
D-optimal Data Fusion:
Exact and Approximation Algorithms

Yongchun Li
School of ISyE, Georgia Institute of Technology, Atlanta, GA, USA, ycli@gatech.edu

Marcia Fampa
COPPE, Universidade Federal do Rio de Janeiro, Brasil, fampa@cos.ufrj.br

Jon Lee
IOE Department, University of Michigan, Ann Arbor, MI, USA, jonxlee@umich.edu

Feng Qiu
Energy Systems Division, Argonne National Laboratory, Lemont, IL, USA, fqiu@anl.gov

Weijun Xie
School of ISyE, Georgia Institute of Technology, Atlanta, GA, USA, wxie@gatech.edu

Rui Yao
Energy Systems Division, Argonne National Laboratory, Lemont, IL, USA, ruiyao@ieee.org

We study the D-optimal Data Fusion (DDF) problem, which aims to select new data points, given an exist-
ing Fisher information matrix, so as to maximize the logarithm of the determinant of the overall Fisher
information matrix. We show that the DDF problem is NP-hard and has no constant-factor polynomial-
time approximation algorithm unless P = NP. Therefore, to solve the DDF problem effectively, we pro-
pose two convex integer-programming formulations and investigate their corresponding complementary and
Lagrangian-dual problems. Leveraging the concavity of the objective functions in the two proposed convex
integer-programming formulations, we design an exact algorithm, aimed at solving the DDF problem to
optimality. We further derive a family of submodular valid inequalities and optimality cuts, which can signif-
icantly enhance the algorithm performance. We also develop scalable randomized-sampling and local-search
algorithms with provable performance guarantees. Finally, we test our algorithms using real-world data on
the new phasor-measurement-units placement problem for modern power grids, considering the existing con-
ventional sensors. Our numerical study demonstrates the efficiency of our exact algorithm and the scalability
and high-quality outputs of our approximation algorithms.
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1. Introduction
We study the following D-optimal Data Fusion problem

z∗ := max
S⊆[n],|S|=s

ldet

(
C +

∑
i∈S

aia
⊤
i

)
, (DDF)

where ldet denotes the natural logarithm of the determinant, the positive-definite matrix C ∈ Sd
++

is an existing Fisher Information Matrix (FIM), the columns {ai ∈Rd}i∈[n] of A∈Rd×n represent n
candidate d-dimensional data points to be selected, and the positive integer s∈ [n] := {1,2, . . . , n}
denotes the number of data points to be selected. In DDF, the FIM comprises two parts: C and∑

i∈S aia
⊤
i , corresponding to the information obtained from existing data and new selected points,

respectively. Therefore, the goal of DDF is to maximize the information gain by integrating new
data points with conventional data from other sources. It is worth remarking that DDF differs
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from the classic D-optimal design problem in the following aspects: (i) the conventional D-optimal
design problem does not have the existing FIM C; (ii) the D-optimal design problem typically
assumes that s≥ d, while in DDF, it is possible that s < d. Hence, the existing results for D-optimal
design in [SX20, MSTX19, NST19, PFL22] do not directly apply to DDF.
Below, we describe some interesting examples for which the proposed DDF can be applicable.
• Sensor Fusion: Modern sensor networks often involve multi-type sensors working collectively

for a specific monitoring task (see [Var12, Zha95]). When installing new (possibly high-end) sensors,
in order to achieve economical and effective operation, it is desirable to maximize the overall
information obtained by fusing a small number of new sensors with the existing ones. Using the
D-optimality criterion, widely-used in sensor placement, the corresponding optimal sensor-fusion
problem is equivalent to DDF. In particular, C ∈ Sn

++ represents the FIM of the existing sensors
installed at an n-node network. The additional FIM components introduced by new sensors can
be shown to be equivalent to adding their corresponding rank-one matrices into the existing FIM
(see, e.g., [LNI11, KG11, YKBB13]). In this problem, the dimension d of sensor measurements is
equal to the number of sensor locations, i.e., d= n, and we must have s≤ d= n. We test a sensor
fusion problem in power systems in our numerical study section.

• Active Learning : In the big-data era, there are much more unlabeled data than labeled ones,
where the latter are often expensive to acquire. Recently, researchers have been proactively working
on active learning to select a small subset of unlabeled data points to label, with the hope of
achieving a desired learning goal (e.g., classification accuracy) using fewer training data and/or
achieving smaller labeling costs. Active learning enables the learners to iteratively select the most
informative data points by exploiting labeled ones and exploring the unlabeled ones, which is also
known as sequential experimental design in statistics. Thus, given that the FIM of the existing
labeled data points is positive-definite, the D-optimal new-data selection problem can be formulated
in the form of DDF (see [He09, LC21, MAL19, YBT06]). At each active learning iteration, the
number of selected unlabeled data points is often much smaller than the dimension, especially for
high-dimensional data, and can even be set to one for the sake of computational efficiency and
stable convergence (see [WP17]).

