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Abstract

Motivated by the importance of social resilience as a crucial element in cascading leaving
of users from a social network, we study identifying a largest relaxed variant of a degree-
based cohesive subgraph: the maximum anchored k-core problem. Given graph G = (V| E)
and integers k and b, the maximum anchored k-core problem seeks to find a largest subset
of vertices S C V that induces a subgraph with at least |S| — b vertices of degree at least
k. We introduce a new integer programming (IP) formulation for the maximum anchored k-
core problem, and conduct a polyhedral study on the polytope of the problem. We show the
linear programming relaxation of the proposed IP model is at least as strong as that of a naive
formulation. We also identify facet-defining inequalities of the IP formulation. Furthermore,
we develop inequalities and fixing procedures to improve the computational performance of
our IP model. We use benchmark instances to compare the computational performance of the
IP model with (i) the naive IP formulation and (ii) two existing heuristic algorithms. Our
proposed IP model can optimally solve half of the benchmark instances that cannot be solved
to optimality either by the naive model or the existing heuristic approaches.
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1 Introduction

Friendster was an online social networking website that launched in 2002 and attracted more than
one million users in a few months (Rivlin, |2006]). In 2009, they began to lose active users due to mul-
tiple reasons including technical issues with their website. In 2011, Friendster discontinued its social
network service after cyclical leaving patterns of its users in the U.S. (Seki and Nakamuray, 2016]).
The failure of Friendster is closely related to poor social resilience — “the ability of a community to
withstand external stresses and disturbances as a result of environmental changes” (Adger} 2000)).
Garcia et al| (2013) note that the resilience of a network can be strengthen by “purchasing” some
auxiliary members of the network within a limited budget.

The problem of maximizing the resilience of a network with a limited budget can be mathemat-
ically modeled by the maximum anchored k-core problem that was introduced by [Bhawalkar et al.
(2015)). The maximum anchored k-core problem identifies the vertices which are most crucial to
forming the largest cohesive groups with respect to k-core. Given graph G = (V, E) and integers
k and b, an anchored k-core is a subset of vertices S C V that induces a subgraph with at least



|S| — b vertices of degree at least k. We note that k-core and anchored k-core are combinatorially
equivalent when £k = 1 or b = 0. While the maximum k-core problem is easy to be solved for any
k, the maximum anchored k-core problem is NP-hard when k£ > 3 (Bhawalkar et al., [2015).

The operations research community might be interested in the following application of the
maximum anchored k-core problem. INFORMS Annual Meeting 2022E| hosts a new type of 75-
minute “flash” sessions in which nine to ten people should present their research work. To encourage
people to attend this new type of sessions, session/cluster chairs could invite a cohesive group of
researchers who know at least a specific number of people, say three, in each session. Let Figure[I|be
a social network of researchers who are working in a specific research area, say network optimization.
Furthermore, we assume that each researcher agrees to give a talk in a flash session if they know
at least three colleagues in the session. Then, gray vertices on the left side of Figure [I| represent
the (maximum) 3-core of the network that may be interested in presenting their works in a flash
session. If the session/cluster chair convinces researcher 1 to present their work at the session, then
researchers 2, 5, and 10 will also be convinced to present their research in the same session. The
colored vertices on the right side of Figure [T] represent the maximum anchored 3-core of the social
network of researchers with budget b = 1.

Figure 1: A social network of researchers: (left) the maximum 3-core; (right) the maximum anchored
3-core with budget b = 1.

Our contributions. In this paper, we introduce an integer programming (IP) formulation along
with valid and supervalid inequalities as well as fixing procedures for solving the maximum anchored
k-core problem. In Section [2| we provide a literature review on the maximum k-core problem and
its hard variants. Section [3|introduces notation and definitions that are used throughout the paper.
Section [4| proposes an IP formulation for the problem and shows that the linear programming (LP)
relaxation of the model is at least as strong as that of a naive one. In Section [f] we conduct a
polyhedral study on the polytope of the problem. Section [f]introduces valid and supervalid inequal-
ities as well as fixing procedures to improve the computational performance of the IP formulation.
Section[7] provides an extensive set of experiments on two sets of benchmark instances. We conclude
the paper in Section [§]

2 Literature Review

Identifying cohesive clusters is an important task in network analysis with a wide range of applica-
tions in marketing (Al-garadi et al.|2017)), social media (Pei et al.,[2014), clustering and community
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detection (Giatsidis et al., [2011a)), biology (Bader and Hogue, [2002; |Altaf-Ul-Amine et al.l 2003)),
and economics (Burleson-Lesser et al., [2020)). Cohesive clusters can be classified based on (i) the
distance between the vertices inside clusters (Verma et al.l 2015} Pajouh et all 2016} [Salemi and|
Buchanan, [2020; Daemi et al., 2022) (e.g., cliques, k-clubs, and k-cliques); (ii) the degree of vertices
in a cluster (Balasundaram et al., 2011; Ma et al.,|2016; Ma and Balasundaram, 2019) (e.g., k-core
and k-plex); (iii) the number of edges in a cluster (Gao et al., 2021) (e.g., k-defective clique); and
(iv) density (Miao and Balasundaram) [2020) (e.g., quasi-clique).

The maximum k-core problem is a well-studied problem with applications in disease spread
et all [2020); brain’s network (Hagmann et al. 2008} [Daianu et al. [2013} [Shanahan et all, [2013;
Wood and Hicks, 2015); and social media (Malliaros and Vazirgiannis, 2013). |Seidman| (1983
introduced the notion of k-core to serve as a way for social network researchers to measure network
cohesion. also clarifies the fact that “k-cores need not to be highly cohesive, but that
all cohesive subsets are contained in k-cores.” Matula and Beck| (1983) showed that the maximum
k-core of a graph can be computed in polynomial time. The k-core can be extended to directed
graphs (Giatsidis et al) [2011b), weighted graphs (Garas et all [2012), uncertain graphs
et al.}|2014; |Peng et al., 2018)), and temporal graphs (Wu et al., 2015). There are also hard variants
of the maximum k-core problem that are studied in the literature. Mikesell and Hicks| (2022)
employ a binary integer programming model along with valid inequalities and heuristics for solving
the minimum k-core problem. introduced the minimum spanning k-core problem
with bounded probabilistic edge failures.

Bhawalkar et al.| (2015) introduced the anchored k-core problem and showed that it is NP-hard
for any k > 3. They propose a polynomial time algorithm to solve the anchored k-core problem
when k = 2. Onion-layer based anchored k-core (OLAK) and residual core maximization (RCM)
are two heuristic algorithms to find feasible solutions for the maximum anchored k-core problem
that were proposed by [Zhang et al.| (2017) and [Laishram et al (2020)), respectively.
et al.| (2017) developed and implemented an efficient algorithm to solve the anchored 2-core problem.
Zhou et al.|(2019) introduced a variant of the maximum anchored k-core problem in which a budget
is spent on adding edges to the graph instead of anchoring vertices. [Dey et al.| (2020) studied a
variant of the problem in which the budget is spent on deleting vertices and the objective is to
minimize the size of the initial k-core.

3 Preliminaries

Let G = (V, E) be a simple graph with vertex set V and edge set E. For every subset of vertices
S C V, let G[S] be the subgraph induced by vertex set S. For every vertex v € V, we define
degy(v) as the degree of vertex v in graph G. When G is not specified, we denote degs(v) by
deg(v). For every vertex v € V, we define N¢(v) as the open neighborhood of vertex v. We also
define n := |V|] and m := |E| as the number of vertices and edges of graph G = (V, E), respectively.
Now we provide some formal definitions that are used throughout the paper. We first provide a
definition of the k-core as follows.

Definition 1 (k-core, (1983))). The k-core of a graph G = (V, E) is the mazimal subset
K CV of vertices with deggx)(v) > k for every vertezx v € K.

A definition of an anchored k-core is provided below.

Definition 2 (anchored k-core, cf. Bhawalkar et al|(2015))). Let (C, A) CV xV be an ordered set.
(C, A) is an anchored k-core of graph G if and only if deggcua)(v) > k for every vertez v € C.




Now we formally define the maximum anchored k-core problem as follows.

Problem: The maximum anchored k-core problem.

