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Abstract This paper explores a class of nonlinear Adjustable Robust Optimization (ARO) problems,
containing here-and-now and wait-and-see variables, with uncertainty in the objective function and con-
straints. By applying Fenchel’s duality on the wait-and-see variables, we obtain an equivalent dual re-
formulation, which is a nonlinear static robust optimization problem. Using the dual formulation, we
provide conditions under which the ARO problem is convex on the here-and-now decision. Furthermore,
since the dual formulation contains a non-concave maximization on the uncertain parameter, we use
perspective relaxation and an alternating method to handle the non-concavity. By employing the per-
spective relaxation, we obtain an upper bound, which we show is the same as the static relaxation of
the considered problem. Moreover, invoking the alternating method, we design a new dual-based cutting
plane algorithm that is able to find a reasonable lower bound for the optimal objective value of the
considered nonlinear ARO model. In addition to sketching and establishing the theoretical features of
the algorithms, including convergence analysis, by numerical experiments we reveal the abilities of our
cutting plane algorithm in producing locally robust solutions with an acceptable optimality gap.
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1 Introduction

Mathematical optimization has become an important part of many decision-making problems in man-
agement, economics, medicine, engineering, etc. In classical optimization models, all parameters are
considered to be exactly known, resulting in deterministic problems. In real-life, however, many of the
parameters are not known at the moment of decision-making and have uncertainty in their essence. There
are various approaches for dealing with uncertainty in the optimization and mathematical modeling lit-
erature. The most commonly used ones are stochastic optimization and robust optimization.

In stochastic optimization, probabilistic information (distribution) on the uncertain parameters is re-
quired and the decision-maker aims to optimize expected objective values; for a more detailed description
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of stochastic optimization, we refer to the textbook [40] and the references therein. Obtaining the pre-
cise distribution may be challenging [12]. Furthermore, applying this approach may be computationally
difficult in some cases [41]. In contrast, Robust Optimization (RO) does not require any probabilistic
information. In RO, the best solution is chosen among those that are safe-guarded against all scenarios
in a pre-specified set, called uncertainty set.

The concept of static RO was first proposed by Soyster in the 1970s, who studied a linear optimization
problem with a box uncertainty set [42]. Later in the 1990s, static RO was formally introduced [7,8,18]
and its computational advantage has resulted in its wide usage in applications, including in portfolio
selection [26,47], scheduling [15], operations management [30], etc.

In static RO, all decision variables represent here-and-now decisions, meaning the decisions are made
before realization of the uncertain parameters [5]. However, in many practical applications, the value
of some decisions can be adjusted after realization of (part of) uncertain parameters. These kinds of
decisions are called wait-and-see decisions. Adjustable Robust Optimization (ARO) is an extension of
the static RO wherein decision variables are divided into two types: here-and-now and wait-and-see [6].
In recent years, the application of ARO has been widespread in many areas such as network design [53],
location-transportation problems [32], facility location problems [17], logistics [25], chemical engineering
[24,28], radiotherapy [38], to name a few.

Although ARO improves solution quality (in the sense of being less conservative), its computational
complexity is higher than static RO and is computationally more demanding [49]. A way to approximate
an ARO problem is by restricting wait-and-see variables to have special form in the uncertain parameter,
called decision rules. In the literature many decision rules are introduced including constant [31], piece-
wise constant [36], affine [6,10], quadratic [46], and polynomial [13]. In addition to decision rules, there
are several other approximation techniques for solving linear ARO problems in the literature, including
Benders decomposition [51], finite adaptability [21], partitioning the uncertainty set [9,34], copositive
approach [48], saddle-point approximation approach [52], etc.

Most studies in ARO are focusing on linear and integer-linear [1,11,22]; for more additional details,
see the survey paper [49]. There are only a few papers devoted to the nonlinear case due to its theoretical
and computational challenges. In [44], the authors considered a nonlinear ARO problem with a polytope
uncertainty set and proposed a method to solve such problems under some quasi-convexity conditions.
ARO models with second-order cone constraints and ellipsoidal uncertainty sets are considered in [14],
where the authors show that applying affine decision rules would result in a semi-definite optimization
problem. In [39], the authors considered a nonlinear ARO model with linear uncertainty (the functions
are linear in the uncertain parameters and the uncertainty set is a polyhedron), and derived an equivalent
ARO problem, which is linear in the wait-and-see decisions.

In this paper, we show how to use duality to reformulate a general nonlinear ARO problem and solve
it. More specifically, the main contribution of our work can be summarized as follows:

– First, we consider a general nonlinear adjustable robust optimization problem. Applying Fenchel’s du-
ality and dualizing over the wait-and-see decisions, we obtain an equivalent static robust optimization
reformulation (dual reformulation). Then, we provide conditions under which the dual reformulation
is convex on decision variables.

– Second, we show under some conditions that a convex relaxation of the dual reformulation is equivalent
to approximating the ARO problem using constant decision rule.

– Finally, we design an algorithm based on the dual reformulation. The algorithm consists of two
main phases: In the first phase, we use an alternating method exploiting the structure of the dual
reformulation. We show under which conditions, the alternating method converges to a local worst-
case scenario within the uncertainty set. In the second phase, we use finite-scenario approach, given
the obtained scenarios in the first phase, to find a solution. Given this solution, we find new local
worst-case scenarios and repeat this two-phase procedure until satisfying a stopping criterion. Using
this algorithm, we have a lower bound on the original problem and obtain a locally robust solution.
We further improve the lower bound by introducing new cuts. Our computational results show that
our algorithm can provide a locally robust solution with an acceptable optimality gap.

The rest of the paper is organized as follows. In Section 2, some preliminaries and definitions from the
convex analysis and robust optimization are given. We, then, reformulate a general nonlinear adjustable
robust problem as a nonlinear static robust counterpart using Fenchel’s duality in Section 3. In Section
4, we apply a convex relaxation technique on the dual reformulation to obtain an upper bound and
show the relationship between the corresponding static robust counterpart of the ARO problem and this
relaxation. Finally, we propose a new algorithm in Section 5 to construct a lower bound and obtain a
locally robust solution. Our numerical results are presented in Section 6.
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2 Preliminaries

In this work, we use the following definitions and notations. We first recall some standard terminology
from convex analysis. The domain of a convex function g : Rnx → [−∞,∞] is defined as dom(g) = {x ∈
Rnx | g(x) < +∞}. The function g is proper if g(x) > −∞ for all x ∈ Rnx and g(x) < +∞ for at least
one x ∈ Rnx . This function is said to be closed if for each ℓ ∈ R, the sub-level set {x ∈ Rnx | g(x) ≤ ℓ}
is closed.

We use [m] to denote the set {1, 2, . . . ,m}, and [m0] to denote the set {0, 1, . . . ,m}. The column
vector of all zeros will be denoted by 0. The sets of all non-negative and all extended-real numbers are
denoted by R+ := [0,∞) and R̄ := [−∞,∞], respectively. For a given vector x ∈ Rnx , its transpose is
denoted by x⊤.

Definition 1 (Conjugate Function, [35]) The convex conjugate of a function g : Rnx → R̄ is the
function g∗ : Rnx → R̄ defined as g∗(y) := supx∈Rnx

{
y⊤x− g(x)

}
, where y ∈ Rnx .

The indicator function of a set S ⊆ Rnx , denoted by δS , is defined as

δS(x) =

{
0, x ∈ S,

∞, x /∈ S.

The support function δ∗S : Rnx → R̄ of a set S ⊆ Rnx is δ∗S(y) := supx∈S

{
y⊤x

}
, where y ∈ Rnx . It is

worth mentioning that the support function corresponding to S is the conjugate of δS .

Definition 2 (Perspective Function, [35,54]) The convex perspective of a proper, closed, and convex
function g : Rnx → R̄ is the function gper : Rnx × R+ → R̄ defined by

gper(x, t) =

{
tg
(
x
t

)
, t > 0,

δ∗dom(g∗)(x), t = 0.

The convex perspective of a proper, closed, and convex function is also proper, closed, and convex (more
precisely, jointly in (x, t)); see [35, page 35] for convexity and properness, and [35, page 67 and Theorem
13.3] for closedness.

Remark 1 A proper, closed, and convex function g conforms to the following relation with its convex
conjugate and perspective functions

gper(x, t) = sup
y

{
y⊤x− tg∗(y) | y ∈ dom(g∗)

}
.

In the literature of convex analysis, gper(x, 0) is called the asymptotic function or recession function of

g. Moreover, gper(x, 0) = lim infx′→x
t′↓0

t′g
(

x′

t′

)
[2,23]. So, we have

sup
t>0,x∈Rnx

gper(x, t) = sup
t≥0,x∈Rnx

gper(x, t),

and also

inf
t>0,x∈Rnx

gper(x, t) = inf
t≥0,x∈Rnx

gper(x, t).

Details can be found in Appendix 1. ⊓⊔

The definitions are extended to partial conjugate and perspective. The partial conjugate of a function
g : Rnx × Rny → R̄ with respect to its second argument (likewise for first argument) is the function
g∗2 : Rnx × Rny → R̄ defined as g∗2(x,w) = supy∈Rny {w⊤y − g(x, y)}, and its domain is denoted by
dom(g2∗)(x, ·). If h : Rnx × Rnu → R̄ is a proper, closed, and concave function in its second argument,
then its concave partial perspective hper : Rnx × R+ × Rnu → R̄ is defined as

hper(x, t, u) =

{
th
(
x, u

t

)
, t > 0,

−δ∗dom((−h)2∗(x,.))(u), t = 0.

Henceforth, for the ease of notation, we use 0h (x, u/0) instead of hper(x, 0, u).
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Definition 3 (Fenchel’s Dual Problem of a Convex Programming, [37,54]) Consider the fol-
lowing primal convex optimization problem:

inf
y

g0(y)

s.t. gi(y) ≤ 0, i ∈ [m],
(P)

where the functions gi : Rn → R̄, i ∈ [m0], are proper, closed, and convex. The Fenchel dual of (P) is
defined as

sup
λ,{wi}m

i=0

−g∗0(w0)−
m∑
i=1

(g∗i )
per(wi, λi)

s.t. λ ≥ 0,
m∑
i=0

wi = 0, w0 ∈ dom(g∗0),

(wi, λi) ∈ dom ((g∗i )
per) , i ∈ [m].

