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Abstract

Problem definition: We address the portfolio optimization problem with contextual infor-

mation that is available to better quantify and predict the uncertain returns of assets. Motivated

by the distinct regimes for the finance market, we consider the setting where the uncertain re-

turns and the contextual information jointly follow a Gaussian Mixture (GM) distribution.

Methodology/results: We establish that the problem is equivalent to a nominal portfolio

optimization problem where the mean and the covariance matrix are adjusted by the contextual

information. To reduce the sensitivity of the model performance with respect to the inherent

model parameters within the Gaussian Mixture Model (GMM), we propose the robust con-

textual portfolio optimization problem. By considering a projection of the ambiguity set, a

tractable formulation is derived to approximate the exact model. We conduct numerical ex-

periments in both US markets and the global Exchange-Traded Funds market, and the results

demonstrate the advantage of our proposed model against other benchmark methods. Man-

agerial implications: We introduce a framework that provides a tractable solution to the

portfolio optimization problem with contextual information. Computational results affirm its

superiority, outperforming alternative approaches across multiple metrics.

Keywords: Portfolio optimization, Contextual optimization, Robust optimization
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1 Introduction

The portfolio optimization problem, one of the most important problems in computational finance,

has garnered significant attention from both the research community and industry over many

years (Benati and Rizzi, 2007; Birge, 2007; DeMiguel et al., 2009a; Konno and Yamazaki, 1991;

Markowitz, 1952; Perold, 1984; Rockafellar et al., 2000). Traditional models for the portfolio opti-

mization problem, such as the Markowitz model (Markowitz, 1952), operate under the assumption

that exact information of the considered assets (e.g., means and variances of the returns) is avail-

able. However, this modeling requirement is unrealistic and brings profound challenges in practice,

as achieving satisfactory performance would necessitate an impractically large amount of data to

reduce estimation errors, and even minor estimation errors would result in poor decisions (Britten-

Jones, 1999; Chopra and Ziemba, 2013). Moreover, asset returns are often affected by various

external factors, such as economic situation, governmental policy, business cycle, etc. (Eugene and

French, 1992; Flannery and Protopapadakis, 2002; Grinblatt et al., 1995). These factors are typi-

cally not considered in traditional models. Consequently, the unconditional distribution of returns

does not adequately capture the uncertainty of returns within any given investment period.

In recent years, robust optimization has been a popular approach to address the aforemen-

tioned issue of sensitivity concerning the model parameters (Ben-Tal et al., 2006, 2009; Bertsimas

and Sim, 2004; Pflug and Wozabal, 2007; Sim et al., 2021). In contrast to the traditional ap-

proach, the robust optimization scheme constructs an uncertainty set of parameters to describe

asset returns and optimizes the portfolio allocation based on the worst-case returns within this

set (DeMiguel and Nogales, 2009; Fabozzi et al., 2007; Goldfarb and Iyengar, 2003; Kakouris and

Rustem, 2014; Rujeerapaiboon et al., 2016; Ye et al., 2012; Zymler et al., 2011; Choi et al., 2016).

For readers interested in robust portfolio selection problems, we refer to the recent comprehensive

review by Ghahtarani et al. (2022). Additionally, there is an extensive literature on distributionally

robust portfolio optimization, with diverse choices of distributional ambiguity set, e.g., moment-

based (Zhu and Fukushima, 2009; Nguyen et al., 2021a), event-wise (Chen et al., 2020), optimal

transport-based (Blanchet et al., 2022) and Wasserstein ambiguity sets (Pflug and Wozabal, 2007;

Blanchet et al., 2021). Even though these approaches yield reliable solutions in practice, the re-

sulting decisions tend to be conservative. Moreover, not accounting for external factors makes the

uncertainty set unnecessarily large. This set aims to include the various model parameter scenar-
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ios across different contexts. Consequently, the output decision is overly conservative as it safely

anticipates a wide range of model parameters.

To overcome this challenge, this paper proposes the incorporation of contextual information

into the portfolio optimization problem. Contextual decision-making under uncertainty has be-

come increasingly popular in recent years (Athey et al., 2019; Ban and Rudin, 2019; Bertsimas and

McCord, 2019; Bertsimas and Kallus, 2020; Chenreddy et al., 2022; Kallus and Mao, 2022; Kannan

et al., 2022; Sen and Deng, 2018; Chen et al., 2022; Cao and Gao, 2021) as it takes into consid-

eration the interrelationships between the external uncertain factors (that are not included in the

optimization model) and the uncertain parameters of the optimization model. By considering the

external factors, commonly referred to as side information (Srivastava et al., 2021) or contextual in-

formation (Pagnoncelli et al., 2022), the decision-maker is able to faithfully adapt her optimization

model to the given context. This approach allows the decision-maker to more accurately quantify

the uncertain model parameters utilizing the available side information prior to making her deci-

sions (Elmachtoub and Grigas, 2022; Kannan et al., 2020; Nguyen et al., 2021b). While various

non-parametric approaches exist for estimating the interrelationships between the side information

and the uncertain parameters (Nguyen et al., 2021b; Srivastava et al., 2021), they may suffer from

high estimation variance compared to the parametric approaches. The latter is often preferable

when one has domain knowledge about the distribution of the uncertain parameters. In particular,

the Black-Litterman model, as presented by Black and Litterman (1990, 1992), translates the side

information, or general view on the relative performance of assets, into the explicit return fore-

casts within a Bayesian analytic framework. However, this model heavily relies on the prior return

forecasts and structured view errors, as noted by Cheung (2010).

The Gaussian Mixture Model (GMM) stands out as a powerful and flexible parametric modeling

framework for financial markets as it can effectively approximate skewed return distributions and

elegantly model different market regimes (Akgiray and Booth, 1987; Arditti, 1967; Ball and Torous,

1983; Seyfi et al., 2021). Numerous studies have long observed that the underlying distribution

of asset returns is skewed (Beedles, 1986; Fabozzi et al., 2005; Neuberger, 2012; Popova et al.,

2007) and possesses a heavier tail than a Gaussian distribution (Cont, 2001; Fama, 1965; Praetz

and Wilson, 1978; Zi-Yi, 2017). Thus, GMM emerges as a natural choice for bridging the gap

between these empirical observations and the classical portfolio optimization models. Specifically,
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when the number of mixtures equals one, the GMM degenerates to the classical model where

asset returns follow a Gaussian distribution (Markowitz, 1952). In contrast, when the number

of mixtures coincides with the number of samples, the model is equivalent to the Kernel Density

Estimation (KDE) method with Gaussian kernels (Epanechnikov, 1969; Liu et al., 2022; Silverman,

2018). In real-world financial markets, Kon (1984) observes that a handful number of Gaussian

mixtures are sufficient to approximate the distribution accurately. Additionally, GMM has attracted

considerable interest due to its straightforward interpretation of market regimes, as asset returns

exhibit varied behaviors across different market regimes (Ang and Bekaert, 2004). For example, Ang

and Bekaert (2002) and Campbell et al. (2002) observe that the correlations among asset returns

tend to intensify during bear markets. In this case, GMM is adept at constructing these regime-

dependent structures by associating different regimes with distinct clusters (Gupta and Dhingra,

2012; Rydén et al., 1998). Botte and Bao (2021) pioneered the integration of side information

with asset returns into the GMM framework. Intuitively, equity markets have the tendency to

behave dynamically as the macroeconomic shifts, which creates distinct regimes. Their empirical

review demonstrates that the equity markets returns, along with several economic indices such as

interest rate, inflation rate, etc., can be modeled into GMM with several clusters. They also apply

economic research to the fitted model and find that each cluster aptly represents a specific regime

in history, e.g., prosperity, crisis, and inflation. However, although this empirical study inspires

the use of GMM with side information to estimate the current regime, it remains unclear how one

could integrate this approach into portfolio optimization.

Motivated by this empirical observation, we propose a new robust contextual portfolio opti-

mization problem. Our model assumes that both the uncertain returns and side information follow

a Gaussian Mixture (GM) distribution, and it leverages robust optimization to reduce the sensi-

tivity of model parameters in the fitted Gaussian Mixture model to provide reliable decisions. We

remark that the same modeling assumption in which the uncertain returns follow a GM distribu-

tion has been studied by Buckley et al. (2008), where the authors consider a two-component GMM

and analyze several objectives such as the Markowitz mean-variance, the Sharpe ratio, and an

exponential utility. Hentati-Kaffel and Prigent (2014) study the optimal portfolio under arbitrary

utility functions. The numerical experiment on historical data suggests that the GMM model leads

to significantly different portfolios compared with those obtained from a Gaussian return model.
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Robust portfolio optimization with two-component GMMs is studied by Gambacciani and Paolella

(2017), who propose an approach for estimating asset returns using a fast new variation of the

minimum covariance determinant (MCD) method. Arabacı and Kocuk (2020) derive formulations

for the robust portfolio optimization problems under the assumption that the stock returns follow a

two-component GM distribution. Shi and Kim (2021) explore different coherent risk measures and

show that the mean-risk portfolio optimization problem with GMMs admits a closed-form solution

by fixing the location and skewness parameters. Recently, Luxenberg and Boyd (2022) investigated

the portfolio optimization problem with exponential utility under the GM return assumption. They

show that the problem admits a convex reformulation and can be solved efficiently using the off-the-

shelf solvers. However, none of these papers have considered exploiting contextual information and

using robust optimization under the generic GMM setting to improve the performance of portfolios.

We summarize the main contributions of the paper:

1. We consider the contextual portfolio optimization problem, which assumes both the uncertain

returns and side information follow a GM distribution. We show that this problem can be

reformulated as a classical portfolio optimization problem where the mean vector and the

covariance matrix are adjusted according to the value of side information.

