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Abstract

We consider a problem from the context of energy-efficient underground railway time-
tabling, in which an existing timetable draft is improved by slightly changing departure and
running times. In practice, synchronization between accelerating and braking trains to utilize
regenerative braking plays a major role for the energy-efficiency of a timetable. Since devi-
ations from a planned timetable may lead to unnecessarily high energy consumption during
actual operation, we include operational uncertainties in our model to create a timetable that
remains energy-efficient, even if deviations from the nominal timetable occur. To solve the
problem we use a scenario expansion model in conjunction with a Benders decomposition
approach. As an alternative to solving the Benders subproblemswe present a heuristic sparse
cut that can be computed efficiently. The resulting sparse-cut heuristic produces high-quality
solutions on a set of real-world instances stemming from the Nürnberg underground system,
outperforming the integrated mixed-integer programming approach as well as the basic
Benders approach. Additionally, we evaluate two static recovery strategies—shortening
dwell times as well as shortening dwell and running times—to determine the cost and benefit
of handling delays using a simple static rule. In our experiments, we are able to reduce the
energy consumption by up to 9.4 % and confirm that delay recovery via shortening dwell
times is an energy-efficient and effective way to increase punctuality at low cost in terms of
energy.
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1 Introduction

In recent years, energy-efficient railway timetabling has become a highly relevant topic in the
research community due to rising energy prices and growing concerns about climate change.
Underground rail systems in particular pose a rapid, efficient, and safe backbone to public urban
passenger transport. This energy-efficient mode of transportation can be further improved by
energy-efficient driving strategies as well as energy-aware timetabling. In an underground
rail system without energy storage, the energy from regenerative braking is lost, if at the time
there is no nearby train to utilize it. Instead of installing an energy storage at additional cost for
procurement andmaintenance, the energy-efficiency of underground operation can be increased
by improving an existing timetable draft via small adjustments to the departure times and
running times of each train. This can positively impact the total energy consumption in two
ways. First, longer running times typically result in lower energy consumption. Second, a
braking train can feed back energy into the power network if there is another train that can use
this energy at the same time; this is called recuperation. Therefore, synchronization of braking and
accelerating trains, which is mainly achieved by proper selection of departure times, increases
the energy efficiency of a timetable. However, if deviations between the planned timetable and
its actual execution are not accounted for, they may impair the synchronization and therefore
lower the energy efficiency of the timetable. Consider the example in Figure 1, showing a
comparison of the energy consumption between a planned underground timetable (left) that
has been optimized without accounting for operational deviations and the corresponding
actually executed timetable (right). We can observe that the deviations significantly impact the
total energy consumption as well as the 15-minute peak-load averages, which are relevant cost
factors for a train-operating company. Instead of creating a timetable that is energy-efficient
under the assumption that all departure and running times are executed as planned, we now
include uncertainties in the model to create a timetable that remains energy-efficient when
typical deviations occur during operation.

Figure 1: Comparison of a planned (left) and the corresponding executed (right) underground
timetable. The energy consumption in each second is shown in blue, the 15-minute average
energy consumption for the planned timetable in red, and for the executed timetable in green.

RelatedLiterature General approaches to energy-saving train operation include energy-efficient
driving strategies, operationalmeasures, and energy-efficient timetabling. For surveys on energy-
efficient driving strategies we refer to Feng et al., 2013, and more recently, Scheepmaker et al.,
2017 along with Yin, Tang, Yang, Xun et al., 2017. Examples of operational measures are speed
limits, as done by Hasegawa et al., 2014 and Kimura and Miyatake, 2014 or voltage control, as
done by Raghunathan et al., 2014.
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The two main tools for energy-efficient timetabling are adjustments of departure times,
also called dwell-time control, and adjustments of the speed profiles of the trains, also called
running-time control. Sansó and Girard, 1997 use dwell-time control for instantaneous peak
power reduction, which plays a key role in the stability of the power network. The idea is to
desynchronize trains while respecting operational timetabling constraints, such as specific dwell
times for passenger exchange in stations or safety distances between trains. To the best of our
knowledge, they introduce the first mixed-integer programming (MIP) model that uses similar
timetable adjustments as our approach. Also related to peak power management via dwell-time
control are the works by K.-M. Kim, Oh et al., 2010 and by K.-M. Kim, K.-T. Kim et al., 2011, who
both use a much simpler model without operational timetabling constraints, but integrate the
efficient use of recuperated energy, as well as the work by Chen et al., 2005 utilizing a genetic
algorithm. Fournier et al., 2012 propose a hybrid genetic/linear programming algorithm to
reduce total energy consumption by subtly modifying dwell times.

Running-time control without dwell-time control is used by e.g. Albrecht, 2010 to directly
reduce the energy consumption, andmany approaches combine dwell- and running-time control.
For example, Peña-Alcaraz et al., 2012 use a power-flow model to determine a power-saving
factor for each synchronization event between two trains, which is subsequently used in a
timetabling model to maximize the duration of the synchronization events. Gong et al., 2014
also use a two-step approach that first optimizes the timetable using a genetic algorithm and
subsequently handles disturbances in an energy-efficient manner. In contrast, Su et al., 2013
propose an integrated model to simultaneously optimize the timetable and speed profiles,
but disregard recuperation. The dynamic approach by Li and Lo, 2014 includes a forecast of
passenger demand when adjusting headway and cycle times. Similarly, Yin, Tang, Yang, Gao
et al., 2016 consider uncertain passenger demand, but focus on real-time rescheduling. Zhou
et al., 2017 combine trajectory optimization and timetabling using a shortest-path formulation in
a discretized space-time-velocity graph. Similarly, P. Wang and Goverde, 2019 consider the same
combination using the trajectory optimization to redistribute running times between different
line segments of multiple train routes.

The basemodel introduced by Sansó andGirard, 1997 has been used successfully by Bärmann,
Martin et al., 2017 and Bärmann, Gellermann et al., 2018 in the context of peak power reduction
for nation-scale railway timetable adjustments via dwell-time control. Bärmann, Martin et al.,
2021 use the same timetabling model with alternate, more complex objective functions and
handle the additional complexity using a Benders decomposition approach. In the context of
underground timetabling, Bärmann, Gemander et al., 2020 add running-time control to the
model by allowing a set of discrete running times for each train. Y.Wang et al., 2021 also consider
discrete sets of dwell and running times, but choose a different model and also incorporate
rolling stock circulation planning in their mixed-integer nonlinear programming model. In the
instance library EETTlib, Bärmann et al., 2022 summarize their timetabling model together with
various objective functions and, most importantly, provide a timetabling instance set as basis
for future work. Similar to the approach of Restel et al., 2021, who distribute time reserves to
handle high energy-consumption caused by disruptions, we consider the impact of operational
uncertainties in combination with simple static delay recovery strategies in this paper.

For an overview of robustness at different stages in the railway planning sequence we refer to
the survey by Lusby et al., 2018. The focus of our work is the timetabling stage, where the lines,
line frequencies, and train routes are fixed. For this stage, the survey by Cacchiani and Toth,
2012 highlights, among others, stochastic programming as a promising approach to robustness.
In particular, they cite the work by Kroon et al., 2008 who also use a stochastic optimization
model with sample average approximation to solve their timetabling problem.

In short, this work connects three key ideas from the literature. First, our current version
of the timetabling model, which was originally proposed by Sansó and Girard, 1997. Second,
the scenario-based approach to stochastic programming as used by Kroon et al., 2008. Third,
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Kliewer and Suhl, 2011 have shown that both sophisticated real-time rescheduling as well as
simple rule-based recovery strategies have their advantages and we therefore consider two
simple rule-based recovery strategies in this work. For completeness sake, we would like to
mention the overview on recovery models and real-time railway rescheduling by Cacchiani,
Huisman et al., 2014.

Contribution We advance the approach of adjusting departure and running times in an
existing timetable draft to improve energy-efficiency by including operational uncertainties
in the optimization problem. For each departure of a certain train from a certain station at a
certain time, we derive from real-world data the deviations between the nominal dwell and
running times in the planned timetable and the actual dwell and running times that occur
during operation. A scenario is a set consisting of one dwell and one running time deviation for
each departure in a given timetable. In our integrated stochastic MIP model, we link the nominal
timetable to a set of scenarios and compute, much in the spirit of sample average approximation
(see Kleywegt et al., 2002), a nominal timetable that minimizes the energy consumption over all
scenarios. In addition to the case where no further action is taken upon occurrence of a delay,
we also consider variants of the model to study the impact of two delay recovery strategies. The first
strategy minimizes delays by shortening dwell times, while the second one minimizes delays by
shortening dwell and running times. We show that the problem can be solved using a Benders
decomposition approach, where we find a feasible nominal timetable in the master problem and
calculate its energy consumption by solving a dual subproblem for each scenario. Additionally,
we introduce a heuristic approach where instead of solving the large dual subproblem in the
Benders decomposition approach, we efficiently compute a sparse Benders-like cut. Moreover,
we offer some additional improvements to the sparse cut itself and the heuristic approach as awhole.
In a series of computational experiments on real-world instances, we first show empirically
that the sparse-cut heuristic outperforms both the integrated MIP model and the Benders
decomposition approach. Second, we evaluate the benefits of the additional improvements.
Finally, we compare the three recovery strategies ‘no recovery’, ‘dwell-time shortening’, and
‘dwell- and running-time shortening’ to assess the trade-off between punctuality and energy
efficiency.

Structure of the Paper In Section 2, we describe the real-world timetabling problem. Then we
present our corresponding stochastic optimization MIP model, including the variants handling
the alternate recovery strategies, in Section 3. The Benders decomposition approach and the
closely related sparse-cut heuristic are laid out in Section 4, where we also summarize our
improvements to the heuristic approach. Finally, in Section 5, we present our computational
results and end with our conclusions in Section 6.