(D)

For the ease of notation in (D), we use λig
∗
i

(
wi

λi

)
to denote (g∗i )

per(wi, λi), even for λi = 0. So, we may

write (D) as follows:

sup
λ,{wi}m

i=0

−g∗0(w0)−
m∑
i=1

λig
∗
i

(
wi

λi

)
s.t. λ ≥ 0,

m∑
i=0

wi = 0, w0 ∈ dom(g∗0),

wi

λi
∈ dom(g∗i ), i ∈ [m],

where wi

λi
∈ dom(g∗i ) for λi = 0 means δ∗dom(gi)

(wi) <∞.

Remark 2 In problem (D), constraints corresponding to the domain are essential and in many cases, they
also lead to convex constraints for (D). Moreover, since (D) is a maximization problem, these constraints
hold explicitly. These constraints, in many cases, enable us to eliminate the variables wi. For brevity, in
[37,54] the dual problem has been written as follows:

sup
λ,{wi}m

i=0

−g∗0(w0)−
m∑
i=1

λig
∗
i

(
wi

λi

)
s.t. λ ≥ 0,

m∑
i=0

wi = 0.

⊓⊔

Definition 4 (Slater Regularity for Optimization Problem) Problem (P) is Slater regular when
there exists some feasible solution ys ∈ ∩i∈[m0]ri (dom(gi)), and gi(y

s) < 0 for all i ∈ [m].

It is important to note that if (P) is Slater regular, then the optimal values of (P) and (D) are equal
[54].

In the rest of this section, we recall definitions for robust optimization problems. The general form
of an uncertain nonlinear optimization problem is as follows

inf
x∈X

inf
y∈Y(x,u)

f0 (x, y, u) , (1)

where x ∈ Rnx is a vector containing non-adjustable (here-and-now) decisions, y ∈ Y(x, u) ⊆ Rny is
a vector containing adjustable (wait-and-see) decisions, Y(x, u) = {y ∈ Rny : fj (x, y, u) ≤ 0, j ∈ [m]},
u ∈ U ⊆ Rnu is an uncertain parameter, U is the uncertainty set, and X ⊆ Rnx is a set with additional
constraints on x.
Assumption 1 In (1), we assume that fj : Rnx × Rny × Rnu → R̄, j ∈ [m0] are convex in x, proper,
closed, and convex in y, and concave in u.

The static and adjustable robust counterparts corresponding to uncertain problem (1) can be defined
as follows.

Definition 5 (Static Robust Optimization, [31]) The static Robust Counterpart (RC) for uncertain
problem (1) is defined by

inf
x∈X ,y∈Rny

sup
u∈U

f0 (x, y, u)

s.t. sup
u∈U

fj (x, y, u) ≤ 0, j ∈ [m].
(RC)
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Definition 6 (Adjustable Robust Optimization, [31,44]) The Adjustable Robust Counterpart
(ARC) for uncertain problem (1) is defined by

inf
x∈X

sup
u∈U

inf
y∈Rny

f0 (x, y, u)

s.t. fj (x, y, u) ≤ 0, j ∈ [m].
(ARC)

Definition 7 (Fixed Recourse Problem, [31]) Problem (1) has fixed-recourse when

fj(x, y, u) = f̂j(x, u) + ĝj(x, y), j ∈ [m0].

In this paper, we consider a special case of the above notion defined as follows.

Definition 8 (Separable Fixed Recourse Problem) We say (1) has separable fixed-recourse when

fj(x, y, u) = f̂j(x, u) + gj(y), j ∈ [m0].

3 Dual Reformulation

In this section, we derive the dual formulation of (ARC). In the next theorem, we show how Fenchel
duality is used for this goal.

Theorem 1 Let Assumption 1 hold. Also, in (ARC) let us assume that

∀(x ∈ X , u ∈ U),∃y : fj (x, y, u) < 0, j ∈ [m]. (2)

Then, (ARC) is equivalent to the nonlinear static robust counterpart

inf
x∈X ,τ

τ

s.t. −f∗2
0

(
x,w0, u

)
−

m∑
j=1

λjf
∗2
j

(
x, wj

λj
, u
)
≤ τ, ∀

 λ
{wj}mj=0

u

 ∈ Z, (3)

where

Z =


 λ
{wj}mj=0

u

 ∈ Rm+ny(m+1)+nu

∣∣∣∣∣∣∣∣
λ ≥ 0, u ∈ U ,

m∑
j=0

wj = 0,

w0 ∈ dom
(
f∗2
0 (x, ·, u)

)
,

wj

λj
∈ dom

(
f∗2
j (x, ·, u)

)
, j ∈ [m]

 .

Proof In (ARC), we consider the inner minimization problem over y for a given x ∈ X and u ∈ U .
Because of (2) and Assumption 1, we know for the given x ∈ X and u ∈ U , the inner minimization is
Slater regular. Therefore, we can apply Fenchel’s duality (Definition 3), and rewrite (ARC) as follows:

inf
x∈X

sup
u∈U

sup
λ,wj

−f∗2
0 (x,w0, u)−

m∑
j=1

λjf
∗2
j

(
x, wj

λj
, u
)

s.t.
m∑
j=0

wj = 0, λ ≥ 0,

w0 ∈ dom
(
f∗2
0 (x, ·, u)

)
, wj

λj
∈ dom

(
f∗2
j (x, ·, u)

)
, j ∈ [m].

Therefore, (ARC) can be reformulated as

inf
x∈X

sup
u∈U,λ,wj

−f∗2
0 (x,w0, u)−

m∑
j=1

λjf
∗2
j

(
x, wj

λj
, u
)

s.t.
m∑
j=0

wj = 0, λ ≥ 0,

w0 ∈ dom
(
f∗2
0 (x, ·, u)

)
, wj

λj
∈ dom

(
f∗2
j (x, ·, u)

)
, j ∈ [m].

Using the definition of Z and epigraph reformulation, we may rewrite problem (ARC) as (3), which
completes the proof. ⊓⊔
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The above theorem shows that a nonlinear adjustable robust optimization can be reformulated as
a nonlinear static robust optimization under a Slater condition. In the equivalent dual reformulation
(3), the uncertain parameters include the dual multipliers (i.e., λ, {wj}mj=0), in addition to the original
uncertain parameter u.

The conjugate functions and their domains can be easily computed for a wide range of convex func-
tions; see, e.g., [37, Table E.1].

In the proof of the above theorem, we did not use the convexity of fj functions on x and their concavity
on u. However, we usually take convex functions on decision variables and concave functions on uncertain
parameters to get tractable models. The benefit of the dual reformulation obtained in Theorem 1 is that
we can get upper and lower bounds for the optimal objective value of the original model (ARC). Later,
in Sections 4 and 5, we explain how to achieve these goals.

In the following corollary, we derive the formulation of the dual problem for cases where fj(x, y, u), j ∈
[m0] are separable.

Corollary 1 Consider the following ARC:

inf
x∈X

sup
u∈U

inf
y

f̂0(x) + h0(u) + g0(y)

s.t. f̂j(x) + hj(u) + gj(y) ≤ 0, j ∈ [m].
(4)

Let gj be proper, convex, and closed in y. Assume that there exists some y such that

gj(y) < − sup
x∈X

f̂j(x)− sup
u∈U

hj(u), j ∈ [m].

Then, the nonlinear ARC (4) is equivalent to the following static RO problem

inf
x∈X ,τ

τ

s.t.
m∑
j=0

λj f̂j(x) +
m∑
j=0

λjhj(u)−
m∑
j=0

λjgj
∗(w

j

λj
) ≤ τ,

 λ
{wj}mj=0

u

 ∈ P,
where

P =


 λ
{wj}mj=0

u


∣∣∣∣∣∣∣∣
u ∈ U ,

m∑
j=0

wj = 0,

λ0 = 1, λj ≥ 0,
wj

λj
∈ dom(g∗j ), j ∈ [m0]

 .

Proof By setting fj (x, y, u) := f̂j(x) + hj(u) + gj(y), for λj > 0 we have

λjfj
∗2(x, wj

λj
, u) = λj sup

y

{(
wj

λj

)⊤
y − fj (x, y, u)

}
= sup

y

{(
wj
)⊤

y − λj

(
f̂j(x) + hj(u) + gj(y)

)}
= sup

y

{(
wj
)⊤

y − λj f̂j(x)− λjhj(u)− λjgj
(
y
)}

= −λj f̂j(x)− λjhj(u) + sup
y

{(
wj
)⊤

y − λjgj
(
y
)}

= −λj f̂j(x)− λjhj(u) + λj sup
y

{(
wj

λj

)⊤
y − gj

(
y
)}

= −λj f̂j(x)− λjhj(u) + λjgj
∗(w

j

λj
).

Furthermore, for λj = 0 we have

λjfj
∗2(x, wj

λj
, u) = δ∗dom((fj∗2)∗2(x,.,u))

(wj)

= δ∗dom(fj(x,.,u))
(wj)

= δ∗dom(gj)
(wj)

= δ∗dom(gj∗)∗
(wj),

where the first equality follows from the definition of the partial convex perspective, the second equality
holds because of the closedness and convexity of fj(x, ., u). Therefore, Theorem 1 and the above equiva-
lences concludes the corollary. ⊓⊔
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A natural question is whether (ARC) (or its equivalent form (3)) is convex with respect to x. In other
words, for a given optimal decision rule and a worst-case scenario, whether optimization on x is convex.
The following example shows that the answer to this question is negative in general.

Example 1 Consider an instance of (ARC) with m = 1, X = [1,+∞), U = [1, 2], f0(x, y, u) = x2uy, and
f1(x, y, u) = −x+ 1

2y
2−u. The partial conjugate of f0 and f1 with respect to their second argument are

given by

f∗2
0 (x,w0, u) =

{
0, w0 = x2u,

∞, w0 ̸= x2u,
f∗2
1 (x,w1, u) = x+ (w1)2

2 + u.

Thus, the dual reformulation of (ARC) for this example is

inf
x∈X

sup
u∈U,λ,w0,w1

−f∗2
0 (x,w0, u)− λf∗2

1

(
x, w1

λ , u
)

s.t. w0 + w1 = 0, λ ≥ 0,

w0 ∈ dom
(
f∗2
0 (x, ·, u)

)
, w1

λ ∈ dom
(
f∗2
1 (x, ·, u)

)
.