2. We devise a robust counterpart to the original problem to mitigate the unfavorable effect of

parameter estimation errors in the Gaussian Mixture Model. We show that under certain

assumptions, the solution to the robust contextual portfolio optimization problem offers at-

tractive out-of-sample performance. While the problem is computationally challenging, we

derive a tractable conservative approximation in second-order cone programming, which can

be solved efficiently using the off-the-shelf solvers.

3. To demonstrate the practical viability of our proposed method, we numerically examine the

performance of the Robust Contextual Gaussian Mixture model. Compared with the bench-

mark methods, our proposed approach achieves a higher average return and a better annual-

ized Sharpe ratio in the out-of-sample test.

The remainder of the paper is organized as follows. Section 2 proposes the contextual portfolio

optimization problem where the uncertain returns and the side information follow a GM distribu-

tion. Section 3 develops the robust counterpart of the contextual portfolio optimization problem
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and derives its tractable conservative approximation. We conduct experiments in Section 4 and

provide some concluding remarks in Section 5. Some technical proofs are deferred to the appendix.

Notations. We use bold lowercase and uppercase letters for a vector and a matrix, respectively.

All random variables are designated by a tilde sign (e.g., ξ̃), while their realizations are denoted

without tildes (e.g., ξ). The set of all positive definite and positive semidefinite matrices in Rn×n

are denoted as Sn++ and Sn+, respectively. The probability simplex in RK
+ is denoted by ∆K . Unless

otherwise specified, we use ∥A∥ for the spectral norm of matrix A, and ∥v∥ for the Euclidean norm

of vector v. We use λ(A)min to denote the smallest eigenvalue of matrix A ∈ Sn+. The density

function of the multivariate normal distribution is denoted as N (x|µ,Σ) while µ and Σ are the

mean and covariance matrix of the distribution, respectively.

2 Contextual Portfolio Optimization under Gaussian Mixtures

Model

We define r̃ ∈ Rn to be the random returns of n assets in a specific period and s̃ ∈ Rd to be the

side information observed at the beginning of the period. In this paper, we are interested in solving

the contextual portfolio optimization problem

min
w∈∆n

EG[−r̃⊤w | s̃ = s] + η · VG[r̃
⊤w | s̃ = s], (1)

where the decision variables w ∈ Rn correspond to the allocations to the considered assets. Intu-

itively, problem (1) aims to maximize the conditional expectation of portfolio returns while ensuring

the portfolio risk, captured by the conditional variance, is small. The parameter η ∈ R+ controls

the level of risk aversion of the decision maker, and the subscript G signifies that (r̃, s̃) jointly

follows a Gaussian Mixtures (GM) distribution G with K components. That is,

(r̃, s̃) ∼ G
(
{µk,Σk, pk}Kk=1

)
,

where µk = (µk
r ,µ

k
s) ∈ Rn+d denotes the mean vector of the k-th component of GMM. Here, the

subscripts r and s indicate that µk
r and µk

s are the mean vectors of r̃ and s̃ in the k-th component,

respectively. We adopt these subscripts for the other variables in a similar manner. The covariance
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matrix of the k-th component is denoted by

Σk =

 Σk
rr Σk

rs

Σk
sr Σk

ss

 ∈ Sn+d
++ .

The mixture weights are represented by p ∈ ∆K where pk ∈ [0, 1] represents the weight of the k-th

component. We further define the k-th precision matrix, which is the inverse of the k-th covariance

matrix, as

Ψk := (Σk)−1 =

 Ψk
rr Ψk

rs

Ψk
sr Ψk

ss

 ∈ Sn+d
++ .

Given that the random vector (r̃, s̃) follows a GM distribution, the following lemma shows that

the conditional distribution of r̃ given s̃ = s is also a GM distribution.

Lemma 1 (Conditional Gaussian Mixture Distribution). Consider a random vector (r̃, s̃) ∈ Rn+d

governed by the GM distribution G({µk,Σk, pk}Kk=1) for some {µk,Σk, pk}Kk=1. Conditioned on

s̃ = s, we have

r̃ ∼ G
({

µk
r|s,Σ

k
r|s, p

k
r|s

}K

k=1

)
,

where

µk
r|s = µk

r +Σk
rs(Σ

k
ss)

−1(s− µk
s),

Σk
r|s = Σk

rr −Σk
rs(Σ

k
ss)

−1Σk
sr = (Ψk

rr)
−1, and

pkr|s =
pkN

(
s|µk

s ,Σ
k
ss

)∑K
j=1 p

jN
(
s|µj

s,Σ
j
ss

) . (2)

Proof. Proof of Lemma 1. We first consider the case where the random vectors r̃ and s̃ are jointly

Gaussian (i.e., K = 1) with the density function N ((r, s)|µ,Σ). The marginal distributions of r̃

and s̃ are N (r|µr,Σrr) and N (s|µs,Σss), respectively. The density function of the conditional

distribution of r̃ given s is (Bishop and Nasrabadi, 2006, Section 2.3.2, Equations (2.94)-(2.98))

p(r|s) = N
(
r|µr|s,Σr|s

)
,

where µr|s = µr +Σrs(Σss)
−1(s− µs) and Σr|s = Σrr −Σrs(Σss)

−1Σsr.

We now extend this result to the case of GM distribution, where the marginal distribution of s̃

is

p(s) =
K∑
k=1

pkN (s|µk
s ,Σ

k
ss).
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Here, the conditional density function becomes

p(r|s) = p(r, s)

p(s)
=

K∑
k=1

pkN
(
(r, s)|µk,Σk

)∑K
j=1 p

jN (s|µj
s,Σ

j
ss)

=

K∑
k=1

pkN
(
s|µk

s ,Σ
k
ss

)∑K
j=1 p

jN (s|µj
s,Σ

j
ss)

N
(
r | µk

r|s,Σ
k
r|s

)
.

Thus, this is a GM distribution with components N (r | µk
r|s,Σ

k
r|s), k ∈ [K], and mixture probabil-

ities
pkN

(
s|µk

s ,Σ
k
ss

)∑K
j=1 p

jN (s|µj
s,Σ

j
ss)

, k ∈ [K],

which completes the proof.

From the above lemma, we know that the conditional distribution of the vector r̃ also follows a

GM distribution, given any observed contextual information s. This leads to our first main result

as follows:

Theorem 1. Let the conditional parameters pkr|s, µ
k
r|s and Σk

r|s be defined in (2), and let Ωk
r|s =(

Σk
r|s + (µk

r|s − µr|s)(µ
k
r|s − µr|s)

⊤
)
. Given s̃ = s, the conditional mean vector and covariance

matrix of r̃ are

µr|s =

K∑
k=1

pkr|sµ
k
r|s and Ωr|s =

K∑
k=1

pkr|sΩ
k
r|s,

respectively. Hence, the contextual portfolio optimization problem (1) is equivalent to the quadratic

program

min
w∈∆n

K∑
k=1

pkr|s

(
−w⊤µk

r|s + η ·w⊤Ωk
r|sw

)
. (3)

Proof. Proof of Theorem 1. The mean portfolio return in (1) can be written as

EG[r̃
⊤w | s̃ = s] =

K∑
k=1

pkr|sw
⊤µk

r|s.

8



Meanwhile, the variance term can be reformulated as

VG[r̃
⊤w | s̃ = s] = EG[(r̃

⊤w)2 | s̃ = s]− EG[r̃
⊤w | s̃ = s]2

= w⊤EG[r̃r̃
⊤ | s̃ = s]w −w⊤µr|sµ

⊤
r|sw

= w⊤

(
K∑
k=1

pkr|s

(
Σk

r|s + µk
r|sµ

k
r|s

⊤))
w −w⊤µr|sµ

⊤
r|sw

= w⊤

(
K∑
k=1

pkr|s

(
Σk

r|s + (µk
r|s − µr|s)(µ

k
r|s − µr|s)

⊤
))

w

= w⊤Ωr|sw,

where the fourth equality holds since µr|s =
∑K

k=1 p
k
r|sµ

k
r|s and the fifth equality holds because

Ωr|s =
∑K

k=1 p
k
r|sΩ

k
r|s. Thus, the claim follows.

Given perfect information on the parameters {µk,Σk, pk}Kk=1, the contextual portfolio optimiza-

tion problem constitutes a tractable convex quadratic optimization problem. However, in practice,

the exact values of the underlying GM distribution parameters are not available to the portfolio

manager and typically have to be estimated using the empirical-based GM learning algorithms.

While the empirical-based estimators may work well on the training dataset, they often fail to

achieve an acceptable out-of-sample performance as they do not carefully consider the possible es-

timation errors from the learning algorithm. In the next section, we propose a robust counterpart

of the contextual portfolio optimization problem that mitigates the adverse effect of estimation

errors and produces reliable decisions.

