
A QUADRATICALLY CONVERGENT SEQUENTIAL1

PROGRAMMING METHOD FOR SECOND-ORDER CONE2

PROGRAMS CAPABLE OF WARM STARTS3

XINYI LUO∗ AND ANDREAS WÄCHTER†4

Abstract. We propose a new method for linear second-order cone programs. It is based on5
the sequential quadratic programming framework for nonlinear programming. In contrast to interior6
point methods, it can capitalize on the warm-start capabilities of active-set quadratic programming7
subproblem solvers and achieve a local quadratic rate of convergence.8

In order to overcome the non-differentiability or singularity observed in nonlinear formulations of9
the conic constraints, the subproblems approximate the cones with polyhedral outer approximations10
that are refined throughout the iterations. For nondegenerate instances, the algorithm implicitly11
identifies the set of cones for which the optimal solution lies at the extreme points. As a consequence,12
the final steps are identical to regular sequential quadratic programming steps for a differentiable13
nonlinear optimization problem, yielding local quadratic convergence.14

We prove the global and local convergence guarantees of the method and present numerical15
experiments that confirm that the method can take advantage of good starting points and can16
achieve higher accuracy compared to a state-of-the-art interior point solver.17

Key words. nonlinear optimization, second-order cone programming, sequential quadratic18
programming19

AMS subject classifications. 90C15, 90C30, 90C5520

1. Introduction. We are interested in the solution of second-order cone pro-21

grams (SOCPs) of the form22

min
x∈Rn

cTx(1a)23

s.t. Ax ≤ b,(1b)24

xj ∈ Kj j ∈ J := {1, . . . , p},(1c)2526

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, and xj is a subvector of x of dimension nj with27

index set Ij ⊆ {1, . . . , n}. We assume that the sets Ij are disjoint. The set Kj is the28

second-order cone of dimension nj , i.e.,29

(2) Kj := {y ∈ Rnj : ‖ȳ‖ ≤ y0},30

where the vector y is partitioned into y = (y0, ȳ
T)T with ȳ = (ȳ1, . . . , ȳnj−1)T . These31

problems arise in a number of important applications (see, e.g., [1, 15])32

Currently, most of the commercial software for solving SOCPs implements33

interior-point algorithms which utilize a barrier function for second-order cones, see,34

e.g. [9, 11, 16]. Interior-point methods have well-established global and local con-35

vergence guarantees [19] and are able to solve large-scale instances, but they cannot36

take as much of an advantage of a good estimate of the optimal solution as it would37

be desirable in many situations. For example, in certain applications, such as online38

optimal control, the same optimization problem has to be solved over and over again,39

∗Department of Industrial Engineering and Management Sciences, Northwestern University. This
author was partially supported by National Science Foundation grant DMS-2012410. E-mail: xiny-
iluo2023@u.northwestern.edu
†Department of Industrial Engineering and Management Sciences, Northwestern University. This

author was partially supported by National Science Foundation grant DMS-2012410. E-mail: an-
dreas.waechter@northwestern.edu

1

This manuscript is for review purposes only.

mailto:xinyiluo2023@u.northwestern.edu
mailto:xinyiluo2023@u.northwestern.edu
mailto:andreas.waechter@northwestern.edu
mailto:andreas.waechter@northwestern.edu

with slightly modified data. In such a case, the optimal solution of one problem pro-40

vides a good approximation for the new instance. Having a solver that is capable41

of “warm-starts”, i.e., utilizing this knowledge, can be essential when many similar42

problems have to be solved in a small amount of time.43

For some problem classes, including linear programs (LPs), quadratic programs44

(QPs), or nonlinear programming (NLP), active-set methods offer suitable alternatives45

to interior-point methods. They explicitly identify the set of constraints that are46

active (binding) at the optimal solution. When these methods are started from a47

guess of the active set that is close to the optimal one, they often converge rapidly in48

a small number of iterations. An example of this is the simplex method for LPs. Its49

warm-start capabilities are indispensable for efficient branch-and-bound algorithms50

for mixed-integer linear programs.51

Active-set methods for LPs, QPs, or NLPs are also known to outperform interior-52

point algorithms for problems that are not too large [8].Similarly, active-set methods53

might be preferable when there are a large number of inequality constraints among54

which only a few are active, since an interior-point method is designed to consider55

all inequality constraints in every iteration and consequently solves large linear sys-56

tems, whereas an active set method can ignore all inactive inequality constraints and57

encounters potentially much smaller linear systems.58

Our goal is to propose an active-set alternative to the interior-point method in59

the context of SOCP that might provide similar benefits. We introduce a new se-60

quential quadratic programming (SQP) algorithm that, in contrast to interior-point61

algorithms for SOCPs, has favorable warm-starting capabilities because it can utilize62

active-set QP solvers. We prove that it is globally convergent, i.e., all limit points63

of the generated iterates are optimal solutions under mild assumptions, and that64

it enjoys a quadratic convergence rate for non-degenerate instances. Our prelimi-65

nary numerical experiments demonstrate that these theoretical properties are indeed66

observed in practice. They also show that the algorithm is able in some cases to67

compute a solution to a higher degree of precision than interior point methods. This68

is expected, again in analogy to the context of LPs, QPs, and NLPs, since an interior69

point method terminates at a small, but nonzero value of the barrier parameter that70

cannot be made smaller than some threshold (typically 10−6 or 10−8) because the71

arising linear systems become highly ill-conditioned. In contrast, in the final iteration72

of the active-set method, the linear systems solved correspond directly to the opti-73

mality conditions, without any perturbation introduced by a barrier parameter, and74

are only as degenerate as the optimal solution of the problem.75

The paper is structured as follows. Section 2 reviews the sequential quadratic76

programming method and the optimality conditions of SOCPs. Section 3 describes77

the algorithm, which is based on an outer approximation of the conic constraints.78

Section 4 establishes the global and local convergence properties of the method, and79

numerical experiments are reported in Section 5. Concluding remarks are offered in80

Section 6.81

1.1. Related work. While a large number of interior-point algorithms for SOCP82

have been proposed, including some that have been implemented in efficient optimiza-83

tion packages [9, 11, 16], there are only very few approaches for solving SOCPs with84

an active-set framework. The method proposed by Goldberg and Leyffer [7] is a two-85

phase algorithm that combines a projected-gradient method with equality-constrained86

SQP. However, it is limited to instances that have only conic constraints (1c) and no87

additional linear constraints (1b). Hayashi et al. [10] propose a simplex-type method,88

2

This manuscript is for review purposes only.

where they reformulate the SOCP as a linear semi-infinite program to handle the fact89

that these instances have infinitely many extreme points. The resulting dual-simplex90

exchange method shows promising practical behavior. However, in contrast to the91

method proposed here, the authors conjecture that their method has only an R-linear92

local convergence rate. Zhadan [23] proposes a similar simplex-type method. Another93

advantage of the method presented in this paper is that the pivoting algorithm does94

not need to be designed and implemented from scratch. Instead, it can leverage ex-95

isting implementations of active-set QP solvers, in particular the efficient handling of96

linear systems.97

The proposed algorithm relies on polyhedral outer approximations based on well-98

known cutting planes for SOCPs. For instance, the methods for mixed-integer SOCP99

by Drewes and Ulbrich [4] and Coey et al. [2] use these cutting planes to build LP100

relaxations of the branch-and-bound subproblems. We note that an LP-based cutting101

plane algorithm for SOCP could be seen as an active-set method, but it is only linearly102

convergent. As pointed out in [3], it is crucial to consider the curvature of the conic103

constraint in the subproblem objective to achieve fast convergence.104

The term “SQP method for SOCP” has also been used in the literature to refer105

to methods for solving nonlinear SOCPs [3, 12, 18, 24]. However, in contrast to106

the method here, in these approaches, the subproblems themselves are SOCPs (1)107

and include the linearization of the nonlinear objective and constraints. It will be108

interesting to explore extensions of the proposed method to nonlinear SOCPs in which109

feasibility is achieved asymptotically not only for the nonlinear constraints but also110

for the conic constraints.111

1.2. Notation. For two vectors x, y ∈ Rn, we denote with x◦y their component-112

wise product, and the condition x ⊥ y stands for xT y = 0. For x ∈ Rn, we define [x]+113

as the vector with entries max{xi, 0}. We denote by ‖ · ‖, ‖ · ‖1, ‖ · ‖∞ the Euclidean114

norm, the `1-norm, and the `∞-norm, respectively. For a cone Kj , eji ∈ Rnj is the115

canonical basis vector with 1 in the element corresponding to xji for i ∈ {0, . . . , nj−1},116

and int(Kj) and bd(Kj) denote the cone’s interior and boundary, respectively.117

2. Preliminaries. The NLP reformulation of the SOCP is introduced in Sec-118

tion 2.1. We review in Section 2.2 the local convergence properties of the SQP method119

and in Section 2.3 the penalty function as a means to promote convergence from any120

starting point. In Section 2.4, we briefly state the optimality conditions and our121

assumption for the SOCP (1).122

2.1. Reformulation as a smooth optimization problem. The definition of123

the second-order cone in (2) suggests that the conic constraint (1c) can be replaced124

by the nonlinear constraint125

rj(xj) := ‖x̄j‖ − xj0 ≤ 0126

without changing the set of feasible points. Consequently, (1) is equivalent to127

min
x∈Rn

cTx(3a)128

s.t. Ax ≤ b,(3b)129

rj(xj) ≤ 0, j ∈ J .(3c)130131

Unfortunately, (3) cannot be solved directly with standard gradient-based algo-132

rithms for nonlinear optimization, such as SQP methods. The reason is that rj is not133

3

This manuscript is for review purposes only.

differentiable whenever x̄j = 0. This is particularly problematic when the optimal134

solution x∗ of the SOCP lies at the extreme point of a cone, x∗j = 0 ∈ Kj . In that135

case, the Karush-Kuhn-Tucker (KKT) necessary optimality conditions for the NLP136

formulation, which are expressed in terms of derivatives, cannot be satisfied. There-137

fore, any optimization algorithm that seeks KKT points cannot succeed. As a remedy,138

differentiable approximations of rj have been proposed in the past; see, for example,139

[21]. However, high accuracy comes at the price of high curvature, which can make140

finding the numerical solution of the NLP difficult.141

An alternative equivalent reformulation of the conic constraint is given by142

‖x̄j‖2 − x2
j0 ≤ 0 and xj0 ≥ 0.143

In this case, the constraint function is differentiable. But if x∗j = 0, its gradient144

vanishes, and as a consequence, no constraint qualification applies and the KKT con-145

ditions do not hold. Therefore, again, a gradient-based method cannot be employed.146

By using an outer approximation of the cones that is improved in the course of the147

algorithm, our proposed variation of the SQP method is able to avoid these kinds of148

degeneracy.149

To facilitate the discussion we define a point-wise partition of the cones.150

Definition 1. Let x ∈ Rn.151

1. We call a cone Kj extremal-active at x, if xj = 0, and we denote with E(x) =152

{j ∈ J : xj = 0} the set of extremal-active cones at x.153

2. We define the set D(x) = {j ∈ J : x̄j 6= 0} as the set of all cones for which154

the function rj is differentiable at x.155

3. We define the set N (x) = {j ∈ J : xj 6= 0 and x̄j = 0} as the set of all cones156

that are not extremal-active and for which rj is not differentiable x.157

If the set E(x∗) at an optimal solution x∗ were known in advance, we could158

compute x∗ as a solution of (1) by solving the NLP159

min
x∈Rn

cTx(4a)160

s.t. Ax ≤ b,(4b)161

rj(x) ≤ 0, j ∈ D(x∗),(4c)162

xj = 0, j ∈ E(x∗).(4d)163164

The constraints involving the linearization of rj are imposed only if rj is differentiable165

at x∗, and variables in cones that are extremal-active at x∗ are explicitly fixed to zero.166

With this, locally around x∗, all functions in (4) are differentiable and we could apply167

standard second-order algorithms to achieve fast local convergence.168

In (4), we omitted the cones in N (x∗). If x∗ is feasible for the SOCP and j ∈169

N (x∗) we have x̄∗j = 0 and x∗j0 > 0, and so rj(x
∗) < 0. This implies that the170

nonlinear constraint (4c) for this cone is not active and we can omit it from the171

problem statement without impacting the optimal solution.172

2.2. Local convergence of SQP methods. The proposed algorithm is de-173

signed to guide the iterates xk into the neighborhood of an optimal solution x∗. If174

the optimal solution is not degenerate and the iterates are sufficiently close to x∗, the175

steps generated by the algorithm are eventually identical to the steps that the SQP176

method would take for solving the differentiable optimization problem (4). In this177

section, we review the mechanisms and convergence results of the basic SQP method178

[17].179

4

This manuscript is for review purposes only.

Algorithm 1 Basic SQP Algorithm

Require: Initial iterate x0 and multiplier estimates λ0, µ0, and η0.
1: for k = 0, 1, 2 · · · do
2: Compute Hk from (6).

