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Abstract

This short paper presents a derivative-free quadratic regularization method for unconstrained
minimization of a smooth function with Lipschitz continuous gradient. At each iteration, trial
points are computed by minimizing a quadratic regularization of a local model of the objective
function. The models are based on forward finite-difference gradient approximations. By using
a suitable acceptance condition for the trial points, the accuracy of the gradient approximations
is dynamically adjusted as a function of the regularization parameter used to control the step-
sizes. Worst-case evaluation complexity bounds are established for the new method. Specifically,
for nonconvex problems, it is shown that the proposed method needs at most O

(
nϵ−2

)
function

evaluations to generate an ϵ-approximate stationary point, where n is the problem dimension.
For convex problems, an evaluation complexity bound of O

(
nϵ−1

)
is obtained, which is reduced

to O
(
n log(ϵ−1)

)
under strong convexity. Numerical results illustrating the performance of the

proposed method are also reported.

Keywords: derivative-free optimization; black-box optimization; zeroth-order optimization; worst-
case complexity

1 Introduction

In many practical optimization problems, the gradients of the functions involved are not readily
available. Examples include computer-aided molecular design problems [20], aerodynamic shape
optimization [10], tuning of algorithmic parameters [2], model calibration [19], and optimization of
cardiovascular geometries [13, 18]. These problems can be addressed with Derivative-Free Optimiza-
tion (DFO) methods, i.e., methods that rely only on function evaluations (see. e.g., [5, 3, 12]). Very
often, the evaluation of the objective function is computationally expensive. Therefore, one of the
main concerns in DFO is the development of methods with a low worst-case complexity in terms
of function evaluations. In [9], a derivative-free quadratic regularization method based on forward
finite-difference gradient approximations has been proposed for the unconstrained minimization of a
function f : Rn → R (potentially nonconvex) with Lipschitz continuous gradient. At its kth iteration,
this method builds a forward finite-difference gradient approximation gk aiming an error bound of
the form

∥gk −∇f(xk)∥ ≤ κg∥xk − xk−1∥,
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where {xk} is the sequence of iterates and κg > 0 is a certain constant. It was shown that the referred
method needs at most O

(
nϵ−2

)
function evaluations to find an ϵ-approximate stationary point.

In the present paper, a new derivative-free quadratic regularization method is presented. At its
kth iteration, a trial point is computed by minimizing a quadratic regularization of a local model of
the objective function. This model is also defined by a forward finite-difference gradient approxima-
tion gk, but, in contrast to [9], the new method builds gk aiming an error bound of the form

∥gk −∇f(xk)∥ ≤ κgϵ, (1)

assuming that the goal is to find x̄ such that ∥∇f(x̄)∥ ≤ ϵ. By using an acceptance condition for the
trial points derived from (1), the accuracy of the gradient approximations is dynamically adjusted
as a function of the regularization parameter. It is shown that the proposed method needs at most
O
(
nϵ−2

)
to find an ϵ-approximate stationary point when the objective function is nonconvex. In

terms of n and ϵ, this bound agrees with the bound established in [9]. However, the use of (1)
allows the derivation of additional complexity bounds under convexity. For convex functions, it is
shown that the new method needs at most O

(
nϵ−1

)
function evaluations to find an ϵ-approximate

stationary point, while for strongly convex functions, a bound of O
(
n log(ϵ−1)

)
is obtained. To the

best of this author’s knowledge, this is the first time that evaluation complexity bounds with linear
dependence in n are obtained for a deterministic DFO method in the context of convex and strongly
convex objective functions with Lipschitz continuous gradients1.

The paper is organized as follows. Section 2 contains the main preliminary results. In Section
3, the new method is described and its worst-case complexity is analyzed. Finally, in Section 4,
preliminary numerical results are reported.

2 Auxiliary Results

The problem class considered in this work is specified by the following assumptions:

A1. The gradient of f is L-Lipschitz continuous, i.e.,

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥, ∀x, y ∈ Rn.

A2. There exists flow ∈ R such that f(x) ≥ flow for all x ∈ Rn.

