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Abstract
We introduce V-polyhedral disjunctive cuts (VPCs) for generating valid inequali-

ties from general disjunctions. Cuts are critical to integer programming solvers, but
the benefit from many families is only realized when the cuts are applied recursively,
causing numerical instability and “tailing off” of cut strength after several rounds. To
mitigate these difficulties, the VPC framework offers a practical method for generating
strong cuts without resorting to recursion. The framework starts with a disjunction
whose terms partition the feasible region into smaller subproblems, then obtains a col-
lection of points and rays from the disjunctive terms, from which we build a linear
program whose feasible solutions correspond to valid disjunctive cuts. Though a naïve
implementation would result in an exponentially-sized optimization problem, we show
how to efficiently construct this linear program, such that it is much smaller than
the one from the alternative higher-dimensional cut-generating linear program. This
enables us to test strong multiterm disjunctions that arise from the leaf nodes of a
partial branch-and-bound tree. In addition to proving useful theoretical properties of
the cuts, we evaluate their performance computationally through an implementation in
the open-source COIN-OR framework. In the results, VPCs from a strong disjunction
significantly improve the gap closed compared to existing cuts in solvers, and they also
decrease some instances’ solving time when used with branch and bound.

1 Introduction
This paper presents a new framework for generating disjunctive cutting planes, or cuts, in
which a large number of strong cuts can be generated efficiently and nonrecursively. We
are motivated by a crucial drawback of many existing cut techniques, in their reliance on
recursion to reach strong cuts, i.e., by computing cuts from previously-derived ones. This can
result in numerical issues (e.g., due to compounding inaccuracies) and a “tailing off” of the
strength of the cuts in later rounds [18, 30, 17, 59, 50]. Our primary computational innovation
to circumvent recursion is an efficient use of the V-polyhedral perspective, which has been
avoided in the past because, used naïvely, it yields intractable representations of instances.
The framework we introduce overcomes this hurdle and facilitates a cut generation scheme
formulated in the original dimension of the problem, as opposed to a commonly-used higher-
dimensional representation. This enables us to test large multiterm disjunctions arising from
partial branch-and-bound trees, resulting in cuts that are strong (compared to cuts currently
deployed in solvers) and have the potential to reduce solving time.
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One way to derive a general-purpose cut is from a disjunction, which we define precisely
later in this section. Balas [7] introduced the prevailing paradigm for disjunctive cuts, via a
cut-generating linear program (CGLP) with additional variables beyond those defining the
cut. The CGLP is too expensive to work with, despite being polynomially-sized (in the
size of the original instance and disjunction). As a result, solvers only use this idea for
the simplest—split—disjunctions [15, 16]. Successfully applying such lift-and-project cuts
(L&PCs) for splits hinges on the ability to compute the cuts in the space of the original
linear program, which is possible due to a correspondence of basic solutions of the extended
formulation to those in the lower-dimensional space [14, 8, 21]. However, although such a
correspondence exists for split disjunctions, it does not necessarily exist for more general
ones [5, 11]. Hence, efficiently producing cuts from stronger disjunctions calls for a different
perspective.

Our starting point for developing such a computationally-efficient procedure is a polar
representation of polyhedra: rather than the inequality description—which is how an in-
stance is usually provided and what underpins the CGLP—every polyhedron can also be
equivalently represented by its V-polyhedral description, i.e., through a collection of points
and rays. Cuts can be generated by inputting these points and rays into a “point-ray” linear
program with the same number of variables as that of the original problem. The drawback
of the point-ray approach is that the number of rows of the linear program will typically be
exponentially large in the size of an inequality formulation, and these rows are necessary in
the sense that dropping them may result in invalid cuts. For this reason, prior work that has
adopted the V-polyhedral perspective resorts to row generation to guarantee validity [53, 49].

We show how to avoid the expensive row generation step via a properly chosen compact
collection of points and rays that we prove suffices to produce valid cuts, albeit a subset of the
entire pool of possible disjunctive cuts. We prove conditions under which the cuts obtained
from our V-polyhedral relaxation define facets for the disjunctive hull; for example, for a
split disjunction, every cut we generate is facet-defining when there is no primal degeneracy.

Most existing cut-generation procedures are applied to shallow disjunctions, such as split
disjunctions. Typically, strong cuts are attained by recursive applications, deriving cuts
from other cuts, rather than only from the inequalities of the original system, and several
shallow disjunctions are considered in parallel. In contrast, the efficiency of our technique
enables testing larger disjunctions (up to 64 terms in our experiments). Our disjunctions are
derived from generating a partial branch-and-bound tree for each instance. Theoretically,
disjunctive cuts from such trees can solve the original integer programming problem without
recursion [40, 24].

Another difference in our approach from usual cut generation paradigms is our choice
of objective functions for the point-ray linear program. Instead of producing cuts that are
maximally violated by an optimal solution to the linear programming relaxation, we aim for
a diverse set of cuts with wider coverage of the disjunction: we explicitly aim for inequalities
that are supporting on different points and rays. In the process, we constructively prove
that cuts from our relaxed point-ray collection can provide the same objective value as
from using the complete (exponential-sized) point-ray collection. Further, we develop and
refine an objective selection scheme, which is a dynamic cut selection procedure, in that the
next target direction depends on what cuts have been generated before. Our theory also
aims to avoid infeasibility, unboundedness, and duplicate cuts while solving the point-ray
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linear program, as these situations impose computational burden without generating new
inequalities.

Supporting the theoretical results, our computational experiments indicate that applying
our cuts, which we call V-polyhedral (disjunctive) cuts (VPCs), significantly improves the
percent integrality gap closed over the baseline of Gomory mixed-integer cuts (GMICs) [38]
and the default cuts for the leading commercial solver Gurobi [39]. To complement our
empirical evaluation of the strength of VPCs through the integrality gap they close, we also
test the effect of VPCs on the solving time of Gurobi. The branch-and-bound results do not
show an improvement in solver performance when using VPCs on average, but we observe
a benefit for a number of instances. Our investigation leaves open the question of how to
identify instances, hyperparameter settings, or solver modifications to take advantage of
stronger disjunctive cuts in practice.

Paper organization. We describe properties of our cut generation scheme in Section 2,
such as conditions under which we obtain facet-defining inequalities for the disjunctive hull
and theoretical results that benefit our implementation. Section 3 specifies the disjunctions
used in our experiments. Section 4 provides theory for the objective directions we consider.
The computational results in Section 5 indicate that a vital and challenging question that
remains outstanding is efficiently selecting multiterm disjunctions that yield good cuts.

Notation. Let P denote a polyhedron described by a set of m inequalities:

P ..= {x ∈ Rn : Ax ≥ b}. (P )

Let PI be the integer-feasible region:

PI
..= {x ∈ P : xj ∈ Z for all j ∈ I}, (PI)

where I ⊆ [n] ..= {1, . . . , n} is the index set of the integer-restricted variables. We assume
that P is full dimensional and pointed, all data is rational, and all variable bounds are
subsumed by Ax ≥ b.1 For a given c ∈ Rn, our goal is to solve the mixed-integer program

min
x∈PI

cTx. (IP)

We start by solving the linear programming relaxation of (IP), obtained by removing the
integrality restrictions on the variables:

min
x∈P

cTx. (LP)

This yields an optimal solution, x̄, which we assume does not belong to PI . To proceed,
integer programming solvers next tighten the relaxation P by the addition of inequalities
that are valid for PI but remove some of P . One way these cuts can be generated is via

1The full-dimensionality assumption is made for ease of exposition and the subsequent results generally
apply, with minor modifications, when this assumption is relaxed.
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a valid disjunction, which creates a partition such that PI is contained in the union of the
disjunctive terms. Concretely, a disjunction takes the form∨

t∈T

{x ∈ Rn : Dtx ≥ Dt
0}. (1)

where T is a finite index set. We denote disjunctive term t ∈ T by

P t ..= {x ∈ P : Dtx ≥ Dt
0}. (P t)

Let PD
..= cl conv(∪t∈T P t) be the disjunctive hull, the closed convex hull of the elements of

P satisfying the disjunction. We assume the disjunction satisfies PI ⊆ PD and x̄ /∈ PD.

2 Point-ray linear program
Let P and R denote sets of points and rays in Rn.2 Define the point-ray linear program
(PRLP), taking as an input the point-ray collection (P ,R) and an objective direction w ∈
R

n, as follows:

min
α,β

αTw

αTp ≥ β for all p ∈ P
αTr ≥ 0 for all r ∈ R.

(PRLP)

Every feasible solution (α, β) to (PRLP) is an inequality αTx ≥ β; these are what we refer
to as VPCs. Define the point-ray hull as conv(P) + cone(R).

We immediately address the nature of the cuts obtainable from (PRLP). Theorem 1
shows that the extreme ray solutions to (PRLP) correspond to facet-defining inequalities for
the point-ray hull (which, in accordance with convention, we simply refer to as facets of the
point-ray hull).

Theorem 1. The inequality αTx ≥ β is valid for conv(P) + cone(R) if and only if (α, β) is
a feasible solution to (PRLP). The inequality defines a facet of the point-ray hull if and only
if the solution (α, β) is an extreme ray of (PRLP).

Proof. Every point x̂ ∈ conv(P) + cone(R) can be expressed as a convex combination of the
elements in (P ,R). For any inequality αTx ≥ β satisfied by all of these points and rays,
it follows that αTx̂ ≥ β. Every extreme ray (α, β) to (PRLP) has the additional property
that n affinely independent points and rays from the point-ray collection satisfy αTx = β,
which means that the inequality defines a facet of conv(P)+cone(R). The reverse directions
follow, respectively, from the definitions of valid and facet-defining inequality.

There are two primary challenges encountered with the PRLP. First, the point-ray collec-
tion needs to be chosen judiciously, to balance the strength of the obtainable VPCs with the

2In this paper, rays refer to either (1) a direction of unboundedness, or (2) an “extended edge” of a
polyhedron, i.e., an edge extended (to infinity) from one of its endpoints.
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time required to generate them, while ensuring validity of the cuts. Second, it is critically
important to intelligently select the objective directions w for (PRLP). The next sections
are devoted to addressing these questions. We first detail properties of the feasible region
of (PRLP). In particular, we describe how we normalize the PRLP, prove necessary and
sufficient conditions for VPCs to be valid cuts for PI , and discuss the conditions under which
VPCs are facet-defining for the disjunctive hull.

2.1 Normalization of the PRLP
As presented, the linear program (PRLP) does not have a finite objective value for any
nonzero objective direction w: if (α, β) is feasible, then so is (λα, λβ) for any nonnegative
λ ∈ R. In theory, each ray (α, β) yields a valid cut; however, in practice, the ray returned
by a solver might not be extreme, which may correspond to a weak cut. This is the same
well-documented issue that arises with the CGLP. To resolve this, a normalization is applied,
truncating the cone defining the feasible region of (PRLP). The choice of normalization can
have a significant effect on the cuts that are ultimately generated [34, 47].

One solution is to constrain the magnitude of the cut coefficients, e.g., via (a linearization
of)

∑n
i=1|αi| ≤ 1 [15]. This normalization has the undesirable characteristic that it may add

extreme points to the feasible region of (PRLP) that do not correspond to facets of the
disjunctive hull.

A second normalization proposed by Balas and Perregaard [13]—also used by Perregaard
and Balas [53] and Louveaux, Poirrier, and Salvagnin [49]—is to add the constraint αT(p−
x̄) = 1, for some p ∈ PD. This idea has been studied by Serra [56] and Conforti and Wolsey
[28], when the role of the objective and normalization is swapped. This guarantees that
(PRLP) is always bounded and has other nice properties, but depends on a good choice of
p.

We take a third approach for normalizing (PRLP) of fixing β to a constant value. As
observed by Balas and Margot [12], it suffices to consider only three values for β: {−1, 0, +1}.
This might indicate that one would need to solve three linear programs to generate cuts with
such a normalization, as discussed by Louveaux, Poirrier, and Salvagnin [49]. We avoid this
issue by formulating (PRLP) in the nonbasic space relative to x̄. In this space, the (LP)
optimal solution x̄ is the origin. As a result, if we are looking for inequalities that are violated
by x̄, it suffices to fix β = 1. Another advantage of working in the nonbasic space is that
(PRLP) may be much sparser than if it were formulated in the structural space of variables.
This is because the number of nonzero components in every row roughly corresponds to the
number of simplex pivots from x̄ to the point or ray for that row. When we normalize with
β = 1, every basic feasible solution to (PRLP) corresponds to an inequality violated by x̄.

One limitation imposed by our normalization is that the cuts we generate are only those
that remove x̄. It is clearly necessary to remove this point in order to make progress beyond
the linear programming relaxation towards an integer-feasible solution, but it is a “transient”
point, in the sense that it is no longer truly important after the first cut that removes it
(see, e.g., the discussion by Cadoux and Lemaréchal [23]). This limitation is easily avoided
by generating cuts with β = 0 or −1, but effectively implementing this idea requires an
independent in-depth investigation that we leave to future research.
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2.2 Proper point-ray collections: ensuring valid inequalities
From Theorem 1, we have that feasible solutions to (PRLP) are valid for the point-ray hull.
We further need to ensure that VPCs are valid for PI . The point-ray collections with this
guarantee will be called proper, adapting the definition from Kazachkov et al. [44] within
the generalized intersection cut paradigm [12], which uses a linear program analogous to the
PRLP but derives points and rays via a different procedure. We remove a dependency on x̄
present in the prior definition, which enables our framework to produce arbitrary disjunctive
inequalities that do not necessarily cut x̄ and can be stronger than any intersection cut ob-
tainable from the same disjunction [11]. This modification also simplifies the characterization
of proper point-ray collections.

Definition 2. The point-ray collection (P ,R) is called proper if αTx ≥ β is valid for PI

whenever (α, β) is feasible to (PRLP).

As a direct corollary to Theorem 1, we obtain a necessary and sufficient condition for a
point-ray collection to be proper.

Corollary 3. A point-ray collection (P ,R) is proper if and only if PI ⊆ conv(P)+cone(R).

Proof. Sufficiency of the condition follows from Theorem 1: every feasible solution to (PRLP)
is valid for conv(P) + cone(R) and hence for PI . Necessity is similarly evident as, otherwise,
there exists an extreme ray of (PRLP) that cuts a point in PI .

Of course, we do not work with the integer hull directly. The intermediary is the dis-
junctive hull. The next corollary is a key result for the development of a practical procedure
working with points and rays. It states that as long as the point-ray hull forms a V-polyhedral
relaxation of PD, then the point-ray collection is proper.

Corollary 4. A point-ray collection (P ,R) is proper if P t ⊆ conv(P) + cone(R) for all
t ∈ T , or, equivalently, if PD ⊆ conv(P) + cone(R).

2.3 Simple VPCs from simple cone relaxations
To generate valid VPCs from the PRLP, we first have to compute a proper point-ray col-
lection. A natural starting point is a V-polyhedral description of the disjunctive hull. For
t ∈ T , let P t∗ and Rt∗ be the complete set of extreme points and rays of P t, and define
P∗ ..= ∪t∈T P t∗ and R∗ ..= ∪t∈TRt∗. As a corollary of Theorem 1, we know not only that
(P∗,R∗) is proper but also that basic feasible solutions of the normalized (PRLP) from this
point-ray collection correspond to facet-defining inequalities for the disjunctive hull, PD.

Corollary 5. The point-ray collection (P∗,R∗) is proper. Every extreme ray solution (α, β)
of the associated (PRLP) corresponds to a facet αTx ≥ β of PD. Conversely, for every facet
αTx ≥ β of PD, the solution (α, β) to (PRLP) is feasible and extreme.

The complete V-polyhedral description of each disjunctive term is, however, impractical,
as the number of points and rays can grow exponentially large in m and n. A reasonable
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alternative would be to use some small subset of the point-ray collection (P∗,R∗). It is not
difficult to see that this could lead to invalid cuts, as we show by example in the extended
manuscript [10]. It is for this reason that Perregaard and Balas [53] and Louveaux, Poirrier,
and Salvagnin [49] employ constraint generation to obtain valid cuts.

We take an alternative approach, based on Corollary 4: instead of pursuing all facet-
defining inequalities for the disjunctive hull, we use a relaxation of PD with a compact
V-polyhedral description. One convenient relaxation for each disjunctive term is the basis
cone Ct at an optimal solution pt to minx{cTx : x ∈ P t}, formed from pt and a cobasis
N (pt) associated with pt. This cone is defined as the intersection of the n inequalities
corresponding to the nonbasic variables, which are indexed by N (pt), and it has a compact
V-polyhedral description, with only one extreme point (pt) and n extreme rays, which we
denote rt1, . . . , rtn. We refer to the union of these points and rays across all terms as the
simple point-ray collection (P0,R0), where P0 ..= ∪t∈T {pt} and R0 ..= ∪t∈T {rtj}j∈[n], and
we will use the shorthand P 0

D
..= conv(P0) + cone(R0) to denote the corresponding simple

point-ray hull. The specific PRLP used in our experiments is given below as (PRLP0). Recall
that we formulate the problem in the nonbasic space. To make this explicit, for any x ∈ Rn,
we use x̃ for its representation in the nonbasic space.

min
α̃

α̃Tw̃

α̃Tp̃t ≥ 1 for all t ∈ T
α̃Tr̃tj ≥ 0 for all t ∈ T , j ∈ [n]

(PRLP0)

The cuts from (PRLP0) will be called simple VPCs. We state their validity as Proposition 6.

Proposition 6. The simple point-ray collection (P0,R0) is proper.

Proof. The result follows from Corollary 4 and the fact that PD ⊆ P 0
D.

It is useful at this point to make a theoretical comparison between the PRLP and extended
formulation used for the CGLP. Any valid disjunctive cut can be theoretically found with a
CGLP having size polynomial in the dimensions of the original problem and the number of
disjunctive terms. In particular, the CGLP with a fixed right-hand side β has (n + 1) · |T |
constraints and n + (m + mt) · |T | variables (where mt denotes the number of rows of
Dt). It is similarly possible to produce all valid disjunctive cuts with the V-polyhedral
framework, when (P ,R) = (P∗,R∗), as we proved in Corollary 5. The disadvantage is that
the PRLP may now have exponentially many constraints, which is why we turned to the
relaxation-based generator. This yields (PRLP0), whose feasible region is defined by only
(n+1) · |T | constraints (the same as for the CGLP) and only n variables. Moreover, working
in the original dimension of the problem confers significant computational efficiency over the
CGLP framework, as we discuss in Section 3 via the experiments of Perregaard and Balas
[53], but the tradeoff is being able to generate merely a subset of all valid disjunctive cuts.
Nevertheless, the subsequent theoretical results of this section and the later computational
results indicate that this subset already captures strong disjunctive cuts.
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x̄
x̄

C1

C2

P 1

P 2

Figure 1: This example shows how the simple point-ray collection could limit the set of
obtainable inequalities valid for the disjunctive hull. The right panel shows that the dashed
inequality (that is valid for PI) would violate a ray of the cone C2. The cones are shown as
two dimensional for ease of illustration.

2.4 Simple VPCs corresponding to facets of the disjunctive hull
In this section, we compare the disjunctive hull PD with the relaxation P 0

D. Although P 0
D

is a drastic relaxation of PD, in that it is defined by a small fraction of the inequalities
defining PD, we show that P 0

D can tightly approximate PD in the region of interest to us. We
distinguish between two types of facets of P 0

D: those that are facets of PD, and those that
are not. Clearly not all facets of PD are captured by P 0

D, which we illustrate in Figure 1.
The results below concern precisely which facets of PD exist as facets of P 0

D.
Consider a facet-defining inequality of P 0

D that is violated by x̄ and a corresponding basic
feasible solution to (PRLP0), after adding slack variables on the constraints. Since the cut
coefficient variables α̃ are unrestricted in sign, the nonbasic variables in this solution are
all slack variables, and the corresponding tight constraints of (PRLP0) identify n affinely
independent points and rays of (P0,R0) that lie on the inequality and certify that it defines
a facet of P 0

D. We call these the “nonbasic points” and “nonbasic rays” with respect to the
basic feasible solution.

By construction of the simple point-ray collection, each of the nonbasic points also belongs
to PD. Now assume that, for each of the nonbasic rays r, there is a point p ∈ P0 tight for
the cut and a λ > 0 such that pr

..= p + λr ∈ PD, which is thus also on the cut. Then
the nonbasic points and the points pr for the nonbasic rays certify that the inequality also
defines a facet of PD.

This assumption is, unfortunately, not generally satisfied: for some nonbasic rays, we
might not find a point in PD corresponding to that ray. One difficulty, illustrated in the
example shown in Figure 2, is that although a ray originates from some particular point and
term (when building the point-ray collection), it is ultimately added to all points in P0 to
calculate P 0

D. In this example, a four-term disjunction is taken. The first panel shows P ; the
second panel shows PD, as well as P t and the cones Ct for each t ∈ [4], with C1 labeled;3 and
the third panel shows P 0

D and the points and rays (as wavy arrows) that are tight for each of
3For simplicity in making the example, these Ct are not basis cones, due to degeneracy.
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x̄

C1

F1

r
C1

r
F2

Figure 2: Rays in the point-ray collection impact the set of cuts that can be generated. The
dashed wavy line in the third panel corresponds to a ray r that is added to R0 from one
term of the disjunction, but affects the point-ray hull when it originates from a point from
a different term.

the facets of this point-ray hull. Consider the ray r of C1 labeled in two places in the third
panel; it is added to the collection from one disjunctive term but impacts two facets. The
effect of r is it causes F1 (a facet-defining inequality for PD) to be invalid for the point-ray
hull, and it adds a facet (F2) to the point-ray hull that is redundant for P .

Consider a basic feasible solution of (PRLP0) and associated cut αTx ≥ β. If rtj is a
nonbasic ray in this solution, but there is no term t′ ∈ T for which rtj is an extreme ray of
Ct′ and αTpt′ = β, then we call this a stray ray (for the facet). Note that t′ ̸= t is possible if
a ray is extreme for multiple terms. With this, we say that a facet of P 0

D is standard if there
is a corresponding basis of (PRLP0) with no stray rays, i.e., when α̃Tr̃tj = 0 (with the row’s
slack variable nonbasic) implies that α̃Tp̃t′ = 1, for some t′ ∈ T for which rtj is an extreme
ray of Ct′ . Thus, facet F2 in Figure 2 is not standard, due to stray ray r from C1. We apply
this concept in Theorem 7 to state a sufficient condition for a facet of the simple point-ray
hull to be a facet of the disjunctive hull.

Theorem 7. Suppose the basis defining pt is unique for each t ∈ T . If a facet of P 0
D is

standard, then it is a facet of PD that cuts x̄.

Proof. Given a standard facet of P 0
D and a corresponding basic feasible solution of (PRLP0)

with no stray rays, we construct n affinely independent points from PD that lie on the facet
based on the nonbasic points and rays in this solution. For each nonbasic ray r ∈ R0, there
is a term t ∈ T such that r is an extreme ray of Ct and the point pt lies on the facet. Since
the basis defining pt is not primal degenerate, for small enough λ > 0, the point pr

..= p + λr
is in P t (and thus in PD), as otherwise the ray would be cut by a hyperplane of P t that is
tight at pt but not defining Ct. The nonbasic points—all belonging to PD—and the points
pr provide the desired n affinely independent points.

The requirement that the facet of PD has to cut x̄ is due to the normalization of (PRLP0)
by β̃ = 1.

The case of a split disjunction deserves special attention given its importance in prior
work, especially in the context of L&PCs. Although a facet of PD is not necessarily a simple
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VPC (whereas it exists as an L&PC), we can conclude the converse using our much more
compact formulation and Theorem 7, i.e., that all simple VPCs are facet-defining for the
disjunctive hull.

Theorem 8. Suppose that (1) is a split disjunction and the bases defining p1 and p2 are
unique. Then every facet of P 0

D that is tight on both p1 and p2 is a facet of PD. Moreover,
every facet of PD that is tight on both p1 and p2 and cuts x̄ exists as a facet of P 0

D.

Proof. For the first statement, our assumptions imply that every facet of P 0
D that is tight

on both p1 and p2 is standard, because then all points of P have zero slack, so there can be
no stray rays. The second statement follows from convexity, in that a facet of PD that is
tight on pt will be valid for Ct, t ∈ {1, 2}, as otherwise that facet cuts a ray of Ct and the
corresponding point from PD in the ray’s relative interior.