3 Robust Contextual Portfolio Optimization

In the empirical risk minimization (ERM) setting, decision makers naively adopt the empirical

estimators p̂k, µ̂k, and Σ̂k from the GM learning algorithm to compute the empirical conditional

means µ̂k
r|s, covariances Σ̂k

r|s and probabilities p̂kr|s, ∀k ∈ [K]. Then those empirical conditional

estimations are plugged into (3), which yields the empirical portfolio optimization problem

min
w∈∆n

K∑
k=1

pkr|s

(
−w⊤µ̂k

r|s + η ·w⊤Ω̂k
r|sw

)
, (4)
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where µ̂r|s =
∑K

k=1 p̂
k
r|sµ̂

k
r|s and Ω̂k

r|s = Σ̂k
r|s + (µ̂k

r|s − µ̂r|s)(µ̂
k
r|s − µ̂r|s)

⊤. Though the ERM

method is easy to implement, it suffers from the notorious overfitting issue and may incur extremely

poor performance in the out-of-sample test. In this paper, we address the unfavorable effects of

data overfitting by employing the idea of Robust Optimization (RO). In contrast to the ERM

scheme, the RO approach does not impose the exact specifications of mean vectors, covariance

matrices, or mixture probabilities of the GM distribution. Instead, it considers an uncertainty set

Y that contains all plausible parameter estimations consistent with the historical observations, with

the goal of obtaining an optimal portfolio strategy that minimizes the worst-case mean-variance

objective function. In particular, we consider the robust counterpart of (3) given by

min
w∈∆n

sup
{pk,µk,Σk}Kk=1∈Y

K∑
k=1

pkr|s

(
−w⊤µk

r|s + η ·w⊤Ωk
r|sw

)
, (5)

where

Y :=

{pk,µk,Σk}Kk=1 :
|pk − p̂k| ≤ ϵp, ∥µk − µ̂k∥ ≤ ϵµ, ∥Σk − Σ̂k∥ ≤ ϵΣ, ∀k ∈ [K]

p ∈ ∆K , µk ∈ Rn+d, Σk ∈ Sn+d
+ , ∀k ∈ [K]

 .

Therefore, the model is immunized against detrimental estimation errors of the model parameters

in the nominal problem (3). In this paper, we assume that there exists an algorithm that can

compute the radii of the norm balls in Y so that the unknown true parameters {µk⋆,Σk⋆, pk
⋆}Kk=1

reside in Y with high probability.

Assumption 1. Given N samples drawn i.i.d. from the true GM distribution G
(
{µk⋆,Σk⋆, pk

⋆}Kk=1

)
,

there exists an algorithm that outputs an estimation G
(
{µ̂k, Σ̂k, p̂k}Kk=1

)
satisfying |pk⋆− p̂k| ≤ ϵp,

∥µk⋆ − µ̂k∥2 ≤ ϵµ and ∥Σk⋆ − Σ̂k∥ ≤ ϵΣ, ∀k ∈ [K] with probability 1 − δ, where the radii ϵp, ϵµ,

and ϵΣ and the tolerance δ may depend on parameters of the true GM distribution and the number

of samples. In addition, for any component in the true GM distribution, the smallest eigenvalue of

the covariance matrix is bounded below by a positive constant α, i.e., α ⪯ Σk⋆, ∀k ∈ [K].

Since the paper focuses on tractable formulations of robust portfolio optimization with GMM

rather than its statistical performance guarantees, the technical detail behind this assumption

is beyond our scope. Nevertheless, we highlight several relevant results as follows. For mix-

tures Ω(
√
logK)-separated spherical Gaussians, it is shown in Kwon and Caramanis (2020) that

with proper initialization and N ≥ Õ((mink∈[K] p
k⋆)−1(n + d)/ϵ2), the Expectation Maximiza-

tion (EM) algorithm converges in T = O(log(1/ϵ)) iterations, where at the T -th iteration the
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estimates p̂k, µ̂k, (σ̂k)2, are accurate to within ϵp = maxk∈[K] p
k⋆ϵ, ϵµ = maxk∈[K] σ

k⋆ϵ, ϵΣ =

(maxk∈[K] σ
k⋆)2ϵ/

√
n+ d, respectively, with a tolerance level δ that depends polynomially in T ,

n+ d, and K. Note that instead of requiring N ≥ Õ((mink∈[K] p
k⋆)−1(n+ d)/ϵ2), we can decrease

ϵ with N while keeping the confidence level 1− δ. When there are only K = 2 components, Hardt

and Price (2015) show there exists an algorithm with polynomial sample complexity that learns

arbitrary mixtures of Gaussians without any separation condition. Otherwise, the best-known re-

sult for learning general mixtures of K Gaussians with polynomial sample complexity is derived in

Sanjeev and Kannan (2001) with Ω̃((n+ d)1/4) separation condition and in Kannan et al. (2005);

Achlioptas and McSherry (2005) with Ω̃((poly(K)) separation condition. As for sample complexity,

Ashtiani et al. (2018) shows that Õ(K(n+d)2/ϵ2) samples are sufficient and necessary to learn the

mixture of K Gaussians up to error ϵ in total variation distance. Even though their proposed algo-

rithm requires few samples, the computational complexity depends exponentially on the dimension

n+ d and cluster number K.

While problem (5) is an intuitive model that would provide a robust allocation for the contextual

portfolio optimization problem, solving (5) is computationally challenging. The following lemma

and theorem show that one can compute an upper bound of (5) tractably using second-order cone

programming.

Lemma 2 (Upper bounds). Consider {µ̂k
r|s, Σ̂

k
r|s, Ω̂

k
r|s}

K
k=1 defined in Theorem 1 and equation (4)

based on {p̂k, µ̂k, Σ̂k}Kk=1. Let αk = max{α, λ(Σ̂k)min−ϵΣ}, βk = ∥Σ̂k∥+ϵΣ, and γk = ∥s−µ̂k
s∥+ϵµ,

for every k ∈ [K]. We have, for any {pk,µk,Σk}Kk=1 ∈ Y, the corresponding {µk
r|s,Σ

k
r|s,Ω

k
r|s}

K
k=1

satisfies

∥µk
r|s − µ̂k

r|s∥ ≤ ρkµ, ∥Σk
r|s − Σ̂k

r|s∥ ≤
(
βk
αk

)2

ϵΣ, and
∥∥∥Ωk

r|s − Ω̂k
r|s

∥∥∥ ≤ ρkΣ,
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where

ρkµ =

(
βk
αk

+ 1

)
ϵµ +

αk + βk
α2
k

(
∥µ̂∥ks + ∥s∥

)
ϵΣ,

ρkp = (p̂k + ϵp)

(
ϵΣγ

2
k + 2αkϵµγk

2α2
k

√
(2παk)d

+
|Σ̂k

ss + ϵΣId| − |Σ̂k
ss|

2αd
k

N
(
s|µ̂k

s , Σ̂
k
ss

))
+ ϵpN

(
s|µ̂k

s , Σ̂
k
ss

)
, and

ρkΣ =

(
βk
αk

)2

ϵΣ +

ρkµ +
∑
ℓ∈[K]

(p̂ℓr|s + ρℓp)ρ
ℓ
µ + ρℓp∥µ̂ℓ

r|s∥

(2 ∥∥∥µ̂k
r|s − µ̂r|s

∥∥∥+
(
ρkµ +

∑
ℓ∈[K]

(p̂ℓr|s + ρℓp)ρ
ℓ
µ + ρℓp∥µ̂ℓ

r|s∥
))

.

Proof. Proof of Lemma 2. Based on Lemma 9, we know that if ∥µk − µ̂k∥ ≤ ϵµ then we have

∥µk
r|s−µ̂k

r|s∥ ≤ ρkµ. Furthermore, from the lemma, if ∥Σk−Σ̂k∥ ≤ ϵΣ then ∥Σk
r|s−Σ̂k

r|s∥ ≤
(

βk
αk

)2
ϵΣ.

Combining this result with Lemma 11, which provides an upper bound on the term∥∥∥(µk
r|s − µr|s)(µ

k
r|s − µr|s)

⊤ − (µ̂k
r|s − µ̂r|s)(µ̂

k
r|s − µ̂r|s)

⊤
∥∥∥ ,

we get ∥∥∥Σk
r|s + (µk

r|s − µr|s)(µ
k
r|s − µr|s)

⊤ − Ω̂k
r|s

∥∥∥ ≤ ρkΣ.

Thus, the claim follows.

Theorem 2 (Conservative Reformulation). Consider the setting in Lemma 2 and let φ̂k = p̂kN
(
s|µ̂k

s , Σ̂
k
ss

)
.

The optimal value of the second-order cone program

inf ν

s.t. w ∈ ∆n, u1,u2 ∈ RK
+ , τ ∈ RK , ν ∈ R

−w⊤µ̂k
r|s + ρkµ∥w∥+ η ·w⊤

(
Ω̂k

r|s + ρkΣIn

)
w ≤ τk ∀k ∈ [K]

τ − u1 + u2 − νe ≤ 0

u⊤
1 (ρpe+ φ̂) + u⊤

2 (ρpe− φ̂) ≤ 0

(6)

constitutes an upper bound to problem (5), where ρp = maxk∈[K]{ρkp} and ρkp is defined in Lemma

2.
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Proof. Proof of Theorem 2. Since pkr|s is non-negative for every k ∈ [K], the objective function of

problem (5) is upper bounded by

sup
p∈Yp

K∑
k=1

pkr|s

 sup
∥µk

r|s−µ̂k
r|s∥≤ρkµ

∥Ωk
r|s−Ω̂k

r|s∥≤ρkΣ

−w⊤µk
r|s + η ·w⊤Ωk

r|sw

 ,

where Yp := {p ∈ ∆K : {pk,µk,Σk}Kk=1 ∈ Y} is the projection of the uncertainty set Y onto the p

axes.

We first deal with the inner optimization problems. For the k-th problem, its dual problem can

be derived as

inf −w⊤µ̂k
r|s + ρkµ∥w∥+ η

(〈
Y k
1 + Y k

2 , ρΣIn
〉
+
〈
Y k
1 − Y k

2 , Ω̂k
r|s

〉)
s.t. Y k

1 ,Y k
2 ∈ Sn+ Y k

1 − Y k
2 w

w⊤ 1

 ⪰ 0.

(7)

Strong duality holds between the primal and dual pair because problem (7) has a nonempty interior.