In the proposed method, given x ∈ Rn, trial points are computed by (approximately) minimizing
quadratic models of the form

Mx,σ(y) := f(x) + ⟨g, y − x⟩+ 1

2
⟨B(y − x), y − x⟩+ σ

2
∥y − x∥2 (2)

where g ∈ Rn is an approximation to ∇f(x), B ∈ Rn×n is a symmetric positive semidefinite matrix,
and σ > 0 is a regularization parameter.

The next lemma gives sufficient conditions under which an approximate minimizer x+ of Mx,σ( · )
yields a decrease in the objective function that is at least of O

(
∥x+ − x∥2

)
.

1Evaluation complexity bounds of O
(
nϵ−1

)
and O

(
n log(ϵ−1)

)
(in the convex and strongly convex cases, respec-

tively) were established in [16] and [6] for randomized DFO methods. They constitute upper bounds for the number
of function evaluations that the corresponding methods need to find x̄ such that E[f(x̄)] − f∗ ≤ ϵ, where f∗ is the
optimal value of f( · ) and E[X] denotes the expected value of a random variable X. For deterministic direct search
methods, bounds of O

(
n2ϵ−1

)
and O

(
n2 log(ϵ−1)

)
were established in [7] and [11].
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Lemma 2.1. Suppose that A1 holds. Given ϵ > 0, let x ∈ Rn and g ∈ Rn such that

∥∇f(x)∥ > ϵ (3)

and
∥g −∇f(x)∥ ≤ ϵ

5
. (4)

Moreover, let x+ ∈ Rn be a point such that

Mx,σ(x
+) ≤ f(x) and ∥∇Mx,σ(x

+)∥ ≤ θσ∥x+ − x∥, (5)

for some σ > 0 and θ ∈ [0, 1). If

σ ≥ 2 [2L+ 3∥B∥] (1− θ)−1, (6)

then

f(x)− f(x+) ≥ (1− θ)σ

8
∥x+ − x∥2. (7)

Proof. Using A1, the Cauchy-Schwarz inequality, the first inequality in (5) and (4), we get

f(x+) ≤ f(x) + ⟨∇f(x), x+ − x⟩+ L

2
∥x+ − x∥2

= f(x) + ⟨g, x+ − x⟩+ 1

2
⟨B(x+ − x), x+ − x⟩+ σ

2
∥x+ − x∥2

+⟨∇f(x)− g, x+ − x⟩ − 1

2
⟨B(x+ − x), x+ − x⟩+ (L− σ)

2
∥x+ − x∥2

= Mx,σ(x
+) + ⟨∇f(x)− g, x+ − x⟩ − 1

2
⟨B(x+ − x), x+ − x⟩

+
(L− σ)

2
∥x+ − x∥2

≤ f(x) + ∥∇f(x)− g∥∥x+ − x∥+ (∥B∥+ L− σ)

2
∥x+ − x∥2

≤ f(x) +
ϵ

5
∥x+ − x∥+ (∥B∥+ L− σ)

2
∥x+ − x∥2. (8)

By (3) and (4) we have

ϵ < ∥∇f(x)∥ ≤ ∥∇f(x)− g∥+ ∥g∥ ≤ ϵ

5
+ ∥g∥,

which implies that
ϵ

5
≤ ∥g∥

4
. (9)

Moreover, by (2) and the second inequality in (5) we also have

∥g∥ ≤ ∥∇Mx,σ(x
+)∥+ ∥g −∇Mx,σ(x

+)∥
= ∥∇Mx,σ(x

+)∥+ ∥(B + σI)(x+ − x)∥
≤ [(θ + 1)σ + ∥B∥] ∥x+ − x∥. (10)
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Now, combining (8), (9) and (10) it follows that

f(x+) ≤ f(x) +
[(θ + 1)σ + ∥B∥]

4
∥x+ − x∥2 + (∥B∥+ L− σ)

2
∥x+ − x∥2

= f(x) +
[(θ + 1)σ + 3∥B∥+ 2L− 2σ]

4
∥x+ − x∥2

= f(x) +
[(2L+ 3∥B∥)− (1− θ)σ]

4
∥x+ − x∥2. (11)

Finally, by (6) and (11) we conclude that

f(x)− f(x+) ≥ [(1− θ)σ − (2L+ 3∥B∥)]
4

∥x+ − x∥2 ≥ (1− θ)σ

8
∥x+ − x∥2.

