as a starting heuristic instead of SSH, the
MIP-based pricing improves to 96.5% optimally solved instances, while the hybrid approach even solves
99.1% of instances to optimality. This demonstrates the advantage of branch-and-bound column search,
which can be explained by a significantly higher number of useful columns that are generated early on
than obtained with the MIP-based solution of the subproblem. Moreover, it seems that the generated
columns over subsequent iterations can also be combined better with each other. A lack of possibility to
combine the columns produced is a problem that occurs often with conventional column generation. In
contrast, branch-and-bound column search allows to compute optimal or near-optimal integer solutions
even without the provision of a good initial solution and without the need to solve the (integer) master
problem via an explicit branching framework on non-integer variables.

In terms of runtimes, the two heuristics SSH and VC perform particularly well. Among the LP-
exact approaches, the two methods using MIP-based pricing (MIP-Sub and VC+MIP) are faster than
the methods using branch-and-bound column search. However, as we saw in Table 1, the additional
solution time comes with a significantly higher number of instances solved to optimality, independent
of the starting heuristic that was used. As the solution time for all methods consideredwere sufficiently
short in the given application of this industrial planning problem, the overall cost savings are the crucial
key figure. ThereforeVC+hybrid is clearly the preferable solution algorithm. Furthermore, we tested all
six approaches on the 16 real-world instances of the joinery cutting problem from Garraffa et al. (2016),
with largely comparable results.

5.3 Problem Class – Parallel Machine Scheduling
As a second application of branch-and-bound column search, we consider the parallel machine scheduling
problem (PMSP). The literature on scheduling is quite extensive. A recent survey by Allahverdi (2015)
shows hundreds of papers dealing with problems of scheduling parallel machines. In the (PMSP), jobs
d P D must be allocated to machines i P I. Each job must be executed once on some machine without
interruption, and each machine can only perform one job at a time. The starting time of the execution of
a job wd P R should lie within a given time window pad, bdq P R2 with ad ď bd for all jobs d P D. Every
job d P D has a certain machine-independent processing time pd P R, and between the execution of two
jobs d1, d2 P D on a machine i P I there are specific set-up times cd1,d2 P R. Furthermore, before the
first job of a schedule can be started, certain job-specific times must be calculated for the start-up of the
machine, and there are also certain job-specific times for the shut-down of a machine after the execution
of the last job of a schedule.

22

In the solution of this problem,we consider several optimization goals in a lexicographic fashion. The
first andmost highly prioritized goal is to minimize delays in the jobs d P D to be executed, calculated as
maxtwd ´ bd, 0u. On the second level, we try to reduce the total set-up times of the machines cd1,d2 P R

between two jobs d1, d2 P D. Finally, on the last lexicographic level we aim for a balanced utilization of
the machines, i.e. we minimize the maximal number of jobs executed by any single machine i P I. The
restricted master problem for the first lexicographic level and the corresponding dual problem can be
formulated as

pRMP1
MSq min

x

ÿ

pPP̃

c1
pxp

s.t.
ÿ

pPP̃

ad,pxp ě 1 @d P D

ÿ

pPP̃

ai,pxp “ 1 @i P I

xp ě 0 @p P P̃,

pDP1
MSq max

π

ÿ

dPD

πd ´
ÿ

iPI

πi

s.t.
ÿ

dPD

ad,pπd ´
ÿ

iPI

ai,pπi ď c1
p @p P P̃

πd ě 0, @d P D
πi P R @i P I,

with ad,p “ 1 if job d P D is part of machine schedule p P P, and ad,p “ 0 otherwise. Further,
ai,p “ 1 if machine i P I executes schedule p P P, and ai,p “ 0 otherwise. The costs c1

p arising
due to delays in a schedule p P P are calculated by the function fMS1 : t0, 1u|D| ˆ t0, 1u|I| ˆR|S|, i.e.
c1

p – fMS1pAD,p, AI,p, wS,pq “
ř

dPD δd ¨ maxtwd,p ´ bd, 0uad,p. The set S is defined as S – S1 Y S2, where
S1 – D and wd,p P R is the starting time of job d P D in schedule p, and where S2 – D´ ˆ D` models
the sequence of jobs in machine schedule p P P. Here D´ – D Y tt´u is the set of all jobs d P D together
with an artificial job t´ that represents the initial state of a machine, and D` – D Y tt`u is the set of
all jobs extended by an artificial job t` that represents the final state of a machine after the execution of
schedule p. These two artificial jobs help tomodel the job-specific start-up times ct´,d and the job-specific
shutdown times cd,t` , d P D, of a machine within a schedule p P P. The structure variables wpd1,d2q,p take
a value of 1 if the job sequence pd1, d2q P S2 is contained in schedule p, otherwise wpd1,d2q,p “ 0. Finally,
δd ą 0 is a factor with which possible delays of jobs d P D can be penalized individually.

Again, we use the optimal solution π̄ of pDP1
MSq to calculate the reduced cost of schedules p P PzP̃

that are not part of the restricted master problem pRMP1
MSq with c̄1

p – c1
p ´

ř

dPD ad,pπ̄d ´
ř

iPI ai,pπ̄i.
In the (PMSP), the nodes vp P Vk

i of each enumeration tree Tk
i “ pVk

i , Ek
i , ‘k

i q, for machine i P I and
lexicographic level k P t1, 2, 3u, correspond tomachine schedules from a box Ā – tpAD,p, eiq P t0, 1u|D| ˆ

t0, 1u|I| | 0 “ amin
d ď ad,p ď amax

d “ 1, @d P D, p P P̄u.
As already described in the derivation of Algorithm BaB – SDE, the idea of our solution approach is

to start with an emptymachine schedule at the root node vr and then to build child nodes by successively
appending jobs, i.e. the additional job in the child node is executed right after the previously last job of
the schedule at the parent node. For each vp, let dlastp :“ argmaxtwd,p | d P Du be the job with the latest
starting time in the corresponding schedule p. Thus, for two schedules p, p̄ P P̄ with vp ďTk

i
v p̄, we have

ad,p̄ ě ad,p for all d P D (cf. Definition 3.3). For the starting times, we have wd,p̄ ě wdlastp ,p for all d P D
with ad,p̄ ą ad,p.

In the first lexicographic level, the enumeration trees are pruned via a family of functions FMS1 “

pFMS1
d qdPD where FMS1

d : t0, 1u ˆ
Ť

iPI Vi Ñ R. These functions bound the primal costs from below that
arise when a new job d P D is appended to an existing machine schedule p P P̄. We define each func-
tion FMS1

d via
pχd, pAD,p, AI,p, wS,pqq ÞÑ δd ¨ max

!

wdlastp ,p ` pdlastp
` sdlastp ,d ´ bd, 0

)

χd, @d P D. (19)

For all pairs of nodes v p̄, vp P V1
i with vp ďT1

i
v p̄, the family of functions FMS1 fulfils (9):

fMS1pv p̄q “
ÿ

dPD

δd ¨ max
!

wd,p̄ ´ bd, 0
)

ad,p̄

vpďT1
i

v p̄

“
ÿ

dPD

δd ¨ max
!

wd,p ´ bd, 0
)

ad,p `
ÿ

dPD

δd ¨ max
!

wd,p̄ ´ bd, 0
)

pad,p̄ ´ ad,pq

ě fMS1pAD,p, AI,p, wS,pq `
ÿ

dPD

δd ¨ max
!

wdlastp ,p ` pdlastp
` sdlastp ,d ´ bd, 0

)

pad,p̄ ´ ad,pq

“ fMS1pAD,p, AI,p, wS,pq `
ÿ

dPD

FMS1
d pad,p̄ ´ ad,p, vpq.

23

This inequality on the primal costs of node v p̄ holds, because we have assumed in the definition of FMS1

in (19) that all new jobs d P D with ad,p̄ ą ad,p “ 0 in schedule p̄ can directly be appended after
the last job dlastp of schedule p without any other job in between. While this is correct for the (direct)
child nodes of vp in an enumeration tree, it obviously underestimates the primal cost for all further
descendants. Thus, it is possible to prune the enumeration tree in the first lexicographic level of the
machine scheduling problem at a node vp, p P P̄, if we have

c̄1
p ´ tmgMS1pp, ℓ, D̃, π̄, FMS1q ě 0

ô c̄1
p ´ max

χPZD̃

$

&

%

ÿ

dPD

π̄dχd ´ FMS1
d pχd, vpq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď χd ď 1 ´ ad,p, d P D̃,
ÿ

dPD̃

χd ď ℓ ´ ϕppq

,

.

-

ě 0.

The restrictedmaster problem of the second lexicographic level and the corresponding dual problem
can be formulated as
pRMP2

MSq min
ÿ

pPP̃

c2
pxp

s.t.
ÿ

pPP̃

ad,pxp ě 1 @d P D

ÿ

pPP̃

ai,pxp “ 1 @i P I

ÿ

pPP̃

c1
pxp ď α1Z1 (20)

xp ě 0 @p P P̃,

pDP2
MSq max

ÿ

dPD

πd ´
ÿ

iPI

πi ´ α1Z1µ1

s.t.
ÿ

dPD

ad,pπd `
ÿ

iPI

ai,pπi ´ c1
pµ1 ď c2

p @p P P̃

πd, µ1 ě 0 @d P D.

The additional constraint (20) ensures that in pRMP2
MSq the objective function value of the first lex-

icographic level deteriorates by at most a factor of α1 compared to the first level objective function
value Z1. The costs c2

p are calculated by fMS2 : t0, 1u|D| ˆ t0, 1u|I| ˆR|S| Ñ R, i.e. fMS2pAD,p, AI,p, wS,pq “
ř

pd1,d2qPS2
cd1,d2 wpd1,d2q,p for all p P P̄. That is, the costs correspond to the sum of the set-up times of

all jobs in a machine schedule p. For the reduced costs of this level, we have c̄2
p – c2

p ´
ř

dPD ad,pπ̄d ´
ř

iPI ai,pπ̄i ` c1
pµ̄1, @p P P̄zP̃, with pπ̄, µ̄1q as the optimal solution to pDP2

MSq. Nowwe define a family of
functions and a family of constants to bound the primal costs and reduced costs of nodes v p̄ from below,
where vp ďT2

i
v p̄. The family of bounding functions FMS2 “ pFMS2

d qdPD with FMS2
d : t0, 1u ˆ

Ť

iPI V2
i Ñ R

is defined via pχd, pAD,p, AI,p, wS,pqq ÞÑ min
!

cd̂,d

ˇ

ˇ

ˇ
d̂ P D̂p

)

χd, @d P D, where

D̂p –

#

!

dlastp

)

Y

!

d P D
ˇ

ˇ

ˇ
ad,p “ 0

)

, if AD,p ‰ 0

D´, otherwise.

If schedule p contains at least one job, then D̂p is the set that consists of the last item in p as well as all
jobs that could still be appended to p. Otherwise, if pattern p is empty, then D̂p equals D´.