• Regularized D-optimal Design: The regularized experimental design that arises from the linear
models with a regularization penalty has been recently studied in [Tan20, MAL19], which admits
the same form as our DDF. For regularized D-optimal design, its FIM often involves an additional
positive-definite matrix C (e.g., an identity matrix in ridge-regularized D-optimal design).

1.1. Maximum-Entropy Sampling Problem (MESP)

DDF is closely related to the maximum-entropy sampling problem

max
S⊆[n],|S|=s

ldet ĈS,S, (MESP)

where Ĉ ∈ Sn
+ has rank at least s, and ĈS,S denotes the principal submatrix of Ĉ indexed by S.

Since [SW87], MESP has seen a variety of applications in statistics and information theory, as
well as algorithmic advances (see [FL22a]). Below, we demonstrate that MESP is a special case of
DDF with n= d when the covariance matrix of MESP is positive-definite. This result implies that
DDF is NP-hard (see [KLQ95]) and cannot be approximated by any polynomial-time algorithm
within Ω(n log(c)) with some constant c > 1 unless P = NP according to [CMI13]. Therefore,
to efficiently solve DDF, this paper focuses on developing exact and near-optimal approximation
algorithms.
In fact, as we will see below, DDF is also a special case of MESP.

Theorem 1. For a covariance matrix Ĉ ∈ Sn
++, MESP can be reduced to a special DDF with n= d.
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Proof. Let F be the Cholesky factor of the positive semidefinite matrix (Ĉ/λmin(Ĉ)− In). Then,
Ĉ/λmin(Ĉ) = In +F⊤F , and for any S ⊆ [n], |S|= s, we can verify that

ldet ĈS,S = ldet
(
(Ĉ/λmin(Ĉ))S,S

)
− s log(1/λmin(Ĉ))

= ldet ((In +F⊤F )S,S)− s log(1/λmin(Ĉ))

= ldet (In +
∑n

i=1 xifif
⊤
i )− s log(1/λmin(Ĉ)),

(1)

where fi ∈Rn is the i-th column of F and x is the 0/1 characteristic vector of S ⊆ [n], i.e., xj = 1,
if j ∈ S; xj = 0 if j ∈ [n]\S. The result follows because the first term in (1) is the objective function

of MESP for the covariance matrix Ĉ, and the last term is the objective function of a particular
DDF added to a constant. □

Theorem 2. For the matrix C ∈ Sd
++ and data points {ai ∈Rd}i∈[n], DDF can be reduced to MESP

with an n×n positive-definite covariance matrix.

Proof. Let C
1
2 be the square root of C and B := [b1, · · · ,bn]∈Rd×n, where bi :=C− 1

2ai, for i∈ [n].
Then, for any S ⊆ [n], |S|= s, we can verify that

ldet

(
C +

∑
i∈S aia

⊤
i

)
= ldetC + ldet(Id +

∑
i∈S C

− 1
2aia

⊤
i C

− 1
2 )

= ldetC + ldet(Id +
∑

i∈S bib
⊤
i )

= ldetC + ldet(In +B⊤B)S,S.

(2)

The result follows because the first term in (2) is the objective function of DDF for the existing
FIM C, set {ai ∈Rd}i∈[n] of n candidate data points, and s number of data points to be selected;
and the last term in (2) is the objective function of a particular MESP added to a constant. □

1.2. Relevant literature

In this subsection, we survey the relevant literature on exact and approximation algorithms for
solving DDF or its variants including the regularized D-optimal design and MESP.
Exact Algorithms: As a special case of DDF, [He09] and [MAL19] studied the regularized D-

optimal design with number of selected data being s= 1 and derived a closed-form optimal solution
by using the formula for the determinant of a rank-one change to a symmetric matrix. A series of
research works aimed at solving MESP, another special case of DDF, to optimality by a branch-
and-bound algorithm have been conducted in [KLQ95, Lee98, AFLW96, AFLW99, LW03, HLW01,
AL04, BL07, Ans18, Ans20, CFLL21, CFL23]. [CHB08, CHB13] and also [FL22b] instead con-
sidered outer-approximation approaches, and [LX23] developed a branch-and-cut algorithm based
on (sub)gradient inequalities. In contrast to previous approaches, we propose a new algorithm
by deriving (sub)gradient inequalities and submodular inequalities from two equivalent convex
integer-programming formulations of DDF, and exploring probing techniques to obtain optimal-
ity cuts. The submodular inequalities and the optimality cuts are numerically demonstrated to
significantly strengthen the exact algorithm proposed, which is an enhancement of the LP/NLP
branch-and-bound algorithm from [QG92].
Approximation Algorithms: Besides exact algorithms, more scalable yet effective approximation