The next lemma suggests a way to construct g such that (4) holds for σ sufficiently large.

Lemma 2.2. Suppose that A1 holds and assume that x+ satisfies (5) for some x ∈ Rn, σ > 0 and
θ ∈ [0, 1). Moreover, suppose that x satisfies (3) for some ϵ > 0, and that the vector g in Mx,σ( · ) is
defined by

gj =
f(x+ hej)− f(x)

h
, j = 1, . . . , n. (12)

with

0 < h ≤ 2ϵ

5σ
√
n
. (13)

If σ satisfies (6) then the point x+ satisfies (7). Moreover,

∥g∥ ≥ 4ϵ

5
. (14)

Proof. By A1, (12), (13) and (6) we have

∥∇f(x)− g∥ ≤
√
nL

2
h ≤ Lϵ

5σ
≤ ϵ

5
. (15)

Then, in view of (3), (15), (5) and (6), it follows from Lemma 2.1 that x+ satisfies (7). Finally,
assume by contradiction that (14) is not true, i.e.,

∥g∥ <
4ϵ

5
. (16)

In this case, combining (15) and (16) we would have

∥∇f(x)∥ ≤ ∥∇f(x)− g∥+ ∥g∥ <
ϵ

5
+

4ϵ

5
= ϵ,

which contradicts (3). Thus, (14) also must be true.

3 Derivative-Free Quadratic Regularization Method

Consider now the following Derivative-Free Quadratic Regularization Method (DFQRM):
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Algorithm 1. DFQRM

Step 0. Given x0 ∈ Rn, a symmetric positive semidefinite matrix B0 ∈ Rn×n, σ0 > 0, ϵ > 0,
and θ ∈ [0, 1), set k := 0.

Step 1. Find the smallest integer i ≥ 0 such that 2iσk ≥ 2σ0.

Step 1.1. For

hi =
2ϵ

5(2iσk)
√
n
, (17)

compute gk,i ∈ Rn by

[gk,i]j =
f(xk + hiej)− f(xk)

hi
, j = 1, . . . , n. (18)

Step 1.2. If

∥gk,i∥ ≥ 4ϵ

5
(19)

go to Step 1.3. Otherwise, set i := i+ 1 and go to Step 1.1.

Step 1.3. Consider the quadratic model

Mxk,2iσk
(y) := f(xk) + ⟨gk,i, y − xk⟩+

1

2
⟨Bk(y − xk), y − xk⟩+

2iσk

2
∥y − xk∥2,

and compute an approximate solution x+k,i of the subproblem

min
y∈Rn

Mxk,2iσk
(y), (20)

such that

Mxk,2iσk
(x+k,i) ≤ f(xk) and ∥∇Mxk,2iσk

(x+k,i)∥ ≤ θ(2iσk)∥x+k,i − xk∥. (21)

Step 1.4. If

f(xk)− f(x+k,i) ≥
(1− θ)(2iσk)

8
∥x+k,i − xk∥2 (22)

holds, set ik = i, gk = gk,ik and go to Step 2. Otherwise, set i := i+ 1 and go to Step 1.1.

Step 2. Set xk+1 = x+k,ik , σk+1 = 2ik−1σk, choose a symmetric positive semidefinite matrix

Bk+1 ∈ Rn×n, set k := k + 1, and go to Step 1.

The analysis of Algorithm 1 will be carried out with the following additional assumption:

A3. There exists M ≥ 0 such that ∥Bk∥ ≤ M for all k.

The next lemma gives a lower bound and an upper bound for the sequence of regularization param-
eters.