The family of constants CMS2 “ pCMS2
p qpPP̄ is defined as

CMS2
p – mintcd̂,t` | d̂ P D̂pu ´ cdlastp ,t` ď cdlastp̄ ,t` ´ cdlastp ,t` ,

which bounds the difference of the shut-down times between schedule p̄ and its ascendant p from below.
If we have two nodes v p̄, vp in the enumeration tree with vp ďT2

i
v p̄, the family of functions FMS2 and

the family of constants CMS2 fulfils inequality (9):

fMS2pv p̄q “
ÿ

pd1,d2qPS2

cd1,d2 wpd1,d2q,p̄

vpďT2
i

v p̄

“
ÿ

pd1,d2qPS2

cd1,d2 wpd1,d2q,p `
ÿ

pd1,d2qPS2

cd1,d2pwpd1,d2q,p̄ ´ wpd1,d2q,pq

ě fMS2pvpq `
ÿ

dPD

min
!

cd̂,d

ˇ

ˇ

ˇ
d̂ P D̂p

)

pad,p̄ ´ ad,pq ` min
!

cd̂,t`

ˇ

ˇ

ˇ
d̂ P D̂p

)

´ cdlastp ,t`

“ fMS2pvpq `
ÿ

dPD

FMS2
d pad,p̄ ´ ad,pq ` CMS2

p .

24

This inequality is valid, because we have defined the approximation functions FMS2
d such that every job

in machine schedule p̄ that is not already part of schedule p contributes with the minimum set-up time
w.r.t. the remaining possible preceding jobs d̂ P D̂p at node vp P V2

i . Thus, we can prune the enumeration
tree for this lexicographic level at node vp, p P P̄, if we have

c̄2
p ´ tmgMS2pp, ℓ, D̃, π̄, µ̄1; FMS1, FMS2, CMS2q ě 0

ô c̄2
p ´ max

χPZD

$

&

%

ÿ

dPD̃

π̄dχd ´
ÿ

dPD̃

FMS2
d pχd, vpq ´ CMS2

p ´ µ̄1
ÿ

dPD̃

FMS1
d pχd, vpq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď χd ď 1 ´ ad,p, d P D̃,
ÿ

dPD̃

χd ď ℓ ´ ϕppq

,

.

-

ě 0.

Finally, the restricted LP relaxation of the master problem on the third lexicographic level and the cor-
responding dual problem are as follows:

pRMP3
MSq min L

s.t.
ÿ

pPP̃

ad,pxp ě 1 @d P D

ÿ

pPP̃

ai,pxp “ 1 @i P I

ÿ

pPP̃

c1
pxp ď α1Z1

ÿ

pPP̃

c2
pxp ď α2Z2 (21)

ÿ

pPP̃

c3
pxp ď L @i P I (22)

xp ě 0 @p P P̃,

pDLP3
MSq max

ÿ

dPD

πd ´
ÿ

iPI

πi ´ α1Z1µ1 ´ α2Z2µ2

s.t.
ÿ

dPD

ad,pπd `
ÿ

iPI

ai,pπi

´ c1
pµ1 ´ c2

pµ2 ´
ÿ

iPI

ai,pc3
pλi ď 0 @p P P̃

ÿ

iPI

λi ď 1

πd, λi, µ1, µ2 ě 0 @d P D, @i P I,

with an additional constraint (21) in pRMP3
MSq to ensure that the objective function value of the second

lexicographic level Z2 deteriorates at most by a factor of α2. The costs c3
p of a schedule p on the third

level are calculated with function fMS3 : Z|D| ˆ t0, 1u|I| ˆR|S| Ñ R, via pχd, ei, xSq ÞÑ
ř

dPD χd, which
counts the number of jobs d in machine schedule p. The overall goal of the third lexicographic level is
to minimize the maximum number of jobs allocated to any single machine. To this end, we further need
constraints (22) and a dedicated variable L in pRMP3

MSq to model the maximum number of executed
tasks of all chosen machine schedules p P P̃. In the objective function, L is minimized in order to find a
subset of machine schedules with an even distribution of jobs.

For the reduced costs on the third lexicographic level, we have

c̄3
p – λ̄ic3

p ´
ÿ

dPD

ad,pπ̄d ´
ÿ

iPI

ai,pπ̄i ` µ̄1c1
p ` µ̄2c2

p.

Since the costs c3
p of a schedule on the third lexicographic level do not depend on structural variables

wS,p and thus can be calculatedwith small computational effort, we can directly specify the lower bound
in the third lexicographic step as

“ c̄3
p ´ tmgMS3pp, l, D̃, π̄, µ̄, λ̄; FMS1, FMS2, CMS2q

“ c̄3
p ´ max

χPZD

$

&

%

ÿ

dPD̃

π̄dχd ´ λ̄i
ÿ

dPD̃

χd ´ µ̄1
ÿ

dPD̃

FMS1
d pχd, vpq ´ µ̄2

¨

˝

ÿ

dPD̃`

FMS2
d pχd, vpq ` CMS2

p

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď χd ď 1 ´ ad,p, d P D̃,
ÿ

dPD̃

χd ď ℓ ´ ϕppq

,

.

-

.

The algorithm for the calculation of the total maximal gain for all three lexicographic levels is described
in detail in Appendix A.7.

25

5.4 Computational Results for the (PMSP)
We now demonstrate the performance of branch-and-bound column search for the parallel machine
scheduling problem (PMSP). To this end, we use real-world data from an intra-logistic transportation
problem arising in hospitals. The data we used for our evaluation was kindly provided by our industrial
partnerOrgaCard Siemantel &Alt GmbH, a software provider for logistics planning inmedical facilities.

In the transportation problem of interest, intra-hospital transports must be allocated optimally to
transport employees. This application can be modelled as a (PMSP), where the transporters represent
the machines and the transports stand for the jobs to be executed. The processing times correspond
to the durations for the execution of a transport (i.e. to bring the patient or material from the initial
location to the target location), and the set-up times arise from the travelling time of the employees from
the target location of their last job to the initial location of their next job. The sequence dependency of
the set-up times reflects these lead paths and the corresponding travel times between the transports.

The optimization goals which are important for a hospital operator correspond to the lexicographic
levels of the multi-objective (PMSP) described in Section 5.3.

When solving the intra-hospital transport optimization problem the required computation time is
also a crucial factor. Given the medical necessity of a fast execution of certain patient transports, such as
medical emergencies, it is required that newly incoming orders are allocated by the system at very short
notice (within 60 seconds in the hospitals we consider). Small time lags must always be anticipated
between the emergence of a transport and the start of the calculation of the optimization system as well
as between the moment when the optimization is finished and the time when the notification of the
transport order arrives at the employee. Thus, we demand that all results are calculated within a time
limit of 55 seconds.

In total, we evaluated 699 instances from two different hospitals, which are customers of our indus-
trial partner OrgaCard. The instances were divided into 3 classes according to the number of transports
they were containing: small instances have ă 5 transports, medium instances ă 10 transports and large
instances ě 10 transports. All computations in this section have been executed on a personal computer
with Intel Core i7-9750H 2.6GHz processors and 32 GB RAM, using 6 cores.

5.4.1 Comparison of Column Generation with Branch-and-Bound Column Search
and Conventional Column Generation

Typically, column generation (CG) for the LP relaxation of the master problem only finds fractional
optimal solutions. Nevertheless, it is possible to obtain an integer solution afterwards by solving the
original integer master problem restricted to the columns generated for the solution of its LP relaxation
(cf. solution x˚ in Algorithm 2). This approach is also referred to as restricted master heuristic, cf. Jon-
cour et al. (2010). From now on, we call the integer solution determined that way the IP solution and the
solution to the LP relaxation x˚

LP is denoted with the LP solution. The corresponding objective function
values are called IP solution value and LP solution value. If the LP-Solution is found by Algorithm 2within
the time limit of 55 seconds, it is LP-optimal, and of course it also forms a lower bound to the IP-Solution.

In Table 2 we compare the LP solution obtained by branch-and-bound column search, calculated as
in Algorithm 2, with an LP solution computed by conventional column generation, i.e. the subproblem
is solved by anMIP solver (see Appendix A.6 for the preciseMIP formulation). To this end, we calculate
for each instance the relative difference of all three objective functions as follows:

LP difference :“
LP solution value by conventional CG ´ LP solution value by BaB-SDE CG

LP solution value by conventional CG .

The first column of Table 2 lists the three instance classes considered, and the second column contains
the number of instances in the corresponding class. Columns 3 to 5 show the arithmetic mean of the LP
difference across all instances for objective functions 1 to 3, and the last two columns show the number
of instances for which the corresponding method could find a provably optimal LP solution, i.e. the al-
gorithm found the optimal solution within the time limit of 55 seconds. Finally, the last row summarizes
the results for all instance classes and provides the arithmetic mean of the LP difference and the number
of provably optimal solutions across all 645 instances.

We see that for the class of small instances, the arithmetic mean of the LP differences is zero, which
means that both methods perform equally well here. Furthermore, the number of optimal LP solutions
for the small instances is the same for the two solution approaches. For 28 instances of the medium
class, the conventional column generation did not terminate within the time limit of 55 seconds. With
the Branch-and-Bound Column Search, this was only the case for 3 instances. This is also accompanied
by a slight improvement with regard to objective functions 1 and 2. The benefit of the branch-and-
bound column search becomes even more apparent as the size of the instances increases: it achieved

26

Comparison of the LP solution
for conventional CG and CG with BaB-SDE

Inst. Class Inst. no. Objective 1 Objective 2 Objective 3 Opt. conv. Opt. BaB
small 313 0.00% 0.00% 0.00% 313 313
medium 166 0.37% 0.18% -0.02% 138 163
large 220 8.41% 19.02% 1.73% 27 34
ř

699 2.73% 6.03% 0.54% 478 510

Table 2: Comparison of objective function values of the LP solution for conventional column generation
and column generation via branch-and-bound column search.

significantly better LP solutions for the large instances. Furthermore, it also found optimal LP solutions
for 7 more instances than conventional column generation within the time limit.

Tables 3 - 5 show the comparison of the integer solutions (IP solution), for the conventional column
generation and the column generationwith branch-and-bound column search applying the generic total
maximal gain (cf. Definition 3.5) respective the total maximal gain that uses application-specific func-
tions F and C (cf. Definition 3.7). The first two columns of the tables list the instance classes and the
number of instances that the classes contain. In columns 3 to 5, the absolute difference (conventional
CG - CG with BaB-SDE|gtmg, conventional CG - CG with BaB-SDE|tmg and CG with BaB-SDE|gtmg -
CGwith BaB-SDE|tmg) and in columns 6 to 9 the relative difference. The relative improvement was cal-
culated by relating the absolute improvement to the difference between the above mentioned minuend
and a primal lower bound, i.e. conventional CG - primal lb or CG with BaB-SDE/gtmg - primal lb. This
makes it easier to quantify the potential for improvement.