Theorem 8 can be extended to more general disjunctions for facets of P 0
D that are tight

on all points pt, t ∈ T .

3 Choosing strong disjunctions
The previous section introduces our computationally-viable way to generate disjunctive cuts
through the PRLP via a V-polyhedral relaxation of the given disjunctive hull. To complete
the setup of the constraints of (PRLP), it remains to specify which class of disjunctions we
will use in our experiments.

Much of the focus in the recent literature on cutting planes has been on generating
stronger cuts from shallow disjunctions, i.e., those that utilize relatively few (one or two)
integer variables, based on indices of integer variables that are fractional in x̄. This in-
cludes disjunctions based on the complements of triangles, quadrilaterals, and crosses. To
compensate for the weakness of the disjunction, typically cuts are generated from several
disjunctions from the same class in each round. These families of disjunctions do contain
cuts that outperform Gomory cuts, but one needs to carefully select which disjunctions to
test within each family, and the computational cost associated with finding the stronger cuts
often outweighs their benefit (see, e.g., [32]).

We circumvent some of these difficulties by expending additional effort to generate one
strong “deep” disjunction per instance for cut generation. Specifically, the disjunctions
we define come from the set of leaf nodes of a partial branch-and-bound tree.4 A partial
branch-and-bound tree has the advantage of conveying additional information about (IP)
(with respect to an alternative disjunction with the same number of terms obtained with-
out branching). For instance, the partial tree may be asymmetric and include pruning by
infeasibility, by integrality, and by bound. We demonstrate this by example in Figure 3,
contrasting a cross disjunction generated from two integer variables x1 and x2 to a four-term
disjunction that might be obtained using the branch-and-bound process.

4Besides intuitive appeal, our choice of disjunctions is further bolstered by the results in Appendix G
of the extended manuscript [10], indicating that VPCs from a multitude of split or cross disjunctions are
weaker.
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x1 ≤ 0 x1 ≥ 1

x2 ≤ 0 x2 ≥ 1
x2 ≤ 0 x2 ≥ 1

(a) The disjunction is all possible assignments of
x1 and x2.

x1 ≤ 0 x1 ≥ 1

x2 ≤ 0 x2 ≥ 1
x3 ≤ 0 x3 ≥ 1

x2 ≤ 0 x2 ≥ 1

x4 ≤ 0 x4 ≥ 1

(b) A different variable is branched on, resulting
in some pruned nodes and two stronger disjunc-
tive terms.

Figure 3: Two four-term disjunctions (the leaf nodes of the trees).

Disjunctive cuts coming from partial branch-and-bound trees have previously been pro-
posed and tested in several contexts, indicating the potential impact of a more efficient
method for obtaining such cuts. The majority of these previous experiments rely on variants
of the higher-dimensional CGLP, e.g., in the context of the cutting plane tree algorithm [24,
25] and in stochastic mixed-integer programming applications [55, 52, 58, 51, 36, 54]. A
famous example is the computational experience of solving the seymour problem with the
aid of L&PCs, as documented by Ferris, Pataki, and Schmieta [33].

Methods resembling the VPC approach include the aforementioned cuts from the V-
polyhedral perspective based on row generation [53, 49]. One takeaway from the paper by
Perregaard and Balas [53] is a comparison to generating disjunctive cuts via solving the
higher-dimensional CGLP: the authors conclude that solving the CGLP becomes relatively
much slower as the number of terms of the disjunction grows, a result that would be more
pronounced if the expense of row generation were avoided. In other closely related work,
Chvátal, Cook, and Espinoza [27] experiment with partial branch-and-bound trees as part
of local or target cut algorithms [6, 22], which are dual to the separation schemes in this
paper and that of [53, 49]. Most recently, Chen and Luedtke [26] generate objective cuts
from multiterm disjunctions in the context of two-stage stochastic programs.

We refer the interested reader to the dissertation of Kazachkov [42] for a more in-depth
treatment of related literature.

4 Choosing appropriate objectives
Having set up the constraints of the PRLP, we now analyze the theoretical strength of VPCs
to drive our choices of objective functions w̃ for (PRLP0). Choosing these carefully is critical
to the success of any VPC algorithm, as the objectives directly determine the nature of the
VPCs obtained. Aside from the type of cuts obtained, it is also important to make the
cut-generating process efficient. We say that every time we solve (PRLP) and a new cut is
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not generated, a failure occurs. In an early implementation of VPCs, failures were frequent
(over 85% of the objectives tried).

One reason for failure is that (PRLP0) may be infeasible for a particular point-ray col-
lection. This occurs, for instance, if x̄ belongs to P 0

D (feasible solutions of (PRLP0) are
inequalities that separate x̄, the origin in the nonbasic space). Figure 2 actually illustrates
such a situation. The next proposition gives a sufficient condition for the feasibility of
(PRLP0) that we use in our implementation, though it can be extended to apply to (PRLP)
more generally. Let p∗ denote a point from P0 with minimum objective value, i.e.,

p∗ ∈ arg min
t
{cTpt : t ∈ T }. (p∗)

Proposition 9. If c̃Tp̃∗ > 0, then (PRLP0) is feasible.

Proof. It suffices to observe that α̃ = c̃/c̃Tp̃∗ is a feasible solution to (PRLP0), corresponding
to the objective cut α̃Tx̃ ≥ 1, equivalently cTx ≥ cTp∗. For t ∈ T , α̃Tp̃t = c̃Tp̃t/c̃Tp̃∗ ≥ 1 by
definition of p∗. For r ∈ R0, we need to show that cTr ≥ 0. This follows from the fact that
pt ∈ arg minx{cTx : x ∈ P t}, which implies that pt is also optimal when minimizing over Ct.
For any ray r ∈ Ct, for all λ > 0, the point pt +λr belongs to Ct. Hence, cTpt +λcTr ≥ cTpt.

This condition is satisfied, for example, whenever each disjunctive term’s LP relaxation has
an optimal objective value worse than that of the original LP.

The two other primary reasons for failures we observed were that, for a given objective
direction w̃: (1) (PRLP0) was feasible but unbounded, or (2) (PRLP0) had a finite optimal
solution but the corresponding cut was a duplicate of a previously generated cut. We will
not be able to completely eliminate failures, but in the remainder of this section, we work
towards choosing objectives that help reduce the failure rate. At the same time, we will
target generating strong VPCs, while mostly ignoring the potential effect of the cuts within
branch and bound; this latter goal is poorly understood and hence difficult to target directly.

The first candidate for an objective direction is to maximize the violation by x̄, as is done
in the case of L&PCs. Unfortunately, in the nonbasic space and with β = 1, x̄ is simply the
origin and all cuts have violation equal to 1. As proxies, we use two other objectives. First,
we try the all-ones objective, w̃ = e. The interpretation is that we seek an inequality that
puts equal weight on cutting each of the rays of the basis cone at x̄. Second, we add to P
a round of GMICs, separated from x̄, and calculate a new optimal solution x′; we then use
w̃ = x̃′, which finds a cut maximizing the violation with respect to x′.

Finding cuts that maximize violation with respect to points not in PD is a paradigm
that may place too much emphasis on cutting away irrelevant parts of the relaxation. The
alternative is to find inequalities that minimize the slack with respect to points that do
belong to PD. Within this latter perspective, we are able to utilize whatever structural
information we possess about the disjunctive hull. We will now discuss precisely what kind
of information can be inferred from our V-polyhedral relaxations of the disjunctive hull.

The next result states that, despite the vastly relaxed simple point-ray collection, the
optimal value over the disjunctive hull can be obtained by optimizing over the points in P0.
Proposition 10. The point p∗ ∈ arg minp{cTp : p ∈ P0} is also an optimal solution to
minx{cTx : x ∈ P 0

D} and to minx{cTx : x ∈ PD}. Moreover, there are n facets of P 0
D that can

be added to P such that p∗ is also an optimal solution to the resulting relaxation.
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Proof. This is a direct consequence of the fact that pt ∈ arg minx{cTx : x ∈ P t} for all
t ∈ T . The n inequalities are simply the ones determined by the cobasis of p∗ from solving
minx{cTx : x ∈ P 0

D}.

We say that cTp∗ is the disjunctive lower bound and examine whether we can achieve it
via VPCs. Note that we can always add the inequality cTx ≥ cTp∗, but this is generally
counterproductive, as such objective cuts tend to create multiple optimal solutions to the
subsequent relaxation, which cause difficulties for solvers.

By Proposition 10, we know that we can attain the disjunctive lower bound via n facets
of the point-ray hull that are tight at p∗. One way to generate a cut tight at p∗ is to use
the objective direction w̃ = p̃∗. Absent numerical issues, the optimal solution will be some
ᾱ such that ˜̄αTp̃∗ = 1. Though this is only one cut, it can be used to find other objective
directions. We will work with a modified (PRLP0), which we refer to as PRLP=, in which
the constraint α̃Tp̃∗ ≥ 1 is changed to α̃Tp̃∗ = 1. Let R be the set of rays from R0 that are
not tight for the cut ˜̄αTx̃ ≥ 1, i.e., R ..= {r ∈ R0 : ᾱTr > 0}.

Proposition 11. PRLP= with objective direction w̃ = r̃, r ∈ R, has a finite optimal so-
lution. The optimal value is strictly less than ˜̄αTr̃ only if the resulting cut is distinct from
˜̄αTx̃ ≥ 1. The optimal value is zero if and only if there exists a facet of P 0

D that cuts x̄ and
is tight on r.

Proof. The fact that PRLP= is finite and bounded is a direct result of the constraint α̃Tr̃ ≥ 0
and the feasibility of PRLP=. The second statement is obvious. The last statement comes
from the one-to-one correspondence between basic feasible solutions to PRLP= and facets
of P 0

D that cut away x̄.

Propostion 11 resolves issue (1) mentioned above, of having a feasible PRLP that is
unbounded. Unfortunately, we may still get failures from issue (2), meaning the optimal
solution to PRLP= corresponds to a cut we previously generated. For example, it may be
the case that there exists r ∈ R such that, for all α̃ feasible to PRLP=, α̃Tr̃ ≥ ˜̄αTr̃. Using
such an r as the objective for PRLP= could reproduce the solution ᾱ. To prevent such
phenomena from excessively slowing down cut generation, we add a failure rate parameter,
which detects when there is an unacceptably small percent of the objectives successfully
producing new cuts, triggering early termination of the procedure. We discuss this further
in the extended manuscript [10].

Lastly, we address a practical question: will we always attain the disjunctive lower bound
cTp∗ via simple VPCs? On one hand, Proposition 10 states that this bound is attainable
via n facets of the point-ray hull tight at p∗ (which may not be facets of PD). However, the
answer to this question can be no, given our algorithmic choices. To see why, we need to
understand which inequalities can be generated from (PRLP0) in our setup. The specific
modifications we have made from the general case are that we fix β > 0 and work in the
nonbasic space in which x̄ is the origin. This implies that we will never generate any facet-
defining inequalities for P 0

D that are satisfied by x̄. One might initially assume that these
inequalities are not necessary in order to attain the bound cTp∗. We dispel that notion in
Figure 4. The example demonstrates that ignoring inequalities that do not cut away x̄ may
lead to an optimal value (after adding cuts) that is strictly better than cTp∗. Note that in
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Figure 4: Example that shows an inequality tight at p∗ that does not cut away x̄ may be
necessary for achieving the bound cTp∗. In this example, we assume we are maximizing
along the vertical axis. The first panel shows the original polytope. The second panel is the
polytope after adding the only split inequality that cuts away x̄. The third panel shows the
polytope after adding all the valid split cuts.

this example, the point-ray collection uses the complete V-polyhedral description of each P t,
so, unlike the example in Figure 1, this situation is not a consequence of using a relaxation
of PD. This may partially explain why, in our experiments, despite our careful objective
choices, we do not always obtain the bound cTp∗.

5 Computational results
Our computational experiments have two goals: (1) assess the strength of VPCs by the
percent root gap closed by one round of the cuts, which we discuss in Section 5.2, and (2)
evaluate the effectiveness of VPCs when added at the root and used as part of branch and
bound, covered in Section 5.3. Before presenting our results, we review our algorithmic
choices in Section 5.1.

5.1 Computational setup
The V-polyhedral framework we have introduced is quite general, and there are many pos-
sibilities for implementing it. We experiment with only a small subset of the possible pa-
rameters, so a more thorough tuning may improve upon our reported results. Algorithm 1
summarizes our choices for generating VPCs; more details can be found in the extended
manuscript [10]. All experiments are performed on computers equipped with i9-13900K
CPUs. Our implementation is in C++ in the COIN-OR framework [48] using Clp [2] and
Cbc [1] as the underlying linear programming and branch-and-bound solvers to generate
VPCs. Gurobi 10.0.3 [39] is used to test the effectiveness of VPCs when embedded in branch
and bound, averaged across 7 random seeds.

Instance selection. Our 332 test instances come from the union of the MIPLIB [19, 20,
4, 46, 37], CORAL [31], and NEOS sets, restricted to those with at most 5,000 rows and
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Algorithm 1 Type 1 V-Polyhedral Cuts
Input: Polyhedron P ; objective direction c; disjunction ∨t∈T P t.

1: for t ∈ T do
2: pt ← optimal solution to minx{cTx : x ∈ P t}.
3: Ct ← basis cone with respect to a cobasis of pt.
4: P t ← {pt} and Rt ← extreme rays of Ct.
5: P ← ∪t∈T P t, R ← ∪t∈TRt, C ← ∅.
6: Solve (PRLP0) with all-ones objective w̃ = e; add resulting cut to C.
7: Add GMICs to P ; let x′ be an optimal solution to the new relaxation.
8: Solve (PRLP0) with w̃ = x̃′ and add the resulting cut to C.
9: p∗ ← point from arg minp{cTp : p ∈ P}.

10: Solve (PRLP0) with w̃ = p̃∗ and add the resulting cut, ˜̄αTx̃ ≥ 1, to C.
11: PRLP= ← (PRLP0) with added constraint α̃Tp̃∗ = 1.
12: P ← {p ∈ P : ˜̄αTp̃ > 1}, sorted in order of decreasing angle with c.
13: R ← {r ∈ R : ˜̄αTr̃ > 0}, sorted in order of decreasing angle with c.
14: for all w′ ∈ P ∪R do
15: Solve PRLP= with w̃ = w̃′ and add the resulting cut ˜̄αTx̃ ≥ 1 to C.
16: Remove from P ∪R all points and rays that are tight for ˜̄αTx̃ ≥ 1.
17: If number of objectives tried is two times the cut limit, then break.
18: return Set C of generated cuts.

columns and by other criteria detailed in the extended manuscript [10]. Every instance is
preprocessed once by Gurobi’s presolve.

Generation of disjunction. The disjunctive terms provided as input to Algorithm 1 are
the leaf nodes of a partial branch-and-bound tree terminated after reaching 2ℓ, ℓ ∈ [6], leaf
nodes of the partial tree, which form the disjunction that we input to Algorithm 1. The V-
polyhedral relaxation for each term is the simple point-ray collection defined in Section 2.3.
The partial branch-and-bound tree is generated by the default node, variable, and branch
selection rules for Cbc. Generating the partial tree can at times be expensive, and we make
no claim that our enumeration technique is the best for cut generation; other, perhaps weaker
but less costly, strategies also merit consideration [57].

Evaluation within branch and bound. The VPCs are given to Gurobi at the root as
user cuts, which allows Gurobi to use its internal cut selection criteria. All of Gurobi’s
default parameters are used except the following:

• Set random seed to i · 628, for i ∈ {1, . . . , 7}.

• Set a time limit of 3600 seconds.

• Set maximum number of threads to 1.

• Disable presolve. (Each instance is already presolved during preprocessing.)
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• Set PreCrush to 1. (Required when adding user cuts.)

Cut generation limits. We only use one round of cuts with a generation limit of one
hour, all cuts are rank one with respect to P , and VPCs are unstrengthened (in the sense
of coefficient modularization).5 Cut generation is abandoned when (PRLP0) is infeasible or
fails to solve to optimality within a minute when using no objective, i.e., just the feasibility
problem. We generate at most as many VPCs as the number of integer variables that are
fractional at x̄, i.e., the same as the limit on the number of Gomory cuts. This is in order
to enhance comparability, but we have no evidence that this is a good choice.

In summary, we do not vary the V-polyhedral relaxation of each term, and we do not impose
limits on cut orthogonality or maximum density. For one of our experiments, we double the
cut limit and use two cut rounds, but these parameters merit further exploration; prior work
has repeatedly demonstrated that appropriately choosing such values can mean the difference
between an algorithm that works in practice and one that seems to produce negative results
(see, e.g., [16, 33] and the discussion in Karamanov [41, Chapter 3]).

5.2 Percent root gap closed
Table 1 provides a summary of the average percent gap closed by GMICs, VPCs, and VPCs
used together with GMICs, as well as the percent gap closed by one round of cuts at the
root by Gurobi and after the last round of cuts added by Gurobi at the root. The extended
manuscript [10] contains the values for all the instances.

In the tables, “G” refers to GMICs, “V” refers to VPCs, “max(G,V)” refers to the best
result (per instance) between GMICs and VPCs, “GurF” refers to Gurobi after one round of
cuts at the root, “GurL” refers to Gurobi after the last round of cuts at the root, and “DB”
refers to the value of the disjunctive lower bound cTp∗ from the partial branch-and-bound
tree for each instance with 64 leaf nodes (an upper bound on the gap we can close using
VPCs on their own). Unless otherwise stated, the result shown for VPCs is the best across
all partial tree sizes tested for that instance. A finer level of analysis in this regard is given
in Appendix A.

Column 1 indicates which instances are being considered in the corresponding row: the
first pair of rows concerns the 332 instances for which the disjunctive lower bound is strictly
greater than the LP optimal value, the second pair of rows pertains to the subset of 116
instances for which VPCs close at least 10% of the integrality gap with respect to GMICs,
while the third pair of rows reports on the subset of 65 pure binary instances. The first row
for each set gives the average for the percent gap closed across the instances. The second row
for each set shows the number of “wins”, where wins for columns “DB”, “V”, and “V+G” are
relative to column “G”; wins for “V+GurF” are counted with respect to column “GurF”; and
wins for “V+GurL” are with respect to column “GurL”. An instance counts as a win when
at least 10−3 percent more integrality gap is closed compared to the appropriate reference
column.

5Efficiently strengthening general disjunctive cuts currently poses nontrivial barriers [43].
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Table 1: Summary statistics for percent gap closed by VPCs. The wins row reports how
many instances close at least ϵ more gap when comparing DB, V, V+G to G on its own,
V+GurF to GurF, and V+GurL to GurL.

Set # inst Metric G DB V max(G,V) V+G GurF V+GurF GurL V+GurL

All 332 Avg (%) 16.51 18.37 12.01 23.01 23.92 28.93 34.80 48.32 52.81
Wins 178 132 226 250 234

≥10% 116 Avg (%) 16.80 38.10 29.80 34.22 35.90 26.41 38.59 45.27 55.40
Wins 100 92 112 101 107

Binary 65 Avg (%) 13.64 21.80 17.31 25.48 26.39 19.23 31.26 32.94 42.80
Wins 50 37 53 48 48

Column 2 gives the number of instances in each set. Next is given the percent gap closed
by GMICs when they are added to the LP relaxation (column 4); the disjunctive lower bound
from the partial tree with 64 leaf nodes (column 5; VPCs (column 6); the maximum per
instance between GMICs and VPCs (column 7); GMICs and VPCs used together (column 8).
Columns 9 and 10 show the percent gap closed by Gurobi cuts from one round at the root,
first without and then with VPCs added as user cuts. Columns 11 and 12 show the same,
but after the last round of cuts at the root. The Gurobi-related columns use the average
percent gap closed by Gurobi across the 7 random seeds tested.

The results indicate that VPCs are strong compared to existing cuts. Namely, using
VPCs and GMICs together leads the average percent gap closed at the root to increase from
16.5% to 23.9%. VPCs on their own close strictly more gap than GMICs for 132 instances.
In comparison, for 178 instances, the disjunctive lower bound is greater than the optimal
value after adding GMICs, so there are only 46 additional instances for which VPCs on
their own could have gotten stronger results. For 24 of those 46 instances, we achieve the
cut limit, implying that a higher percent gap might be achieved if we permit more cuts
to be generated. VPCs used with GMICs together outperform GMICs for 226 of the 332
instances. Of the 106 instances in which VPCs and GMICs combined do not improve over
GMICs alone, for 6 instances, GMICs already close ~100% of the gap; and for 33 instances,
VPCs and GMICs together close 0% of the gap. The cut limit is achieved for 24 of the 106
nonimproving instances.

Perhaps even more indicative of the strength of VPCs is when VPCs are used as user
cuts within Gurobi, which may employ a variety of cut classes, not only GMICs. For the
first round of cuts at the root, the percent gap closed goes from 28.9% (without VPCs) to
34.8% (with them), with strictly better outcomes for 250 of the 332 instances. For the last
round of cuts at the root, the percent gap closed increases from 48.3% to 52.8% when using
VPCs.

On average, VPCs without GMICs close less of the integrality gap than GMICs do on
their own; this occurs for 165 of the 332 instances. We offer two plausible explanations for
this phenomenon. First, for 60 of the 165 instances, we generate very few VPCs compared
to GMICs, which makes it difficult to compare the two families directly. Another 61 of these
instances hit the cut limit, so there is further potential for VPCs to improve. Second, in
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Table 2: Average percent gap closed broken down by the number of leaf nodes used to
construct the partial branch-and-bound tree, for VPCs with and without GMICs, as well as
at the root by Gurobi after the first and last round of cuts. “Best” refers to the maximum
gap closed across all partial tree sizes.

DB V max(G,V) V+G V+GurF V+GurL

VPCs disabled 0.00 0.00 16.51 16.51 28.93 48.32

2 leaves 3.01 2.21 16.79 17.21 30.96 49.26
4 leaves 5.27 3.59 17.23 17.79 31.16 49.25
8 leaves 8.12 4.85 17.83 18.53 31.53 49.48
16 leaves 11.17 6.46 19.37 20.03 32.47 50.24
32 leaves 14.67 8.74 20.96 21.77 33.41 51.14
64 leaves 18.37 10.23 22.14 22.89 33.83 51.64
Best 18.37 12.01 23.01 23.92 34.80 52.81

Combined 17.80 12.49 23.21 24.12 34.46 52.07
Rounds 18.43 15.28 25.56 26.31 35.21 52.68

these results, no a posteriori strengthening techniques, such as modularization, are applied
to VPCs, while GMICs do take advantage of modularization.

VPCs and GMICs seem to be strong for different types of instances. One indication is
from column “max(G,V)”: using the best result of only GMICs or only VPCs, per instance,
the percent gap closed is 23%, only 1% less than combining both families together. Further
evidence comes from the “≥10%” set of instances. VPCs and GMICs together close over dou-
ble the percent gap closed by GMICs alone, with improvements for 112 of the 116 instances
in this set, and VPCs provide a 22% improvement in the gap closed after the last round of
cuts at the root node of Gurobi (55.4% compared to 45.3%). VPCs also outperform GMICs
on pure binary instances, offering 30% improvement in average root percent gap closed for
Gurobi.

For the columns including VPCs, the result reported is the maximum percent gap closed
across all partial tree sizes tested. One may initially assume that the strongest cuts would
always come from the partial tree with 64 leaf nodes. This is indeed true for the disjunctive
lower bound, but it does not always hold for VPCs for particular instances, though the
average gap closed across instances steadily increases. One reason, meaningful in conjunction
with the fact that we generate a fixed number of cuts, is that there are likely to be more
facet-defining (i.e., essential) inequalities for the disjunctive hull from stronger disjunctions.
As a result, achieving the disjunctive lower bound may become more difficult, in particular
given our relatively conservative cut limit. Another reason, on an intuitive level, is that more
of the facet-defining inequalities for the deeper disjunctions may not cut away x̄, which are
cuts we do not generate in these experiments. Finally, the rate of numerical issues goes up
as the disjunctions get larger; we investigate this more in Appendix B.

Table 2 shows how the average percent gap closed increases with disjunction size. In
this table, row “Best” corresponds to the same values as in Table 1, i.e., the best value per
instance is used across all partial tree sizes tested. We show the same metrics as in Table 1.
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In this table, VPCs close more gap as stronger disjunctions are used. However, we also see
that there is much room for improvement in our implementation of the framework, as the
gap closed by VPCs grows increasingly farther from the disjunctive lower bound with the
use of stronger disjunctions.