2 Problem Description

We consider the problem to increase the energy efficiency of a given timetable draft by slightly
adjusting departure and running times. Let T := {1, . . . , T} be the planning horizon discretized
in seconds. A train is a vehicle serving an underground line from the first to the last station and
the finite set of trains to be scheduled is denoted by I := {1, 2, . . .}. A leg is a single trip of a
given train from one station to the next and for a train i ∈ I the finite set of its legs is denoted by
Ji := {1, 2, . . .}. We assume w.l.o.g. that the legs in Ji are indexed such that j ∈ Ji is the j-th leg
travelled by train i. To keep notation concise, we may refer to leg j ∈ Ji of train i ∈ I simply as
‘leg (i, j)’ and also denote by J the set of all tuples (i, j) that represent a leg. The set of possible
departure configurations (d, r) of leg (i, j) is denoted by Cij, where d ∈ T is the planned departure
time and r ∈ N the planned running time.
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A feasible timetable then consists of one chosen departure configuration (d, r) ∈ Cij for
each leg (i, j) ∈ J, such that the following operational constraints are satisfied. Headway time
constraints ensure sufficient buffer time between consecutive legs on the same track in the same
direction. Single-track headway time constraints ensure sufficient buffer time between consecutive
legs on the same track in opposing direction. Typically, this only happens if two stations are
connected by a singular track instead of one track per direction. Dwell time constraints ensure
sufficient time between arrival and departure at a station for passenger boarding and alighting.
Terminal turnaround constraints ensure sufficient buffer time between arrival at a terminal station
and departure from the same station in the opposite direction. Finally, connection constraints
ensure that the connection times for passengers changing lines remain in a certain time window
when adjusting the timetable.

Our formulation uses a binary variable xijdr for each leg (i, j) ∈ J and departure configur-
ation (d, r) ∈ Cij, indicating whether (d, r) is the planned departure configuration of leg (i, j).
In a feasible solution, for each leg (i, j) ∈ J exactly one of the variables xijdr, (d, r) ∈ Cij is set to
one such that the constraints listed above are satisfied. To keep the notation concise, we simply
denote by X the set of binary solution vectors x ∈ {0, 1}∑(i,j)∈J |Cij| representing feasible timetables.
Our MIP formulation of x ∈ X, stated in detail in Appendix A, is based on the graph model
by Bärmann et al., 2022, Appendix B together with the stable set formulation laid out in Bärmann,
Gemander et al., 2020, Section 3.

Let x ∈ X be a feasible timetable. In the nominal case, i.e. all departure times and running
times are executed exactly as planned, its total energy consumption can be calculated as follows.
Denote by pijdrt ∈ R the energy consumption at time t ∈ T of leg (i, j) ∈ J executing departure
configuration (d, r) ∈ Cij. We then introduce continuous variables zt, t ∈ T representing the
total energy consumption of all trains at time t. In our model, recuperation is only considered
within a time step and braking energy that cannot be used by another train in this time step is
lost. Therefore, for each t ∈ T, the total energy consumption zt of all trains is non-negative. The
optimization model for the nominal case can then be stated as follows:

min
x,z ∑

t∈T
zt (1a)

s.t. ∑
(i,j)∈J,(d,r)∈Cij

pijdrtxijdr ≤ zt, t ∈ T, (1b)

zt ≥ 0, t ∈ T, (1c)
x ∈ X. (1d)

The trains in an underground system are powered via different power subnetworks, depending
on their location in the system. To model the subnetworks, one can simply add a second index
to the variables zt and state the Constraint (1b) for each combination of time and subnetwork.
Since a train can draw and recuperate power from exactly one subnetwork at a time, depending
on the train’s location, no further reformulation is required. We omit this additional index in
favour of readability.

As showcased by the comparison in Figure 1, the deviations between the nominal and actual
dwell and running times have a major impact on energy consumption. To address this problem,
we derive a set of scenarios from real-world operational data and minimize the expected energy
consumption over a set of scenarios S. In our approach, a scenario s is a set of deviations from
nominal dwell and running times. We denote by δsij ∈ Z the deviation between nominal and
actual dwell time before departure of leg (i, j) ∈ J in scenario s. The deviation between nominal
and actual running time on leg (i, j) ∈ J in scenario s is denoted by ρsij ∈ Z. Based on the
nominal timetable and a given scenario s with deviations (δsij, ρsij), (i, j) ∈ J, we can then derive
the actual timetable.

For example, consider the first leg (i, 1) of some train i ∈ I with nominal departure configur-
ation (0, 50) ∈ Ci1 and a scenario s with (δsi1, ρsi1) = (5, 3). Then the actual departure config-
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uration of this leg becomes (5, 53), which results in a delay of eight seconds at time of arrival.
Let the second leg (i, 2) of the same train have nominal departure configuration (70, 50) ∈ Ci2
and let (δsi2, ρsi2) = (−1, 2). Then the nominal dwell time before leg (i, 2) amounts to 20 s and
the actual departure configuration of this leg becomes (77, 52), as it departs 19 s after leg (i, 1)
arrives at time step 58. The leg (i, 2) then arrives with a total delay of 9 s, which in turn carries
over to the next leg (i, 3).

We assume the first leg (i, 1) of each train i ∈ I does not carry over any preexisting deviations
from earlier legs representing the same vehicle serving the same line in the opposite direction
before turnaround. All other legs are shifted based on the scenario and the deviation at time of
arrival of the previous leg. This distinction is based on the observation that turnaround times
typically offer enough buffer time to recover from delays.

When determining running times, a special case occurs if the deviation ρsij is negative, which
means that train i on leg j runs faster than planned. For example, let ρsij = −1 for some leg
(i, j) ∈ J in some scenario s and let Cij = {(0, 55), (0, 60)} be the plannable nominal departure
configurations. Further, let the minimal running time of this leg be 55 s, i.e. the train physically
cannot reach the next station any faster. If the departure configuration (0, 55) is chosen as the
nominal departure configuration, then the train cannot reach the next station within 54 s and
the running time remains 55 s. It is also conceivable to deal with this issue by removing any
departure configuration that leads to an invalid actual departure or running time. However,
this approach is overly restrictive as it may remove departure configurations that are perfectly
valid in most scenarios and only lead to slight modelling inaccuracies in very rare cases.

To summarize, the actual departure configuration (d′, r′) of some leg (i, j) in scenario s is
given by

d′ = d + k + δsij, (2)
r′ = max{rij, r + ρsij}, (3)

where d ∈ T and r ∈ Z are the nominal departure and running time of the leg, k ∈ Z the
preexisting deviation at time of arrival of the previous leg, and rij the minimal running time on
leg (i, j). If the leg (i, j) is the first one after turnaround, then we simply have k = 0. Based on
the actual departure and running times, the energy consumption of the actual timetable can be
calculated in the same way as for the nominal timetable.

In principle, the deviations may depend on the nominal dwell and running times. In this
work, we assume the deviations to be independent of the chosen nominal dwell and running
times for three reasons. First, the adjustments to the dwell and running times are relatively
small and it can therefore be expected that the distribution of deviations remains an accurate
approximation for altered dwell and running times. Second, our model respects the minimal
dwell and running times that are being used by our industry partner VAG to ensure smooth
operation, i.e. , the feasible timetables do not lead to additional deviations that are of ‘structural
nature’. In other words, it is not possible to, e.g. , shorten the dwell time below a critical threshold
that would incur regular extension of train stops. Finally, our model explicitly includes a kind
of dependency between minimal running time and deviation (see Equation 3) and for minimal
dwell times, the deviations are too small to lead to issues.

Table 1 summarizes the notation from this and the next section. In the next section, we
present an integrated model to find a nominal timetable that minimizes the expected energy
consumption for a given set of scenarios S.

3 Stochastic Optimization MIP Model

We first describe in Section 3.1 our integrated stochastic optimization MIP model to compute
a nominal timetable with minimal expected total energy consumption for the scenario set S.
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Table 1: Overview of the notation from Section 2 (top) and Section 3 (bottom)

Symbol Meaning

T Planning horizon
I Set of trains
Ji Set of legs of train i ∈ I
J Set of all tuples (i, j), i ∈ I, j ∈ Ji representing a leg in the timetable

(d, r) Departure configuration consisting of departure time d and running time r
Cij Set of plannable (nominal) departure configurations (d, r) of leg (i, j) ∈ J

pijdrt Energy consumption of leg (i, j) ∈ J executing departure configuration (d, r) ∈ Cij at time t ∈ T
xijdr Binary variable representing the nominal departure configuration (d, r) ∈ Cij of leg (i, j) ∈ J

X Set of binary vectors x ∈ {0, 1}∑(i,j)∈J |Cij | representing feasible timetables (see Appendix A for details)
zt Continuous variable representing the combined energy consumption of all trains at time t ∈ T
S Set of scenarios s

δsij Deviation from nominal dwell time before leg (i, j) in scenario s
ρsij Deviation from nominal running time of leg (i, j) in scenario s
rij Minimal running time of leg (i, j) ∈ J

k Deviation between nominally planned and actual arrival time
Ksij Set of possible deviations for leg (i, j) ∈ J in scenario s ∈ S
Csij Set of possible actual departure configurations of leg (i, j) ∈ J in scenario s ∈ S
zst Continuous variable representing the combined energy consumption of all trains at time t ∈ T in scenario s ∈ S

ysijdr Binary variable representing executed departure configuration (d, r) ∈ Cij of leg (i, j) ∈ J in scenario s ∈ S
κsijk Binary variable representing leg (i, j) ∈ J arriving with deviation k ∈ Z in scenario s ∈ S
hij Minimal dwell time after leg (i, j) ∈ J

Afterwards, we present two model variants in Section 3.2 that represent two recovery strategies
to handle scenario-induced delays. The first one recovers delays by shortening dwell times,
whereas the second one shortens both dwell and running times.