Comparison of the IP solution for CG with BaB-SDE using gtmg and conventional CG
Instance Absolute difference Relative difference

Class No. Object. 1 Object. 2 Object. 3 Object. 1 Object. 2 Object. 3
small 313 0.00 0.00 0.00 0.00% 0.00% 0.00%
medium 166 12.30 5.90 0.04 0.96% 1.22% 1.51%
large 220 256.27 249.85 0.03 7.02% 13.57% 1.52%
ř

699 83.58 80.04 0.02 2.44% 4.56% 0.83%

Table 3: Comparison of objective function values for conventional column generation and column gen-
eration with branch-and-bound column search using the generic total maximal gain for pruning the
enumeration trees.

In Table 3 we see that for the small instances there is no difference between conventional column
generation and column generation with branch-and-bound column search and the generic tmg. For the
medium instances, slight improvements could be achieved with the generic pruning approach. This
effect was then enhanced for the large, more difficult-to-solve instances. This result shows that the BaB
column search can compete with other pricing methods for column generation even in a completely
generic approach.

The evaluation of the objective functions in Table 4 shows that for the small and medium instances
there is not much difference between the application of the generic total maximal gain and the total max-

Comparison of the IP solution for CG with BaB-SDE using tmg and CG with BaB-SDE using gtmg
Instance Absolute difference Relative difference

Class No. Object. 1 Object. 2 Object. 3 Object. 1 Object. 2 Object. 3
small 313 0.00 0.00 0.00 0.00% 0.00% 0.00%
medium 166 0.05 0.05 0.00 0.01% 0.01% 0.00%
large 220 692.68 501.86 0.00 9.16% 18.57% 2.12%
ř

699 218.02 157.97 0.00 2.89% 5.85% 0.67%

Table 4: Comparison of objective function values for column generationwith branch-and-bound column
search using the application specific total maximal gain and using the generic total maximal gain for
pruning the enumeration trees.

27

Comparison of the IP solution for CG with BaB-SDE using tmg and conventional CG
Instance Absolute difference Relative difference

Class No. Object. 1 Object. 2 Object. 3 Object. 1 Object. 2 Object. 3
small 313 0.00 0.00 0.00 0.00% 0.00% 0.00%
medium 166 12.35 5.96 0.04 0.97% 1.23% 1.51%
large 220 948.95 751.71 0.03 15.86% 31.14% 3.35%
ř

699 301.60 238.01 0.02 7.94% 10.09% 1.10%

Table 5: Comparison of objective function values for conventional column generation and column gen-
eration with branch-and-bound column search using the generic total maximal gain for pruning the
enumeration trees.

imal gain with application specific functions F and C for pruning the enumeration trees. Approximately
the same results are obtained for both classes of instances. For the large instances, the advantage of using
application-specific information when pruning the enumeration trees becomes obvious, as considerably
better results could be achieved here.

Table 5 shows that for the class of small instances, there is not yet a difference in the IP solutions com-
puted by the two approaches, conventional CG and CGwith BaB-SDE using the total maximal gain with
application-specific functions F and C. However, column generation with BaB-SDE performs slightly
better for the medium-sized instances. The crucial instances are once again those of the large class.
There, the branch-and-bound column search with the application-specific pruning achieves significant
improvements compared to conventional column generation. In conclusion, it seems that branch-and-
bound column search generates not only more columns but also columns that are easier to combine in
an integer solution. This allows the corresponding restricted integer master problem to find signific-
antly better IP solutions, especially for large instances. Furthermore, the results demonstrate that the
branch-and-bound column search can achieve good results evenwith the generic pruning scheme. How-
ever, as one would expect, the results can be improved even further if application-specific information
is included in the calculation of the bounds.

Table 6 shows a comparison of the solution times for the three column generation methods under
consideration. The first two columns again contain information on the instance classes. Columns 3 to 6
show the solution times of conventional CG, columns 7 to 10 the runtimes of CG with BaB-SDE using
the generic total maximal gain and columns 9 to 11 the solution times of CG with BaB-SDE using the
application-specific pruning scheme. The arithmetic mean, the median and the geometric mean of the
computation times are presented for all three methods and for each instance class. Column generation

Solution time comparison
Instance Conventional CG CG with BaB-SDE|gtmg CG with BaB-SDE|tmg

Class No. arithm median geom arithm median geom arithm median geom
small 313 1.14 1.06 1.03 0.28 0.23 0.26 0.25 0.19 0.22
medium 166 12.98 3.69 5.58 10.44 1.82 3.01 4.80 1.40 1.96
large 220 50.82 55.12 47.79 51.80 55.22 49.06 49.46 55.30 43.18
ř

699 19.59 2.47 5.14 18.91 0.84 2.40 16.82 0.81 1.95

Table 6: Comparison of solution times for conventional column generation and the variants of column
generation with branch-and-bound column search.

with branch-and-bound column search using the application-specific pruning scheme performs better
than the other two methods for all considered performance metrics, except for a slight disadvantage in
themedian of the solution times of the large instances. The columngeneration approachwith the generic
pruning scheme performs better than conventional column generation for the small- and medium-sized
instances. For the large instances, the solution times for conventional column generation are somewhat
shorter, but essentially the runtimes are very similar. The last line of the table shows that the column
generation with BaB-SDE and the application-specific pruning has the shortest solution times w.r.t. all
three average valueswhen taking all instances together. Furthermore, BaB-SDE clearly outperforms con-
ventional column generation and also has noticeably better results than the branch-and-bound column
search with generic pruning on the instances that reach the time limit (cf. Table 5), which makes it the
preferable approach in the online scheduling application at hand.

28

5.4.2 Comparison of Column Generation with Branch-and-Bound Column Search
and Solving a MIP Models

In the previous section, we saw that using branch-and-bound column search has significant advantages
when solving instances of the (PMSP) compared to conventional column generation. Next, we compare
the integer solution obtained with our restricted master heuristic (cf. Algorithm 3), which uses branch-
and-bound column search to solve the pricing problem, with the solution computed by a MIP solver. To
do this, wemodelled the three lexicographic levels as integratedMIPs and had them solved sequentially
by an MIP solver. We will call the objective latter integer solution the IM solution.

In Table 7, we compare the objective function values of the two considered solution methods in
all three objective functions. After the information on the instance classes in the first two columns,
columns 3 to 5 list the arithmetic mean of the absolute difference (IM solution ´ IP solution) between
the two objective values w.r.t. to the instances of the corresponding class. Columns 6 to 8 then show the
average of the relative difference again calculated with the help of a primal lower bound as in Table 5.

Objective value comparison for integrated model and CG via BaB-SDE
Instance Absolute difference Relative difference

Class No. Object. 1 Object. 2 Object. 3 Object. 1 Object. 2 Object. 3
small 313 0.00 0.00 0.00 0.00% 0.00% 0.00%
medium 166 0.19 0.10 0.01 0.02% 0.01% 0.00%
large 220 208.45 205.35 0.05 5.16% 10.73% 6.06%
ř

699 65.65 64.60 0.02 1.63% 3.14% 1.81%

Table 7: Comparison of objective function values between the integrated model solved by anMIP solver
and column generation with BaB-SDE.

For the small instances, both solution approaches again found equally good solutions. Since the
time limit was not reached for any instance in this class, the integer solutions calculated by the MIP
solver are provably optimal. This implies that columngenerationwith branch-and-bound column search
has indeed also found integer optimal solutions for all instances of this class. Some of the instances in
class medium could neither be solved to optimality by the integrated model nor by column generation
with BaB-SDE. Further, the two methods achieved similarly good results w.r.t. to solution quality here.
However, for the large instances, the column generation with BaB-SDE achieved notably better results
than the MIP solver for all three objective functions, which makes it the better solution method overall
in the considered real-world setting of a solution time limit of 55 seconds.

5.4.3 Comparison of Column Generation with Branch-and-Bound Column Search
and the Heuristic Algorithm of the Industry Partner

Before our collaboration, our industrial partner OrgaCard used to employ its own heuristic solution
algorithm to optimize the intra-hospital transport planning problem arising at its customer hospitals.
We finally compare our branch-and-bound column search approach with the solution (OC solution) ob-
tained by OrgaCard’s heuristic (OC heuristic) in Table 8. For the instances described in the first two
columns, columns 3 to 5 show the arithmetic mean of the absolute differences (OC solution ´ IP solu-
tion) of all three objective functions, and the last three columns again contain the arithmetic mean of
the corresponding relative differences. It becomes apparent that BaB-SDE allows for considerable im-
provements over the OC heuristic in all three instance classes with regard to the two higher prioritized

Objective value comparison for OC heuristic and CG via BaB-SDE
Instance Absolute difference Relative difference

Class No. Object. 1 Object. 2 Object. 3 Object. 1 Object. 2 Object. 3
small 284 24.52 48.77 -0.14 8.10% 13.60% -15.66%
medium 145 81.05 163.21 -0.36 21.36% 16.40% -27.13%
large 216 962.76 830.06 0.00 13.47% 22.44% -2.20%
ř

645 354.84 339.01 -0.14 12.90% 13.03% -13.68%

Table 8: Comparison of the objective function values between solutions determined by the OC heuristic
and column generation with BaB-SDE.

29

lexicographic levels (see Object. 1 and Object. 2). At the same time, concerning the third optimization
goal column generation with BaB-SDE only has slightly worse results than the OC heuristic. However,
this is due to the lexicographic optimization approach, which strictly prioritizes the first two optimiza-
tion goals as the weighting parameters α1 and α2 were set to 1, cf. constraints (20) and (21). If required,
a more balanced distribution of improvements between the three optimization goals can be achieved via
another configuration of these parameters.

In summary, the columngeneration algorithmwith branch-and-bound column search clearly achieves
better results for this application than the heuristic used by our industrial partner so far. This means that
branch-and-bound column search not only performs better than other generic optimization algorithms,
but that it also outperforms a heuristic designed specifically for this application on real-world instances
of the problem. This has led our industrial partner OrgaCard to switch to column generation with
branch-and-bound column search as the preferred solution algorithm in the transport planning soft-
ware system they sell to their customer hospitals.

6 Conclusions
In this work, we have generalized and formalized an enumerative approach by Krumke et al. (2002) for
solving the pricing subproblem in column generation to what we call branch-and-bound column search.
This method explores the search space by building enumeration trees containing columns that could po-
tentially lead to a better solutionwithin the process and thus are candidates to enter the constraintmatrix
of the master problem. We have presented a variant of this method Especially, we showed that it cor-
rectly solves the subproblem in a column generation approach. Furthermore, we derived an integration
of the branch-and-bound column search into a column generation framework using dynamic pricing
control (cf. Krumke et al. (2002)) in order to dynamically adapt the search effort of the procedure to
the stability of the dual variables. Thus, in the final phase of the process, when the dual information is
most reliable, the entire enumeration tree is traversed to ensure that LP-optimal solutions for the master
problem are found.