Lemma 3.1. Suppose that A1 and A3 hold and let {xk} be a sequence generated by Algorithm 1
such that

∥∇f(xk)∥ > ϵ, for k = 0, . . . , T. (23)
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Then, the sequence of regularization parameters {σk} in Algorithm 1 satisfies

σ0 ≤ σk ≤ 2max
{
σ0, [2L+ 3M ] (1− θ)−1

}
:= σmax, (24)

for all k ∈ {0, . . . , T + 1}.

Proof. Notice that (24) holds for k = 0. Assume that (24) is true for some k ∈ {0, . . . , T}. It follows
from Step 1 of Algorithm 1 that

σk+1 = 2ik−1σk =
1

2

(
2ikσk

)
≥ 1

2
(2σ0) = σ0. (25)

Moreover, we also have
σk+1 ≤ σmax. (26)

Indeed, if ik = 0, it follows from the induction assumption that

σk+1 = 2ik−1σk =
1

2
σk < σk ≤ σmax.

Suppose that ik ≥ 1. Then, assuming that (26) is false we would have

2ik−1σk = σk+1 > 2σ0 and 2ik−1σk = σk+1 > 2 [2L+ 3∥B∥] (1− θ)−1,

where the last inequality is due to A3. In this case, by Lemma 2.2, inequality (22) would have been
satisfied for i ≤ ik − 1, contradicting the definition of ik. Thus, in view of (25) and (26), we have

σ0 ≤ σk+1 ≤ σmax,

which concludes the proof.

The next lemma establishes a lower bound of O
(
∥∇f(xk)∥2

)
for the difference f(xk)− f(xk+1).

Lemma 3.2. Suppose that A1 and A3 hold and let {xk} be a sequence generated by Algorithm 1
such that (23) holds for some T ≥ 1. Then

f(xk)− f(xk+1) ≥
1

2Cf
∥∇f(xk)∥2, for k = 0, . . . , T − 1, (27)

where

Cf :=
81
[
2(θ + 1) +Mσ−1

0

]2
32(1− θ)

max
{
σmax, L

2σ−1
0

}
, (28)

where σmax is defined in (24).

Proof. Given k ∈ {0, . . . , T − 1}, it follows from (17), (18), A1 and (19) that

∥∇f(xk)− gk∥ ≤
√
nL

2
hik =

Lϵ

5(2ikσk)
≤ L

8σk+1
∥gk∥.

Consequently,

∥∇f(xk)∥ ≤ ∥∇f(xk)− gk∥+ ∥gk∥ ≤
(
L+ 8σk+1

8σk+1

)
∥gk∥.
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Thus, (
8σk+1

L+ 8σk+1

)
∥∇f(xk)∥ ≤ ∥gk∥. (29)

In view of Lemma 3.1 we have

M =
(
Mσ−1

0

)
σ0 ≤

(
Mσ−1

0

)
σk+1. (30)

Then, combining the second inequality in (21) with (30) and A3, we obtain

∥gk∥ ≤ ∥gk + (Bk + 2ikσkI)(xk+1 − xk)∥+ ∥(Bk + 2ikσkI)(xk+1 − xk)∥
= ∥∇Mxk,2σk+1

(xk+1)∥+ (∥B∥+ 2σk+1)∥xk+1 − xk∥
≤ (2θσk+1 + 2σk+1 +M)∥xk+1 − xk∥
≤

[
2(θ + 1) +Mσ−1

0

]
σk+1∥xk+1 − xk∥. (31)

Combining (29) and (31) it follows that

∥xk+1 − xk∥ ≥ 8∥∇f(xk)∥[
2(θ + 1) +Mσ−1

0

]
(L+ 8σk+1)

. (32)

Suppose that σk+1 ≥ L. By (22), (32), Lemma 3.1 and (28), we get

f(xk)− f(xk+1) ≥ 2(1− θ)σk+1

8
∥xk+1 − xk∥2

≥ 2(1− θ)σk+1

8

(
82∥∇f(xk)∥2[

2(θ + 1) +Mσ−1
0

]2
92σ2

k+1

)