In addition, it can be verified that (Y k
1 ,Y k

2 ) = (ww⊤,0) is optimal to problem (7); see Lemma 6.

Thus, the semidefinite program can be solved analytically. Let τk denote the optimal value of

problem (7):

τk = −w⊤µ̂k
r|s + ρkµ∥w∥+ η ·w⊤

(
Ω̂k

r|s + ρkΣIn

)
w. (8)

Therefore, problem (5) is upper bounded by

min
w∈∆n

sup
p∈Yp

K∑
k=1

pkr|sτk.

Plugging the definition of pkr|s, we obtain the following maximization problem

sup

K∑
k=1

pkN
(
s|µk

s ,Σ
k
ss

)
τk∑K

j=1 p
jN
(
s|µj

s,Σ
j
ss

)
s.t. pk ∈ ∆K ,µk ∈ Rn+d,Σk ∈ Sn+d

+ , ∀k ∈ [K]

|pk − p̂k| ≤ ϵp, ∥µk − µ̂k∥ ≤ ϵµ, ∥Σk − Σ̂k∥ ≤ ϵΣ, ∀k ∈ [K].

(9)

Now we define a new variable φk = pkN
(
s|µk

s ,Σ
k
ss

)
and its empirical estimator φ̂k = p̂kN

(
s|µ̂k

s , Σ̂
k
ss

)
for each k ∈ [K]. Based on Lemma 7, setting ρkp as Lemma 2, the above optimization problem is

13



upper bounded by

sup
φ∈RK

+

{
K∑
k=1

φkτk∑K
j=1 φj

: ∥φ− φ̂∥∞ ≤ ρp

}
. (10)

Problem (10) is also known as a linear-fractional program (Bajalinov, 2003). Since the feasible

region is non-empty and bounded, we can apply the Charnes-Cooper transformation (Charnes and

Cooper, 1962) with

ℓ =
φ

e⊤φ
, t =

1

e⊤φ
,

which reformulates the linear-fractional program (10) as an equivalent linear program

sup τ⊤ℓ

s.t. ℓ ∈ RK
+ , t ∈ R+

ℓ ≤ (ρpe+ φ̂) t

−ℓ ≤ (ρpe− φ̂) t

e⊤ℓ = 1.

(11)

Dualizing this problem leads to the following minimization problem with the same optimal

value:

inf ν

s.t. u1,u2 ∈ RK
+ , ν ∈ R

τ − u1 + u2 − νe ≤ 0

u⊤
1 (ρpe+ φ̂) + u⊤

2 (ρpe− φ̂) ≤ 0.

(12)

Here, strong linear programming duality holds because problem (11) is feasible. For each τk ∈ [K]

in problem (11), its optimal value can be obtained by solving the corresponding optimization

problem (7). Combining the minimization problems yields the desired reformulation (6), which

completes the proof.

We remark that when the radii ϵp, ϵµ, and ϵΣ are brought down to 0, the upper bound (6)

reduces to the true robust model (5), which is equivalent to the deterministic model (3) under the

empirical estimates p̂kr|s, µ̂
k
r|s and Σ̂k

r|s, ∀k ∈ [K]. Thus, our proposed approximation (6) is not

overly conservative—it will become more accurate as we observe more samples and we decrease

the radii accordingly with N . Under Assumption 1, the optimal solution of the approximation also

enjoys the following out-of-sample performance guarantee.
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Corollary 1 (Out-of-sample Guarantee). Let ν̂ and ŵ be respectively the optimal objective value

and solution of the second-order cone program (6). Then, with probability at least 1− δ, we have

EG⋆ [−r̃⊤ŵ | s̃ = s] + ηVG⋆ [r̃⊤ŵ | s̃ = s] ≤ ν̂,

where G⋆ = G
(
{µk⋆,Σk⋆, pk

⋆}Kk=1

)
is the true GM distribution.

Proof. Proof of Corollary 1. We define the set of GM distributions whose parameters are close to

the empirical estimates as

Ĝ :=

G
({

pk,µk,Σk
}K

k=1

)
:

|pk − p̂k| ≤ ϵp, ∥µk − µ̂k∥ ≤ ϵµ, ∥Σk − Σ̂k∥ ≤ ϵΣ, ∀k ∈ [K]

p ∈ ∆K , µk ∈ Rn+d, Σk ∈ Sn+d
+ , ∀k ∈ [K]

 .

By Assumption 1, we have G⋆ ∈ Ĝ with probability 1−δ. Observe now that for any fixed allocation

w, one can rewrite the objective function of the robust problem (5) as the distributionally robust

model

sup
G∈Ĝ

EG[−r̃⊤w | s̃ = s] + ηVG[r̃
⊤w | s̃ = s],

which is upper bounded by the optimal value of the conservative approximation (6) with fixed w.

Thus, the inequality

EG⋆ [−r̃⊤ŵ | s̃ = s] + ηVG⋆ [r̃⊤ŵ | s̃ = s] ≤ sup
G∈Ĝ

EG[−r̃⊤ŵ | s̃ = s] + ηVG[r̃
⊤ŵ | s̃ = s],

holds with probability 1 − δ. The claim then follows since the right-hand side is upper bounded

by ν̂.

4 Numerical Experiments

In this section, we present the numerical experiments and examine the performance of our proposed

Robust Contextual Gaussian Mixture Model (RCGMM) along with several benchmark methods.

All models are implemented in Python 3.10 with package CVXPY 1.3.1 and solved by MOSEK

10.0 (MOSEK ApS, 2019). All experiments were run on a 3.2GHz AMD Ryzen 7 5800H CPU

laptop with 16GB RAM.
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Historical Returns and Side Information: We conduct our experiments on four dis-

tinct datasets, sourced from two reputable repositories: Ken French’s website (https://mba.

tuck.dartmouth.edu/pages/faculty/ken.french/data\_library.html) and yfinance (https:

//pypi.org/project/yfinance/). From Ken French’s website, we obtain the datasets comprising

10 Industry Portfolios, 12 Industry Portfolios, and 25 Portfolios Formed on Size and Book-to-

Market, from July 1954 to June 2019. Additionally, we collect the dataset of the returns of iShares

Exchange-Traded Funds from yfinance across nine regions from April 1996 to June 2019. The

iShares Exchange-Traded Funds are from the following nine regions: EWG (Germany), EWH

(Hong Kong), EWI (Italy), EWK (Belgium), EWL (Switzerland), EWN (Netherlands), EWP

(Spain), EWQ (France), and EWU (United Kingdom). All the data are monthly data. These

datasets and repositories have been extensively employed as benchmarks for evaluating the perfor-

mance of portfolio optimization strategies (DeMiguel et al., 2009b; Pun et al., 2023; Rujeerapaiboon

et al., 2016; Park et al., 2022; Gregory et al., 2013; Blanchet et al., 2021; Pagnoncelli et al., 2022).

Interested readers are referred to the appendix of (DeMiguel et al., 2009b) or Ken French’s website

for detailed descriptions of the portfolio datasets.

For the datasets from Ken French’s website, we select the following five popular and publicly avail-

able macro indices as side information: 1) US GDP growth rate, 2) US CPI growth rate, 3) US

Federal Interest rate, 4) US Unemployment rate, and 5) US Industrial Production Index growth

rate. On the other hand, the iShares dataset includes global information from various regions, and

we incorporate the US GDP growth rate and the US Federal Interest growth rate as side infor-

mation for it. All side information data is downloaded from Economic Research: Federal Research

Bank of St. Louis at the website https://research.stlouisfed.org.

Benchmark Methods: In the numerical experiment, we compare the following methods:

1. Robust Contextual Gaussian Mixture model (RCGMM): This is our proposed method, where

the portfolio allocation is the solution of problem (6).

2. Equally-Weighted (EW) model: The EW portfolio allocates an equal weight to every asset

when they are rebalanced. This method is also known as the 1/n-portfolio and a detailed

analysis can be found in DeMiguel et al. (2009b).
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3. Mean-Variance (MV) model: The MV model, proposed by Markowitz (1952), is one of the

best-known portfolio selection methods. The model solves the optimization problem

min
w∈∆n

EP̂[−r̃⊤w] + η · VP̂[r̃
⊤w],

where P̂ denotes the empirical distribution.

4. Non-robust Gaussian Mixture model (GMM): It is the contextual model (1). We have shown

that it is equivalent to the quadratic program (3).

5. Conditional Mean-Variance (CMV) model: The CMV model assumes Gaussian returns, and

solves the following optimization problem:

min
w∈∆n

EP̂

[
−r̃⊤w|s̃ = s

]
+ η · VP̂

[
r̃⊤w|s̃ = s

]
.

The model incorporates side information into the MV model, which can also be regarded as

the Non-robust Gaussian Mixture model with K = 1.

6. Regularized Nadaraya-Watson (RNW) model: The NW regression method (Nadaraya, 1964;

Watson, 1964) is a non-parametric regression scheme which approximates the conditional

expectation with

E
[
−r̃⊤w|s̃ = s

]
≈ Ê

[
−r̃⊤w|s̃ = s

]
=

∑N
i=1K

(
s−ŝi
h

)
(−r̂⊤i w)∑N

i=1K
(
s−ŝi
h

) ,

where Ê[−r̃⊤w|s̃ = s] is the Nadaraya-Watson estimator, K is a prescribed kernel function

and h > 0 is the bandwidth parameter of the kernel. This method does not require any

specific assumptions of the distribution, such as Gaussian, of the return on assets. In addi-

tion, the model can be efficiently robustified by introducing a conditional standard deviation

term (Srivastava et al., 2021). Employing the result from (Srivastava et al., 2021, Corollary

3), the regularized NW problem can be reformulated as a second-order cone program. We

implement this second-order cone program as a benchmark method for the experiment.