The major advantage of branch-and-bound column search compared to conventional pricing ap-
proaches is that an adaptively chosen number of new columns with negative reduced costs is generated
and added to the master problem, not only one. This can reduce the number of alternations between
the master and the subproblem significantly. Further, the larger number of feasible columns in the in-
teger master problem makes it much more likely to find optimal integer solutions, which renders the
implementation of a dedicated branch-and-price framework superfluous in many cases. We have also
developed twomethods for computing exact bounds to prune the arising enumeration trees. One prun-
ing method is completely generic and does not need to consider the explicit application at all. The other
bound includes information about the application under consideration, but is applicable to many use
cases due to its general calculation approach. Both pruning methodes yield considerable reductions
in solution time without sacrificing the LP-optimality of the overall procedure. Moreover, we combined
this column generation approach with lexicographic optimization in such a way that the pricing prob-
lem is solved by our branch-and-bound column search to re-use the columns found on one lexicographic
level in the other levels as well, which yields amajor speed-up for this kind ofmulti-criteria optimization
problems.

In our computational results, we found that branch-and-bound column search not only performs sig-
nificantly better than conventional column generation for both pruning schemes in the two considered
applications, but also achieves better results in a real-time optimization setting than either a standard
MIP solver on an integrated MIP formulation or an application-specific heuristic by our industrial part-
ner. Overall, this shows that our approach is very well suited for use in practical optimization tasks.

References
Agarwal, Y., Mathur, K., and Salkin, H. M. (1989). A set-partitioning-based exact algorithm for the
vehicle routing problem. Networks, 19(7):731–749.

Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs.
European Journal of Operational Research, 246(2):345–378.

Bard, J. F. and Rojanasoonthon, S. (2006). A branch-and-price algorithm for parallel machine scheduling
with time windows and job priorities. Naval Research Logistics (NRL), 53(1):24–44.

30

Barnhart, C., Hane, C. A., and Vance, P. H. (1996). Integer multicommodity flow problems. In Interna-
tional Conference on Integer Programming and Combinatorial Optimization, pages 58–71. Springer.

Borndörfer, R., Grötschel, M., and Pfetsch, M. E. (2007). A column-generation approach to line planning
in public transport. Transportation Science, 41(1):123–132.

Byong-Hun, A. and Jae-Ho, H. (1990). Single facility multi-class job scheduling. Computers & Operations
Research, 17(3):265–272.

Bärmann, A., Martin, A., Müller, A., and Weninger, D. (2022). A column generation approach for the
lexicographic optimization of intra-hospital transports.

Capone, A., Carello, G., Filippini, I., Gualandi, S., and Malucelli, F. (2010). Solving a resource alloca-
tion problem in wireless mesh networks: A comparison between a CP-based and a classical column
generation. Networks: An International Journal, 55(3):221–233.

Cattrysse, D. G., Salomon, M., and Van Wassenhove, L. N. (1994). A set partitioning heuristic for the
generalized assignment problem. European Journal of Operational Research, 72(1):167–174.

Ceselli, A. and Righini, G. (2006). A branch-and-price algorithm for the multilevel generalized assign-
ment problem. Operations research, 54(6):1172–1184.

Ceselli, A., Righini, G., and Salani, M. (2009). A column generation algorithm for a rich vehicle-routing
problem. Transportation Science, 43(1):56–69.

Chen, S. and Shen, Y. (2013). An improved column generation algorithm for crew scheduling problems.
Journal of Information and Computational Science, 10(1):175–183.

Chen, Z.-L. and Powell, W. B. (1999). Solving parallel machine scheduling problems by column gener-
ation. INFORMS Journal on Computing, 11(1):78–94.

Chvátal, V. (1983). Linear Programming. W. H. Freeman and Company.

Cintra, G. F., Miyazawa, F. K.,Wakabayashi, Y., andXavier, E. C. (2008). Algorithms for two-dimensional
cutting stock and strip packing problems using dynamic programming and column generation.
European Journal of Operational Research, 191(1):61–85.

Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale traveling-salesman problem.
Journal of the operations research society of America, 2(4):393–410.

De Carvalho, J. V. (1998). Exact solution of cutting stock problems using column generation and branch-
and-bound. International Transactions in Operational Research, 5(1):35–44.

De Carvalho, J. V. (1999). Exact solution of bin-packing problems using column generation and branch-
and-bound. Annals of Operations Research, 86:629–659.

Dell’Amico, M., Maffioli, F., and Värbrand, P. (1995). On prize-collecting tours and the asymmetric
travelling salesman problem. International Transactions in Operational Research, 2(3):297–308.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm for the vehicle
routing problem with time windows. Operations research, 40(2):342–354.

Desrochers, M. and Soumis, F. (1989). A column generation approach to the urban transit crew schedul-
ing problem. Transportation Science, 23(1):1–13.

Ehrgott, M. (2005). Multicriteria Optimization, volume 491. Springer Science & Business Media.

Engineer, F. G., Nemhauser, G. L., and Savelsbergh,M.W. (2011). Dynamic programming-based column
generation on time-expanded networks: Application to the dial-a-flight problem. INFORMS Journal
on Computing, 23(1):105–119.

Fahle, T., Junker, U., Karisch, S. E., Kohl, N., Sellmann, M., and Vaaben, B. (2002). Constraint program-
ming based column generation for crew assignment. Journal of Heuristics, 8(1):59–81.

Friese, P. and Rambau, J. (2006). Online-optimization of multi-elevator transport systems with reoptim-
ization algorithms based on set-partitioning models. Discrete Applied Mathematics, 154(13):1908–1931.

31

Garraffa, M., Salassa, F., Vancroonenburg, W., Vanden Berghe, G., and Wauters, T. (2016). The one-
dimensional cutting stock problem with sequence-dependent cut losses. International Transactions in
Operational Research, 23(1-2):5–24.

Gendron, B., Lebbah, H., and Pesant, G. (2005). Improving the cooperation between themaster problem
and the subproblem in constraint programming based column generation. In International Conference
on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Program-
ming, pages 217–227. Springer.

Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem.
Operations Research, 9(6):849–859.

Grötschel, M., Borndörfer, R., and Löbel, A. (2003). Duty scheduling in public transit. In Mathemat-
ics—Key Technology for the Future, pages 653–674. Springer.

Gualandi, S. andMalucelli, F. (2012). Exact solution of graph coloring problems via constraint program-
ming and column generation. INFORMS Journal on Computing, 24(1):81–100.

Gurobi Optimization, Inc. (2021). Gurobi optimizer reference manual. https://www.gurobi.com/.

Hiller, B., Klug, T., and Tuchscherer, A. (2014). An exact reoptimization algorithm for the scheduling of
elevator groups. Flexible Services and Manufacturing Journal, 26(4):585–608.

Holmberg, K. and Yuan, D. (2003). A multicommodity network-flow problem with side constraints on
paths solved by column generation. INFORMS Journal on Computing, 15(1):42–57.

Hooker, J. N. and vanHoeve,W.-J. (2018). Constraint programming and operations research. Constraints,
23(2):172–195.

Isermann, H. (1982). Linear lexicographic optimization. OR Spektrum, 4:223–228.

Joncour, C., Michel, S., Sadykov, R., Sverdlov, D., and Vanderbeck, F. (2010). Column generation based
primal heuristics. Electronic Notes in Discrete Mathematics, 36:695–702.

Junker, U., Karisch, S. E., Kohl, N., Vaaben, B., Fahle, T., and Sellmann, M. (1999). A framework for
constraint programming based column generation. In International Conference on Principles and Practice
of Constraint Programming, pages 261–274. Springer.

Krumke, S. O., Rambau, J., and Torres, L. M. (2002). Real-time dispatching of guided and unguided
automobile service units with soft time windows. In European Symposium on Algorithms, pages 637–
648. Springer.

Leus, R. andKowalczyk, D. (2016). Improving column generationmethods or sheduling problems using
zdd and stabilization. In 2016 IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM), pages 99–103. IEEE.

Lewis, R., Song, X., Dowsland, K., and Thompson, J. (2011). An investigation into two bin packing prob-
lemswith ordering and orientation implications. European Journal of Operational Research, 213(1):52–65.

Lopes, M. J. P. and de Carvalho, J. V. (2007). A branch-and-price algorithm for scheduling parallel
machines with sequence dependent setup times. European journal of operational research, 176(3):1508–
1527.

Lübbecke, M. E. and Desrosiers, J. (2005). Selected topics in column generation. Operations Research,
53(6):1007–1023.

Mehrotra, A. and Trick, M. A. (1996). A column generation approach for graph coloring. INFORMS
Journal on Computing, 8(4):344–354.

Morrison, D. R., Sewell, E. C., and Jacobson, S. H. (2016). Solving the pricing problem in a branch-
and-price algorithm for graph coloring using zero-suppressed binary decision diagrams. INFORMS
Journal on Computing, 28(1):67–82.

Park, J. S., Lim, B. H., and Lee, Y. (1998). A lagrangian dual-based branch-and-bound algorithm for the
generalized multi-assignment problem. Management Science, 44(12-part-2):S271–S282.

32

https://www.gurobi.com/

Psaraftis, H. N. (1980). A dynamic programming approach for sequencing groups of identical jobs.
Operations Research, 28(6):1347–1359.

Regionales Rechenzentrum Erlangen (2022). Woodcrest Cluster. https://hpc.fau.
de/systems-services/systems-documentation-instructions/clusters/
woody-cluster/.

Rentmeesters, M. J., Tsai, W. K., and Lin, K.-J. (1996). A theory of lexicographic multi-criteria optimiza-
tion. In Proceedings of ICECCS’96: 2nd IEEE International Conference on Engineering of Complex Computer
Systems (held jointly with 6th CSESAW and 4th IEEE RTAW), pages 76–79. IEEE.

Sabuncuoglu, I. and Bayiz, M. (1999). Job shop scheduling with beam search. European Journal of Oper-
ational Research, 118(2):390–412.

Sadykov, R. andVanderbeck, F. (2013). Bin packingwith conflicts: a generic branch-and-price algorithm.
INFORMS Journal on Computing, 25(2):244–255.

Savelsbergh, M. (1997). A branch-and-price algorithm for the generalized assignment problem. Opera-
tions Research, 45(6):831–841.

Schewe, L., Schmidt, M., and Weninger, D. (2020). A decomposition heuristic for mixed-integer supply
chain problems. Operations Research Letters, 48(3):225–232.

Tomlin, J. (1966). Minimum-cost multicommodity network flows. Operations Research, 14(1):45–51.

Van den Akker, J. M., Hoogeveen, J. A., and van de Velde, S. L. (1999). Parallel machine scheduling by
column generation. Operations Research, 47(6):862–872.

Van Huigenbosch, P., van de Klundert, J., and Wormer, L. (2011). ANWB automates and improves
service personnel dispatching. Interfaces, 41(2):123–134.

Vanderbeck, F. (1999). Computational study of a column generation algorithm for bin packing and
cutting stock problems. Mathematical Programming, 86(3):565–594.

Webster, S. and Baker, K. R. (1995). Scheduling groups of jobs on a single machine. Operations Research,
43(4):692–703.

Westphal, S. and Krumke, S. O. (2008). Pruning in column generation for service vehicle dispatching.
Annals of Operations Research, 159(1):355–371.

Yunes, T., Moura, A., and de Souza, C. (1999). Exact solutions for real world crew scheduling problems.
In INFORMS Fall 1999 Meeting.