3: Solve QP (5) to get step dk and multipliers λ̂k, µ̂kj , and η̂k.

4: Set xk+1 ← xk + dk and µk+1
j ← µ̂kj for all j ∈ D(x∗).

5: end for

At an iterate xk, the basic SQP method, applied to (4), computes a step dk as180

an optimal solution to the QP subproblem181

min
d∈Rn

cT d+ 1
2d
THkd(5a)182

s.t. A(xk + d) ≤ b,(5b)183

rj(x
k
j) +∇rj(xkj)T dj ≤ 0, j ∈ D(x∗),(5c)184

xkj + dj = 0, j ∈ E(x∗).(5d)185186

Here, Hk is the Hessian of the Lagrangian function for (4), which in our case is187

(6) Hk =
∑

j∈D(x∗)

µkj∇2
xxrj(x

k
j),188

where µkj ≥ 0 are estimates of the optimal multipliers for the nonlinear constraint189

(4c), and where ∇2
xxrj(xj) is the n× n block-diagonal matrix with190

(7) ∇2rj(xj) =

[
0 0

0 1
‖x̄j‖I −

x̄j x̄
T
j

‖x̄j‖3

]
191

in the rows and columns corresponding to xj for j ∈ J . It is easy to see that192

∇2rj(xj) is positive semi-definite. The estimates µkj are updated based on the optimal193

multipliers µ̂kj ≥ 0 corresponding to (5c).194

Algorithm 1 formally states the basic SQP method where λ̂k ≥ 0 and η̂k denote195

the multipliers corresponding to (4b) and (4d), respectively. Because we are only196

interested in the behavior of the algorithm when xk is close to x∗, we assume here197

that x̄kj 6= 0 for all j ∈ D(x∗) and for all k, and hence the gradient and Hessian of198

rj can be computed. Note that the iterates λ̂k and η̂k are not explicitly needed in199

Algorithm 1, but they are necessary to measure the optimality error and define the200

primal-dual iterate sequence that is analyzed in Theorem 2.201

A fast rate of convergence can be proven under the following sufficient second-202

order optimality assumptions [17].203

Assumption 1. Suppose that x∗ is an optimal solution of the NLP (4) with cor-204

responding KKT multipliers λ∗, µ∗, and η∗, satisfying the following properties:205

(i) Strict complementarity holds;206

(ii) the linear independence constraint qualification (LICQ) holds at x∗, i.e., the207

gradients of the constraints that hold with equality at x∗ are linearly independent;208

(iii) the projection of the Lagrangian Hessian H∗ =
∑
j∈D(x∗) µ

∗
j∇2

xxrj(x
∗
j) into the209

null space of the gradients of the active constraints is positive definite.210

5

This manuscript is for review purposes only.

Under these assumptions, the basic SQP algorithm reduces to Newton’s method211

applied to the optimality conditions of (4) and the following result holds [17].212

Theorem 2. Suppose that Assumption 1 holds and that the initial iterate x0 and213

multipliers µ0 (used in the Hessian calculation) are sufficiently close to x∗ and µ∗,214

respectively. Then the iterates (xk+1, λ̂k, µ̂k, η̂k) generated by the basic SQP algorithm,215

Algorithm 1, converge to (x∗, λ∗, µ∗, η∗) at a quadratic rate.216

2.3. Penalty function. Theorem 2 is a local convergence result. Practical SQP217

algorithms include mechanisms that make sure that the iterates eventually reach such218

a neighborhood, even if the starting point is far away. To this end, we employ the219

exact penalty function220

(8) ϕ(x; ρ) = cTx+ ρ
∑
j∈J

[rj(xj)]
+

221

in which ρ > 0 is a penalty parameter. Note that we define ϕ in terms of all conic222

constraints J , even though rj appears in (4c) only for j ∈ D(x∗). We do this because223

the proposed algorithm does not know D(x∗) in advance and the violation of all cone224

constraints needs to be taken into account when the original problem (1) is solved.225

Nevertheless, in this section, we may safely ignore the terms for j 6∈ D(x∗) because226

for j ∈ E(x∗) we have xkj = 0 and hence [rj(x
k)]+ = 0 for all k due to (5d), and when227

j ∈ N (x∗), we have rj(x
k
j) < 0 when xk is close to x∗ since rj(x

∗
j) < 0.228

It can be shown, under suitable assumptions, that the minimizers of ϕ(· ; ρ) over229

the set defined by the linear constraints (4b),230

(9) X = {x ∈ Rn : Ax ≤ b},231

coincide with the minimizers of (4) when ρ is chosen sufficiently large. Because it is232

not known upfront how large ρ needs to be, the algorithm uses an estimate, ρk, in233

iteration k, which might be increased during the course of the algorithm.234

To ensure that the iterates eventually reach a minimizer of ϕ(· ; ρ), and therefore235

a solution of (4), we require that the decrease of ϕ(· ; ρ) is at least a fraction of that236

achieved in the piece-wise linear model of ϕ(· ; ρ) given by237

(10) mk(xk + d; ρ) = cT (xk + d) + ρ
∑

j∈D(xk)

[rj(x
k
j) +∇rj(xkj)T dj]

+,238

constructed at xk. More precisely, the algorithm accepts a trial point x̂k+1 = xk + d239

as a new iterate only if the sufficient decrease condition240

ϕ(x̂k+1; ρk)− ϕ(xk; ρk) ≤ cdec

(
mk(xk + d; ρk)−mk(xk; ρk)

)
(11)241

(10)
= cdec

(
cT d− ρk

∑
j∈D(xk)

[rj(x
k
j)]+

)
242

243

holds with some fixed constant cdec ∈ (0, 1). The trial iterate x̂k+1 = xk + dk with dk244

computed from (5) might not always satisfy this condition. The proposed algorithm245

generates a sequence of improved steps of which one is eventually accepted.246

However, to apply Theorem 2, it would be necessary that the algorithm take247

the original step dk computed from (5); see Step 4 of Algorithm 1. Unfortunately,248

x̂k+1 = xk + dk might not be acceptable even when the iterate xk is arbitrarily close249

6

This manuscript is for review purposes only.

to a non-degenerate solution x∗ satisfying Assumption 1 (a phenomenon called the250

Maratos effect [14]). Our remedy is to employ the second-order correction step [6],251

sk, which is obtained as an optimal solution of the QP252

min
s∈Rn

cT (dk + s) + 1
2 (dk + s)THk(dk + s)(12a)253

s.t. A(xk + dk + s) ≤ b,(12b)254

rj(x
k
j + dkj) +∇rj(xkj + dkj)T sj ≤ 0, j ∈ D(x∗),(12c)255

xkj + dkj + sj = 0, j ∈ E(x∗).(12d)256257

For later reference, let λ̂S,k, µ̂S,k and η̂S,k denote optimal multiplier vectors corre-258

sponding to (12b)–(12d), respectively. The algorithm accepts the trial point x̂k+1 =259

xk + dk + sk if it yields sufficient decrease (11) with respect to the original SQP step260

d = dk. Note that (12) is a variation of the second-order correction that is usually261

used in SQP methods, for which (12c) reads262

rj(x
k
j + dkj) +∇rj(xkj)T (dkj + sj) ≤ 0, j ∈ D(x∗),263

and avoids the evaluation of ∇rj(xkj + dkj). In our setting, however, evaluating264

∇rj(xkj + dkj) takes no extra work and (12c) is equivalent to a supporting hyper-265

plane, see Section 3.1. As the following theorem shows (see, e.g., [6]), this procedure266

computes steps with sufficient decrease (11) and results in quadratic convergence.267

Theorem 3. Let Assumption 1 hold and assume that the initial iterate x0 and268

multipliers µ0 are sufficiently close to x∗ and µ∗, respectively. Further suppose that269

ρk = ρ∞ for large k where ρ∞ > µ∗j for all j ∈ D(x∗).270

1. Consider an algorithm that generates a sequence of iterates by setting271

(xk+1, λk+1, µk+1, ηk+1) = (xk + dk, λ̂k, µ̂k, η̂k) or (xk+1, λk+1, µk+1, ηk+1) =272

(xk + dk + sk, λ̂S,k, µ̂S,k, η̂S,k) for all k = 0, 1, 2, Then (xk, λk, µk, ηk)273

converges to (x∗, λ∗, µ∗, η∗) at a quadratic rate.274

2. Further, for all k, either x̂k+1 = xk + dk or x̂k+1 = xk + dk + sk satisfies the275

acceptance criterion (11).276

2.4. Optimality conditions for SOCP. The proposed algorithm aims at find-277

ing an optimal solution of the SOCP (1), or equivalently, values of the primal variables,278

x∗ ∈ Rn, and the dual variables, λ∗ ∈ Rm and z∗j ∈ Rnj for j ∈ J , that satisfy the279

necessary and sufficient optimality conditions [1, Theorem 16]280

c+ATλ∗ − z∗ = 0,(13a)281

Ax∗ − b ≤ 0 ⊥ λ∗ ≥ 0,(13b)282

Kj 3 x∗j ⊥ z∗j ∈ Kj , j ∈ J .(13c)283284

A thorough discussion of SOCPs is given in the comprehensive review by Alizadeh and285

Goldfarb [1]. The authors consider the formulation in which the linear constraints (1b)286

are equality constraints, but the results in [1] can be easily extended to inequalities.287

The primal-dual solution (x∗, λ∗, z∗) is unique under the following assumption.288

Assumption 2. (x∗, λ∗, z∗) is a non-degenerate primal-dual solution of the SOCP289

(1) at which strict complementarity holds.290

The definition of non-degeneracy for SOCP is somewhat involved and we refer291

the reader to [1, Theorem 21]. Strict complementarity holds if x∗j + z∗j ∈ int(Kj)292

and implies that: (i) x∗j ∈ int(Kj) =⇒ z∗j = 0; (ii) z∗j ∈ int(Kj) =⇒ x∗j = 0; (iii)293

x∗j ∈ bd(Kj) \ {0} ⇐⇒ z∗j ∈ bd(Kj) \ {0}; and (iv) not both x∗j and z∗j are zero.294

7

This manuscript is for review purposes only.

3. Algorithm. The proposed algorithm solves the NLP formulation (3) using a295

variation of the SQP method. Since the functional formulation of the cone constraints296

(3c) might not be differentiable at all iterates or at an optimal solution, the cones are297

approximated by a polyhedral outer approximation using supporting hyperplanes.298

The approximation is done so that the method implicitly identifies the constraints299

that are extremal-active at an optimal solution x∗, i.e., E(x∗) = E(xk) for large k.300

More precisely, we will show that close to a non-degenerate optimal solution, the301

steps generated by the proposed algorithm are identical to those computed by the QP302

subproblem (5) for the basic SQP algorithm for solving (4). Consequently, fast local303

quadratic convergence is achieved, as discussed in Section 2.2.304

3.1. Supporting hyperplanes. In the following, consider a particular cone Kj305

and let Yj be a finite subset of {yj ∈ Rnj : ȳj 6= 0, yj0 ≥ 0}. We define the cone306

(14) Cj(Yj) =
{
xj ∈ Rnj : xj0 ≥ 0 and ∇rj(yj)Txj ≤ 0 for all yj ∈ Yj

}
307

generated by the points in Yj . For each xj ∈ Kj we have rj(xj) ≤ 0, and using308

(15) ∇rj(xj) =

(
−1,

x̄Tj
‖x̄j‖

)T
,309

we obtain for any yj ∈ Yj that310

∇rj(yj)Txj =
1

‖ȳj‖
ȳTj x̄j − xj0 ≤

1

‖ȳj‖
‖ȳj‖‖x̄j‖ − xj0 = rj(xj) ≤ 0.311

Therefore Cj(Yj) ⊇ Kj . Also, for yj ∈ Yj , consider xj = (1, ȳTj /‖ȳj‖)T . Then312

∇rj(yj)Txj =
ȳTj
‖ȳj‖

ȳj
‖ȳj‖

− 1 = 1− 1 = 0,313

and also rj(xj) = ‖x̄j‖ − xj0 = ȳj/‖ȳj‖ − 1 = 0. Hence xj ∈ Cj(Yj) ∩ Kj . Therefore,314

for any yj ∈ Yj , the inequality315

(16) ∇rj(yj)Txj ≤ 0316

defines a hyperplane that supports Kj at (1, ȳj/‖ȳj‖). In summary, Cj(Yj) is a poly-317

hedral outer approximation of Kj , defined by supporting hyperplanes.318

In addition, writing Yj = {yj,1, . . . , yj,m}, we also define the cone319

(17) C◦j (Yj) :=

{
−

m∑
l=1

σj,l∇rj(yj,l) + ηjej0 : σj ∈ Rm+ , ηj ≥ 0

}
.320

For all xj ∈ Cj(Yj) and zj = −
∑m
l=1 σj,l∇rj(yj,l) + ηjej0 ∈ C◦j (Yj), we have321

xTj zj = −
m∑
l=1

σj,l∇rj(yj,l)Txj + ηjxj0 ≥ 0322

because ∇rj(yj,l)Txj ≤ 0 and xj0 ≥ 0 from the definition of Cj(Yj). Therefore C◦j (Yj)323

is included in the dual of the cone Cj(Yj).324

Now define R = [−∇rj(yj,1), . . . ,−∇rj(yj,m), ej0] and let zj ∈ Rnj be in the dual325

of Cj(Yj). Since this implies that xTj zj ≥ 0 for all x ∈ Cj(Yj) = {Rnj : RTxj ≥ 0},326

Farkas’ lemma yields that zj = R · (σT , η)T for some σj ∈ Rm+ and ηj ≥ 0, i.e.,327

zj ∈ C◦j (Yj).328

Overall we proved that C◦j (Yj) defined in (17) is the dual of Cj(Yj), and since329

Cj(Yj) ⊇ Kj , this implies C◦j (Yj) ⊆ Kj .330

8

This manuscript is for review purposes only.