(5)

For fixed x and u, if λ = 0, then

−λ1f
∗2
1 (x, w1

λ1
, u) = −δ∗dom((fj∗2)∗2(x,.,u))

(w1)

= −δ∗dom(fj(x,.,u))
(w1)

= −δ∗R(w1) = −δ{0}(w1).

Thus, −λ1f
∗2
1 (x, w1

λ1
, u) = −∞ when w1 ̸= 0. Furthermore, w1 = 0 is infeasible, due to w1 = −w0 =

−x2u ̸= 0. So we can ignore λ = 0.
So, (5) is equivalent to

inf
x∈X

sup
u∈U

sup
λ,w0,w1

− (w1)2

2λ − λ(x+ u)

s.t. w0 + w1 = 0, λ > 0, w0 = x2u.

(6)

Given x and u, the inner suprimum can be written as

sup
λ>0
−x4u2

2λ − λ(x+ u), (7)

as we know x ≥ 1 and u ≥ 1. Moreover, the objective function is concave in λ. So, the supremum happens

at λ =
√

x4u2

2(x+u) . Hence, (6) is equivalent to

inf
x∈X

sup
u∈U

−
√
2x2u

√
x+ u.

Given x ≥ 1, the inner suprimum is sup
{
−
√
2x2u

√
x+ u

∣∣∣ u ∈ [1, 2]
}
, whose objective function is de-

creasing on the given interval [1, 2]. Therefore, u = 1 is the worst-case scenario, and so

sup
u∈U

−
√
2x2u

√
x+ u = −

√
2x2
√
x+ 1.

Finally, we get inf
x

{
−
√
2x2
√
x+ 1

∣∣∣ x ∈ X}, which is a non-convex problem. ⊓⊔

Remark 3 Note that

fj
∗2(x,wj , u) = sup

y

{(
wj
)⊤

y − fj (x, y, u)
}

implies

−fj∗2(x,wj , u) = inf
y

{
−
(
wj
)⊤

y + fj (x, y, u)
}
.

Indeed, the function Kwj ,y,u(x) := −
(
wj
)⊤

y + fj (x, y, u) is convex on x for any wj , y, u, but the inf

operator breaks down the convexity. In other words, the conjugate function −fj∗2(x,wj , u) is not convex
in x. Therefore, based on the dual formulation, we see if the conjugate function −fj∗2(x,wj , u) is convex
in x, then the problem is a convex optimization problem in x. In the next theorem, we show this for
separable fixed-recourse problems. ⊓⊔
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Theorem 2 Under the assumption of Theorem 1, if (ARC) is separable fixed-recourse, then the dual
reformulation of (ARC) is convex in x.

Proof Since fj(x, y, u) = f̂j(x, u) + gj(y) for all j ∈ [m0], according to Theorem 1, (ARC) is equivalent
to

inf
x∈X

sup
u∈U,λj ,wj

m∑
j=0

λj f̂j(x, u)−
m∑
j=0

λjgj
∗(w

j

λj
)

s.t.
m∑
j=0

wj = 0, λ0 = 1, λj ≥ 0, j ∈ [m],

w0 ∈ dom(g∗0),
wj

λj
∈ dom(g∗j ), j ∈ [m].

(8)

Note that f̂j(x, u) is convex on x for each j ∈ [m0]. By denoting

Fu,λ,wj (x) :=

m∑
j=0

λj f̂j(x, u)−
m∑
j=0

λjgj
∗(w

j

λj
), and F(x) := sup

u,λ,wj

Fu,λ,wj (x),

which are convex on x, problem (8) is equivalent to inf
x∈X

F(x) which is a convex optimization problem.

⊓⊔

Considering Theorem 2, we focus on separable fixed-recourse case in the rest of the paper.

4 On Upper Bound Calculation

In this section, we assume that the non-empty uncertainty set U has the following structure:

U := {u ∈ Rnu | ci(u) ≤ 0, i ∈ [t]} ,

where the function ci : Rnu → R̄ is proper, closed, and convex for each i ∈ [t].
In the next theorem, we show how using perspective functions result in an upper bound for (8).

Theorem 3 For any fixed x ∈ X , let f̂j(x, u) be proper and concave in u for each j ∈ [m0]. Then,

sup
u,λj ,wj ,θj

m∑
j=0

λj f̂j(x,
θj

λj
)−

m∑
j=0

λjgj
∗(w

j

λj
)

s.t.
m∑
j=0

wj = 0, λ0 = 1, θ0 = u, λj ≥ 0, j ∈ [m],

w0 ∈ dom(g∗0),
wj

λj
∈ dom(g∗j ), j ∈ [m],

λjci(
θj

λj
) ≤ 0, j ∈ [m0], i ∈ [t],

(9)

provides an upper bound on the optimal value of

sup
u,λj ,wj

m∑
j=0

λj f̂j(x, u)−
m∑
j=0

λjgj
∗(w

j

λj
)

s.t.
m∑
j=0

wj = 0, λ0 = 1, λj ≥ 0, j ∈ [m],

w0 ∈ dom(g∗0),
wj

λj
∈ dom(g∗j ), j ∈ [m],

ci(u) ≤ 0, i ∈ [t].

(10)

Proof We show that any feasible solution to (10) corresponds to a feasible solution to (9) with the same
objective value. For this goal, for any solution

(
u, λ, {wj}mj=0

)
, define θj := λju for each j ∈ [m]. We

prove that
(
u, λ, {wj}mj=0, {θj}mj=1

)
is a feasible solution to (9). For each j ∈ [m] and i ∈ [t] with λj > 0

obviously we have λjci(
θj

λj
) ≤ 0. If λj = 0 for some j ∈ [m], we get θj = 0 and

0ci(0/0) = δ∗dom(c∗i )
(0) = 0, ∀i ∈ [t],

where the first equality follows from the definition of the convex perspective, and the second equality
holds because the conjugate function of a proper convex function is also proper (from [3, Theorem 4.5]),
and so dom(c∗i ) ̸= ∅. All other constraints of (9) are clearly satisfied. Now, we show that the objective
value at

(
u, λ, {wj}mj=0

)
in (10) equals to that value at

(
u, λ, {wj}mj=0, {θj}mj=1

)
in (9). To this end, it is
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sufficient to show that λj f̂j(x,
θj

λj
) = λj f̂j(x, u) for all j ∈ [m]. It is trivial for the case λj > 0. If λj = 0

for some j ∈ [m], then θj = 0, and so

0f̂j(x,0/0) = −δ∗dom((−f̂j)∗2(x,.))
(0) = 0 = 0f̂j(x, u),

where the first equality follows from the definition of the partial concave perspective, and the second
equality holds because (for any x) the partial conjugate (−f̂j)∗2(x, .) of proper convex function −f̂j(x, .)
is also proper, leading to dom

(
(−f̂j)∗2(x, .)

)
̸= ∅. ⊓⊔

Problem (10) is not a convex programming in general, while problem (9) is. More specifically, by
lifting the problem to a higher dimension and using the perspective functions, we obtain a concave
relaxation on λj , w

j , θj . This approach has been recently used in the literature of nonlinear optimization
for other purposes [16,27,45]. In the next example, we show that this relaxation may not be tight.

Example 2 Let x ∈ X . Consider an instance of problem (10) with t = m = 1, nu = 1, ny = 2,

f̂0(x, u) = −u2, f̂1(x, u) = 1
u , c1(u) = u + 1, g0(y) = y1, and g1(y) = 1

2y
⊤y + y2. Set p0 := (1, 0)⊤,

p1 := (0, 1)⊤. The conjugates of g0 and g1 are given by

g∗0(w
0) =

{
0, w0 = p0,

∞, w0 ̸= p0,

g∗1(w
1) = 1

2

(
w1 − p1

)⊤ (
w1 − p1

)
.

Hence, problem (10) in this example reads as

sup
u,λ1,w0,w1

f̂0(x, u) + λ1f̂1(x, u)− g∗0(w
0)− λ1g

∗
1(

w1

λ1
)

s.t. λ1 ≥ 0, w0 + w1 = 0, u ≤ −1,
w0 = p0.

If λ1 = 0 in some feasible solution of the above problem, then

−λ1g
∗
1(

w1

λ1
) = −δ∗dom(g1)

(w1) = −δ{0}(w1).

So, −λ1g
∗
1(

w1

λ1
) = −∞ when w1 ̸= 0. Furthermore, w1 = 0 is infeasible, due to w1 = −w0 = −p0 =

(−1, 0)⊤. Hence, we can ignore λ1 = 0. Now, due to w0 = p0 and w0 + w1 = 0, the last problem can be
rewritten as

z1 := sup
u,λ1

−u2 + λ1

u −
1
2

(
λ1 +

1
λ1

)
s.t. λ1 > 0, u ≤ −1.

Let us denote the objective function of the last problem by

J(u, λ1) = −u2 + λ1

u −
1
2

(
λ1 +

1
λ1

)
.

This function is bounded above over the feasible set K = {(u, λ1)| u ≤ −1, λ1 > 0}. To obtain z1, first
we examine the points for which the gradient of J(·, ·) vanishes. We have

∇J(u, λ1) = (−2u− λ1

u2 ,
1
u −

1
2 + 1

2λ2
1
)⊤.

Thus, ∇J(u, λ1) = 0 implies λ1 = −2u3, and −4u6+8u5+1 = 0. On the other hand, u ≤ −1 (feasibility)
leads −4u6 + 8u5 + 1 < 0. So, the maximizers of J(u, λ1) are not in the interior of the feasible set K.
They are on the boundary of K, i.e., λ1 = 0 or u = −1. As λ1 > 0, we continue with u = −1, and we
have

sup
λ1>0

−1− λ1 − 1
2

(
λ1 +

1
λ1

)
.

The optimal solution of the above problem occurs at λ1 = 1√
3
, and hence z1 = −1 −

√
3. Analogously,

problem (9) in this example is

z2 := sup
u,λ1,θ1

−u2 + (λ1)
2

θ1
− 1

2

(
λ1 +

1
λ1

)
s.t. λ1 > 0, u ≤ −1, θ1 ≤ −λ1.
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It is not difficult to see that −2 is an upper bound for the objective function of the above problem on its
feasible region. Furthermore, the objective value at the feasible sequence {un = −1, (λ1)n = 1, (θ1)n = −n}n≥1

equals to −2− 1
n which goes to −2 as n→ +∞. This implies z2 = −2. Therefore, z1 = −1−

√
3 < −2 = z2.