Input: An undirected simple graph G = (V, E) and integers k and b.

Output: (if any exist) An ordered set (C,A) C V x V with a largest size of C such that
deggioual(v) > k for every vertex v € C and |A] < b.

One can easily propose a “naive” integer programming formulation for the maximum anchored
k-core problem. For every vertex v € V', binary decision variable x, is one if vertex v belongs to a
k-core set C' (i.e., deggjcua)(v) = k). Furthermore, binary decision variable y, is one if vertex v is
selected as an anchor vertex (i.e., v € A).

max Z Ty (la)

veV
Z (T + Yu) > ka, YoeV (1b)
uENg(v)

(Naive) Ty +yYp <1 YveV (1c)
> <b (1d)
veV
z,y € {0,1}". (Le)

Here, objective function maximizes the size of the anchored k-core set C. Constraints
imply that if a vertex is selected in an anchored k-core set C, then at least k of its neighbors must
belong to either k-core set C' or anchor set A. Constraints imply that a vertex cannot belong
to a k-core set C' and an anchor set A simultaneously. Constraint imply that the size of an
anchor set A cannot exceed budget b. Furthermore, we define the polytope of the naive model
as follows.

Praive 1= {(z,y) € RY" | (z,y) satisfies constraints (Ib)-(Id)}.

Since we propose multiple supervalid inequalities throughout this paper, we provide a formal
definition of it as follows.

Definition 3 (supervalid inequality, cf. [Israeli and Wood| (2002)). Given polyhedron P, decision
vector x € R", coefficient vectors a,c € R", and 7 € R with argmax,cg.{c’z | x € P} # 0, we say
that inequality a”x < 7 is supervalid for P with respect to c if

argmax, . {c’ = | ¥ € P} Nargmax,cp.{c' = |z € Pa’x <7} #0.

4 A Reduced IP Formulation

In this section, we propose a reduced model that is obtained by fixing a considerable number
of decision variables in the naive formulation . We first provide two fixing procedures before
introducing the reduced model.

Remark 1 (folklore). For every vertex v € V with degg(v) < k, inequality x, < 0 is valid.



Remark [If follows by the fact that if a vertex has less than k£ neighbors, then the vertex cannot
join any k-core set.

Proposition 1. Let K be the k-core of graph G. For any optimal solution (z*,y*) of the anchored
k-core problem, we have z}; =1 and y; = 0 for every vertex v € K.

Proof. Let (&,9) be an optimal solution of the anchored k-core problem. By the contradiction,
suppose that there is a vertex v € K with &, = 0. We define solution (z*,y*) as follows: (i)
xk = &, and y = g, for every vertex u € V \ K, (ii) 2} := 1 for every vertex i € K, and (iii)
yr := 0 for every vertex ¢ € K. By construction of the solution (z*,y*), it is a feasible solution
whose objective value is strictly greater than the objective value of solution (&, ). This contradicts

the optimality of (Z,§). O

By Remark [If and Proposition [I} we propose a reduced IP formulation for solving the maximum
anchored k-core problem. We recall that K denotes the k-core of graph G. We define the rest of
vertices as R := V \ K. For every vertex v € R, we define weight w, := |N(v) N K|.

max | K|+ Z Ty (2a)
vER
Z (T + yu) > (K — wy)zy Vv € R with deg(v) > k (2b)
uENg(v)NR
Ty + Yy <1 Vv € R with deg(v) > k (2¢)
(Reduced) Z Yp < b (2d)
vER
2y, =0 Vv € R with deg(v) < k (2e)
Ty, Yo € {0,1} Yv € R. (2f)

Here, constraints imply that if a vertex v € R with w, neighbors in the k-core set K is selected,
then at least k—w, of its neighbors in R must be selected. Constraints imply that every vertex
v € R with deg(v) > k cannot be included in both a k-core set and an anchor set simultaneously.
Constraint imply that at most b vertices can be anchored. Constraints imply that by
Remark [I} no vertex with a degree of less than k can be selected in a k-core set C'. We note that
the reduced model cuts off some feasible solutions; however, there always exist at least one optimal
solutions that dominate the removed feasible ones (see Proposition [I]).

For analysis purposes, we rewrite the reduced IP model with decision variables z,y € {0, 1}"



as follows.

max | K| + Z Ty (3a)
veER
S (@utya) = (k—wy)my Vv € R with deg(v) > k (3b)

uENg(v)NR

Z (x4 + Yu) > kxy Yv e K (3¢)
uENgG(v)
Ty +Yp <1 Vv € R with deg(v) > k (3d)
Z Yo < b (36)
vER
Ty =1 Vv e K (3f)
Yo =0 Yo € K (3g)
2, =0 Yo € V with deg(v) < k (3h)
Ty, Yo € {0,1} Yv e V. (3i)

Furthermore, we define the polytope of the reduced formulation as follows.

Preduced := {(2,y) € R3" | (2,y) satisfies constraints (3b)-(30)}.

The following theorem shows that the LP relaxation of the reduced model is at least as
strong as that of the the naive formulation .

Theorem 1. For every instance of the mazimum anchored k-core problem, we have Preduced <
Praive- There exist instances for which the inclusion holds strictly.

Proof. Consider a point (Z,9) € Preduced- We are to show that (Z,9) € Paive- 1t suffices to show
that (&,9) satisfies constraints (Ib). For every vertex v € R with deg(v) > k, we have

Yo Gt = Y. Gutd) Y (i) (4a)

u€Ng(v) uENg(v)NK uENg(v)NR
= Y @H0+ > (Eu+dl) (4b)
uENg(v)NK uENg(v)NR
=w,+ Y (fut i) (4c)
uENg(V)NR
> Wydy + Z (jju + gu) (4d)
uENg(v)NR
> Wydy + (kK — wy) iy (4e)
— k. (4)

Here, equality holds by constraints and . Equality holds by the definition of w.
Inequality holds because Z € [0,1]™. Finally, inequality holds by constraints .



For every vertex v € R with deg(v) < k, it is easy to see that (&,7) satisfies constraints (1b) as
&, = 0 for every vertex v € R with deg(v) < k by constraints (3h]). Furthermore for every vertex
v € K, we have

ST Gt =Y (Eut ) 2 k= ki

u€ENg(v) u€Ng(v)NK

Here, the first inequality holds by nonnegativity bounds of x and y variables. The second inequality
holds by the fact that v € K and by constraints (3f). The equality holds because &, = 1 by
constraints (3f).

Finally, the following example shows that the inclusion can be strict.

Example 1. Figure|Z provides a point (&,7) € Pnaive sSuch that (Z,§) € PReduced-

K
#3 = 1.00
g3 = 0.00
O—FCO—0+——06—O©
£1=0.00 |#2=1.00 &4=100| &5=0.25 ig=0.00
1 =005 |§2=000 §4=0.00| ¢5=075 gg=0.20

Figure 2: An instance of the anchored k-core problem with £ = 2, b = 1, K = {2,3,4}, and
R =1{1,5,6}. While (Z,§) € PNaive, it violates constraints (3b)) of formulation for vertex 5; i.e.,

5 A Polyhedral Study

In this section, we conduct a polyhedral study on the polytope of the maximum anchored k-core
problem in a reduced space. We first define set R’ as follows.

R ={u € R| deg(u) > k}.

We recall that R = V' \ K, where K is the set of the k-core of graph G. We set r := |R| and
r’ := |R’| and define the polytope of the maximum anchored k-core problem as follow:

Py »(G) := conv {(xQ, y™t) € {0,1}"*" | (K UQ, A) forms an anchored k-core with |A| < b} ,

where ¢ and y4 are the characteristic vectors of Q@ C R’ and A C R, respectively. Throughout
this section, we use e; to denote the unit vector of appropriate size corresponding to vertex i € V.
We also define two functions f and g for mapping vertices of R’ and R to index sets {1,2,...,7'}
and {r' +1,...,7" + r}, respectively.



Definition 4. One-to-one mappings f : R\ — {1,2,....,7"} and g: R — {r' + 1,7 +2,...,7" +r}
are defined such that

i. for every pair {u,v} € (g/) with u < v, we have f(u) < f(v); and
ii. for every pair {u,v} € (I;) with u < v, we have g(u) < g(v).
Now we provide two points in Definitions [p]and [6] that are employed in the proofs of this section.