Algorithm 2 Preliminary SQP Algorithm

Require: Initial iterate x0 and sets Y0
j for j ∈ J .

1: for k = 0, 1, 2 · · · do
2: Choose Hk.
3: Solve subproblem (18) to get step dk.
4: Set xk+1 ← xk + dk.
5: Set Yk+1

j ← Y+
pr,j(Ykj , xkj) for j ∈ J .

6: end for

3.2. QP subproblem. In each iteration, at an iterate xk, the proposed algo-331

rithm computes a step dk as an optimal solution of the subproblem332

min
d∈Rn

cT d+ 1
2d
THkd(18a)333

s.t. A(xk + d) ≤ b,(18b)334

rj(x
k
j) +∇rj(xkj)T dj ≤ 0, j ∈ D(xk),(18c)335

xkj + dj ∈ Cj(Ykj), j ∈ J .(18d)336337

Here, Hk is a positive semi-definite matrix that captures the curvature of the nonlinear338

constraint (3c), and for each cone, Ykj is the set of hyperplane-generating points that339

have been accumulated up to this iteration. From (14), we see that (18d) can be340

replaced by linear constraints. Consequently, (18) is a QP and can be solved as such.341

Algorithm 2 describes a preliminary version of the proposed SQP method based342

on this subproblem. Observe that the linearization (18c) can be rewritten as343

0 ≥ rj(xkj) +∇rj(xkj)T dj = ‖x̄kj ‖ − xkj0 − dj0 +
(x̄kj)T d̄j

‖x̄kj ‖
344

=
1

‖x̄kj ‖
(x̄kj)T (x̄kj + d̄j)− (xkj0 + dj0) = ∇rj(xkj)T (xkj + dj)345

346

and is equivalent to the hyperplane constraint generated at xkj . Consequently, if347

xkj 6∈ Kj , then rj(x
k
j) > 0 and (18c) acts as a cutting plane that excludes xkj . Using348

the update rule349

(19) Y+
pr,j(Yj , xj) =

{
Yj ∪ {xj} if x̄j 6= 0 and rj(xj) > 0,

Yj otherwise,
350

in Step 5 makes sure that xkj is excluded in all future iterations.351

In our algorithm, we initialize Y0
j so that352

(20) Y0
j ⊇ Ŷ0

j := {eji : i = 1, . . . , nj − 1} ∪ {−eji : i = 1, . . . , nj − 1}.353

In this way, xj = 0 is an extreme point of Cj(Y0
j), as it is for Kj , and the challenging354

aspect of the cone is already captured in the first subproblem. By choosing the355

coordinate vectors eji we have ∇rj(eji)Txj = xji−xj0, and the hyperplane constraint356

(16) becomes a very sparse linear constraint.357

When Hk = 0 in each iteration, this procedure becomes the standard cutting358

plane algorithm for the SOCP (1). It is well-known that the cutting plane algorithm359

9

This manuscript is for review purposes only.

is convergent in the sense that every limit point of the iterates is an optimal solution360

of the SOCP (1), but the convergence is typically slow. In the following sections, we361

describe how Algorithm 2 is augmented to achieve fast local convergence. The full362

method is stated formally in Algorithm 3.363

3.3. Identification of extremal-active cones. We now describe a strategy364

that enables our algorithm to identify those cones that are extreme-active at a non-365

degenerate solution x∗ within a finite number of iterations, i.e., E(xk) = E(x∗) for366

all large k. This will make it possible to apply a second-order method and achieve367

quadratic local convergence.368

Consider the optimality conditions for the QP subproblem (18):369

c+Hkdk +AT λ̂k +
∑

j∈D(xk)

µ̂kj∇xrj(xk)− ν̂k = 0,(21a)370

A(xk + dk)− b ≤ 0 ⊥ λ̂k ≥ 0,(21b)371

rj(x
k
j) +∇rj(xkj)T dkj ≤ 0 ⊥ µ̂j ≥ 0, j ∈ D(xk),(21c)372

Cj(Ykj) 3 xkj + dkj ⊥ ν̂kj ∈ C◦j (Ykj), j ∈ J .(21d)373374

Here, λ̂k, µ̂kj , and ν̂kj are the multipliers corresponding to the constraints in (18); for375

completeness, we define µ̂kj = 0 for j ∈ J \D(xk). In (21a), ∇xrj(xk) is the vector in376

Rn that contains ∇rj(xkj) in the elements corresponding to xj and is zero otherwise.377

Similarly, ν̂k ∈ Rn is equal to ν̂kj in the elements corresponding to xj for all j ∈ J378

and zero otherwise.379

Let us define380

(22) Ŷkj :=

{
Ykj ∪ {xkj }, if j ∈ D(xk),

Ykj , if j ∈ J \ D(xk).
381

It is easy to verify that, for j ∈ D(xk), ∇rj(xkj)xkj = rj(x
k
j) and hence rj(x

k
j)T (xkj +382

dk) ≤ 0 from (21c). As a consequence we obtain xkj + dkj ∈ Cj(Ŷkj) for all j ∈ J .383

Furthermore, ν̂kj ∈ C◦j (Ykj) implies that384

ν̂kj = −
m∑
l=1

σkj,l∇rj(ykj,l) + ηkj ej0385

for suitable values of σkj,l ≥ 0 and ηkj ≥ 0. Then ẑkj := −µ̂kj∇rj(xk) + ν̂kj ∈ C◦j (Ŷkj)386

and387

(23) ẑk = c+Hkdk +AT λ̂k388

from (21a). In conclusion, if (d, λ̂k, µ̂k, ν̂k) is a primal-dual solution of the QP sub-389

problem (18), then (d, λ̂k, ẑk) satisfies the conditions390

c+Hkdk +AT λ̂k − ẑk = 0,(24a)391

A(xk + dk)− b ≤ 0 ⊥ λ̂k ≥ 0,(24b)392

Cj(Ŷkj) 3 xkj + dkj ⊥ ẑkj ∈ C◦j (Ŷkj), j ∈ J ,(24c)393394

which more closely resembles the SOCP optimality conditions (13). Our algorithm395

maintains primal-dual iterates (xk+1, λ̂k, ẑk) that are updated based on (24).396

10

This manuscript is for review purposes only.

Suppose that strict-complementarity holds at a primal-dual solution (x∗, λ∗, z∗)397

of the SOCP (1) and that (xk+1, λ̂k, ẑk) → (x∗, λ∗, z∗). If j 6∈ E(x∗) then x∗j ∈ Kj398

implies x∗j0 > 0. As xkj converges to x∗j , we have xkj0 > 0 and therefore j 6∈ E(xk)399

for sufficiently large k. This yields E(xk) ⊆ E(x∗). We now derive a modification400

of Algorithm 2 that ensures that E(x∗) ⊆ E(xk) for all sufficiently large k under401

Assumption 2.402

Consider any j ∈ E(x∗). We would like to have403

(25) ẑkj ∈ int(C◦j (Ŷkj))404

for all large k, since then complementarity in (24c) implies that xk+1
j = xkj + dkj = 0405

and hence j ∈ E(xk+1) for all large k. We will later show that Assumption 2 implies406

that ẑkj → z∗j and that there exists a neighborhood Nε(z
∗
j) = {zj ∈ Rnj : ‖zj−z∗j ‖ ≤ ε}407

of z∗j so that zj ∈ int(C◦j (Ŷ0
j ∪{−yj})) if zj , yj ∈ Nε(z∗j); see Remark 14. This suggests408

that some vector close to −z∗j should eventually be included in Ŷkj because then (25)409

holds when ẑkj is close enough to z∗j . For this purpose, the algorithm computes410

žk = c+AT λ̂k,411

which also converges to z∗j (see (13a)), and sets Yk+1
j to Y+

du,j(Ykj , xkj , žkj), where412

(26) Y+
du,j(Yj , xj , zj) =

{
Yj ∪ {−zj} if xj 6= 0, z̄j 6= 0 and rj(zj) < 0,

Yj otherwise.
413

The update is skipped when xkj = 0 (because then j is already in E(xk) and no414

additional hyperplane is needed), and when ¯̌zkj = 0 or rj(ž
k
j) ≥ 0, which might415

indicate that z∗j 6∈ int(Kj) and j 6∈ E(x∗).416

3.4. Fast NLP-SQP steps. Now that we have a mechanism in place that makes417

sure that the extremal-active cones are identified in a finite number of iterations, we418

present a strategy that emulates the basic SQP Algorithm 1 and automatically takes419

quadratically convergent SQP steps, i.e., solutions of the SQP subproblem (5), close420

to x∗. For the discussion in this section, we again assume that x∗ is a unique solution421

at which Assumption 2 holds.422

Suppose that E(xk) = E(x∗) for large k due to the strategy discussed in Sec-423

tion 3.3. This means that the outer approximation (18d) of Kj for j ∈ E(x∗) is424

sufficient to fix xkj to zero and is therefore equivalent to the constraint (5d) in the425

basic SQP subproblem. However, (18) includes the outer approximations for all cones,426

including those for j 6∈ E(x∗), which are not present in (5). Consequently, the desired427

SQP step from (5) might not be feasible for (18).428

As a remedy, at the beginning of an iteration, the algorithm first computes an429

NLP-SQP step as an optimal solution dS,k of a relaxation of (18),430

min
d∈Rn

cT d+ 1
2d
THkd(27a)431

s.t. A(xk + d) ≤ b(27b)432

rj(x
k
j) +∇rj(xkj)T dj ≤ 0, j ∈ D(xk)(27c)433

xkj0 + dj0 ≥ 0, j ∈ D(xk) \ Êk(27d)434

xkj + dj ∈ Cj(Ykj) j ∈ Êk,(27e)435436

11

This manuscript is for review purposes only.

where Êk = E(xk). In this way, the outer approximations are imposed only for the437

currently extremal-active cones, while for all other cones only the linearization (27c) is438

considered, just like in (5), with the additional restriction (27d) that ensure xk+1
j0 ≥ 0.439

Let λ̂k, µ̂kj , η̂kj , and ν̂kj be the optimal corresponding to the constraints in (27) (set440

to zero for non-existing constraints) and define ẑk as in (23). Then the optimality441

conditions (24) hold again, this time with dk = dS,k, but instead of (22) we have442

(28) Ŷkj :=


{xkj } if j ∈ D(xk) \ Êk,
Ykj ∪ {xkj } if j ∈ Êk ∩ D(xk),

Ykj if j ∈ Êk \ D(xk).

443

When xk is not close to x∗ and E(x∗) 6= E(xk), QP (27) might result in poor444

steps that go far outside of Kj for some j ∈ D(xk) \ Êk and undermine convergence.445

Therefore, we iteratively add more cones to Êk until446

(29) xkj0 + dS,kj0 > 0 only for j ∈ J \ Êk,447

i.e., when a cone is approximated only by its linearization (27c), the step does not448

appear to target its extreme point. This property is necessary to show that E(xk) =449

E(x∗) for all large k also for the case that new iterates are computed from (27) instead450

of (18). Note that in the extreme case Êk = J and (27) is identical to (18). This loop451

can be found in Steps 6–9 in Algorithm 3.452

Since there is no guarantee that (27) yields iterates that converge to x∗, the algo-453

rithm discards the NLP-SQP step in certain situations and falls back to the original454

method to recompute a new step from (18), as in the original method. In Section 3.6455

we describe how we use the exact penalty function (8) to determine when this is456

necessary.457

3.5. Hessian matrix. Motivated by (6), we compute the Hessian matrix Hk in458

(18) and (27) from459

(30) Hk =
∑

j∈D(xk)

µkj∇2
xxrj(x

k),460

where µkj ≥ 0 are multiplier estimates for the nonlinear constraint (3c). Because461

∇2rj(x
k
j) is positive semi-definite and µkj ≥ 0, also Hk is positive semi-definite.462

In the final phase, when we intend to emulate the basic SQP Algorithm 1. There-463

fore, we set µk+1
j = µ̂kj for j ∈ D(xk), where µ̂kj are the optimal multipliers for (27c),464

when the fast NLP-SQP step was accepted. But we also need to define a value for465

µk+1
j when the step is computed from (18) where, in addition to the linearization of466

rj , hyperplanes (18d) are used to approximate all cones. By comparing the optimality467

conditions of the QPs (18) and (5) we now derive an update for µk+1
j .468

Suppose that j ∈ D(xk+1) ∩ D(xk). Then (21a) yields469

(31) cj +Hk
jjd

k
j +ATj λ̂

k + µ̂kj∇rj(xkj)− ν̂kj = 0,470

where Hk
jj = µkj∇2rj(x

k
j) because of (30). Here, the dual information for the nonlinear471

constraint is split into µ̂kj and ν̂kj and needs to be condensed into a single number,472

µk+1
j , so that we can compute Hk from (30) in the next iteration.473

12

This manuscript is for review purposes only.