⊓⊔

In Theorem 3, x ∈ X is fixed and arbitrary. Now, by taking minimum over all x ∈ X in (10) and (9),
we obtain an upper bound for the separable fixed-recourse version of the dual reformulation of (ARC)
as follow:

inf
x∈X

sup
u,λj ,wj ,θj

m∑
j=0

λj f̂j(x,
θj

λj
)−

m∑
j=0

λjgj
∗(w

j

λj
)

s.t.
m∑
j=0

wj = 0, λ0 = 1, θ0 = u, λj ≥ 0, j ∈ [m],

w0 ∈ dom(g∗0),
wj

λj
∈ dom(g∗j ), j ∈ [m],

λjci(
θj

λj
) ≤ 0, j ∈ [m0], i ∈ [t].

(PERS)

We call this problem (PERS) as it is obtained by using a perspectification approach corresponding to
problem (8). Moreover, (PERS) is a convex-concave programming, while it is not the case for (8).

Problem (PERS) can be seen as a relaxation of the dual reformulation of (ARC) when it has separable
fixed-recourse. So, it is important to know the interpretation of such a relaxation for the primal problem,
i.e., (ARC). The next theorem shows that (PERS) is actually equivalent to the static robust counterpart
(RC) in the separable fixed-recourse case when the uncertainty set is compact.

Theorem 4 Consider (RC) with separable fixed-recourse as follows:

inf
x∈X ,y

sup
u∈U

f̂0(x, u) + g0(y)

s.t. sup
u∈U

f̂j(x, u) + gj(y) ≤ 0, j ∈ [m].
(11)

Suppose that the uncertainty set U is compact, f̂j is proper concave in u, and gj is closed convex and
real-valued, for each j ∈ [m0]. If

∀x ∈ X ∃y such that sup
u∈U

f̂j(x, u) + gj(y) < 0, j ∈ [m],

then (PERS) and static robust counterpart (11) are equivalent.

Proof Without loss of generality, since U is compact, we assume that there exists some i, for which

ci(u) = ||u||2 − ρ, for some ρ > 0. By setting Fj(x) := sup
u

{
f̂j(x, u)

∣∣∣ u ∈ U} for each j ∈ [m0] and

x ∈ X , we can rewrite (11) as

inf
x∈X ,y∈Rny

F0(x) + g0(y)

s.t. Fj(x) + gj(y) ≤ 0, j ∈ [m].
(12)

By applying the Fenchel’s duality over y, (12) is equivalent to

inf
x∈X

sup
λj ,wj

m∑
j=0

λjFj(x)−
m∑
j=0

λjgj
∗(w

j

λj
)

s.t.
m∑
j=0

wj = 0, λ0 = 1, λj ≥ 0, j ∈ [m],

w0 ∈ dom(g∗0),
wj

λj
∈ dom(g∗j ), j ∈ [m].

(RC-1)

Now, we show that, for a given x ∈ X , the inner suprimums of (RC-1) and (PERS) have the same
optimal value. To prove this claim, let x ∈ X be fixed. Let

(
u, λ, {wj}mj=0, {θj}mj=1

)
be a feasible solution

for the inner suprimum in (PERS).
If λj > 0, then

λjci(
θj

λj
) ≤ 0, ∀i ∈ [t]⇒ ci(

θj

λj
) ≤ 0, ∀i ∈ [t]

⇒ θj

λj
∈ U ⇒ f̂j(x,

θj

λj
) ≤ Fj(x)

⇒ λj f̂j(x,
θj

λj
) ≤ λjFj(x).
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If λj = 0, then θj = 0. To prove this, as ci(u) = ∥u∥2 − ρ for some ρ > 0 and some i ∈ [t], by taking
λj = 0 into account, we have

0 ≥ λjci(
θj

λj
) = δ∗dom(c∗i )

(θj) = sup
∥γ∥2≤1

{
γ⊤θj

}
= ∥θj∥2 ≥ 0.

This implies θj = 0. Hence, in this case

λj f̂j(x,
θj

λj
) = −δ∗dom((−fj)∗2(x,.))

(0) = 0 = λjFj(x),

where first equality comes from the definition of the partial concave perspective, and the second equality
holds as dom

(
(−fk)∗2(x, .)

)
̸= ∅. So,

λj f̂j(x,
θj

λj
) ≤ λjFj(x), j ∈ [m0].

Summing over j yields
∑

j λj f̂j(x,
θj

λj
) ≤

∑
j λjFj(x). Thus,

m∑
j=0

λj f̂j(x,
θj

λj
)−

m∑
j=0

λjgj
∗(w

j

λj
) ≤

m∑
j=0

λjFj(x)−
m∑
j=0

λjgj
∗(w

j

λj
).

Therefore, the optimal value of the objective function of the inner suprimum in (PERS) is less than or
equal to that in (RC-1).

Conversely, let
(
λ̄, {w̄j}mj=0

)
be a feasible solution for inner suprimum of (RC-1). By choosing

ūj ∈ argmax{f̂j(x, u)| u ∈ U}, j ∈ [m0],

and setting

θ̄j =

{
λ̄j ū

j , λj > 0,

0, λj = 0,
j ∈ [m],

and then setting θ̄0 = ū, the vector
(
ū, λ̄, {w̄j}mj=0, {θ̄j}mj=1

)
is feasible for (PERS). Furthermore, for

λ̄j > 0,

λ̄jFj(x) = λ̄j sup
u∈U

f̂j(x, u) = λ̄j f̂j(x, ū
j) = λ̄j f̂j(x,

θ̄j

λ̄j
).

This equality is trivial for λ̄j = 0. Hence,

m∑
j=0

λ̄jFj(x)−
m∑
j=0

λ̄jgj
∗( w̄

j

λ̄j
) =

m∑
j=0

λ̄j f̂j(x,
θ̄j

λ̄j
)−

m∑
j=0

λjgj
∗( w̄

j

λ̄j
).

This implies that the optimal value of the objective function of (RC-1) is less than or equal to that in
(PERS). This completes the proof. ⊓⊔

Theorem 4 states that, under some assumptions, the upper bound obtained based on the perspective
relaxation of the dual reformulation of (ARC) is the same as the robust counterpart, which is a conser-
vative approximation. In other words, the perspectification approach yields an upper bound for (ARC);
nevertheless, there are stronger upper bounds in the literature of adjustable robust optimization, such
as K-adaptability or finite adaptability approaches [34,43], which can straightforwardly be extended to
nonlinear problems. One way to obtain a stronger upper bound is by applying a piece-wise constant
decision rule to (ARC) using finite adaptability approach. In this approach, the uncertainty set is par-
titioned into subsets and a constant decision rule is obtained for each of the subsets. In the numerical
experiments, we show how much stronger the upper bound obtained by finite adaptability compared to
the one obtained from (PERS).
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5 Lower Bound Calculation

In Section 3, we showed that the dual reformulation of (ARC) in the fixed-resource case is a convex
programming on here-and-now decision variables. We have also shown how to construct an upper bound.
In this section, we design methods to approximate (ARC) from below. Let us set

v :=

(
λ

{wj}mj=0

)
∈ Rm × Rny(m+1),

G(v) := −g∗0(w0)−
m∑
j=1

λjgj
∗(w

j

λj
),

V :=

v =

(
λ

{wj}mj=0

)∣∣∣∣∣∣∣∣
m∑
j=0

wj = 0, λ ≥ 0,

w0 ∈ dom(g∗0),
wj

λj
∈ dom(g∗j ), j ∈ [m]

 .

Since λjgj
∗(w

j

λj
) is jointly convex in (wj , λj), the set V is convex and G is a concave function (details are

provided in Appendix 1). Also, let us set

F (x, u) :=
(
f̂0(x, u), . . . , f̂m(x, u), 0, . . . , 0

)⊤
∈ Rm+1 × Rny(m+1),

L(x, u, v) := (1, v⊤)F (x, u) +G(v).

Thus, the dual formulation of (ARC) in the separable fixed-recourse case reads as

inf
x∈X

sup
u∈U
v∈V

L(x, u, v). (13)

Given x̄ ∈ X , we define Lx̄(u, v) := (1, v⊤)F (x̄, u) +G(v). Clearly, Lx̄(u, v) is concave in u and concave
in v. Therefore,

sup {Lx̄(u, v) | u ∈ U , v ∈ V} , (14)

is a disjoint biconcave maximization problem. A common way to find a solution for such problems is by
using alternating methods, which obtain a local optimizer. In these methods, a decision variable is divided
into several blocks, and optimization can be performed explicitly in each block when the variables of
other blocks are fixed (see Chapter 14 of [3] for more details). These methods also appear in the literature
as block coordinate methods. The performance of the alternating method is closely related to finding the
optimizers for each block.

5.1 Alternating Iterative Algorithm

As was mentioned above, we use a two-block alternating method to solve (14). In this method, we
alternatively fix u to find v and fix v to find u until no improvement is achieved or the prescribed
computational limit is reached. This method is described follow in detail.

Alternating Method

Input: initial value ū(0) ∈ U
Initialization:

Set iteration counter k ← 0, choose v̄(0) ∈ argmax
v∈V

Lx̄(ū
(0), v).

Repeat

Find optimal u: ū(k+1) ∈ argmax
u∈U

Lx̄(u, v̄
(k)),

Find optimal v: v̄(k+1) ∈ argmax
v∈V

Lx̄(ū
(k+1), v),

Update iteration counter k ← k + 1,

Until: time limit is reached, or no improvement is possible.
Return: (ū(k), v̄(k)).
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In Theorem 5 below, we discuss the convergence of the addressed alternating method. It is done as-
suming some appropriate conditions, under which the alternating method is well-defined and the sequence
{(uk, vk)}k≥0 admits limit point(s).

Theorem 5 Let Lx̄(·, ·) be continuously differentiable and bounded above on Cartesian product of two
closed convex sets U and V. Suppose that every sub-problem of the alternating method has an optimal
solution and {zk ≡ (uk, vk)}k≥0, as the sequence generated by the alternating method, has at least a limit
point. Then, every limit point of {zk}k≥0 is a stationary point of problem (14).

Proof See Appendix 2. ⊓⊔

Theorem 5 provides conditions under which the limit points of the sequence obtained by the al-
ternating method are helpful in solving problem (14). These conditions can be checked for (1). More

specifically, L is continuously differentiable if f̂j and g∗j are so. Furthermore, it is bounded above if static
robust counterpart (11) has an optimal solution. Finally, V is a closed set when dom(g∗j ) is closed for all
j.