Yunes, T. H., Moura, A. V., and De Souza, C. C. (2005). Hybrid column generation approaches for urban
transit crew management problems. Transportation Science, 39(2):273–288.

Zykina, A. V. (2004). A lexicographic optimization algorithm. Automation and Remote Control, 65(3):363–
368.

Conflict of interest
In addition to his affiliation with the Friedrich-Alexander-Universität Erlangen-Nürnberg, the author
Alexander Müller is also an employee of the industry partner OrgaCard Siemantel & Alt GmbH. The
authors have no relevant financial or non-financial interests to disclose.

33

https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/woody-cluster/
https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/woody-cluster/
https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/woody-cluster/

A Appendix
In the appendix, we give some of the details omitted in the main part of the article. This entails a
formulation of a generic subproblem as a MIP, the branch-and-bound column search in the sequence-
independent case, indicative further use cases for branch-and-bound column search as well as some of
the MIP formulations and bounding routines we used for the computational experiments in Section 5.

A.1 Classical Solution of the Subproblem as an MIP
In Section 3, we looked at the branch-and-bound column search as a generic solution method to the
pricing problem for master problems with the generalized assignment structure. A frequently chosen
generic solutionmethod for column generation is to formulate the pricing problem as anMIP. A generic
mixed-integer programming model for the pricing subproblem corresponding to (RMP) can be formu-
lated as follows:

(SP) min
y

f pyD, yI , ySq ´
ÿ

dPD

ydπ̄d ´
ÿ

iPI

yiπ̄i

s.t. B

¨

˝

yD
yI
yS

˛

‚ě b̃ (23)

yD P Z|D|, yI P t0, 1u|I|, yS P R|S|,

where B P Rm̃ˆp|D|`|I|`|S|q, with m̃ ă 8, and index sets D, I and S as above. The Constraints (23)
given by matrix B and right-hand side b̃ are modelled in such a way that (SP) computes only feasible
plans p P P with respect to the application of interest. It must therefore be possible to deduce from
variables y P Z|D| ˆ t0, 1u|I| ˆR|S| the corresponding column A ¨,p of the constraint matrix of master
problem (MP). For this transformation to work, y is subdivided into variables yD, yI , and yS as follows.
We have task assignment variables yD P Z|D| that define how often each task d P D is executed in the
solution of (SP). These variables yD correspond to the coefficients AD,p P Z|D| of the constraint matrix A
in (MP) for the newly generated plan p P PzP̃. Further, the agent allocation variables yI P t0, 1u|I| specify
the agent to whom the plan constructed in (SP) is assigned to. They correspond to the coefficients
AI,p P t0, 1u|I| of A. Finally, the structure variables yS P R|S| describe a particular structure (dependent
on the considered application) of the plan constructed in (SP), such as a sequence, an execution time, or
other structural properties of a plan. The variables yS correspond to the structural arguments wS,p used
in cost function f for the columns of (MP).

The values of yD, yI and yS in a solution to (SP) allows to calculate the primal cost cp for the newly
generated plan p P PzP̃ using an application specific cost function f . Altogether, this all required in-
formation to create a new column for the restricted master problem. Moreover, the objective function
of (SP) guarantees that an optimal plan p P P has minimum reduced cost c̄p with respect to a given
optimal dual solution pπ̄d, π̄iq with d P D and i P I.

Example A.1 (MIP Subproblem). We continue Example 2.1 in order to show how the subproblem of a vehicle
routing problem can be modelled. Mathematically, the pricing problem takes the form of a prize-collecting trav-
elling salesman problem (PCTSP), i.e. we need to find a tour for one of the agents (“salesmen”) i P I that visits
a chosen subset of customers D˚ Ď D of minimal cost (travel costs minus gain per visited customer). A possible
formulation as an MIP is as follows:

(PCTSP) min
y

ÿ

dPD

cdyd`
ÿ

iPI

ciyi `
ÿ

sPS

csys ´
ÿ

dPD

ydπd ´
ÿ

iPI

yiπi

s.t. yd “
ÿ

sPδ´ptduq

ys d P D (24)

yd “
ÿ

sPδ`ptduq

ys d P D (25)

ÿ

dPD

ypt,dq “
ÿ

dPD

ypd,tq “ 1 (26)

ÿ

sPδpVq

ys ď |V| ´ 1 H ‰ V Ď D (27)

34

ÿ

iPI

yi “ 1 (28)

yd, yi, ys P t0, 1u d P D. (29)

The structure of a column can be modelled via the index set S :“ D Y ttu ˆ D Y ttu, where t is the depot. In
this particular problem, the structure is given by the order of the customers visited in the corresponding tour. The
variables ys “ ypd1,d2q for pd1, d2q P S take a value of 1 if customer d1 is followed by customer d2 P D on the
chosen tour, and 0 otherwise. The task assignment variables yd with d P D have value yd “ 1 if the customer d
is visited in the constructed tour, and yd “ 0 otherwise. Finally, the agent assignment variables indicate which
salesman performs the constructed tour as they take the value yi “ 1 if salesman i P I executes the tour, and
yi “ 0 if not. Furthermore, the following subsets of S are used in (PCTSP): δ`pXq – tpdi, djq P S | di P Xu,
δ´pXq – tpdj, diq P S | di P Xu and δpXq – δ`pXq X δ´pXq for any X Ď D Y ttu.

The objective function minimizes the reduced cost of the columns to be generated, which are tours in this appli-
cation. The assignment constraints (24)–(25), formulated above as in Dell’Amico et al. (1995), require that each
visited customer have exactly one incoming edge and one outgoing edge. Constraint (26) ensures that the depot is
left and entered exactly once. Inequality (27) is a modification of the well-known subtour elimination constraint
(cf. e.g. Dantzig et al. (1954)) that in our case prevents unwanted subcycles within a tour of the salesman, i.e.
the walk over the chosen customers excluding the depot is always a path. Finally, Constraint (28) requires that the
tour is assigned to exactly one salesman i P I.

Obviously, there are only |I| different possibilities which values variables yI P t0, 1u|I|, or finally the
partial column AI,p P t0, 1u|I|, can take for p P P. This is because they are all unit vectors in R|I| due to
the assumption that

ř

iPI ai,p “ 1 for all p P P. In summary, a plan can only be given to exactly one agent.
Therefore, it is possible to formulate separate subproblems (SPi), that only generate new columns for
the respective agent i P I.

A.2 Sequence-Independent Enumeration Tree (SIDE)
Section 3.3 describes the enumeration procedure if the sequence of tasks within a plan has a crucial
impact on the costs of the plan. This is certainly not the case for all applications. The presented algorithm
in this section supplements Section 3.3 with the sequence-independent variant of the branch-and-bound
column search.

The starting point of Algorithm 4 is the root node vr “ pAD,r, ei, wS,rq, where all coefficients are set
to ad,r “ amin

d and the label to LSr “ 1. The set Q, the so called queue, is needed to keep track of child
nodes that have been enumerated and that may have descendants with negative reduced costs. At the
beginning, Q contains only the root node, which has depth ϕprq “ 0. The initially empty set C is filled
over the course of the procedure with all generated columns A ¨,p that have reduced costs lower than the
acceptance threshold (i.e. c̄p ă θ) and that are feasible plans for the application (i.e. A ¨,p P A). As long
as the set Q is not empty, starting from a current node vp, child nodes vpnew are created by increasing
the coefficients ad,p by 1 according to the binary operation ‘i for each task d P D̃ whose position in tuple
D̃ is greater or equal to LSp. This is done for all tasks d P D̃ for which ad,p ă amax

d holds (cf. Line 11).
Then the structure wS,pnew of the new node vpnew for pnew P P̄ must be determined (cf. Line 15). The
structure of a node and how it is determined strongly depends on the concrete application problem to be
solved, for which we will give examples later. Nevertheless, the structure of the new column pnew P P̄ is
determined as the cost-minimizing structure wS,pnew which incorporates the tasks assigned in the partial
column AD,pnew . Our experience has shown that theminimum cost structure in the application context is
usually relatively easy or fast to determine and therefore this is not a crucial criterion for the performance
of the method.

The label LSp for p P P̄ specifies the index in D̃ of that task d̃ P D̃ whose coefficient ad̃,p was last
increased for node vp in the course of the algorithm. Therefore, the label of column pnew is now set to
the value LSpnew “ j (cf. Line 17), which corresponds to the index of d in the tuple D̃. Based on node
vpnew “ pAD,pnew , ei, wS,pnew q and the costs cpnew , it is then possible to calculate the reduced costs c̄pnew

of the new column pnew P P̄. If node vpnew contains a feasible column for the master problem with
sufficiently small reduced costs, i.e. A ¨,pnew P A and c̄pnew ă θ, then the column might be part of an
optimal solution of the LP-relaxed master problem and is therefore included in C.

If the lower bound fulfils c̄pnew ´ tmgppnew, ℓ, D̃, π̄; F, Cq ă θ, then it is possible that descendants of
node vpnew have reduced costs smaller than the acceptance threshold θ. Thus, we cannot prune the
enumeration tree at that node, which is why we add the index of node vpnew is to Q. Otherwise, we
know from Theorem 3.8 that the reduced costs of the descendants of vpnew are greater than or equal to

35

c̄pnew ´ tmgppnew, ℓ, D̃, π̄; F, Cq and thus also greater than or equal to the current acceptance threshold
θ, such that we can prune the tree at this point. That is, pnew is not added to Q (cf. Lines 25 – 28).

Algorithm 4: BaB – SIDE
Input : A |D̃|-Tuple D̃ of tasks d P D̃ Ď D, bounds for column entries pamin

d , amax
d q for all d P D̃,

agent i P I, search depth ℓ, optimal solution π̄ P R|D|`|I| of (RDP), acceptance
threshold θ.

Output: An enumeration tree Ti and a set of all columns C with reduced costs smaller than θ
and a node depth of at most ℓ

1 Initialize:
2 r Ð 0, ad,r Ð amin

d @d P D, LSr “ 1
3 wS,r Ð Determine by application context.
4 vr Ð pAD,r, ei, wS,rq

5 Q Ð tru, C Ð H, Vi Ð tvru, Ei Ð H

6 while Q ‰ H do
7 Choose p P Q
8 Q Ð Qztpu

9 for j “ LSp : |D̃| do
10 d Ð D̃j
11 if ad,p ă amax

d then
12 pnew Ð p ` 1

// Apply binary operation vpnew “ vp ‘i d
13 AD,pnew Ð AD,p
14 ad,pnew Ð ad,p ` 1
15 Choose wS,pnew P argminwPR|S| f pAD,pnew , ei, wq

16 vpnew Ð pAD,pnew , ei, wS,pnewq

17 LSpnew Ð j // Store the row index that was increased for vpnew

// Add new node vpnew to tree Ti

18 Vi Ð Vi Y tvpnew u

19 Ei Ð Ei Y tpvp, vpnew qu

20 c̄pnew “ f pvpnew q ´
ř

dPD ad,pnew π̄d ´ π̄i
21 if c̄pnew ă θ and A ¨,pnew P A then // Check for reduced costs/feasibility

22 C Ð C Y tvpnew u

23 end
24 if ϕppnewq ă ℓ then // Bounding due to reduced costs/node depth

25 if c̄pnew ´ tmgppnew, ℓ, D̃, π̄; F, Cq ă θ then
26 Q Ð Q Y tpnewu

27 end
28 end
29 end
30 end
31 end
32 return Ti “ pVi, Ei, ‘iq, C

Remark A.2. Obviously, the largest reasonable value to which search depth ℓ can be set is ℓmax :“
ř

dPD amax
d ´

amin
d . In this case, the algorithm also generates plans that contain the maximum number amax

d for each task d P D,
and thus it is also ensured that all feasible columns for (MP) are generated. However, in most applications it
is possible and desirable in terms of running time to choose the maximal search depth smaller than ℓmax and
nevertheless maintain the exactness of the column generation method. The maximum search breadth is reached
when D̃ is chosen to be the set of all tasks D.