Recall that, in the basic SQP Algorithm 1, the new multipliers µk+1
j are set to474

the optimal multipliers of the QP (5), which satisfy475

(32) cj +Hk
jjd

k
j +ATj λ̂

k + µk+1
j ∇rj(xkj) = 0.476

A comparison with (31) suggests to choose µk+1
j so that µk+1

j ∇rj(xkj) ≈ µ̂kj∇rj(xkj)−477

ν̂kj . Multiplying both sides with ∇rj(xkj)T and solving for µk+1 yields478

µk+1
j = µ̂kj −

∇rj(xkj)T ν̂kj
‖∇rj(xkj)‖2

.479

Note that µk+1
j = µ̂kj if the outer approximation constraint (18d) is not active and480

therefore ν̂kj = 0 for j. In this case, we recover the basic SQP update, as desired.481

Now suppose that j ∈ D(xk+1)\D(xk). Again comparing (31) with (32) suggests482

a choice so that µk+1
j ∇rj(xk+1

j) ≈ −ν̂kj , where we substituted ∇rj(xkj) by ∇rj(xk+1
j)483

because the former is not defined for j 6∈ D(xk). In this case, multiplying both sides484

with ∇rj(xk+1
j)T and solving for µk+1 yields485

µk+1
j = −

∇rj(xk+1
j)T ν̂kj

‖∇rj(xk+1
j)‖2

.486

In summary, in each iteration in which (18) determines the new iterate, we update487

(33) µk+1
j =


µ̂kj −

∇rj(xkj)T ν̂kj
‖∇rj(xkj)‖2 j ∈ D(xk+1) ∩ D(xk)

−∇rj(x
k+1
j)T ν̂kj

‖∇rj(xk+1
j)‖2

j ∈ D(xk+1) \ D(xk)

0 otherwise.

488

The choice above leads to quadratic convergence for non-degenerate instances,489

but it is common for the global convergence analysis of SQP methods to permit any490

positive semi-definite Hessian matrix Hk, as long as it is bounded. Since we were491

not able to exclude the case that µkj or 1/xkj0 are unbounded for some cone j ∈ J ,492

in which case Hk defined in (30) is unbounded, we fix a large threshold cH > 0 and493

rescale the Hessian matrix according to494

(34) Hk ← Hk ·min{1, cH/‖Hk‖}495

so that ‖Hk‖ ≤ cH in every iteration. In this way, global convergence is guaranteed,496

but the fast local convergence rate might be impaired if cH is chosen too small so that497

Hk defined in (30) must be rescaled. Therefore, in practice, we set cH to a very large498

number and (34) is never actually triggered in our numerical experiments.499

3.6. Penalty function. The steps computed from (18) and (27) do not neces-500

sarily yield a convergent algorithm and a safeguard is required to force the iterates into501

a neighborhood of an optimal solution. Here, we utilized the exact penalty function502

(8) and accept a new iterate only if the sufficient decrease condition (11) holds.503

As discussed in Section 3.4, at the beginning of an iteration, the algorithm first504

computes an NLP-SQP step dS,k from (27). The penalty function can now help us to505

decide whether this step makes sufficient progress towards an optimal solution, and506

13

This manuscript is for review purposes only.

we only accept the trial point x̂k+1 = xk + dS,k as a new iterate if (11) holds with507

d = dS,k.508

If the penalty function does not accept dS,k, there is still a chance that dS,k is mak-509

ing rapid progress towards the solution, but, as discussed in Section 2.2, the Maratos510

effect is preventing the acceptance of dS,k. As a remedy, we compute, analogously to511

(12), a second-order correction step sk for (27) as a solution of512

(35)

min
s∈Rn

cT (dS,k + s) + 1
2 (dS,k + s)THk(dS,k + s)

s.t. A(xk + dS,k + s) ≤ b,

rj(x
k
j + dS,kj) +∇rj(xkj + dS,kj)T sj ≤ 0, j ∈ D(xk),

xkj0 + dS,kj0 + sj0 ≥ 0, j ∈ D(xk) \ Êk,

xkj + dS,kj + sj ∈ Cj(Ykj), j ∈ Êk,

513

and accept the trial point x̂k+1 = xk + dS,k + sk if it satisfies (11) with d = dS,k. Let514

again λ̂k, µ̂kj , η̂kj , and ν̂kj denote the optimal multipliers in (35) and define ẑk as in515

(23). The optimality conditions (24) still hold, this time with dk = dS,k + sk and516

(36) Ŷkj :=


{xkj + dS,kj }, if j ∈ D(xk) \ Êk,
Ykj ∪ {xkj + dS,kj }, if j ∈ D(xk) ∩ Êk,
Ykj , if j ∈ Êk.

517

If neither dS,k nor dS,k+sk has been accepted, we give up on fast NLP-SQP steps518

and instead revert to QP (18) which safely approximates every cone with an outer519

approximation. However, the trial point x̂k+1 = xk + dk with the step dk obtained520

from (18) does not necessarily satisfy (11). In that case, the algorithm adds xk + dk521

to Ykj to cut off xk + dk and resolves (18) to get a new trial step dk. In an inner loop522

(Steps 21–31), this procedure is repeated until, eventually, a trial step is obtained523

that satisfies (11). We will show that (11) holds after a finite number of iterations of524

the inner loop.525

It remains to discuss the update of the penalty parameter estimate ρk. One can526

show (see Lemma 4) that an optimal solution of x∗ of the SOCP with multipliers527

z∗ is a minimizer of φ(·, ρ) over the set X defined in (9) if ρ > ‖z∗J ,0‖∞, where528

z∗J ,0 = (z∗1,0, . . . , z
∗
p,0)T . Since z∗ is not known a priori, the algorithm uses the update529

rule ρk = ρnew(ρk−1, zk) where530

(37) ρnew(ρold, z) :=

{
ρold if ρold > ‖zJ ,0‖∞
cinc · ‖zJ ,0‖∞ otherwise,

531

with cinc > 1. We will prove in Lemma 8 that the sequence {zk}∞k=1 is bounded under532

Slater’s constraint qualification. Therefore, this rule will eventually settle at a final533

penalty parameter ρ∞ that is not changed after a finite number of iterations.534

During an iteration of the algorithm, several trial steps may be considered and a535

preliminary parameter value is computed from (37) for each one. At the end of the536

iteration, the parameter value corresponding to the accepted trial step is stored. Note537

that the acceptance test for the second-order correction step from (35) needs to be538

done with the penalty parameter computed for the regular NLP-SQP step from (27).539

14

This manuscript is for review purposes only.

Algorithm 3 SQP Algorithm for SOCP.

Require: Initial iterate x0 ∈ X with xj,0 ≥ 0, multipliers µ0
j ∈ R+, penalty parame-

ter ρ−1 > 0; constants cdec ∈ (0, 1), cinc > 1, and cH > 0.
1: Initialize Y0

j so that (20) is satisfied.
2: for k = 0, 1, 2, . . . do
3: Compute Hk using (30). Rescale according to (34) if ‖Hk‖ > cH .
4: Set Êk ← E(xk).

5: Compute dS,k, λ̂k, µ̂k, ẑk from (27) and (23) and set x̂k+1 = xk + dS,k.

6: while {j ∈ J : xkj0 + dS,kj0 = 0} 6⊆ Êk do

7: Set Êk ← Êk ∪ {j ∈ J : xkj0 + dS,kj0 = 0}.
8: Recompute dS,k, λ̂k, µ̂k, ẑk from (27) and (23) and set x̂k+1 = xk + dS,k.
9: end while

10: Compute candidate penalty parameter ρk = ρnew(ρk−1, ẑk), see (37).
11: if (11) holds for d = dS,k then
12: Set Yk+1

j ← Y+
pr,j(Ykj , xkj) using (19) and set dk = dS,k.

13: Set µk+1 = µ̂k and go to Step 33.
14: end if
15: Compute sk, λ̂k, µ̂k, ẑk from (35) and (23) and set x̂k+1 = xk + dS,k + sk.

16: if (11) holds for d = dS,k and {j ∈ J : xkj0 + dS,kj0 + sk = 0} ⊆ Êk then

17: Set Yk+1
j ← Y+

pr,j(Ykj , xkj) and dk = dS,k.

18: Set µk+1 = µ̂k and go to Step 33.
19: end if
20: Set Yk,0j ← Ykj .
21: for l = 0, 1, 2, . . . do
22: Compute dk,l, λ̂k, µ̂k, ẑk from (18) and (23) and set x̂k+1 = xk + dk,l.
23: Compute candidate penalty parameter ρk = ρnew(ρk−1, ẑk).
24: if (11) holds for d = dk,l then

25: Set Yk+1
j ← Y+

pr,j(Y
k,l
j , xkj) and dk = dk,l.

26: Go to Step 32.
27: end if
28: Set Yk+1

j ← Y+
pr,j(Y

k,l
j , x̂k+1

j), see (19).

29: Compute žk = c+AT λ̂k.
30: Update Yk,l+1

j ← Y+
du,j(Y

k,l+1
j , x̂k+1

j , žkj), see (26).
31: end for
32: Compute µk+1 from (33).

33: Compute žk = c+AT λ̂k and update Yk+1
j ← Y+

du,j(Y
k+1
j , xkj , ž

k
j).

34: Set xk+1 ← x̂k+1.
35: If (xk+1, λ̂k, ẑk) satisfy (13), stop.
36: end for

3.7. Complete algorithm. The complete method is stated in Algorithm 3. To540

keep the notation concise, we omit “for all j ∈ J ” whenever the index j is used. We541

assume that all QPs in the algorithm are solved exactly.542

Each iteration begins with the computation of the fast NLP-SQP step where543

an inner loop repeatedly adds cones to Êk until (29) holds. If the step achieves a544

sufficient decrease in the penalty function, the trial point is accepted. Otherwise, the545

15

This manuscript is for review purposes only.

second-order correction for the NLP-SQP step is computed and accepted if it yields546

a sufficient decrease for the NLP-SQP step. Note that the second-order correction547

step is discarded if it does not satisfy (29) since otherwise finite identification of E(x∗)548

cannot be guaranteed. If none of the NLP-SQP steps was acceptable, the algorithm549

proceeds with an inner loop in which hyperplanes cutting off the current trial point550

are repeatedly added until the penalty function is sufficiently decreased. No matter551

which step is taken, both xkj and žkj are added to Ykj according to the update rules552

(19) and (26) and the multiplier µk for the nonlinear constraints is updated.553

In most cases, a new QP is obtained by adding only a few constraints to the554

most recently solved QP, and a hot-started QP solver will typically compute the new555

solution quickly. For example, in each inner iteration in Steps 6–9, hyperplanes for556

the polyhedral outer approximation for cones augmenting Êk are added to QP (27).557

Similarly, each inner iteration in Steps 21–31 adds one cutting plane for a violated558

cone constraint. In Steps 5 and 15, some constraints are removed compared to the559

most recently solved QP, but also this structure could be utilized.560

The algorithm might terminate because one of QPs solved for the step compu-561

tation is infeasible. Since the feasible regions of the QP are outer approximations of562

the SOCP (1), this proves that the SOCP instance is infeasible; see also Remark 11.563

4. Convergence analysis.564

4.1. Global convergence. In this section, we prove that, under a standard565

regularity assumption, all limit points of the sequence of iterates are optimal solutions566

of the SOCP, if the algorithm does not terminate with an optimal solution in Step 35.567

We also explore what happens when the SOCP is infeasible.568

We make the following assumption throughout this section.569

Assumption 3. The set X defined in (9) is bounded.570

Since x0 ∈ X by the initialization of Algorithm 3 and any step satisfies (21b), we571

have xk ∈ X for all k. Similarly, (24c) and (14) imply that572

(38) xkj0 ≥ 0 for all k ≥ 0 and j ∈ J .573

We start the analysis with some technical results that quantify the decrease in574

the penalty function model.575

Lemma 4. Consider an iteration k and let dk be computed in Step 5 or Step 22576

in Algorithm 3. Further let ρk > ρkmin, where ρkmin = ‖ẑkJ ,0‖∞ with ẑk defined in (23).577

Then the following statements are true.578

(i) We have579

mk(xk + dk; ρk)−mk(xk; ρk) ≤ −(dk)THkdk − (ρk − ρkmin)
∑
j∈J

[rj(x
k
j)]+ ≤ 0.580

581

(ii) If xk is not an optimal solution of the SOCP, then582

(39) mk(xk + dk; ρk)−mk(xk; ρk) < 0.583

584

Proof. Proof of (i): Consider any j ∈ D(xk). Because dk is a solution of (18) or

(27), there exist λ̂k and ẑk so that the optimality conditions (24) hold. Let j ∈ J .