algorithms have also attracted attention, such as greedy, local-search, and randomized-sampling
algorithms. Although the objective function of DDF is submodular and non-decreasing, it can be
negative. Thus, the existing performance guarantees (e.g., (1− 1/e)-approximation ratio) for non-
negative non-decreasing submodular maximization cannot be directly applied [NWF78]. On the
other hand, it has been shown that the randomized-sampling and local-search algorithms can be
successfully applied to the D-optimal design and MESP to generate provably near-optimal solu-
tions [LX23, MSTX19, SX20, Nik15, NST19]. A generalized MESP under matroid constraints has
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been studied in [NS16]. Motivated by these recent breakthroughs, we tailor these two approxima-
tions algorithms to DDF, and we develop efficient implementations and theoretical guarantees. In
particular, our approximation bounds of the sampling and local-search algorithms are invariant
with respect to s↔ n− s, outperforming the state-of-the-art ones [Nik15, LX23] for MESP when
s > n/2. The detailed comparison can be found in Section 4. We also numerically compare the pro-
posed sampling and local-search algorithms with the greedy algorithm [LNI11, LCW+12] adopted
in a real sensor fusion problem. That greedy algorithm searches for a new data point to maximize
the objective value at each iteration; it re-calculates objective values and is thus computationally
expensive in contrast to our efficiently-implemented algorithms.

1.3. Summary of the organization and contributions

(i) We derive two convex integer-programming (CIP) formulations of DDF, termed R-DDF and
M-DDF. We also study the Lagrangian-dual of their continuous relaxations and establish
their optimality gaps.

(ii) We develop complementary formulations of R-DDF and M-DDF, based on the fact that DDF
can be interpreted as excluding n− s least informative data points.

(iii) Exploring the two CIPs, we succeed to derive closed-form (sub)gradient and submodular
based valid inequalities, which are used on an enhancement of the LP/NLP branch-and-bound
(B&B) algorithm proposed in [QG92], for solving DDF. In [MFR20] a numerical comparison
is presented between the main algorithms in the literature for convex mixed-integer nonlinear-
programming (MINLP), and the LP/NLP B&B presents an excellent performance in the
comparison.

(iv) We investigate probing techniques to derive optimality cuts to strengthen DDF from both
primal and dual perspectives, where our probing schemes are effective and easy-to-implement,
based on tight Lagrangian dual bounds and near-optimal approximation algorithms. Our
numerical study confirms the effectiveness of the optimality cuts.

(v) Exploring the two CIPs and the Lagrangian-dual of their continuous relaxations and their
complements, we establish the theoretical performance guarantees of proposed local-search
and randomize-sampling algorithms for solving DDF, as displayed in Table 1. We remark
that each CIP provides us a different analysis of approximation bounds and some bounds in
Table 1 are invariant with respect to s and n− s, due to the complementary formulations.

(vi) The numerical experiments present a real-world DDF application, optimal sensor placement
in power systems, which confirms that our exact algorithm along with optimality cuts is
effective and that our approximation algorithms are scalable and near-optimal.

Table 1 Approximation bounds for the local-search and sampling algorithms

R-DDF M-DDF

Local-Search Algorithm 1 d log
(
1+ s̄σ2

max
d(1+σmax)

)
s̄ log(s̄)

Sampling Algorithm 2 n log(xmin)− (n− s) log(1+ δ) s̄ log
(
s̄
n

)
+ log

((
n
s̄

))
s̄ :=min{s,n− s};σmax :=maxi∈[n]a

⊤
i C

−1ai; δ= λmax(A
⊤C−1A)

Notation: The following notation is used throughout the paper. We use bold lower-case letters
(e.g., x) and bold upper-case letters (e.g., X) to denote vectors and matrices, respectively, and we
use corresponding non-bold letters (e.g., xi) to denote their components. We let Rn

+ denote the set
of all n-dimensional nonnegative vectors. Given positive integers s < n, we let [n] := {1,2, · · · , n},
[s,n] := {s, s+1, · · · , n}, and s̄ :=min{s,n− s}. Further, we let Zs denote the collection of feasible
solutions satisfying the cardinality constraint, i.e., Zs := {x ∈ {0,1}n :

∑
i∈[n] xi = s}. We let Sn

+

(resp., Sn
++) denote the cone of n×n symmetric positive semidefinite (resp., definite) matrices. We

let C
1
2 denote the square root of matrix C, i.e., C

1
2C

1
2 =C. We let C† denote the Moore-Penrose
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pseudo-inverse of C. We let In denote the n× n identity matrix, and we let ei ∈ Rn denote the
i-th standard-unit vector. We let 1 denote a vector with all entries being 1. For x∈Rn, we denote
its support by supp(x) ⊆ [n]. We let |S| denote the cardinality of a finte set S. Overloading the
notation

(
s
k

)
for the number of k-subsets of an s-element set, given a set S, we let

(
S
k

)
denote

the collection of all the cardinality-k subsets of S. Given an m × n matrix X and two subsets
S ⊆ [m], T ⊆ [n], we let XS,T denote the submatrix of X with rows and columns indexed by sets
S,T , respectively, and we let XS denote the submatrix of X with columns indexed by S. Given
a symmetric matrix X, we let λmin(X), λmax(X) denote the least and greatest eigenvalues of X,
respectively. For X,Y ∈Rn×n, we let X ◦Y denote their Hadamard product, and trX denote the
trace of X. Additional notation is introduced as needed.