We also report results from two additional experiments in Table 2. The penultimate
row, “Combined”, is obtained by applying all VPCs, across all disjunction sizes, though still
constrained to an overall one-hour cut generation limit, which is why the value in column
“DB” is smaller than the corresponding value from the preceding row “Best”. The last row,
“Rounds”, reports the outcome of using “Combined” for two cut rounds, with doubling the
cut limit per disjunction and per round. The “Rounds” setting only contains results for 322
instances, so it cannot be exactly compared to the 332 of the preceding rows. Modulo this
caveat, it can be seen that the percent gap closed by VPCs alone increases from 12.5% to
15.3%, but the impact on Gurobi in column “V+GurL” appears to be relatively minor. For
comparison, two rounds of GMICs correspondingly increases from 16.5% to 22.3%.

An important conclusion from Table 2 is that our procedure may help in avoiding the
“tailing-off” effect from recursive applications of cuts: without requiring recursion, by simply
using a (sufficiently) stronger disjunction, we make relatively steady progress toward the
optimal value of (IP). However, this is only in terms of percent gap closed; as we discuss
in the next section, the story when using the cuts within branch and bound is completely
different, in which seemingly weaker cuts may lead to better performance.

5.3 Effect with branch and bound
We now turn to the second metric: the effect of our cuts on branch and bound in terms
of time and number of nodes. We compare two solvers: “Gur” is the baseline of default
Gurobi, and “V” denotes Gurobi with VPCs added as user cuts. Table 3 contains a summary
of the statistics for several instance sets, called “Combined”, “Rounds”, and “ℓ leaves” for
ℓ ∈ {2, 4, 8, 16, 32, 64}, where

• “Combined” refers to all VPCs generated within an hour across all disjunction sizes
considered;

• “Rounds” refers to two rounds of “Combined” VPC generation with a cut limit of twice
the number of fractional integer variables in x̄; and

• “ℓ leaves” refers to terminating partial branch-and-bound tree generation when there
are ℓ open (leaf) nodes.

Each instance is solved with 7 random seeds per solver. For each seed that times out, for
solving time, 7200 seconds (twice the time limit) is used, and for calculating nodes, the
number of processed nodes is also multiplied by 2. Within each set, we create four bins,
where bin [t,3600) contains the subset of the 332 instances used in Section 5.2 for which the
average solution time (across 7 random seeds) is at least t seconds for both solvers and under
3600 seconds for at least one solver.

The first column of Table 3 indicates which set and bin is being considered. The second
column is the number of instances in that subset. The next column indicates the two
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summary statistics presented for each subset. The first statistic row, “Gmean”, for each
subset is a shifted geometric mean, with a shift of 1 for time and 1000 for nodes, modified
from Achterberg [3]. The second row, “Wins”, reports the number of instances for which
each of the two solver options “Gur” and “V” perform better, where an instance counts as a
win by time for a solver if the other solver has an average running time that is at least 10%
slower, and an instance counts as a win by nodes for a solver when the number of nodes is
strictly better. The remaining columns contain the corresponding statistics for each solver
and metric, as well as column “Gen” that gives the geometric mean of cut generation time
for instances within each set and bin.

From Table 3, we conclude that adding VPCs tends to slightly degrade the running
time of Gurobi, even though the number of processed nodes frequently decreases. For both
the “Combined” and “Rounds” sets, the default “Gur” solver runs faster, especially when
considering the running time reported in column “Gen”, though there is a reduction in nodes
for the [1000, 3600) bucket. In the remaining sets, there are isolated cases of promise. For
example, under “4 leaves”, we see that the geometric mean of the number of processed nodes
decreases for the first three buckets when using VPCs, though the corresponding geometric
mean running times are about the same for both solvers. There is a small improvement in
running time for the “harder” instances, in the [1000, 3600) bucket, for several parameter
settings: “2 leaves”, “8 leaves”, and “16 leaves” (even when considering cut generation time).
We caution that, despite our best efforts, we might not have completely removed confounding
factors such as machine variability, which may cause inconsistent results when repeating
the experiments. Nevertheless, these results indicate that there is a significant portion of
instances from the dataset that may benefit from VPCs. At the same time, it is not clear
how to identify such instances, effectively select VPC hyperparameters, or incorporate VPCs
within Gurobi in general.

Table 3: Summary statistics when solving instances with branch and bound.

Time (s) Nodes (#)
Set # inst Metric Gur V Gen Gur V
Combined
[0,3600) 288 Gmean 11.26 11.84 27.62 7,682 7,794

Wins 117 62 128 131
Combined
[10,3600) 119 Gmean 157.26 168.45 55.30 75,194 76,956

Wins 44 32 54 65
Combined
[100,3600) 69 Gmean 505.12 550.56 43.70 244,802 255,028

Wins 32 15 38 31
Combined
[1000,3600) 24 Gmean 1,972.95 2,073.90 35.86 1,008,340 996,885

Wins 10 5 11 13
Rounds
[0,3600) 279 Gmean 11.62 12.47 128.88 7,846 7,920

Wins 144 61 129 123
Rounds
[10,3600) 117 Gmean 155.23 165.44 216.40 74,002 74,706

Wins 45 34 58 59
Rounds
[100,3600) 64 Gmean 526.97 558.17 193.58 235,024 241,115

Wins 22 16 36 28
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Time (s) Nodes (#)
Set # inst Metric Gur V Gen Gur V
Rounds
[1000,3600) 23 Gmean 1,868.61 1,982.47 166.96 1,041,128 1,032,614

Wins 8 5 13 10
2 leaves
[0,3600) 261 Gmean 9.26 9.51 0.56 6,310 6,453

Wins 64 52 102 135
2 leaves
[10,3600) 102 Gmean 129.68 139.35 1.19 59,631 64,032

Wins 33 22 44 58
2 leaves
[100,3600) 50 Gmean 503.50 534.57 1.00 186,172 199,676

Wins 13 10 18 32
2 leaves
[1000,3600) 15 Gmean 1,974.56 1,894.64 0.30 799,032 729,535

Wins 4 4 4 11
4 leaves
[0,3600) 266 Gmean 8.81 8.80 1.19 6,017 5,963

Wins 70 55 112 127
4 leaves
[10,3600) 104 Gmean 117.38 115.83 2.38 55,206 53,956

Wins 26 29 49 55
4 leaves
[100,3600) 48 Gmean 466.63 458.66 2.56 166,328 162,475

Wins 12 12 19 29
4 leaves
[1000,3600) 13 Gmean 1,802.02 1,875.01 0.96 790,760 792,726

Wins 4 4 7 6
8 leaves
[0,3600) 259 Gmean 9.19 9.68 2.21 6,718 7,035

Wins 89 46 127 107
8 leaves
[10,3600) 99 Gmean 139.39 153.05 4.72 74,523 82,416

Wins 42 24 58 41
8 leaves
[100,3600) 52 Gmean 510.32 557.75 5.16 213,765 241,450

Wins 24 13 29 23
8 leaves
[1000,3600) 16 Gmean 2,046.17 1,965.60 2.64 750,097 709,701

Wins 7 6 7 9
16 leaves
[0,3600) 261 Gmean 9.22 9.46 3.91 6,965 7,020

Wins 78 63 104 133
16 leaves
[10,3600) 100 Gmean 139.44 147.97 6.66 80,058 83,603

Wins 30 28 45 55
16 leaves
[100,3600) 50 Gmean 535.23 562.07 7.83 226,992 236,018

Wins 15 14 21 29
16 leaves
[1000,3600) 18 Gmean 1,891.26 1,824.11 4.82 995,350 889,380

Wins 5 7 4 14
32 leaves
[0,3600) 246 Gmean 8.35 8.66 7.33 6,474 6,411

Wins 85 53 104 117
32 leaves
[10,3600) 91 Gmean 128.97 136.26 13.09 78,583 77,146

Wins 30 26 35 56
32 leaves
[100,3600) 43 Gmean 519.65 567.70 12.13 259,502 261,929
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Time (s) Nodes (#)
Set # inst Metric Gur V Gen Gur V

Wins 14 10 15 28
32 leaves
[1000,3600) 14 Gmean 1,876.72 1,940.80 10.71 613,962 547,304

Wins 6 5 3 11
64 leaves
[0,3600) 229 Gmean 7.88 8.35 10.39 6,674 6,817

Wins 90 47 107 99
64 leaves
[10,3600) 82 Gmean 135.62 150.60 18.13 92,630 96,976

Wins 35 18 42 40
64 leaves
[100,3600) 41 Gmean 483.71 558.89 22.10 240,939 257,322

Wins 14 10 20 21
64 leaves
[1000,3600) 12 Gmean 1,804.24 2,254.48 20.51 546,739 549,839

Wins 6 2 6 6

6 Conclusion & open problems
This paper presents a step toward merging cut-generation and branching in integer pro-
gramming solvers by providing a computationally tractable method for generating cuts from
partial branch-and-bound trees. The framework we introduce is to (1) select a disjunction,
(2) choose a (compact) V-polyhedral relaxation for each disjunctive term, and (3) selectively
generate cuts by judiciously choosing objective directions to optimize over (PRLP) formed
from the point-ray collection.

Our investigation touches on each of these aspects. The first is the disjunction choice,
which in our experiments is the set of leaf nodes of a partial branch-and-bound tree. We
only experiment with the size of the disjunction, but we do not extensively test alternative
disjunctions or claim to prescribe the best (or even good) disjunctions for the purposes of cut
generation, which is left as an open problem for future work. As discussed in Appendix G
of the extended manuscript [10], just one sufficiently strong disjunction chosen this way
can lead to cuts that are stronger than those from all possible split and cross disjunctions.
Although using stronger disjunctions does lead to better gap closed, our results indicate that
this monotonicity does not hold when embedding the cuts within branch and bound in a
solver. A better understanding of the interaction between the branch-and-bound process
and cutting planes remains an open problem meriting future research [29, 45].

The relaxation for each disjunctive term that we use is quite simple, but therein lies
its advantage. Nevertheless, we do show examples highlighting the weakness of our simple
relaxations—that only a subset of all the valid disjunctive cuts can be produced—and the
computational results do, at times, reflect this weakness. Thus, there is an opportunity to
improve the quality of the generated VPCs by considering tighter relaxations generated from
structural information about each instance.

For the objective directions, we provide theoretical support for objective directions to
(PRLP) that yield new and strong VPCs more frequently than previous approaches (reducing
the percent of objectives failing to produce a cut from 80% in early experiments, to around
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30% in the current implementation).
Overall, the cuts we generate are strong, as evidenced by the percent integrality gap they

close in our experiments (compared to both GMICs and the default cut setting of Gurobi).
Moreover, the integrality gap closed by VPCs increases steadily with the use of stronger
disjunctions, which may help to avoid the common tailing off of strength experienced by
other cut families that require recursive applications to reach strong cuts. In addition, for
some instances, our results show that the extra computational effort pays off in reduced
branch-and-bound time, but on average across the instances tested, employing VPCs causes
slower performance. We conclude that, though VPCs may not yet improve most solvers, the
VPC framework has theoretical advantages with the potential for practical impact on cut
generation.
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A Analysis of effect of disjunction size
One aspect that is hidden in the results of Section 5 is the number of leaf nodes used for
the partial branch-and-bound tree to obtain the reported gap closed and branch-and-bound
times. Table 1 reports the best result across all the tested sizes of the partial tree, i.e., with
number of leaf nodes ℓ ∈ {2, 4, 8, 16, 32, 64}. We next disaggregate the analysis to see how
the different size partial trees perform alone. For data including VPCs, a partial tree size
may be specified (either as “V (ℓ)” or “ℓ leaves”), indicating that these results concern only
the runs for partial trees with ℓ leaf nodes.

Table 4 gives the number of instances for which the best result over the appropriate
baseline is achieved when restricted to a particular number of leaves. We use the same
tolerances to count wins as in Section 5. The first column is the tree size, including the
option of no VPCs, the second through fifth columns refer to gap closed for the 332 instances
used in the strength experiments, while the last columns give solving time and nodes for the
282 instances solved within 3600 seconds on average for either the default Gurobi solver or
for Gurobi with VPCs for at least one setting for ℓ. We see, as in Table 2, that the tree with
the most leaf nodes produces the best percent gap closed quite often, but not always; there
are even instances for which ℓ = 2, i.e., a single split disjunction, suffices to achieve the best
result. In contrast, there is no clear winner in terms of branch-and-bound metrics.

This phenomenon of stronger cuts not being directly correlated to better branch and
bound performance is not easy to remedy, due to the hard-to-predict effect of cuts on the
branch-and-bound process. Nevertheless, there is one aspect of Table 3 that suggests a
possible explanation. Observe that the number of wins with VPCs in terms of number of
nodes is typically higher than in terms of time. For each instance in which the number of
nodes decreases but the time increases, solving the relaxation at each node of the branch-
and-bound tree might be slower with additional cuts added. It is commonly known that
making the coefficient matrix denser will slow down the solution of a linear program. We
next look at how the density of VPCs changes as deeper disjunctions are used.

Table 5 gives the average cut density statistics across the different partial tree sizes for
the set “All”. The density of a cut is defined as the number of nonzero cut coefficients divided
by the total number of coefficients. The first row is the number of instances having VPCs for
each tree size. The second row is the number of instances where “V” wins on time compared

Table 4: Number of leaf nodes yielding the best result for each experiment per instance.

Gap Time Nodes

V V+G V+GurF V+GurL All All

No improvement 200 106 82 98 178 79
2 leaves 0 10 53 39 27 38
4 leaves 2 8 65 42 37 37
8 leaves 5 20 60 37 23 35
16 leaves 4 18 79 44 25 41
32 leaves 16 37 72 44 32 40
64 leaves 105 143 122 96 27 38
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Table 5: Statistics about the density of generated cuts broken down by partial tree size.

V (2) V (4) V (8) V (16) V (32) V (64)

# inst w/VPCs and time < 3600s 261 266 259 261 246 229
# wins by time 52 55 46 63 53 47
Avg min cut density 0.217 0.236 0.274 0.301 0.349 0.392
Avg max cut density 0.344 0.383 0.405 0.427 0.484 0.488
Avg avg cut density 0.280 0.311 0.343 0.373 0.427 0.453
Avg avg cut density (win by time) 0.290 0.298 0.213 0.277 0.361 0.399
Avg avg cut density (lose by time) 0.279 0.311 0.347 0.398 0.487 0.501

to “Gur”. The next three rows give the average of the minimum, maximum, and average
densities of VPCs for each instance. The last two rows give the average of the average cut
densities for (1) the instances counted in the second row, i.e., those where VPCs improve
time with respect to “Gur”, and (2) the instances for which “Gur” wins over “V”.

The first observation is that the number of instances with VPCs decreases from 261 for
the setting with 2 leaf nodes to 229 for the 64 leaf node setting. The average cut density
goes from 0.280 to 0.453 on average, which could help explain the fact that the stronger cuts
from stronger disjunctions can yield worse branch and bound times. In addition, the last
two rows suggest that density is correlated to whether VPCs help for an instance. Namely,
for each column, the average cut density is always lower for those instances that win by time.
Future experiments may benefit from doing cut filtering by density, or possibly reducing the
density of generated cuts a posteriori while sacrificing strength.

B Analysis of objective function choices
Next, via Table 6, we discuss our objective function choices, including statistics on the
frequency of failures as a function of disjunction size. A caveat is that our analysis of
objectives functions is somewhat limited by our relatively conservative strategy in selecting
objectives to use, in order to limit time spent on cut generation and the types of failures
discussed in Section 4. The objectives we choose utilize the results of Kazachkov et al. [44],
suggesting that a successful class of objectives is the set of points and rays of the point-ray
collection, but, motivated by Proposition 10, we only do this for cuts tight at p∗ (the loop
starting at step 14 of Algorithm 1). It is natural to consider cuts that only lie on deeper
points, but this, as well as cuts that are satisfied by x̄, remains a topic for future research.

Table 6 summarizes objective failures using all 332 instances from the gap closed experi-
ments. The columns of the table are the same as Table 5. The rows are divided into several
blocks. The first block gives statistics on the number of instances for each column for which:
(1) objectives were tried, (2) VPCs were generated, (3) objectives were not tried, (4) none
of the objectives yielded VPCs, and (5) all of the objectives led to distinct VPCs. The next
block gives the average percent of the objectives that were failures. The subsequent block of
rows looks at the cause of these failures, which fall into one of four categories:

• “Dup”: the optimal solution to the PRLP is an exact duplicate of an existing cut
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• “Unbdd”: (PRLP) does not have a finite solution for that objective
• “Tilim”: the time limit for (PRLP) is attained for that objective
• “Dyn”: the dynamism of the new cut is too high

The following block of rows looks at the percent of failures for each class of objectives: “all
ones” (w = e), “post-GMIC” (step 8 of Algorithm 1), and “DB” (step 14 of Algorithm 1).
The last block of rows looks at the average number of objectives required to generate each
distinct VPC, as well as the average number of seconds taken per objective and per cut.

This table shows that failures become more frequent when using disjunctions with more
terms, with average failure rate increasing from 29% to 34%. The primary reason for this is
that more objectives lead to cuts that were previously generated, leading to, on average, up
to 57% of the failures. The cause is that there are more unsuccessful objectives being tried for
the “DB” class of objectives. The last set of rows of the table also show that cut generation
can be extremely costly for stronger disjunctions, which could be mitigated by reducing the
failure rate. Table 8 provides objective statistics just for the best run per instance (across
all partial tree sizes).

Lastly, we look at which classes of objective functions are more likely to lead to active
cuts (after the addition of all cuts), as a different measure of the effect of our cuts. Table 7
gives averages for which cuts are active at the optimal solution after adding both GMICs and
VPCs to P , for GMICs and VPCs, as well as individually based on the objective producing
each VPC. The first row is the percent of GMICs that are active. The second row is the
percent of VPCs that are active, averaged across those instances per each column for which
VPCs were generated. The next rows come in pairs and give the average percent of cuts that
come from the four subclasses of VPCs within our procedure, as well as the average percent
of these cuts that are active (across instances for which there exist cuts from that class). The
first class concerns a set of (rarely encountered) cuts that is added in our procedure, which
we call “one-sided”. In the process of generating VPCs, while selecting variables for strong
branching, we occasionally detect that one of the two possible branches is infeasible. In this
case, for a variable xk, k ∈ I, we generate the “one-sided cut” xk ≤ ⌊x̄k⌋ or xk ≥ ⌈x̄k⌉.
These cuts are generated for 5 of the 332 instances, with a total of only 6 cuts.

Table 7 shows that the proportion of active VPCs somewhat increases while the percent
of active GMICs decreases as VPCs from stronger disjunctions are used. Aside from the one-
sided cuts, which are always active in our results, the objectives “all ones” and “post-GMIC
opt” lead to cuts that are frequently active, though these objectives yield at most two cuts
in total per instance. Though the “DB” class of objectives leads to a smaller percentage of
active cuts, it is the source for the majority of the cuts that we generate.
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Table 6: Statistics about objectives leading to failures, by partial tree size.

V (2) V (4) V (8) V (16) V (32) V (64)

# inst w/obj 311 318 304 306 289 271
# inst w/succ obj 308 315 300 302 285 263
# inst no obj 21 14 28 26 43 61
# inst all obj fail 3 3 4 4 4 8
# inst all obj succ 30 41 31 34 27 24

% obj fails 28.57 25.28 26.50 30.77 31.83 34.08

% fails dup 50.67 39.34 41.11 48.78 51.02 56.85
% fails unbdd 38.74 47.59 45.41 35.74 32.21 27.50
% fails tilim 1.38 3.67 3.61 5.13 6.27 5.91
% fails dyn 9.08 8.74 9.61 9.42 9.31 9.38

% fails all ones 26.75 30.73 25.85 20.69 17.44 14.17
% fails post-GMIC obj 14.59 20.45 22.88 21.25 20.51 17.38
% fails DB 58.66 48.82 51.27 58.07 62.06 68.45

# obj / cut 2.57 2.31 2.38 2.76 2.97 3.44
(s) / obj 0.29 4.42 0.77 0.92 1.93 3.02
(s) / cut 0.36 1.68 6.32 4.98 11.67 22.38

Table 7: Statistics about when generated cuts are active, broken down by partial tree size.

V+G
(2)

V+G
(4)

V+G
(8)

V+G
(16)

V+G
(32)

V+G
(64)

% active GMIC 44.09 43.52 42.17 41.60 40.88 40.68
% active VPC 30.20 30.59 31.90 35.50 34.48 33.40
% cuts one-sided 0.77 0.72 0.74 1.11 0.82 0.79
% active one-sided 100.00 100.00 100.00 100.00 100.00 100.00
% cuts all ones 11.82 6.72 7.81 9.10 8.40 9.00
% active all ones 91.45 84.78 81.82 77.02 79.63 79.27
% cuts post-GMIC opt 2.62 3.40 2.42 2.19 1.70 2.74
% active post-GMIC opt 85.90 71.43 67.92 62.75 63.83 61.90
% cuts DB 84.79 89.16 89.03 87.61 89.08 87.47
% active DB 63.75 58.32 56.36 51.85 49.31 43.00
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Table 8: Information about objectives and time to generate cuts corresponding to the pa-
rameters leading to the best gap closed per instance, as reported in Table 10.