Remark 4 In Theorem 5, under some assumptions, it is established that all limit points of the sequence
generated by the alternating method are stationary. Generally, stationarity is necessary for local opti-
mality [4]. However, stationary points are not necessarily optimal solutions. Such a property requires
(generalized) concavity assumption to hold. Under generalized concavity assumptions on problem (14),
the alternating method globally converges; For more details, see [19, Proposition 6] and [50]. ⊓⊔

Using this theorem, we can find a lower bound for (ARC) in the following way: starting from initial
solution x(0) and initial scenario u(0), we can find the limit points of {zk}, denoted by z̄(0). Let us denote
by W̄ the set of limit points after each iteration. Limiting ourselves to W̄, we can find a here-and-now
solution x(ℓ) using the following optimization problem

inf
x,τ

τ

s.t. L(x, ū(i), v̄(i))− τ ≤ 0, 1 ≤ i ≤ |W̄|,
x ∈ X .

(P-1)

By fixing this decision, we can find new limit point z̄(ℓ) to be added to W̄. Algorithm 1 provides the
pseudo-code of this procedure.

Algorithm 1

Input: ϵ > 0, initial value x(0) ∈ X , u(0) ∈ U .
Initialization: Set iteration counter ℓ← 0, and set W̄ = ∅.
Repeat: Execute the following steps:

(Step 1) obtain (ū(ℓ), v̄(ℓ)) as a stationary point of Lx(ℓ)(u, v) by applying Alternating Method.
Set W̄ = W̄ ∪ {(ū(ℓ), v̄(ℓ))}.
(Step 2) Find (x∗, τ∗) by solving (P-1).
Update iteration counter ℓ← ℓ+ 1, and set
x(ℓ) ← x∗,
τ (ℓ) ← τ∗,

Until: ∥τ (ℓ) − τ (ℓ−1)∥ ≤ ϵ.
Return: x(ℓ), τ (ℓ).

It can be seen that the optimal value of (P-1) in Algorithm 1 is a lower bound for problem (13). Since,
we add one more constraint to (P-1) in each iteration, the sequence of the lower bounds is non-decreasing.

Another way to generate lower bounds is to use finite-scenario approach. In the next section, we show
how one can improve the lower bounds obtained by finite-scenario approach.

5.2 Dual-Based Cutting Plane Algorithm

Based on the original form of (ARC), one can find a lower bound by using finite-scenario approach and
only considering a finite subset {u1, ..., uℓ} of U . This idea leads to the following convex programming
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problem:

inf
x∈X ,τ

{yk}k

τ

s.t. fj(x, y
k, uk) ≤ 0, j ∈ [m], k ∈ [ℓ],

f0(x, y
k, uk) ≤ τ, k ∈ [ℓ],

(15)

which is called finite-scenario approach of the (ARC) problem. A technique to obtain a finite set of
scenarios is by (i) approximating (ARC) with a suitable decision rule and (ii) finding the active scenarios
in the uncertainty set [20]. Since we are considering a nonlinear problem, we use constant decision rule.
So, we first find an optimal solution (x∗, y∗) of (RC) with the optimal value t∗. After that, by fixing the
obtained (x∗, y∗), we take an active (binding) scenario on each constraint

fj(x
∗, y∗, u) ≤ 0, j ∈ [m],

f0(x
∗, y∗, u) ≤ t∗.

(16)

The optimal value of the finite-scenario approach problem is a lower bound for the optimal objective
value of the original (ARC) model since feasibility is fulfilled for only a subset of the uncertainty set.

In Theorem 6 we show how to construct a lower bound by means of dual cuts.

Theorem 6 Let {u1, ..., uℓ} ⊆ U and {v1, ..., vℓ} ⊆ V. Then optimal value of

inf
x∈X ,τ

{yk}k

τ

s.t. fj(x, y
k, uk) ≤ 0, j ∈ [m], k ∈ [ℓ],

f0(x, y
k, uk) ≤ τ, k ∈ [ℓ],

L(x, uk, vk) ≤ τ, k ∈ [ℓ],

(17)

provides a lower bound for (ARC).

Proof Let us denote the optimal value of (ARC) by Opt. Also, we have the following inequality due to
the weak duality

∀x ∈ X sup
u∈U
T (x, u) ≥ sup

u∈U
v∈V

L(x, u, v),

where T (x, u) := inf
y∈Rny

{f0(x, y, u) : fj(x, y, u) ≤ 0, j ∈ [m]}. Therefore,

Opt = inf
x∈X
τ∈R

τ

s.t. sup
u∈U
T (x, u) ≤ τ,

sup
u∈U
v∈V

L(x, u, v) ≤ τ,

where the second constraint is redundant. Let Ū ⊆ U and V̄ ⊆ V. Then

Opt ≥ inf
x∈X ,τ

τ

s.t. sup
u∈Ū
T (x, u) ≤ τ,

sup
u∈Ū
v∈V̄

L(x, u, v) ≤ τ.

So, if Ū = {u1, ..., uℓ} and V̄ = {v1, ..., vℓ}, then we have

Opt ≥ inf
x∈X ,τ

τ

s.t. inf
y∈Rny

{
f0(x, y, u

k) : fj(x, y, u
k) ≤ 0, j ∈ [m]

}
≤ τ, k ∈ [ℓ],

L(x, uk, vk) ≤ τ, k ∈ [ℓ],

(18)

which is equivalent to (17). ⊓⊔
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Using Theorem 6, we develop Algorithm 2, which generates potentially better lower bounds compared
to finite-scenario approach.

Algorithm 2

(Step 1) Find (x∗, y∗) as a static solution.
(Step 2) Given (x∗, y∗), find the active scenarios {u0, u1, ..., um}.
(Step 3) Use Alternating Method, to find (ū(k), v̄(k)) as a stationary point of Lx∗(u, v) starting
from uk (k ∈ [m0]).
(Step 4) Given

{
(ū(k), v̄(k))

}
k
, solve

inf
x∈X ,τ

{yk}k

τ

s.t. f0(x, y
k, ū(k)) ≤ τ, k ∈ [m0],

fj(x, ū
(k), yk) ≤ 0, j ∈ [m], k ∈ [m0],

L(x, v̄(k), ū(k)) ≤ τ, k ∈ [m0].

We emphasize that the algorithms to construct a sequence of lower bounds are applicable for any
nonlinear ARO problem.

6 Numerical Experiments

In this section, we illustrate the performance of the discussed algorithms. All the numerical results were
carried out on a laptop featuring Intel(R) Core(TM) i5-3210M CPU, 2.50 GHz processor, and 8 GB of
RAM. We implemented the algorithms in MATLAB (2022a) and used YALMIP toolbox [29] to pass the
optimization problems to MOSEK as a solver [33]. All results of this section are presented with four
decimals.

6.1 Problem Setting

We consider the following uncertain problem:

inf
x∈X

inf
y∈Y(x,u)

f̂0(x, u) +
∥∥A0y − b0

∥∥
2
−
(
p0
)⊤

y + q0, (19)

where

Y(x, u) =
{
y : f̂j(x, u) +

∥∥Ajy − bj
∥∥
2
−
(
pj
)⊤

y + qj ≤ 0, j ∈ [m]
}
⊆ Rny ,

Aj ∈ Rr×ny , bj ∈ Rr, and pj ∈ Rny . For j ∈ [m], let us set

gj(y) :=
∥∥Ajy − bj

∥∥
2
−
(
pj
)⊤

y + qj .

Thus, the perspective functions corresponding to the conjugate of gj(y) is given by

λj > 0 : λjg
∗
j

(
wj

λj

)
= inf

zj

{
λj((b

j)⊤zj − qj)
∣∣∣ ∥zj∥2 ≤ 1, (Aj)

⊤zj − pj = wj

λj

}
,

λj = 0 : λjg
∗
j

(
wj

λj

)
= δ∗dom(gj)

(wj) = δ∗Rny (wj) = δ{0}(w
j).

Now we consider (ARC) version of the uncertain problem (19). According to Theorem 1, after dualizing
over the wait-and-see variable y, with some algebra (see Section 6.4 of [37]), we get the following equivalent
dual reformulation:

inf
x∈X

sup
u∈U,λj ,zj

m∑
j=0

λj f̂j(x, u) +
m∑
j=0

(
λjqj − λj

(
bj
)⊤

zj
)

s.t.
m∑
j=0

(
λj(Aj)

⊤
zj − λjp

j
)
= 0,∥∥zj∥∥

2
≤ 1, λ0 = 1, λj ≥ 0, j ∈ [m0].

(20)
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Let us consider the parameters in a matrix form, i.e.,

A⊤ :=
[
(A0)

⊤ . . . (Am)⊤
]
∈ Rny×r(m+1),

P :=
[
p0 . . . pm

]
∈ Rny×(m+1),

b⊤ := [( b0
)⊤ . . .

(
bm
)⊤] ∈ Rr(m+1),

z̄j := λjz
j , z̄⊤ := [( z̄0

)⊤ . . .
(
z̄m
)⊤] ∈ Rr(m+1).

In addition, by setting

v⊤ :=
(
λ⊤, z̄⊤

)
,

V :=

{
v

∣∣∣∣ A⊤z̄ − P

(
1
λ

)
= 0, λ ≥ 0,

∥∥z̄0∥∥
2
≤ 1,

∥∥[z̄]j∥∥
2
≤ λj , j ∈ [m]

}
,

L(x, u, v) := (1, λ⊤)f̂(x, u) + (1, λ⊤)q − z̄⊤b,

where f̂(x, u) is a vector-valued function with components f̂j(x, u), and

[z̄]j = [z̄]jr+1,...,(j+1)r,

we can write (20) as
inf
x∈X

sup
u∈U,v∈V

L(x, u, v).

We use the optimality gap to compare the quality of the lower bounds obtained by applying the
finite-scenario approach (15), Algorithm 1, and Algorithm 2:

OptGap =

(
UB − LB

|LB|+ 10−4

)
× 100,

where LB is the obtained lower bound, and UB is the best obtained upper bound for a given instance.
Note that the constant 10−4 is added to the denominator to avoid division over zero.