3.1 Stochastic Optimization Model without Recovery

We model the problem as a two-stage stochastic linear program (see e.g. Kall and Wallace,
1994). The first-stage problem is Model (1) without its objective function, i.e. we remove all
variables zt, t ∈ T and the corresponding Constraints (1b). The second-stage subproblem uses
for each scenario s ∈ S binary variables ysijdr to model the actually executed timetable in scenario
s and continuous variables zts to model the corresponding energy consumption. The variables
zts are linked to the variables ysijdr in the same way as variables zt to xijdr in Constraints (1b).

It remains to link the nominal timetable represented by the x-variables to the actually
executed timetables represented by the y-variables. First, we introduce a set of auxiliary binary
variables κsijk to represent whether leg (i, j) arrives with deviation k ∈ Z from the nominal
timetable in scenario s. Then, for each leg (i, j) ∈ J and each nominal departure configuration
(d, r) ∈ Cij, we add for each possible actual departure configuration (d′, r′) the constraint

xijdr + ysijd′r′ − 1 ≤ κsijk, (4)

where
k := d′ + r′ − d− r. (5)

The constraints ensure that if departure configuration (d, r) is chosen for the nominal timetable
and departure configuration (d′, r′) occurs during actual operation in scenario s, then vari-
able κsijk is set to one, representing a deviation of k seconds from the nominal timetable. We
denote by Ksij the (finite) set of possible deviations for leg (i, j) in scenario s and to keep notation
concise, we use Ksi0 := {0} as set of deviations before the first leg (i, 1) of each train i ∈ I.

Let rij be the minimal running time for leg (i, j). The linking between nominal and actual
departure configuration of some leg (i, j) ∈ J in scenario s with deviation k ∈ Ksij−1 at previous
arrival can then—using Equalities (2) and (3) to determine d′ and r′—be stated as

xijdr + κsij−1k − 1 ≤ ysijd′r′ . (6)
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The constraint ensures that if departure configuration (d, r) is chosen for the nominal timetable
and the leg arrives with deviation k during actual operation in scenario s, then variable ysijd′r′

is set to one, representing that departure configuration (d′, r′) occurs in scenario s. Analog-
ously to arrival deviations Ksij, we denote by Csij the (finite) set of possible actual departure
configurations for leg (i, j) ∈ J in scenario s ∈ S.

Due to limited operational data, we are restricted to a very low number of scenarios in our
application and the resulting timetables may be too strongly adjusted to statistical outliers. The
following example illustrates the issue.

Example 3.1. Consider a system consisting of two trains with one leg per train, i.e. J = {(1, 1), (2, 1)},
and a single scenario S = {1} given by the deviations

(δ1,1,1, ρ1,1,1) = (0, 1),
(δ1,2,1, ρ1,2,1) = (0,−1).

Further, let C1,1 = {(0, 2), (0, 3)}, C2,1 = {(5, 2), (5, 3)}, and let the energy consumption for train i,
departure time d, running time r, and time step t be given by

pi,1,d,r,t =


5, if t = d and r = 1
r, if t = d and r ∈ {2, 3, 4}
0, otherwise.

Clearly, an optimal solution will choose nominal running time two for the first train and three for the
second train, resulting in respective actual running times three and two. The total energy consumption
then amounts to p1,1,0,3,0 + p2,1,5,2,5 = 3 + 2 = 5. If the single scenario is representative of the occurring
deviations, then this is exactly the desired result. However, the trains may simply move one second faster
or slower with equal probability and a second scenario could be given by

(δ2,1,1, ρ2,1,1) = (0,−1),
(δ2,2,1, ρ2,2,1) = (0, 1).

In this second scenario, the chosen running times lead to actual running times one and four, which in turn
result in a total energy consumption of p1,1,0,1,0 + p2,1,5,4,5 = 5 + 4 = 9. Assuming equal probability of
the two scenarios, we get an expected total consumption of 7.

Consider choosing running time three for both trains, which yields actual running times four and
two in the first scenario and two and four in the second scenario. In this case, either scenario leads to a
total consumption of only 6. This illustrates that the first scenario may not suffice to compute an optimal
solution for typical deviation scenarios.

Our industry partner VAG requires another type of constraint, which conveniently resolves
this issue. More precisely, adjusting each individual departure configuration leads to an irregular
timetable, which is undesirable from an operational point of view as well as the passenger’s
perspective. Instead, we synchronize the way in which different trains serving the same direction
of the same line can be changed. Suppose the original timetable assigns equal dwell and running
times to two such trains, e.g. both trains use a 50 s running time between stations one and two,
then stop for 20 s at station two, then use a 60 s running time between stations two and three,
and so forth, then we say these two trains use the same journey profile.

Let i, i′ ∈ I be two trains using the same journey profile and (i, j), (i′, j′) ∈ J two legs of these
two trains that connect the same stations. Denote by d̃ij, d̃i′ j′ , r̃ij, r̃i′ j′ the respective departure and
running times in the original timetable. The following constraints synchronize these two legs:

xijdr = xi′ j′d′r′ , (d, r) ∈ Ci,j, (d′, r′) ∈ Ci′,j′ : (d− d̃ij = d′ − d̃i′ j′) ∧ (r− r̃ij = r′ − r̃i′ j′), (7)
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For example, let (i, j) and (i′, j′) be two such legs with Cij = {(0, 60), (5, 60), (0, 62)}, Ci′ j′ =
{(300, 60), (305, 60), (300, 62)}, and let (0, 60) and (300, 60) be the originally planned departure
configurations. Then the constraints

xi,j,0,60 = xi′,j′,300,60,

xi,j,5,60 = xi′,j′,305,60,

xi,j,0,62 = xi′,j′,300,62

ensure that the trains i and i′ use the same journey profiles after optimization. We would like
to note that this synchronization also maintains periodicity, since the departures maintain a
five-minute difference after optimization.

To show a quick example how this can play out during optimization, adding the con-
straints x1,1,0,2 = x2,1,5,2 and x1,1,0,3 = x2,1,5,3 synchronizes the legs (1, 1) and (2, 1) in Example 3.1.
This forces the solution to choose the same ‘departure configuration change’ for the deviations
of both legs. As a result, choosing a running time of three for both trains becomes the optimal
solution even if only the first scenario is considered.

In a sense, the synchronization constraints multiply the number of scenarios by the number
of trains using the same journey profile, since each journey profile must be adjusted to the
deviations of all trains using this journey profile. In the case of our application, this essentially
turns a single scenario into 60 to 180 scenarios, depending on how many trains use a journey
profile. Moreover, the additional variable identifications simplify the model by the same ‘factor’.
On the downside, the additional constraints may cut off otherwise feasible solutions.

The full stochastic optimization model can then be stated as follows:

min
x,y,z,κ ∑

s∈S,t∈T
zst

s.t. ∑
i∈I,j∈Ji ,(d,r)∈Csij

pijdrtysijdr ≤ zst, s ∈ S, t ∈ T, (8a)

x-κ-linking constraints (6), (8b)
x-y-linking constraints (4), (8c)
0 ≤ zst, s ∈ S, t ∈ T, (8d)

∑
(d,r)∈Csij

ysijdr = 1, s ∈ S, (i, j) ∈ J, (8e)

∑
k∈Ksij

κsijk = 1, s ∈ S, (i, j) ∈ J, (8f)

κs,i,0,0 = 1, s ∈ S, i ∈ I, (8g)
synchronization constraints (7), (8h)
ysijdr ∈ {0, 1}, s ∈ S, (i, j) ∈ J, (d, r) ∈ Csij, (8i)
κsijk ∈ {0, 1}, s ∈ S, (i, j) ∈ J, k ∈ Ksij. (8j)
x ∈ X. (8k)

Before moving on to the Benders decomposition approach, we want to present how to model
two recovery strategies that can be used to counteract delays.

3.2 Alternate Recovery Strategies

Another important aspect of railway timetabling is the service quality as seen from the passen-
ger’s perspective, especially punctuality. One approach to improving punctuality is to use spare
dwell times or both spare dwell and running times to recover from delays. Interestingly, both
of these strategies allow for a model where the κ-variables are no longer required. This is due
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to the fact that the actual departure configuration of a leg no longer depends on the deviation
between planned and actual arrival time of the previous leg, which had to be represented using
the κ-variables. Instead, they depend only on the nominal departure and running time of the leg
itself and the actual departure configuration of the previous leg, which are already represented
by their respective x- and y-variables. We model the two delay recovery strategies as follows.

Dwell Time Recovery If the dwell time between arrival of some leg (i, j− 1) and departure
on the next leg (i, j) is longer than the minimum dwell time hij−1 in this station, then the next
departure can be advanced to make up for a delay. Let d be the planned departure time of
some leg (i, j) ∈ Cij, j ≥ 2 and let (d′′, r′′) ∈ Csij−1 be the actual departure configuration of
the previous leg (i, j− 1). If there is no delay or the delay can be recovered by departing as
planned, then the planned departure time remains unchanged and the actual departure time in
scenario s is d′ = d + δsij. Otherwise, the departure is scheduled at time d′′ + r′′ + hij−1 to satisfy
the minimal dwell time hij−1 after arriving at time d′′ + r′′ and recover as much of the delay as
possible. Then the actual departure time in scenario s is d′ = d′′ + r′′ + hij−1 + δsij. Hence, the
actual departure time d′ of the leg (i, j) can be expressed by

d′ = max{d, d′′ + r′′ + hij−1}+ δsij, (9)

and the corresponding variables can then be linked by

xijdr + ysij−1d′′r′′ − 1 ≤ ysijd′r′ , (10)

where the running time r′ is determined as in (3). To summarize, this recovery strategy can be
modelled by using Constraints (10) and (9) instead of (4), (6) and (2). Finally, in the case of a
first leg (i, 1) ∈ J, Constraint (10) simply reduces to

xi1dr ≤ ysi1d′r′ , (11)

with d′ = d + δsi1 and r′ again determined by (3).