Objectives Time (s)
Instance Obj Succ Fails % fails Total (s)/obj (s)/cut
10teams 214 16 198 92.5 3,604.6 16.8 225.3
23588 76 75 1 1.3 28.6 0.4 0.4
30n20b8 193 190 3 1.6 40.0 0.2 0.2
50v-10 30 29 1 3.3 4.5 0.1 0.2
a1c1s1 3 3 0 0.0 0.5 0.2 0.2
a2c1s1 20 18 2 10.0 0.2 0.0 0.0
aflow30a 28 25 3 10.7 6.4 0.2 0.3
aflow40b 38 36 2 5.3 82.0 2.2 2.3
aligninq 164 163 1 0.6 3,616.4 22.1 22.2
app3 38 15 23 60.5 18.9 0.5 1.3
arki001 8 5 3 37.5 0.3 0.0 0.1
assign1-5-8 229 114 115 50.2 11.6 0.1 0.1
b1c1s1 9 9 0 0.0 3.3 0.4 0.4
b2c1s1 4 4 0 0.0 25.4 6.3 6.3
bc1 5 5 0 0.0 45.2 9.0 9.0
bc 17 16 1 5.9 51.7 3.0 3.2
beasleyC1 17 17 0 0.0 2.2 0.1 0.1
beasleyC2 34 32 2 5.9 4.6 0.1 0.1
beasleyC3 130 124 6 4.6 3.7 0.0 0.0
beavma 6 4 2 33.3 0.0 0.0 0.0
bell3a 5 3 2 40.0 0.0 0.0 0.0
bell3b 50 22 29 58.0 0.1 0.0 0.0
bell4 23 7 16 69.6 0.0 0.0 0.0
bell5 12 10 2 16.7 0.0 0.0 0.0
berlin_5_8_0 43 9 34 79.1 0.5 0.0 0.1
bg512142 66 63 3 4.5 0.9 0.0 0.0
bienst1 53 13 40 75.5 126.5 2.4 9.7
bienst2 67 7 60 89.6 62.1 0.9 8.9
binkar10_1 40 38 2 5.0 4.5 0.1 0.1
blend2 8 6 2 25.0 0.0 0.0 0.0
blp-ir98 46 45 1 2.2 6.3 0.1 0.1
bm23 7 6 1 14.3 0.1 0.0 0.0
bnatt400 5 5 0 0.0 2.9 0.6 0.6
bppc8-02 36 13 23 63.9 0.1 0.0 0.0
bppc8-09 36 30 6 16.7 0.2 0.0 0.0
breastcancer-regularized 204 200 4 2.0 21.9 0.1 0.1
cap6000 3 2 1 33.3 22.7 7.6 11.4
cod105 392 391 1 0.3 173.5 0.4 0.4
control30-3-2-3 25 24 1 4.0 0.1 0.0 0.0
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Objectives Time (s)
Instance Obj Succ Fails % fails Total (s)/obj (s)/cut
cost266-UUE 68 56 12 17.6 10.0 0.1 0.2
cov1075 21 1 20 95.2 7.5 0.4 7.5
csched007 137 136 1 0.7 442.4 3.2 3.3
csched010 125 124 1 0.8 615.7 4.9 5.0
cvs08r139-94 387 339 48 12.4 3,605.9 9.3 10.6
cvs16r106-72 914 838 76 8.3 523.6 0.6 0.6
cvs16r128-89 770 734 36 4.7 1,620.3 2.1 2.2
cvs16r70-62 788 773 15 1.9 1,031.0 1.3 1.3
cvs16r89-60 227 218 9 4.0 3,649.8 16.1 16.7
d10200 155 154 1 0.6 966.0 6.2 6.3
danoint 67 52 15 22.4 1.7 0.0 0.0
dcmulti 14 13 1 7.1 0.5 0.0 0.0
dfn-gwin-UUM 49 45 4 8.2 5.0 0.1 0.1
dg012142 262 27 235 89.7 53.1 0.2 2.0
eilB101 90 89 1 1.1 1,284.9 14.3 14.4
eild76 65 63 2 3.1 538.7 8.3 8.6
exp-1-500-5-5 5 3 2 40.0 0.8 0.2 0.3
f2gap201600 18 16 2 11.1 6.8 0.4 0.4
f2gap401600 32 29 3 9.4 68.0 2.1 2.3
f2gap801600 6 5 1 16.7 0.7 0.1 0.1
fiber 47 38 9 19.1 1.1 0.0 0.0
fixnet4 16 15 1 6.3 0.1 0.0 0.0
fixnet6 13 12 1 7.7 0.5 0.0 0.0
g200x740 31 25 6 19.4 1.9 0.1 0.1
g200x740i 33 30 3 9.1 2.5 0.1 0.1
gen-ip002 18 18 0 0.0 0.2 0.0 0.0
gen-ip016 14 13 1 7.1 0.1 0.0 0.0
gen-ip021 15 15 0 0.0 0.2 0.0 0.0
gen-ip036 18 17 1 5.6 0.2 0.0 0.0
ger50-17-ptp-pop-6t 8 8 0 0.0 4.1 0.5 0.5
gesa2-o 8 8 0 0.0 0.2 0.0 0.0
gesa2 8 8 0 0.0 0.2 0.0 0.0
gesa3_o 6 5 1 16.7 0.8 0.1 0.2
gesa3 60 59 1 1.7 6.4 0.1 0.1
glass4 7 6 1 14.3 0.1 0.0 0.0
gmu-35-40 24 9 15 62.5 3.2 0.1 0.4
gmu-35-50 24 17 7 29.2 3.3 0.1 0.2
go19 367 357 10 2.7 741.9 2.0 2.1
graph20-20-1rand 34 4 30 88.2 2.8 0.1 0.7
graphdraw-domain 3 2 1 33.3 0.1 0.0 0.0
graphdraw-gemcutter 26 26 0 0.0 0.0 0.0 0.0
gsvm2rl3 32 31 1 3.1 0.6 0.0 0.0
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Objectives Time (s)
Instance Obj Succ Fails % fails Total (s)/obj (s)/cut
gsvm2rl5 46 45 1 2.2 11.9 0.3 0.3
gt2 30 3 27 90.0 0.2 0.0 0.1
gus-sch 99 17 82 82.8 59.9 0.6 3.5
h50x2450 9 10 1 11.1 4.1 0.5 0.4
haprp 510 170 340 66.7 6.8 0.0 0.0
harp2 28 27 1 3.6 3.5 0.1 0.1
hgms-det 8 6 2 25.0 1.4 0.2 0.2
ic97_potential 4 2 2 50.0 0.2 0.1 0.1
ic97_tension 9 4 5 55.6 0.0 0.0 0.0
icir97_tension 3 3 0 0.0 1.8 0.6 0.6
iis-100-0-cov 103 100 3 2.9 48.5 0.5 0.5
iis-bupa-cov 153 153 0 0.0 533.5 3.5 3.5
janos-us-DDM 5 4 1 20.0 0.7 0.1 0.2
k16x240 15 14 1 6.7 0.5 0.0 0.0
k16x240b 16 15 1 6.3 0.5 0.0 0.0
khb05250 21 19 2 9.5 0.2 0.0 0.0
l152lav 54 52 2 3.7 221.6 4.1 4.3
lectsched-4-obj 4 2 2 50.0 0.1 0.0 0.1
lotsize 3 2 1 33.3 0.8 0.3 0.4
lrn 36 6 30 83.3 2.2 0.1 0.4
lseu 9 8 1 11.1 0.1 0.0 0.0
macrophage 921 46 875 95.0 16.9 0.0 0.4
mas074 13 12 1 7.7 0.6 0.0 0.0
mas076 13 11 2 15.4 0.6 0.0 0.1
mas284 22 20 2 9.1 3.4 0.2 0.2
maxgasflow 6 6 0 0.0 5.7 1.0 1.0
mc11 246 227 19 7.7 3.0 0.0 0.0
mc7 346 341 5 1.4 13.3 0.0 0.0
mc8 375 363 12 3.2 18.8 0.1 0.1
mcsched 1,259 1,224 35 2.8 3,577.9 2.8 2.9
mik-250-1-100-1 125 100 25 20.0 1.0 0.0 0.0
mik-250-20-75-1 97 75 22 22.7 2.8 0.0 0.0
mik-250-20-75-2 119 75 44 37.0 9.8 0.1 0.1
mik-250-20-75-3 61 20 41 67.2 0.1 0.0 0.0
mik-250-20-75-4 127 75 52 40.9 0.8 0.0 0.0
mik-250-20-75-5 136 75 61 44.9 2.3 0.0 0.0
milo-v12-6-r2-40-1 101 5 96 95.0 312.1 3.1 62.4
milo-v13-4-3d-3-0 25 23 2 8.0 12.8 0.5 0.6
mine-90-10 355 346 9 2.5 303.7 0.9 0.9
misc03 20 18 2 10.0 0.9 0.0 0.0
misc07 18 16 2 11.1 3.1 0.2 0.2
mkc1 136 54 82 60.3 15.4 0.1 0.3
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Objectives Time (s)
Instance Obj Succ Fails % fails Total (s)/obj (s)/cut
mkc 23 21 2 8.7 11.6 0.5 0.6
mod008 13 6 7 53.8 0.2 0.0 0.0
mod013 6 5 1 16.7 0.1 0.0 0.0
modglob 38 30 8 21.1 0.7 0.0 0.0
mtest4ma 123 111 12 9.8 5.0 0.0 0.0
n13-3 4 4 0 0.0 0.3 0.1 0.1
n2seq36f 38 24 14 36.8 0.8 0.0 0.0
n4-3 38 36 2 5.3 58.7 1.5 1.6
n5-3 44 35 9 20.5 33.8 0.8 1.0
n6-3 41 38 3 7.3 490.4 12.0 12.9
n7-3 46 30 16 34.8 243.3 5.3 8.1
neos-1058477 29 28 1 3.4 0.1 0.0 0.0
neos-1215259 163 150 13 8.0 198.3 1.2 1.3
neos-1225589 52 20 32 61.5 12.2 0.2 0.6
neos-1281048 264 31 233 88.3 435.8 1.7 14.1
neos-1330346 32 32 0 0.0 4.7 0.1 0.1
neos-1396125 119 69 50 42.0 1,408.4 11.8 20.4
neos-1413153 354 269 85 24.0 99.7 0.3 0.4
neos-1415183 81 4 77 95.1 43.5 0.5 10.9
neos-1420205 61 3 58 95.1 1.8 0.0 0.6
neos-1480121 11 7 4 36.4 0.0 0.0 0.0
neos-1489999 439 438 1 0.2 423.7 1.0 1.0
neos-1582420 298 295 3 1.0 3,132.7 10.5 10.6
neos-1595230 101 5 96 95.0 141.6 1.4 28.3
neos-1599274 21 1 20 95.2 198.4 9.4 198.4
neos-1601936 32 25 7 21.9 479.9 15.0 19.2
neos-1605061 133 70 63 47.4 458.9 3.5 6.6
neos-1605075 468 434 34 7.3 2,205.3 4.7 5.1
neos-1616732 353 200 153 43.3 264.5 0.7 1.3
neos-1620807 21 1 20 95.2 9.4 0.4 9.4
neos-2328163-agri 362 84 278 76.8 2,642.9 7.3 31.5
neos-3024952-loue 11 5 6 54.5 0.5 0.0 0.1
neos-3046601-motu 13 11 2 15.4 0.2 0.0 0.0
neos-3046615-murg 12 10 2 16.7 0.1 0.0 0.0
neos-3072252-nete 5 1 4 80.0 0.0 0.0 0.0
neos-3083819-nubu 29 29 0 0.0 22.3 0.8 0.8
neos-3118745-obra 50 6 44 88.0 0.1 0.0 0.0
neos-3216931-puriri 26 22 4 15.4 1,660.7 63.9 75.5
neos-3373491-avoca 4 2 3 75.0 1.6 0.4 0.8
neos-3381206-awhea 3 3 0 0.0 20.2 6.7 6.7
neos-3421095-cinca 36 35 1 2.8 0.0 0.0 0.0
neos-3592146-hawea 12 7 5 41.7 30.4 2.5 4.3
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Objectives Time (s)
Instance Obj Succ Fails % fails Total (s)/obj (s)/cut
neos-3610040-iskar 41 2 39 95.1 1.2 0.0 0.6
neos-3610051-istra 78 7 71 91.0 9.0 0.1 1.3
neos-3610173-itata 5 3 2 40.0 0.0 0.0 0.0
neos-3611447-jijia 20 4 16 80.0 0.6 0.0 0.1
neos-3611689-kaihu 58 11 47 81.0 2.2 0.0 0.2
neos-3627168-kasai 185 152 33 17.8 80.5 0.4 0.5
neos-3660371-kurow 241 160 81 33.6 424.3 1.8 2.7
neos-3665875-lesum 3 2 1 33.3 0.6 0.2 0.3
neos-3754480-nidda 43 41 2 4.7 6.0 0.1 0.1
neos-3762025-ognon 0 1 0 - 0.5 - 0.5
neos-4333464-siret 19 15 4 21.1 7.5 0.4 0.5
neos-4333596-skien 62 43 19 30.6 5.9 0.1 0.1
neos-4387871-tavua 68 33 35 51.5 42.1 0.6 1.3
neos-4393408-tinui 66 33 33 50.0 15.3 0.2 0.5
neos-4650160-yukon 8 7 1 12.5 2.4 0.3 0.3
neos-480878 25 22 3 12.0 4.8 0.2 0.2
neos-4954672-berkel 7 5 2 28.6 0.5 0.1 0.1
neos-501453 1 1 0 0.0 0.0 0.0 0.0
neos-504674 193 153 40 20.7 105.1 0.5 0.7
neos-504815 157 115 42 26.8 34.0 0.2 0.3
neos-5051588-culgoa 159 22 137 86.2 35.7 0.2 1.6
neos-5075914-elvire 231 125 106 45.9 4.4 0.0 0.0
neos-5078479-escaut 105 7 98 93.3 5.2 0.0 0.7
neos-512201 287 49 238 82.9 62.5 0.2 1.3
neos-5140963-mincio 28 24 4 14.3 0.7 0.0 0.0
neos-5182409-nasivi 170 143 27 15.9 6.8 0.0 0.0
neos-522351 213 29 184 86.4 40.7 0.2 1.4
neos-5261882-treska 51 48 3 5.9 95.7 1.9 2.0
neos-538867 88 47 41 46.6 19.4 0.2 0.4
neos-538916 63 53 10 15.9 12.4 0.2 0.2
neos-547911 88 87 1 1.1 16.8 0.2 0.2
neos-555884 254 62 192 75.6 1.2 0.0 0.0
neos-565815 158 28 130 82.3 1,311.6 8.3 46.8
neos-570431 303 215 88 29.0 553.1 1.8 2.6
neos-574665 90 30 60 66.7 2.3 0.0 0.1
neos-584851 239 231 8 3.3 120.7 0.5 0.5
neos-585192 12 12 0 0.0 1.1 0.1 0.1
neos-585467 17 12 5 29.4 5.7 0.3 0.5
neos-593853 13 10 3 23.1 1.8 0.1 0.2
neos-595904 52 47 5 9.6 48.3 0.9 1.0
neos-598183 19 19 0 0.0 9.3 0.5 0.5
neos-603073 22 20 2 9.1 1.9 0.1 0.1
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Objectives Time (s)
Instance Obj Succ Fails % fails Total (s)/obj (s)/cut
neos-631517 5 5 0 0.0 8.7 1.7 1.7
neos-686190 76 74 2 2.6 3,601.8 47.4 48.7
neos-691058 166 151 15 9.0 371.7 2.2 2.5
neos-717614 15 14 1 6.7 0.2 0.0 0.0
neos-775946 64 8 56 87.5 377.2 5.9 47.1
neos-796608 3 2 1 33.3 0.0 0.0 0.0
neos-801834 457 450 7 1.5 3,602.7 7.9 8.0
neos-803219 20 20 0 0.0 3.5 0.2 0.2
neos-803220 20 20 0 0.0 1.8 0.1 0.1
neos-806323 153 120 33 21.6 1.4 0.0 0.0
neos-807639 89 80 9 10.1 5.1 0.1 0.1
neos-807705 107 91 16 15.0 4.6 0.0 0.1
neos-810326 199 198 1 0.5 1,454.7 7.3 7.3
neos-831188 156 79 77 49.4 3,615.0 23.2 45.8
neos-839859 290 132 158 54.5 351.4 1.2 2.7
neos-862348 27 15 12 44.4 0.2 0.0 0.0
neos-880324 4 2 2 50.0 0.8 0.2 0.4
neos-886822 21 1 20 95.2 295.4 14.1 295.4
neos-892255 221 197 24 10.9 6.4 0.0 0.0
neos-906865 32 29 3 9.4 62.2 1.9 2.1
neos-911880 72 48 24 33.3 0.3 0.0 0.0
neos-911970 87 7 80 92.0 5.3 0.1 0.8
neos-916792 89 89 0 0.0 271.0 3.0 3.0
neos-942830 4 3 1 25.0 131.0 32.8 43.7
neos14 9 8 1 11.1 0.1 0.0 0.0
neos15 20 13 7 35.0 0.4 0.0 0.0
neos16 5 5 0 0.0 0.0 0.0 0.0
neos17 173 171 2 1.2 21.8 0.1 0.1
neos18 5 2 3 60.0 1.7 0.3 0.9
neos22 102 66 36 35.3 14.2 0.1 0.2
neos2 21 20 1 4.8 1.4 0.1 0.1
neos3 58 18 40 69.0 10.9 0.2 0.6
neos5 21 1 20 95.2 0.3 0.0 0.3
neos7 21 1 20 95.2 94.3 4.5 94.3
newdano 101 5 96 95.0 94.1 0.9 18.8
nexp-150-20-1-5 94 13 81 86.2 0.8 0.0 0.1
nexp-50-20-1-1 68 8 60 88.2 0.7 0.0 0.1
nexp-50-20-4-2 5 5 0 0.0 0.1 0.0 0.0
nh97_potential 7 5 2 28.6 2.1 0.3 0.4
nobel-eu-DBE 49 47 2 4.1 1.3 0.0 0.0
ns1208400 3 1 2 66.7 71.3 23.8 71.3
ns1606230 117 90 27 23.1 326.2 2.8 3.6
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Objectives Time (s)
Instance Obj Succ Fails % fails Total (s)/obj (s)/cut
ns1688347 16 4 12 75.0 42.2 2.6 10.6
ns1830653 457 124 333 72.9 370.8 0.8 3.0
ns2081729 8 7 1 12.5 0.1 0.0 0.0
ns894788 601 253 348 57.9 3,600.2 6.0 14.2
nsa 14 13 1 7.1 2.4 0.2 0.2
nsrand-ipx 26 26 0 0.0 1.7 0.1 0.1
nu120-pr12 34 8 26 76.5 1.5 0.0 0.2
nu25-pr12 12 11 1 8.3 2.3 0.2 0.2
p0282 26 24 2 7.7 0.3 0.0 0.0
p0548 4 2 2 50.0 0.0 0.0 0.0
p100x588b 11 11 0 0.0 1.3 0.1 0.1
p200x1188c 6 5 1 16.7 6.9 1.1 1.4
p2756 6 4 2 33.3 0.5 0.1 0.1
p6000 3 2 1 33.3 22.7 7.6 11.3
p6b 375 375 0 0.0 2,797.9 7.5 7.5
p80x400b 4 3 1 25.0 0.3 0.1 0.1
pg5_34 4 4 0 0.0 1.7 0.4 0.4
pg 3 2 1 33.3 1.7 0.6 0.8
pigeon-10 129 72 57 44.2 0.2 0.0 0.0
piperout-03 5 4 1 20.0 19.7 3.9 4.9
piperout-d20 254 144 110 43.3 6.4 0.0 0.0
piperout-d27 60 58 2 3.3 3.3 0.1 0.1
pipex 8 6 2 25.0 0.0 0.0 0.0
pp08aCUTS 70 46 24 34.3 1.9 0.0 0.0
pp08a 5 3 2 40.0 0.0 0.0 0.0
probportfolio 20 20 0 0.0 0.0 0.0 0.0
prod1 42 40 2 4.8 3.3 0.1 0.1
prod2 46 44 2 4.3 3.3 0.1 0.1
protfold 85 46 39 45.9 280.0 3.3 6.1
qiu 39 36 3 7.7 154.1 4.0 4.3
qnet1_o 10 10 0 0.0 23.3 2.3 2.3
qnet1 51 47 4 7.8 64.8 1.3 1.4
queens-30 851 756 95 11.2 3,602.7 4.2 4.8
r50x360 44 43 1 2.3 1.6 0.0 0.0
r80x800 9 9 0 0.0 1.5 0.2 0.2
railway_8_1_0 6 5 1 16.7 0.7 0.1 0.1
ran12x21 19 17 2 10.5 0.7 0.0 0.0
ran13x13 18 18 0 0.0 0.4 0.0 0.0
ran14x18-disj-8 88 86 2 2.3 102.2 1.2 1.2
ran14x18 19 18 1 5.3 0.8 0.0 0.0
ran16x16 21 20 1 4.8 0.7 0.0 0.0
reblock115 427 396 31 7.3 3,602.1 8.4 9.1
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Objectives Time (s)
Instance Obj Succ Fails % fails Total (s)/obj (s)/cut
reblock67 469 442 27 5.8 1,712.1 3.7 3.9
rgn 25 19 6 24.0 0.1 0.0 0.0
rlp1 95 6 89 93.7 5.2 0.1 0.9
rococoB10-011000 321 302 19 5.9 934.4 2.9 3.1
rococoC10-001000 308 157 151 49.0 5.7 0.0 0.0
roll3000 4 3 1 25.0 7.3 1.8 2.4
rout 85 34 51 60.0 55.5 0.7 1.6
roy 17 13 4 23.5 0.2 0.0 0.0
sentoy 9 8 1 11.1 0.2 0.0 0.0
set1al 4 3 1 25.0 0.4 0.1 0.1
set1ch 98 71 27 27.6 1.1 0.0 0.0
set1cl 4 3 1 25.0 0.4 0.1 0.1
set3-10 4 3 1 25.0 7.9 2.0 2.6
set3-15 5 4 1 20.0 0.8 0.2 0.2
set3-20 3 2 1 33.3 0.2 0.1 0.1
seymour-disj-10 899 621 279 31.0 787.5 0.9 1.3
seymour1 96 74 22 22.9 1,106.1 11.5 14.9
seymour 504 481 23 4.6 2,091.4 4.1 4.3
sorrell8 1,189 1,075 114 9.6 2,315.1 1.9 2.2
sp150x300d 8 6 2 25.0 0.2 0.0 0.0
sp98ir 112 111 1 0.9 1,259.2 11.2 11.3
square23 92 90 2 2.2 181.1 2.0 2.0
stein27_nocard 41 2 39 95.1 0.2 0.0 0.1
stein45_nocard 21 1 20 95.2 0.6 0.0 0.6
supportcase17 10 7 3 30.0 0.1 0.0 0.0
supportcase20 7 7 0 0.0 0.7 0.1 0.1
supportcase25 120 115 5 4.2 43.6 0.4 0.4
supportcase26 4 2 2 50.0 0.0 0.0 0.0
ta1-UUM 96 10 86 89.6 2.6 0.0 0.3
timtab1CUTS 146 122 24 16.4 9.5 0.1 0.1
timtab1 7 5 2 28.6 0.0 0.0 0.0
timtab2 4 3 1 25.0 0.0 0.0 0.0
toll-like 1,086 179 907 83.5 14.7 0.0 0.1
tr12-30 3 2 1 33.3 0.8 0.3 0.4
traininstance6 41 2 39 95.1 0.0 0.0 0.0
uct-subprob 65 23 42 64.6 133.2 2.0 5.8
umts 279 276 3 1.1 2,379.5 8.5 8.6
usAbbrv-8-25_70 4 4 0 0.0 0.6 0.1 0.1
vpm1 34 10 24 70.6 0.1 0.0 0.0
vpm2 36 25 11 30.6 0.2 0.0 0.0
zib54-UUE 62 56 6 9.7 63.3 1.0 1.1
Average 28.8 267.7 2.0 5.6

40



C Example of invalid cuts from a point-ray collection
This example shows that the using as the point-ray collection the optimal points pt on each
term t ∈ T along with the neighbors of pt may lead to the generation of invalid cuts from
the associated (PRLP).

max
x1,x2,x3

x3

−x3 ≤ −1/2
−(7/4)x1 + 5x2 − 2x3 ≤ 1
−x1 − 5x2 + 2x3 ≤ −1
−x1 − (20/3)x2 + (7/3)x3 ≤ −3/2

x1 − x2 + (3/2)x3 ≤ 3/2
2x1 − x2 + 3x3 ≤ 7/2
−x1 + 4x2 + 2x3 ≤ 7/2
−x1 + 4x2 ≤ 2

x1, x2, x3 ∈ [0, 1]
x1 integer

Let P denote the feasible region of the linear relaxation of the above integer program.
Figure 5 shows the feasible region of P . Point q1 denotes the optimal solution to the linear
programming relaxation. The vertices of P are:

q1 = {1/2, 1/2, 1}
q2 = {1, 3/4, 3/4}
q3 = {1, 3/4, 1/2}
q4 = {1, 1/2, 2/3}
q5 = {1, 1/4, 1/2}
q6 = {0, 1/2, 3/4}
q7 = {0, 2/5, 1/2}.

We use as the valid disjunction the elementary split on x1. If we solve max{x3 : x ∈
P, x1 = 0}, the maximum is achieved by q6. Solving max{x3 : x ∈ P, x1 = 1}, the maximum
is achieved by q2. Consider using q2 and q6 and their neighbors as the collection of points
given to (PRLP). Thus P = {q2, q3, q4, q6, q7} and R = ∅.

One cut that can be obtained from this set of points is ᾱTx ≥ 1 where ᾱ = (−1/6, 5,−2),
which goes through q6, q7, and q4, leaving q2 and q3 on the feasible side, and cutting off not
only q1, but also q5. Indeed, ᾱTq1 = −1/12 + 5/2 − 2 = 5/12 < 1, while ᾱTq4 = ᾱTq7 =
ᾱTq6 = 1, and ᾱTq2 = 25/12 > 1 and ᾱTq3 = 31/12 > 1. However, as seen in Figure 5,
ᾱTq5 = 1/12 < 1, so that point of P ∩ {x : x1 = 1} is cut off, making the cut invalid.

There is a relatively simple resolution for the above counterexample. If we require the
generated cuts to be tight at the optimal solutions on each facet, q6 and q2, then all generated
cuts will be valid for conv(PD). We state this in Theorem 12.
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Figure 5: The LP polytope P for the counter-example showing an optimal point on each
disjunctive term and its neighbors as the point-ray collection may lead to invalid cuts.

Theorem 12. For each t ∈ T , set P t to be an optimal solution pt to arg minx{cTx : x ∈ P t}
as well as one point on each of the edges emanating from pt within P t. Let P ..= ∪t∈T P t and
R ..= ∅. Any feasible solution to (PRLP) formulated from these points and amended with
the condition αTpt = β for all t ∈ T yields a valid cut for PI .

Proof. Let (α, β) be a feasible solution to (PRLP) such that αTpt = β for all t ∈ T . Since
αTp ≥ β for all p ∈ P t, it holds that αT(p − pt) ≥ 0. This means that, for each t ∈ T , the
generated cut is valid for the cone with apex at pt and rays going through each of the points
p ∈ P t. By convexity, this cone is a relaxation of P t. It follows, by Corollary 4, that the cut
is valid for PI .