A question that arises now is whether any columns are enumerated unnecessarily in Algorithm 4.
In other words: does the algorithm ever enumerate the same node several times? For the sequence-
independent case, we say that two nodes vp, v p̄ are equal if AD,p “ AD,p̄ and AI,p “ AI,p̄. Since in
Algorithm 4 the structure variable wS,p is set to minimize the cost, for such nodes we have pAD,p, AI,pq “

pAD,p̄, AI,p̄q ñ cp “ c p̄. If there are no two nodes generated by Algorithm 4 that are equal, i.e. no node
was created twice and therefore every node has one unique path to the root node vr P Vi, then the graph
Ti “ pVi, Ei, ‘iq created by Algorithm 4 is indeed a tree.

In order to prove this, we first show the following lemma, which states that when generating the
columns in Algorithm 4 by increasing the coefficients ad,p with d P D the order given by the tuple D̃ is
strictly followed (cf. Figure 3).

36

vr
[0, 0, 0]

v1
[1, 0, 0]

d1

v2
[0, 1, 0]

d2

v3
[0, 0, 1]

d3

v4
[2, 0, 0]

d1

v5
[1, 1, 0]

d2

v6
[1, 0, 1]

d3

v7
[0, 2, 0]

d2

v8
[0, 1, 1]

d3

v9
[0, 0, 2]

d3

v10
[2, 1, 0]

d2

v11
[2, 0, 1]

d3

v12
[1, 2, 0]

d2

v13
[1, 1, 1]

d3

v14
[1, 0, 2]

d3

v15
[0, 2, 1]

d3

v16
[0, 1, 2]

d3

v17
[2, 2, 0]

d2

v18
[2, 1, 1]

d3

v19
[2, 0, 2]

d3

v20
[1, 2, 1]

d3

v21
[1, 1, 2]

d3

v22
[0, 2, 2]

d3

v23
[2, 2, 1]

d3

v24
[2, 1, 2]

d3

v25
[1, 2, 2]

d3

v26
[2, 2, 2]

d3

Figure 3: Illustration of an enumeration tree Ti for a specific agent i P I, with D̃ “ pd1, d2, d3q, amin
d “ 0,

amax
d “ 2 for all d P D̃, constructed by the sequence-independent enumeration algorithm Bab – SIDE.

Lemma A.3. Let Ti “ pVi, Ei, ‘iq, i P I, be a graph that is constructed by Algorithm 4 for a subset of tasks D̃
ordered in a tuple D̃. Then for all nodes vp, v p̄ P Vi such that vp ďTi v p̄ and LSp “ j̄ with j̄ P t1, . . . , |D̃|u we
have

ad,p̄ “ ad,p @d “ D̃j with j ă j̄.

Proof. Let vp “ pAD,p, ei, wS,pq be a node in Ti with label LSp “ j̄. For all child nodes v p̂ of vp, only tasks
d “ D̃j` with j` ě j̄ are attached due to Lines 9 and 10 in Algorithm 4, such that ad,p̂ “ ad,p applies for
all d “ D̃j´ with j´ ă j̄.

In addition, label LSp̂ is set for all child nodes v p̂ as LSp̂ “ j` with j` ě j̄ (cf. Line 17), which is why
again only tasks d “ D̃j` with j` ě j̄ are attached to the children of these nodes as well. This continues
for all descendants of vp, which finishes the proof.

We can now use this result to prove Lemma A.4.

Lemma A.4. The graph Ti “ pVi, Ei, ‘iq constructed by Algorithm 4 is an arborescence, i.e. for the initial node
vr P Vi in the algorithm and for any two nodes vp, v p̄ P Vi there are connecting paths P :“ pvr, . . . , vpq, P̄ :“
pvr, . . . , v p̄q in Ti and we have

vp “ v p̄ ñ P “ P̄ ,

and every node vp is visited exactly once via its unique path P in Algorithm 4.

Proof. Every newly built node vpnew in Algorithm 4 is connected to one previously constructed node vp.
Since vr is the initial node in the algorithm, it follows inductively that every node is connected to vr. So
for every node vp constructed by Algorithm 4, a path from vr to vp exists. Let vp, v p̄ P Vi be nodes with
their respective paths P “ pvr, . . . , vpq and P̄ “ pvr, . . . , v p̄q from the inital node vr. We want to show
that if vp “ v p̄ then P “ P̄ :
Let l be the number of nodes in P and l̄ the number of nodes in P̄ . Denote with Pk the k-th node in
path P for k P t1, . . . , lu and with P̄k the k-th node in P̄ for k P t1, . . . , l̄u. Suppose P ‰ P̄ , which is
equivalent to pl ‰ l̄q _ pl “ l̄ ^ Dk P t1, . . . , lu : Pk ‰ P̄kq. We distinguish the following two cases:
1.) Case l ‰ l̄:

If l ‰ l̄, then the paths P and P̄ contain a different number of nodes. Since each successor node
Pk`1 originates from its predecessor Pk by increasing exactly one coefficient, the sum over all
coefficients

ř

dPD̃ ad,p ‰
ř

dPD̃ ad,p̄ for vp and v p̄ is different and thus there must also be at least
one d P D̃ such that ad,p ‰ ad,p̄, from which follows vp ‰ v p̄.

37

vr

vpcom

vp̌ v p̂

vp v p̄

d1 d2

nodes
v p̂`

P̄P

nodes
vp̌`

Figure 4: Illustration of the nodes in the second case of the proof of Lemma A.4.

2.) Case l “ l̄ and Dk P t1, . . . , lu : Pk ‰ P̄k:
W.l.o.g., let k be the first index such thatPk ‰ P̄k, i.e.Pq “ P̄q for all q ă kwith q, k P t1, . . . , lu. The
nodes vp̌ “ Pk and v p̂ “ P̄k have then been generated by adding different tasks d1, d2 P D to the
last common node vpcom “ Pk´1 “ P̄k´1 (cf. Figure 4). W.l.o.g., we assume d1 “ D̃j1 and d2 “ D̃j2
with j1 ă j2. Further, let vp̌ “ vpcom ‘ d1, v p̂ “ vpcom ‘ d2. This means ad1,p̌ ą ad1,p̂ “ ad1,pcom and
ad2,p̂ ą ad2,p̌ “ ad2,pcom . Thus, in Line 17 of Algorithm 4 the labels were set to LSp̌ “ j1 for node vp̌
and LSp̂ “ j2 for node v p̂. Together with Lemma A.3 and since j1 ă j2, this leads to ad1,p̂`

“ ad1,p̂
for all nodes v p̂`

such that v p̂ ďTi v p̂`
and ad1,p̌`

ě ad1,p̌ for all nodes vp̌`
such that vp̌ ďTi vp̌`

(cf. Figure 4). As vp̌ ďTi vp and v p̂ ďTi v p̄, it follows ad1,p ě ad1,p̌ ą ad1,p̂ “ ad1,p̄, which leads to
ad1,p ą ad1,p̄. Thus, again we have vp ‰ v̄ p̄.

Altogether, the only way a node could be visited twice would be if its path was traversed twice in Al-
gorithm 4. But we can rule this out, since each task d “ D̃j with j P tLSp, . . . , |D̃|u is added only once to
the same node (if even possible), cf. Lines 9–30. Thus, it is clear that each node vp can only be reached
via a single path and also that each column is generated exactly once in BaB – SIDE.

At some point in the column generation procedure, it is necessary to verify that in Algorithm 4 all
nodes whose columns have negative reduced costs are actually visited in order to preserve the exact-
ness of the method. Therefore, we show now that Algorithm 4 can be used to enumerate all feasible
columns A ¨,p with p P P for (MP) for a specific agent i P I, where amin

d ď ad,p ď amax
d for all d P D and

where the reduced costs fulfil c̄p ď 0 for a specific setting of input parameters.
TheoremA.5. Consider a master problem (MP) for a problem class where the sequence of tasks in plan p P P has
no effect on its costs cp, and let π̄ P R|D|`|I| be an optimal solution to the restricted dual problem (RDP). If the
acceptance threshold is θ “ 0, the search depth is ℓ “ ℓmax and the tuple D̃ contains all tasks d P D, i.e. D̃ “ D,
then Algorithm 4 constructs a complete enumeration tree Ti “ pVi, Ei, ‘iq for an agent i P I (cf. Definition 3.4).
Proof. We already know by LemmaA.4 that the graph constructed in Algorithm 4 is a tree. The nodes Vi
generated by this algorithmare obviously columns for themaster problem (MP), and by the construction
of the algorithm (cf. Lines 14 and 19), Condition (ii) of Definition 3.1 is also satisfied. Thus, we know
that this tree is an enumeration tree. It remains to show that this enumeration tree is also a complete
enumeration tree.

Let pAD,p̄, eiq be an arbitrary column with amin
d ď ad,p̄ ď amax

d for d P D that has negative reduced
costs c p̄ ă 0 and that fulfils

ř

dPD ad,p̄ ´ amin
d ď ℓmax. We will now show that this arbitrary column

corresponds to a node v p̄ in a tree Ti by tracing how the path from the initial node vr to this node v p̄
is built by BaB – SIDE. Starting from the initial node vr, the algorithm iterates over all d P D̃ (w.r.t. the
order defined in tuple D̃, cf. Lines 9 and 10). Since LSr “ 1 and D̃ “ D, we know that it iterates over
all d P D. Therefore, at some point, a child node vp1 will be constructed where the task d1 “ D̃j1 with
index j1 “ mintj P t1, . . . , |D|u | ad,p̄ ą amin

d , d “ D̃ju, has been increased by one (i.e. ad1,p1 “ amin
d ` 1).