We consider two classes of randomly generated problems, each containing 100 instances.
Class One: In this class, we consider small-sized instances. We consider ny = 2, nx = 2, m = 2, and
r = 5. Furthermore,

U = U1 := {u ∈ R2 : ∥u∥2 ≤ 1},
X = X1 :=

{
x ∈ R2 : x1 + 2x2 ≤ 3, 2x1 + x2 ≤ 3, x1, x2 ≥ 0

}
,

and

f̂j(x, u) := cj
⊤
x+ αj⊤u, j ∈ [m0].

In this class, we obtained upper bounds by solving the static robust counterpart problem, which is
equivalent to the perspectification approach. Additionally, we employed the K-adaptability approach to
obtain other upper bounds. The K-adaptability approach involves splitting the uncertainty set U into K
partitions (U = ∪Kk=1Uk) and then solving the following problem

inf
x∈X ,τ

{yk}k

τ

s.t. f̂j(x, u) +
∥∥Ajy

k − bj
∥∥
2
−
(
pj
)⊤

yk + qj ≤ 0, j ∈ [m], k ∈ [K],∀u ∈ Uk,
f̂0(x, u) +

∥∥A0y
k − b0

∥∥
2
−
(
p0
)⊤

yk + q0 ≤ τ, k ∈ [K],∀u ∈ Uk.
We set K = 8 and partitioned the uncertainty set into eight regions, each being an octant.
Class Two: This class contains large-sized instances. We consider ny = 100, nx = 100, m = 5, and
r = 120. Furthermore,

U = U2 := {u ∈ R20 : ∥u∥2 ≤ 1},
X = X2 :=

{
x ∈ R100 : ∥x∥2 ≤ 1, e⊤x ≤ 1, d⊤x ≥ 0

}
,

where e ∈ Rnx is the vector of all ones, d ∈ Rnx is a random vector, and

f̂j(x, u) := cj
⊤
x+ αj⊤u, j ∈ [m0].

We use static approximation to obtain an upper bound on the optimal value of the instances in this
class.

To generate random instances, for each j ∈ [m0], we randomly generate Aj , p
j , bj , αj , cj , and d by

drawing their (entries) values from a standard normal distribution using a built-in MATLAB function
“randn”.
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6.2 Numerical results

In this section, we present the results of the numerical experiments.
Class One: We present the statistic on the optimality gaps of the finite-scenario approach (15), Algorithm
1, and Algorithm 2 in Table 1 (details can be found in Table 3 of Appendix 3). Since the upper bound
obtained using the K-adaptability approach for the instances of this class is lower than the one derived
from the perspectification approach, which is equivalent to the static approximation, we report the gap
using the former. As one can see, Algorithm 2 outperforms the other methods on average.

Table 1: Statistic of optimality gaps of instances in Class One.

Method Mean Standard deviation
Algorithm 1 26.4925 75.3803
Algorithm 2 22.2883 72.4447
Finite-scenario approach 49.7797 336.4677

Figure 1 compares the optimality gaps of the solutions obtained by Algorithm 1, Algorithm 2, and the
finite-scenario approach, where each point corresponds to an instance. As shown in Figures 1a and 1b,
Algorithms 1 and 2 outperform the finite-scenario approach. More specifically, in 84 instances, Algorithm
2 generates better lower bounds, while the finite-scenario approach generates better lower bounds in only
15 instances. We should emphasize that if the scenarios considered in both approaches are the same,
Theorem 6 shows that the lower bound obtained by Algorithm 2 should outperform the finite-scenario
approach. However, these two methods do not generate the same scenarios. Additionally, Figure 1c shows
that the solutions obtained by Algorithm 2 have a similar or better optimality gap to the ones obtained
from Algorithm 1. Next to the quality of the approaches, we also report their solution times. The
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Fig. 1: The comparison of the optimality gaps of the solutions obtained by Algorithm 1, Algorithm 2,
and finite-scenario approach for the instances in Class One.

average solution times for Algorithm 1, Algorithm 2, and finite-scenario approach are 0.0500, 0.0483,
and 0.2253 seconds, respectively. Figure 2 depicts a scatter plot comparing the solution times in each
instance. Illustrated in Figures 2a and 2b, Algorithms 1 and 2 reach lower bounds more rapidly compared
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Fig. 2: The comparison of the solution times of Algorithm 1, Algorithm 2, and finite-scenario approach
for the instances in Class One.

to the finite-scenario approach. In Figure 2c, we observe that Algorithm 2 reached a solution faster than
Algorithm 1.

Hitherto, we have seen that Algorithm 2 performs well in the instances in Class One. In what follows,
we analyze the performance of the algorithms for the instances of Class Two.
Class Two: We present the statistic on the optimality gaps of the solutions obtained by different al-
gorithms in Table 2 (details can be found in Table 4 of Appendix 3). As one can see, Algorithm 1
outperforms the other methods on average.

Table 2: Statistic of optimality gaps of instances in Class Two.

Method Mean Standard deviation
Algorithm 1 56.5417 83.8414
Algorithm 2 57.7425 88.1209
Finite-scenario approach 64.5980 114.8234

To have a clearer comparison, we illustrate the optimality gaps in Figure 3. Remarkably, both al-
gorithms exhibit better performance in nearly all instances compared to the finite-scenario approach
(Figures 3a and 3b). Furthermore, as one can see in Figure 3c, the optimality gap of the solutions ob-
tained by Algorithms 1 and 2 are close, and in all instances (except one of them), Algorithm 1 provides
a solution with a slightly lower optimality gap compared to Algorithm 2.

The average solution times for Algorithm 1, Algorithm 2, and finite-scenario approach are 7.5085,
3.6327, and 0.5417 seconds, respectively. Figure 4 presents the scatter plot of the solution times of these
approaches on each instance. In this class, the computation times of Algorithms 1 and 2 are higher
than the finite-scenario approach because they solve more (sub-)optimization problems than the finite-
scenario approach to reach a lower bound (as shown in Figures 4a and 4b). From Figure 4c, across
a significant proportion of instances within this classification, it is evident that Algorithm 2 exhibited
notable performance in achieving solutions faster than Algorithm 1.
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Fig. 3: The comparison of the optimality gaps of the solutions obtained by Algorithm 1, Algorithm 2,
and finite-scenario approach for the instances in Class Two.

0 5 10 15 20 25

Solution Time (Algorithm 1)

0

5

10

15

20

25

S
o
lu

ti
o
n
 T

im
e
 (

F
in

it
e
 S

c
e
n
a
ri
o
 A

p
p
ro

a
c
h
)

(a)

0 5 10 15 20 25

Solution Time (Algorithm 2)

0

5

10

15

20

25

S
o
lu

ti
o
n
 T

im
e
 (

F
in

it
e
 S

c
e
n
a
ri
o
 A

p
p
ro

a
c
h
)

(b)

0 5 10 15 20 25

Solution Time (Algorithm 1)

0

5

10

15

20

25

S
o
lu

ti
o
n
 T

im
e
 (

A
lg

o
ri
th

m
 2

)

(c)

Fig. 4: The comparison of solution times of Algorithm 1, Algorithm 2, and the finite-scenario approach
for instances in Class Two.
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7 Conclusions

This paper studied a general nonlinear ARO model with objective and constraint uncertainty. We ob-
tained an equivalent dual formulation by applying Fenchel’s duality on the wait-and-see variable, a
nonlinear static robust optimization. We investigated when the dual formulation is convex in the deci-
sion variables. Also, we explored reaching upper and lower bounds for the original problem based on
the dual formulation. Thanks to the equivalent dual reformulation, we presented and analyzed two al-
gorithms. These algorithms aimed to find a lower bound on the optimal objective value of the general
nonlinear ARO model. We demonstrated by numerical results that our algorithm could produce a locally
robust solution with an acceptable optimality gap.
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Appendices

The appendix of this work is divided into three sections. The first section contains the proof of several
points mentioned in the main text. In the second section, we provide a proof for Theorem 5. The final
section contains a table related to the numerical experiments.

Appendix 1 Additional Results

In this appendix, first, we provide more details on a point for perspective function mentioned after
Remark 1.

Proposition 1 If g is a proper, closed, and convex function, then

sup
t>0,x∈Rnx

gper(x, t) = sup
t≥0,x∈Rnx

gper(x, t),

and

inf
t>0,x∈Rnx

gper(x, t) = inf
t≥0,x∈Rnx

gper(x, t).

Proof Let x0 ∈ Rnx . We have

gper(x0, t0 = 0) = lim inf
(xi,ti)→(x0,0)

gper(xi, ti > 0)

≤ sup
(xi,ti)→(x0,0)

gper(xi, ti > 0)

≤ sup
t>0,x∈Rnx

gper(x, t).

So, supt>0,x∈Rnx gper(x, t) = supt≥0,x∈Rnx gper(x, t).
As inft>0,x g

per(x, t) ≥ inft≥0,x g
per(x, t), let ℓ ∈ {gper(x, t)|t ≥ 0, x ∈ Rnx}. We want to show ℓ ≥

inft>0,x g
per(x, t).

1. If ℓ = gper(x0, t0) for some x0 ∈ Rnx and t0 > 0, then ℓ ≥ inft>0,x g
per(x, t).

2. If ℓ = gper(x0, 0) for some x0 ∈ Rnx , then

ℓ = gper(x0, 0) = lim inf
(xi,ti)→(x0,0)

gper(xi, ti > 0)

≥ inf
(xi,ti)→(x0,0)

gper(xi, ti)

≥ inf
t>0,x∈Rnx

gper(x, t).

The proof is complete. ⊓⊔
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As a consequence of the above proposition, we have

sup
t>0,x

−gper(x, t) = sup
t≥0,x

−gper(x, t).

The next proposition proves the convexity of the set V and the concavity of the function G introduced
in the beginning of Section 5.

Proposition 2 The set V is convex, and G is a concave function on V.