D Sample partial branch-and-bound tree
The computational experiments in the paper use a partial branch-and-bound tree as the
source of the disjunction for cut generation. The partial trees are produced from the branch-
ing strategy described in Section 5.1. In particular, there may exist nodes of the tree that
are pruned, and the tree may be very asymmetric. We illustrate this with one sample tree,
shown in Figure 6, constructed from the instance bm23 and terminated after finding 64 leaf
nodes. This tree includes two pruned nodes (the leftmost leaf node, from branching on x15,
and an adjacent leaf on the same level, from branching on x8).

E Computational setup: additional details
This section expands on Section 5.1 with additional details on the tolerances and settings
used in our VPC implementation.
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Figure 6: Partial branch-and-bound tree with 64 leaf nodes for instance bm23.

E.1 Evaluation
We evaluate cuts from two different perspectives: strength and effect on branch and bound.
The strength of the cuts is assessed by the percent integrality (root) gap closed by one round
of VPCs. Let xI denote an optimal solution to (IP), and let x′ be an optimal solution to
(LP) after a set of cuts have been added. We measure the quantity

% integrality gap closed ..= 100× cTx′ − cTx̄

cTxI − cTx̄
.

As a baseline, we also report the percent gap closed by adding one round of GMICs, as well
as the percent gap closed by using both VPCs and GMICs together. In addition, we report,
both with and without the use of VPCs, the root gap closed by Gurobi after one cut pass
and after the last round of cuts is added at the root. The effect on branch and bound is
measured by the time Gurobi takes to solve the problem with VPCs added as user cuts; this
is compared to the time taken without VPCs.

Note that there are two sources of cut strength, one from the disjunction from which the
cut is produced, and one from modularization applied to variables other than those involved
in the disjunction [9]. In contrast to GMICs, VPCs do not use this second approach, as ap-
plying the technique to VPCs is more complex and requires the use of additional information
about the cut when it is derived from a disjunction that is not simple.

E.2 Generating a partial branch-and-bound tree
The partial branch-and-bound tree is generated by the node, variable, and branch selection
rules that follow, which are the defaults for Cbc. Node selection is roughly by the best-first
or best-bound rule, in which the next node to explore will be the one with the minimum
objective value (though the number of fractional variables at each node is also considered,
it is to a much lesser extent). Variable selection utilizes the outcome of strong branching on
up to five fractional variables at each node. Between the two possible children of the node
when branching on the variable that is selected, the direction is chosen by a similar rule to
the node selection criteria, i.e., typically in the direction of the child with a lower optimal
value.
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E.3 Instance preprocessing
Every instance is first preprocessed by Gurobi’s presolve. This procedure is used in order to
improve the fairness of the testing environment. It allows VPCs to be generated from the
same version of the instance that would be used internally by the branch-and-bound solver.
This is also a reason for turning presolve off during the subsequent branch and bound tests,
as one round of presolve has already been applied. At the same time, for some instances,
preprocessing closes a significant portion of the integrality gap, which could make the process
of finding strong cuts more difficult. For reproducibility, one must be aware that not only
might Gurobi’s presolve algorithms change with a new version (release of the software), but
also they depend on the random seed given to the solver. We do not experiment with this
latter variability (we presolve with the random seed 628 only).

E.4 Setting up (PRLP)
When constructing the associated (PRLP) (in the nonbasic space defined by the cobasis at
x̄), we remove all duplicate rows. In addition, any rows that are actually bounds on the
α variables are removed as explicit constraints and kept as bounds instead. Henceforth,
we assume that (P ,R) has no duplicates. We proceed with generating cuts from a given
(PRLP) if it is feasible and solves to optimality within a minute when using no objective,
i.e., just the feasibility problem.

E.5 Normalization
As mentioned, we formulate the PRLP in the nonbasic space with respect to x̄ (in which x̄ is
represented as the origin), and we normalize (PRLP) to have β = 1, which restricts the set
of obtainable inequalities to those that cut x̄. In practice, we will actually use some scaled
positive constant determined by the input, as β = 1 could lead to numerical issues, due to
how it causes the cut coefficients scale. To illustrate this, suppose cTpt ≥ 108 for all t ∈ T .
Then, if β = 1, α = c/108 is a feasible solution to (PRLP). However, coefficients less than
10−7 are often regarded as zero by solvers, so we may end up generating cuts incorrectly
with improper scaling.

E.6 Cut processing and objective failures
Not every objective function we try for (PRLP) leads to a new cut. As we discussed in
Section 4, (PRLP) can be unbounded or lead to a duplicate cut. Other failures are imposed
by conditions that we set. If the time to solve (PRLP) for an objective is greater than 5
seconds, we abandon the objective. If we do obtain a solution, since (PRLP) is formulated in
the nonbasic space, we first convert the cut to the structural space, yielding a cut γTx ≥ γ0.
Next, we remove small coefficients: for j ∈ [n], if |γj| < ϵ, we ignore the coefficient, and
if ϵ ≤ |γj| < ϵcoeff, we replace xj by either its lower or upper bound and adjust γ0. In our
experiments, ϵ = 10−7, and ϵcoeff = 10−5. Assume that γTx ≥ γ0 has been processed in
this way. The cut is rejected if it is a duplicate of or dominated by a previously generated
VPC. It will also be rejected if its dynamism (maxj∈[n]|γj|/ minj∈[n]{|γj| : γj ̸= 0}) is higher
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than 108. In addition, if there exists some previously generated VPC αTx ≥ β that is nearly
parallel to γTx ≥ γ0, i.e., if α · γ/(∥α∥ · ∥γ∥) < ϵorth (ϵorth = 10−3 in our setup), then we keep
only one of these two cuts (the one that separates x̄ by a greater Euclidean distance, or if
these are equal, the sparser cut).

We solve (PRLP) until we exhaust all objectives or reach one of these stopping criteria:
(1) Numerical difficulties are encountered while solving (PRLP). (2) The time limit for cut
generation is reached. (3) The cut limit is reached. (4) The failure limit is reached.

An example of numerical difficulties we have encountered is when (PRLP) solves to
optimality for one objective but is deemed primal infeasible for another. The time limit for
cut generation is 900 seconds (the time to set up the partial tree and build (PRLP) is not
counted against this). The cut limit is equal to the number k of fractional variables at the
LP optimal solution.

The failure limit we use comes from some nontrivial experimentation. It varies based on
several parameters: there are different maximum failure rates depending on whether “few”
or “many” cuts have been generated, and whether “many” objective functions have been
attempted. Let ϕfew_cuts

..= 0.95, ϕmany_cuts
..= 0.90, ϕmany_obj

..= 0.80. We define “few” cuts
as nfew_cuts

..= 1, “many” cuts as nmany_cuts
..= ⌈k/4⌉, and “many” objectives as

nmany_obj
..= max{⌈nfew_cuts/(1− ϕfew_cuts)⌉ , ⌈nmany_cuts/(1− ϕmany_cuts)⌉}.

Hence, the default for nmany_obj is max{20, 10 ⌈k/4⌉}. After each cut, we test whether the
current failure ratio (number of unsuccessful objectives as a proportion of the total number
of objectives attempted) is greater than the appropriate threshold (ϕfew_cuts, ϕmany_cuts, or
ϕmany_obj); if it is, then we return that we have reached the failure limit. We also say we
reached the failure limit if the first ⌈nfew_cuts/(1− ϕfew_cuts)⌉ objectives all lead to failures;
this is often an indicator of numerical issues with the instance. As more cuts are generated
and more objectives are tried, the acceptable failure rate decreases in this setup, as there is
likely to be diminishing marginal benefit for additional cuts and we wish to avoid spending
excessive amounts of time attempting to generate cuts unsuccessfully.

F Instance selection
Instances were selected by the following criteria:

Criterion 1. The IP optimal value is known and is not equal to the LP optimal value.

Criterion 2. There are at most 5,000 rows and 5,000 columns in the presolved instance.

Criterion 3. No partial branch-and-bound tree used finds an IP optimal solution.

Criterion 4. For at least one partial branch-and-bound tree, (a) either the disjunctive lower
bound, cTp∗, is strictly less than the maximum objective value of any leaf node,
or it is strictly greater than cTx̄, (b) the corresponding (PRLP) is primal feasible,
(c) it is proved feasible within a one minute time limit, and (d) at least one VPC
is added to cut pool after processing according to Section E.6.
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Criterion 4 is put in place because infeasible instantiations of (PRLP) typically occur when
maxp∈P cTp = cTp∗ = cTx̄. When we report gap closed, we will also filter by another condition,
that cTp∗ > cTx̄ from the 64-leaf partial tree, as instances in which the disjunctive lower bound
and optimal value of the LP relaxation coincide are not good candidates for evaluation by
gap closed. The branch and bound results only include those instances that are solved in
under an hour with Gurobi (either with or without VPCs).

We modify the instances stein27 and stein45 from the versions in MIPLIB; in par-
ticular, we remove a cardinality constraint enforcing a lower bound for the objective value,
which is not present in the original formulation of the problem [35].

In total, there are 1,458 instances across the MIPLIB, CORAL, and NEOS sets. Many
of these are ultimately not considered. Initially, we eliminate 42 instances that have indi-
cator constraints from MIPLIB 2017, and 81 nonindicator instances that are infeasible or
unbounded. Then, from the 1,335 instances that are left, we eliminate 349 instances with
unknown IP optimal value. We then remove 45 instances that have no objective (feasi-
bility instance). From the 941 instances remaining, 295 instances have either more than
20,000 rows or more than 20,000 columns, so these are never preprocessed and removed from
consideration, as we deemed it unlikely that the resulting presolved instance would satisfy
Criterion 2. From the remaining 646 instances, 53 are eliminated because of less than 0.001
integrality gap after presolve, and another 153 are eliminated due to having too many rows or
columns after presolve, Further, 4 more instances (bley_xs2, control20-5-10-5, ej, gen-ip016)
encountered numerical issues. For example, for bley_xs2, Gurobi presolve declares the in-
stance unbounded, and for control20-5-10-5, Gurobi will declare the instance unbounded or
infeasible depending on seed. The above exclusions count neos-3661949-lesse, which appears
to have no integrality gap after presolve, though the issue may be numerical as the optimal
value found after presolve is 689,000,000, compared to the listed value 688,995,225. This
leaves 436 instances.

Of these 436 instances, Table 9 lists the 104 that were removed from consideration and
the reason for removal. As the table shows, one of the most common reasons for discarding
an instance was that no cuts were generated for that instance due either to maxp∈P cTp = cTx̄
(the optimal value over the best leaf node equals the optimal value of the LP) or (PRLP)
being primal infeasible. The situations are treated together because the former anyway
typically results in (PRLP) being infeasible, though it also implies that our metric of gap
closed is not reasonable for that instance. There is potential for these instances to either
generate inequalities that do not cut away x̄ or to try to find a different partial branch-and-
bound tree, but that has been beyond the scope of our investigation. There are an additional
50 instances for which branch and bound results are not shown, because these instances were
unable to be solved within an hour by Gurobi (neither with or without cuts, averaged across
all random seeds). Finally, we comment that results were not obtained with instance neos-
3734794-moppy because of a slight mismatch between the objective values computed for
the disjunctive terms within Cbc versus outside of Cbc’ this issue could be resolved with
loosening the associated tolerance, but we refrained from this manual adjustment for these
experiments.
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Table 9: Instances not considered along with violated selection criteria.

Number of leaves

Instance Set 2 4 8 16 32 64

22433 miplib2017 3 3 3 3
air01 miplib2 3 3 3 3 3 3
app1-1 miplib2017 3 3
b-ball miplib2017 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
bppc4-08 miplib2017 4(a) 4(a) 4(b) 4(b) 4(b) 4(c)
bppc6-02 miplib2017 4(a) 4(a) 4(b) 4(c) 4(c) 4(c)
chromaticindex32-8 miplib2017 4(a) 4(a) 4(a) 4(b) 4(b) 4(c)
csched008 miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(b)
egout miplib3 3 3
eil33-2 miplib2017 3 3
f2gap40400 miplib2017 3 3 3 3 3
fastxgemm-n2r6s0t2 miplib2017 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
fastxgemm-n2r7s4t1 miplib2017 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
fixnet3 miplib2 3
gen miplib2017 3 3 3 3 3 3
gr4x6 miplib2017 3 3
icir97_potential miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
lp4l miplib2 3 3
mad miplib2017 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
markshare1 miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
markshare2 miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
markshare_4_0 miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
markshare_5_0 miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(b)
misc01 miplib2 3 3
misc02 miplib2 3 3 3 3
misc04 miplib2 3 3 3
misc05 miplib2 3
misc06 miplib3 3
mod010 miplib2017 3 3 3
neos-1112782 miplib2017 4(d) 4(d) 4(d) 4(d) 4(d) 4(d)
neos-1112787 miplib2017 4(d) 4(d) 4(d) 4(d) 4(d) 4(d)
neos-1200887 coral 4(a) 4(b) 4(b) 4(b) 4(b) 4(b)
neos-1211578 coral 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
neos-1228986 coral 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
neos-1337489 coral 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
neos-1425699 miplib2017 3 3 3 3 3 3
neos-1426635 miplib2010 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-1426662 miplib2010 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-1430701 miplib2017 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
neos-1436709 miplib2010 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-1437164 coral 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
neos-1440447 coral 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
neos-1440460 miplib2010 4(a) 4(a) 4(a) 4(a) 4(a) 4(b)
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Number of leaves

Instance Set 2 4 8 16 32 64

neos-1441553 coral 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
neos-1442119 miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-1442657 miplib2010 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-1445532 miplib2017 3 3 3
neos-1516309 miplib2017 3 3 3 3 3 3
neos-1620770 miplib2010 4(a) 4(a) 4(a) 4(a) 4(c) 4(c)
neos-2624317-amur miplib2017 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
neos-2652786-brda miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-2657525-crna miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-3214367-sovi miplib2017 4(c) 4(c) 4(c) ? ? ?
neos-3530903-gauja miplib2017 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
neos-3530905-gaula miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-3734794-moppy miplib2017 ? ? ? ? ? ?
neos-430149 coral 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
neos-4338804-snowy miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-530627 coral ? ?
neos-555001 miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-555694 coral 4(a) 4(a) 4(a) 4(a) 4(b) 4(c)
neos-555771 coral 4(a) 4(a) 4(b) 4(b) 4(b) 4(b)
neos-555927 coral 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
neos-631694 coral 4(a) 4(a) 4(b) 4(b) 4(c) 4(c)
neos-825075 coral 4(a) 4(b) 4(b) 4(b) 3 3
neos-847302 miplib2010 4(a) 4(a) 4(b) 4(b) 4(b) 4(b)
neos-850681 miplib2017 4(a) 4(a) 4(a) 4(a) 4(c) 4(c)
neos-860300 miplib2017 3
neos-933562 miplib2017 4(a) 4(c) 4(c) 4(c) 4(c) 4(c)
neos-955215 coral 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
neos11 coral 4(a) 4(a) 4(a) 4(c) 4(c) 4(c)
neos20 coral 4(a) 4(b) 4(b) 4(b) 4(b) 4(b)
noswot miplib2017 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
ns2071214 miplib2017 4(a) 4(a) 4(a) 4(a) 4(c) 4(c)
ns4-pr6 miplib2017 3 3 3
opt1217 miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(b)
p0033 miplib3 3 3
p0201 miplib2017 3
p0291 miplib2 3
pigeon-08 miplib2017 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
pigeon-11 miplib2010 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
pigeon-12 miplib2010 4(a) 4(a) 4(a) 4(a) 4(a) 4(b)
pigeon-13 miplib2017 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
pigeon-16 miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
pigeon-19 miplib2010 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
pigeon-20 miplib2017 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
pk1 miplib2017 4(a) 4(a) 4(b) 4(b) 4(b) 4(b)
pw-myciel4 miplib2017 4(a) 4(a) 4(a) 4(b) 4(b) 4(c)
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Number of leaves

Instance Set 2 4 8 16 32 64

qap10 miplib2017 3 3 3 3
rentacar miplib2017 4(d) 3 3
rlp2 neos 3 3 3 3 3
rocI-3-11 miplib2017 4(a) 4(a) 4(a) 4(b) 4(b) 4(b)
rocI-4-11 miplib2017 4(a) 4(a) 4(a) 4(a) 4(b) 4(b)
sample2 miplib2 3 3 3 3 3
sct2 miplib2017 4(a) 4(a) 4(a) 4(b) 4(b) 4(c)
shiftreg1-4 miplib2017 4(a) 4(a) 4(b) 4(c) 4(c) 4(c)
stein09_nocard miplib2 3 3 3 3
stein15_nocard miplib2 3 3
supportcase14 miplib2017 3 3 3 3
supportcase16 miplib2017 3 3 3 3 3
tanglegram2 miplib2010 3 3 3 3 3
tanglegram6 miplib2017 3 3 3 3
traininstance2 miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)
wachplan miplib2017 4(a) 4(a) 4(a) 4(a) 4(a) 4(a)

G Additional results for partial branch-and-bound tree
experiments

This section contains additional details for the experimental results, left out of the main text
due to length.

Table 10 shows the number of rows and columns for each of the 332 instances used in
the gap closed experiments, the number of cuts produced to yield the “best” VPC objective
value (across partial tree sizes), and the percent gap closed for each instance. Columns 2
and 3 give, for each instance, the number of constraints and variables after preprocessing.
The next two columns show the number of cuts generated. Column 6 is the percent gap
closed by GMICs when they are added to the LP relaxation. Column 7 is the percent gap
closed as implied by the disjunctive lower bound from the partial tree with 64 leaf nodes.
Column 8 is the percent gap closed by VPCs. Column 9 is the best percent gap closed for
each instance between the value with GMICs alone in column “G” and the value with VPCs
alone in column “V”. Column 10 is the percent gap closed when GMICs and VPCs are used
together. Columns 11 and 12 show the percent gap closed by Gurobi cuts from one round at
the root, first without and then with VPCs added as user cuts. Columns 13 and 14 show the
same, but after the last round of cuts at the root. The values in columns 11 and 13 are the
maximum percent gap closed across seven random seeds. The last two rows give the average
and number of wins, reproducing the summary data in Table 1.

Table 11 provides the time and number of nodes taken by each instance for the partial
tree size per instance that led to the best outcome for Gurobi with VPCs across the six
partial tree sizes tested. Columns 2 and 3 show the number of terms and number of cuts
that led to the time for “V”. The table is in increasing order by column 5, “V”.
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Table 10: Percent gap closed by instance for GMICs (G), VPCs (V), both VPCs and GMICs
used together, and the bound implied by the partial branch-and-bound tree with 64 leaf nodes
(DB). Also shown are the sizes of the instances, the number of cuts added, and the percent
gap closed by Gurobi at the root (after one round (GurF) and after the last round (GurL)).

# cuts % gap closed

Instance Rows Cols G V G DB V max(G,V) V+G GurF V+GurF GurL V+GurL

10teams 210 1,600 153 16 100.00 0.00 0.00 100.00 100.00 93.88 93.88 100.00 100.00
23588 137 237 75 75 5.77 72.18 71.61 71.61 71.62 15.59 68.94 24.38 71.78
30n20b8 387 4,191 184 190 11.10 1.56 0.03 11.10 11.10 0.93 1.33 16.91 16.30
50v-10 233 2,013 29 29 45.75 18.01 11.18 45.75 45.82 49.86 50.15 73.17 74.44
a1c1s1 1,876 2,489 154 3 25.11 4.90 1.09 25.11 25.38 45.58 46.25 88.81 88.73
a2c1s1 1,856 2,459 157 18 24.37 3.34 0.46 24.37 24.37 42.80 44.25 91.53 92.02
aflow30a 449 812 25 25 16.54 17.17 16.83 16.83 19.29 29.60 29.63 64.90 65.25
aflow40b 1,401 2,687 34 36 12.00 14.59 13.34 13.34 15.42 30.75 32.15 56.33 58.70
aligninq 337 1,831 182 163 11.59 64.30 61.10 61.10 61.19 32.48 60.67 50.80 62.44
app3 370 1,392 18 15 20.41 55.67 15.52 20.41 26.67 28.43 34.82 83.90 84.43
arki001 693 957 64 5 35.06 13.18 4.08 35.06 35.10 20.25 28.01 48.87 48.87
assign1-5-8 161 156 114 114 6.62 10.22 9.10 9.10 9.66 5.98 9.12 8.52 9.82
b1c1s1 2,520 2,651 240 9 23.01 3.74 0.05 23.01 23.01 22.48 27.76 76.32 76.69
b2c1s1 2,546 2,677 238 4 19.81 2.01 0.09 19.81 19.81 23.07 23.40 72.08 72.32
bc1 1,338 1,044 5 5 0.59 12.14 8.78 8.78 8.78 30.32 30.70 44.93 45.03
bc 1,877 1,275 15 16 2.35 13.70 13.10 13.10 13.27 15.13 17.71 30.26 30.65
beasleyC1 700 1,099 17 17 22.73 38.64 25.66 25.66 33.38 51.07 56.22 93.71 95.59
beasleyC2 680 1,072 32 32 4.10 13.91 9.74 9.74 11.21 49.44 49.92 97.28 97.50
beasleyC3 790 1,220 124 124 1.30 2.81 1.24 1.30 1.80 57.74 63.23 97.72 97.87
beavma 247 272 39 4 48.24 25.05 8.83 48.24 52.33 68.31 71.31 98.18 99.86
bell3a 63 82 7 3 36.98 53.71 39.92 39.92 45.96 38.39 45.54 45.55 48.03
bell3b 73 91 24 22 31.17 85.44 83.84 83.84 84.61 37.15 86.21 52.14 95.62
bell4 73 88 27 7 25.57 21.72 14.22 25.57 26.15 25.26 26.10 30.72 31.24
bell5 34 56 10 10 13.84 84.75 73.82 73.82 75.11 13.68 25.22 36.66 76.81
berlin_5_8_0 1,328 979 235 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bg512142 897 757 204 63 0.81 2.00 0.81 0.81 1.39 3.51 3.81 10.77 10.99
bienst1 520 449 26 13 11.95 43.61 43.61 43.61 43.61 7.86 43.61 14.66 43.61
bienst2 520 449 33 7 9.77 35.63 24.18 24.18 24.18 7.17 26.62 12.28 35.63
binkar10_1 813 1,399 38 38 10.94 9.96 7.44 10.94 12.59 23.15 38.11 74.04 74.59
blend2 154 302 12 6 5.46 29.37 12.03 12.03 12.03 5.46 10.87 20.58 21.18
blp-ir98 473 4,675 43 45 40.79 19.07 4.18 40.79 40.79 29.67 32.64 86.39 87.34
bm23 20 27 6 6 16.81 71.47 69.64 69.64 69.64 21.16 66.20 39.06 71.15
bnatt400 3,808 1,901 545 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bppc8-02 57 204 17 13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bppc8-09 75 364 30 30 3.08 3.30 0.59 3.08 3.08 1.19 1.59 3.61 3.17
breastcancer-regularized 485 477 9 200 0.01 22.65 8.87 8.87 8.88 0.20 7.68 24.70 27.25
cap6000 1,725 4,596 2 2 41.65 67.98 63.48 63.48 63.48 35.70 35.70 36.02 38.82
cod105 1,024 1,024 598 391 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
control30-3-2-3 324 247 10 24 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02
cost266-UUE 1,302 3,882 55 56 23.92 19.13 4.96 23.92 24.67 20.10 22.27 37.29 38.68
cov1075 637 120 120 1 1.55 10.66 10.66 10.66 10.66 2.80 26.18 5.37 26.54
csched007 274 1,680 130 136 5.10 7.21 6.16 6.16 8.31 20.61 21.35 38.91 38.27
csched010 272 1,678 121 124 4.17 6.05 5.51 5.51 6.02 14.19 16.07 33.74 34.09
cvs08r139-94 2,398 1,864 1,582 339 1.09 10.47 1.24 1.24 1.63 1.58 1.96 2.51 2.78
cvs16r106-72 3,608 2,848 2,440 838 0.75 1.98 0.00 0.75 0.83 9.27 9.60 13.27 13.43
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# cuts % gap closed