Definition 5. Let b > k. For any verter u € R', we define gy, € {0, l}r,‘” as a binary vector
that represents a solution in which

i. only verter u € R’ is selected in a k-core; and
1. exactly b neighbors of vertex u are anchored.

Definition 6. Suppose b > k and let vertex uw € R'. For every vertex j € Ng(u) N R, we define
Py € {0,1}" T as a binary vector that represents a solution in which

1. vertices u and j are selected in a k-core;
1. exactly b — 1 neighbors of vertex u, excluding vertex j, are anchored; and
1. exactly b — 1 neighbors of vertex j, excluding vertex u, are anchored.

The following proposition shows that polytope Py ,(G) is full-dimensional under a reasonable
condition (i.e., b > k:)El

Proposition 2. Ifb > k, then polytope Py, »(G) is full-dimensional. Further, the condition is tight.

Proof. First, we note that (0,0)7 € P, ,(G). We also have (0,e,)T € Pyu(G) for every ver-
tex u € R. We now introduce r’ points as follows. For every vertex u € R’, we define point
q¢(u) by Definition So, we have the following 7’ + 7 linearly independent points: (0,e;)? —
(0,0)7,(0,e5)” — (0,0)7,...,(0,e,)T — (0,0)T, and qfu) — 0 for all w € R'. Hence, polytope
Py, »(G) is full-dimensional.

Example [2| shows that if b < k — 1, then there is an instance of the maximum anchored k-core
problem for which the Py ;,(G) polytope is not full-dimensional.

Example 2. Consider an instance of the mazximum anchored k-core problem with k =3 and b = 2
shown in Figure[3

Figure 3: An instance of the maximum anchored k-core problem with k£ = 3 and b = 2.

2In many real-world benchmark instances of the maximum anchored k-core problem, we observe that b > k holds.
For example, see instances of |Zhang et al.| (2017) and |Laishram et al.| (2020).



A minimal description of Ps2(G) is provided below by employing PORTA (Christof and Loebel,
2029).

+.732 —XI3 =0
—X3 S 0

—Y2 <0

—Y3 <0

+x3 -1 <0

+x3 —-ys <0

+ys <1

+1n <1

+x3 +Ys3 <1

+x3 +y2 <1

+y1 +y2 +ys +ya <2

By equality xo—x3 = 0, we do not have a unique description for Ps o(G). Further, the description
is minimal. Hence, P3 2(G) is not full-dimensional by Corollary 3.31 of |Conforti et al.| (2014).

O

Now we show multiple inequalities of formulation are facet-defining under mild conditions.
The following proposition shows that the non-negativity bounds on x variables induce facets of
Py y(G) ifb> k.

Proposition 3. Ifb > k, then x, > 0 is facet-defining for every vertex u € R'.

Proof. First, we note that point (0,0)7 € Py ,(G) satisfies the inequality at equality. For every
vertex u € R, we define (0,e,)? € Py ;,(G). By Definition [5, we define point (v for every vertex
v € R\ {u}. So, we have r' + r affinely independent points. This finishes the proof. O

The following proposition shows that conflict constraints are facet-defining if b > k + 1.

Proposition 4. Ifb > k+1, then x,+y, < 1 is facet-defining for every vertexu € R'. Furthermore,
the condition s tight.

Proof. We start with defining r points that satisfy the inequality at equality; i.e., (0,e,)T and
(0,ey + ;)" for every vertex i € R\ {u}. For every vertex v € R’ \ {u}, we define Gy(,) such that
element q}(v) = q}(v) for every index i € {1,2,...,7" +7}\ {g(u)} and Q?EZ; = 1. Along with gy (),
we have ' more points. We summarize r’ +r affinely independent points that satisfy the inequality
at equality as follows.

i. (0,e, +e;)T for every vertex i € R\ {u},
ii. (0,e,)7,

iii. gy, for every vertex v € R"\ {u}, and



iv. qf(u)-
Figure 4| presents 7’ + r affinely independent points that satisfy constraints at equality.

1 2 F(u) r—1 ! 41 r 42 g(u)

-

£(w)

-1

+r

’ r +1 41 r +1 1 1
™ +1 aq a5 9 () a.,] . 1 0 0 0 0
! ! !’ ’ ’

’ r' 42 42 r' 42 42 42

r 2 a] a5 e U oy B a, al, 0 1 0 0 0

g(u) 1 1 S 0 S 1 1 1 1 S 1
r’+l7~71 1‘/+‘7‘—l 'rl+.7‘—1 7‘/+‘7‘—1 r/-l;r—l T/-I;r—l o o 0 0 0

qq , a5 ) qf(qp qT/71 a4,
’ 4 ' +r v’ +r 't !
ot qq dq 9f(u) 9,0 a4, 0 0 0 0 0

Figure 4: A collection of 7' + r affinely independent points satisfying constraints at equality.
We finally show that if b < k, then there is an instance of the maximum anchored k-core problem
for which the inequality is not facet-defining. The instance is provided in Appendix A. O
We now prove that inequality y,, < 1 is facet-defining for every vertex u € R\ R’ when b > k+1.

Proposition 5. If b > k+ 1, then inequality y,, < 1 is facet-defining for every vertex u € R\ R'.
Furthermore, the condition is tight.

Proof. We first define r points as follows: (0,e,) and (0, e; + e,,) for every vertex i € R\ {u}. Now
we define 7 points. For every vertex v € R', consider point gy, defined in Definition [5| For every
v € R/, we define point Gy(,) with elements G}, = ¢}, for every index i € {1,2,...,7"+r}\{g(u)}

and Q?E:g = 1. Now, we have r’ + r affinely independent points that are summarized as follows.

L. (anu)Ta
ii. (0,e, +e;)T for every vertex i € R\ {u}, and
ili. Gy for every vertex v € R'.

Figure |5 shows 7’ + r affinely independent points that satisfy inequality y, < 1 at equality for
every vertex u € R\ R'.
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1 2 r—1 r’ r+1 r+2 rr+r—1 71 +r
1
2
!
7_/ +1 qr'+1 q'r'+1 q'r'+1 q'r'+1 1 0
’ aln’+2 72"/+2 iilé :$+2
42 qq 5 q,.r_1 q,.r 0 1
g(w) 1 1 1 1 1 1 1 1
' ’ ) ’ ) ’ ) ’ ) :
r Lr—1 q'r +r—1 qr +r—1 qr +r—1 qr +r—1 1 0
/ ! T‘l-‘r?" 2 T‘l-‘r?" T’ﬁir T’r’-&-r
r+r L q ‘D) .4 q,. 0 1

Figure 5: A collection of v’ + r affinely independent points satisfying inequality 3, < 1 at equality.

We finally show that if b < k, then there is an instance of the maximum anchored k-core problem
for which the inequality is not facet-defining. The instance is provided in Appendix A. O

The following proposition shows that nonnegativity bounds on y variables of the vertex set R’
are facet-defining if b > 2k — 2.

Proposition 6. If b > 2k — 2, then y, > 0 is facet-defining for every vertex uw € R'. Furthermore,
the condition is tight.