16

This manuscript is for review purposes only.

Since ẑkj ∈ C◦(Ŷkj), the definition (17) implies that

ẑkj = −
mkj∑
l=1

σ̂kl,j∇rj(ykj,l) + η̂kj ej0,

where Ŷkj =
{
ykj,1, . . . , y

k
j,mkj

}
and σ̂kl,j , η̂

k
j ∈ R+.585

Using (15) we have ẑkj0 =
∑mkj
l=1 σ̂

k
l,j+η̂

k
j ≥

∑mkj
l=1 σ̂

k
l,j . Together with (xkj+dkj)T ẑkj =586

0 from (24c) and (x̄kj)T ȳkl,j ≤ ‖x̄kj ‖ · ‖ȳkl,j‖ this overall yields587

−(dkj)T ẑkj = (xkj)T ẑkj = xkj0ẑ
k
j0 −

mkj∑
l=1

σ̂kl,j(x̄
k
j)T

ȳkl,j
‖ȳkl,j‖

≥ xkj0ẑkj0 −
mkj∑
l=1

σ̂kl,j‖x̄kj ‖588

≥ xkj0ẑkj0 − ẑkj0‖x̄kj ‖ = −zkj0rj(xkj) ≥ −zkj0[rj(x
k
j)]+.589590

Further, we have from (24b) that 0 = (Axk+Adk−b)T λ̂k and therefore (dk)TAT λ̂k =591

−(Axk − b)T λ̂k ≥ 0 since λ̂k ≥ 0 and xk ∈ X.592

Using these inequalities and (24a), the choice of ρkmin yields593

0 = (dk)T
(
c+Hkdk +AT λ̂k − ẑk

)
594

≥ cT dk + (dk)THkdk −
∑
j∈J

ẑkj0[rj(x
k
j)]+595

≥ cT dk + (dk)THkdk − ρkmin

∑
j∈J

[rj(x
k
j)]+.596

597

Finally, combining this with (10) and (18c) or (27c), respectively, we obtain598

mk(xk + dk; ρk)−mk(xk; ρk) = cT dk − ρk
∑

j∈D(xk)

[rj(x
k
j)]+599

= cT dk − ρk
∑
j∈J

[rj(x
k
j)]+600

≤ −(dk)THkdk − (ρk − ρkmin)
∑
j∈J

[rj(x
k
j)]+.601

602

For the second equality, we used that rj(x
k
j) = 0 − xkj0 ≤ 0 for j 6∈ D(xk) by (38)603

and the definition of D(xk). Since Hk is positive semi-definite, ρk > ρkmin, and604

[rj(x
k
j)]+ ≥ 0, the right-hand side must be non-positive.605

Proof of (ii): Suppose xk ∈ X is not an optimal solution for the SOCP. If xk is not606

feasible for the SOCP, xk must violate a conic constraint and we have [rj(x
k
j)]+ > 0607

for some j ∈ J . Since Hk is positive semidefinite and ρk − ρkmin > 0, part (i) yields608

(39).609

It remains to consider the case when xk is feasible for the SOCP, i.e., [rj(x
k
j)]+ = 0610

for all j. To derive a contradiction, suppose that (39) does not hold. Then part (i)611

yields612

0 = mk(xk + dk; ρk)−mk(xk; ρk)613

= −(dk)THkdk − (ρk − ρkmin)
∑
j∈J

[rj(x
k
j)]+ = −(dk)THkdk ≤ 0.614

615

17

This manuscript is for review purposes only.

Because Hk is positive semi-definite, this implies Hkdk = 0. Further, since also616

0 = mk(xk + dk; ρk)−mk(xk; ρk)
(10)
= cT dk − ρk

∑
j∈D(xk)

[rj(x
k
j)]+ = cT dk,617

the optimal objective value of (18) or (27), respectively, is zero. At the same time,618

choosing dk = 0 is also feasible for (18) or (27) and yields the same objective value.619

Therefore, also dk = 0 is an optimal solution of (18) or (27) and the optimality620

conditions (24) hold for some multipliers. Because C◦j (Ŷkk) ⊆ Kj , the same multipliers621

and dk = 0 show that the optimality conditions of the SOCP (13) also hold. So, xk622

is an optimal solution for the SOCP, contradicting the assumption.623

The following lemma shows that the algorithm is well-defined and will not stay624

in an infinite loop in Steps 21–31.625

Lemma 5. Consider an iteration k and let dk be computed in Step 5 or Step 22626

in Algorithm 3. Suppose that xk is not an optimal solution of the SOCP. Then627

(40) ϕ(xk + dk,l; ρk)− ϕ(xk; ρk) ≤ cdec
(
mk(xk + dk,l; ρk)−mk(xk; ρk)

)
628

after a finite number of iterations in the inner loop in Steps 21–31.629

Proof. Suppose the claim is not true and let {dk,l}∞l=0 be the infinite sequence of630

trial steps generated in the loop in Steps 21–31 for which the stopping condition in631

Step 24 is never satisfied, and let dk,∞ be a limit point of {dk,l}∞l=0. We will first show632

that633

(41) [rj(x
k
j + dk,∞j)]+ = 0 for all j ∈ J .634

Let us first consider the case when x̄kj + d̄k,∞j = 0 for some j ∈ J . Then rj(x
k
j +635

dk,∞j) = ‖x̄kj + d̄k,∞j ‖ − (xkj0 + dk,∞j0) = −(xkj0 + dk,∞j0) ≤ 0 and (41) holds.636

Now consider the case that x̄kj + d̄k,∞j 6= 0 for j ∈ J . Since dk,∞ is a limit637

point of {dk,l}∞l=0, there exists a subsequence {dk,lt}∞t=0 that converges to dk,∞. We638

may assume without loss of generality that x̄kj + d̄k,ltj 6= 0 for all t. Then, for any639

t, by Step 30, xkj + dk,ltj ∈ Yk,lt+1

j . In the inner iteration lt+1, the trial step d
k,lt+1

j640

is computed from (18) and satisfies xkj + d
k,lt+1

j ∈ Cj(Yk,ltj), which by definition (14)641

implies642

∇rj(xkj + dk,ltj)T (xkj + d
k,lt+1

j) ≤ 0.643

Taking the limit t→∞ and using the fact that ∇rj(vj)T vj = rj(vj) for any vj ∈ Kj
yields

rj(x
k
j + dk,∞j) = ∇rj(xkj + dk,∞j)T (xkj + dk,∞j) ≤ 0,

proving (41). In turn (41) implies that the ratio644

ϕ(xk + dk,l; ρk)− ϕ(xk; ρk)

mk(xk + dk,l; ρk)−mk(xk; ρk)
=
cT dk,l + ρk([rj(x

k
j + dk,lj)]+ − [rj(x

k
j)]+)

cT dk,l − ρk[rj(xkj)]+
645

646

converges to 1. Note that the ratio is well-defined sincemk(xk+dk,l; ρk)−mk(xk; ρk) <647

0 due to Lemma 5(ii). It then follows that (40) is true for sufficiently large l.648

Lemma 6. Suppose that there exists ρ∞ > 0 so that ρk = ρ∞ > 0 for all large k.649

Then any limit point of {xk}∞k=0 is an optimal solution of the SOCP (1).650

18

This manuscript is for review purposes only.

Proof. From (11) and the updates in the algorithm, we have that651

ϕ(xk+1; ρ∞)− ϕ(xKρ ; ρ∞) =

k∑
t=Kρ

(
ϕ(xt+1; ρ∞)− ϕ(xt; ρ∞)

)
652

≤ cdec

k∑
t=Kρ

(
mt(xt + dt; ρ∞)−mt(xt; ρ∞)

)
653

654

for k ≥ Kρ. Since the SOCP cannot be unbounded below by Assumption 3, the655

left-hand side is bounded below as k →∞. Lemma 4(i) shows that all summands are656

non-positive and we obtain657

(42) lim
k→∞

(
mk(xk + dk; ρ∞)−mk(xk; ρ∞)

)
= 0.658

Using Lemma 4(i), we also have659

lim
k→∞

(
(dk)THkdk + (ρ∞ − ρkmin)

∑
j∈J

[rj(x
k
j)]+

)
= 0.660

Since Hk is positive semi-definite and ρ∞ − ρkmin ≥ ρ∞ − ρ∞min > 0, this implies that661

[rj(x
k
j)]+ → 0 for all j ∈ J , i.e., all limit points of {xk}∞k=0 are feasible. This also662

yields limk→∞(dk)THkdk = 0, and since Hk is positive semi-definite and uniformly663

bounded due to (34), we have664

(43) lim
k→∞

Hkdk = 0.665

Using (42) together with (10) and [rj(x
k
j)]+ → 0, we obtain666

(44) 0 = lim
k→∞

(
cT dk − ρ∞

∑
j∈D(xk)

[rj(x
k
j)]+

)
= lim
k→∞

cT dk.667

Now let x∗ be a limit point of {xk}∞k=0. Since X is bounded, dk is bounded, and668

consequently there exists a subsequence {kt}∞t=0 of iterates so that xkt and dkt converge669

to x∗ and d∞, respectively, for some limit point d∞ of dk. Define gkt = Hktdkt for670

all t. Then, looking at the QP optimality conditions (24), we see that dkt is also an671

optimal solution of the linear optimization problem672

(45)

min
d∈Rn

(c+ gkt)T d

s.t. A(xkt + d) ≤ b,
xktj + dj ∈ Cj(Ŷktj), j ∈ J .

673

Now suppose, for the purpose of deriving a contradiction, that x∗ is not an optimal674

solution of the SOCP. Since we showed above that x∗ is feasible, there then exists a675

step d̃∗ ∈ Rn so that x̃ = x∗ + d̃∗ is feasible for (1) and cT d̃∗ < 0. Then, because676

Kj ⊆ Cj(Ŷktj), for each t, d̃kt = x∗ − xkt + d̃∗ is feasible for (45), and because dkt is677

an optimal solution of (45), we have (c+ gkt)T dkt ≤ (c+ gkt)T d̃kt . Taking the limit678

t→∞, we obtain cT d∞ ≤ cT d̃∗ < 0, where we used limt→∞ gkt = limt→∞Hktdkt =679

0, due to the definition of gkt and (43). However, this contradicts (44). Therefore, x∗680

must be a solution of the SOCP.681

19

This manuscript is for review purposes only.

For later reference, we highlight the limit (43) established in the above proof.682

Lemma 7. Suppose that there exists ρ∞ > 0 so that ρk = ρ∞ > 0 for all large k.683

Then limk→∞Hkdk = 0.684

We are now ready to prove that the algorithm is globally convergent under the685

following standard regularity assumption.686

Assumption 4. The SOCP is feasible and Slater’s constraint qualification holds,687

i.e., there exists a feasible point x̃ ∈ Rn and ε > 0 so that x̃ + v is feasible for any688

v ∈ Rn with ‖v‖ ≤ ε.689

This assumption implies that the multiplier estimates are bounded.690

Lemma 8. Suppose that Assumption 4 holds. Then {ẑk} is bounded.691

Proof. Let x̃ and ε be the quantities from Assumption 4. Note that the QP692

corresponding to the optimality conditions (24) is693

min
d∈Rn

cT d+ 1
2d
THkd694

s.t. A(xk + d) ≤ b, xkj + dj ∈ Cj(Ŷkj), j ∈ J .695696

Since xk+1 = xk + dk when dk is the step accepted by the algorithm, it follows that697

xk+1 is an optimal solution of the QP698

Oprimal = min
x∈Rn

(cT −Hkxk)x+ 1
2x

THkx699

s.t. Axk+1 ≤ b, xk+1
j ∈ Cj(Ŷkj), j ∈ J ,700

701

the Lagrangian dual of which is702

Odual = max
x,z∈Rn,λ∈Rm

− bTλ− 1
2x

THkx(46a)703

s.t. c−Hkxk +Hkx+ATλ− z = 0,(46b)704

z ∈ C◦j (Ŷkj), j ∈ J , λ ≥ 0.(46c)705706

By (24), (xk+1, λ̂k,ẑk) is a primal-dual optimal solution of these QPs.707

Define v = −ε ẑk

‖ẑk‖ . Then ‖v‖ ≤ ε, and Assumption 4 implies that x̃+ v ∈ Kj ⊆708

Cj(Ŷkj). Since ẑk ∈ C◦j (Ŷkj), we have with (46b) that709

(47) 0 ≤ (x̃+ v)T ẑk = vT ẑk + x̃T (c−Hkx̃+Hkxk+1 +AT λ̂k).710

Since Hk is positive definite, it is711

(48) 0 ≤ (x̃− xk+1)THk(x̃− xk+1) = x̃THkx̃− 2x̃THkxk+1 + (xk+1)THkxk+1.712

Furthermore, Slater’s condition implies strong duality, that is713

bT λ̂k +
1

2
(xk+1)THkxk+1 = −Odual = −Oprimal714

= −(c−Hkxk)Txk+1 − 1
2 (xk+1)THkxk+1.(49)715716

Finally, since x̃ is feasible for the SOCP, (1b) and λ̂k ≥ 0 imply x̃TAT λ̂k ≤ bT λ̂k.717

Subtracting vT ẑk on both sides of (47), this, together with (48) and (49), yields718

ε‖ẑk‖ ≤ x̃T c− 1

2
x̃THkx̃+

1

2
(xk+1)THkxk+1 + bT λ̂k719

= x̃T c− 1

2
x̃THkx̃− cTxk+1 − 1

2
(xk+1)THkxk+1.720

721

20

This manuscript is for review purposes only.