Instance Rows Cols G V G DB V max(G,V) V+G GurF V+GurF GurL V+GurL

cvs16r128-89 4,633 3,472 3,200 734 0.86 3.02 0.14 0.86 0.95 5.13 5.13 6.69 6.53
cvs16r70-62 3,278 2,112 1,846 773 0.52 4.08 0.00 0.52 0.64 26.25 26.25 30.92 30.98
cvs16r89-60 3,068 2,384 1,935 218 0.53 3.37 0.56 0.56 0.91 12.97 14.28 21.03 20.96
d10200 906 697 144 154 0.51 14.33 14.15 14.15 14.15 0.00 0.00 0.00 0.00
danoint 656 513 32 52 0.26 3.43 1.59 1.59 1.59 1.17 1.48 3.27 3.29
dcmulti 271 529 46 13 38.35 27.04 11.56 38.35 45.57 54.28 59.63 87.77 88.63
dfn-gwin-UUM 156 936 45 45 45.85 33.45 24.23 45.85 47.82 46.38 47.00 65.06 65.32
dg012142 1,987 1,899 397 27 0.48 0.10 0.03 0.48 0.48 0.57 0.61 1.10 1.06
eilB101 100 2,815 71 89 2.47 12.02 1.12 2.47 3.13 12.03 12.03 43.85 43.55
eild76 75 1,893 55 63 1.09 9.28 1.01 1.09 1.36 10.51 10.53 51.97 54.35
exp-1-500-5-5 550 990 131 3 28.15 9.37 1.71 28.15 28.51 33.48 36.52 79.01 80.37
f2gap201600 20 1,600 16 16 60.27 8.85 7.22 60.27 60.27 18.18 74.07 18.18 74.07
f2gap401600 40 1,600 29 29 62.97 4.72 2.52 62.97 63.31 24.07 93.90 24.07 93.90
f2gap801600 80 1,600 66 5 78.59 6.09 1.11 78.59 78.61 49.79 95.41 49.79 95.41
fiber 267 998 20 38 69.33 9.09 5.36 69.33 69.58 66.16 72.72 93.64 93.23
fixnet4 477 877 14 15 43.19 84.68 25.21 43.19 51.09 46.73 57.83 99.34 99.72
fixnet6 477 877 11 12 22.11 67.96 34.96 34.96 40.48 40.71 52.42 80.00 87.32
g200x740 934 1,472 144 25 30.19 11.09 2.57 30.19 31.05 76.54 77.62 94.59 94.23
g200x740i 940 1,480 113 30 1.93 2.78 2.30 2.30 3.34 71.52 71.62 88.64 89.08
gen-ip002 24 41 18 18 2.15 12.81 12.39 12.39 12.39 1.32 1.32 3.65 12.29
gen-ip016 24 28 8 13 0.31 6.11 5.96 5.96 5.96 0.31 5.57 0.52 5.88
gen-ip021 28 35 15 15 1.01 15.75 15.20 15.20 15.20 0.65 14.65 1.44 15.18
gen-ip036 46 29 17 17 2.44 17.79 17.73 17.73 17.73 2.10 16.82 2.84 17.63
ger50-17-ptp-pop-6t 544 4,860 265 8 48.43 0.91 0.78 48.43 48.43 48.63 48.77 89.44 89.51
gesa2-o 1,200 1,176 71 8 26.74 15.71 6.67 26.74 30.11 34.95 36.13 98.48 98.76
gesa2 1,344 1,176 43 8 23.86 35.40 6.70 23.86 28.45 66.12 70.07 99.09 99.31
gesa3_o 1,152 1,080 98 5 42.20 39.42 7.77 42.20 42.21 61.56 61.81 86.86 87.30
gesa3 1,296 1,080 59 59 7.28 48.28 33.52 33.52 35.12 40.51 47.22 73.69 82.09
glass4 390 316 64 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gmu-35-40 357 652 11 9 0.07 0.00 0.00 0.07 0.07 4.60 4.60 9.41 9.65
gmu-35-50 358 953 17 17 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01
go19 361 361 357 357 2.00 15.41 15.18 15.18 15.18 2.23 14.91 5.26 15.27
graph20-20-1rand 4,810 1,924 416 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
graphdraw-domain 865 254 100 2 0.00 0.00 0.00 0.00 0.00 0.72 0.72 4.90 4.84
graphdraw-gemcutter 474 166 66 26 0.00 0.00 0.00 0.00 0.00 1.95 1.95 6.84 6.84
gsvm2rl3 180 241 31 31 6.25 18.74 5.77 6.25 11.27 10.45 11.68 30.37 33.77
gsvm2rl5 300 401 45 45 0.42 11.55 7.87 7.87 8.05 1.73 4.58 4.04 9.65
gt2 28 173 14 3 87.06 2.04 1.66 87.06 87.06 49.97 50.04 62.54 69.54
gus-sch 834 1,378 49 17 45.20 18.96 7.64 45.20 45.20 51.12 54.15 84.89 84.36
h50x2450 2,451 4,763 57 10 12.19 19.01 6.52 12.19 16.97 48.18 50.27 93.99 93.83
haprp 694 756 254 170 50.50 0.35 0.17 50.50 50.50 100.00 100.00 100.00 100.00
harp2 92 1,013 27 27 17.28 15.51 11.31 17.28 17.64 16.99 17.26 39.22 40.15
hgms-det 4,599 950 150 6 0.41 0.01 0.00 0.41 0.41 0.88 0.89 2.62 2.11
ic97_potential 998 726 290 2 4.63 0.00 0.00 4.63 4.63 17.31 18.92 53.84 51.77
ic97_tension 215 523 119 4 5.86 0.00 0.00 5.86 5.86 33.27 33.27 85.93 87.26
icir97_tension 818 1,816 668 3 3.45 0.00 0.00 3.45 3.45 42.90 42.98 74.27 74.26
iis-100-0-cov 3,831 100 100 100 1.15 35.42 35.40 35.40 35.40 4.20 35.25 8.80 35.39
iis-bupa-cov 4,796 337 151 153 0.85 30.82 30.76 30.76 30.76 4.36 30.47 6.10 31.07
janos-us-DDM 755 2,179 81 4 11.98 3.75 2.22 11.98 11.98 23.84 23.84 29.01 29.01
k16x240 256 480 13 14 7.62 23.34 18.27 18.27 19.74 67.24 68.47 79.76 80.21
k16x240b 256 480 14 15 6.04 20.95 17.49 17.49 18.87 61.18 62.97 82.23 82.51
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# cuts % gap closed

Instance Rows Cols G V G DB V max(G,V) V+G GurF V+GurF GurL V+GurL

khb05250 100 1,299 19 19 69.79 57.82 21.92 69.79 70.57 78.60 79.34 98.33 99.88
l152lav 97 1,987 13 52 10.84 62.58 54.33 54.33 54.49 1.00 52.26 4.08 54.26
lectsched-4-obj 3,221 1,875 418 2 0.00 0.00 0.00 0.00 0.00 57.14 57.14 100.00 100.00
lotsize 1,920 2,985 477 2 13.60 2.14 0.24 13.60 13.63 20.04 22.89 83.40 84.91
lrn 4,880 4,332 243 6 56.93 57.78 0.00 56.93 56.93 58.74 60.16 84.57 84.37
lseu 28 78 8 8 32.91 23.47 18.41 32.91 38.36 34.19 42.26 66.18 69.07
macrophage 2,308 1,673 386 46 9.35 3.76 3.76 9.35 12.46 88.82 88.82 99.41 99.44
mas074 13 148 12 12 6.67 13.51 13.31 13.31 13.33 1.83 2.12 8.31 13.36
mas076 12 148 11 11 6.42 13.30 12.15 12.15 12.48 2.33 3.66 14.26 14.71
mas284 68 148 20 20 0.87 34.87 34.10 34.10 34.10 0.51 33.80 10.07 33.92
maxgasflow 3,935 4,125 641 6 22.48 0.02 0.01 22.48 22.48 22.50 22.52 28.77 29.34
mc11 1,917 3,035 206 227 0.48 0.61 0.19 0.48 0.56 78.28 78.41 97.24 97.43
mc7 1,914 3,031 341 341 0.50 0.21 0.18 0.50 0.54 85.82 85.90 97.41 97.40
mc8 1,914 3,031 363 363 0.91 0.85 0.39 0.91 1.11 68.50 68.84 96.54 96.81
mcsched 1,793 1,450 1,224 1,224 0.03 3.65 2.69 2.69 2.69 0.06 0.21 0.64 2.76
mik-250-1-100-1 100 251 100 100 53.52 12.03 8.54 53.52 53.52 67.71 67.71 75.08 75.09
mik-250-20-75-1 76 269 75 75 65.25 15.47 12.23 65.25 65.56 65.25 65.25 82.91 82.91
mik-250-20-75-2 76 271 74 75 61.43 16.67 6.55 61.43 62.24 62.32 62.90 85.15 85.15
mik-250-20-75-3 76 268 75 20 61.59 20.55 4.69 61.59 62.25 61.59 62.25 76.70 76.68
mik-250-20-75-4 76 267 75 75 53.83 17.58 12.04 53.83 54.20 53.83 53.89 76.84 77.69
mik-250-20-75-5 76 266 75 75 63.44 18.04 5.98 63.44 64.03 63.44 64.01 79.34 82.10
milo-v12-6-r2-40-1 4,157 1,897 224 5 21.22 9.43 1.22 21.22 21.24 64.18 66.11 88.29 88.53
milo-v13-4-3d-3-0 655 295 23 23 1.03 9.19 8.53 8.53 8.56 0.59 8.39 0.60 8.54
mine-90-10 4,118 778 345 346 6.25 34.42 31.29 31.29 31.37 29.51 38.99 38.02 41.61
misc03 95 138 12 18 0.00 57.07 37.74 37.74 37.74 0.00 32.58 25.69 45.23
misc07 211 232 11 16 0.72 6.99 3.23 3.23 3.24 0.72 3.23 7.43 7.86
mkc1 2,738 4,751 67 54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.33 0.85
mkc 961 2,933 116 21 6.08 5.47 3.46 6.08 6.44 6.05 9.40 46.26 46.58
mod008 6 319 6 6 24.37 26.26 21.61 24.37 27.04 7.80 16.47 89.94 91.36
mod013 62 96 5 5 4.41 51.54 43.58 43.58 46.12 31.44 41.05 78.20 82.47
modglob 286 354 27 30 17.40 25.31 5.71 17.40 20.22 65.46 69.37 96.37 97.22
mtest4ma 1,097 1,873 118 111 59.60 12.00 1.75 59.60 60.36 43.67 45.71 99.83 99.87
n13-3 224 506 16 4 43.24 47.39 26.52 43.24 45.12 65.84 66.73 91.36 91.84
n2seq36f 251 3,231 24 24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n4-3 884 2,950 36 36 10.72 23.10 14.95 14.95 17.70 35.73 35.94 81.12 81.78
n5-3 744 1,974 35 35 12.94 31.46 18.49 18.49 24.58 44.75 48.81 86.93 88.99
n6-3 1,693 4,988 38 38 21.28 18.47 9.40 21.28 23.94 49.49 51.34 94.75 95.00
n7-3 960 2,772 30 30 17.08 31.00 24.10 24.10 28.46 53.80 55.60 87.45 87.91
neos-1058477 966 769 28 28 0.76 76.16 0.00 0.76 0.76 10.93 10.93 99.20 88.66
neos-1215259 1,197 1,512 123 150 3.47 29.13 18.05 18.05 18.05 17.74 23.87 33.90 41.75
neos-1225589 650 1,250 25 20 3.94 12.09 4.82 4.82 6.12 85.07 85.44 98.98 99.09
neos-1281048 459 685 121 31 0.00 33.11 20.51 20.51 20.51 14.24 21.06 94.70 99.34
neos-1330346 1,620 2,628 565 32 0.00 14.29 0.00 0.00 0.00 2.04 2.04 8.16 6.12
neos-1396125 1,434 1,161 69 69 5.40 0.44 0.16 5.40 5.40 52.68 52.68 54.71 54.57
neos-1413153 2,500 2,451 257 269 14.37 30.65 3.92 14.37 14.79 16.13 16.31 47.02 47.57
neos-1415183 2,809 2,757 237 4 11.13 27.67 15.96 15.96 16.15 21.99 21.99 26.07 58.86
neos-1420205 341 231 44 3 0.00 20.00 20.00 20.00 20.00 20.00 20.00 35.14 35.14
neos-1480121 183 151 7 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
neos-1489999 870 438 438 438 0.47 27.75 18.36 18.36 18.39 0.61 15.27 2.15 18.60
neos-1582420 2,487 2,407 295 295 3.19 30.81 28.92 28.92 28.92 11.54 11.55 50.90 53.46
neos-1595230 677 490 114 5 4.01 7.14 7.14 7.14 7.14 0.34 4.08 1.54 7.43
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# cuts % gap closed

Instance Rows Cols G V G DB V max(G,V) V+G GurF V+GurF GurL V+GurL

neos-1599274 1,169 4,200 60 1 34.65 0.00 0.00 34.65 34.65 51.66 51.66 51.66 51.66
neos-1601936 3,088 4,022 589 25 100.00 100.00 50.00 100.00 100.00 100.00 100.00 100.00 100.00
neos-1605061 3,447 4,023 729 70 36.21 17.10 0.00 36.21 36.21 86.21 86.21 100.00 100.00
neos-1605075 3,440 4,085 966 434 2.90 0.00 0.00 2.90 2.90 73.67 73.67 89.74 91.68
neos-1616732 1,026 200 200 200 1.47 24.78 24.74 24.74 24.74 1.90 24.72 5.86 24.72
neos-1620807 405 231 39 1 0.00 16.67 16.67 16.67 16.67 0.00 16.67 0.00 16.67
neos-2328163-agri 1,924 2,236 178 84 0.59 0.81 0.48 0.59 0.76 9.96 9.98 86.74 87.77
neos-3024952-loue 3,633 3,218 391 5 2.00 0.00 0.00 2.00 2.00 24.90 24.96 57.06 57.00
neos-3046601-motu 282 163 11 11 0.00 0.08 0.08 0.08 0.08 72.81 92.88 99.75 99.65
neos-3046615-murg 249 145 14 10 0.00 0.00 0.00 0.00 0.00 90.69 90.69 96.84 96.95
neos-3072252-nete 429 570 93 1 19.69 0.93 0.00 19.69 19.69 19.47 19.47 73.16 73.93
neos-3083819-nubu 340 2,230 12 29 42.07 33.87 12.43 42.07 46.60 64.14 64.14 86.83 91.88
neos-3118745-obra 137 1,130 24 6 18.80 0.00 0.00 18.80 18.80 15.31 15.31 58.78 53.06
neos-3216931-puriri 3,427 2,993 409 22 0.93 21.97 0.00 0.93 0.93 1.64 1.71 5.32 5.32
neos-3373491-avoca 1,267 2,152 66 2 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.03 0.03
neos-3381206-awhea 479 2,375 478 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
neos-3421095-cinca 597 292 56 35 0.00 0.00 0.00 0.00 0.00 3.60 3.68 83.16 83.16
neos-3592146-hawea 765 4,205 240 7 16.02 4.84 2.20 16.02 16.07 15.85 18.09 28.59 28.61
neos-3610040-iskar 215 275 18 2 7.12 22.23 14.86 14.86 14.86 9.86 15.41 31.03 41.32
neos-3610051-istra 389 444 27 7 5.56 26.41 26.41 26.41 26.41 16.78 25.66 24.53 27.74
neos-3610173-itata 435 491 26 3 7.81 43.61 0.51 7.81 7.81 19.17 19.27 55.09 57.36
neos-3611447-jijia 262 324 23 4 19.97 20.29 5.51 19.97 19.97 46.09 46.09 66.47 66.53
neos-3611689-kaihu 256 317 27 11 17.83 21.49 20.48 20.48 22.66 50.89 53.86 61.28 60.70
neos-3627168-kasai 1,190 1,400 152 152 17.11 0.73 0.59 17.11 17.11 6.06 6.55 31.66 31.62
neos-3660371-kurow 1,524 1,488 144 160 0.22 0.81 0.61 0.61 0.66 0.23 0.59 1.50 1.46
neos-3665875-lesum 3,184 3,128 179 2 1.27 0.00 0.00 1.27 1.27 6.04 6.04 92.35 92.63
neos-3754480-nidda 402 253 41 41 19.64 22.88 22.28 22.28 27.34 48.50 48.71 50.47 50.99
neos-3762025-ognon 2,636 4,507 339 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
neos-4333464-siret 2,278 2,186 15 15 5.65 4.88 4.37 5.65 8.31 21.68 21.93 68.13 68.83
neos-4333596-skien 438 390 21 43 20.84 10.05 7.08 20.84 20.84 38.54 39.87 67.11 67.82
neos-4387871-tavua 3,918 3,638 33 33 2.04 6.48 4.08 4.08 5.00 15.14 16.68 61.26 62.55
neos-4393408-tinui 3,918 3,640 33 33 9.03 28.73 22.87 22.87 28.53 4.20 27.13 18.26 39.45
neos-4650160-yukon 1,551 980 83 7 85.84 2.07 0.61 85.84 85.85 90.49 90.60 93.19 93.19
neos-480878 1,265 746 21 22 1.84 18.72 7.22 7.22 8.12 1.80 6.06 7.92 11.58
neos-4954672-berkel 315 630 60 5 8.44 5.05 2.28 8.44 8.90 12.75 16.94 53.47 53.57
neos-501453 13 52 1 1 70.00 0.08 0.08 70.00 70.00 70.00 70.00 70.00 70.00
neos-504674 1,099 617 153 153 9.86 11.99 8.59 9.86 12.46 14.16 15.80 22.96 22.63
neos-504815 857 483 115 115 16.04 15.51 7.60 16.04 16.41 22.14 22.58 29.76 29.85
neos-5051588-culgoa 4,076 3,902 112 22 0.00 4.74 4.35 4.35 4.35 30.92 31.61 46.74 49.38
neos-5075914-elvire 1,975 1,951 216 125 32.92 8.17 0.00 32.92 32.92 1.47 1.68 4.04 4.04
neos-5078479-escaut 2,201 2,025 205 7 5.62 0.00 0.00 5.62 5.62 0.45 0.94 1.89 1.89
neos-512201 1,082 611 141 49 7.20 23.15 15.10 15.10 16.80 16.74 23.54 25.46 29.86
neos-5140963-mincio 184 196 11 24 16.99 23.74 22.77 22.77 23.16 18.97 22.91 27.56 29.33
neos-5182409-nasivi 404 1,904 142 143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 2.97
neos-522351 1,705 1,524 104 29 58.21 29.93 29.92 58.21 58.21 79.77 79.77 99.83 99.81
neos-5261882-treska 2,469 2,031 20 48 3.44 4.95 3.08 3.44 4.41 3.44 3.44 34.45 34.73
neos-538867 1,042 666 47 47 0.00 5.25 1.99 1.99 1.99 0.00 1.43 0.00 7.30
neos-538916 1,154 704 53 53 0.00 3.48 2.51 2.51 2.51 0.00 1.36 0.00 6.62
neos-547911 357 2,352 84 87 0.91 6.43 0.00 0.91 0.91 1.26 1.53 10.16 10.08
neos-555884 1,952 2,478 108 62 14.47 17.11 0.00 14.47 14.47 87.94 87.94 93.42 93.42
neos-565815 1,746 1,248 238 28 12.16 100.00 91.80 91.80 91.80 9.77 83.16 28.40 93.14
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# cuts % gap closed

Instance Rows Cols G V G DB V max(G,V) V+G GurF V+GurF GurL V+GurL

neos-570431 925 495 215 215 1.36 39.78 38.92 38.92 38.92 14.23 38.54 38.85 43.32
neos-574665 3,020 326 44 30 3.39 4.28 4.16 4.16 4.19 18.53 21.51 49.77 52.68
neos-584851 465 389 231 231 0.94 8.70 8.68 8.68 9.38 3.41 11.31 14.15 16.03
neos-585192 1,149 1,314 16 12 0.15 19.01 5.59 5.59 5.67 6.45 8.96 8.35 10.63
neos-585467 948 1,067 12 12 0.15 37.57 20.65 20.65 20.70 9.16 18.34 12.19 24.97
neos-593853 242 1,230 10 10 22.04 49.15 41.27 41.27 42.24 24.20 41.91 56.50 54.15
neos-595904 1,432 2,835 47 47 25.57 8.44 5.62 25.57 25.57 55.76 57.68 98.10 97.84
neos-598183 452 916 19 19 16.89 24.89 15.83 16.89 22.52 4.34 18.45 95.73 97.58
neos-603073 452 974 20 20 4.34 4.57 3.26 4.34 5.41 2.28 3.88 29.75 31.30
neos-631517 343 1,037 202 5 21.88 0.18 0.14 21.88 21.88 15.76 40.91 99.91 99.90
neos-686190 3,658 3,660 55 74 4.43 61.71 54.77 54.77 54.77 5.18 5.18 11.37 53.55
neos-691058 1,953 2,871 354 151 54.80 0.00 0.00 54.80 54.80 72.78 72.78 97.30 99.60
neos-717614 811 3,049 138 14 66.48 3.98 2.07 66.48 67.26 87.61 88.98 98.39 98.51
neos-775946 1,381 2,876 160 8 36.93 43.49 31.88 36.93 36.93 46.09 46.09 97.42 98.75
neos-796608 64 104 15 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
neos-801834 3,300 3,260 481 450 2.95 62.64 34.64 34.64 34.64 2.67 17.74 9.60 35.48
neos-803219 621 360 20 20 13.00 69.68 61.45 61.45 62.32 18.57 49.12 18.57 62.15
neos-803220 611 350 20 20 14.88 55.11 41.84 41.84 44.29 21.92 27.84 22.79 43.56
neos-806323 1,025 650 120 120 25.78 21.77 21.73 25.78 32.39 22.58 23.37 37.18 37.86
neos-807639 953 580 80 80 19.99 77.18 75.12 75.12 75.32 19.99 70.61 37.05 75.43
neos-807705 1,024 604 77 91 10.26 34.36 33.92 33.92 34.33 17.57 33.10 21.42 35.22
neos-810326 1,730 1,701 159 198 3.80 60.83 41.11 41.11 41.11 13.94 33.63 27.47 43.94
neos-831188 2,153 4,580 892 79 0.47 16.94 7.01 7.01 7.06 0.77 1.01 1.24 6.76
neos-839859 2,601 1,950 141 132 11.17 26.97 4.27 11.17 12.49 4.07 6.92 17.68 18.78
neos-862348 916 1,810 117 15 54.07 0.00 0.00 54.07 54.07 57.56 57.56 74.62 79.23
neos-880324 173 135 48 2 0.00 14.54 14.54 14.54 14.54 12.06 14.54 25.13 25.80
neos-886822 1,057 1,025 376 1 3.18 3.05 0.43 3.18 3.51 2.04 2.33 2.84 2.52
neos-892255 1,675 1,521 189 197 0.00 33.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
neos-906865 1,562 1,160 19 29 13.90 37.52 36.36 36.36 36.82 13.76 33.91 18.48 36.79
neos-911880 83 888 48 48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
neos-911970 107 888 43 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.33 12.54
neos-916792 1,413 1,465 88 89 4.06 15.72 7.87 7.87 8.91 0.12 7.97 3.24 8.83
neos-942830 589 831 250 3 6.25 0.00 0.00 6.25 6.25 18.45 18.45 30.36 35.04
neos14 438 677 130 8 55.47 7.14 2.63 55.47 56.08 62.56 63.30 80.22 81.08
neos15 461 700 153 13 48.80 6.30 4.15 48.80 49.33 60.48 61.14 77.79 79.19
neos16 346 208 90 5 2.78 0.00 0.00 2.78 2.78 50.86 58.80 100.00 100.00
neos17 486 511 7 171 0.00 1.16 0.50 0.50 0.50 84.00 84.29 92.10 93.43
neos18 3,052 758 567 2 11.90 13.04 13.04 13.04 24.94 60.87 60.87 63.31 63.59
neos22 2,594 2,066 66 66 5.94 5.38 5.25 5.94 11.19 48.49 56.98 83.66 62.80
neos2 793 1,487 20 20 3.22 0.00 0.00 3.22 3.22 4.91 4.91 20.86 22.43
neos3 1,146 2,160 28 18 2.49 2.61 0.74 2.49 2.65 5.89 6.78 20.70 23.53
neos5 63 63 35 1 11.11 37.50 37.50 37.50 37.50 4.17 37.50 17.58 37.50
neos7 1,807 1,501 19 1 23.17 30.06 28.83 28.83 29.12 35.06 35.19 46.56 46.91
newdano 520 449 52 5 7.76 28.32 28.32 28.32 28.32 7.47 28.32 10.66 28.32
nexp-150-20-1-5 2,033 3,931 46 13 0.00 5.17 0.00 0.00 0.00 17.24 17.24 29.02 44.21
nexp-50-20-1-1 267 443 33 8 4.48 8.39 8.39 8.39 9.11 100.00 100.00 100.00 100.00
nexp-50-20-4-2 493 1,101 41 5 25.76 0.11 0.11 25.76 25.76 53.95 58.70 94.36 94.48
nh97_potential 1,836 1,180 545 5 0.00 0.00 0.00 0.00 0.00 38.10 45.24 69.05 73.81
nobel-eu-DBE 726 3,460 46 47 10.84 0.00 0.00 10.84 10.84 13.09 22.91 49.86 52.10
ns1208400 2,054 2,682 438 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 91.07 71.43
ns1606230 3,459 3,261 905 90 4.16 1.70 0.41 4.16 4.16 73.36 73.36 100.00 100.00
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Instance Rows Cols G V G DB V max(G,V) V+G GurF V+GurF GurL V+GurL