Proof We consider two points v̄ =

(
λ̄

{w̄j}mj=0

)
, ṽ =

(
λ̃

{w̃j}mj=0

)
∈ V and ℓ ∈ [0, 1]. Since w̄j

λ̄j
, w̃j

λ̃j
∈

dom(g∗j ), and λjgj
∗(w

j

λj
) for each j is jointly convex in (wj , λj), we have the following possible cases:

Case 1. ℓλ̄j + (1− ℓ)λ̃j > 0 : In this case,

(ℓλ̄j + (1− ℓ)λ̃j)g
∗
j

(
ℓw̄j + (1− ℓ)w̃j

ℓλ̄j + (1− ℓ)λ̃j

)
≤ ℓλ̄jg

∗
j (

w̄j

λ̄j
) + (1− ℓ)λ̃jg

∗
j (

w̃j

λ̃j

) <∞

⇒ ℓw̄j + (1− ℓ)w̃j

ℓλ̄j + (1− ℓ)λ̃j

∈ dom(g∗j )

Case 2. ℓλ̄j + (1− ℓ)λ̃j = 0 : In this case, if 0 < ℓ < 1, then λ̄j = 0 = λ̃j , and so

(ℓλ̄j + (1− ℓ)λ̃j)g
∗
j

(
ℓw̄j + (1− ℓ)w̃j

ℓλ̄j + (1− ℓ)λ̃j

)
= δ∗dom(gj)

(ℓw̄j + (1− ℓ)w̃j)

≤ δ∗dom(gj)
(ℓw̄j) + δ∗dom(gj)

((1− ℓ)w̃j)

<∞.

If ℓ = 0, then λ̃j = 0, and hence

(ℓλ̄j + (1− ℓ)λ̃j)g
∗
j

(
ℓw̄j + (1− ℓ)w̃j

ℓλ̄j + (1− ℓ)λ̃j

)
= δ∗dom(gj)

(ℓw̄j + (1− ℓ)w̃j)

= δ∗dom(gj)
(w̃j) <∞.

If ℓ = 1, then λ̄j = 0, and thus

(ℓλ̄j + (1− ℓ)λ̃j)g
∗
j

(
ℓw̄j + (1− ℓ)w̃j

ℓλ̄j + (1− ℓ)λ̃j

)
= δ∗dom(gj)

(ℓw̄j + (1− ℓ)w̃j)

= δ∗dom(gj)
(w̄j) <∞

So, in all above three cases, we get

(ℓλ̄j + (1− ℓ)λ̃j)g
∗
j

(
ℓw̄j + (1− ℓ)w̃j

ℓλ̄j + (1− ℓ)λ̃j

)
= δ∗dom(gj)

(ℓw̄j + (1− ℓ)w̃j) <∞

⇒ ℓw̄j + (1− ℓ)w̃j

ℓλ̄j + (1− ℓ)λ̃j

∈ dom(g∗j ).

Convexity in all other constraints of V obviously holds. So, ℓv̄ + (1 − ℓ)ṽ ∈ V which shows that V is
a convex set. The function G on the convex set V is a concave function due to the concavity of each

−λjgj
∗(w

j

λj
). ⊓⊔
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Appendix 2 Proof of Theorem 5

We first recall optimality condition for a constrained differentiable problem (for more details see e.g.,
[4]). Consider a (non-convex) problem of the form

sup
y
{g(y)| y ∈ S} , (21)

where g is a real-valued continuously differentiable function, and S is a nonempty closed convex set. A
vector y∗ ∈ S is called a stationary point of problem (21) if

∇g(y∗)⊤(y − y∗) ≤ 0, ∀y ∈ S,

where ∇g(y∗) is the gradient of g at y∗.

Lemma 1 Let g be a real-valued continuously differentiable function defined on the Cartesian product
of two closed convex sets C1 ⊆ Rn1 , C2 ⊆ Rn2 . Suppose that ȳ = (ȳ1, ȳ2) ∈ C1 × C2. Then

∇g(ȳ)⊤(y − ȳ) ≤ 0, ∀y ∈ C1 × C2, (22)

if and only if the following properties hold:

(i) ∇1g(ȳ)
⊤(y1 − ȳ1) ≤ 0, ∀y1 ∈ C1,

(ii) ∇2g(ȳ)
⊤(y2 − ȳ2) ≤ 0, ∀y2 ∈ C2,

where the vector y is partitioned into two component vectors y1 ∈ Rn1 , y2 ∈ Rn2 , as y ≡ (y1, y2), and

∇1g(ȳ) =
(

∂g
∂y1 (ȳ)

)
, and ∇2g(ȳ) =

(
∂g
∂y2 (ȳ)

)
denote the corresponding gradient vectors.

Proof (⇒) Let y = (y1, y2) ∈ C1 × C2. By setting y := (y1, ȳ2) and y := (ȳ1, y2) in inequality (22),
inequalities (i) and (ii) are derived.
(⇐) Clearly, (i) and (ii) lead (22). ⊓⊔

Now we are ready to prove Theorem 5. The main line of reasoning can be found in [19] but given
here for completeness.

Proof of Theorem 5. Suppose that z∗ = (z1∗, z2∗) is a limit point of the sequence {zk}k≥0. With-
out loss of generality, we assume that zk = (uk, vk) → (z1∗, z2∗). Our goal is to show that for any
ζ = (ζ1, ζ2) ∈ U × V, we have

∇Lx̄(z
∗)⊤(ζ − z∗) ≤ 0.

According to Lemma 1, the above inequality is equivalent to

∇1Lx̄(z
∗)⊤(ζ1 − z1∗) ≤ 0, ∀ζ1 ∈ U , (23)

∇2Lx̄(z
∗)⊤(ζ2 − z2∗) ≤ 0, ∀ζ2 ∈ V, (24)

where ∇Lx̄(z
∗) =

(
∇1Lx̄(z

∗)⊤,∇2Lx̄(z
∗)⊤
)⊤

is the gradient of Lx̄ at z∗. By contradiction, suppose that

there exists a vector ζ̃2 ∈ V, such that

∇2Lx̄(z
∗)⊤(ζ̃2 − z2∗) > 0. (25)

Set rk := ζ̃2−vk. As the sequence {vk}k≥0 converges to z2∗, the sequence {rk}k≥0 converges to ζ̃2−z2∗.
Thus, due to the continuity of the gradient, there exists N > 0 such that for all k > N we have

∇2Lx̄(z
k)⊤rk > 0.

So, dk := (0⊤, (rk)⊤)⊤ is an ascent direction of Lx̄ at zk. By backtracking line search [4, Lemma 4.3],
for given parameter α ∈ (0, 1), there exists a step size tk ∈ (0, 1) such that

Lx̄(z
k + tkd

k)− Lx̄(z
k) ≥ αtk∇Lx̄(z

k)⊤dk, ∀k > N.

Therefore
Lx̄(u

k, vk + tkr
k)− Lx̄(u

k, vk) ≥ αtk∇2Lx̄(z
k)⊤rk > 0, ∀k > N. (26)

Since V is convex, we have

vk + tkr
k = (1− tk)v

k + tk ζ̃
2 ∈ V, ∀k > N.
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Hence,
Lx̄(u

k+1, vk+1) ≥ Lx̄(u
k, vk+1) ≥ Lx̄(u

k, vk + tkr
k) > Lx̄(u

k, vk), ∀k > N.

So, the sequence of function values
{
Lx̄(u

k, vk)
}
is non-decreasing and also bounded above. Therefore,

it is convergent. The last inequality and the convergence of
{
Lx̄(u

k, vk)
}
implies

lim
k→∞

Lx̄(u
k, vk + tkr

k)− Lx̄(u
k, vk) = 0.

The above equation and (26) gives

∇2Lx̄(z
∗)⊤(ζ̃2 − z2∗) = 0,

which contradicts (25). This prove (24). The inequality (23) can be proved similarly. ⊓⊔

Appendix 3 Detailed Results of Numerical Experiments

This appendix contains results from numerical experiments.
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Table 3: Detailed numerical results from Class One.