The first two terms are independent of k, and since X is bounded by Assumption 4722

and Hk is uniformly bounded by (34), we can conclude that ẑk is uniformly bounded.723

It is easy to see that the penalty parameter update rule (37) and Lemma 8 imply724

the following result.725

Lemma 9. Suppose Assumption 4 holds. Then there exists ρ∞ and Kρ so that726

ρk = ρ∞ > ρ∞min, where ρ∞min ≥ ρkmin = ‖zkJ ,0‖∞ for all k ≥ Kρ.727

We can now state the main convergence theorem of this section.728

Theorem 10. Suppose that Assumptions 3 and 4 hold. Then Algorithm 3 either729

terminates in Step 35 with an optimal solution, or it generates an infinite sequence of730

iterates {(xk+1, λ̂k, ẑk)}∞k=0, each limit point of which is a primal-dual solution of the731

SOCP (1).732

Proof. Let {(xkt+1, λ̂kt , ẑkt)} be a subsequence converging to a limit point733

(x∗, λ∗, z∗). No matter whether an iterate is computed from the optimal solution734

of (18), (27), or (35), the iterates satisfy the optimality conditions (24). In particular,735

from (24c) we have for any j ∈ J that ẑktj ∈ C◦j (Ŷktj) ⊆ Kj and (xkt+1
j)T ẑktj = 0. In736

the limit, we obtain z∗j ∈ Kj (since Kj is closed) and (x∗j)
T z∗j = 0. Lemma 9 yields737

that ρk = ρ∞ for all large k, and so Lemma 6 implies that x∗ is feasible, i.e., x∗j ∈ Kj .738

Therefore, (13c) holds. Using Lemma 7 we can take the limit in (24a) and (24b) and739

deduce also the remaining SOCP optimality conditions (13a) and (13b) hold at the740

limit point.741

Remark 11. In case the SOCP is infeasible, we have two possible outcomes. Ei-742

ther, Algorithm 3 terminates in some iterations because one of the QPs is infeasible,743

or limk→∞ ρk =∞ (reverse conclusion of Lemma 6).744

4.2. Identification of extremal-active cones. We can only expect fast local745

convergence under some non-degeneracy assumptions. Throughout this section, we746

assume that Assumption 2 holds. Under this assumption, (x∗, λ∗, z∗) is the unique747

optimal solution [1, Theorem 22], and Theorem 10 then implies that748

lim
k→∞

(xk+1, λ̂k, ẑk) = (x∗, λ∗, z∗).749

First, we prove a technical result that describes elements in C◦j (Yj) in a compact750

manner. For this characterization to hold, condition (20) for the initialization Y0
j of751

the set of hyperplane-generating points is crucial.752

Lemma 12. Let yj ∈ Rnj with ȳj 6= 0 and yj0 ≥ 0. Further, let Φj(zj , yj) :=753

zj0 − ‖z̄j + ȳj‖1 − ‖ȳj‖. Then the following statements hold for zj , yj ∈ Rnj :754

(i) zj ∈ C◦j (Y0
j ∪ {yj}) if Φj(zj , yj) ≥ 0.755

(ii) zj ∈ int(C◦j (Y0
j ∪ {yj})) if Φj(zj , yj) > 0.756

Proof. For (i): Suppose Φj(zj , yj) ≥ 0, then757

zj0 ≥ ‖z̄j + ȳj‖1 + ‖ȳj‖.758

Define s̄j = z̄j + ȳj and choose σ+
j ∈ Rnj−1

+ and σ−j ∈ Rnj−1
+ so that s̄j = σ+

j − σ
−
j759

21

This manuscript is for review purposes only.

and |sji| = σ+
ji + σ−ji for all i = 1, . . . , nj − 1. Then we have760

zj0 =

nj−1∑
i=1

σ+
ji +

nj−1∑
i=1

σ−ji + σj + ηj761

z̄j = s̄j − ȳj = σ+
j − σ

−
j − σj

ȳj
‖ȳj‖

762
763

with σj = ‖ȳj‖ and some ηj ∈ R+. Using (15), this can be rewritten as764

zj = −
nj−1∑
i=1

σ+
ji∇rj(−eji)−

nj−1∑
i=1

σ−ji∇rj(eji)− σj∇rj(yj) + ηjej0.765

By the definition of C◦j in (17), this implies that zj ∈ C◦j (Ŷ0
j ∪{yj}) where Ŷ0

j is defined766

in (20). Since Ŷ0
j ⊆ Y0

j from (20), we have C◦j (Ŷ0
j ∪ {yj}) ⊆ C◦j (Y0

j ∪ {yj}), and the767

claim follows.768

For (ii): Suppose Φj(zj , yj) > 0. Because Φj is a continuous function, there exists769

a neighborhood Nε(zj) around zj so that Φj(ẑj , yj) > 0 for all ẑj ∈ Nε(zj). From part770

(i) we then have Nε(zj) ⊆ C◦j (Y0
j ∪ {yj}), and consequently zj ∈ int(C◦j (Y0

j ∪ {yj})).771

Theorem 13. For all k sufficiently large, we have E(xk) = E(x∗).772

Proof. Choose j 6∈ E(x∗), then x∗j 6= 0. Because xkj → x∗j , it is xkj 6= 0 or, equiva-773

lently, j 6∈ E(xk) for k sufficiently large. For the remainder of this proof we consider774

j ∈ E(x∗) and show that j ∈ E(xk) for large k. Note that strict complementarity in775

Assumption 2 implies that z∗j ∈ int(Kj), i.e., rj(z
∗
j) < 0, and consequently z∗j0 > 0.776

First consider the iterations in which fast NLP-SQP steps are accepted in Steps777

11 or 16. For the purpose of deriving a contradiction, suppose there exists an infinite778

subsequence so that xkt+1 = xkt + dS,kt or xkt+1 = xkt + dS,kt + skt and j 6∈ Êkt .779

Then j 6∈ Êkt implies xkt+1
j0 > 0 (according to the termination condition in the while780

loop in Step 6). We also have Ŷktj = {x̌ktj } where x̌ktj = xktj from (28) or x̌ktj =781

xktj + dS,ktj from (36). Condition (24c) yields zktj ∈ C◦j ({x̌ktj }), so by (17) it is zktj =782

−σj∇rj(x̌ktj) + ηjej0 for some σj , ηj ≥ 0, as well as xkt+1
j ∈ Cj({x̌ktj }), which by (14)783

implies ∇rj(x̌ktj)Txkt+1
j ≤ 0. Then complementarity yields784

0 = (zktj)Txkt+1
j = −σj∇rj(x̌ktj)Txkt+1

j + ηjx
kt+1
j0 ≥ ηjxkt+1

j0 .785

Since xkt+1
j0 > 0 and ηj ≥ 0, we must have ηj = 0, and consequently zktj =786

−σj∇rj(x̌ktj). It is easy to see that rj(−σj∇rj(x̌ktj)) = 0. Since zktj → z∗j , con-787

tinuity of rj yields rj(z
∗
j) = 0, in contradiction to z∗j ∈ int(Kj). We thus showed788

that j ∈ Êk for all large iterations k in which the NLP-SQP step was accepted, and789

consequently (28) and (36) yield Ŷkj = Ykj for such k.790

In all other iterations (22) holds, and overall we obtain791

(50) Y0
j ⊆ Ykj ⊆ Ŷkj for all sufficiently large k.792

Let us first consider the case when z̄∗j = 0. Then ‖z̄∗j ‖ − z∗j0 = rj(z
∗
j) < 0 yields793

z∗j0 > 0. To apply Lemma 12 choose any i ∈ {1, . . . , nj − 1} and let yj = eji. Then794

‖yj‖1 = ‖yj‖ = 1 and Φj(z
∗
j , yj) = z∗j0 > 0. Since ẑkj → z∗j and Φj is continuous,795

Φj(ẑ
k
j , yj) > 0 for sufficiently large k, and by Lemma 12, ẑkj ∈ int(C◦j (Y0

j ∪{yj})). Since796

22

This manuscript is for review purposes only.

yj ∈ Y0
j and (50) holds, we also have ẑkj ∈ int(C◦j (Ŷkj)). General conic complementarity797

in (24c) then implies that xk+1
j = xkj +dkj = 0 for all large k, or equivalently, j ∈ E(xk)798

for k sufficiently large, as desired.799

Now consider the case z̄∗j 6= 0. For the purpose of deriving a contradiction,800

suppose there exists a subsequence {xkt}∞t=0 so that j 6∈ E(xkt), i.e., xkt 6= 0, for all t.801

Because žkj → z∗j , z̄∗j 6= 0, and rj(z
∗
j) < 0, we may assume without loss of generality802

that rj(ž
kt
j) < 0 and ¯̌zktj 6= 0 for all t. Using this and xktj 6= 0, we see that the update803

rule (26) in Step 33 adds −žktj to Ykt+1
j . With (50), we have804

(51) − žktj ∈ Y
kt+1
j ⊆ Ykt+1

j ⊆ Ŷkt+1

j for all t.805

Recall the mapping Φj defined in Lemma 12 and note that Φj(z
∗
j ,−z∗j) = z∗j0 −806

‖z̄∗j ‖ = −rj(z∗j) > 0. Since both ẑkj and žkj converge to z∗j and Φj is continuous,807

it is Φj(ẑ
kt+1−1
j ,−žktj) > 0 for all large t, and therefore, by Lemma 12, ẑ

kt+1−1
j ∈808

int(C◦j (Y0
j ∪ {−ž

kt
j)}))

(51)

⊆ int(C◦j (Ŷkt+1−1
j)) for all large t. Conic complementarity in809

(24c) then implies that x
kt+1

j = x
kt+1−1
j + d

kt+1−1
j = 0. This is a contradiction of the810

definition of the subsequence {xkt}∞t=0.811

Remark 14. In the proof of Theorem 13, we saw that Φj(z
∗
j ,−z∗j) > 0 if j ∈812

E(x∗) and z̄∗j 6= 0. Since Φj is continuous, this implies that there exists a neighborhood813

Nε(z
∗
j) so that Φj(zj ,−yj) > 0, and consequently zj ∈ int(C◦j (Y0

j ∪ {−yj})), for all814

zj , yj ∈ Nε(z∗j).815

4.3. Quadratic local convergence. As discussed in Section 2.1, since x∗ is a816

solution of the SOCP (1), it is also a solution of the nonlinear problem (4). We now817

show that Algorithm 3 eventually generates steps that are identical to SQP steps for818

(4). Then Theorem 3 implies that the iterates converge locally at a quadratic rate.819

We first need to establish that the assumptions for Theorem 3 hold.820

Lemma 15. Suppose that Assumption 2 holds for the SOCP (1). Then Assump-821

tion 1 holds for the NLP (4).822

Proof. Let λ∗ and z∗ be the optimal multipliers for the SOCP corresponding to823

x∗, satisfying (13). Assumption 2 implies that λ∗ and z∗ are unique [1, Theorem 22].824

Let j ∈ D(x∗) and define µ∗j = z∗j0 ≥ 0. If 0 = rj(x
∗
j) = x∗j0 − ‖x̄∗j‖, complemen-825

tarity (13c) implies, for all i ∈ {1, . . . nj}, that 0 = x∗j0z
∗
ji+x∗jiz

∗
j0 = ‖x̄∗j‖z∗ji+x∗jiz

∗
j0,,826

or equivalently, z∗ji = −z∗j0
x∗ji
‖x̄∗j ‖

; see [1, Lemma 15]. Using (15), this can be written as827

(52) z∗j = −z∗j0∇rj(x∗j) = −µ∗j∇rj(x∗j).828

On the other hand, if rj(x
∗
j) < 0, i.e., the constraint (4c) is inactive, then x∗j ∈ int(Kj)829

and complementarity (13c) yields z∗j = 0 (see [1, Definition 23]) and therefore µ∗j = 0.830

Consequently, (52) is also valid in that case. Finally, we define ν∗j = z∗j for all831

i ∈ E(x∗). With these definitions, (13a) can be restated as832

(53) c+ATλ∗ +
∑

j∈D(x∗)

µ∗j∇rj(x∗)− ν∗ = 0,833

where ν∗ ∈ Rn is the vector with the values of ν∗j at the components corresponding to834

j ∈ E(x∗) and zero otherwise. We now prove parts (i), (ii), and (iii) of Assumption 1.835

23

This manuscript is for review purposes only.