Full Recovery This recovery strategy utilizes dwell and running times to recover from delays.
We assume the new departure configuration is determined upon arrival of a train. As in the
previous recovery strategy, we use Constraints (10) and (9), instead of (4), (6) and (2) to
recover as much delay as possible from shortening the dwell time. Equation (9) yields the actual
departure time d′ and we can state the expected rescheduled departure time as d′ − δsij, which
in turn results in an expected departure delay of d′ − δsij − d. To recover the expected departure
delay by shortening the running time, replace (3) with

r′ = max{rij, r− (d′ − d− δsij) + ρsij}. (12)

In the case of a first leg (i, 1), the expected delay is zero and we simply use (11).
It is theoretically possible to use the actual delay upon departure d′ − d to determine the

running time of leg (i, j). This would reflect a planning decision at the time of departure of
leg (i, j) instead of rescheduling at the time of arrival of leg (i, j− 1). However, this would force
the planning system to instantly make decisions, which is not yet a widely achieved standard.
Before embedding Model (8) in a Benders decomposition approach we close this section with a
remark on the nature of the second stage problem.

Remark 3.2. Within the framework presented by Kliewer and Suhl, 2011, who distinguish between
rule-based recovery strategies and optimization-based recovery strategies, the three recovery strategies
presented in this work are of a simple rule-based nature. As a result, the second stage problem can be
interpreted as an ‘adjustment’ problem rather than an actual ‘optimization’ problem. However, the chosen
framework of two-stage stochastic linear programs allows extension and application of the ideas presented
in this paper to more advanced (optimization-based) recovery strategies, which, albeit exceeding the scope
of this work, poses interesting possibilities for future research.
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4 Benders Decomposition Approach

To deal with the size and complexity of themodel, we present a Benders decomposition approach
in Section 4.1. Since the subproblems to compute the energy consumption in all scenarios
remain relatively large, we then introduce a sparse-cut heuristic in Section 4.2 as well as a
parameterized version of the heuristic in Section 4.3. Finally, in Section 4.4, we offer some
additional improvements to the heuristic solution approach.

4.1 Basic Method

Given a nominal timetable and a scenario, we can efficiently compute the actual timetable and
its energy consumption. Therefore, we keep only the nominal timetabling constraints including
the synchronization constraints (7) in the master problem. A new nonnegative continuous
objective variable θ ≥ 0 represents the total energy consumption over all scenarios according
to the currently available Benders cuts. The initial master problem where no Benders cuts are
available can then be stated as

min
x,θ

θ (13a)

s.t. θ ≥ 0, (13b)
synchronization constraints (7), (13c)
x ∈ X. (13d)

For a solution x̃ ∈ X, a Benders cut of the form a>x ≤ θ can be generated to link the timetable x̃
to its expected energy consumption over all scenarios s ∈ S as follows.

Let x̃ ∈ X be a feasible timetable. The remaining subproblem to compute the true objective
value of x̃ of Model (8) can be stated as

min
y,z,κ ∑

s∈S,t∈T
zst (14a)

s.t. ∑
i∈I,j∈Ji ,(d,r)∈Csij

pijdrtysijdr − zst ≤ 0, s ∈ S, t ∈ T, (14b)

x-κ-linking constraints (6), (14c)
x-y-linking constraints (4), (14d)
0 ≤ zst, s ∈ S, t ∈ T, (14e)

∑
(d′,r′)∈Csij

ysijd′r′ = 1, s ∈ S, (i, j) ∈ J, (14f)

∑
k∈Ksij

κsijk = 1, s ∈ S, (i, j) ∈ J, (14g)

κs,i,0,0 = 1, s ∈ S, i ∈ I, (14h)
ysijdr ∈ {0, 1}, s ∈ S, (i, j) ∈ J, (d, r) ∈ Csij, (14i)
κsijk ∈ {0, 1}, s ∈ S, (i, j) ∈ J, k ∈ Ksij. (14j)

Although the subproblem contains binary variables, we can show that solving its linear
programming relaxation yields a unique solution that fulfils the integrality constraints.

Theorem 4.1. Let (x̃, θ̃) be a feasible solution to the master problem (13). Then there exists a unique
optimal solution ỹ, κ̃, z̃ to the Subproblem (14) and the values of ỹ and κ̃ are integral.

Proof. Let (x̃, θ̃) be a feasible solution to the master problem, s ∈ S and i ∈ I. We prove the
theorem by induction over the set {j : (i, j) ∈ Ji}. As base case, consider the first leg (i, 1) ∈ J of
train i. By construction of the problem we have Ks,i,0 = {0} and κs,i,0,0 = 1.
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κsi0· ysi1··

x̃i1··

κsi1· ysi2··

x̃i2··

κsi2·

· · ·

Figure 2: Implications between variable sets in Subproblem (14). For clarity in the diagram we
denote by, e.g. , ysi0·· the set of variables ysi0dr with (d, r) ∈ Csi0.

Assume there exist j ∈ Ji and k ∈ Ksij−1 with κsij−1k = 1 and κsij−1k′ = 0, k′ ∈ Ksij−1 \ {k},
which already holds for the base case. Since x̃ ∈ X is a feasible timetable, there exists exactly one
departure configuration (d̃, r̃) ∈ Cij with x̃ijd̃r̃ = 1. The actual departure configuration (d′, r′) of
leg (i, j) is determined by k, (2) and (3). The corresponding Inequality (6) then implies ysijd′r′ = 1
via

x̃i,j,d̃,r̃ + κsij−1k − 1︸ ︷︷ ︸
=1

≤ ysijd′r′ .

Let k′ = d′ + r′ − d̃− r̃ be the deviation between nominal and actual arrival time of leg (i, j) in
scenario s. The corresponding Inequality (4) then implies κsijk′ = 1 via

x̃ijd̃r̃ + ysijd′r′ − 1︸ ︷︷ ︸
=1

≤ κsijk′ .

Additionally, we have ysijdr = 0 for (d, r) ∈ Csij, (d, r) 6= (d′, r′) and κsijk′′ = 0 for k′′ ∈ Ksij, k′′ 6=
k′ due to the respective multiple-choice constraints (14f) and (14g). Which allows us to repeat
this inductive step if j + 1 ∈ {j : (i, j) ∈ Ji}.

To illustrate how a solution is constructed, Figure 2 shows these implications for the first
two legs of some train i ∈ I in a given scenario s ∈ S. First, we have Ksi0 = {0} and hence, the
deviation variable κsi00 together with the nominal departure configuration variables x̃i1dr, (d, r) ∈
Ci1 implies the values of the actual departure configuration variables ysi1dr, (d, r) ∈ Csi1 via the
corresponding Inequalities (6). Subsequently, the actual departure configuration variables
ysi1dr, (d, r) ∈ Csi1 together with the nominal departure configuration variables x̃i1dr, (d, r) ∈ Ci1
imply the values of the deviation variables κsi1k, k ∈ Ksi1 via the corresponding Inequalities (4).
Clearly, this can be repeated for the leg (i, 2) as well as all remaining legs of train i.

Altogether, we can for all s ∈ S and all (i, j) ∈ J uniquely determine the values of all
variables ysijdr, (d, r) ∈ Csij and all κsijk, k ∈ Ksij, which produces an integral vectors ỹ, κ̃.
This in turn yields a unique optimal solution (ỹ, κ̃, z̃) since each variable zst will be set to
max{0, ∑(i,j)∈J,(d′,r′)∈Csij

pijd′r′tysijd′r′}, which completes the proof.

By Theorem 4.1 we can therefore consider the subproblem as a linear program (LP) and
apply the standard Benders decomposition (see e.g. Kall and Wallace, 1994, Section 3.2.2). Let
α, β, β′, γ, γ′, γ′′, π, π′ be the respective vectors of dual variables corresponding to the energy
consumption Constraints (14b), the linking constraints (14c) and (14d), the multiple-choice
constraints (14f),(14g), (14h), and the upper bounds from (14i) and (14j). Given an optimal
solution (α̃, β̃, β̃′, γ̃, γ̃′, γ̃′′, π̃, π̃′), we add the following cut to the master problem (13)

∑
sijdrk

β̃sijdrk(1− xijdr) + ∑
sijdrd′r′

β̃′sijdrd′r′(1− xijdr) + ∑
sij
(γ̃sij + γ̃′sij) + ∑

si
γ̃′′si + ∑

sijdr
π̃ + ∑

sijk
π̃′ ≤ θ.

(15)
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Note that Theorem 4.1 also implies the subproblem to be feasible for all x̃ ∈ X and we can
therefore solve model (8) to global optimality via Algorithm 1.
Algorithm 1: LP-based Benders decomposition
1 Initialize the master problem as minθ∈R+

0 ,x∈X θ

2 do
3 Calculate an optimal solution (θ̃, x̃) to the current master problem
4 Calculate an optimal solution (α̃, β̃, β̃′, γ̃, γ̃′, γ̃′′, π̃, π̃′) to the dual subproblem

(parameterized in x̃)
5 Add Constraint (15) to the current master problem
6 while (θ̃, x̃) violates (15)
7 return (θ̃, x̃)

Wewant to note that the analogues of Theorem 4.1 for the twomodel variants from Section 3.2
can be proven in the same way. As a result, Algorithm 1 can easily be adjusted to solve the two
model variants via Benders decomposition.

4.2 Sparse-Cut Heuristic

Our experiments in Section 5.2 show empirically that solving the subproblem as LP is too
expensive in terms of runtime and memory requirements. To deal with this issue, we replace the
cut given by Inequality (15) with a cut that, given a solution (x̃, θ̃) to the master problem (13),
has two key properties. First, it can be computed efficiently and second, it represents the
correct expected energy consumption θ of the timetable x̃ it is computed from. However, in
comparison to the original Benders cut given by Equality (15), this cut no longer corresponds
to an optimal dual solution to the subproblem. As a result there may exist special cases where
this cut overestimates the energy consumption of different timetables x ∈ X \ {x̃}, which can
result in cutting off feasible solutions. Although the resulting solution approach is therefore a
heuristic, it produces satisfying results in our application.