Remark 1. Throughout the paper, considering the existing FIMC, the n candidate d-dimensional
data points {ai ∈Rd}i∈[n] to be selected in DDF, and A := [a1, · · · ,an] ∈Rd×n, we use the defini-

tions: bi :=C− 1
2ai, for i ∈ [n], B := [b1, · · · ,bn] ∈ Rd×n, qi := (C +AA⊤)−

1
2ai, for i ∈ [n]; we let

V ⊤V be the Cholesky factorization of In +B⊤B, and let vi be the i-th column of V , for i∈ [n].

Organization: The remainder of the paper is organized as follows. In Section 2, we develop two CIP
formulations for DDF, and their corresponding complementary problems and Lagrangian duals. In
Section 3, we present our exact algorithmic approach with the introduction of valid submodular
inequalities and optimality cuts. In Section 4, we develop and analyze two approximation algo-
rithms. In Section 5, we present numerical results on a real-world application in power systems.
Finally, Section 6 contains brief conclusions.

2. Two convex integer-programming formulations

Next, we present two convex integer-programming (CIP) formulations for DDF, termed R-DDF
and M-DDF, as well as their complementary problems and the Lagrangian-dual of their continuous
relaxations.

2.1. First CIP formulation: R-DDF

To formulate DDF as a mathematical program, we introduce the binary variable xi = 1, if the i-th
data point is selected, and 0 otherwise, for each i∈ [n]. Our first formulation of DDF is as follows.

Proposition 1. DDF is equivalent to

z∗ := ldetC +max
x∈Zs

{
ldet

(
Id +

∑
i∈[n]

xibib
⊤
i

)}
. (R-DDF)

Proof. Let x be the 0/1 characteristic vector of S ⊆ [n]. Then, we have

det

(
C +

∑
i∈S aia

⊤
i

)
=det

(
C +

∑
i∈[n] xiaia

⊤
i

)
=det(C)det

(
Id +

∑
i∈[n] xibib

⊤
i

)
.

The result follows from the definition of bi (see Remark 1) and by taking the logarithm on both
sides of the above equation. □

We refer to the problem as R-DDF because the objective function is similar to that of the
regularized D-optimal design problem. The following result presents the Lagrangian dual of the
continuous relaxation of R-DDF.

Proposition 2. The Lagrangian dual of the continuous relaxation of R-DDF is

ẑR := ldetC + min
Λ∈Sd++,

ν,µ∈Rn
+

{
− ldet(Λ)+ trΛ+ sν+

∑
i∈[n]

µi − d : b⊤i Λbi ≤ ν+µi, i∈ [n]

}
. (3)
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Proof. See e-companion EC.1.1. □
We further derive the gradient, Hessian, and Lipschitz constant of the objective function of

R-DDF, which allow us to use first- or second-order methods (e.g., Frank-Wolfe algorithm) to
compute ẑR with a proven convergence rate. We demonstrate the following result.

Proposition 3. For any x∈ [0,1]n, the gradient g ∈Rn and the Hessian H ∈Rn×n of the objective
function in the continuous relaxation of R-DDF are

g(x) := [b⊤1 X
−1b1, · · · ,b⊤nX−1bn], H(x) :=−(B⊤X−1B) ◦ (B⊤X−1B), and H(x)⪰−δ2In,

where X := Id +
∑

i∈[n] xibib
⊤
i and δ := λmax(B

⊤B).

Proof. See e-companion EC.1.2. □
We adopt the well-known Frank-Wolfe algorithm to compute ẑR in the numerical study. Due

to Proposition 3 and [LX23, Theorem 4], the Frank-Wolfe algorithm admits a convergence rate of
O(s̄2λ2

max(B
⊤B)/κ), where κ denotes the number of iterations.

An alternative interpretation of DDF is via excluding n− s ineffective data points, which leads
to the complementary formulation of R-DDF and the resulting Lagrangian dual problem below.