Proof of (i): Let j ∈ D(x∗j). We already established that rj(x
∗
j) < 0 yields µ∗j = 0.836

Now suppose that rj(x
∗
j) = 0. Then x∗j ∈ bd(Kj) \ {0}. Since strict complementarity837

is assumed, we have z∗j ∈ bd(Kj) \ {0} (see the comment after Assumption 2), which838

in turn yields z∗j 6= 0 and hence µ∗j 6= 0.839

Proof of (ii): Since we need to prove linear independence only of those constraints840

that are active at x∗, we consider only those rows AA of A for which (4b) is binding.841

Without loss of generality suppose x∗ is partitioned into four parts, (x∗)T =842

((x∗B)T (x∗I)T (x∗E)
T (x∗F)T), where x∗B, x∗I , and x∗E correspond to the variables in the843

cones B = {j ∈ J : rj(x
∗
j) = 0, x∗j 6= 0}, I = {j ∈ J : rj(x

∗
j) < 0}, and E = E(x∗),844

respectively, and x∗F includes all components of x∗ that are not in any of the cones.845

Further suppose that (x∗B)T = ((x∗1)T . . . (x∗pB)T), where B = {1, . . . , pB}, and that846

AA is partitioned in the same way.847

Primal non-degeneracy of the SOCP implies all that matrices of the form848 (
[AA]1 · · · [AA]pB [AA]I [AA]E [AA]F

α1∇r1(x∗1)T · · · αpB∇rpB(x∗pB)T 0T vT 0T

)
849

have linear independent rows for all scalars αi and vectors v, not all zero [1, Eq. (50)].850

This implies that the rows of AA, together with the gradient of any one of the bind-851

ing constraints in (4c) and (4d) are linearly independent. Because the constraint852

gradients, which are of the form ∇rj(x∗j) and eij , share no nonzero components when853

extended to the full space, we conclude that the gradients of all active constraints are854

linearly independent at x∗, i.e., the LICQ holds.855

Proof of (iii): For the purpose of deriving a contradiction, suppose that there856

exists a direction d ∈ Rn \ {0} that lies in the null space of the constraints of (4) that857

are binding at x∗ and for which dTH∗d ≤ 0.858

Since d is in the null space of the binding constraints, we have AAd = 0,859

∇rj(x∗)T d = 0 for j ∈ B, and dj = 0 for all j ∈ E . Premultiplying (53) by dT860

gives861

(54) 0 = cT d+ (λ∗)T AAd︸︷︷︸
0

+
∑
j∈B

µ∗∇rj(x∗)T d︸ ︷︷ ︸
0

+
∑
j∈I

µ∗︸︷︷︸
0

∇rj(x∗)T d+ (ν∗)T d︸ ︷︷ ︸
0

= cT d.862

What remains to show is that d is a feasible direction for the SOCP, i.e., there exists863

β > 0 so that x∗ + βd is feasible for the SOCP. Because of (54), this point has the864

same objective value as x∗ and is therefore also an optimal solution of the SOCP. This865

contradicts the fact that Assumption 2 implies that the optimal solution is unique [1,866

Theorem 22].867

By the definition of H∗ in Assumption 1 and the choice of d, we have868

0 ≥ dTH∗d =
∑

j∈D(x∗)

µ∗jd
T
j ∇2rj(x

∗
j)dj =

∑
j∈B

µ∗jd
T
j ∇2rj(x

∗
j)dj .869

Since for all j ∈ B, the Hessian ∇2rj(x
∗
j) is positive semi-definite and µ∗j > 0 from870

Part (i), this yields dTj ∇2rj(x
∗
j)dj = 0 for all j ∈ B.871

Let j ∈ B. Then from (7)872

(55) 0 = dTj ∇2rj(x
∗)dj =

‖d̄j‖2‖x̄∗j‖2 − (d̄Tj x̄
∗
j)

2

‖x̄∗j‖3
.873

24

This manuscript is for review purposes only.

The definition of B implies rj(x
∗
j) = 0 and so x∗j0 = ‖x̄∗j‖. Since dj is in the null874

space of ∇rj(x∗j), we have 0 = ∇rj(x∗j)T dj = −dj0 +
d̄Tj x̄j
‖x̄∗j ‖

, which in turn yields875

dj0x
∗
j0 = d̄Tj x̄

∗
j . Finally, using these relationships together with (55) gives876

0 = ‖d̄j‖2‖x̄∗j‖2 − (d̄Tj x̄
∗
j)

2 = ‖d̄j‖2 (x∗j0)2 − (dj0x
∗
j0)2

877

and so d2
j0 = ‖d̄j‖2. All of these facts imply that for any β ∈ R,878

‖x̄∗j + βd̄j‖2 − (x∗j0 + βdj0)2
879

=‖x̄∗j‖2 + 2βd̄Tj x̄
∗
j + β2‖d̄j‖2 −

(
(x∗j0)2 + 2βdj0x

∗
j0 + β2d2

j0

)
= 0,880881

which implies rj(x
∗
j + βdj) = 0 and therefore x∗j + βdj ∈ Kj .882

Further, because d lies in the null space of the active constraints, we have, for883

any β ∈ R, that x∗j + βdj = 0 ∈ Kj for all j ∈ E(x∗) and AA(x∗ + βd) = bA. Finally,884

since rj(x
∗
j) < 0 and hence x∗j ∈ int(Kj) for all j ∈ J \ (E(x∗) ∪ B), and since x∗j885

is strictly feasible for all non-binding constraints in (1b), there exists β > 0 so that886

x∗ + βd satisfies all constraints in (1).887

Theorem 16. Suppose that cH > ‖H∗‖. Then the primal-dual iterates888

(xk+1, λ̂k, ẑk) converge locally to (x∗, λ∗, z∗) at a quadratic rate.889

Proof. We already established in Theorem 10 that the iterates converge to the890

optimal solution, and since Hk → H∗ and cH > ‖H∗‖, the Hessian is not rescaled891

according to (34) in Step 3. Using Theorem 13 we know that, once k is sufficiently892

large, the step dS,k computed in Step 5 of Algorithm 3 is identical with the SQP893

step from (5) for (4); we can ignore (27d) here because x∗j0 > 0 and dS,kj0 → 0 and894

therefore this constraints is not active for large k. This also implies that the condition895

in Step 6 is never true and thus Êk = E(x∗). If the decrease condition in Step 11 is896

not satisfied, by a similar argument we have that sk computed in Step 15 is the897

second-order correction step from (12) for (4). Due to Lemma 15 we can now apply898

Theorem 3 to conclude that either dS,k or dS,k + sk is accepted to define the next899

iterate for large k and that the iterates converge at a quadratic rate.900

5. Numerical Experiments. In this section, we examine the performance of901

Algorithm 3. First, using randomly generated instances, we consider three types of902

starting points: (i) uninformative default starting point (cold start), (ii) solution of a903

perturbed instance, (iii) solution computed by an interior-point SOCP solver whose904

accuracy we wish to improve. Then we briefly report results using the test library905

CBLIB. The numerical experiments were performed on an Ubuntu 22.04 Linux server906

with a 2.1GHz Xeon Gold 5128 R CPU and 256GB of RAM.907

5.1. Implementation. We implemented Algorithm 3 in MATLAB R2021b,908

with parameters cdec = 10−6, cinc = 2, cH = 1012, and ρ−1 = 50. In each itera-909

tion, we identify E(xk) = {j ∈ J : ‖xkj ‖∞ < 10−6} and D(xk) = {j ∈ J \ E(xk) :910

‖x̄kj ‖ > 10−8}. The set Y0
j is initialized to Ŷ0

j (see (20)), and λ0 is a given starting911

value for λ, if provided, and zero otherwise. In addition, since the identification of912

the optimal extremal-active set E(x∗) requires z∗j ∈ C◦j (Yj), we add −ž0
j to Y0

j , where913

ž0 = c+ATλ0.914

The algorithm terminates when the violation of the SOCP optimality conditions915

25

This manuscript is for review purposes only.

(13) for the current iterate satisfies916

(56)

E(xk, λk, žk) = max

{
‖[Axk − b]+‖∞, ‖(Axk − b) ◦ λk‖∞, ‖[−λk]+‖∞
maxj∈J

{
[rj(x

k)]+, [rj(ž
k)]+, |(xkj)T žkj |

} }
≤ εtol917

with žk = c+ATλk, for some εtol > 0.918

As in [22], the sufficient descent condition (11) is slightly relaxed by919

ϕ(x̂k+1; ρk)− ϕ(xk; ρk)− 10εmach|ϕ(xk; ρk)| ≤ cdec

(
mk(xk + d; ρk)−mk(xk; ρk)

)
920

to account for cancellation error, where εmach is the machine precision. Finally, to921

avoid accumulating very similar hyperplanes that would lead to degenerate QPs, we922

do not add a new generating point vj to Ykj if there already exists yj ∈ Ykj such that923 ∥∥∥ v̄j
‖v̄j‖ −

ȳj
‖ȳj‖

∥∥∥
∞
≤ 10−10.924

In these experiments, we disabled the second-order correction step (Steps 15–19)925

because we noticed that it was never accepted in practice. In a more sophisticated926

implementation, one would include a heuristic that attempts to detect the Maratos927

effect and then triggers the second-order correction step in specific situations.928

The QPs were solved using ILOG CPLEX V12.10, with optimality and feasibility929

tolerances set to 10−9 and “dependency checker” and “numerical precision emphasis”930

enabled, using the primal simplex method. When CPLEX did not report a solution931

status “optimal” and the QP KKT error was above 10−9, a small perturbation was932

added to the Hessian matrix, i.e., we replaced Hk by Hk + 10−7 · I. This helped in933

some cases in which CPLEX (incorrectly) reported that Hk was not positive semi-934

definite. If CPLEX still did not find a QP solution with KKT error less than 10−9,935

we attempted to resolve the QP with the barrier method, the dual simplex method,936

and the primal simplex method again, until one was able to compute a solution. If all937

solvers failed for QP (27), the algorithm continued in Step 21. If no solver was able938

to solve (18), we terminated the main algorithm and declared a failure.939

We emphasize that the purpose of our implementation is to assess whether the940

proposed algorithm exhibits behavior that validates the stated goals: Convergence941

from any starting point and rapid local convergence to highly accurate solutions. In its942

current implementation, it requires more computation time than highly sophisticated943

commercial solvers such as MOSEK or CPLEX, which were developed over decades944

and have highly specialized linear algebra routines that are tightly integrated into the945

algorithms. As we observed at the end of Section 3.7, many of the QPs in Algorithm 3946

that are solved in succession are similar to each other, and savings in computation947

times should therefore be achievable. However, our prototype implementation based948

on the Matlab CPLEX interface does not allow us to utilize callback functions for949

adding or removing hyperplanes. Achieving these savings in computation time thus950

requires a more sophisticated implementation, a task that is outside of the scope of951

this paper. Consequently, we do not report solution times here.952

5.2. Randomly generated QCQPs. The experiments were performed on ran-953

domly generated SOCP instances of varying sizes, specified by (n,m,K). Here,954

n,m ≥ 1 are the number of variables and linear constraints, respectively. K ≥ 1955

specifies the number of cones of each “activity type”: |E(x∗)| = K, |{j ∈ J : rj(x
∗
j) =956

0, x∗j 6= 0}| = K, and |{j ∈ J : rj(x
∗
j) < 0}| = K, i.e., there are K cones that are957

extremal-active, K that are active at the boundary, and K that are inactive at the958

optimal solution x∗. The dimensions of the cones are randomly chosen. In addition,959

26

This manuscript is for review purposes only.

n m K solved total SQP total total
iter iter QP (27) QP (18)

200 60 10 30 6.67 6.67 9.77 0.00
400 120 20 30 7.20 7.20 11.57 0.00

1000 300 50 30 7.23 7.23 12.17 0.00
200 60 4 30 7.53 7.07 11.83 0.90
400 120 8 30 8.27 7.77 14.20 1.00

1000 300 20 30 8.67 7.80 15.93 1.83
200 60 2 30 8.47 7.87 13.90 1.20
400 120 4 30 8.87 8.07 15.30 1.60

1000 300 10 30 9.47 8.43 17.27 1.97

Table 1: Results with x0 = 0, εtol = 10−7, average per-size statistics taken over 30
random instances. “solved”: number of instances solved (out of 30); “total iter”:
total number of iterations in Algorithm 3; “SQP iter”: number of iteration in which
NLP-SQP step was accepted in Steps 11 or 16; “total QP (27)” / “total QP (18)”:
Total number of QPs of that type solved.