Let x̃ be a solution to the current master problem. By the arguments in the proof of The-
orem 4.1 (see also Figure 2) we can uniquely determine the solution vector ỹ of Subproblem (14)
that represents the actual departure configurations corresponding to the chosen nominal de-
parture configurations. For each s ∈ S we then define the set of related planned and actual
departure configurations as

R̃s :=
{
(i, j, d, r, d′, r′) : (i, j) ∈ J, (d, r) ∈ Cij, (d′, r′) ∈ Csij with x̃ijdr = 1 and ỹsijd′r′ = 1

}
.

By collecting from (14a) and (14b) the terms corresponding to the elements in R̃s, the total
energy consumption over all scenarios can be expressed as

∑
s∈S,t∈T

max{0, ∑
(i,j,d,r,d′,r′)∈R̃s

pijd′r′t x̃ijdr}. (16)

Let

vst :=

{
1, if ∑(i,j,d,r,d′,r′)∈R̃s

pijd′r′t x̃ijdr > 0,

0, otherwise
(17)

be the indicator of the total energy consumption of all legs in scenario s and time step t being
positive. Using vst, we can reformulate (16) to

∑
s∈S,t∈T

∑
(i,j,d,r,d′,r′)∈R̃s

vst pijd′r′t x̃ijdr. (18)
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The sparse cut ã>x ≤ θ is then given by

ãijdr :=

{
∑s∈S,t∈T vst pijd′r′t, if x̃ijdr = 1
0, otherwise.

(19)

By construction, the cut has the following property.

Lemma 4.2. Let x̃ ∈ X be a feasible timetable and ã>x ≤ θ the sparse cut given by (19). Then ã> x̃ is
equal to the optimal objective value of Subproblem (14).

In other words, the sparse cut is valid for the timetable x̃ it is derived from. However,
Example 4.3 shows that the sparse cut may overestimate the total expected energy consumption
of other solutions x ∈ X.

Example 4.3. Consider a system with three trains and one leg per train, i.e. J = {(1, 1), (2, 1), (3, 1)},
and departure configurations C11 = {(0, 2)}, C21 = {(2, 2)}, C31 = {(0, 2), (1, 2)}. The energy
consumption for (i, j) ∈ J and (d, r) ∈ Cij is given by

pijdrt =


1, if t = d
−1, if t = d + 1
0, otherwise.

Consider the timetable represented by x̃1102 = x̃2122 = x̃3102 = 1. Its energy consumption per time
step t can be stated as

t = 0 t = 1 t = 2 t = 3

p1102t 1 -1 0 0
p2122t 0 0 1 -1
p3102t 1 -1 0 0

∑ 2 -2 1 -1,

resulting in a total energy consumption max{0, 2}+ max{0,−2}+ max{0, 1}+ max{0,−1} = 3.
The corresponding sparse cut, defined by (19), is

x1102 + x2122 + x3102 ≤ θ.

The energy consumption per time step t of the timetable represented by x1102 = x2122 = x3112 = 1
can be stated as

t = 0 t = 1 t = 2 t = 3

p1102t 1 -1 0 0
p2122t 0 0 1 -1
p3112t 0 1 -1 0

∑ 1 0 0 -1,

resulting in a total energy consumption of 1. The cut derived from x̃, however, states 2 ≤ θ.

Next, we present a way to alleviate or even completely negate the overestimation.
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4.3 Sparse Cut with Additional Slack

Let x̃ be a solution to the master problem and λ > 0. Consider the adjusted cut

â>x− λ|J| ≤ θ, (20)

where

âijdr :=

{
ãijdr + λ, if x̃ijdr = 1
0, otherwise.

A first observation is that for x̃ this cut is equal to the original one given by (19).

Lemma 4.4. Let x̃ ∈ X be a feasible timetable and â>x ≤ θ the sparse cut given by (20). Then â> x̃ is
equal to the optimal objective value of Subproblem (14).

Proof. By construction of â we have

â> x̃− λ|J| = ∑
(i,j)∈J,(d,r)∈Cij : x̃ijdr=1

âijdr − λ|J|

= ∑
(i,j)∈J,(d,r)∈Cij : x̃ijdr=1

(ãijdr + λ)− λ|J|

= ∑
(i,j)∈J,(d,r)∈Cij : x̃ijdr=1

ãijdr

= ã> x̃.

The result then follows directly from Lemma 4.2.

On the other hand, if x ∈ X represents some timetable other than x̃, then the left-hand side
reduces by λ times the number of legs with differing departure configurations in x̃ and x. More
precisely, we get

â>x = ã>x− λ ∑
(i,j)∈J,(d,r)∈Cij

max{0, x̃ijdr − xijdr} ≤ θ.

In Example 4.3, this adjusted cut plays out as follows.

Example 4.5. Consider again the situation from Example 4.3. If we use the adjusted cut (20) with
λ = 1, then we get

2x1102 + 2x2122 + 2x3102 − 3 ≤ θ.

For the timetable represented by the solution x1102 = x2122 = x3112 = 1, this cut no longer overestimates
the energy consumption since we have 2x1102 + 2x2122 + 2x3102 − 3 = 1.

We would like to remark that a large enough value for λ yields an exact method in the spirit
of Benders decomposition. For instance, if we assume no recuperation and for each leg in each
scenario we use the departure configuration with the highest total energy consumption, then
we get the following upper bound on the objective value of (14):

λ := ∑
s∈S,(i,j)∈J

max
{

∑
t∈T

max{0, pijdrt} : (d, r) ∈ Csij
}

.

Let x̃ ∈ X and consider the corresponding cut â>x− λ|J| ≤ θ. Then for all x ∈ X, x 6= x̃ we
have

â>x− λ|J| ≤ 0,
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which implies the cut no longer overestimates the energy consumption for any x ∈ X, x 6= x̃.
At the same time, however, this cut is extremely local in the sense that it is redundant for
all x ∈ X, x 6= x̃.

In our experiments in the next section, we will use three variants of this relaxation. The first
one is simply (20), where we use a fixed value for λ in all iterations. The second variant changes
each coefficient by a relative amount, i.e. we use

âijdr :=

{
(1 + λ)ãijdr, if x̃ijdr = 1,
0, otherwise,

(21)

and the corresponding cut becomes

â>x− λ ∑
(i,j)∈Cij : x̃ijdr=1

ãijdr ≤ θ. (22)

The third variant is a hybrid of the first two, using (22) with

âijdr :=

{
ãijdr +

λ
|J| ∑(i,j)∈Cij : x̃ijdr=1 ãijdr, if x̃ijdr = 1,

0, otherwise.
(23)

Consequently, all coefficients of the same cut are adjusted by the same absolute amount, but
cuts with a higher energy consumption receive a stronger adjustment.

Finally, the sparse cut (and its variants) can also be parameterized to yield a more aggressive
heuristic by choosing λ < 0. In this case, the cut yields stronger lower bounds on the objective
variable θ, resulting in a lower number of iterations at the cost of a higher probability of over-
estimating the energy consumption of alternate timetables. Interestingly, the computational
experiments in Section 5 show that this is indeed an effective approach.

Before presenting three additional improvements to the sparse-cut-based solution approach,
we would like to offer some insight on alternate energy-related objective functions.

Remark 4.6. In this work, we chose to present our results using the total energy consumption as objective
since this is the largest cost factor for our industry partner. However, depending on the train operating
company’s goals, minimizing, e.g. , the peak load or the peak average load, may be alternate relevant
objectives. For instance, Bärmann, Martin et al., 2021 consider different variants of the peak load average.
These alternate objective functions only require linear constraints with continuous variables and therefore
the Benders decomposition approach to handle uncertainties can also be applied with these objective
functions. Moreover, the idea to ‘only sum up the energy consumption of timestamps with positive total
consumption’ is also applicable to these objectives, but a detailed analysis would exceed the scope of this
paper and is therefore left as an interesting prospect for future research. Finally, if the full pricing scheme
is known it is also possible to formulate both objectives in terms of a single-objective framework.

4.4 Further Improvements to the Solution Approach

We consider three further improvements to the sparse-cut heuristic. First, it is possible to guide
the solving process by adding a partial or approximate objective function in the master problem
instead of relying entirely on the cuts derived from the subproblem. Second, we will see that
one of the possible objective functions for the master problem can in fact be used as a global
underestimator for the energy consumption of all timetables in all scenarios. Third, we evaluate
restarting the solving process after a certain number of cuts are derived from the subproblems.

Master Problem with Objective: We consider three candidates as objective functions for the
master problem. Namely, the original objective function from Model 1 (‘ActualRecup’) and
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two other objective functions that are strictly linear in the x variables representing the nominal
timetable.

In the most simple case, we do not remove the original objective function consisting of (1a)
and (1b) from Model (1) and adjust it to

min ∑
t∈T

zt + θ. (24)

This can be seen as explicitly adding the scenario where all dwell and running times are executed
as planned to the master problem. However, this approach results in longer solving times for
the master problem, due to minimizing a piecewise-linear convex objective over the polytope
representing X.