Proof. First we consider point (0,0). We also define » — 1 points (0,¢;) for every vertex i €
R\ {u}. Based on Definitions [5| and (6], we construct " points as follows: (i) qs(;) for every vertex
J € R"\ Ng(u), and (ii) hy sy for every vertex j € Ng(u) N R'. Figure @presents r’ + r affinely
independent points that satisfy the inequality at equality. We also define o := |R"\ Ng(u)|. Without
loss of generality, we label (i) vertices of the set R’ \ Ng(u) from 1 to «, and (ii) vertices of the set
R'N Ng(u) from a4+ 1 to . We finally show that if b < 2k — 3, then there is an instance of the
maximum anchored k-core problem for which the inequality is not facet-defining. The instance is
provided in Appendix A. O
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¢l

1 2 @ a+1 a+2 r’ g(u) 41 e 2 g(u) — 1 g(u) +1 v 4
1 [ 0 0 0 o o
2 0 0 0 0 0
flu) —1 I 0 0 0 0 0 0
F(u) 1 1 1 1 0
Flu) +1 0 0 0 0 0
a 0 0 0 0 0
aF1 0
a+2 0 I 0 0
r/ 0
() 0 0 I 0 0 0 K 0 0 0 0 0 0 0
N 1 1 r 1 41 1 41
r+1 ay a5 e P a1 P ot Y hu/r’ 0
’ ’ ’ / /
2 r' 42 42 r'4+2 r'42 r' 42 42
T+ 2 a3 a3 a4 P, a1 a2 L 0
) g(u)—1 g(u)—1 g(u)—1 g(u)—1 g(u)—1 g(u)—1 i
g(u) =1 |af a3 B 1 hat1 P, a+2 e R 0
g(u)+1 g(u)+1 g(u)+1 g(u)+1 g(u)+1 g(u)+1
g(u) +1 ay a5 s a4 R a1 R a2 s L o
: ; ; e ; - - . ; :
i T 4r T4 . 4 T 4r T 4r L 4
A a a2 9o P a1 P ot P! 0

Figure 6: A collection of 7’ + r affinely independent points satisfying constraints y, > 0 at equality for every vertex u € R'.




Next proposition shows under what conditions the budget constraint is facet-defining.
Proposition 7. If k <b<r —1, then the budget constraint is facet-defining for Py p(G).

Proof. Figure shows r’ +r affinely independent points that satisfy inequality at equality. We
first note that the summation of the bottom part of each column of matrix W equals b (see caption
of Figure m for a description of submatrix @Q,x,/). Now, we show that these points are affinely
independent. Let c1,ca,.. ., ¢4 be the columns of matrix W in Figure m We are to show that

’ ’
r +r r 4r

Z >\iCi = 0, and Z )\i = 0, (5)
i=1 i=1

imply A\; = 0 for every j € {r+1,r42,...,r +r}. By the first equality of line (5) for the top-right
of matrix W, we have A\,41 = A\py2 = -+ = Ay = 0 because columns of the identity submatrix
I, are linearly independent. Columns of the bottom-left submatrix of W are linearly independent
because the submatrix is the transpose of the non-singular matrix M in the proof of Corollary 4.4
in [Nemhauser and Trotter| (1974). We note that k and ¢ of their paper are defined as k := b+ 1

and ¢ := r with b and 7 in our paper. O
OT'/XT' ‘ I7"
w
(1 —T)p4 Lby1)x(r—(b+1)) Orer
X7
O(r—(b+1)) x (b+1) L+

Figure 7: r’ + r affinely independent points that satisfy inequality at equality. Here, L is a

matrix with r — (b41) columus of form (1,---,1,0, O)bT+1- Matrices 1 and O represent matrices with
all 1 and all O entities, respectively. Square matrix I represents the identity matrix. Further, @

represents vectors i, g, - - . , G where g; € {0,1}" is the subvector of ¢; € {0,1}"' " with q{ = qZIH

foralli e {1,2,...,r"} and j € {1,2,...,r}.

6 More Inequalities and Fixings

In this section, we propose valid and supervalid inequalities as well as fixing procedures to strengthen
our reduced model. In Section[7] we will test the efficiency of these inequalities and fixing procedures
computationally. Proposition [8| proposes a new set of valid inequalities and the condition under
which the inequalities are facet-defining.

Proposition 8. Let v € R’ be a vertex with deg(v) = k. Then for every vertex u € Ng(v) N R/,
inequality x, < T, + yy 18 (1) valid and (i) facet-defining if b > 2k — 2. The condition is tight.

Proof. First, we show that the inequality is valid. Let (C, A) be an anchored k-core for graph G,
and let v € R’ be a vertex with deg(v) = k and vertex u € N, (G). Furthermore, let (&, ¢) be the
point corresponding to (C, A). If v ¢ C, then the inequality holds trivially because %, = 0. Now,
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suppose that v € C'. Then all neighbors of vertex v must belong to C' U A. This means that (Z, )
satisfies the inequality for every vertex u € Ng(v).

Now, we prove the second claim. We note that points (i) (0,0)7 and (ii) (0, e;)T for every vertex
j € R\ {u} satisfy the inequality at equality. Based on Definitions [5{ and @ we construct 7’ points
as follows: (i) qy(;) for every vertex j € R'\ Ng(v), and (ii) h, s(;) for every vertex j € Ng(v)NR'.

We can see that the points are affinely independent by the linear independence of all nonzero
points subtracted by point (0,0)7.

Figure [8| presents 7’/ + r affinely independent points that satisfy constraints x, < x, + v, for
vertex v € R’ with deg(v) = k and a vertex u € Ng(v) N R'. Without loss of generality, we assume
that (i) f(v) = f(u) + 1 and (ii) f(u), f(v) + 1, f(v) +2,..., f(v) + k — 1 represent labels of all
neighbors of vertex v.

We finally show if b < 2k — 3, then there is an instance of the maximum anchored k-core problem
for which the inequality is not facet-defining. The instance is provided in Appendix A. O

Proposition |§| proposes a set of supervalid inequalities (i.e., inequalities that might cut off some
integer feasible solutions, but at least one optimal solution remains (see Definition )

Proposition 9. For any vertex v € V' and vertex u € V, suppose that
o deg(u) < k, and
* Ng(u)\{v} C Nea(v) \ {u}.

Then x, + Yy > Yy s a supervalid inequality with respect to objective function .

Proof. Let (&,9) be an optimal solution of the anchored k-core problem. Furthermore, suppose
that deg(u) < k and Ng(u) \ {v} C Ng(v) \ {u} holds for arbitrary vertices v € V and v € V. If
(i) gu = 0, or (ii) g, = 1 and &, = 1, or (iii) g, = 1 and ¢, = 1, then &, + §, > ¢, holds, and
we are done. Now suppose that ¢, = 1 and &, = 0 and ¢, = 0. We define solution (z*,y*) as
follows: (i) 7 = &; for all 4 € V, (ii) yf = g; for all i € V' \ {u, v}, and (iii) y; = 0 and y} = 1.
As x* = I, the objective values corresponding to points (z*,y*) and (&,§) are equivalent. Thus,
(z*,y*) is optimal. Now we show that point (z*,y*) is a feasible solution. The point satisfies degree
constraints as Ng(u) \ {v} C Ng(v) \ {u} and deg(u) < k. The conflict constraints are
satisfied by construction. We finally show that it satisfies the budget constraint as follows.

dovi=vityst Y wi=vatut Y Gi=ftiut Y Gi=) §i<bh

eV i€V \{u,v} i€V \{u,v} i€V \{u,v} i€V

This concludes the proof. O
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Figure 8: A collection of 7’ + r affinely independent points satisfying constraint x, < z, + 3, at equality.




Proposition [10] provides a fixing procedure for y variables.

Proposition 10. Let v € V be a vertex with deg(u) < k for every vertex u € N(v). Then there
exists an optimal solution (x*,y*) with y% = 0.

Proof. Let (&,7) be an optimal solution of the anchored k-core problem. If g, = 0, then we define
x* := & and y* := § and we are done. Now suppose that g, = 1. We define solution (z*,y*) as
follows: (i) z* = &, (ii) y} = ¢; for every vertex i € V' \ {v}, and (iii) y} = 0. As z* = &, the
objective values corresponding to points (x*,y*) and (Z, §) are equivalent. Now we show that point
(x*,y*) is also a feasible solution. The point satisfies the degree constraints and the conflict
constraints by Remark [1] It suffices to show that the point satisfies the budget constraint

as follows.
Sur=us+ >, vi=vi+ >, Gi<iet+ >, Gi=> Gi<b
i€V ieV\{v} i€V\{v} ieV\{u} i€V
This concludes the proof. O

Proposition proposes a fixing procedure for fixing x variables to zero when b < k. This is
a reasonable assumption as we observe benchmark instances with b < k in [Zhang et al. (2017).
This fixing procedure finds a set of vertices U C V with degree at least k such that any solution
(C, A) to the anchored k-core problem satisfies U N C = (). Figure |§| illustrates two instances of the
anchored k-core problem where Proposition yields fixings. On the left side of Figure@ one can
fix variable 2 to zero for vertex 1 because we do not have enough budget to anchor (or buy) both
2 and 3 for activating vertex 1 as a vertex in a k-core. On the right side of Figure [0] we observe
that the fixing can be applied iteratively to fix vertices 2, 3, and 1.