≥ 16(1− θ)

81
[
2(θ + 1) +Mσ−1

0

]2
σmax

∥∇f(xk)∥2

≥ 1

2Cf
∥∇f(xk)∥2,

that is, (27) holds. Now, suppose that σk+1 < L. In this case, it follows from (22), (32), Lemma 3.1
and (28) that

f(xk)− f(xk+1) ≥ 2(1− θ)σk+1

8
∥xk+1 − xk∥2

≥ 2(1− θ)σk+1

8

(
82∥∇f(xk)∥2[

2(θ + 1) +Mσ−1
0

]2
92L2

)

≥ 16(1− θ)σ0

81
[
2(θ + 1) +Mσ−1

0

]2
L2

∥∇f(xk)∥2

≥ 1

2Cf
∥∇f(xk)∥2,

that is, (27) also holds.

In view of Lemma 3.2, complexity bounds can be obtained for Algorithm 1 under different
scenarios. The next theorem gives an iteration complexity bound of O

(
ϵ−2
)
for Algorithm 1 applied

to a nonconvex problem.
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Theorem 3.3. Suppose that A1-A3 hold and let {xk} be a sequence generated by Algorithm 1 such
that (23) holds for some T ≥ 1. Then

min
k=0,...,T−1

∥∇f(xk)∥ ≤
[2Cf (f(x0)− flow)]

1
2

√
T

, (33)

where Cf is defined in (28). Consequently,

T < 2Cf (f(x0)− flow)ϵ
−2. (34)

Proof. By Lemma 3.2,

f(xk)− f(xk+1) ≥
1

2Cf
∥∇f(xk)∥2, for k = 0, . . . , T − 1. (35)

Summing up these inequalities and using A2 we get

1

2Cf

T−1∑
k=0

∥∇f(xk)∥2 ≤ f(x0)− flow,

which implies that (33) holds. Finally, combining (33) and (23) we get the bound (34).

Consider the additional assumption:

A4. f : Rn → R is convex and the sublevel set Lf (x0) = {x ∈ Rn : f(x) ≤ f(x0)} is compact.

The next theorem gives an iteration complexity bound of O
(
ϵ−1
)
for Algorithm 1 applied to a convex

problem.

Theorem 3.4. Suppose that A1, A3 and A4 holds and let {xk} be a sequence generated by Algorithm
1 such that (23) holds for T = 3s, with s ≥ 1. Then

min
k=0,...,T−1

∥∇f(xk)∥ ≤
√
18CfD0

T
, (36)

where Cf is defined in (28) and
D0 = sup

x∈Lf (x0)
∥x− x∗∥, (37)

with x∗ being a minimizer of f( · ). Consequently,

T <
√
18CfD0ϵ

−1. (38)

Proof. Since Lf (x0) is compact (by A4), it follows that f( · ) has a minimizer x∗ and D0 < +∞. In
view of (35), we have xk ∈ Lf (x0) for all k ∈ {0, . . . , T}, and so

∥xk − x∗∥ ≤ D0, ∀k ∈ {0, . . . , T} .

Then, it follows from the convexity of f( · ) that

∥∇f(xk)∥ ≥ f(xk)− f(x∗)

D0
, k = 0, . . . , T. (39)
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Combining (35) and (39) we obtain

f(xk)− f(xk+1) ≥
1

2CfD
2
0

(f(xk)− f(x∗))2, k = 0, . . . , T − 1. (40)

Define

δk =
1

2CfD
2
0

(f(xk)− f(x∗)).

Then, given j ∈ {1, . . . , T − 1}, it follows from (40) that

δk − δk+1 ≥ δ2k, k = 0, . . . , j,

and so
1

δk+1
− 1

δk
≥ δk − δk+1

δk+1δk
≥

δ2k
δ2k

= 1, k = 0, . . . , j − 1.