The intuition behind the next two objectives is as follows. Assuming a recuperation rate
of 100 %, which we call the (idealized) net energy consumption (‘NetCon’, leads to a high-quality
approximation of the true energy consumption if the recuperation rate is high. Conversely,
assuming no recuperation at all, which we call the gross energy consumption (‘GrossCon’), leads to
a high-quality approximation of the true energy consumption if the recuperation rate is low. We
would like to note that either variant also works well if the net (or gross) energy consumption
correlates with the actual energy consumption. To illustrate the difference between the three
variants we reuse from Example 4.3 the timetable represented by x1102 = x2122 = x3112 = 1:

t = 0 t = 1 t = 2 t = 3

p1102t 1 -1 0 0
p2122t 0 0 1 -1
p3112t 0 1 -1 0

‘ActualRecup’ 1 0 0 0
‘GrossCon’ 1 1 1 0
‘NetCon’ 1 0 0 -1

In the case of net energy consumption we set

pijdr := ∑
t∈T

pijdrt, (i, j) ∈ J, (d, r) ∈ Cij, (25)

and in the case of gross energy consumption we set

pijdr := ∑
t∈T

max{0, pijdrt}, (i, j) ∈ J, (d, r) ∈ Cij. (26)

The objectives can then be stated as

min ∑
(i,j)∈J,(d,r)∈Cij

pijdrxijdr + θ. (27)

The explicitly added objectives can be expected to improve the gaps found in the solving
process, since θ is bounded from below only by zero as well as the rather local sparse cuts. In
contrast, the explicitly added objectives yield much stronger dual bounds. For instance, in the
case of gross energy consumption, we can state a simple yet valid lower bound by

∑
(i,j)∈J

min
(d,r)∈Cij

pijdr,

i.e. we choose for each leg the cheapest available departure configuration. Moreover, there is a
hierarchy between the three objectives, since the energy consumption with full recuperation
(expressed by (27) with (25)) is a lower bound on the energy consumption with actual recuper-
ation (expressed by (24)), which in turn is a lower bound on the energy consumption without
recuperation (expressed by (27) with (26)).
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Net Energy Consumption Cut: The net energy consumption of a leg, which is independent
of all other trains, underestimates the true energy consumption, since there will usually be at
least some unused recuperation energy. If we apply this idea to the scenario-based approach,
we can derive an inequality that states a nontrivial lower bound of the energy consumption for
scenarios and timetables. More precisely, consider the cut

∑
(i,j)∈J,(d,r)∈Cij

p
ijdr

xijdr ≤ θ, (28)

where
p

ijdr
:= ∑

s∈S,t∈T
r′=max{rij,r+ρsij}

pijdr′t. (29)

Since we assume 100% recuperation rate in this cut, the impact of the scenario on departure times
can be disregarded entirely and it suffices to sum up the energy consumption corresponding
to the adjusted running time over all scenarios. This cut can also be used with the dwell time
recovery strategy. For the full recovery strategy, which also affects running times, we use in each
scenario the running time with the lowest net energy consumption, i.e. in this case we define

p
ijdr

:= ∑
s∈S

min
{

∑
t∈T

pijdr′t : r′ ∈
{

rij, . . . , max{rij, r + ρsij}
}}

. (30)

Restarts: As shown by e.g. Achterberg, 2007 it is sometimes useful to restart the solving process
for difficult problems. In our approach we run the initial method until a threshold number of
generated sparse cuts is hit. Then we restart the entire solving process and use the final master
problem from the original solving process as master problem in the first iteration of the restarted
solving process. The restart procedure is not repeated if the iteration threshold is hit a second
time.

5 Computational experiments

After laying out our experimental setup in Section 5.1, we present results of the following
three experiments. First, we benchmark our heuristic solution approach based on the sparse
cuts from Section 4 against the integrated MIP model from Section 3 and against the standard
Benders decomposition approach stated as Algorithm 1. Second, we evaluate the improvements
presented in Sections 4.3 and 4.4. Finally, we compare the base model to the alternate recovery
strategies (Section 3.2) in terms of punctuality and energy efficiency.

5.1 Experimental Setup

Data and Instances The underlying data sets for this computational study have been provided
by our partner VAG. Our instances are based on the 2022 Sunday timetable of the Nürnberg
underground system, consisting of the manually driven line U1 and the automated lines U2 and
U3, as well as real-world power profiles for the energy consumption of the trains. For full details
on the instance generation, we refer to the EETTlib by Bärmann et al., 2022, where instances
have been created in the same manner for the 2020 Sunday timetable.

In addition to the timetable and energy data, we have been providedwith the operational data
on seven Sundays of January and February 2022, from which we extracted the seven scenarios
used in our experiments. We optimize the energy consumption of the automated underground
lines U2 and U3 based on five of the seven scenarios. All evaluations of energy consumption are
based on the remaining two scenarios, which simulates the energy consumption in ‘unknown’
scenarios.
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Table 2: Metadata on instances in the first test set. For each instance, we state the start and end of
the time horizon it represents as well as the number of trains, legs and departure configurations
in the instance. Since it is fixed, line U1 is excluded from these counts.

Number of

Instance Time Horizon Trains Legs DepConfs

15_5_15min 12–12:15 21 124 2 912
15_5_30min 12–12:30 30 252 5 901
15_5_01hr 12–13 48 504 11 802
15_5_02hr 12–14 84 1 008 23 604
15_5_04hr 12–16 156 2 016 47 208
15_5_06hr 12–18 228 3 024 70 812
15_5_08hr 12–20 300 4 032 94 416
15_5_10hr 11–21 369 5 017 117 488
15_5_12hr 10–22 419 5 717 134 085

Table 3: Model sizes after Gurobi presolve for Model 8 in the format ‘no recovery’/‘dwell
recovery’/‘full recovery’ and the master problem (13). Numbers are abbreviated as ‘k’ for
‘thousands’ and ‘M’ for ‘millions’.

Number of Variables Number of Constraints Number of Nonzeros

Instance MIP Master MIP Master MIP Master

15_5_15min 51k/42k/36k 1 819 154k/512k/394k 523 2.6M/3.6M/2.8M 11k
15_5_30min 116k/87k/73k 1 816 440k/1.2M/891k 522 6.3M/8.0M/6.0M 11k
15_5_01hr 244k/184k/147k 1 816 999k/2.7M/2.0M 522 13.8M/17.5M/13.1M 11k
15_5_02hr 504k/367k/292k 1 816 2.2M/5.4M/4.0M 522 29.0M/35.2M/26.3M 11k
15_5_04hr 1.0M/737k/582k 1 816 4.5M/11.0M/8.1M 522 59.3M/70.0M/51.8M 11k
15_5_06hr 1.5M/1.1M/874k 1 816 6.8M/16.5M/12.2M 522 89.4M/104.4M/77.4M 11k
15_5_08hr 2.1M/1.5M/1.2M 1 816 9.1M/22.0M/16.3M 522 119.6M/138.3M/102.7M 11k
15_5_10hr 2.6M/1.8M/1.5M 2 256 11.0M/26.3M/19.5M 656 148.0M/168.4M/125.4M 13k
15_5_12hr 3.0M/2.1M/1.7M 3 059 12.4M/30.5M/22.5M 884 169.5M/194.2M/144.4M 18k

Finally, the underground line U1 is driven manually and also runs on its own power network.
We therefore do not optimize this line and also disregard its energy consumption, but keep the
unaltered timetable of line U1 in the model to represent the connection constraints.

Test Sets Our computational experiments use two test sets. The first one consists of instances
that vary in size and represent parts of the whole day. Given the size of the time frame, we choose
its start such that the number of legs in the instances scales about linearly with the size of the
time horizon. The resulting instances in the first test set and relevant metadata are summarized
in Table 2. The departure time of each leg may be shifted by up to±15 s in 5 s increments and the
running time of each leg can be chosen from a set of three or four running times; see Bärmann
et al., 2022 for full details on the selection of available running times. As a result, for each leg
we can choose from 21 or 28 combinations of departure and running time. The resulting sizes
of Model (8) and the master problem (13), both after Gurobi’s presolve, are stated in Table 3.
The size of Model (8) scales about linearly with the number of legs in the instance (cf. Table 2).
In the case of the master problem (13), which contains only the timetabling component of the
problem, Gurobi is able to presolve most instances to the same size. This is possible due to the
synchronization constraints (7) and the fact that the timetable is periodic between noon and 8
pm.

The second test set consists of instances that represent the entire operational day, which
begins at about 4 am and ends 22 hours later at about 2 am. The timetable represented by these
instances consists of 604 trains with a total of 8406 legs to be scheduled on lines U2 and U3. In
these instances, we consider varying maximum departure time shifts and shift steps which are
summarized in Table 4.
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Table 4: Metadata on instances in the second test set. For each instance, we state the maximum
departure shift, shift step and resulting number of departure configurations in the instance.
Each instance consists of 604 trains with 8406 legs on lines U2 and U3.

Max. Number of
Instance Departure Shift Shift Step Dep. Confs.

10_2 10 2 310 662
15_3 15 3 310 662
15_5 15 5 197 694
20_4 20 4 310 662
20_5 20 5 254 178
25_5 25 5 310 662
30_5 30 5 367 146

Computational Setup The implementations of all models are done in Python 3.7.11 (Van
Rossum and Drake, 2009) using the Python-API of Gurobi 9.5.1 (Gurobi Optimization, 2022).

The computations in Section 5.2 have been performed on a server with 2x Intel Xeon E5-2643
v4 CPUs (“Broadwell”, 12 cores/24 threads, 3.4 GHz base frequency) and 256 GB RAM due to
the large memory requirements of Model (8) and Algorithm 1. To save computational resources,
the computations in Sections 5.3 and 5.4 have been performed on a server with Intel Xeon
E3-1240 v6 CPUs (“Kaby Lake”, 4 cores, HT disabled, 3.7 GHz base frequency) and 32 GB RAM.
We stabilize the results against the impact of nondeterminism in the optimization solver by
performing five runs per experiment. All computations use a Gurobi time limit of two hours and
run on four threads. To add our cuts in Algorithm 1 and the sparse-cut heuristic, we additionally
set GRB.LazyConstraints to 1 in these runs. As a basic improvement of these two approaches,
each time our callback cuts off a solution, we pass an updated feasible solution to Gurobi. All
approaches use the original timetable as starting solution. Otherwise, we use Gurobi’s standard
parameter settings throughout.