Proposition 4. R-DDF is equivalent to

z∗ = ldet(C +AA⊤)+ max
x∈Zn−s

{
ldet

(
Id −

∑
i∈[n]

xiqiq
⊤
i

)}
, (R-DDF-comp)

and the Lagrangian dual of the continuous relaxation of R-DDF-comp is

ẑR = ldet(C+AA⊤)+ min
Λ∈Sd++,

ν,µ∈Rn
+

{
− ldetΛ+trΛ+(n−s)ν+

∑
i∈[n]

µi−d :−q⊤
i Λqi ≤ ν+µi, i∈ [n]

}
. (4)

Proof. For any x∈Zs, the objective function of R-DDF can be written as

ldet

(
C +

∑
i∈[n]

xiaia
⊤
i

)
= ldet

(
C +AA⊤ −

∑
i∈[n]

(1−xi)aia
⊤
i

)
= ldet(C +AA⊤)+ ldet

(
Id −

∑
i∈[n]

(1−xi)(C +AA⊤)−
1
2aia

⊤
i (C +AA⊤)−

1
2

)
.

Then, replacing variable x by 1−x, and considering the definition of qi (see Remark 1), we arrive
at the equivalent formulation of R-DDF given by R-DDF-comp.
Following the similar derivation as Proposition 2, we can also derive the Lagrangian dual of the

continuous relaxation of R-DDF-comp. □
We remark that (i) the greatest eigenvalue of

∑
i∈[n] qiq

⊤
i is strictly less than one, so the matrix

Id−
∑

∈[n] xiqiq
⊤
i in R-DDF-comp is always positive-definite and the objective value is finite; (ii) the

continuous relaxation value of R-DDF does not vary with the complementary transformation, but
considering the two Lagrangian dual problems (3) and (4) together, we obtain an approximation
bound that is better than by considering only one of the Lagrangian duals, as discussed in Section 4.

2.2. Second CIP formulation: M-DDF

Lemma 1. [[Nik15], Lemma 13] Let λ∈Rn
+ with λ1 ≥ λ2 ≥ · · · ≥ λn, and let 0< s≤ n. There exists

a unique integer k, with 0≤ k < s, such that

λk >
1

s− k

∑
i∈[k+1,n]

λi ≥ λk+1, (5)

with the convention λ0 =+∞.
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Lemma 2. Let λ ∈Rn
+ with λ1 ≥ λ2 ≥ · · · ≥ λt > λt+1 = · · ·= λs > λs+1 = · · ·= λn = 0. Then, the k

satisfying (5) is precisely t.

Proof. The result is immediate because

1

s− t

∑
i∈[t+1,n]

λi = λt+1.

□

Definition 1 ([Nik15]). For a matrix X ∈ Sn
+ with eigenvalues λ1 ≥ · · · ≥ λn ≥ 0, we let

f(X) =
∏
i∈[k]

λi ×
(

1

s− k

∑
i∈[k+1,n]

λi

)s−k

,

where k < s is unique non-negative integer satisfying (5).

It has been shown in [Nik15] that f(·) is a concave function. With the notation above, we are ready
to define M-DDF.

Theorem 3. DDF is equivalent to the following CIP formulation

z∗ = ldetC +max
x∈Zs

{
log f

(∑
i∈[n]

xiviv
⊤
i

)}
. (M-DDF)

Proof. It is sufficient to prove that the objective functions of M-DDF and R-DDF are equal for
any x∈Zs. So, let S := supp(x) for an x∈Zs. Clearly |S|= s, and thus we have

det

(
Id +

∑
i∈[n]

xibib
⊤
i

)
=det(Id +BSB

⊤
S ) = det(Is +B⊤

S BS) = det(In +B⊤B)S,S

=det(V ⊤
S VS) = f

(∑
i∈[n]

xiviv
⊤
i

)
,

where the second equation is because BSB
⊤
S and B⊤

S BS = (B⊤B)S,S have the same non-zero
eigenvalues, and the last one follows from the definition of vi (see Remark 1) and from Lemma 2.
This completes the proof. □
The matrix in the objective of M-DDF is of order n, while that of R-DDF is of order d. We

may consider choosing between them in practice, based on the two parameters n and d and on the
continuous-relaxation bounds.

Proposition 5. [[LX23]] The Lagrangian dual of the continuous relaxation of M-DDF is

ẑM := ldetC + min
Λ∈Sn++,

ν,µ∈Rn
+

{
− log det

s
Λ+ sν+

∑
i∈[n]

µi − s : v⊤
i Λvi ≤ ν+µi, i∈ [n]

}
, (6)

where the function det
s
(·) denotes the product of s least eigenvalues.