Summing up these inequalities we get
1

δj
− 1

δ0
≥ j,

which gives δj ≤ 1/j. Thus,

f(xj)− f(x∗) ≤
2CfD

2
0

j
, ∀j ∈ {1, . . . , T − 1} . (41)

In particular, for j = 2s, it follows from (41), (35) and T = 3s that

2CfD
2
0

2s
≥ f(x2s)− f(x∗) = f(xT )− f(x∗) +

T−1∑
k=2s

f(xk)− f(xk+1)

≥
T−1∑
k=2s

f(xk)− f(xk+1) ≥
1

2Cf

T−1∑
k=2s

∥∇f(xk)∥2

≥ s

2Cf
min

k=0,...,T−1
∥∇f(xk)∥2.

Therefore, using s = T/3 it follows that

min
k=0,...,T−1

∥∇f(xk)∥2 ≤
2C2

fD
2
0

s2
=

18C2
fD

2
0

T 2
,

which gives (36). Finally, combining (36) and (23) we get the bound (38).

Now, instead of A4, consider the assumption:

A5. f : Rn → R is µ-strongly convex.

The next theorem gives an iteration complexity bound of O
(
log(ϵ−1)

)
for Algorithm 1 applied to a

strongly convex function.
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Theorem 3.5. Suppose that A1, A3 and A5 hold, and let {xk} be a sequence generated by Algorithm
1 such that (23) holds for some T ≥ 1. Then

∥∇f(xk)∥ ≤
√

2Cf (f(x0)− f(x∗))

(
1− µ

Cf

) k
2

, k = 0, . . . , T − 1, (42)

where Cf is defined in (28) and x∗ is the minimizer of f( · ). Consequently,

T ≤ 1 +
2∣∣∣log (1− µ

Cf

)∣∣∣ log
(√

2Cf (f(x0)− f(x∗))ϵ−1

)
. (43)

Proof. Let k ∈ {0, . . . , T − 1}. By A5 we have

∥∇f(xk)∥2 ≥ 2µ(f(xk)− f(x∗)). (44)

Combining (35) and (44) we get

(f(xk)− f(x∗))− (f(xk+1)− f(x∗)) = f(xk)− f(xk+1) ≥
µ

Cf
(f(xk)− f(x∗)) ,

which gives

f(xk+1)− f(x∗) ≤
(
1− µ

Cf

)
(f(xk)− f(x∗)) .

Therefore,

f(xk)− f(x∗) ≤
(
1− µ

Cf

)k

(f(x0)− f(x∗)), k = 0, . . . , T. (45)

Now, combining (35) and (45), it follows that

∥∇f(xk)∥2 ≤ 2Cf

(
1− µ

Cf

)k

(f(x0)− f(x∗)), k = 0, . . . , T − 1,

which gives (42). Finally, combining (23) and (42) we obtain the bound (43).

The next lemma gives an upper bound for the total number of function evaluations that Algorithm
1 performs until it finds an ϵ-approximate stationary point of the objective function.

Lemma 3.6. Suppose that A1 and A3 hold. Let T (ϵ) be the first iteration index such that

∥∇f(xT (ϵ)+1)∥ ≤ ϵ,

and let FE(ϵ) be the total number of function evaluations performed by Algorithm 1 up to the T (ϵ)th
iteration. Then,

FE(ϵ) ≤ 1 + (n+ 1) [2 + 2T (ϵ) + log2(σmax)− log2(σ0)] ,

where σmax is defined in (24).
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Proof. The number of function evaluations performed at the kth iteration of Algorithm 1 is bounded
from above by 1+ (n+1)(ik +1) if k = 0, and by (n+1)(ik +1) when k > 0. Since σk+1 = 2ik−1σk,
we have

(n+ 1)(ik + 1) = (n+ 1) [2 + log2(σk+1)− log2(σk)] .

Therefore,

FE(ϵ) ≤ 1 +

T (ϵ)∑
k=0

(n+ 1)(ik + 1) = 1 + (n+ 1)
[
2(T (ϵ) + 1) + log2(σT (ϵ)+1)− log2(σ0)

]
≤ 1 + (n+ 1) [2 + 2T (ϵ) + log2(σmax)− log2(σ0)] ,

where the last inequality is due to Lemma 3.1.