5.2 Comparison of the Solution Approaches

In our first test, we compare the performances of solvingModel (8) (MIP), applying Algorithm 1
(BND), and the sparse-cut heuristic from Section 4.2 (SCH) on the first test set. Tables 5 and 6
state for each of the three recovery strategies No Recovery (Section 3.1), Dwell Recovery and
Full Recovery (Section 3.2), Gurobi’s final optimality gap and the energy savings potential,
respectively. Each row represents the results on one instance, averaged over the aforementioned
five runs and the best-performing approach per instance is marked in bold font. The savings
potential is calculated as the relative difference between the expected energy consumption
over the scenarios of the original timetable and the optimized timetable. In particular, this
difference is not based on the objective value of SCH, as it may overestimate the solution’s energy
consumption. In the case of BND, the large subproblems could not be solved within the time
limit, leading to failed runs on all but the smallest instances. The tables contain no numerical
values in the corresponding entries.

We can conclude that the MIP approach is well-suited for very small instances, but does
not scale with instance size since the model becomes too large. In fact, for larger instances it
is not even able to improve the starting solution at all and the bounds do not improve beyond
the root relaxation either. The Benders decomposition approach runs into the same problem
of the subproblems becoming too large to be solved within the time limit. As a result, we
observe no solution improvement for larger instances and the approach typically yields the
trivial zero-bound as best bound. On the other hand, the final optimality gap and savings
potential achieved with the sparse cut heuristic remains stable across the entire test set. We
would also like to note that, on average, the dual bounds found by the sparse cut heuristic are
slightly better than the ones found by the MIP approach. Based on these results we disregard
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Table 5: Comparison of the final optimality gaps achieved with the three solution approaches.

No Recovery Dwell Recovery Full Recovery

Instance MIP BND SCH MIP BND SCH MIP BND SCH

15_5_15min 8.8 60.0 57.4 9.2 100.0 56.4 7.7 100.0 54.7
15_5_30min 12.3 100.0 57.9 12.3 100.0 57.1 11.3 100.0 54.6
15_5_01hr 63.0 100.0 58.1 13.9 100.0 57.8 13.4 100.0 54.8
15_5_02hr 24.3 100.0 57.5 52.3 100.0 57.3 29.5 100.0 55.1
15_5_04hr 62.4 100.0 57.5 62.4 - 57.6 59.9 100.0 54.9
15_5_06hr 62.2 - 57.5 62.3 - 57.5 59.8 - 55.0
15_5_08hr 62.3 - 57.4 62.4 - 57.4 59.8 - 54.8
15_5_10hr 62.2 - 57.1 62.2 - 57.1 59.6 - 54.5
15_5_12hr 61.1 - 56.0 61.1 - 56.2 58.5 - 53.5

Table 6: Comparison of the energy saving achieved with the three solution approaches.

No Recovery Dwell Recovery Full Recovery

Instance MIP BND SCH MIP BND SCH MIP BND SCH

15_5_15min 7.9 2.4 5.1 8.0 4.3 5.3 9.8 3.2 5.8
15_5_30min 3.1 3.8 5.3 2.8 3.5 5.8 4.0 4.6 6.5
15_5_01hr 0.0 3.3 4.6 0.0 2.8 4.4 0.2 3.2 6.1
15_5_02hr 0.0 1.5 4.2 0.3 1.7 4.7 0.0 2.4 4.7
15_5_04hr 0.0 3.2 5.2 0.0 - 4.9 0.0 3.2 5.3
15_5_06hr 0.0 - 5.2 0.0 - 5.3 0.0 - 5.0
15_5_08hr 0.0 - 6.5 0.0 - 5.4 0.0 - 6.7
15_5_10hr 0.0 - 5.7 0.0 - 5.5 0.0 - 5.8
15_5_12hr 0.0 - 6.4 0.0 - 5.0 0.0 - 5.9

solving Model (8) and Algorithm 1 during the remaining experiments.

5.3 Improvements to the Sparse-Cut Approach

Our second set of experiments focuses on the sparse-cut heuristic. We first evaluate the λ-
parameterized sparse cuts from Section 4.3 and then follow up with an evaluation of the three
improvements from Section 4.4.

Table 7 shows the results for using the unaltered sparse cut in the first row and different
settings for λ in the sparse cut with a fixed absolute correction to each coefficient (Abs), a relative
correction to each individual coefficient (Rel without Balance) and finally the hybrid correction
(Relwith Balance). Each row represents the results averaged over five runs and the entire second
test set.

We can observe empirically that, regardless of the cut variant, lower values for λ result in
smaller MIP gaps. It is important to note, however, that the gap always relates to the current
master problem. Decreasing values for λ lead to more aggressive sparse cuts in the master
problem, i.e. , cuts with larger left-hand sides. As a result, these cuts yield stronger dual
bounds in the master problem, but may overestimate the true energy consumption to a higher
degree. Although the differences in energy savings potential are small to moderate, we observe
empirically that the best results are achieved with an absolute λ = −5 for ‘No Recovery’, the
unaltered heuristic cut for ‘Dwell Recovery’, and relative λ = −0.2 with balancing for ‘Full
Recovery’. We use the respective parameter settings as base runs in the next experiment.

Since adding an objective to the master problem and adding the net energy consumption
cut strongly interact with each other, we run a performance evaluation on all combinations
and summarize the results in Table 8. First of all, the gaps suggest that the explicitly added
objectives help Gurobi to find stronger bounds. We recall from Section 4.4 that ‘NetCon’ is a
lower bound on ‘ActualRecup’, which itself is a lower bound on ‘GrossCon’. Moreover, the two
objectives ‘NetCon’ and ‘GrossCon’ can easily be bounded by, e.g. , choosing the most energy
efficient departure configuration for each individual leg. If we compare ‘NetCon’ to ‘GrossCon’,
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Table 7: Performance comparison of heuristic approach with different parameter settings for
the adjusted sparse cuts. The base run is marked grey and the best result in each column is
highlighted in bold font.

Parameters No Recovery Dwell Recovery Full Recovery

Abs Rel Balance Gap (%) Saving (%) Gap (%) Saving (%) Gap (%) Saving (%)

0 0.0 False 54.3 6.8 54.6 5.9 52.1 5.7

10 0.0 False 59.9 6.7 60.2 5.4 57.4 5.6
5 0.0 False 57.1 6.7 57.4 5.3 54.7 5.8
-5 0.0 False 54.4 7.0 54.7 5.3 52.1 5.6
-10 0.0 False 54.3 7.0 54.6 5.5 52.0 6.0

0 0.2 False 66.0 6.8 66.4 5.3 63.3 5.7
0 0.1 False 60.2 6.8 60.5 5.5 57.6 5.8
0 -0.1 False 54.4 6.9 54.6 5.5 52.0 6.0
0 -0.2 False 54.4 6.8 54.7 5.5 52.0 5.8

0 0.2 True 65.7 6.7 66.1 5.3 63.5 5.6
0 0.1 True 60.1 6.8 60.3 5.3 57.8 5.7
0 -0.1 True 54.3 6.6 54.6 5.5 52.1 5.8
0 -0.2 True 54.3 6.8 54.6 5.8 52.0 6.0

Table 8: Performance of adding an objective to themaster problem and using the net consumption
cut. The base run is marked grey and the best result in each column is highlighted in bold font.

Parameters No Recovery Dwell Recovery Full Recovery

MA Obj. Netcon Cut Gap (%) Saving (%) Gap (%) Saving (%) Gap (%) Saving (%)

None False 54.4 7.0 54.6 5.9 52.0 6.0
ActualRecup False 47.8 4.2 47.5 5.0 45.9 4.9
GrossCon False 39.7 8.0 40.0 6.5 38.6 6.7
NetCon False 46.2 8.1 46.5 6.6 44.8 6.8

None True 23.4 9.0 23.9 7.7 30.1 7.0
ActualRecup True 21.3 5.6 20.8 6.3 26.0 6.1
GrossCon True 17.6 8.8 18.0 7.2 22.9 7.0
NetCon True 20.0 9.3 20.5 7.8 25.8 7.8

then we can observe that smaller values of the (easily bounded) master problem objectives
indeed correspond to larger gaps. Although ‘Actual’ does not cleanly fit this pattern and the
solution quality deteriorates for this objective, this is most likely a consequence of this objective
being piecewise linear and convex instead of simply linear, which in turn results in much longer
solution times for the master problem. For instance, in the case of ‘No Recovery’, the solving
process generates, on average, only 11 sparse cuts and Gurobi explores only a single node with
the actual recuperation objective in the master problem, whereas we get 1015 and 1033 sparse
cuts as well as 80678 and 85529 nodes for ‘NetCon’ and ‘GrossCon’, respectively. Finally, for
all three recovery strategies the net energy consumption cut has a larger positive impact than
explicitly adding any of the other objectives to the master problem. However, doing both yields
the best results for all three recovery models. Again, we use the best configuration—(NetCon,
True)—as baseline in the next experiment.

The final performance experiment evaluates the impact of a restart mechanism. Table 9
shows the results, where we can observe a slight improvement when restarts are being used.

5.4 Comparison of Recovery Strategies

To evaluate the cost and benefit of the recovery strategies, we compare the best results for each
recovery strategy consisting of the five runs on the seven instances in Table 10. On the cost side,
we use the energy consumption for ‘No Recovery’ as baseline and state the additional energy
cost for the other two recovery strategies. On the benefit side, we use two metrics to give an
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Table 9: Performance of the restart mechanism. The base run is marked grey and the best result
in each column is highlighted in bold font.