7. Optimal Transport based Conditional Mean-Variance (OTCMV) model: It is the distribu-

tionally robust counterpart of the CMV model which adopts the Wasserstein ambiguity set

together with a positive probability on the side information, introduced by (Nguyen et al.,

17



2021b). Based on the result from (Nguyen et al., 2021b, Proposition 3.3), the model is equiv-

alent to a second-order cone program and hence can be solved by the off-the-shelf solvers.

Experiment Setup: For each dataset, we compute the weights of the risky assets and one

risk-free asset where its rate is given by the 90-day Treasury-bill yield. At each time period, we

fit the GM distribution {µk,Σk, pk}Kk=1 by applying the built-in GMM learning algorithm from

scikit-learn library based on the rolling samples at the corresponding time window. We select the

hyper-parameters, including the cluster number K, following a cross-validation procedure at the

initial window. Specifically, we divide 70% of the training set as the subtraining set and keep the

remainder 30% as the validation set. Regarding the cluster number K for GMM and RCGMM,

we select it from {1, 2, 3, 4, 5} and then keep the value of K fixed and proceed to determine the

radii of the uncertainty sets. We select η via cross validation from the exponential of a set of

10 points that are equidistant in the range [−2, 2]. To avoid determining too many parameters,

we focus our efforts on selecting ρµ, ρΣ while maintaining ρp to zero. We first set ρΣ to zero and

search for the best ρµ in {0.1, 0.05, 0.01, 0.005, 0.001}, and then we pick the best ρΣ within the

same range while fixing ρµ to be the chosen one. For the other parameters in the benchmarks, we

adopt a cross-validation method to select the best parameters. Explicitly, we select the bandwidth

h from {10, 50, 100, 500, 1000} and the parameter λ which controls the degree of regularization from

{0.1, 0.5, 1, 5, 10} for RNW benchmark. For OTCMV benchmark, we choose the probability bound

ϵ from {0.1, 0.2, 0.5} and parameter a from {1.1, 1.2, 1.5}, as suggested by (Nguyen et al., 2021b).

All the parameters selected at the initial window are based on the performance of the Sharpe ratio,

that is, we pick the one that maximizes the Sharpe ratio evaluated on the validation set. We set

the window size of the datasets from Ken French’s website (10 Industry Portfolios, 12 Industry

Portfolios and 25 Portfolios Formed on Size and Book-to-Market) to 35 years, and of the iShares

dataset to 7 years since the iShares dataset only contains 23 years of data.

Experiment Results: We test the benchmarks based on the following six metrics on the

out-of-sample returns: the annualized average return, the annualized Sharpe ratio, the certainty

equivalent (CEQ), the maximum drawdown, the turnover, and the 10th percentile. The Sharpe

ratio measures the risk-adjusted return of the portfolio, and the annualized Sharpe ratio is computed
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by

annualized Sharpe ratio =
√
12×mean{ri}i∈[T ]/std{ri}i∈[T ],

where {ri}i∈[T ] are the returns computed based on the benchmarks. The CEQ represents the risk-

free rate that investors are willing to take compared to one particular risky strategy. The maximum

drawdown quantifies the maximum observed loss, and the turnover measures the trading frequency.

The precise definitions of them can be found in the appendix of (Pun et al., 2023). Generally, a

good portfolio should have large annualized Sharpe ratio and certainty equivalent, along with small

maximum drawdown and turnover.

The performance of the benchmarks across the four datasets is presented in Tables 1-4 respectively.

We can see that our proposed RCGMM consistently outperforms all the other benchmarks in terms

of the annualized average return, annualized Sharpe ratio, and CEQ across all four datasets. Fur-

thermore, we can observe that RCGMM is strictly better than the GMM benchmark across all

the metrics, affirming that robustness brings a positive impact on the performance. The compari-

son between the CMV and MV benchmarks further indicates that incorporating side information

yields a higher annualized average return, annualized Sharpe ratio, and CEQ. Moreover, across all

four datasets, GMM achieves a larger annualized average return than CMV, which suggests the

superiority of the Gaussian Mixture model over the traditional Gaussian model.

Statistics

Models
RCGMM EW MV GMM CMV RNW OTCMV

Annualized Average Return (%) 10.9237 10.7021 5.2191 10.2531 7.4453 10.8735 10.3211

Annualized Sharpe ratio 0.5361 0.4821 0.2209 0.4582 0.3288 0.4772 0.4828

CEQ 1.0081 1.0079 1.0042 1.0076 1.0057 1.0080 1.0077

Maximum drawdown 0.1420 0.1582 0.0382 0.1606 0.1528 0.1388 0.1499

Turnover 0.9963 0.0242 0.0231 1.1664 5.0969 0.0703 0.0403

10th Percentile 0.9718 0.9652 0.9911 0.9694 0.9799 0.9623 0.9675

Table 1. Statistics of different models for 10 Industry Portfolios.
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Statistics

Models
RCGMM EW MV GMM CMV RNW OTCMV

Annualized Average Return (%) 11.0974 10.7277 5.2190 10.1093 7.3693 10.8271 10.3713

Annualized Sharpe ratio 0.5404 0.4699 0.2209 0.4498 0.3202 0.4732 0.4728

CEQ 1.0082 1.0079 1.0042 1.0075 1.0056 1.0079 1.0077

Maximum drawdown 0.1602 0.1639 0.0382 0.1875 0.1474 0.1388 0.1540

Turnover 1.1277 0.0236 0.0231 1.1600 6.0975 0.0737 0.0415

10th Percentile 0.9705 0.9637 0.9911 0.9713 0.9801 0.9623 0.9672

Table 2. Statistics of different models for 12 Industry Portfolios.

Statistics

Models
RCGMM EW MV GMM CMV RNW OTCMV

Annualized Average Return (%) 12.3440 12.1779 5.2580 8.6069 8.3559 3.0245 11.9158

Annualized Sharpe ratio 0.4985 0.4526 0.1880 0.3765 0.3832 -1.6561 0.4599

CEQ 1.0088 1.0085 1.0042 1.0064 1.0063 1.0025 1.0084

Maximum drawdown 0.1890 0.1913 0.0531 0.2016 0.2112 0.0043 0.1859

Turnover 0.3586 0.0183 0.0384 1.0353 13.8679 0.0047 0.0310

10th Percentile 0.9577 0.9530 0.9871 0.9792 0.9832 0.9999 0.9574

Table 3. Statistics of different models for 25 Portfolios.

5 Conclusion

In this paper, we presented a new robust contextual optimization framework for portfolio opti-

mization. Inspired by the regime modeling technique used for modeling financial markets, our

framework models the uncertain returns of considered assets and the side information to follow a

GMM. We derived a tractable conservative approximation for the robust optimization problem as a

second-order cone program, which can be solved efficiently using off-the-shelf optimization solvers.

By exploiting the side information and alleviating the effect of estimation errors, our experimental

results demonstrated the significant advantage of our approach over the state-of-the-art models.

Our research opens up several promising directions for future research, such as specialized compu-

20



Statistics

Models
RCGMM EW MV GMM CMV RNW OTCMV

Annualized Average Return (%) 8.4336 8.3857 1.4338 5.8143 2.7015 1.2378 8.1053

Annualized Sharpe ratio 0.3634 0.3493 -0.1715 0.2872 0.0892 -1.9847 0.3460

CEQ 1.0056 1.0055 1.0011 1.0041 1.0021 1.0010 1.0054

Maximum drawdown 0.1821 0.2061 0.0650 0.1902 0.0542 0.0003 0.2000

Turnover 0.1102 0.0203 0.0717 0.9253 5.8851 0.0003 0.0225

10th Percentile 0.9498 0.9493 0.9870 0.9617 0.9815 1.0000 0.9507

Table 4. Statistics of different models for 9 iShares dataset.

tational schemes for robust contextual portfolio optimization and dynamic portfolio optimization

with GMMs.

21



References

Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of distributions. In

International Conference on Computational Learning Theory, pages 458–469. Springer, 2005.

Vedat Akgiray and G Geoffrey Booth. Compound distribution models of stock returns: An empirical

comparison. Journal of Financial Research, 10(3):269–280, 1987.

Andrew Ang and Geert Bekaert. International asset allocation with regime shifts. The review of

financial studies, 15(4):1137–1187, 2002.

Andrew Ang and Geert Bekaert. How regimes affect asset allocation. Financial Analysts Journal,

60(2):86–99, 2004.

Polen Arabacı and Burak Kocuk. Robust portfolio optimization models when stock returns are a

mixture of normals. In INFORMS International Conference on Service Science, pages 419–430.

Springer, 2020.

Fred D Arditti. Risk and the required return on equity. The Journal of Finance, 22(1):19–36, 1967.

Hassan Ashtiani, Shai Ben-David, Nicholas Harvey, Christopher Liaw, Abbas Mehrabian, and

Yaniv Plan. Nearly tight sample complexity bounds for learning mixtures of Gaussians via

sample compression schemes. Advances in Neural Information Processing Systems, 31, 2018.

Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. The Annals of

Statistics, 47(2):1148–1178, 2019.

Erik B Bajalinov. Linear-fractional programming theory, methods, applications and software, vol-

ume 84. Springer Science & Business Media, 2003.

Clifford A Ball and Walter N Torous. A simplified jump process for common stock returns. Journal

of Financial and Quantitative analysis, 18(1):53–65, 1983.

Gah-Yi Ban and Cynthia Rudin. The big data newsvendor: Practical insights from machine

learning. Operations Research, 67(1):90–108, 2019.