Figure 9: Fixing procedure of Proposition : (left) variable z is fixed to zero for vertex 1 in an
anchored k-core instance with k = 2 and b = 1; (right) for an anchored k-core instance with k =4
and b = 2, (i) we first fix variables x5 and 3 to zero for vertices 2 and 3, respectively; and then (ii)
we fix variable x; to zero because o, x3, 19, and x17 are fixed to zero and budget b is less than k.

Proposition 11. Letv € R, and S, = Ng(v)NQ, where Q is a set of vertices for which x variables
are not fized to zero. If |S,| + b < k, then inequality x,, < 0 is valid.

Proof. By the contradiction. Suppose that there exists a solution (&,7) with &, = 1 for a vertex
v € V with |S,| + b < k. By constraints (1b]), we have

> (Gt Gu) > ki

uENg(v)
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By the definition of S,, we have

> d, < S (6)

uENg(v)

Furthermore, we have

> <Y Gu<h (7)

uENg(v) ueV

Here, the first inequality holds because § > 0. The second inequality holds by budget con-

straint .
By inequalities @ and , we have

D (Futdu) < [Su]+0. (8)

uENgG(v)

This is a contradiction as

k=kiy < D (Butiu) <[So|+b<k.
uENg(v)

Here, the first equality holds because &, = 1. The first inequality holds by constraints . The
second inequality holds by inequality . The last inequality holds by the assumption. O

On the left side of Figure [0} we have @ = 0 and S; = 0; thus, k =2 > 041 = |S;| + b and we
can safely fix x7 to zero. On the right side of Figure |§|, we first note that Sy = S3 = {1}. Since
k=4>14+2=|S|+band k =4 > 142 =|S3]+ b, we can fix variables zo and z3 to zero,
respectively. Then we can fix 21 to zero as k=4 >0+ 2= |S1| +b.

7 Computational Experiments

In this section, we computationally compare the performance of the reduced model with the
naive formulation as well as two existing heuristic approaches RCM and OLAK. We also test
the computational performance of the inequalities and fixing procedures proposed in Section[6] We
run our experiments on two sets of benchmark instances whose details are provided in Table[1] All
experiments are conducted on a machine running Red Hat Enterprise Linux Workstation x64 version
7.6 with an Intel(R) Core(TM) i7-9800X CPU (3.8Ghz, 19.25MB, 165W) using 1 core with 32GB
RAM. We employ Python to implement our algorithms and mathematical models. We use Gurobi
9.5 as the integer programming (IP) solver. Furthermore, we set a time limit (TL) of 3,600 seconds
for all of our computational experiments. Our codes, data, and results are available at https:
//github.com/samuel-kroger/Maximizing-resilience-in-large-scale-social-networks.
Table[1| provides information about two sets of benchmark instances from Laishram et al.| (2020)
and |Zhang et al| (2017). These instances are available at the Stanford Large Network Dataset Col-
lection (SNAP) (Leskovec and Krevl, |2014) and the Network Repository (NR) (Rossi and Ahmed)|
2015). Columns abv and src represent abbreviations of the instances and their sources, respectively.
Number of vertices and number of edges are denoted in columns n and m, respectively. Columns
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davg and dpqee indicate the average degree of vertices and the maximum degree of vertices, re-
spectively. Columns k4. and k,.q represent the highest value of k for which the k-core of the
graph is non-empty and the median value of k£ for which the k-core of the graph is non-empty,
respectively. We note that Laishram et al.| (2020) set the value of k to kjeq in their experiments.
In Tables RCM instances of Laishram et al.| (2020) are provided above the horizontal line, and
OLAK instances of [Zhang et al.| (2017)) are listed below the horizontal line.

Table 1: Benchmark instances of RCM (Laishram et al.l [2020) and OLAK (Zhang et al., 2017). We
report abbreviation (abv), source of datasets (src), number of vertices (n), number of edges (m),
average degree (dqug), maximum degree (dimqy ), maximum possible k (Kyqz), and median & (kpea)-

Instance abv sre n m  daug Admaz  Emaz  Kmed
facebook-combined FC SNAP 4,039 88,234 25 1,045 115 17
CA-HepPh HP SNAP 12,006 118,489 5 491 238 4
socfb-Syracuse FS NR 13,653 543,982 62 1,340 75 46
socfb-Northeastern | FN NR 13,882 381,934 42 968 43 33
CA-CondMat CM SNAP 23,133 93,439 5 279 25 4
Brightkite-edges BK SNAP 58,288 214,078 2 1,134 52 2
Flickr FL. SNAP 105,938 2,316,948 7 5,425 573 5
soc-catster CA NR 149,684 5,448,197 22 80,634 419 21
Gowalla-edges GW SNAP 196,591 950,327 3 14,730 51 3
ca-citeseer CS NR 227,320 814,134 4 1,372 86 3
com-dblp DB SNAP 317,080 1,049,866 4 343 113 3
soc-Dogster DO NR 426,816 8,543,549 12 46,503 248 12
soc-TwitterHiggs TH NR 456,631 12,508,442 18 51,386 125 17
web-Google GO ©SNAP 875,713 4,322,051 5 6,332 44 4
com-Youtube YT SNAP 1,134,890 2,987,624 1 28,754 51 1
web-Hudong HU NR 1,974,655 14,428,382 5 61,440 266 5
web-BaiduBaike BB NR 2,140,198 17,014,946 4 97,848 78 3

7.1 Reduced model vs. naive model

Table [2[ compares the computational performance of the reduced model with that of the naive
one One can observe that the reduced model outperforms the naive formulation in all but one
of the instances by either time or optimality gap. While the naive model struggles or fails to solve
the problem for CA, DO, TH, GO, HU, and BB in RCM benchmark instances (above the horizontal
line), the reduced model solves all of them in the time limit. When time limit is reached for both
models in FS and FN (from RCM instances) and GW and YT (from OLAK instances), the reduced
model reports a smaller optimality gap. However, the naive model reports a smaller gap for BK
and FL from OLAK instances. In comparison to the naive model, we observe that the number of
variables in the reduced model is decreased by at least 69.31% and 47.69% for the RCM instances
and the OLAK instances, respectively. Interestingly, one can see that the number of variables is
decreased by 99.74% for FL from RCM instances!
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Table 2: Results for reduced model vs. naive model under a 3600-second time-limit (TL). We report
the number of branch-and-bound nodes (B&B), the percentage of the optimality gap (gap (%)),
and the run time in seconds (time) for both models. Last column shows the percentage of reduction
in number of variables. MEM denotes a memory crash during the IP solve process.

Naive Model Reduced Model reduction in
Abv  k b #vars  B&B time gap (%) #vars  B&B time gap (%) | #vars (%)
FC 17 250 8,078 1 7.37 0.00 2,479 1 0.86 0.00 69.31
HP 4 250 24,012 1 5.45 0.00 6,049 1 0.82 0.00 74.81
FS 46 250 27,306 1,333 TL 1.69 8,085 11,269 TL 1.22 70.39
FN 33 250 27,764 7,852 TL 0.47 8,120 35,586 TL 0.45 70.75
CM 4 250 46,266 1 8.21 0.00 10,848 1 1.25 0.00 76.55
BK 2 250 116,456 1 16.40 0.00 25,887 29 2.53 0.00 7.7
FL 4 250 211,876 1 50.94 0.00 554 0 33.77 0.00 99.74
CA 21 250 299,368 2,255 TL 0.07 72,742 1 1,083.53 0.00 75.70
GW 3 250 393,182 1 108.17 0.00 100,437 1 17.74 0.00 74.46
CS 3 250 454,640 1 137.67 0.00 82,847 1,260 18.42 0.00 81.78
DB 3 250 634,160 1 203.94 0.00 124,059 1,950 21.33 0.00 80.44
DO 12 250 853,632 MEM MEM MEM 221,076 107 487.00 0.00 74.10
TH 17 250 913,262 MEM MEM MEM 234,446 3,879 1,259.82 0.00 74.33
GO 4 250 | 1,751,426 MEM MEM MEM 429,949 2474 288.57 0.00 75.45
HU 5 250 | 3,949,310 MEM MEM MEM 959,493 1,515 748.11 0.00 75.70
BB 3 250 | 4,280,396 MEM MEM MEM 895,053 1 967.96 0.00 79.10
FC 20 20 8,078 33,101 396.51 0.00 2,672 62,619 299.51 0.00 66.92
BK 20 20 116,456 1,835 TL 5.43 60,920 2,171 TL 24.13 47.69
FL 20 20 211,876 1 2913.83 0.00 95,668 69 TL 0.03 54.85
GW 20 20 393,182 30 TL 5.43 200,539 2,171 TL 4.10 49.00
DB 20 20 634,160 MEM MEM MEM 329,837 1 TL 7.85 47.99
YT 20 20 | 2,269,780 1 TL 3.53 | 1,138,333 14 TL 1.35 49.85