We note that the continuous relaxation value ẑM of M-DDF can be computed efficiently via
the Frank-Wolfe algorithm (see [LX23]). Similar to R-DDF, M-DDF also admits a complementary
formulation, which has been widely-studied in the MESP literature (e.g., see [AFLW96, AFLW99,
Ans20, CFLL21, CFL23, FL22a]).
According to the identity

det(In +B⊤B)S,S =det(In +B⊤B)det((In +B⊤B)−1)[n]\S,[n]\S

for any subset S ⊆ [n], see [JH85, Section 0.8.4], we can derive the complementary formulation for
M-DDF and then the Lagrangian dual of its continuous relaxation.
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Proposition 6. M-DDF is equivalent to

z∗ = ldet(C +AA⊤)+ max
x∈Zn−s

{
f

(∑
i∈[n]

xiviv
⊤
i

)}
, (M-DDF-comp)

and the Lagrangian dual of the continuous relaxation of M-DDF-comp is

ẑcM := ldet(C+AA⊤)+ min
Λ∈Sn++,

ν,µ∈Rn
+

{
− log det

n−s
Λ+(n−s)ν+

∑
i∈[n]

µi−(n−s) : v⊤
i Λvi ≤ ν+µi, i∈ [n]

}
. (7)

Contrary to Proposition 4, we will observe in our numerical study in Section 5, that the
Lagrangian dual problem (6) is not equivalent to (7). It is worth mentioning that the Lagrangian
duals in Proposition 4, Proposition 5, and Proposition 6 enable us to derive the optimality cuts
for DDF in the next section. Furthermore, the complementary problem M-DDF-comp and the
Lagrangian dual (7) motivate us to further improve the approximation bounds of the local-search
and sampling algorithms in [LX23], as shown in Section 4.
The two alternative formulations R-DDF and M-DDF, together with their complementary prob-

lems, often provide us with distinct continuous-relaxation solutions, which can help improve the
analyses of the approximation algorithms. Each formulation has its own advantage under different
circumstances. For example, if existing data contain more accurate information, i.e., if the existing
FIM C dominates the overall FIM matrix, then we recommend R-DDF because its continuous
relaxation provides a tighter upper bound. On the other hand, if the information from new data
points is more valuable, i.e., the effect of C is negligible, then M-DDF tends to yield a stronger
continuous relaxation bound. Our theoretical analyses and numerical study will further confirm
these phenomena.

3. Our exact algorithmic approach for DDF

To solve DDF to optimality, we propose an enhancement on the LP/NLP B&B algorithm proposed
in [QG92]. We first formulate DDF as

z∗ = ldetC +max
z∈R,
x∈Zs

{
z : z ≤ ldet

(
Id +

∑
i∈[n]

xibib
⊤
i

)
, z ≤ f

(∑
i∈[n]

xiviv
⊤
i

)}
, (DDF-MINLP)

for which the optimal value of the continuous relaxation is the best bound for DDF given by the
continuous relaxations of both formulations R-DDF and M-DDF.
Using the concavity of the objective functions of both formulations, LP/NLP B&B considers, for

a given S ⊆ [n], the following linear relaxations of the two nonlinear inequalities in DDF-MINLP:

(Linearization) z ≤ ldet [B(S)]−
∑
i∈S

b⊤i [B(S)]−1bi +
∑
i∈[n]

b⊤i [B(S)]−1bixi,

z ≤ f [V (S)]−
∑
i∈S

v⊤
i g(S)vi +

∑
i∈[n]

v⊤
i g(S)vixi,

(8)

where for any subset T ⊆ [n], g(T ) :=V †(T )+1/λmin(V (T ))[Id −V (T )V †(T )] is a subgradient of
f(·) at V (T ) :=

∑
i∈T viv

⊤
i , according to Proposition 2 in [LX23].

Then, at iteration ℓ of LP/NLP B&B, a mixed-integer linear-programming (MILP) problem M ℓ

is solved. The so-called master problem M ℓ is a relaxation of DDF-MINLP obtained by replacing
the nonlinear inequalities in z by the inequalities in (8), constructed for all S in a given set Sℓ of
linearization points represented by elements of

(
[n]
s

)
.M ℓ is solved by a branch-and-bound algorithm,

and every time a feasible solution x̂ of M ℓ is obtained during the execution of the algorithm,
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supp(x̂) is included in Sℓ. In [MFR20], the authors highlight that LP/NLP B&B can be efficiently
implemented in advanced MILP packages (e.g., CPLEX, Gurobi) with the use of lazy constraints
and callback functions. As the set of linearization points increases at each iteration of LP/NLP
B&B, the solution values of M ℓ form a non-increasing sequence of upper bounds for DDF-MINLP
and the algorithm stops when the difference between this upper bound and the best known lower
bound is small enough (see [QG92]).