William L Beedles. Asymmetry in australian equity returns. Australian Journal of Management,

11(1):1–12, 1986.

22



Aharon Ben-Tal, Stephen Boyd, and Arkadi Nemirovski. Extending scope of robust optimization:

Comprehensive robust counterparts of uncertain problems. Mathematical Programming, 107(1):

63–89, 2006.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28.

Princeton university press, 2009.

Stefano Benati and Romeo Rizzi. A mixed integer linear programming formulation of the optimal

mean/value-at-risk portfolio problem. European Journal of Operational Research, 176(1):423–

434, 2007.

Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. Management

Science, 66(3):1025–1044, 2020.

Dimitris Bertsimas and Christopher McCord. From predictions to prescriptions in multistage op-

timization problems. arXiv preprint arXiv:1904.11637, 2019.

Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations research, 52(1):35–53,

2004.

John R Birge. Optimization methods in dynamic portfolio management. Handbooks in operations

research and management science, 15:845–865, 2007.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-

ume 4. Springer, 2006.

Fischer Black and Robert Litterman. Asset allocation: combining investor views with market

equilibrium. Goldman Sachs Fixed Income Research, 115(1):7–18, 1990.

Fischer Black and Robert Litterman. Global portfolio optimization. Financial analysts journal, 48

(5):28–43, 1992.

Jose Blanchet, Lin Chen, and Xun Yu Zhou. Distributionally robust mean-variance portfolio selec-

tion with Wasserstein distances. Management Science, 2021.

Jose Blanchet, Karthyek Murthy, and Fan Zhang. Optimal transport-based distributionally robust

optimization: Structural properties and iterative schemes. Mathematics of Operations Research,

47(2):1500–1529, 2022.

23



Alex Botte and Doris Bao. A machine learning approach to regime modeling. Two Sigma Street

Review, 2021.

Mark Britten-Jones. The sampling error in estimates of mean-variance efficient portfolio weights.

The Journal of Finance, 54(2):655–671, 1999.

Ian Buckley, David Saunders, and Luis Seco. Portfolio optimization when asset returns have the

Gaussian mixture distribution. European Journal of Operational Research, 185(3):1434–1461,

2008.

Rachel Campbell, Kees Koedijk, and Paul Kofman. Increased correlation in bear markets. Financial

Analysts Journal, 58(1):87–94, 2002.

Junyu Cao and Rui Gao. Contextual decision-making under parametric uncertainty and data-driven

optimistic optimization. Available at Optimization Online, 2021.

Abraham Charnes and William W Cooper. Programming with linear fractional functionals. Naval

Research Logistics Quarterly, 9(3-4):181–186, 1962.

Li Chen, Melvyn Sim, Xun Zhang, Long Zhao, and Minglong Zhou. Robust actionable prescriptive

analytics. Available at SSRN 4106222, 2022.

Zhi Chen, Melvyn Sim, and Peng Xiong. Robust stochastic optimization made easy with RSOME.

Management Science, 66(8):3329–3339, 2020.

Abhilash Reddy Chenreddy, Nymisha Bandi, and Erick Delage. Data-driven conditional robust

optimization. Advances in Neural Information Processing Systems, 35:9525–9537, 2022.

Wing Cheung. The black–litterman model explained. Journal of Asset Management, 11:229–243,

2010.

Byung-Geun Choi, Napat Rujeerapaiboon, and Ruiwei Jiang. Multi-period portfolio optimization:

Translation of autocorrelation risk to excess variance. Operations Research Letters, 44(6):801–

807, 2016.

Vijay K Chopra and William T Ziemba. The effect of errors in means, variances, and covariances

on optimal portfolio choice. In Handbook of the fundamentals of financial decision making: Part

I, pages 365–373. World Scientific, 2013.

24



Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative

finance, 1(2):223, 2001.

Victor DeMiguel and Francisco J Nogales. Portfolio selection with robust estimation. Operations

research, 57(3):560–577, 2009.

Victor DeMiguel, Lorenzo Garlappi, Francisco J Nogales, and Raman Uppal. A generalized ap-

proach to portfolio optimization: Improving performance by constraining portfolio norms. Man-

agement science, 55(5):798–812, 2009a.

Victor DeMiguel, Lorenzo Garlappi, and Raman Uppal. Optimal versus naive diversification: How

inefficient is the 1/N portfolio strategy? The review of Financial studies, 22(5):1915–1953, 2009b.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68

(1):9–26, 2022.

Vassiliy A Epanechnikov. Non-parametric estimation of a multivariate probability density. Theory

of Probability & Its Applications, 14(1):153–158, 1969.

Fama Eugene and Kenneth French. The cross-section of expected stock returns. Journal of Finance,

47(2):427–465, 1992.

Frank J Fabozzi, Svetlozar T Rachev, and Christian Menn. Fat-tailed and skewed asset return

distributions: implications for risk management, portfolio selection, and option pricing. John

Wiley & Sons, 2005.

Frank J Fabozzi, Petter N Kolm, Dessislava A Pachamanova, and Sergio M Focardi. Robust

portfolio optimization. The Journal of portfolio management, 33(3):40–48, 2007.

Eugene F Fama. The behavior of stock-market prices. The journal of Business, 38(1):34–105, 1965.

Mark J Flannery and Aris A Protopapadakis. Macroeconomic factors do influence aggregate stock

returns. The review of financial studies, 15(3):751–782, 2002.

Marco Gambacciani and Marc S Paolella. Robust normal mixtures for financial portfolio allocation.

Econometrics and Statistics, 3:91–111, 2017.

25



Alireza Ghahtarani, Ahmed Saif, and Alireza Ghasemi. Robust portfolio selection problems: a

comprehensive review. Operational Research, pages 1–62, 2022.

Donald Goldfarb and Garud Iyengar. Robust portfolio selection problems. Mathematics of opera-

tions research, 28(1):1–38, 2003.

Alan Gregory, Rajesh Tharyan, and Angela Christidis. Constructing and testing alternative versions

of the Fama–French and carhart models in the UK. Journal of Business Finance & Accounting,

40(1-2):172–214, 2013.

Mark Grinblatt, Sheridan Titman, and Russ Wermers. Momentum investment strategies, portfolio

performance, and herding: A study of mutual fund behavior. The American economic review,

pages 1088–1105, 1995.

Aditya Gupta and Bhuwan Dhingra. Stock market prediction using hidden markov models. In

2012 Students Conference on Engineering and Systems, pages 1–4. IEEE, 2012.

Moritz Hardt and Eric Price. Tight bounds for learning a mixture of two Gaussians. In Proceedings

of the forty-seventh annual ACM symposium on Theory of computing, pages 753–760, 2015.

Rania Hentati-Kaffel and Jean-Luc Prigent. Portfolio optimization within mixture of distributions.

2014.
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Appendix A: Proofs of Auxiliary Results

Lemma 3. Suppose matrices A and B are strictly positive definite with αI ⪯ A, αI ⪯ B. If

∥B −A∥ ≤ ϵ, then the difference of their inverse is bounded by

∥A−1 −B−1∥ ≤ ϵ

α2

Proof. Proof of Lemma 3. Observing that

A−1 −B−1 = A−1(B −A)B−1,

we have

∥A−1 −B−1∥ = ∥A−1(B −A)B−1∥ ≤ ∥A−1(B −A)∥∥B−1∥ ≤ ∥A−1∥∥(B −A)∥∥B−1∥ ≤ ϵ

α2
,

where the inequalities come from the fact that the spectral norm is submultiplicative.

Lemma 4. For any vectors a and b, the spectral norm of the difference of their outer products is

bounded by

∥aa⊤ − bb⊤∥ ≤ ∥a− b∥(∥a∥+ ∥b∥).

Proof. Proof of Lemma 4. We have

∥aa⊤ − bb⊤∥ = sup
∥x∥=1

∥(aa⊤ − bb⊤)x∥

≤ sup
∥x∥=1

∥aa⊤x− ab⊤x∥+ sup
∥x∥=1

∥ab⊤x− bb⊤x∥

≤ sup
∥x∥=1

∥a∥|(a− b)⊤x|+ sup
∥x∥=1

∥a− b∥|b⊤x|

= ∥a∥∥a− b∥+ ∥a− b∥∥b∥,

where the last equality follows from the definition of dual norm. Thus, the claim follows.

Lemma 5. Suppose µ, µ̂ ∈ Rd and Σ, Σ̂ ∈ Sd++ satisfying αI ⪯ Σ, Σ̂ ⪯ βI. If

∥µ− µ̂∥ ≤ ϵµ, ∥Σ− Σ̂∥ ≤ ϵΣ,
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then ∀x ∈ Rd, we have∣∣∣N (x|µ,Σ)−N
(
x|µ̂, Σ̂

)∣∣∣ ≤ ϵΣγ
2 + 2αϵµγ

2α2
√

(2πα)d
+

|Σ̂+ ϵΣI| − |Σ̂|
2αd

N
(
x|µ̂, Σ̂

)
,

where γ = ∥x− µ̂∥+ ϵµ.