7.2 Reduced model vs. heuristic approaches

Table [3| compares the computational performance of our reduced model against two existing heuris-
tic approaches: OLAK (Zhang et al.l |2017) and RCM (Laishram et al., 2020). We bold the best
objective value and fastest time for each instance. For every instance, the reduced model has a
strictly better (larger) objective value than OLAK and RCM. The reduced model is the supe-
rior approach even when the solver cannot prove optimality for FS and FN instances from the
RCM instances (Laishram et al., [2020) and BK, FL, GW, DB, and YT instances from the OLAK
instances (Zhang et al.l 2017).

There are cases in which OLAK and RCM are terminated significantly faster than the reduced
model, notably F'S and FN from the RCM instances (Laishram et al., 2020) and FC from the OLAK
instances (Zhang et al.| [2017)). However, we observe a considerable difference between the objective
values of the reduced model and the heuristic approaches in the aforementioned instances. In a
time limit of 3,600 seconds for the IP solver, we see the superiority of the reduced model over the
heuristic approaches in (i) objective values for all instances; and (ii) both objective value and run
time for 13 out of 22 instances.
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Table 3: Results for reduced model vs. OLAK and RCM heuristics. We report the best objective
value (obj), and the run time in seconds (time). We set a time limit of 3,600 seconds for the reduced

IP model. MEM denotes a memory crash during the heuristic process.

Reduced Model OLAK RCM
Abv &k b obj time obj time obj time
FC 17 250 2,533 0.86 2,225 117.90 2,472 0.21
HP 4 250 6,978 0.82 6,591 188.76 6,966 0.66
FS 46 250 7,641 TL 7,149 975.03 7,006 16.92
FN 33 250 7,586 TL 7,175 681.55 7,052 12.28
CM 4 250 13,939 1.25 13,802 188.76 13,911 1.96
BK 2 250 35,267 2.53 35,140 478.00 35,266 5.82
FL 4 250 105, 388 33.77 105,391  5,591.92 105,293 20.53
CA 21 250 79,561 1,083.53 79,201  9,656.34 79,395 1,071.30
GW 3 250 107,299 17.74 107,082 1,984.72 107,260 114.44
CS 3 250 153,765 18.42 153,477 2,135.08 153,677 97.49
DB 3 250 204,857 21.33 204,529 2,865.69 204,775 169.02
DO 12 250 215,343 487.00 214,806 16,824.92 215,197 551.24
TH 17 250 232,329 1,259.82 231,569  26,830.27 232,025 1,249.98
GO 4 250 494,579  288.57 493,229 11,167.51 494,044 5,015.32
HU 5 250 | 1,056,519  748.11 | 1,055,814 36,594.14 | 1,056,330  3,827.08
BB 3 250 | 1,278,551 967.96 | 1,278,231 48,052.84 | 1,278,526  2,327.67
FC 20 20 1,967 299.51 1,894 9.76 1,902 1.81
BK 20 20 1,181 TL 998 20.46 957 1,601.90
FL 20 20 15,833 TL 15,822 405.87 MEM MEM
GW 20 20 8,433 TL 8,161 103.62 MEM MEM
DB 20 20 3,123 TL 3,066 116.67 MEM MEM
YT 20 20 19,088 TL 18,939 320.71 MEM MEM

7.3 Experiments with inequalities of Proposition

In this section, we test the practicality of the inequalities proposed in Proposition [8] Table 4] com-
pares the performance of the reduced model without and with the inequalities. In our experiments,
all of these inequalities are added upfront. While we cannot conclude that the inequalities are
helpful for RCM instances (above the horizontal line), we observe gap improvements for OLAK
instances (below the horizontal line) when time-limit is reached (i.e., BK, FL, GW, DB, and YT).
Furthermore, we see that the root LP relaxations are improved for most of the instances after
adding these inequalities. We also observe a drastic decrease in number of the branch-and-bound
nodes for CS, DB, DO and HU in the set of RCM instances.

7.4 Experiments with supervalid inequalities of Proposition 9]

Table [p] summarizes the computational efficiency of the inequalities introduced in Proposition [9} In
our computational experiments, all of these inequalities are added upfront. While we observe gap
improvements for FS and FN from the RCM instances and BK and GW from the OLAK instances,
we see no remarkable time or gap improvement for other instances. Furthermore, we do not observe
a significant improvement in the root LP relaxations. However, we see that adding the inequalities
significantly decreases the number of branch-and-bound nodes for CS, DB, DO, and HU from the
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Table 4: Results for the reduced model without and with inequalities of Proposition [§| under a
3600-second time-limit (TL). We report the root LP relaxation (root), number of variables (#vars),
number of branch-and-bound nodes (B&B), preprocess time to find inequalities in seconds (ptime),
time to solve the IP model in seconds (IP time), and the percentage of the optimality gap (gap
(%)) for both models. The number of the added inequalities is shown by #ineq.

Reduced model w/o inequalities Reduced model w/ inequalities
Abv k& b root  B&B time gap (%) | Ftineq root ~ B&B ptime IP time gap (%)
FC 17 250 2,551.96 1 0.86 0.00 683 2,549.43 1 0.01 0.75 0.00
HP 4 250 7,114.50 1 0.82 0.00 748 7,065.88 1 0.02 0.83 0.00
FS 46 250 8,317.44 11,269 TL 1.22 | 1,396 8,264.02 8,617  0.02 TL 1.10
FN 33 250 8,187.01 35,586 TL 0.45 | 1,136 8,125.08 36,452 0.02 TL 0.42
CM 4 250 14,343.84 1 1.25 0.00 1,400 14,141.32 1 0.03 1.27 0.00
BK 2 250 36,099.50 29 2.53 0.00 | 2,360 35,400.50 1 0.07 2.43 0.00
FL 4 250 105,388.00 0 33.77 0.00 3 105,388.00 0 0.12 33.28 0.00
CA 21 250 80,801.72 1 1,083.53 0.00 | 1,894 80,287.70 1 0.16  1,097.95 0.00
GW 3 250 113,017.29 1 17.7 0.00 | 11,230 108,957.15 1 0.28 18.88 0.00
CS 3 250 157,856.31 1,260 18.42 0.00 | 8,966 155,390.27 1 0.36 17.49 0.00
DB 3 250 210,415.12 1,950 21.33 0.00 | 11,353 206,937.42 1 0.47 19.44 0.00
DO 12 250 222,144.93 107 487.00 0.00 | 9,207 218,699.11 1 0.49 489.30 0.00
TH 17 250 239,766.52 3,879 1,259.82 0.00 | 9,664 236,349.85 2,604 0.51 1,199.50 0.00
GO 4 250 519,086.05 2,474 288.57 0.00 | 45,995 508,224.64 2,020 1.30 308.73 0.00
HU 5 250 | 1,086,242.55 1,515 748.11 0.00 | 42,459 1,064,290.07 1 2.44 759.97 0.00
BB 3 250 | 1,297,872.26 1 967.96 0.00 | 34,924 1,281,799.13 1 2.58 988.03 0.00
FC 20 20 2,275.17 62,619 299.51 0.00 745 2,228.08 55,105 0.01 273.12 0.00
BK 20 20 3,524.91 2,171 TL 24.13 | 4,005 3,368.78 4,055 0.05 TL 19.45
FL 20 20 16,305.32 69 TL 0.03 | 8,529 16,237.78 54 0.11 TL 0.01
GW 20 20 16,391.29 2,171 TL 4.10 | 16,694 15,663.16 1,327  0.18 TL 3.80
DB 20 20 7,285.80 1 TL 7.85 | 26,347 6,970.54 1 0.28 TL 5.71
YT 20 20 32,862.46 14 TL 1.35 | 25,026 31,579.82 15 0.40 TL 1.31

RCM instances. Interestingly, one can notice that FL from the OLAK instances can be solved
to optimality at the root node of the branch-and-bound tree after 2,620.42 seconds; however, this
requires 2,717.32 seconds of preprocess for adding the inequalities.