there are variables that are not part of any cone, with bounds chosen in a way so that960

the non-degeneracy assumption, Assumption 2, holds. A detailed description of the961

problem generation is stated in Appendix A in [13].962

Table 1 summarizes the performance of the algorithm with an uninformative963

starting point x0 = 0. Each row lists average statistics for a given problem size964

(n,m,K), taken over 30 random instances. We see that the proposed algorithm is965

very reliable and solved every instance to the tolerance ε = 10−7. The average number966

of iterations is mostly between 7–9, during most of which the second-order NLP-SQP967

step was accepted.968

To give an idea of the computational effort, we report the number of times969

QPs (27) and (18) were solved. And we can draw further conclusions from this data:970

Consider, for example, the last row. At the beginning of each iteration, QP (27) is971

solved to obtain the NLP-SQP step. The difference with the total number of itera-972

tions, i.e., 17.27-9.47=7.80, gives us the total number of times in which the guess Êk973

of the extremal-active cones needed to be corrected in Steps 6–9. In other words, on974

average, the loop Steps 6–9 is executed 7.80/9.47=0.82 times per iteration. Similarly,975

the last column tells us the total number of iterations of the loop in Steps 21–31.976

The loop was only executed when the NLP-SQP step was not accepted, so in 9.47-977

8.43=1.04 iterations, taking 1.97/1.04=1.89 loop iterations on average.978

The experiments are presented in three groups where the ratio between n and K is979

kept constant. As the number of cones, K, decreases from one group to the next, the980

average size of the individual cones increases by a factor of 2.5 and 2, respectively. This981

increase seems to result in slightly more iterations in which the SQP step was rejected,982

indicating that the simple linearization (27c) of the non-extremal-active cones becomes983

sometimes insufficiently accurate.984

In comparison, the pure primal cutting plane method (Algorithm 3 without New-985

ton steps and without step 30) required up to three times more total iterations.986

The remaining experiments in this section investigate to which degree the al-987

gorithm is able to achieve our primary goal of taking advantage of a good starting988

point. We begin with an extreme situation, in which we first solve an instance with989

27

This manuscript is for review purposes only.

n m K total SQP total total Mosek final
iter iter QP (27) QP (18) error error

200 60 10 1.10 1.07 1.10 0.07 2.33e-06 1.63e-10
400 120 20 1.03 1.00 1.03 0.03 2.67e-06 1.70e-10

1000 300 50 1.07 1.03 1.07 0.03 3.49e-06 1.76e-10
200 60 4 1.03 1.03 1.03 0.00 5.97e-06 1.69e-10
400 120 8 1.00 1.00 1.00 0.00 2.28e-06 1.87e-10

1000 300 20 1.03 0.83 1.03 0.27 5.20e-06 1.72e-10
200 60 2 1.00 1.00 1.00 0.00 2.02e-06 1.53e-10
400 120 4 1.13 1.10 1.13 0.03 4.85e-06 2.03e-10

1000 300 10 1.20 1.10 1.20 0.13 1.22e-05 2.41e-10

Table 2: Result with MOSEK solution as x0, εtol = 10−9. All instances were solved.
“Mosek error”: Optimality error E (56) at Mosek solution; “final error”: Optimality
error E at final iterate of Algorithm 3.

n m K solved total SQP total total
iter iter QP (27) QP (18)

200 60 10 30 1.00 0.97 1.00 0.07
400 120 20 30 1.00 0.97 1.00 0.03

1000 300 50 30 1.00 0.97 1.00 0.07
200 60 4 30 1.00 1.00 1.00 0.00
400 120 8 30 1.00 0.93 1.00 0.07

1000 300 20 30 1.00 0.87 1.00 0.20
200 60 2 30 1.00 1.00 1.00 0.00
400 120 4 30 1.00 0.97 1.00 0.03

1000 300 10 30 1.07 1.00 1.03 0.07

Table 3: Result with 10−3 perturbation, εtol = 10−7.

the interior-point SOCP solver MOSEK V9.1.9 (called via CVX), using the setting990

cvx precision=high corresponding to the MOSEK tolerance ε = ε
2/3
mach, and give the991

resulting primal-dual solution as starting point to Algorithm 3. Choosing any tighter992

MOSEK tolerances leads to failures in several problems. Table 2 summarizes the re-993

sults. In all cases, the algorithm converges rapidly to an improved solution, reducing994

the error by 4 orders of magnitude, most of the time with only a single second-order995

iteration. The Mosek error was dominated by the violation of complementarity. This996

demonstrates the ability of the proposed method to improve the accuracy of a solution997

computed by an interior-point method.998

For the final experiments, summarized in Tables 3 and 4, the starting point is the999

MOSEK solution of a perturbed problem, in which 10% of the objective coefficients c1000

were perturbed by uniformly distributed random noise of the order of 10−3 and 10−1,1001

respectively. For the small perturbation, similar to Table 2, Algorithm 3 terminated1002

in one iteration most of the time. More iterations were required for the larger pertur-1003

bation, but still significantly fewer compared to the uninformative starting point, see1004

Table 1.1005

28

This manuscript is for review purposes only.

n m K solved total SQP total total
iter iter QP (27) QP (18)

200 60 10 30 1.20 1.07 1.00 0.19
400 120 20 30 1.33 1.17 1.00 0.73

1000 300 50 30 1.60 1.23 1.02 1.29
200 60 4 30 1.27 1.13 1.02 0.71
400 120 8 30 1.67 1.27 1.16 0.48

1000 300 20 30 2.10 1.40 1.27 0.57
200 60 2 30 1.67 1.33 1.24 0.42
400 120 4 30 2.30 1.87 1.30 0.38

1000 300 10 30 3.67 2.53 1.53 0.59

Table 4: Result with 10−1 perturbation, εtol = 10−7.

5.3. CBLIB instances. To demonstrate the robustness of the algorithm we1006

also solved instances from the Conic Benchmark Library CBLIB [25]. Some instances1007

involve rotated second-order cone constraints, and we reformulated them so that they1008

fit into our standard form (1). We chose all 1,575 instances with at most 10,0001009

variables and 10,000 constraints. Integer variables were relaxed to be continuous.1010

Using the starting point x0 = 0, the method was able to solve 99.2% of the1011

instances, where 10 problems could not be solved due to failures of the QP subprob-1012

lem solver, and Algorithm 3 exceeded the maximum number of 200 iterations in 21013

cases. In comparison, MOSEK, with default settings, failed on 5 instances (those1014

were solved correctly with Algorithm 3), incorrectly declared 3 instances to be in-1015

feasible, and labeled 6 instances to be unbounded (of which 3 were solved by Algo-1016

rithm 3). Table 5 in [13] gives detailed statistics for the different problem groups1017

in the CBLIB test collection. We observed that some instances, especially those in1018

the clay*, fo[7-9]*, m[3-9]*, no7*, o[7-9] * subsets, are degenerate, having an1019

optimal objective function value of 0, and the assumption necessary to prove fast1020

local convergence is violated. This matches our observation that the SQP step was1021

accepted only in a relatively small fraction of the iterations for these instances.1022

To showcase the warm-starting feature of the algorithm, we took the 1,563 previ-1023

ously successfully solved instances, perturbed 10% of the entries of the final primal-1024

dual iterate by a random perturbation, uniformly chosen in [−0.1, 0.1], and used this1025

as the starting point for a warm-started run. Here, QP subproblem failure occurred1026

in 3 cases and 2 instances exceeded the iteration limit. The number of iterations was1027

reduced in most cases. Specifically, for 14 out of the 26 problem subsets, the iteration1028

count was reduced by at least 60%.1029

6. Concluding remarks. We presented an SQP algorithm for solving SOCPs1030

and proved that it converges from any starting point and achieves local quadratic1031

convergence for non-degenerate SOCPs. Our numerical experiments indicate that the1032

algorithm is reliable, converges quickly when a good starting point is available, and1033

produces more accurate solutions than a state-of-the-art interior-point solver.1034

Future research would investigate whether the proposed algorithm is a valuable1035

alternative for interior-point methods for small problems or for the solution of a1036

sequence of related SOCPs. An efficient implementation of the algorithm beyond our1037

Matlab prototype would be tightly coupled with a tailored active-set QP solver that1038

efficiently adds or removes cuts instead of solving each QP essentially from scratch.1039

29

This manuscript is for review purposes only.

Parametric active-set solvers such as qpOASES [5] or QORE [20] might be suitable1040

options since they do not require primal or dual feasible starting points.1041

Acknowledgments. We thank Javier Peña for his suggestion for the proof of1042

Lemma 8, as well as three referees whose comments helped us to improve the paper.1043

REFERENCES1044

[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Programming,1045
95(1):3–51, 2003.1046

[2] C. Coey, M. Lubin, and J. P. Vielma. Outer approximation with conic certificates for mixed-1047
integer convex problems. Mathematical Programming Computation, 12(2):249–293, 2020.1048

[3] M. Diehl, F. Jarre, and C. H. Vogelbusch. Loss of superlinear convergence for an SQP-type1049
method with conic constraints. SIAM Journal on Optimization, 16(4):1201–1210, 2006.1050

[4] S. Drewes and S. Ulbrich. Subgradient based outer approximation for mixed integer second1051
order cone programming. In Mixed integer nonlinear programming, pages 41–59. Springer,1052
2012.1053

[5] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl. qpOASES: A parametric1054
active-set algorithm for quadratic programming. Mathematical Programming Computation,1055
6:327–363, 2014.1056

[6] R. Fletcher. Second order corrections for non-differentiable optimization. In Numerical analysis,1057
pages 85–114. Springer, 1982.1058

[7] N. Goldberg and S. Leyffer. An active-set method for second-order conic-constrained quadratic1059
programming. SIAM Journal on Optimization, 25(3):1455–1477, 2015.1060

[8] N. Goswami, S. K. Mondal, and S. Paruya. A comparative study of dual active-set and primal-1061
dual interior-point method. IFAC Proceedings Volumes, 45(15), 2012.1062

[9] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.1063
[10] S. Hayashi, T. Okuno, and Y. Ito. Simplex-type algorithm for second-order cone programmes via1064

semi-infinite programming reformulation. Optimization Methods and Software, 31(6):1272–1065
1297, 2016.1066

[11] IBM ILOG. User’s Manual for CPLEX, 2019.1067
[12] H. Kato and M. Fukushima. An SQP-type algorithm for nonlinear second-order cone programs.1068

Optimization Letters, 1(2):129–144, 2007.1069
[13] X. Luo and A. Wächter. A Quadratically Convergent Sequential Programming Method for1070

Second-Order Cone Programs Capable of Warm Starts, 2022. arXiv:2207.03081.1071
[14] N. Maratos. Exact penalty function algorithms for finite dimensional and control optimization1072

problems. PhD thesis, Imperial College London (University of London), 1978.1073
[15] D. K. Molzahn and I. A. Hiskens. A survey of relaxations and approximations of the power1074

flow equations. Foundations and Trends in Electric Energy Systems, 4(1-2):1–221, 2019.1075
[16] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.1., 2019.1076
[17] J. Nocedal and S. Wright. Numerical optimization. Springer, 2006.1077
[18] T. Okuno, K. Yasuda, and S. Hayashi. Sl1QP based algorithm with trust region technique for1078

solving nonlinear second-order cone programming problems. Interdisciplinary Information1079
Sciences, 21(2):97–107, 2015.1080

[19] F. A. Potra and S. J. Wright. Interior-point methods. Journal of Computational and Applied1081
Mathematics, 124(1-2):281–302, 2000.1082

[20] L. Schork. A parametric active set method for general quadratic programming. Master’s thesis,1083
Heidelberg University, Germany, 2015.1084

[21] R. J. Vanderbei and H. Yurttan. Using LOQO to solve second-order cone programming prob-1085
lems. Technical report, Priceton University, 1998.1086

[22] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search1087
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–1088
57, 2006.1089

[23] V. Zhadan. The variant of primal simplex-type method for linear second-order cone program-1090
ming. In Optimization and Applications: 12th International Conference, OPTIMA 2021,1091
Petrovac, Montenegro, September 27–October 1, 2021, Proceedings, pages 64–75. Springer,1092
2021.1093

[24] X. Zhang, Z. Liu, and S. Liu. A trust region SQP-filter method for nonlinear second-order cone1094
programming. Computers & Mathematics with Applications, 63(12):1569–1576, 2012.1095

[25] Zuse Institute Berlin. CBLIB - The Conic Benchmark Library. https://cblib.zib.de/.1096

30

This manuscript is for review purposes only.

https://cblib.zib.de/

	Introduction
	Related work
	Notation

	Preliminaries
	Reformulation as a smooth optimization problem
	Local convergence of SQP methods
	Penalty function
	Optimality conditions for SOCP

	Algorithm
	Supporting hyperplanes
	QP subproblem
	Identification of extremal-active cones
	Fast NLP-SQP steps
	Hessian matrix
	Penalty function
	Complete algorithm

	Convergence analysis
	Global convergence
	Identification of extremal-active cones
	Quadratic local convergence

	Numerical Experiments
	Implementation
	Randomly generated QCQPs
	CBLIB instances

	Concluding remarks
	References