Proof. Proof of Lemma 5. Without loss of generality, we sort the eigenvalues of Σ̂ in decreasing

order as λ̂1, λ̂2, ..., λ̂d. Recall that the normal density function is given by

N (x|µ,Σ) =
exp

(
−1

2(x− µ)⊤Σ−1(x− µ)
)√

(2π)d|Σ|
,

where π is known as the circular constant. Thus, we can rewrite the density function by its definition

and obtain∣∣∣N (x|µ,Σ)−N
(
x|µ̂, Σ̂

)∣∣∣
=

∣∣∣∣∣∣exp
(
−1

2(x− µ)⊤Σ−1(x− µ)
)√

(2π)d|Σ|
−

exp
(
−1

2(x− µ̂)⊤Σ̂−1(x− µ̂)
)

√
(2π)d|Σ̂|

∣∣∣∣∣∣
=

1√
(2π)d|Σ||Σ̂|

∣∣∣∣√|Σ̂| exp
(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
−
√
|Σ| exp

(
−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)∣∣∣∣
≤

∣∣∣∣√|Σ̂| exp
(
−1

2(x− µ)⊤Σ−1(x− µ)
)
−
√
|Σ| exp

(
−1

2(x− µ̂)⊤Σ̂−1(x− µ̂)
)∣∣∣∣√

(2πα)d|Σ̂|

Notice that the value of the denominator is given by data, and we only need to bound the

numerator. Applying triangle inequality yields∣∣∣∣√|Σ̂| exp
(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
−
√

|Σ| exp
(
−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)∣∣∣∣
≤
∣∣∣∣√|Σ̂| exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
−
√

|Σ̂| exp
(
−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)∣∣∣∣+∣∣∣∣√|Σ̂| exp
(
−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)
−
√
|Σ| exp

(
−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)∣∣∣∣
=

√
|Σ̂|
∣∣∣∣exp(−1

2
(x− µ)⊤Σ−1(x− µ)

)
− exp

(
−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)∣∣∣∣+∣∣∣∣√|Σ| −
√
|Σ̂|
∣∣∣∣ exp(−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)
. (13)

The above expression involves two absolute terms, and we then derive upper bounds for them.

For the first term, since Σ−1, Σ̂−1 ∈ Sd++, the products −1
2(x− µ)⊤Σ−1(x− µ) ≤ 0 and −1

2(x−
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µ̂)⊤Σ̂−1(x − µ̂) ≤ 0. In addition, one can verify that the exponential function f(a) = exp(a) is

Lipschitz continuous with constant 1 when a ≤ 0. Thus, we have∣∣∣∣exp(−1

2
(x− µ)⊤Σ−1(x− µ)

)
− exp

(
−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)∣∣∣∣
≤
∣∣∣∣(−1

2
(x− µ)⊤Σ−1(x− µ)

)
−
(
−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)∣∣∣∣
≤
∣∣∣∣(−1

2
(x− µ)⊤Σ−1(x− µ)

)
−
(
−1

2
(x− µ)⊤Σ̂−1(x− µ)

)∣∣∣∣+∣∣∣∣(−1

2
(x− µ)⊤Σ̂−1(x− µ)

)
−
(
−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)∣∣∣∣
=
1

2

∣∣∣(x− µ)⊤(Σ−1 − Σ̂−1)(x− µ)
∣∣∣+ 1

2

∣∣∣(µ− µ̂)⊤Σ̂−1(2x− µ− µ̂)
∣∣∣ .

Based on Lemma 3, we know that ∥(Σ−1 − Σ̂−1)∥ ≤ ϵΣ
α2 . This spectral norm constraint can be

equivalently written as

− ϵΣ
α2

I ⪯ Σ−1 − Σ̂−1 ⪯ ϵΣ
α2

I.

This result further implies that

1

2

∣∣∣(x− µ)⊤(Σ−1 − Σ̂−1)(x− µ)
∣∣∣+ 1

2

∣∣∣(µ− µ̂)⊤Σ̂−1(2x− µ− µ̂)
∣∣∣

≤ ϵΣ
2α2

(x− µ)⊤I(x− µ) +
1

2
∥µ− µ̂∥∥Σ̂−1(2x− µ− µ̂)∥

≤ ϵΣ
2α2

(x− µ)⊤I(x− µ) +
1

2
ϵµ∥Σ̂−1∥∥(2x− µ− µ̂)∥

≤ ϵΣ
2α2

(∥x− µ̂∥+ ϵµ)
2 + ϵµ∥Σ̂−1∥(∥x− µ̂∥+ ϵµ)

≤ϵΣγ
2

2α2
+

ϵµγ

α

=
ϵΣγ

2 + 2αϵµγ

2α2
,

where γ is defined in the statement of the Lemma.

For the second term, we notice that exp
(
−1

2(x− µ̂)⊤Σ̂−1(x− µ̂)
)

is determined by the GMM

learning algorithm; thus, we only need to determine an upper bound for

∣∣∣∣√|Σ| −
√
|Σ̂|
∣∣∣∣. Applying
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algebraic transformations yields

∣∣∣∣√|Σ| −
√
|Σ̂|
∣∣∣∣ =

∣∣∣|Σ| − |Σ̂|
∣∣∣√

|Σ|+
√
|Σ̂|

≤ 1

2
√
αd

max

{
d∏

i=1

(λ̂i + ϵΣ)−
d∏

i=1

λ̂i,
d∏

i=1

λ̂i −
d∏

i=1

max
{
λ̂i − ϵΣ, α

}}

≤ 1

2
√
αd

max

{
d∏

i=1

(λ̂i + ϵΣ)−
d∏

i=1

λ̂i,

d∏
i=1

λ̂i −
d∏

i=1

(λ̂i − ϵΣ)

}

≤ 1

2
√
αd

(
d∏

i=1

(λ̂i + ϵΣ)−
d∏

i=1

λ̂i

)

=
1

2
√
αd

(
|Σ̂+ ϵΣI| − |Σ̂|

)
In summary, we conclude that∣∣∣N (x|µ,Σ)−N

(
x|µ̂, Σ̂

)∣∣∣
≤ 1√

(2πα)d
ϵΣγ

2 + 2αϵµγ

2α2
+

|Σ̂+ ϵΣI| − |Σ̂|

2

√
(2πα2)d|Σ̂|

exp

(
−1

2
(x− µ̂)⊤Σ̂−1(x− µ̂)

)

=
ϵΣγ

2 + 2αϵµγ

2α2
√

(2πα)d
+

|Σ̂+ ϵΣI| − |Σ̂|
2αd

N
(
x|µ̂, Σ̂

)
,

which coincides with the result in Lemma 5.

Lemma 6. Suppose w ∈ Rn, Ω ∈ Sn+ and ρ ≥ 0, then (Y1,Y2) = (ww⊤,0) is optimal to the

following semidefinite program:

inf ⟨Y1 + Y2, ρIn⟩+ ⟨Y1 − Y2,Ω⟩

s.t. Y1,Y2 ∈ Sn+ Y1 − Y2 w

w⊤ 1

 ⪰ 0.

Proof. Proof of Lemma 6. It can be verified that Y1 = ww⊤ and Y2 = 0 are feasible to the

semidefinite program. In addition, for any Y1,Y2 ⪰ 0, the semidefinite constraint in (7) can be

equivalently written as

Y1 − Y2 ⪰ ww⊤.
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Therefore, we have

⟨Y1 + Y2, ρIn⟩+ ⟨Y1 − Y2,Ω⟩

≥
〈
ww⊤ + 2Y2, ρIn

〉
+
〈
ww⊤,Ω

〉
≥
〈
ww⊤, ρIn +Ω

〉
,

where the last inequality attained if and only if Y1 = ww⊤ and Y2 = 0. Thus, the claim follows.

Lemma 7. When ρkp ≥ (p̂k+ϵp)

(
ϵΣγ

2
k+2αkϵµγk

2α2
k

√
(2παk)d

+ |Σ̂k
ss+ϵΣI|−|Σ̂k

ss|
2αd

k

N
(
s|µ̂k

s , Σ̂
k
ss

))
+ϵpN

(
s|µ̂k

s , Σ̂
k
ss

)
,

the optimal value of problem (9) is upper bounded by problem (10), where αk = max{α, λ(Σ̂k)min−

ϵΣ} and βk = ∥Σ̂k∥+ ϵΣ.

Proof. Proof of Lemma 7. Based on Assumption 1 and Lemma 5, we know that |pk − p̂k| ≤ ϵp and∣∣∣N (
s|µk

s ,Σ
k
ss

)
−N

(
s|µ̂k

s , Σ̂
k
ss

)∣∣∣ ≤ ϵΣγ
2
k+2αkϵµγk

2α2
k

√
(2παk)d

+ |Σ̂k
ss+ϵΣI|−|Σ̂k

ss|
2αd

k

N
(
s|µ̂k

s , Σ̂
k
ss

)
. For notational

simplicity, we first define r =
ϵΣγ

2
k+2αkϵµγk

2α2
k

√
(2παk)d

+ |Σ̂k
ss+ϵΣI|−|Σ̂k

ss|
2αd

k

N
(
s|µ̂k

s , Σ̂
k
ss

)
. Noticing that the terms

pk, p̂k, N
(
s|µk

s ,Σ
k
ss

)
, and N

(
s|µ̂k

s , Σ̂
k
ss

)
in problem (9) are all non-negative, we have

∣∣∣pkN (
s|µk

s ,Σ
k
ss

)
− p̂kN

(
s|µ̂k

s , Σ̂
k
ss

)∣∣∣
≤max

{
(p̂k + ϵp)

(
N
(
s|µ̂k

s , Σ̂
k
ss

)
+ r
)
− p̂kN

(
s|µ̂k

s , Σ̂
k
ss

)
,

p̂kN
(
s|µ̂k

s , Σ̂
k
ss

)
− (p̂k − ϵp)

(
N
(
s|µ̂k

s , Σ̂
k
ss

)
− r
)}

=max
{
ϵpN

(
s|µ̂s, Σ̂

k
ss

)
+ p̂kr + ϵpr, ϵpN

(
s|µ̂s, Σ̂

k
ss

)
+ p̂kr − ϵpr

}
=ϵpN

(
s|µ̂k

s , Σ̂
k
ss

)
+ p̂kr + ϵpr

=(p̂k + ϵp)

(
ϵΣγ

2
k + 2αkϵµγk

2α2
k

√
(2παk)d

+
|Σ̂k

ss + ϵΣI| − |Σ̂k
ss|

2αd
k

N
(
s|µ̂k

s , Σ̂
k
ss

))
+ ϵpN

(
s|µ̂k

s , Σ̂
k
ss

)
,

which completes the proof.