Since the label is still LS1 “ j1 for node vp1 , Algorithm 4 later visits a child node vp2 of vp1 where the
coefficient with index d1 again was increased by one, such that ad1,p2 “ amin

d1
` 2. This is then repeated

until node vpk1
is visited, where ad1,pk1

“ ad1,p̄ and ad,pk1
“ amin

d for all d P Dztd1u.
Up to now, the algorithmhas only built newnodes by increasing coefficients corresponding to tasks d1,

such that the label is still LSk1 “ j1. Thus, there is also a child of node vpk1
constructed by increasing

38

the coefficient corresponding to the task d2 “ D̃j2 by one, where j2 ą j1 “ LSk1 is the second-smallest
index such that ad2,p̄ ą amin

d with d2 “ Dj2 . Algorithm 4 follows this procedure for task d2 a number of
ad2,p̄ times and arrives at vpk2

, where ad1,pk2
“ ad1,p̄, ad2,pk2

“ ad2,p̄ and ad,pk2
“ amin

d for all d P Dztd1, d2u.
Algorithm 4 repeats this process for the remaining indices d P Dztd1, d2u, where ad,p̄ ą amin

d such that it
constructs our arbitrarily chosen column pAD,p̄, eiq in the end.

Finally, we need to make sure that the column pAD,p̄, eiq has not been pruned in Lines 25 – 28 of
Algorithm 4. However, since column pAD,p̄, eiq has negative reduced cost, we have by Theorem 3.8 that
c̄ p̂ ´ tmgpp, ℓ, D̃, π̄; F, Cq ď c̄ p̄ ă 0 for all nodes v p̂ such that v p̂ ďTi v p̄. Furthermore, we chose pAD,p̄, eiq

such that
ř

dPD ad,p̄ ´ amin
d ď ℓmax. Therefore, we can rule out that the corresponding node v p̄ was

pruned in Lines 25 – 28, cf. Equation (8).
Having arbitrarily chosen the column A ¨,p̄ P A, it has been shown that Algorithm 4 with the above

defined input parameter setting generates any node vp with negative reduced costs forwhich ad,p ď amax
d

holds for all d P D.

A.3 Further Applications for Branch-and-Bound Column Search
In Section 3, we presented two variants of our branch-and-bound column search, namely BaB – SIDE
and BaB – SDE for the sequence independent and the sequence-dependent case, respectively. Here we
discuss a selection of problem classes which can be solved by column generation and where branch-
and-bound column search can thus be used for the solution of the pricing problem. In Table 9, several
problems are listed where the order of the tasks within a plan has no influence on the costs of the corres-
ponding column, such that we can use BaB – SIDE for the solution of the pricing problem. Table 10 then
lists exemplary sequence-dependent problem classes for which BaB – SDE can be applied. Each of the
two tables is divided into two sections. The upper section contains the problem classes in which each
task can only be added once to a plan (amin

d “ 0 ^ amax
d “ 1 @d P D); in the lower section, tasks can also

be added several times to a plan (amin
d “ 0 ^ amax

d ą 1 @d P D). Moreover, in the second column of the
tables, common applications for each case are listed, supplemented by indicative literature references
from where the problem originates. The last column provides the problem class of the pricing problem
in a column generation approach.

Case Applications Subproblem
Sequence Independent Enumeration

amin
d “ 0 ^ amax

d “ 1 Bin packing problem Knapsack problem
@d P D De Carvalho (1999)

Vanderbeck (1999)
Generalized assignment problem Knapsack problem
Cattrysse et al. (1994)
Savelsbergh (1997)
Ceselli and Righini (2006)
Graph colouring problem Maximum weight
Mehrotra and Trick (1996) independent set problem
Gualandi and Malucelli (2012)
Morrison et al. (2016)

amin
d “ 0 ^ amax

d ą 1 Cutting stock Knapsack problem
@d P D Gilmore and Gomory (1961)

De Carvalho (1998)
Vanderbeck (1999)
Generalized multi-assignment problem (Knapsack problem)
Park et al. (1998) (not solved with CG)

Table 9: Applications where the branch-and-bound column search algorithm BaB – SIDE can be used as
a solution algorithm for the pricing problem.

Remark A.6. Note that bin packing and the cutting stock problem are very similar. In the literature, there
is no generally valid distinction between these two problem classes. Often, the cutting stock problem is seen as a
generalization of the bin packing problem where each item must be covered bd P N times for d P D and a bin may
contain multiple copies of the same item (cf. Vanderbeck (1999)). Thus, we adopted this notion in the cutting
stock application presented in Section 5.1.

39

Sequence-Dependent Enumeration

amin
d “ 0 ^ amax

d “ 1 Vehicle routing problem Travelling salesman problem
@d P D Agarwal et al. (1989) (generic case: knapsack problem)

Desrochers et al. (1992)
Krumke et al. (2002)
Crew scheduling Constrained shortest path problem
Desrochers and Soumis (1989)
Grötschel et al. (2003)
Chen and Shen (2013)
Parallel machine scheduling Single machine scheduling problem
Chen and Powell (1999) (not solved with CG)
Van den Akker et al. (1999),
Lopes and de Carvalho (2007).
Multi-commodity flow problems Shortest path problem.
Tomlin (1966)
Barnhart et al. (1996)
Holmberg and Yuan (2003)
Line planning problem Shortest/weighted path problem
Borndörfer et al. (2007)

amin
d “ 0 ^ amax

d ą 1 Truss cutting problem/ Travelling salesman problem
@d P D CSP with seq.-dep. cutting losses

Lewis et al. (2011) (Solved heuristically)
Garraffa et al. (2016) (Solv. by heuristic CG)
Single/parallel machine scheduling (Single machine scheduling problem)
for groups/classes of identical jobs
Psaraftis (1980) (not solved with CG)
Byong-Hun and Jae-Ho (1990) (n.s.w. CG)
Webster and Baker (1995) (n.s.w. CG)

Table 10: Applications where the branch-and-bound column search algorithm BaB – SDE can be used
as a solution algorithm for the pricing problem.

The broad, but certainly not exhaustive listing of problem classes in Tables 9 and 10 shows the wide
applicability of branch-and-bound column search. As we have seen, branch-and-bound column search
works particularly well when the columns that lead to an overall optimal solution are rather sparse,
which means that the corresponding nodes have a small depth in the enumeration tree. In this case,
the tree can be pruned relatively early using the bound provided by Theorem 3.8. This was the case,
for example, with the problem class of the parallel machine scheduling problem in Section 5.3 or more
precisely with the concrete use case of assigning transport orders in hospitals to employees from Sec-
tion 5.4. Favourable transport sequences were found early in the tree here, as long sequences are more
likely to lead to both greater delays and uneven utilisation of transporters.

A.4 MIP Formulation for the Subproblem of Application I
A mixed-integer programming-based formulation of the pricing subproblem for Application I, the se-
quence-dependent cutting stock problem, can, for instance, be formulated as follows:

pSPCSq min
x,y

cp ´
ÿ

dPD

πdyd

s.t.
ÿ

dPD

xt´,d “ 1 (30)

ÿ

dPD

xd,t` “ 1 (31)

ÿ

d1PE

ÿ

d2PDzE

xd1,d2 ` xd2,d1
ě 2 ¨ zE @E Ĺ D : |E| ě 1 (32)

M ¨ zE ě
ÿ

dPE

yd @E Ĺ D : |E| ě 1 (33)

yd “
ÿ

pd1,d2qPδ`pd2q

xd1,d2 @d P D (34)

yd ě
ÿ

pd1,d2qPδ´pbq

xd1,d2 @d2 P D (35)

40

ÿ

dPD

ldyd `
ÿ

pb,dqPD´ˆD`

cd1,d2 xd1,d2 ď L (36)

yd, xd1,d2 P Z` @d1, d2 P D (37)
zE P t0, 1u @E Ĺ D : |E| ě 1, (38)

where the objective function minimizes the reduced costs c̄p. Further, the constraints (30)–(31) guaran-
tee that every pattern possesses exactly one first and one last item. Inequality (32) is a so-called Subtour
Elimination Constraint (SEC). It prevents the solution from containing infeasible subtours, i.e. subtours
that are not connected to the source-target-path (path from t´ to t`). The formulation used is based
on that of Dantzig et al. (1954). The original formulation of the SEC, i.e.

ř

bPE
ř

dPDzE xb,d ` xd,b ě 2 for
E Ĺ D and |E| ě 1, would stipulate for all subsets E that the number of item pairs pb, dq P D ˆ D that
enter E together with the number of item pairs pb, dq P D ˆ D that leave E equals 2. However, this shall
only apply to those subsets in which we have items that are part of the solution pattern, i.e. only for
subsets E where

ř

dPE yd ą 0. Thus, the auxiliary variable zE in (32) and the additional constraint (33)
are necessary. In practical computations, these two constraints are added in a lazy fashion, i.e. only if
the computed solution contains infeasible subtours. Constraint (34) ensures that each item used has a
preceding item, and Constraint (35) guarantees that each item has at most one subsequent item. The
last inequality (36) make sure that the stock item size L is not exceeded, taking into account the item
sizes ld with d P D and the sequence-dependent cutting losses cd1,d2 with d1, d2 P D´ ˆ D`. Finally,
Constraints (37) and (38) define the domains of the variables.

A.5 Algorithm for the Calculation of a Lower Bound
on the Reduced Costs in Application I

Branch-and-bound column search uses lower bounds on the reduced costs of all descendants of a given
node to prune the enumeration trees. These lower bounds are calculated with the help of the total max-
imal gain, see Definition 3.7 and Theorem 3.8. For the cutting stock problem with sequence-dependent
cut losses, it is possible to derive an even stronger lower bound, see (18). Unfortunately, this lower
bound proved to be too expensive computationally, such that we decided to employ a weaker bound
which is easier to compute, but is nevertheless still stronger than the initial bound (14) based on the
total maximal gain. Algorithm 5 describes how to calculate this lower bound, which we used for the
computational study of the (SDCSP) in Section 5.2.

Algorithm 5 starts with sorting the items d P D̃ by the reduced costs of the items as well as by the
length of the items together with the minimal cutting loss that can arise before them, see Lines 5 and 6.
Then it successively adds artificial items to the current pattern p, creating also artificial patterns p̂, whose
reduced costs are lower bounds on the reduced costs of the real descendant patterns of node vp.

More precisely, this is done using the sorted lists SRC and SL. With list SRC, the algorithm success-
ively adds the largest possible reduced cost π̄dmax ´ ldmax of all remaining items to the current reduced
cost c̄p of pattern p (see Line 14). With list SL, we increase the length of pattern l p̂ only by the minimal
length ldmin and the corresponding smallest cut loss before item dmin, see Line 15.

By the for-loops in Lines 8 and 10 as well as the if-statement in Line 13, it is checked which items can
still be added to the current pattern p and how often they can be appended to this pattern. Especially,
Line 13 determines whether there is any progress possible with respect to the reduced costs (i.e. π̄dmax ´

ldmax ą 0) and whether it is still possible to obtain feasible patterns by adding further items to current
pattern p, i.e. l̂p ` c`

min ` ldmin ` c´
min ď L.

If the reduced costs of any of these artificial patterns is negative (i.e. c̄p ´ gain ă 0), the algorithm
returns TRUE, which means that we can not prune the enumeration tree at node vp. If no artificial
pattern p̂ with reduced costs is found, the algorithm returns FALSE, because then we can rule out that
there is any pattern with negative reduced costs among the descendants of vp.