The theorem below combines the previous results and establishes worst-case evaluation complexity
bounds for Algorithm 1.

Theorem 3.7. Suppose that A1 and A3 hold, and let FE(ϵ) be defined as in Lemma 3.6. Then

FE(ϵ) ≤


O
(
nϵ−2

)
, if A2 holds (f is nonconvex),

O
(
nϵ−1

)
, if A4 holds (f is convex),

O
(
n log

(
ϵ−1
))

, if A5 holds (f is strongly convex).
(46)

Proof. Let T (ϵ) be the first iteration index such that ∥∇f(xT (ϵ)+1)∥ ≤ ϵ. By Theorems 3.3, 3.4 and
3.5, we have

T (ϵ) ≤


O
(
ϵ−2
)
, if A2 holds,

O
(
ϵ−1
)
, if A4 holds,

O
(
log
(
ϵ−1
))

, if A5 holds.
(47)

Then, combining Lemma 3.6 and (47) we get (46).

4 Numerical Experiments

To investigate the practical performance of Algorithm 1, numerical experiments were carried out on
the set of 102 problems from the Andrei’s collection [1]. The following MATLAB implementations
were compared:

• DFQRM1: Algorithm 1 with σ0 = 10−2, ϵ = 10−5, θ = 0 and Bk = 0 for all k.

• DFQRM2: Algorithm 1 with σ0 = 10−2, ϵ = 10−5, θ = 0 and Bk updated by

Bk+1 =

 Bk +
yky

T
k

sTk yk
−

Bksks
T
kBk

sTkBksk
, if sTk yk > 0,

Bk, otherwise,

with B0 = I, sk = xk+1 − xk and yk = g(xk+1) − g(xk), where g(xk) = gk and g(xk+1) is the
approximation to ∇f(xk+1) obtained by forward finite-differences with h = hik .

• FDBFGS: the code described in Section 5 of [9].

11



• NMSMAX: an implemenation of the Nelder-Mead method [15]2.

For each problem, three choices of the dimension n and two choices of starting points were con-
sidered, resulting in 612 instances. Specifically, the experiments were performed with n = 12, 24, 48
and x0 = 10sx̄, s = 0, 1, where x̄ is the starting point provided in [1]. For each problem, a budget
of 4900 function evaluations was allowed to each code (i.e., at least 100 simplex gradients). Figure 1
shows the corresponding data profiles [14]3. As it can be seen, DFQRM2 (the quasi-Newton version
of Algorithm 1) outperformed DFQRM1 (Fig. 1(a)). Moreover, DFQRM2 was competitive against
FDBFGS, with both codes solving more problems than NMSMAX using the same budget of function
evaluations (Fig. 1(b)).

(a) (b)

Figure 1: Data profiles for the precision 10−7 and budget of 100 simplex gradients.

5 Conclusion

This paper presented a derivative-free quadratic regularization method for smooth unconstrained
optimization in which finite-difference gradient approximations are employed. The accuracy of the
gradient approximations and the regularization parameter are jointly adjusted by using an accep-
tance condition for the trial steps that forces {f(xk)} to be a decreasing sequence. For the class of
differentiable functions of n variables that have Lipschitz continuous gradient, evaluation complexity
bounds of O

(
nϵ−2

)
, O

(
nϵ−1

)
and O

(
n log(ϵ−1)

)
were proved for the nonconvex, the convex, and

the strongly convex cases, respectively. Preliminary numerical results suggest that the new method
compares favorably with the Nelder-Mead method, and that it is competitive with the derivative-free
method recently proposed in [9].

2The Nelder-Mead method was included in the comparison in view of its extensive use in several areas (see, e.g.,
[4, 17, 8]). The implementation NMSMAX is freely available in the Matrix Computation Toolbox (https://www.
maths.manchester.ac.uk/~higham/mctoolbox/).

3The data profiles were generated using the code data profile.m freely available in the website https://www.mcs.
anl.gov/~more/dfo/.
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