Lemma 8. Suppose ∥Σ− Σ̂∥ ≤ ϵΣ, then we have

∥Σk
rs − Σ̂k

rs∥ ≤ ϵΣ, ∥Σk
ss − Σ̂k

ss∥ ≤ ϵΣ
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Proof. Proof of Lemma 8. By the definition of spectral norm, we have

∥Σk
rs − Σ̂k

rs∥ = sup
∥x∥=1

∥(Σk
rs − Σ̂k

rs)x∥

≤ sup
∥y∥=1

∥∥∥∥∥∥
 Σk

rs − Σ̂k
rs

Σk
rr − Σ̂k

rr

y

∥∥∥∥∥∥
= sup

∥y∥=1

∥∥∥∥∥∥(Σk − Σ̂k)

 0

y

∥∥∥∥∥∥
≤ sup

∥z∥=1
∥(Σk − Σ̂k)z∥

=∥Σk − Σ̂k∥

≤ϵΣ.

The derivation for ∥Σk
ss − Σ̂k

ss∥ follows the same strategy, and we omit for brevity.

Lemma 9. Suppose ∥µk − µ̂k∥ ≤ ϵµ, ∥Σk − Σ̂k∥ ≤ ϵΣ. By setting αk = max{α, λ(Σ̂k)min − ϵΣ},

βk = ∥Σ̂k∥+ ϵΣ, we have

∥µk
r|s − µ̂k

r|s∥ ≤
(
βk
αk

+ 1

)
ϵµ +

αk + βk
α2
k

(
∥µ̂∥ks + ∥s∥

)
ϵΣ,

∥Σk
r|s − Σ̂k

r|s∥ ≤
(
βk
αk

)2

ϵΣ.

Proof. Proof of Lemma 9. We first derive the error bound for the conditional mean.

∥µk
r|s − µ̂k

r|s∥ =∥µk
r +Σk

rs(Σ
k
ss)

−1(s− µk
s)− µ̂k

r − Σ̂k
rs(Σ̂

k
ss)

−1(s− µ̂k
s)∥

≤∥µk
r − µ̂k

r∥+ ∥Σk
rs(Σ

k
ss)

−1(s− µk
s)− Σ̂k

rs(Σ̂
k
ss)

−1(s− µ̂k
s)∥

≤ϵµ + ∥s∥ · ∥Σk
rs(Σ

k
ss)

−1 − Σ̂k
rs(Σ̂

k
ss)

−1∥+ ∥Σk
rs(Σ

k
ss)

−1µk
s − Σ̂k

rs(Σ̂
k
ss)

−1µ̂k
s∥

where the last inequality comes from the fact that the norm of the sub-vector is less than the norm
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of the whole vector. For the second term, we have

∥Σk
rs(Σ

k
ss)

−1 − Σ̂k
rs(Σ̂

k
ss)

−1∥ ≤∥Σk
rs(Σ

k
ss)

−1 − Σ̂k
rs(Σ

k
ss)

−1∥+ ∥Σ̂k
rs(Σ

k
ss)

−1 − Σ̂k
rs(Σ̂

k
ss)

−1∥

≤∥(Σk
ss)

−1∥ · ∥Σk
rs − Σ̂k

rs∥+ ∥Σ̂k
rs∥ · ∥(Σk

ss)
−1 − (Σ̂k

ss)
−1∥

≤ ϵΣ
αk

+
βkϵΣ
α2
k

=
αk + βk

α2
k

ϵΣ,

where the third inequality comes from Lemma 3. Next, we employ this result to the third term

and obtain

∥Σk
rs(Σ

k
ss)

−1µk
s − Σ̂k

rs(Σ̂
k
ss)

−1µ̂k
s∥

≤∥Σk
rs(Σ

k
ss)

−1µk
s −Σk

rs(Σ
k
ss)

−1µ̂k
s∥+ ∥Σ̂k

rs(Σ̂
k
ss)

−1µ̂k
s − Σ̂k

rs(Σ̂
k
ss)

−1µ̂k
s∥

≤∥Σk
rs(Σ

k
ss)

−1∥ · ∥µk
s − µ̂k

s∥+ ∥Σk
rs(Σ

k
ss)

−1 − Σ̂k
rs(Σ̂

k
ss)

−1∥ · ∥µ̂k
s∥

≤βk
αk

ϵµ +
αk + βk

α2
k

ϵΣ∥µ̂k
s∥.

Combining the results for the second and third terms, we have

∥µk
r|s − µ̂k

r|s∥ ≤
(
βk
αk

+ 1

)
ϵµ +

αk + βk
α2
k

(
∥µ̂∥ks + ∥s∥

)
ϵΣ.

We then derive the error bound for the conditional covariance. Take Ψk and Ψ̂k into Lemma 3,

we obtain

∥Ψk − Ψ̂k∥ ≤ ϵΣ
α2
k

.

By Lemma 8, we know that the norm of a submatrix is less than the whole matrix, i.e.,

∥Ψk
rr − Ψ̂k

rr∥ ≤ ϵΣ
α2
k

.

By Lemma 1, the conditional covariance matrix is equivalent to the inverse of (Ψk
rr)

−1. Hence, we

apply Lemma 3 again and obtain

∥Σk
r|s − Σ̂k

r|s∥ ≤
(
βk
αk

)2

ϵΣ.

This completes the proof.
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Lemma 10. Suppose |pkr|s − p̂kr|s| ≤ ρkp and ∥µk
r|s − µ̂k

r|s∥ ≤ ρkµ for all k ∈ [K]. Then,∥∥∥∥∥∥
∑
k∈[K]

pkr|sµ
k
r|s −

∑
k∈[K]

p̂kr|sµ̂
k
r|s

∥∥∥∥∥∥ ≤
∑
k∈[K]

(p̂kr|s + ρkp)ρ
k
µ + ρkp∥µ̂k

r|s∥.

Proof. Proof of Lemma 10. We have∥∥∥∥∥∥
∑
k∈[K]

pkr|sµ
k
r|s −

∑
k∈[K]

p̂kr|sµ̂
k
r|s

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
∑
k∈[K]

pkr|sµ
k
r|s −

∑
k∈[K]

pkr|sµ̂
k
r|s

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
k∈[K]

pkr|sµ̂
k
r|s −

∑
k∈[K]

p̂kr|sµ̂
k
r|s

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
k∈[K]

pkr|s(µ
k
r|s − µ̂k

r|s)

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
k∈[K]

(pkr|s − p̂kr|s)µ̂
k
r|s

∥∥∥∥∥∥
≤
∑
k∈[K]

(
pkr|sρ

k
µ + ρkp∥µ̂k

r|s∥
)

≤
∑
k∈[K]

(p̂kr|s + ρkp)ρ
k
µ + ρkp∥µ̂k

r|s∥.

Thus, the claim follows.

Lemma 11. Suppose |pkr|s − p̂kr|s| ≤ ρkp and ∥µk
r|s − µ̂k

r|s∥ ≤ ρkµ for all k ∈ [K]. Define µr|s =∑
k∈[K] p

k
r|sµ

k
r|s and µ̂r|s =

∑
k∈[K] p̂

k
r|sµ̂

k
r|s. Then, we have∥∥∥(µk

r|s − µr|s)(µ
k
r|s − µr|s)

⊤ − (µ̂k
r|s − µ̂r|s)(µ̂

k
r|s − µ̂r|s)

⊤
∥∥∥

≤

ρkµ +
∑
ℓ∈[K]

(p̂ℓr|s + ρℓp)ρ
ℓ
µ + ρℓp∥µ̂ℓ

r|s∥

2
∥∥∥µ̂k

r|s − µ̂r|s

∥∥∥+
ρkµ +

∑
ℓ∈[K]

(p̂ℓr|s + ρℓp)ρ
ℓ
µ + ρℓp∥µ̂ℓ

r|s∥

 .

Proof. Proof of Lemma 11. From Lemma 4, we get∥∥∥(µk
r|s − µr|s)(µ

k
r|s − µr|s)

⊤ − (µ̂k
r|s − µ̂r|s)(µ̂

k
r|s − µ̂r|s)

⊤
∥∥∥

≤
∥∥∥(µk

r|s − µr|s)− (µ̂k
r|s − µ̂r|s)

∥∥∥(∥∥∥(µk
r|s − µr|s)

∥∥∥+ ∥∥∥µ̂k
r|s − µ̂r|s

∥∥∥) .
Applying Lemma 10, we obtain∥∥∥(µk

r|s − µr|s)− (µ̂k
r|s − µ̂r|s)

∥∥∥ ≤ ρkµ +
∑
ℓ∈[K]

(p̂ℓr|s + ρℓp)ρ
ℓ
µ + ρℓp∥µ̂ℓ

r|s∥.

The claim then follows from upper bounding
∥∥∥(µk

r|s − µr|s)
∥∥∥ with ∥∥∥µ̂k

r|s − µ̂r|s

∥∥∥+ρkµ+
∑

ℓ∈[K](p̂
ℓ
r|s+

ρℓp)ρ
ℓ
µ + ρℓp∥µ̂ℓ

r|s∥.
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