7.5 Experiments with fixing procedure of Proposition

Table[f]reports the fixing percentages and computational performance of the reduced model with the
fixing procedure of Proposition We observe that the fixing procedure fixes at most 32.13% and
34.70% of the y variables of the reduced model for the RCM and the OLAK instances, respectively.
When time limit is reached, we see that the fixing procedure reduces the optimality gap for F'S and
FN from the RCM instances and BK, GW, DB, and YT from the OLAK instances. Nevertheless,
we do not observe a significant change in run times when the problem is solved in time limit.

7.6 Experiments with fixing procedure in Proposition

In this section, we test the computational performance of the fixing procedure presented in Propo-
sition To respect the condition of the proposition, we consider instances with & = 5 and
b € {1,5,10,15} that are also reported by |Zhang et al.| (2017). While the percentage of fixing is
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Table 5: Experiments with the supervalid inequalities of Proposition [9] under IP time limit of 3,600
seconds (TL). We report the LP root relaxation (root), number of branch-and-bound nodes (B&B),
preprocess time to find inequalities in seconds (ptime), time to solve the IP model in seconds (IP
time), and the percentage of the optimality gap (gap (%)). Column #ineq shows the number of
supervalid inequalities added to the reduced model.

Reduced model w/o inequalities Reduced model w/ inequalities
Abv &k b root  B&B IP time gap (%) #ineq root  B&B ptime IP time gap (%)
FC 17 250 2,551.96 1 0.86 0.00 3,049 2,551.96 1 0.86 1.00 0.00
HP 4 250 7,114.50 1 0.82 0.00 2,062 7,114.50 1 0.12 0.88 0.00
FS 46 250 8,317.44 11,269 TL 1.22 8,188 8,317.44 9,111 26.16 TL 1.07
FN 33 250 8,187.01 35,586 TL 0.45 7,184 8,187.01 28,929 5.94 TL 0.39
CM 4 250 14,343.84 1 1.25 0.00 4,339 14,343.73 1 0.23 1.59 0.00
BK 2 250 36,099.50 29 2.53 0.00 1,587 36,099.50 33 0.20 2.64 0.00
FL 4 250 105388.00 0 33.77 0.00 4 105388.00 0 0.01 34.55 0.00
CA 21 250 80,801.72 1 1,083.53 0.00 18,587 80,801.72 12 236 1,112.24 0.00
GW 3 250 113,017.29 1 17.74 0.00 17,892 113,014.90 1 1.12 18.56 0.00
CS 3 250 157,856.31 1,260 18.42 0.00 22,010 157,856.05 1 1.3 17.6 0.00
DB 3 250 210,415.12 1,950 21.33 0.00 25,785 210,412.36 1 1.71 22.04 0.00
DO 12 250 222,144.94 107 487.00 0.00 56,461 222,144.91 1 4.93 494.11 0.00
TH 17 250 239,766.52 3,879 1,259.82 0.00 101,693 239,766.50 2,269 14.48  1,378.69 0.00
GO 4 250 519,086.05 2,474 288.57 0.00 512,588 519,085.75 1,721 37.76 979.75 0.00
HU 5 250 | 1,086,242.55 1,515 748.11 0.00 108,707  1,086,242.44 1 31.18 820.09 0.00
BB 3 250 | 1,297,872.26 1 967.96 0.00 40,722 1,297,871.65 1 9.00 1,047.43 0.00
FC 20 20 2,275.17 62,619 299.51 0.00 3,662 2,275.17 98,168 1.28 564.05 0.00
BK 20 20 3,524.91 2,171 TL 24.13 325,652 3,524.91 1,144 87.07 TL 18.51
FL 20 20 16,305.32 69 TL 0.03 413,293 16,305.32 1 2,717.32  2,620.42 0.00
GW 20 20 16,391.29 2,171 TL 4.10 559,498 16,391.29 30 132.68 TL 3.94
DB 20 20 7,285.80 1 TL 7.85 1,332,530 7,285.80 1 469.37 TL 83.75
YT 20 20 32,862.46 14 TL 1.35 | 12,136,498 24,721.94 1 861.10 TL 23.50

not significant for DB and YT, we observe that the fixing procedure helps decrease either the solve
time or the optimality gap. Interestingly, the fixing procedure makes DB with k& = 20 and b = 5
solvable in just 13.02 seconds.

7.7 Experiments with best computational improvements

Based on our computational experiments with inequalities and fixing procedures proposed in Sec-
tion [6] we conduct a final set of experiments with “best” of them: (i) inequalities of Proposition
and (ii) fixing procedure of Proposition [10] Table [§|summarizes the computational performance of
the reduced model with the aforementioned inequalities and fixing procedure. For each instance,
we notice that a combination of these tricks does not work better than the best of them.
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Table 6: Experiments with the fixing procedure of Proposition under IP time limit of 3,600
seconds (TL). We report number of variables (#vars), number of branch-and-bound nodes (B&B),
preprocess time to find inequalities in seconds (ptime), time to solve the IP model in seconds (IP
time), and the percentage of the optimality gap (gap (%)). Last column shows the percentage of
reduction in number of variables.

Reduced model w/o fixing Reduced model w/ fixing reduc. in
Abv k& b #vars  B&B  IP time gap (%) #vars  B&B ptime IP time gap (%) | #vars (%)
FC 17 250 2,479 1 0.86 0.00 2,479 1 0.08 0.87 0.00 0.00
HP 4 250 6,049 1 0.82 0.00 5,301 1 0.12 0.83 0.00 12.37
FS 46 250 8,085 11,269 TL 1.22 7,880 8,699 0.56 TL 1.07 2.54
FN 33 250 8,120 35,586 TL 0.45 7,881 37,310 0.39 TL 0.43 2.94
CM 4 250 10,848 1 1.25 0.00 9,243 1 0.12 1.23 0.00 14.80
BK 2 250 25,887 29 2.53 0.00 | 25,057 29 0.27 2.53 0.00 3.21
FL 4 250 554 0 33.77 0.00 376 0 3.18 34.04 0.00 32.13
CA 21 250 72,742 1 1,083.53 0.00 | 69,460 1 5.65 1,062.47 0.00 4.51
GW 3 250 100,437 1 17.74 0.00 | 96,446 1 1.26 17.78 0.00 3.97
CS 3 250 82,847 1,260 18.42 0.00 | 81,277 1,716 1.23 19.95 0.00 1.90
DB 3 250 124,059 1,950 21.33 0.00 | 122,139 1,950 1.63 20.86 0.00 1.55
DO 12 250 221,076 107 487.00 0.00 | 213,831 107 10.49 476.43 0.00 3.28
TH 17 250 234,446 3,879 1,259.82 0.00 | 230,594 3,879 18.1  1,262.45 0.00 1.64
GO 4 250 429,949 2,474 288.57 0.00 | 410,349 2,747 6.35 295.82 0.00 4.56
HU 5 250 959,493 1,515 748.11 0.00 | 926,618 1,515 24.80 768.75 0.00 3.43
BB 3 250 895,053 1 967.96 0.00 | 847,462 1 30.57 995.88 0.00 5.32
FC 20 20 2,672 62,619 299.51 0.00 2,671 62,619 0.07 310.30 0.00 0.04
BK 20 20 60,920 2,171 TL 24.13 | 40,544 3,352 0.21 TL 19.15 33.45
FL 20 20 95,668 69 TL 0.03 | 88,994 69 2.88 TL 0.03 6.98
GW 20 20 200,539 2,171 TL 4.10 | 139,488 2,161 0.92 TL 3.94 30.44
DB 20 20 329,827 1 TL 7.85 | 215,787 1 0.98 TL 7.27 34.58
YT 20 20 | 1,138,333 14 TL 1.35 | 743,326 14 3.75 TL 1.33 34.70

Table 7: Experiments with fixing procedure in Propositionfor k=20and b € {1,5,10,15} under
IP time limit of 3,600 seconds (TL). We report number of variables (#vars), number of branch-
and-bound nodes (B&B), preprocess time to fix x variables in seconds (ptime), time to solve the IP
model in seconds (IP time), and the percentage of the optimality gap (gap (%)) for both models.