ns1688347 2,336 1,235 249 4 10.38 29.56 28.30 28.30 28.30 39.62 39.62 39.62 39.62
ns1830653 1,310 586 214 124 10.57 28.70 18.07 18.07 18.71 15.00 19.57 27.80 30.53
ns2081729 1,130 601 14 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ns894788 923 2,012 322 253 100.00 9.76 4.11 100.00 100.00 100.00 100.00 100.00 100.00
nsa 600 176 13 13 2.97 22.39 19.52 19.52 19.52 3.91 19.59 8.54 19.80
nsrand-ipx 510 3,739 67 26 17.29 12.43 4.01 17.29 19.53 13.59 17.77 60.88 60.46
nu120-pr12 534 1,402 14 8 27.71 74.23 47.43 47.43 55.28 31.41 56.38 57.39 61.44
nu25-pr12 534 1,402 11 11 28.21 51.43 21.21 28.21 35.29 33.03 38.59 45.20 48.08
p0282 157 199 24 24 3.18 13.48 7.63 7.63 8.28 75.97 75.99 99.78 99.90
p0548 119 371 36 2 38.09 56.39 44.40 44.40 70.14 88.23 89.51 99.89 99.91
p100x588b 688 1,176 70 11 8.63 5.43 2.87 8.63 9.98 78.81 79.98 92.08 92.25
p200x1188c 1,388 2,376 3 5 0.40 0.89 0.78 0.78 0.83 52.05 52.18 93.04 94.92
p2756 590 2,143 97 4 93.51 11.61 2.46 93.51 93.51 90.00 91.63 98.73 98.64
p6000 1,725 4,596 2 2 41.65 67.98 60.72 60.72 63.20 35.70 35.70 36.02 38.78
p6b 502 451 368 375 0.91 13.54 13.38 13.38 13.38 0.67 12.90 2.14 13.34
p80x400b 456 768 51 3 11.19 7.70 2.86 11.19 12.16 74.75 76.56 90.66 90.77
pg5_34 225 2,600 88 4 23.45 6.70 1.01 23.45 23.91 93.75 95.34 98.80 98.79
pg 125 2,700 91 2 24.29 9.18 0.54 24.29 24.64 81.74 81.74 84.40 84.40
pigeon-10 525 210 72 72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
piperout-03 3,529 4,414 766 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.10 20.38
piperout-d20 3,557 4,499 142 144 100.00 100.00 35.33 100.00 100.00 100.00 100.00 100.00 100.00
piperout-d27 3,867 4,890 164 58 100.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00
pipex 25 48 6 6 35.56 37.81 32.89 35.56 39.52 16.98 42.88 93.52 98.39
pp08aCUTS 228 235 46 46 31.53 21.04 15.88 31.53 32.43 53.08 58.88 90.89 90.93
pp08a 133 234 52 3 51.25 22.40 5.50 51.25 51.25 62.60 63.63 95.61 95.20
probportfolio 302 320 125 20 25.14 20.41 0.00 25.14 25.41 12.80 15.59 32.85 33.54
prod1 75 117 40 40 4.66 42.45 40.11 40.11 40.34 10.68 38.85 30.58 41.44
prod2 92 182 44 44 2.31 39.64 27.63 27.63 27.65 5.92 25.35 29.86 33.04
protfold 2,110 1,835 490 46 4.95 9.82 3.30 4.95 6.71 4.46 6.93 10.79 11.71
qiu 1,192 840 36 36 0.86 41.96 32.56 32.56 32.63 0.98 30.94 5.15 32.78
qnet1_o 237 1,314 10 10 29.71 63.67 57.94 57.94 61.28 46.49 62.88 87.96 89.90
qnet1 360 1,417 40 47 13.25 25.88 6.32 13.25 16.14 23.77 25.18 80.54 84.05
queens-30 900 900 900 756 2.29 2.98 0.17 2.29 2.29 0.27 0.28 2.24 2.21
r50x360 407 716 43 43 15.74 13.46 10.45 15.74 18.08 77.49 81.48 94.79 95.38
r80x800 880 1,600 57 9 31.60 20.13 6.72 31.60 33.67 70.35 73.32 89.92 89.75
railway_8_1_0 2,060 1,557 317 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ran12x21 285 504 17 17 3.23 24.92 24.13 24.13 24.19 34.69 42.37 61.85 61.96
ran13x13 195 338 18 18 11.39 27.85 24.81 24.81 25.90 39.21 46.96 62.31 63.15
ran14x18-disj-8 449 506 80 86 0.14 9.70 5.92 5.92 5.92 0.93 5.84 8.07 9.27
ran14x18 284 504 18 18 5.40 10.47 8.34 8.34 8.89 20.71 25.23 49.35 55.77
ran16x16 288 512 20 20 7.49 20.19 17.09 17.09 17.99 34.93 39.49 62.05 62.15
reblock115 3,953 1,062 814 396 11.61 46.66 24.27 24.27 27.78 19.45 31.57 31.91 38.82
reblock67 1,928 585 442 442 10.68 31.20 27.93 27.93 28.64 25.45 30.99 40.37 41.67
rgn 24 180 19 19 9.66 64.07 9.64 9.66 15.26 41.17 44.63 66.84 84.86
rlp1 52 316 47 6 11.18 0.00 0.00 11.18 11.18 15.76 15.82 32.62 32.45
rococoB10-011000 765 3,555 274 302 12.59 1.27 0.91 12.59 12.59 22.29 22.31 49.85 49.91
rococoC10-001000 617 2,483 157 157 32.89 0.03 0.01 32.89 32.89 35.13 35.13 81.24 81.36
roll3000 981 892 157 3 4.25 1.43 0.27 4.25 4.39 33.14 51.70 88.07 89.55
rout 290 555 40 34 1.51 17.48 17.17 17.17 17.17 0.71 16.55 3.98 17.17
roy 147 139 13 13 11.98 39.13 26.70 26.70 28.19 30.05 35.14 89.54 91.27
sentoy 30 60 8 8 19.31 61.36 57.65 57.65 58.09 13.73 14.46 39.60 59.34
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Instance Rows Cols G V G DB V max(G,V) V+G GurF V+GurF GurL V+GurL

set1al 432 652 196 3 98.83 3.66 1.11 98.83 98.83 99.15 99.15 99.96 99.96
set1ch 423 643 129 71 28.20 2.19 2.07 28.20 28.20 67.24 67.26 99.91 99.91
set1cl 431 651 200 3 100.00 3.59 1.09 100.00 100.00 100.00 100.00 100.00 100.00
set3-10 2,481 2,677 176 3 17.62 3.77 0.00 17.62 18.81 8.77 8.80 39.66 39.72
set3-15 2,537 2,677 174 4 7.36 1.59 0.16 7.36 7.36 7.40 7.65 29.61 29.67
set3-20 2,537 2,677 176 2 10.55 1.09 0.00 10.55 11.04 8.45 9.22 33.73 33.71
seymour-disj-10 4,777 1,031 614 621 0.21 5.99 0.89 0.89 0.89 0.17 0.79 0.37 1.13
seymour1 4,452 897 58 74 17.43 44.27 37.05 37.05 37.05 37.38 41.52 46.59 47.78
seymour 4,369 893 474 481 6.08 19.22 15.26 15.26 15.45 23.48 23.72 43.18 43.86
sorrell8 1,554 1,504 1,063 1,075 1.74 6.70 5.97 5.97 6.38 10.24 11.85 16.32 16.42
sp150x300d 269 419 31 6 1.67 6.72 4.88 4.88 6.12 78.94 79.49 89.46 89.12
sp98ir 1,400 1,586 110 111 3.69 29.11 27.12 27.12 27.18 13.59 14.53 49.39 51.60
square23 560 4,345 86 90 9.18 42.26 2.48 9.18 9.18 3.07 5.49 14.60 14.60
stein27_nocard 117 27 27 2 8.30 55.56 55.56 55.56 55.56 14.78 55.56 29.08 55.56
stein45_nocard 330 45 45 1 4.69 53.96 53.96 53.96 53.96 12.69 59.09 26.34 59.09
supportcase17 1,421 736 247 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.40
supportcase20 598 896 270 7 35.68 2.83 1.49 35.68 36.28 41.02 42.00 80.74 81.89
supportcase25 3,832 3,664 110 115 5.41 7.57 4.20 5.41 7.99 31.03 32.73 44.47 44.59
supportcase26 830 436 18 2 0.00 0.00 0.00 0.00 0.00 5.16 5.16 23.99 24.25
ta1-UUM 424 1,875 40 10 4.09 3.95 0.00 4.09 4.09 0.00 0.00 0.00 0.00
timtab1CUTS 349 365 121 122 0.73 9.26 7.88 7.88 7.90 3.71 8.08 11.35 11.87
timtab1 165 365 128 5 24.08 11.49 4.44 24.08 24.08 32.68 33.03 59.87 59.95
timtab2 285 625 214 3 13.66 9.25 2.36 13.66 13.66 24.68 24.92 47.85 48.90
toll-like 3,208 2,146 435 179 4.38 2.87 2.73 4.38 6.48 64.76 67.67 91.43 91.44
tr12-30 710 1,028 321 2 58.36 1.74 0.48 58.36 58.36 60.24 60.44 98.55 98.69
traininstance6 497 265 21 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
uct-subprob 1,595 1,932 594 23 2.61 9.67 6.76 6.76 7.33 19.13 19.64 48.46 49.10
umts 1,749 1,648 275 276 0.97 0.21 0.11 0.97 0.97 1.41 1.46 4.79 5.02
usAbbrv-8-25_70 2,813 2,073 722 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vpm1 128 188 16 10 16.93 7.79 4.67 16.93 16.93 45.86 56.94 68.16 72.13
vpm2 127 187 25 25 17.85 14.29 7.83 17.85 19.71 43.30 50.63 73.26 73.53
zib54-UUE 1,114 3,726 56 56 10.70 17.64 7.60 10.70 15.60 43.11 54.10 68.33 68.23

Average 16.51 18.37 12.01 23.01 23.92 28.93 34.80 48.32 52.81
Wins 178 132 226 250 234
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Table 11: Time (in seconds) and number nodes taken to solve each instance, for the disjunc-
tion size with best solving time with VPCs per instance. The table is sorted by column 5
(“V” under “Time (s)”).

# cuts Time (s) Nodes (#)

Instance # terms V Gur V Gen Gur V

neos-796608 16 2 0.00 0.00 0.02 1 1
neos-501453 64 1 0.00 0.00 0.02 1 1
gt2 4 3 0.00 0.00 0.01 1 1
vpm1 8 5 0.00 0.00 0.02 1 1
set1cl 64 3 0.00 0.00 0.35 1 1
pipex 4 6 0.02 0.01 0.00 7 1
nexp-50-20-1-1 16 2 0.01 0.01 0.08 1 1
p0548 64 3 0.01 0.01 0.20 1 1
sp150x300d 64 6 0.01 0.01 0.23 1 1
set1al 32 2 0.01 0.01 0.18 2 2
haprp 2 3 0.01 0.01 0.06 1 1
f2gap201600 32 16 0.02 0.01 6.78 1 1
roy 4 7 0.02 0.02 0.01 7 8
f2gap401600 2 29 0.02 0.02 0.26 1 1
mod008 64 6 0.02 0.02 0.40 3 1
f2gap801600 8 5 0.03 0.02 0.74 1 1
mod013 64 5 0.03 0.03 0.06 56 41
khb05250 2 3 0.02 0.03 0.05 1 1
beavma 32 3 0.03 0.03 0.07 1 1
p0282 2 14 0.03 0.03 0.01 1 1
neos22 4 66 0.03 0.03 0.50 1 1
bm23 32 6 0.04 0.04 0.03 149 168
neos-3046601-motu 16 5 0.04 0.04 0.03 20 29
neos-1599274 16 2 0.04 0.04 97.62 1 1
bell5 4 2 0.04 0.04 0.00 711 687
fixnet4 32 15 0.05 0.04 0.52 1 1
lseu 2 8 0.05 0.05 0.00 226 148
sentoy 64 8 0.08 0.05 0.15 73 67
set1ch 32 8 0.05 0.05 0.26 37 41
neos-1058477 2 28 0.06 0.05 0.12 2 1
modglob 32 30 0.06 0.06 0.35 37 27
control30-3-2-3 16 24 0.07 0.07 0.07 92 81
fiber 16 18 0.08 0.07 0.34 59 58
cap6000 8 2 0.08 0.08 2.50 1 1
p6000 8 2 0.08 0.08 2.51 1 1
bell4 2 3 0.09 0.08 0.00 861 892
gesa2 2 7 0.10 0.08 0.05 8 3
neos-3610173-itata 16 3 0.08 0.09 0.44 71 65
p2756 8 4 0.11 0.09 0.47 38 23
neos-3611447-jijia 2 3 0.10 0.09 0.02 325 284
dcmulti 8 11 0.10 0.09 0.09 34 31
neos-3610040-iskar 8 25 0.12 0.10 0.10 550 372
lectsched-4-obj 64 3 0.09 0.10 4.86 1 1
bppc8-02 4 13 0.11 0.10 0.05 600 523
neos-1225589 4 25 0.10 0.11 0.12 18 17
neos-522351 2 3 0.10 0.11 0.09 4 3
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nu120-pr12 2 16 0.10 0.11 0.06 32 25
n13-3 64 4 0.12 0.11 0.34 159 152
fixnet6 4 12 0.14 0.11 0.06 21 14
gesa2-o 16 7 0.14 0.12 0.36 32 18
gesa3 4 24 0.11 0.12 0.13 27 17
neos-880324 2 6 0.14 0.12 0.02 437 354
neos-775946 2 7 0.13 0.13 0.55 1 1
p200x1188c 4 5 0.18 0.13 0.33 1 1
vpm2 8 8 0.13 0.13 0.02 439 442
nu25-pr12 16 11 0.14 0.13 0.47 90 88
neos-3610051-istra 32 19 0.17 0.13 3.70 329 227
gesa3_o 64 5 0.13 0.14 1.85 39 50
blend2 8 6 0.14 0.14 0.03 501 424
rgn 32 19 0.14 0.14 0.13 1,210 1,068
stein27_nocard 16 2 0.16 0.14 0.06 2,719 2,780
beasleyC1 4 6 0.16 0.15 0.07 11 4
mtest4ma 8 16 0.16 0.16 0.38 1 1
bell3b 32 9 0.13 0.16 0.03 1,570 1,924
neos-717614 4 14 0.17 0.16 0.40 27 39
neos-1480121 16 2 0.23 0.16 0.12 1,297 1,009
nexp-50-20-4-2 2 3 0.18 0.16 0.04 37 11
qnet1_o 8 10 0.17 0.17 0.34 30 24
bell3a 16 1 0.18 0.18 0.01 2,928 2,928
neos-1489999 4 85 0.17 0.19 0.30 91 101
neos-598183 16 19 0.23 0.19 1.43 36 31
neos-593853 8 10 0.19 0.20 0.31 354 469
misc03 64 18 0.33 0.21 0.85 1,374 579
mik-250-20-75-2 32 39 0.23 0.22 0.26 1,362 1,092
pp08aCUTS 64 46 0.27 0.24 1.94 579 510
gus-sch 2 26 0.29 0.25 0.10 114 67
beasleyC2 8 32 0.26 0.25 0.30 19 14
neos-3118745-obra 16 4 0.20 0.26 1.83 207 280
qnet1 2 47 0.27 0.26 0.18 25 31
neos-3083819-nubu 64 29 0.29 0.28 64.62 253 207
neos-555884 64 21 0.26 0.29 72.94 11 11
n2seq36f 16 3 0.23 0.29 7.73 209 251
app3 8 13 0.29 0.29 1.88 77 80
neos-595904 16 2 0.36 0.29 4.83 48 29
pp08a 2 4 0.29 0.32 0.01 779 843
piperout-03 16 3 0.32 0.34 4.21 20 1
neos-862348 4 9 0.38 0.35 0.43 90 55
piperout-d20 2 26 0.35 0.39 0.56 1 1
neos-3611689-kaihu 2 14 0.51 0.39 0.03 1,850 1,403
macrophage 32 14 0.43 0.39 2.05 67 40
l152lav 2 52 0.37 0.42 0.79 394 357
23588 4 75 0.54 0.47 0.36 882 951
neos-1420205 8 4 0.71 0.48 0.19 3,521 2,168
mik-250-20-75-5 4 2 0.58 0.55 0.02 1,299 1,497
mik-250-20-75-1 64 75 0.62 0.57 2.82 1,469 1,672
mik-250-20-75-3 2 1 0.58 0.61 0.01 1,756 1,728
neos-585467 4 12 0.69 0.61 0.13 119 103
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neos2 4 20 0.63 0.64 0.35 778 757
neos17 64 171 1.01 0.65 21.76 1,785 1,859
neos-565815 16 37 8.30 0.70 318.52 932 1
nexp-150-20-1-5 4 13 1.01 0.71 0.75 369 296
railway_8_1_0 32 3 0.94 0.72 1.35 1,329 963
piperout-d27 16 17 0.68 0.75 12.99 9 18
neos-807639 2 59 0.76 0.86 0.08 952 1,011
neos16 4 8 1.11 0.91 0.01 1,313 1,082
neos-1415183 16 4 1.78 0.91 43.46 851 193
neos-1281048 32 37 1.15 0.97 144.23 235 122
neos-691058 16 64 1.05 1.02 3,601.91 1 6
blp-ir98 16 45 1.13 1.04 61.18 202 111
neos7 2 3 1.17 1.09 0.09 1,750 1,498
neos-631517 16 2 8.72 1.24 0.83 8,295 634
neos-3381206-awhea 64 3 1.22 1.25 66.12 1,094 1,310
mik-250-20-75-4 16 50 1.85 1.31 0.32 7,435 5,509
neos18 8 2 1.80 1.48 0.96 2,301 1,866
neos-803219 8 5 1.22 1.48 0.27 2,950 3,508
neos-585192 4 16 1.55 1.51 0.21 881 840
eild76 4 63 1.51 1.53 7.75 176 179
neos-603073 2 15 1.70 1.59 0.06 780 882
neos-807705 32 91 1.29 1.59 2.15 1,338 1,702
neos-1413153 2 25 1.44 1.67 0.55 716 930
aligninq 64 163 2.58 1.67 3,616.38 629 576
exp-1-500-5-5 64 3 1.80 1.69 0.79 616 600
neos-570431 4 204 1.81 1.72 7.14 676 627
10teams 2 77 1.82 1.75 5.01 280 219
nsa 64 13 3.52 1.78 2.38 6,241 3,713
beasleyC3 8 61 1.86 1.79 0.56 678 542
nh97_potential 64 5 1.88 1.87 2.13 729 870
neos3 8 4 2.09 1.93 0.51 2,394 2,318
neos-806323 16 20 2.22 2.13 0.21 1,288 1,245
neos-584851 4 12 2.26 2.17 0.20 1,444 1,487
pg 32 2 2.39 2.39 3.23 921 921
mkc1 4 54 1.97 2.42 15.41 3,451 4,405
h50x2450 4 63 2.53 2.47 1.22 1,311 865
n7-3 16 23 3.05 2.53 10.93 575 476
neos-803220 8 20 2.73 2.60 0.18 7,785 7,204
mas284 2 20 2.27 2.67 0.03 14,635 14,512
aflow30a 2 25 2.64 2.75 0.06 2,665 2,576
neos-801834 16 482 2.84 3.03 720.73 402 370
n6-3 2 38 3.93 3.10 0.55 1,083 814
neos-504815 4 14 3.46 3.17 0.13 3,147 2,917
n5-3 2 27 4.78 3.34 0.14 1,120 847
binkar10_1 4 38 4.16 3.50 0.31 5,264 4,290
ic97_tension 8 3 2.44 3.58 0.04 3,725 4,803
neos-892255 8 116 3.21 3.65 136.85 524 540
traininstance6 8 3 4.05 3.81 0.12 13,733 11,945
stein45_nocard 16 1 3.92 3.88 0.22 44,351 47,875
ran13x13 64 18 3.91 3.89 0.41 6,494 6,451
neos-1582420 2 221 4.23 3.93 7.31 825 755
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mc11 16 227 4.05 4.05 3.00 569 558
neos-512201 16 143 4.22 4.30 5.90 2,455 2,526
roll3000 64 5 6.04 4.78 25.74 1,141 1,007
r50x360 2 19 4.41 5.26 0.03 1,475 1,695
neos-906865 32 29 6.87 5.29 68.48 6,066 4,296
arki001 2 39 7.52 5.48 0.14 6,152 5,037
ran12x21 16 17 7.53 5.91 0.14 9,972 8,749
neos-839859 8 87 6.40 5.94 128.13 2,247 1,899
ns1688347 32 4 5.09 6.29 42.24 822 1,047
neos-480878 2 22 8.60 6.32 0.08 8,721 5,086
gsvm2rl3 64 31 6.76 6.53 1.63 11,447 10,296
neos-538867 64 47 9.54 6.92 19.40 13,503 7,650
bc1 4 5 8.62 7.19 2.21 1,743 1,269
sp98ir 4 111 8.64 7.35 8.12 1,570 1,422
g200x740 2 5 8.21 8.04 0.06 3,898 3,547
neos-4393408-tinui 32 23 16.72 8.61 6.86 10,577 2,504
neos-1215259 16 150 9.01 9.11 198.27 1,200 1,059
neos-504674 2 23 9.86 9.20 0.09 6,039 5,295
ns1208400 32 1 6.42 9.31 365.97 272 412
misc07 4 16 12.29 9.54 0.06 30,047 27,125
rout 8 42 9.34 9.55 1.28 18,180 13,302
30n20b8 4 190 15.51 9.72 151.13 809 566
neos-3046615-murg 16 7 11.04 9.75 0.03 23,277 21,494
harp2 16 27 9.70 10.12 0.63 14,622 14,364
neos-686190 16 96 11.69 10.66 293.59 4,265 3,748
prod1 32 40 14.26 10.89 0.99 39,637 32,829
mc8 8 21 14.44 11.05 0.87 1,159 930
neos-810326 4 143 10.74 11.20 13.31 1,477 1,387
ns1606230 2 90 14.50 11.56 326.21 173 58
bienst1 4 26 14.29 12.18 1.49 11,326 9,389
mine-90-10 4 4 15.06 12.67 0.49 13,319 11,051
neos-5051588-culgoa 4 4 126.94 12.74 3.53 18,926 1,143
mc7 4 25 19.06 14.34 0.44 1,175 859
square23 4 90 14.94 15.47 181.14 417 439
neos-538916 64 53 28.22 16.02 12.43 12,252 6,240
qiu 32 36 16.30 16.03 154.10 10,141 9,267
mik-250-1-100-1 8 28 13.52 16.97 0.04 33,184 41,848
seymour1 8 8 22.31 17.59 6.59 1,913 1,479
nsrand-ipx 16 3 17.04 17.91 10.97 4,988 5,573
lrn 4 2 14.89 17.93 43.49 1,033 1,365
neos-1396125 16 69 22.25 19.74 151.63 2,750 2,508
graphdraw-gemcutter 16 43 21.79 20.34 0.18 32,814 31,496
ran16x16 4 11 19.89 21.41 0.03 23,264 25,512
neos-3072252-nete 32 5 28.12 21.76 0.24 37,762 25,057
mas076 8 8 24.44 22.67 0.05 196,202 203,272
supportcase25 4 15 21.73 24.48 0.68 6,743 7,792
pg5_34 64 3 27.43 25.34 6.67 14,486 13,358
supportcase17 32 23 25.69 26.40 0.89 17,134 17,558
timtab1CUTS 4 45 30.71 28.41 0.14 24,852 22,213
neos-886822 2 167 25.06 28.43 8.81 11,190 12,526
neos-3665875-lesum 32 2 35.40 28.79 23.53 3,393 2,643
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eilB101 8 89 36.35 30.67 59.00 4,167 3,203
neos-5182409-nasivi 32 1 33.62 33.96 133.40 25,964 20,842
neos-1601936 4 25 75.25 35.99 479.86 686 435
glass4 8 4 51.86 37.49 0.03 180,559 116,890
mcsched 2 89 42.14 41.31 0.76 16,778 15,931
timtab1 32 2 45.01 41.46 0.07 34,735 35,424
ns1830653 4 4 38.63 42.27 1.10 6,549 6,841
bc 2 16 50.74 43.04 0.80 7,093 5,362
n4-3 4 36 41.74 44.02 0.84 3,135 3,308
neos14 16 8 64.61 49.81 0.10 82,144 61,013
neos-4650160-yukon 32 8 43.54 54.13 1.17 46,881 59,524
neos-1605075 2 434 63.20 56.04 2,205.31 659 497
gmu-35-40 32 3 170.52 61.00 0.71 482,215 161,203
reblock67 32 442 63.41 61.53 667.20 36,497 32,724
ns2081729 32 6 276.82 62.02 0.32 1,009,684 233,820
neos-5075914-elvire 4 19 212.91 63.53 30.26 26,062 7,421
neos-3421095-cinca 4 36 122.66 64.98 0.05 221,154 122,193
prod2 64 44 98.57 65.43 3.30 133,462 98,808
neos-4333596-skien 4 4 83.01 67.56 0.04 203,135 166,544
gen-ip036 2 15 67.59 68.67 0.01 1,263,100 1,265,201
k16x240b 4 14 89.76 70.61 0.03 66,445 44,605
umts 8 276 69.24 71.11 78.76 107,399 98,107
bienst2 4 33 86.24 74.03 1.97 87,484 87,024
tr12-30 32 5 81.41 77.12 0.42 94,948 89,717
breastcancer-regularized 64 200 86.25 83.13 21.91 70,461 73,506
gen-ip021 2 15 91.33 87.84 0.01 1,834,786 1,750,552
neos-916792 8 89 106.78 89.12 5.16 110,878 99,137
icir97_tension 64 3 133.01 97.29 1.83 92,396 58,179
k16x240 16 14 102.65 98.19 0.12 114,169 111,043
neos-831188 2 47 101.16 101.22 3.14 6,634 6,363
neos-3216931-puriri 2 22 105.82 103.67 1,660.66 1,247 1,076
graphdraw-domain 16 2 102.85 115.31 0.09 79,886 88,283
aflow40b 2 36 117.88 117.70 0.37 30,696 31,618
neos-1605061 4 176 201.37 118.20 3,609.85 3,296 2,142
rococoC10-001000 8 21 162.18 127.78 1.09 32,448 28,031
dfn-gwin-UUM 4 17 112.40 129.70 0.07 99,727 119,263
zib54-UUE 64 56 146.07 139.07 63.32 9,681 9,957
milo-v12-6-r2-40-1 64 5 174.93 149.73 312.06 57,487 48,876
neos-1620807 4 10 219.78 156.39 0.46 354,665 211,312
supportcase26 64 2 193.92 170.62 0.47 181,915 154,879
neos5 64 1 201.01 173.43 0.60 991,446 481,597
csched007 32 136 174.73 175.95 129.31 27,096 25,884
neos-547911 2 87 138.53 183.11 4.16 16,942 58,100
neos-5078479-escaut 4 1 88.23 184.08 3.09 14,657 24,747
neos-3660371-kurow 2 26 194.65 197.49 0.23 121,101 111,705
bnatt400 16 2 188.68 197.88 29.12 5,012 5,455
gmu-35-50 32 17 82.54 239.46 1.29 182,483 562,625
neos-1595230 2 114 270.73 245.27 0.52 101,859 100,370
neos15 4 8 267.40 261.97 0.03 173,755 170,372
a2c1s1 2 18 291.47 290.17 0.16 25,431 25,164
gen-ip002 4 18 303.86 296.12 0.01 4,262,718 4,165,621
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mas074 4 12 302.34 306.38 0.02 2,946,495 2,971,458
csched010 4 124 347.70 315.05 4.04 45,064 44,640
p80x400b 64 4 435.81 331.45 0.58 246,583 189,296
iis-100-0-cov 2 33 343.00 373.03 0.78 129,699 138,641
neos-3592146-hawea 2 11 531.73 416.99 9.58 27,991 23,822
ran14x18 4 18 551.03 424.91 0.04 502,202 364,247
ran14x18-disj-8 16 86 504.12 459.40 29.31 443,531 284,982
a1c1s1 8 3 523.14 499.18 0.54 46,066 45,913
reblock115 2 115 544.67 509.08 1.21 374,093 353,691
neos-5140963-mincio 32 24 512.37 523.90 0.27 4,229,762 4,177,225
ns894788 4 26 938.63 657.61 48.41 93,106 83,978
neos-2328163-agri 32 141 1,028.61 683.71 867.92 68,637 44,304
neos-4333464-siret 8 15 931.40 718.73 0.71 35,773 23,412
neos-1330346 4 12 1,298.32 740.23 293.93 1,115,343 438,141
neos-1616732 64 200 1,092.27 900.70 264.46 1,271,371 959,082
danoint 16 11 1,191.43 1,126.42 53.88 503,027 466,329
uct-subprob 32 16 1,176.32 1,145.54 36.16 119,812 117,491
iis-bupa-cov 4 153 1,197.89 1,155.29 6.84 241,282 228,666
toll-like 64 179 1,114.16 1,157.96 14.65 102,922 114,050
neos-911970 8 15 5,179.34 1,170.48 1.86 16,443,286 4,761,581
neos-911880 4 48 2,351.45 1,230.27 0.29 6,956,611 3,265,946
cost266-UUE 8 56 1,595.05 1,320.01 1.45 115,358 93,401
nobel-eu-DBE 32 47 1,706.44 1,320.64 8.50 635,334 511,472
pigeon-10 16 72 1,437.67 1,434.01 0.22 9,000,483 8,975,846
ic97_potential 32 2 1,528.57 1,441.99 0.48 770,495 677,844
cov1075 4 120 1,768.86 1,866.61 0.80 1,904,781 1,822,317
b1c1s1 16 9 2,138.32 1,937.98 3.28 97,151 90,411
newdano 16 16 1,878.95 2,006.42 35.16 1,560,936 1,074,754
neos-574665 2 11 4,117.02 2,074.51 0.05 11,845,245 5,263,881
50v-10 2 10 4,424.19 2,236.30 0.10 2,299,227 1,209,503
maxgasflow 8 6 1,781.33 2,323.15 1.74 225,353 311,268
neos-3754480-nidda 32 41 2,585.34 2,859.40 1.52 4,550,435 5,206,727