3.1. Submodular cuts

Next, we propose a first enhancement on LP/NLP B&B for DDF-MINLP. We note that, because
the objective functions of R-DDF and M-DDF are monotone (due to (2)) and submodular (via the
Hadamard-Fischer inequalities: see, for example, [JH85, Section 7.8, Problem 14]), according to the
results in [WN99, AA11], the following submodular linear inequalities are valid for DDF-MINLP,
for any S ⊆ [n]:

(Submodular) z ≤ ldet [B(S)]−
∑
i∈S

ρi(N \ {i})(1−xi)+
∑

i∈[n]\S

ρi(S)xi,

z ≤ ldet [B(S)]−
∑
i∈S

ρi(S \ {i})(1−xi)+
∑

i∈[n]\S

ρi(∅)xi,
(9)

where for any T ⊆ [n] and i∈ [n]\T , we define the difference function ρi(T ) := ldet [B(T )+ bib
⊤
i ]−

ldet [B(T )] with B(T ) := Id +
∑

i∈T bib
⊤
i .

Moreover, by using the identity for rank-one update of the determinant of a symmetric matrix, we
have the closed-form expression for the difference function ρi(T ) = log[1+b⊤i [A(T )]−1bi]. Similarly,
for any subset T ⊆ [n] and i∈ T , we have ρi(T \{i}) =− log[1−b⊤i [A(T )]−1bi]. Hence, the constraint
coefficients involved with the difference functions can be easily computed.
Then, to tighten the MILP relaxation of DDF-MINLP at LP/NLP B&B, besides including the

standard linearization inequalities (8) in M ℓ, we also include the submodular inequalities (9), for
each set S added to Sℓ.

3.2. Optimality cuts

We consider choosing one or multiple data points and fixing their corresponding binary variables
in DDF-MINLP to either one or zero, and then probing the restricted DDF to derive effective
optimality cuts on these binary variables, which can help significantly reduce the size of the feasible
region of DDF while maintaining the optimal value. Specifically, suppose that sets S1, S0 ⊆ [n]
denote the index set of data points being selected (i.e., xi = 1 for each i∈ S1) and being discarded
(i.e., xi = 0 for each i∈ S0), respectively. Then a restricted problem of DDF is defined as

(Restricted DDF) z(S1, S0) := max
S⊆[n]\(S1∪S0),

|S|=s−|S1|

ldet

(
C +

∑
i∈S1

aiai +
∑
i∈S

aiai

)
, (10)

where sets S1, S0 are disjoint and set S1 is of cardinality no larger than s.
Clearly, if S1 = S0 = ∅, then z(S1, S0) = z∗ and the formulation is equivalent to DDF. Otherwise,

if z(S1, S0)< z∗, then at least one constraint built on sets S1, S0 is violated by an optimal solution
and we thus obtain an optimality cut for DDF-MINLP that cuts off a subset of sub-optimal
solutions. This result is summarized below.

Theorem 4. For any two disjoint sets S1, S0 with |S1| ≤ s and S1 ∪ S0 ⊆ [n], if z(S1, S0) < z∗,
then at least one of the two inequalities below is an optimality cut of DDF-MINLP.∑

i∈S1

xi ≤ |S1| − 1,
∑
j∈S0

xj ≥ 1, ∀x∈Zs. (11)
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Proof. Given an optimal solution x∗ of DDF-MINLP, if x∗ satisfies the constraints
∑

i∈S1 x∗
i = |S1|

and
∑

j∈S0 x∗
j = 0, then supp(x∗) will be feasible to the restricted problem (10) with the same

objective value z∗, which contradicts z(S1, S0)< z∗. Therefore, x∗ must violate at least one of the
equality constraints above and using the fact that x∗ is binary, we complete the proof. □
For the result of Theorem 4, we remark that (i) if either S1 or S0 is empty, then the inequality in

(11) based on the non-empty set must be an optimality cut; (ii) if one of sets S1 and S0 is singleton
and the other one is empty, the inequalities in (11) recover the well-known variable-fixing ones
[FL10]; and (iii) if both sets S1 and S0 are non-empty, the optimality cuts in (11) can be enforced
via disjunctive programming. The optimality cuts are effective at reducing the search space and
significantly improve the LP/NLP B&B algorithm as shown in our numerical results.
Albeit being effective, a common criticism of the probing technique in mixed-integer program-

ming is its computation expense [ABG+20], e.g., the optimal values z(S1, S0) and z∗ in Theorem 4
may not be easily computable. Motivated by our near-optimal approximation algorithms and strong
Lagrangian dual bounds for DDF, a compromise is that if an upper bound for z(S1, S0) is less
than a lower bound for z∗ (denoted by zlb), then the conclusion in Theorem 4 holds. Besides, fol-
lowing the spirit of the two Lagrangian duals for the continuous relaxations of DDF in Section 2,
the restricted problem (10) also admits two alternative upper bounds as follows, corresponding to
Lagrangian dual problems (3) and (6), respectively.