41

Algorithm 5: CanSubtreeBePruned – SDCSP
Input : Subset D̃ Ď D, node vp “ pAD,p, wS,pq P V, cut losses cdi ,dj

with pdi, djq P S, item length
ld, optimal dual solution π̄, bounds pamin

d , amax
d q for d P D and stock item length L

Output: Lower bound on reduced costs for all nodes below the pattern p in enumeration tree T.
1 Initialize:
2 dp Ð td P D | wpd,tq,p “ 1u

3 lp Ð
ř

pdi ,djqPS cdi ,dj
wpdi ,djq,p `

ř

dPD ldad,p

4 l p̂ Ð lp ´ cdp ,t

5 SRC Ð sort item indices d P D̃ by reduced costs π̄d ´ ld in list, descending.
6 SL Ð sort item indices d P D̃ by

´

ld ` min
!

cd̄,d

ˇ

ˇ

ˇ
d̄ P D̃

)¯

in list, ascending.
7 gain Ð 0
8 for k P t1, . . . , |D̃|u do
9 dmin Ð SLk, dmax Ð SRCk

10 for j “ 0, . . . , amax
dmin

´ admin,p do
11 c`

min Ð min
␣

cdi ,dmin

ˇ

ˇ di P D
(

12 c´
min Ð min

␣

cdi ,t
ˇ

ˇ di P D
(

13 if π̄dmax ´ ldmax ą 0 and l p̂ ` c`
min ` ldmin ` c´

min ď L then
14 gain Ð gain ` π̄dmax ´ ldmax

15 l p̂ Ð lp ` c`
min ` ldmin

16 dp Ð dmin
17 if c̄p ´ gain ă 0 then
18 return TRUE
19 end
20 end
21 end
22 end
23 return FALSE

A.6 MIP Formulations of the Subproblems of Application II
The pricing subproblem of the first lexicographic level of Application II can be formulated as a mixed-
integer program in the following fashion:

pSP1
MSq min

x,y,z,w

ÿ

dPD

δdzd ´
ÿ

dPD

π̄dyd ` π̄i (39)

s.t. yd “
ÿ

d̂PD´

xd̂,d @d P D (40)

yd “
ÿ

d̂PD`

xd,d̂ @d P D (41)

ÿ

dPD`

xs,d “ 1 (42)

ÿ

dPD´

xd,t “ 1 (43)

wd ` pd ` sd,d̂ ´ wd̂ ď p1 ´ xd,d̂q Wd,d̂ @pd, d̂q P S (44)

adyd ď wd @d P D (45)
wd ď W yd @d P D (46)
zd ě wd ´ bd @d P D (47)
as ď ws ď W (48)

xd̂,d P t0, 1u @pd, d̂q P S (49)

yd P t0, 1u @d P D (50)
wd, zd ě 0 @d P D, (51)

where the sets D, D´, D` and S are defined as in Section 5.3. The variable yd takes the value 1 if job d

42

is part of the newly generated machine plan, otherwise yd “ 0. Further, the variable xd̂,d equals 1 if the
pair of jobs pd̂, dq P S2 is part of the generated plan, otherwise xd̂,d “ 0.

The objective (39) of Subproblem pSP1
MSq minimizes the reduced cost of the new column, which is

derived from the dual problem pDP1
MSq. Further, Constraint (40) ensures that each job d P D that is part

of the machine plan to be generated, i.e. where yd “ 1, has exactly one preceding job or is executed first
in the job sequence of anymachine i P I. In the latter case, we have d̂ “ s. Constraint (41) guarantees that
everymachine i P I executes exactly one subsequent job or switches into its final state t after the execution
of a job d P D´. The following equations (42) and (43) ensure that the initial state s and the finale state t
are part of the constructed machine plan. In order to take into account the given restrictions on the
execution times of the jobs, Constraints (44) to (48) are included into the model. The inequality (44)
makes sure that the execution times of two successive jobs pd, d̂q P S2 are correctly taken into account,
also with regard to their processing times pd and set-up times sd,d̂. In addition, this inequality ensures
that subtours are eliminated, as it forces the starting times of the jobs to be strictly increasing (cf. Bard
and Rojanasoonthon (2006)). This statement is valid, because pd ą 0 holds for all d P D and due to the
definition of S2, where only edges ps, dq are part of the set S and no edges in the opposite direction, i.e.
pd, sq R S for all d P D. According to Constraint (45), a job is never started before the earliest possible
starting timestamp ad P R. Inequality (46) fixes the starting time of every job d P D which is not part
of the solution to wd “ 0. Possible delays of jobs are modelled via Constraint (47). Further, due to
Constraint (47), and since zd ě 0 holds for all d P D, it holds that zd “ maxtwd ´ bd, 0u with bd as
the latest possible starting time. Thus, we have zd “ 0 if no delay occurs in the execution of task d.
Otherwise, zd takes the value of the corresponding delay in minutes. In the latter case, this violation of
the corresponding time window is penalized in the objective function by the first summand

ř

dPD δdzd.
Finally, Constraints (49), (50) and (51) define the domains of the variables.

The subproblem does not solve the assignment part of the overall optimization problem, i.e. it does
not decide which job is assigned to which machine. Rather, it only constructs schedules for one single
given machine. Thus, it has to be solved separately for each machine i P I.

A.7 Algorithm for the Calculation of the Total Maximal Gain in Application II
In order to prune the enumeration trees within branch-and-bound column search, it is necessary to
have strong lower bounds on the reduced costs. To this end, we compute the total maximal gain (see
Definition 3.7) to obtain such a lower bound (cf. Theorem 3.8). Algorithm 6 shows one possible way for
the calculation of the total maximal gain in all three lexicographic levels of Application II in Section 5.

Its input corresponds essentially to the parameters determining the total maximal gain in the third
lexicographic level. We pass to the algorithm the current lexicographic level k, a subset D̃ Ď D corres-
ponding to the current search breadth β, the current search depth ℓ, the current node vp of the node
set Vk

i of agent i P I in the current lexicographic level k and an optimal solution pπ̄, µ̄, λ̄q to the current
dual problem on the corresponding level k. If we call the algorithm on the first or second lexicographic
level, the parameters µ̄, λ̄ are initialized, but their values are not relevant for the computation of the total
maximal gain.

Algorithm 6 is initialized by setting the gain g to zero for all d P D̃. The total maximal gain tmg is
initialized with ´8. Afterwards, we calculate the gain corresponding to the lexicographic level k for all
jobs d P D̃ with the help of the bounding functions FMS1, FMS2 and FMS3 together with constant CMS2

p as
well as the optimal dual solution pπ̄, µ̄, λ̄q, see Lines 4–14. By the properties of the bounding functions
defined in Section 5.3, the calculated gain g is an upper bound on the value by which the reduced costs
decrease when a given job d is added to plan p. Then the job indices d P D̃ are sorted by their respective
gain gd and stored in SRC in a descending order. Now, the total gains tg are calculated for different
numbers of jobs 1, . . . , pℓ´

ř

dPD̃ ad,pq that still can be appended to plan p given the search depth ℓ. For a
given number of jobs ℓtemp, the largest total gain tg is calculated by accumulating the largest gains gSRC1
to gSRCℓtemp

in Lines 18–19. Finally, the maximumof these total gains tg is determined in Line 27, and the
algorithm returns this total maximal gain tmg of node vp P Vk

i in lexicographic level k for the current
search depth ℓ.

43

Algorithm 6: CalculateTotalMaximalGain – PMSP
Input : Lexicographic level k, subset D̃ Ď D, search depth ℓ, node vp “ pAD,p, AI,p, wS,pq P Vk

i ,
optimal dual solution pπ̄, µ̄, λ̄q

Output: The total maximal gain of node vp P Vk
i on lexicographic level k for search depth ℓ in an

enumeration tree Tk
i of the (PMSP).

1 Initialize:
2 g Ð p0qdPD̃.
3 tmg Ð ´8.
4 for d P D̃ do
5 if k “ 1 then
6 gd Ð π̄d ´ FMS1

d p1, vpq.
7 end
8 else if k “ 2 then
9 gd Ð π̄d ´ FMS2

d p1, vpq ´ µ̄1FMS1
d p1, vpq

10 end
11 else if k “ 3 then
12 gd Ð π̄d ´ λ̄i ´ µ̄1FMS1

d p1, vpq ´ µ̄2FMS2
d p1, vpq

13 end
14 end
15 SRC Ð sort job indices d P D̃ with ad,p “ 0 by gain gd, descending.
16 for ℓtemp P t1, . . . , pℓ ´

ř

dPD̃ ad,pqu do
17 tg Ð 0.
18 for j P t1, . . . , ℓtempu do
19 tg Ð tg ` gSRCj .
20 end
21 if k = 2 then
22 tg Ð tg ´ CMS2

p .
23 end
24 else if k = 3 then
25 tg Ð tg ´ µ̄2CMS2

p .
26 end
27 tmg Ð maxttg, tmgu.
28 end
29 return tmg

For the computational study in Section 5.4, we used amore sophisticated bound introduced byWest-
phal and Krumke (2008). This bound is indeed computationally more expensive, but it often allows to
prune the enumeration trees earlier in the enumeration process, such that the branch-and-bound column
search has to enumerate less columns explicitly (see Bärmann et al. (2022) for details).

44

	1 Introduction
	2 A Basic Column Generation Setting
	2.1 A Generic Master Problem for Column Generation

	3 Branch-and-Bound Column Search
	3.1 Enumeration Trees for Column Search
	3.2 Determination of Lower Bounds for the Reduced Costs in a Branch
	3.3 Branch-and-Bound Column Searchfor Monotonically Increasing Enumeration Trees
	3.4 The Top-Level Column Generation Algorithm

	4 Lexicographic Optimization
	4.1 Basic Principle of the Lexicographic Optimization Approach
	4.2 Combination of Lexicographic Optimization and the Enumerative Approach

	5 Real-World Benchmarks
	5.1 The Cutting Stock Problem with Sequence-Dependent Cut Losses
	5.2 Computational Results for the (SDCSP)
	5.3 Problem Class – Parallel Machine Scheduling
	5.4 Computational Results for the (PMSP)
	5.4.1 Comparison of Column Generation with Branch-and-Bound Column Searchand Conventional Column Generation
	5.4.2 Comparison of Column Generation with Branch-and-Bound Column Searchand Solving a MIP Models
	5.4.3 Comparison of Column Generation with Branch-and-Bound Column Searchand the Heuristic Algorithm of the Industry Partner

	6 Conclusions
	A Appendix
	A.1 Classical Solution of the Subproblem as an MIP
	A.2 Sequence-Independent Enumeration Tree (SIDE)
	A.3 Further Applications for Branch-and-Bound Column Search
	A.4 MIP Formulation for the Subproblem of Application I
	A.5 Algorithm for the Calculation of a Lower Boundon the Reduced Costs in Application I
	A.6 MIP Formulations of the Subproblems of Application II
	A.7 Algorithm for the Calculation of the Total Maximal Gain in Application II