Gmean 8.78 7.81 1.88 5,761 5,031
Wins 31 106 48 69 187

H Alternative cut-generating sets and point-ray col-
lections

In this section, we briefly mention experiments with other choices for cut-generating sets (in-
stead of those derived from partial branch-and-bound trees) and with potential refinements
of the simple point-ray collection used for all of the previous results. Importantly, we
report results from preliminary experiments, with an old version of the code.
Thus, the numbers in these tables will not correspond to the other experiments
in the paper, even though many of the instances are the same.
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Table 12: Summary on small instance set of average percent gap closed, average percent of
GMICs and VPCs active at the optimum after adding both sets of cuts to P , average “cut
ratio” between number of VPCs and number of GMICs, and the shifted geometric mean (by
60) for generating VPCs for each partial tree size as well as on runs with multiple split and
cross disjunctions.

G V+G
(2)

V+G
(4)

V+G
(8)

V+G
(16)

V+G
(32)

V+G
(46)

V+G
(splits)

V+G
(crosses)

% gap closed 16.33 18.48 19.55 21.73 25.52 30.74 35.26 21.79 26.92
% active GMIC 50.40 49.68 45.01 40.11 35.37 36.90 45.65 35.82
% active VPC 22.09 22.59 30.57 29.81 29.26 27.90 14.19 10.45
Cut ratio 0.63 0.64 0.66 0.69 0.71 0.72 14.27 108.23
Time (gmean) 0.16 0.54 2.34 7.24 13.16 14.43 7.38 53.40

H.1 Gap closed using “multiple” split and cross disjunctions
Instead of using one large, multiterm disjunction, as we do above, the typical approach in
the literature is to generate cuts from the union of several shallower disjunctions. We report
results on preliminary computational experiments to assess the strength of VPCs obtained
from multiple split disjunctions or multiple 2-branch (cross) disjunctions. An alternative
that we do not test but merits exploration in the future is that of several partial branch-
and-bound trees produced from different branching strategies.

Let σ ..= {j ∈ I : x̄j /∈ I} be the set of indices of integer variables that take fractional
values in x̄. For each k ∈ σ, there is a corresponding elementary split disjunction (xk ≤
⌊x̄k⌋) ∨ (xk ≥ ⌈x̄k⌉). We generate VPCs from each of the elementary split disjunctions
applied to P . We call these “multiple” split cuts. We also report on the strength of VPCs
from the nonconvex PI-free set corresponding to a union of two split disjunctions from pairs
of indices in σ.

We experiment on a smaller set of instances (37 in total) in order to conserve computa-
tional resources, and we report only the percent gap closed (without testing the cuts’ effect
on branch and bound time). The reason for both of these restrictions is that these early
experiments strongly support the use of partial trees as the cut-generating set over mul-
tiple split or cross disjunctions. The size restriction for the experiments in this section is
at most 500 rows and 500 columns, and instances from MIPLIB 2017 were not considered.
The other instance selection criteria remain unchanged. The limit on the number of cuts
per split or cross disjunction is set as |σ| (which is the same as the limit from each partial
branch-and-bound tree).

Table 12 has columns for “G” (GMICs), “V+G (ℓ)” for ℓ ∈ {2, 4, 8, 16, 32, 64} (VPCs used
together with GMICs from a partial branch-and-bound tree with ℓ leaf nodes), and “V+G
(splits)” and “V+G (crosses)” (values corresponding to using splits and crosses, respectively).
The rows give the average percent gap closed, the average percent of active GMICs and VPCs
at the post-cut optimum, the ratio between the number of VPCs and number of GMICs,
and the geometric mean (with a shift of 60) of the time needed to generate cuts (including
the time to generate the partial trees and set up the point-ray collections).
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As Table 12 shows, the gap closed by VPCs from multiple split disjunctions is comparable
to that from using a partial tree with 8 leaves, while multiple cross disjunctions yield a gap
closed similar to that from partial trees with 16 leaves. However, when using splits and
crosses, the number of VPCs is considerably larger than the number of GMICs, and cut
generation time is also on average much greater. This data supports our conclusion that
using partial branch-and-bound trees to generate disjunctions for our procedure is preferable
to using multiple split or cross disjunctions.

H.2 Tightening the V-polyhedral relaxation
We have seen in Figures 1 and 2 that using the relaxations Ct for each term t ∈ T can limit
the set of cuts that can be generated. A natural question to consider is whether a different
relaxation would lead to stronger cuts.

One approach, which we have not tested computationally, involves refining the relaxations
of each disjunctive term to some C̃t ⊆ Ct for each t ∈ T such that the following condition is
satisfied for all t, t′ ∈ T , t ̸= t′:

C̃t ∩ {x ∈ Rn : Dt′
x ≥ Dt′

0 } = ∅.

This would avoid the type of problem shown in Figure 2. The essential idea would in-
volve activating hyperplanes, but the process is generally made simpler by the fact that the
disjunctive inequalities in practice all take on a simple form (each is a bound on a variable).

A different idea is to keep a simple cone as the relaxation for each term of the disjunction,
but to use a different cobasis as the origin. Specifically, we can apply the VPC procedure
based on Proposition 6, not on pt, but on a neighbor of pt obtained by pivoting along any
edge of P t. We tested this procedure on VPCs generated from the set of elementary split
disjunctions. The results were negative, in the sense that only a small additional percent
gap was closed, whereas the extra computational expense involved was significant. Our
interpretation of this outcome is that the VPCs from simple cones contain the vast majority
of the cuts that affect the objective function value and are obtainable from each elementary
split. This was in fact a primary motivation for pursuing more complicated disjunctions for
cut generation.

I Complete tables for experiments with other cut-generating
sets

The tables in this section show that, overall, using partial branch-and-bound trees leads to
comparable or better percent gap closed than generating cuts from multiple split or cross
disjunctions (Table 13), in less time (Table 14) and with fewer cuts (Table 15). A summary
of these tables appeared in Table 12.

The columns of Table 13 give the following information for each instance. Columns 2
and 3 give the dimensions of the instance. Column 4 gives the number of GMICs generated
(one for each elementary split on an integer variable fractional at x̄). Column 5 contains the
number of VPCs generated, while the next column (6) specifies the number of cuts that are
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active, i.e., tight, at the optimum of the LP after adding the cuts. Finally, columns 7 and
8 give the percentage of the integrality gap closed by the GMICs and the VPCs. The last
column (9) gives the time used for generating the cuts.
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Table 13: Comparison of percent gap closed by VPCs from partial branch-and-bound trees
to using multiple split or cross disjunctions.

Instance G V+G
(2)

V+G
(4)

V+G
(8)

V+G
(16)

V+G
(32)

V+G
(46)

V+G
(best)

V+G
(splits)

V+G
(crosses)

23588 5.80 17.30 28.70 35.70 47.80 60.90 71.80 71.80 28.70 39.80
bell3a 37.00 37.00 37.00 37.00 43.60 43.60 43.60 43.60 37.00 43.90
bell3b 31.20 84.10 84.10 84.10 84.50 84.50 84.70 84.70 51.40 84.30
bell4 25.60 25.60 25.80 26.10 26.00 26.10 26.40 26.40 25.60 29.90
bell5 13.80 13.80 13.80 25.70 25.60 77.80 62.90 77.80 14.80 22.70
blend2 5.50 5.50 7.50 12.10 13.10 15.50 23.00 23.00 7.10 8.90
bm23 16.80 18.00 19.80 19.80 39.50 56.20 70.90 70.90 18.00 20.20
glass4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
go19 2.00 2.50 3.70 5.60 9.80 13.10 2.00 13.10 8.50 5.80
gt2 87.10 87.10 87.10 87.10 87.10 87.10 87.10 87.10 87.10 87.10
k16x240 11.40 11.40 12.90 12.80 16.90 17.70 22.50 22.50 13.50 16.40
lseu 5.80 6.10 6.10 6.10 10.10 11.40 19.20 19.20 6.20 9.10
mas074 6.70 6.70 7.20 7.90 9.00 11.10 13.40 13.40 6.90 7.20
mas076 6.40 6.40 6.50 6.40 6.80 8.90 13.00 13.00 6.40 6.50
mas284 0.90 1.80 8.70 12.40 15.60 25.30 33.80 33.80 3.30 10.60
mik-250-1-100-1 53.50 53.50 53.50 53.50 53.50 53.50 53.50 53.50 53.50 53.50
misc03 0.00 0.00 0.00 5.40 10.50 17.40 44.30 44.30 0.00 4.10
misc07 0.70 0.70 0.70 0.70 0.90 1.90 5.50 5.50 0.70 0.70
mod008 24.40 24.40 24.40 25.80 25.50 26.70 27.80 27.80 24.40 24.40
mod013 5.90 9.00 9.90 20.60 21.10 36.90 47.40 47.40 9.00 11.60
modglob 18.10 18.50 18.80 19.60 18.90 18.40 18.60 19.60 30.30 44.80
neos-1420205 0.00 0.00 0.00 0.00 0.00 11.40 14.70 14.70 0.00 0.40
neos5 11.10 11.10 11.10 18.80 21.90 29.20 37.50 37.50 11.20 15.70
neos-880324 0.00 0.00 0.00 0.00 0.00 0.00 36.30 36.30 8.50 16.90
p0282 3.20 3.20 3.20 3.40 6.40 7.30 10.60 10.60 65.20 77.90
pipex 35.60 35.60 35.70 35.70 35.60 35.60 36.70 36.70 35.60 35.60
pp08aCUTS 33.80 33.80 34.90 34.90 35.70 34.60 33.80 35.70 39.90 51.90
pp08a 54.50 54.50 54.50 54.50 54.50 54.50 54.50 54.50 56.10 70.30
probportfolio 4.60 4.80 5.40 5.70 7.00 8.40 11.30 11.30 14.70 13.50
prod1 4.70 5.10 8.30 12.20 18.60 29.60 36.30 36.30 9.70 22.40
rgn 8.00 8.00 8.00 8.00 21.60 33.80 45.40 45.40 8.00 8.10
roy 4.50 7.10 10.40 11.30 15.80 24.30 30.30 30.30 7.40 9.30
sentoy 19.30 19.30 20.00 27.50 45.90 55.00 59.80 59.80 21.30 22.90
stein27_nocard 8.30 13.10 17.90 29.50 44.40 50.00 59.30 59.30 28.50 36.40
timtab1 24.10 24.10 24.10 24.10 24.10 24.10 24.10 24.10 27.20 34.10
vpm1 15.70 15.70 15.70 15.70 27.60 26.20 22.80 27.60 16.50 17.30
vpm2 18.20 18.60 18.20 18.60 19.00 19.30 20.10 20.10 23.80 31.80
Average 16.33 18.48 19.55 21.73 25.52 30.74 35.26 36.17 21.79 26.92
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Table 14: Time to generate VPCs for each of the different partial branch-and-bound tree
sizes and for multiple split and cross disjunctions.

Instance V
(2)

V
(4)

V
(8)

V
(16)

V
(32)

V
(46)

V
(splits)

V
(crosses)

23588 0.50 2.30 8.80 23.90 77.50 224.80 36.20 912.90
bell3a 0.00 0.00 0.00 0.00 0.10 0.20 0.00 0.10
bell3b 0.00 0.00 0.00 0.10 0.10 0.20 0.10 2.40
bell4 0.00 0.00 0.00 0.10 0.10 0.20 0.10 2.60
bell5 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.30
blend2 0.10 0.20 0.20 0.50 1.60 4.30 0.60 6.90
bm23 0.00 0.00 0.00 0.10 0.10 0.30 0.10 0.20
glass4 0.00 0.10 0.10 0.30 0.50 1.60 1.50 100.80
go19 1.60 7.50 52.10 314.40 906.30 71.70 619.50 926.50
gt2 0.00 0.00 0.00 0.20 0.40 0.90 0.20 2.90
k16x240 0.10 0.10 0.30 0.70 1.60 3.50 0.70 8.80
lseu 0.00 0.00 0.00 0.10 0.20 0.40 0.10 1.00
mas074 0.00 0.10 0.20 0.60 1.40 4.40 0.40 4.80
mas076 0.00 0.10 0.30 0.80 1.90 4.20 0.40 4.80
mas284 0.10 0.30 0.80 4.10 13.50 52.20 1.70 48.80
mik-250-1-100-1 0.10 0.10 0.20 0.40 2.10 9.30 3.80 327.50
misc03 0.10 0.10 0.50 1.10 3.20 8.70 0.90 20.10
misc07 0.10 0.30 0.90 3.00 13.00 33.30 1.30 29.50
mod008 0.10 0.10 0.20 0.40 1.20 2.90 0.20 1.20
mod013 0.00 0.00 0.00 0.10 0.20 0.40 0.10 0.20
modglob 0.10 0.20 0.40 1.20 1.90 3.40 0.80 18.60
neos-1420205 0.20 0.30 0.30 0.90 4.10 7.10 2.40 170.80
neos5 0.10 0.20 0.40 0.70 1.80 4.90 1.40 114.60
neos-880324 0.10 0.60 0.40 1.30 15.30 20.10 2.20 267.10
p0282 0.00 0.10 0.10 0.40 0.70 1.60 0.50 10.90
pipex 0.00 0.00 0.00 0.10 0.10 0.20 0.00 0.20
pp08aCUTS 0.10 0.10 0.20 0.80 2.90 17.60 3.70 184.60
pp08a 0.00 0.00 0.10 0.20 0.40 1.10 0.90 39.10
probportfolio 2.30 7.40 41.20 264.70 682.70 903.30 88.50 907.20
prod1 0.10 0.30 1.20 2.70 6.10 11.80 2.00 218.30
rgn 0.00 0.10 0.20 0.30 1.40 2.50 0.40 7.40
roy 0.00 0.00 0.10 0.20 0.30 0.60 0.20 1.40
sentoy 0.00 0.00 0.10 0.20 0.40 0.90 0.10 0.70
stein27_nocard 0.00 0.10 0.10 0.20 0.40 0.50 0.40 19.20
timtab1 0.00 0.00 0.10 0.20 0.30 0.70 2.30 339.60
vpm1 0.00 0.00 0.10 0.20 0.30 0.70 0.10 1.10
vpm2 0.00 0.00 0.10 0.20 0.40 0.80 0.50 8.90

Gmean 0.16 0.54 2.34 7.24 13.16 14.43 7.38 53.40
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Table 15: Number of rows, columns, GMICs, and VPCs for small instances used to test
multiple split and cross disjunctions. The last row gives the average ratio of number of
VPCs as a fraction of the number of GMICs.

# cuts

Instance Rows Cols G V
(2)

V
(4)

V
(8)

V
(16)

V
(32)

V
(46)

V
(splits)

V
(crosses)

23588 137 237 75 36 75 75 75 75 75 4,890 32,920
bell3a 63 82 7 1 5 7 4 5 7 4 19
bell3b 73 91 24 3 3 7 21 25 25 63 328
bell4 73 88 27 3 4 8 5 7 9 22 178
bell5 34 56 10 3 2 5 4 10 10 19 82
blend2 154 302 13 13 13 13 13 13 13 117 840
bm23 20 27 6 6 6 6 6 6 6 36 90
glass4 392 317 72 2 4 10 14 0 72 142 906
go19 361 361 357 97 228 357 357 175 0 35,760 22,557
gt2 28 173 14 3 4 3 7 2 1 21 242
k16x240 256 480 14 14 9 14 14 14 14 166 977
lseu 28 79 9 9 9 9 9 9 9 81 280
mas074 13 148 12 12 12 12 12 12 12 144 779
mas076 12 148 11 11 8 4 10 11 11 112 497
mas284 68 148 20 20 20 20 6 9 4 387 3,607
mik-250-1-100-1 100 251 100 1 2 8 13 74 100 1 100
misc03 95 138 18 18 18 18 18 18 18 310 2,616
misc07 211 232 16 16 16 16 16 16 16 256 1,901
mod008 6 319 6 6 6 3 6 6 6 30 88
mod013 62 96 5 5 5 5 5 5 5 23 50
modglob 286 354 29 21 25 29 29 29 29 209 1,049
neos-1420205 341 231 44 40 44 0 0 2 1 613 9,756
neos5 63 63 35 25 35 2 1 1 1 719 8,989
neos-880324 182 135 45 10 7 0 0 0 11 543 17,738
p0282 160 200 24 13 10 24 24 24 24 181 1,697
pipex 25 48 6 6 6 6 6 6 6 19 42
pp08aCUTS 239 235 46 6 7 3 5 11 46 924 12,766
pp08a 133 234 53 4 5 4 4 2 2 246 1,145
probportfolio 302 320 105 105 105 105 105 105 48 6,157 9,432
prod1 75 117 40 18 40 40 40 40 40 1,184 30,508
rgn 24 180 18 16 18 18 18 18 3 222 1,606
roy 147 139 11 7 6 11 11 11 11 104 368
sentoy 30 60 8 8 8 8 8 8 8 64 224
stein27_nocard 117 27 27 7 11 27 1 2 1 163 6,102
timtab1 165 365 128 5 2 3 4 2 2 557 13,566
vpm1 128 188 11 11 0 5 11 9 11 56 104
vpm2 127 187 24 24 7 13 24 24 24 247 1,209
Avg (cut ratio) 1 1 1 1 1 1 14 108
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