No Recovery Dwell Recovery Full Recovery

Restart Gap (%) Saving (%) Gap (%) Saving (%) Gap (%) Saving (%)

-1 20.0 9.3 20.5 7.8 25.8 7.8
500 20.0 9.5 20.4 8.0 25.9 7.9
1000 20.0 9.5 20.4 8.0 25.8 8.0
1500 20.1 9.3 20.4 7.9 25.9 8.1

Table 10: Cost and benefit of recovery strategies

Avg. #Deps. with Delay Avg. #Deps. by Minute

Recovery Additional Energy Cost (%) ≥ 10 s ≥ 20 s ≥ 30 s Punctual Delayed

None - 4464.7 2327.0 882.9 6444.7 1961.3
Dwell 1.1 2112.8 521.5 233.8 7457.1 948.9
Full 1.6 1981.8 416.0 197.5 7491.0 915.0

overview of the change in punctuality. For Avg. #Deps. with Delay we simply count the number
of legs that are delayed by a certain amount, averaged over the five runs and seven instances.
For Avg. #Deps. by Minute, suggested by our industry partner, we count a departure as delayed
if it departs at a later minute than originally planned. For example, if a specific leg is planned to
depart at 11:55:43, it will be counted as delayed if it departs at least 17 s late. The idea behind
this measurement is, first, that from the passenger’s perspective, departures are scheduled by
the minute, and second, connections to other means of public transport, as e.g. rail or bus, are
also scheduled by the minute. In short, we can observe that using spare dwell times to recover
from delays is a comparatively low-cost strategy to significantly reduce delays. In contrast, using
spare dwell and running times to recover from delays yields very little additional benefit at an
additional 0.5 % increase in energy consumption.

To summarize, the first experiment shows that the integratedMIP approach and the standard
Benders decomposition approach are not practically applicable to whole-day instances due to
the size of the models. However, the MIP approach remains relevant for small-scale instances,
as they could arise in moving-horizon approaches (see e.g. Glomb et al., 2022) or optimization
of periodic timetables. Second, on whole-day instances we can slightly improve the results
by increasing the aggressiveness of the sparse cuts (see Section 4.3, λ < 0) and substantially
improve solution quality by adding a linear objective to the master problem as well as adding
the net energy consumption cut. In our tests, the effect of a restart mechanism can be considered
slightly positive. Finally, our comparison between the recovery strategies shows that spare dwell
times pose a cheap and efficient way to improve punctuality, while shortening running times
provides much less improvement at a higher cost.

Before moving on to the conclusions, we would like to close the loop to our first example
from Figure 1, which represents the unaltered real-world instance relevant to our industry
partner VAG. Table 11 states the total energy consumption of the original timetable, the timetable
optimized without considering uncertainty, and the timetable optimized under uncertainty
with our new approach. The first interesting observation is that the deviations lead to a higher
energy consumption (Actual Timetable) in comparison to all departure and running times being
executed as planned (Planned Timetable). The optimization without uncertainty significantly
underestimates the actual energy consumption, while the difference between planned and actual
energy consumption is relatively small after optimization under uncertainty. This already gives
our industry partner a much better view on their energy consumption. Second, we can observe
that optimizing without uncertainty results in a 5.1 % lower total energy consumption in the
actual timetable. Third, we see a 9.4 % reduction after optimization under uncertainty, which
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Table 11: Energy savings potential for real-world instance

Total energy consumption (MWh)

Timetable Planned Timetable Actual Timetable

Original by VAG 45.1 49.0
Optimization without uncertainty 37.7 46.5
Optimization with uncertainty 44.7 44.4

shows that optimization under uncertainty indeed holds significant potential. We expect this
potential to increase even further, once enough scenario data becomes available such that the
synchronization constraints (7) can be relaxed or dropped entirely. The resulting additional
difficulty of the model poses an interesting topic for further research.

6 Conclusions and Outlook

The main result of this work are a new model and solution approach to improve an existing
timetable draft in terms of energy efficiency under uncertainty. The MIP model can, in principle,
be solved directly or via a Benders decomposition approach. However, both approaches rely on
solving large optimization models, and we therefore devise a sparse-cut heuristic to efficiently
compute high-quality solutions. We further improve the heuristic by first introducing a variant
where aggressiveness of the cut can be controlled using a parameter λ and then evaluating three
smaller improvements: an objective in the master problem, an auxiliary cut, and restarts. Our
computational experiments validate the effectiveness of the heuristic approach. Further, our
results show that shortening dwell times is an effective approach to improve punctuality while
shortening dwell and running times yields little additional benefit. There are two obviously
interesting topics for future research. First, once additional data becomes available, it would
be interesting to see how the results improve if the synchronization constraints are relaxed or
even dropped from the model. Second, existing and new real-time optimization algorithms
for delay recovery could be combined with the methods of this work to compute advanced
recoverable energy-efficient timetables under uncertainty. One approach could be to simulate
a nominal timetable using a real-time recovery algorithm and then deriving the sparse cut as
in our approach. If the simulation turns out to be a bottleneck in terms of computation time,
one could reduce computation times by simplifying or approximating the recovery behaviour.
The proper simulation could then be used only as a benchmark or a hybrid approach could be
produced by occasionally running the exact simulation.
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A Graph Model for Feasible Timetable Adjustments

We first explain the construction of the compatibility graph representing the feasible timetable ad-
justments as previously stated by Bärmann et al., 2022, Appendix B. The timetabling component
of the problem can then be solved as a clique problem with multiple-choice constraints CPMC for
which we summarize the stable set formulation, previously stated by Bärmann, Gemander et al.,
2020, Section 3.

We reuse and extend the notation from Section 2. Let LHW be the set containing all pairs of
legs consecutively traversing the same track in the same direction. For each (i1, j1, i2, j2) ∈ LHW

let ti1,j1,i2,j2 be the minimal headway time between the first and second leg. Analogously, let
LSHW , LD, LTT and LC be the sets containing all pairs of legs corresponding to the single-
track headway time constraints, dwell time constraints, terminal turnaround constraints and
connection constraints, respectively. Further, denote by ti1,j1,i2,j2 the minimal dwell or terminal
turnaround time between the legs (i1, j1) and (i2, j2). In the case of connection constraints, we
denote by tmin

i1,j1,i2,j2 the minimal connection time and by tmax
i1,j1,i2,j2 the maximal connection time.

The vertex set of the compatibility graph G, representing feasible timetable adjustments,
consists of one vertex for each leg and departure configuration, which is can be stated as

V(G) = {(i, j, d, r) : (i, j) ∈ J,(d, r) ∈ Cij}.

We choose for each leg (i, j) ∈ J exactly one departure configuration. Hence, we partition
the set V(G) into

V :=
{
{(i, j, d, r) : (d, r) ∈ Cij} : (i, j) ∈ J

}
.

The task of CPMC is to choose one vertex v ∈ Vi for each Vi ∈ V such that the chosen vertices
are compatible to each other, i.e. they form a clique in G. It remains to define the edge set E(G),
which is the union of the following subsets:

EHW :=
{
{(i1, j1, d1, r1), (i2, j2, d2, r2)} : (i1, j1, i2, j2) ∈ LHW , (d1, r1) ∈ Ci1,j1 , (d2, r2) ∈ Ci2,j2

with d1 + min{r1 − r2, 0}+ ti1,j1,i2,j2 ≤ d2
}

,

ESHW :=
{
{(i1, j1, d1, r1), (i2, j2, d2, r2)} : (i1, j1, i2, j2) ∈ LSHW , (d1, r1) ∈ Ci1,j1 , (d2, r2) ∈ Ci2,j2

with d1 + r1 ≤ d2
}

,

ED :=
{
{(i1, j1, d1, r1), (i2, j2, d2, r2)} : (i1, j1, i2, j2) ∈ LD, (d1, r1) ∈ Ci1,j1 , (d2, r2) ∈ Ci2,j2

with d1 + r1 + ti1,j1,i2,j2 ≤ j2
}

,

ETT :=
{
{(i1, j1, d1, r1), (i2, j2, d2, r2)} : (i1, j1, i2, j2) ∈ LTT, (d1, r1) ∈ Ci1,j1 , (d2, r2) ∈ Ci2,j2

with d1 + r1 + ti1,j1,i2,j2 ≤ j2
}

,

EC :=
{
{(i1, j1, d1, r1), (i2, j2, d2, r2)} : (i1, j1, i2, j2) ∈ LC, (d1, r1) ∈ Ci1,j1 , (d2, r2) ∈ Ci2,j2

with tmin
i1,j1,i2,j2 ≤ d2 − d1 + r1 ≤ tmax

i1,j1,i2,j2

}
,

E :=
{
{(i1, j1, d1, r1), (i2, j2, d2, r2)} : (i1, j1), (i2, j2) ∈ J, (d1, r1) ∈ Ci1,j1 , (d2, r2) ∈ Ci2,j2

with (i1, j1) 6= (i2, j2)

and (i1, j1, i2, j2) /∈ LHW ∪ LSHW ∪ LTT ∪ LC}.
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We would like to note that for ease of presentation we omit the division of EC into two subtypes
of constraints as it can be seen as a minor implementation detail and we refer the interested
reader to Bärmann et al., 2022.

Given a (compatibility) graph G with partition V of its vertex set V(G), the corresponding
stable set formulation of CPMC, as stated by Bärmann, Gemander et al., 2020, is given by

find x

s.t. ∑
v∈Vi

xv = 1, Vi ∈ V ,

∑
v∈S

xv ≤ 1, S is a stable set in G,

xv ∈ {0, 1}, v ∈ V(G).

Acknowledgements

This research was supported by the Bavarian Ministry of Economic Affairs, Regional Develop-
ment and Energy through the Center for Analytics – Data – Applications (ADA-Center) within
the framework of “BAYERN DIGITAL II” (20-3410-2-9-8). Moreover, we would like to thank
Johannes Thürauf for reading a former version of this manuscript and providing comments that
helped improve the paper.

28


	Introduction
	Problem Description
	Stochastic Optimization MIP Model
	Stochastic Optimization Model without Recovery
	Alternate Recovery Strategies

	Benders Decomposition Approach
	Basic Method
	Sparse-Cut Heuristic
	Sparse Cut with Additional Slack
	Further Improvements to the Solution Approach

	Computational experiments
	Experimental Setup
	Comparison of the Solution Approaches
	Improvements to the Sparse-Cut Approach
	Comparison of Recovery Strategies

	Conclusions and Outlook
	Graph Model for Feasible Timetable Adjustments