Reduced model w/o fixing Reduced model w/ fixing reduction
Abv kb #vars  B&B time gap #vars  B&B ptime IP time gap | in #vars (%)
1 1 0.44 0.00 2,241 1 0.40 1.77 0.00 16.13
=4 B B B
FC 2 5 2,672 3,014 7.73 0.00 2,516 2,576 0.38 2.83 0.00 5.84
10 10,320  30.13  0.00 2,647 6,472 0.17 27.12  0.00 0.94
15 28,750 83.31 0.00 2,661 31,880 0.17 64.83 0.00 0.41
1 1 7.14  0.00 57,498 1 0.76 2.97  0.00 5.62
5 19,304 TL 10.84 58,690 27,546 0.74 TL 11.70 3.66
BK 20 10 60,920 4,670 TL 15.13 60,189 2,614 0.74 TL 14.79 1.20
15 5,376 TL 17.37 60,833 3,262 0.24 TL 18.95 0.14
1 1 44.16 0.00 189,269 1 5.61 10.2 0.00 5.62
5 13,199 TL  1.17 193,384 29,673 5.37 TL  1.42 3.57
GW 20 4y | 200539 g TL 343 | 197,822 2559  5.34 TL  2.26 1.35
15 2,886 TL 3.62 200,138 2,232 2.22 TL 3.68 0.20
1 1 188.82 0.00 314,034 0 2.13 8.57  0.00 4.79
5 699 TL 2.31 314,284 4,451 2.90 10.12 0.00 4.72
DB 20 10 329,837 1 TL 3.75 316,945 1,985 4.51 TL 1.89 3.91
15 1 TL 5.52 |93326,178 25 2.96 TL 5.15 1.11
1 1 17797  0.00 | 1,117,600 1 1424 47.31 0.00 1.82
5 1,580 TL 0.48 | 1,124,150 10,311 13.91 TL 0.20 1.25
YT 200, | 1,138,333 34 TL  1.09 | 1,131,648 1,693 12.90 TL  1.05 0.59
15 21 TL 1.18 | 1,136,342 26 9.07 TL 1.18 0.17




Table 8: Experiments with best computational improvements under IP time limit of 3,600 seconds
(TL). We report number of variables (#vars), number of branch-and-bound nodes (B&B), prepro-
cess time to find inequalities in seconds (ptime), time to solve the IP model in seconds (IP time),
and the percentage of the optimality gap (gap (%)). Last column shows the percentage of reduction
in number of variables.

Reduced model w/o improvements Reduced model w/ improvements
Abv  k b root  B&B IP time gap (%) root ~ B&B ptime IP time gap (%)
FC 17 250 2,551.96 1 0.86 0.00 2,549.43 1 0.08 0.77 0.00
HP 4 250 7,114.50 1 0.82 0.00 7,065.88 1 0.14 0.81 0.00
FS 46 250 8,317.44 11,269 TL 1.22 8,264.02 9,180 0.57 TL 1.07
FN 33 250 8,187.01 35,586 TL 0.45 8,125.08 30,346 0.42 TL 0.39
CM 4 250 14,343.84 1 1.25 0.00 14,141.32 1 0.14 1.23 0.00
BK 2 250 36,099.50 29 2.53 0.00 35,400.50 1 0.35 2.39 0.00
FL 4 250 105,388.00 0 33.77 0.00 105,388 0 3.33 32.81 0.00
CA 21 250 80,801.72 1 1,083.53 0.00 80,287.70 1 5.88 1,067.39 0.00
GW 3 250 113,017.30 1 17.74 0.00 108,957.15 1 1.57 18.53 0.00
CS 3 250 157,856.31 1,260 18.42 0.00 155,390.27 1 1.61 13.68 0.00
DB 3 250 210,415.12 1,950 21.33 0.00 206,937.42 1 2.09 19.22 0.00
DO 12 250 222,144.93 107 487.00 0.00 218,799.11 1 10.85 471.50 0.00
TH 17 250 239,766.52 3,879 1,259.82 0.00 236,349.85 2,604 17.95 1,211.39 0.00
GO 4 250 519,086.05 2,474 288.57 0.00 508,224.64 2,020 7.30 318.20 0.00
HU 5 250 | 1,086,242.55 1,515 748.11 0.00 | 1,064,290.07 1 2643 753.17 0.00
BB 3 250 | 1,297,872.26 1 967.96 0.00 | 1,281,799.13 1 3270 994.65 0.00
FC 20 20 2,275.17 62,619 299.51 0.00 2,228.08 55,105 0.08 271.84 0.00
BK 20 20 3,62491 2,171 TL 24.13 3,368.78 4,057 0.25 TL 19.45
FL 20 20 16,305.32 69 TL 0.03 16,237.78 54 2.92 TL 0.01
GW 20 20 16,391.29 2,171 TL 4.10 15,663.16 1,308 1.10 TL 3.80
DB 20 20 7,285.80 1 TL 7.85 6,970.54 1 1.27 TL 5.71
YT 20 20 32,862.46 14 TL 1.35 31,579.82 15 4.16 TL 1.31

8 Conclusion and Future Work

In this paper, we propose an integer programming model for solving the anchored k-core problem
which is known as a hard combinatorial optimization problem. The number of decision variables
in the new IP formulation is at least half of the number of decision variable in a naive model of
the problem. Thanks to the small size of the proposed IP formulation, we prove that the convex
hull of all the feasible points of the problem form a full-dimensional polytope in the reduced space.
Furthermore, we show that (i) the LP relaxation of the proposed model is at least as strong as that
of the naive formulation, and (ii) multiple inequalities of the reduced IP model are facet-defining
under reasonable and mild conditions. Our numerical results show the computational superiority
of our proposed IP formulation over the naive one and two existing heuristics in the literature.
To improve the computational performance of the reduced IP model, we develop further valid and
supervalid inequalities as well as fixing procedures.

For future work, one can focus on developing novel integer programming techniques (e.g., de-
composition methods as well as new valid inequalities and fixings) to solve the unsolved instances
to optimality. Another direction can be studying other variants of the anchored k-core problem
(e.g., edge addition, edge deletion, and vertex deletion) from the lens of operations research.
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Appendix A — Examples to show tightness of conditions in

Propositions [, [5], [6],
©,

(1) (2)

©®

® @

Figure 10: An instance of the maximum anchor k-core problem with £ =3 and b =3
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A minimal description of Ps 3(G) is provided below by employing PORTA (Christof and Loebel,

2022).
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As these inequalities provide a minimal description of the anchored 3-core polytope with a
budget of 3 and the polytope is full dimensional, the following observations show the tightness of
conditions in Propositions fH6| and Proposition [§

e For Proposition 4} inequalities 1 +y1 < 1, 22 +y2 < 1, 23 +y3 < 1, or x4 + y4 < 1 are not
present.

e For Proposition |5 inequalities y5 < 1, yg < 1, y7 < 1, or yg < 1 are not present.

e For Proposition @, inequalities y; > 0, y2 > 0, y3 > 0, or y4 > 0 are not present.
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e For Proposition inequalities ©1 < xo + Y2, 1 < X3 + ¥3, T2 < X1 + Y1, T2 < T4 + Y4,
3 < Tq4+Ys, 3 < 1+ Y1, T4 < T3+ y3 and x4 < 29 + Yo are not present.

Thus, we showed that our conditions for Propositions 6] and Proposition [§ are minimal.
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