Case LB1 LB2 LB3 UB8 UB1 Case LB1 LB2 LB3 UB8 UB1

1 259.1977 259.1977 259.1946 260.0564 261.3407 51 3.3127 3.3127 3.3122 3.3225 3.3274
2 9.3817 9.3817 9.3658 9.6877 10.0478 52 0.4577 0.5206 0.5252 1.1068 3.6220
3 6.9970 6.9935 6.7271 7.5588 7.9666 53 2.9971 2.9971 2.9971 2.9971 3.0049
4 2.7486 2.7486 2.7103 2.9390 3.0800 54 0.8657 0.8657 0.8653 1.6291 1.9446
5 11.0089 11.0090 10.8160 11.4931 11.8715 55 8.7115 8.7115 8.7114 8.7119 8.7119
6 15.3520 15.3520 15.2586 16.3023 17.8020 56 0.8995 0.8865 1.2330 1.8994 3.1152
7 -1.9373 -1.9373 -1.9373 -1.9357 -1.9357 57 3.3758 3.3751 3.3751 3.3934 3.4227
8 9.3109 9.3109 9.3063 10.2061 11.1458 58 2.8508 2.8508 2.8508 2.8508 3.3457
9 10.6770 10.6762 11.7674 13.5560 15.4325 59 3.4591 3.4590 3.4419 3.5102 3.5223
10 5.4643 5.4643 5.3333 6.6699 8.1682 60 4.7327 4.7327 4.7325 10.3711 19.4164
11 5.4997 5.4970 5.4996 5.5553 5.7042 61 2.1088 2.1088 1.9812 2.2950 2.4424
12 4.8946 4.8946 4.4919 5.4370 5.6290 62 2.4899 2.4899 2.4305 2.6931 2.8786
13 -1.7771 -1.2453 -1.2531 -0.7450 -0.2057 63 3.5704 3.5704 3.5606 4.3928 5.2596
14 15.0970 15.0970 14.8494 15.7447 16.1069 64 2.4027 2.4027 2.4027 2.4027 2.4215
15 3.1803 3.1803 3.1792 3.1816 3.1816 65 4.0104 4.0104 3.9697 4.0845 4.1758
16 32.7964 32.7964 32.7964 32.7979 32.8014 66 3.4362 3.4362 3.3095 4.4646 5.5969
17 0.1421 0.1421 0.0323 1.1248 2.3101 67 18.8952 18.8952 17.9105 20.1629 21.3240
18 16.5824 16.5824 15.0801 18.8211 19.4832 68 2.8023 2.8023 2.8023 2.8025 2.9026
19 3.6685 3.6685 3.3255 4.7357 5.8387 69 1.6128 1.5944 1.5914 1.9228 1.9755
20 7.0912 8.6052 8.5969 8.9749 9.3419 70 3.9882 3.9882 3.9630 4.0116 4.0224
21 49.5685 49.5685 49.5664 50.9667 52.7088 71 31.4786 31.4786 31.3828 32.6877 33.7343
22 7.3621 7.3621 7.3552 8.8104 11.2659 72 756.1827 756.1827 756.1826 756.2022 756.2175
23 21.5784 28.4078 28.3726 31.0675 38.7033 73 6.4255 6.4255 6.2120 6.9449 7.2463
24 12.5946 12.5946 12.5854 15.6238 20.4960 74 2.4011 2.4010 2.4000 2.4714 2.6531
25 14.1311 14.1311 14.1301 14.1403 14.1403 75 2.0766 2.0766 2.0765 2.3492 2.4106
26 52.2638 52.2638 52.2504 53.0016 53.6820 76 3.0271 3.0215 3.1531 3.2083 3.5310
27 -0.4110 -0.4110 -0.4118 -0.4073 -0.3732 77 2.2849 2.2849 2.2849 2.3563 2.4955
28 393.0423 393.0423 377.7744 436.0650 452.3473 78 1.3092 1.3092 1.3092 1.3112 1.3126
29 7.9651 7.9651 7.6756 9.2498 10.8485 79 7.8062 7.8062 5.9023 15.1441 23.1083
30 30.2205 30.2205 28.6526 34.9758 38.2203 80 3.3318 3.4906 3.4497 3.8514 4.1593
31 7.2094 7.2094 7.1337 7.3583 7.3583 81 2.6656 2.8999 2.8545 3.1747 3.6565
32 6.6596 6.6595 6.6530 6.7380 6.9949 82 7.9201 7.9201 7.9107 7.9570 8.3552
33 95.2210 95.2210 94.9450 102.2506 110.4956 83 4.1187 4.1080 3.9211 4.6071 4.9426
34 21.5530 21.5530 21.5225 21.7216 21.9525 84 3.4734 3.4734 3.2243 3.7412 3.9954
35 4.7314 4.7314 4.6987 4.8901 4.9057 85 3.5410 3.6188 3.5939 4.3623 5.8730
36 18.2915 18.2916 18.2899 18.5365 19.1278 86 11.5812 11.5660 10.9026 13.7476 15.7727
37 5.8375 16.7701 16.7202 17.6550 18.3373 87 10.9663 10.9663 10.9658 10.9887 10.9990
38 5.6850 7.2390 6.4109 9.2046 11.3974 88 14.1618 14.1618 14.1615 14.1639 14.1641
39 86.3898 86.3898 86.3881 86.5066 86.5195 89 5.0708 5.0023 5.0490 6.0166 7.0369
40 -0.3083 -0.3083 -0.3084 -0.1944 0.0310 90 4.8473 4.8461 4.8483 5.5185 5.8588
41 75.7971 75.7971 75.7851 76.0008 76.6293 91 9.3160 9.3160 9.2139 9.6205 10.2391
42 10.9392 10.9392 10.8825 12.9686 18.0775 92 45.8951 45.8951 45.3398 48.8046 50.3318
43 32.2960 32.2960 32.2940 32.3780 32.3964 93 1.9520 1.9519 3.8607 4.0389 4.4740
44 -0.6766 -0.6766 -0.6766 -0.6766 -0.6185 94 0.7561 0.7561 0.6361 1.3990 2.2513
45 1.1652 1.1652 1.1425 1.3013 1.4361 95 -0.7423 -0.6797 -0.6980 -0.4079 0.0277
46 2.5419 2.5419 2.5418 2.8630 3.2250 96 22.3622 22.3622 22.2758 23.3531 23.9807
47 1.0582 1.0582 1.0431 1.3847 2.2834 97 3.6372 5.7130 5.6500 6.8904 7.9793
48 3.6334 3.6334 3.5831 4.1290 4.8998 98 6.6315 6.6315 6.3300 6.9888 7.1655
49 22.1946 22.1946 22.1167 24.3342 27.4000 99 18.9985 18.9985 18.9977 19.5478 20.0648
50 3.3475 3.3475 3.3208 3.4439 3.4843 100 2.7358 2.7358 2.7216 2.8101 2.8288

Note. The column entitled Case contains the instance number, columns LB1, LB2, and LB3 report the lower bounds
obtained by Algorithms 1, 2, and the finite-scenario approach, respectively, and the columns entitled UB1 and UB8 report
the upper bounds obtained by perspectification approach and 8-adaptability approach, respectively. The accuracy digit is
four. In this table, for each instance, the best lower bound is in boldface.
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Table 4: Detailed numerical results from Class Two.

Case LB1 LB2 LB3 UB1 Case LB1 LB2 LB3 UB1

1 3.9001 3.8934 3.8854 4.8279 51 -2.9744 -2.9971 -3.0021 -1.9376
2 9.6268 9.6178 9.6015 10.4601 52 3.5619 3.5499 3.5264 4.6196
3 1.6344 1.6123 1.6121 2.8872 53 -1.7460 -1.7904 -1.8189 -0.3012
4 10.8829 10.8773 10.8506 11.6009 54 3.2074 3.1680 3.1807 4.5110
5 12.2019 12.1472 12.1530 13.5152 55 -1.0219 -1.0273 -1.0839 0.0784
6 2.7891 2.7762 2.7543 3.8914 56 -5.9077 -5.9099 -6.0075 -4.5074
7 4.2798 4.2738 4.2123 5.3923 57 9.0173 8.9964 9.0082 10.0026
8 -1.6253 -1.6291 -1.6727 -0.7387 58 -5.3944 -5.4257 -5.4375 -4.3260
9 3.5420 3.5370 3.5318 4.2847 59 5.9016 5.9016 5.8349 6.3315
10 0.2770 0.2365 0.1944 1.6372 60 0.9850 0.9656 0.8858 2.2989
11 -1.3185 -1.3505 -1.3593 -0.3106 61 7.2530 7.2352 7.2083 8.2546
12 -2.0551 -2.1027 -2.1003 -0.5346 62 0.5393 0.5800 0.5150 2.0891
13 8.1494 8.1280 8.1285 8.9722 63 5.2223 5.1960 5.1005 6.5493
14 8.3511 8.3408 8.3322 8.8412 64 -8.0248 -8.0617 -8.0568 -6.4983
15 -1.9698 -2.0357 -1.9960 -0.9572 65 7.0972 7.0572 6.9516 8.5001
16 7.3853 7.3711 7.3958 8.3874 66 -0.4458 -0.5322 -0.5025 1.1889
17 16.0063 15.9723 15.9882 17.1185 67 -0.5969 -0.6999 -0.6607 1.2182
18 2.9578 2.9267 2.9187 4.1038 68 -1.1199 -1.1293 -1.1896 -0.0657
19 2.4222 2.4132 2.4054 3.4077 69 2.2536 2.2530 2.1678 3.1326
20 -1.6671 -1.6730 -1.7801 -0.5029 70 7.2135 7.2085 7.1412 8.6105
21 1.0836 1.0649 1.0506 1.8063 71 9.6860 9.6677 9.6259 10.3959
22 9.8687 9.8084 9.8125 11.3247 72 4.5704 4.5428 4.5342 5.5110
23 0.6145 0.5376 0.5527 1.9393 73 -3.7698 -3.7862 -3.7970 -2.8077
24 -9.4925 -9.5133 -9.5277 -8.5633 74 -5.0022 -5.0044 -5.1230 -3.4930
25 2.1541 2.1525 2.0924 2.9331 75 -1.3936 -1.4183 -1.4138 -0.2234
26 9.5053 9.4669 9.4446 10.8387 76 5.3090 5.2698 5.2504 6.7112
27 -1.2397 -1.2863 -1.3041 0.8808 77 -2.0718 -2.0727 -2.0879 -1.5332
28 10.8428 10.8244 10.7536 11.8421 78 16.0217 16.0155 15.9792 16.7758
29 4.6773 4.6652 4.6285 5.9266 79 8.1416 8.1328 8.1075 8.9623
30 9.9538 9.9512 9.8376 11.3559 80 0.7576 0.7532 0.7278 1.4189
31 0.6215 0.6172 0.5307 1.6204 81 4.5890 4.5885 4.4751 5.6660
32 4.5631 4.5559 4.5147 5.2915 82 6.3865 6.3751 6.3194 7.4986
33 7.0305 6.9845 6.9944 8.0498 83 6.1873 6.1780 6.0546 7.2406
34 9.9680 9.8466 9.9100 11.3081 84 2.9913 2.9078 2.9352 4.7038
35 0.8044 0.7829 0.7239 2.0848 85 10.6753 10.6411 10.6368 11.7620
36 -4.8340 -4.9150 -4.8925 -3.5569 86 -7.7191 -7.7389 -7.7566 -6.2191
37 4.9906 4.9789 4.9619 5.9426 87 11.0850 11.0523 11.0027 12.4703
38 -7.6116 -7.6907 -7.7910 -6.0688 88 10.3312 10.2796 10.3872 12.3348
39 15.8386 15.8279 15.8049 16.7978 89 8.9459 8.9313 8.8954 10.1933
40 0.3786 0.3694 0.2224 1.7918 90 7.6131 7.6069 7.5995 8.3429
41 -2.2577 -2.2625 -2.3401 -0.9587 91 4.7490 4.6998 4.6915 5.9225
42 0.8659 0.8557 0.8168 1.9483 92 10.1188 10.0803 10.0249 11.2766
43 12.2575 12.2277 12.2335 13.1937 93 -1.0054 -1.0080 -1.0731 -0.2399
44 4.7063 4.7037 4.6871 5.1994 94 -2.3783 -2.3824 -2.5552 -1.1306
45 7.1076 7.0944 7.0682 8.0319 95 1.3148 1.2884 1.2675 2.9579
46 -1.0208 -1.0213 -1.3427 0.4856 96 -2.4070 -2.4142 -2.4486 -1.4270
47 5.6107 5.5709 5.5854 6.8776 97 3.6744 3.6589 3.6323 4.6726
48 7.9571 7.9486 7.9025 9.0604 98 1.8353 1.8244 1.7627 3.2556
49 5.8116 5.8047 5.7952 6.4533 99 -5.3745 -5.4029 -5.4231 -4.3001
50 2.9529 2.9124 2.8474 4.2576 100 7.8266 7.8138 7.7616 8.7882

Note. The column entitled Case contains the instance number, columns LB1, LB2, and LB3 report the lower bounds
obtained by Algorithms 1, 2, and the finite-scenario approach, respectively, and the column UB1 contains the upper bound
obtained by perspectification approach. In this table, for each instance, the best lower bound is in boldface.
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