ẑR(S
1, S0) := ldetC + min

Λ∈Sd++,ν,µ∈Rn
+

{
− ldetΛ+trΛ+ ν+

∑
i∈[n]

µi − d

+

( ∑
j∈S1

(b⊤j Λbj − ν−µj)

)
+

(
−

∑
l∈S0

µl

)
: b⊤i Λbi ≤ ν+µi,∀i∈ [n] \ {S1 ∪S0}

}
,

ẑM(S1, S0) := ldetC + min
Λ∈Sn++,ν,µ∈Rn

+

{
− log det

s
(Λ)+ sν+

∑
i∈[n]

µi − s

+

( ∑
j∈S1

(v⊤
j Λvj − ν−µj)

)
+

(
−

∑
l∈S0

µl

)
: v⊤

i Λvi ≤ ν+µi,∀i∈ [n] \ {S1 ∪S0}
}
.

(12)

We observe that for some appropriately selected sets S1 and S0, the Lagrangian dual bounds
(12) can be smaller than the lower bound of DDF, i.e., ẑR(S

1, S0)< zlb or ẑM(S1, S0)< zlb. Our
selection strategy of sets S1 and S0 is a unification of the primal and dual perspectives, with an aim
of reducing values: ẑR(S

1, S0) and ẑM(S1, S0), which is discussed below. Notably, it is desired that
set S1 contains data points being discarded at optimality, and set S0 contains data points being
selected at optimality, which will provide the optimality cuts for DDF as shown in Theorem 4.
(i) Primal: Given an optimal solution x̂ to the continuous relaxation of R-DDF or M-DDF, we

let S1 ⊆ {i : x̂i ≤ ξ0,∀i ∈ [n]} with ξ0 ∈ [0,1] being a positive number close to 0 and S0 ⊆ {i :
x̂i ≥ ξ1,∀i ∈ [n]} with ξ1 ∈ [0,1] being close to 1. In this case, we expect a big reduction on
the restricted Lagrangian dual bounds in (12), when compared to the unrestricted bounds ẑR
and ẑM . Our numerical experiments suggest that this selection strategy performs very well
in exploring appropriate subset S1 to construct an optimality cut.

(ii) Dual: Using Lagrangian dual formulations (3) and (6), we can ensure that the Lagrangian
dual bounds of restricted DDF problem (10) decrease by at least a given threshold. According
Lagrangian dual formulations in (12), given an optimal dual solution (Λ̂, ν̂, µ̂) of (3) or (6),
we see that the corresponding restricted Lagrangian dual bound achieves a reduction of at
least

∑
j∈S1(b⊤j Λ̂bj − ν̂− µ̂j)−

∑
l∈S0 µ̂l or

∑
j∈S1(v⊤

j Λ̂vj − ν̂− µ̂j)−
∑

l∈S0 µ̂l, compared with
the original optimal dual value (see Proposition 7 below). This inspires us to identify sets S1

and S0 satisfying
∑

j∈S1(b⊤j Λ̂bj− ν̂− µ̂j)< 0 or
∑

j∈S1(v⊤
j Λ̂vj− ν̂− µ̂j)< 0, and

∑
l∈S0 µ̂l > 0,

such that each restricted Lagrangian dual problems in (12) yields a smaller upper bound for
restricted DDF (10) than the original Lagrangian dual value. It is worth mentioning that
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we can warm-start the solution procedure of the restricted dual problems (12) by using the
optimal solution (Λ̂, ν̂, µ̂) of the original Lagrangian dual problem (3) or (6). We also observe
in the numerical study that the dual selection strategy is good at exploring an appropriate
subset S0 to construct an optimality cut.

Proposition 7. Let (Λ̂, ν̂, µ̂) be a feasible solution of Lagrangian dual problem (3) (resp., (6)) with
the objective value zub. Then, (Λ̂, ν̂, µ̂) is also feasible to its corresponding restricted Lagrangian
dual problem in (12) and the resulting objective value is equal to

zub +
∑
j∈S1

(b⊤j Λ̂bj − ν̂− µ̂j)−
∑
l∈S0

µ̂l

resp., zub +
∑
j∈S1

(v⊤
j Λ̂vj − ν̂− µ̂j)−

∑
l∈S0

µ̂l

 .

Proof. If (Λ̂, ν̂, µ̂) is a feasible solution of Lagrangian dual problem (3), it is easy to check that it is
also feasible to the first optimization problem in (12) whose objective value is zub+

∑
j∈S1(b⊤j Λ̂bj−

ν̂−µ̂j)−
∑

l∈S0 µ̂l. Similarly, for the Lagrangian dual problem (6), the same result holds by replacing
bi by vi for all i∈ [n]. □

We note that (i) our selection strategies are easy-to-implement because each continuous relax-
ation of DDF and its corresponding Lagrangian dual problem can be efficiently solved by the
primal-dual Frank-Wolfe algorithm with a sublinear rate of convergence, (ii) the primal and dual
selection strategies do not dominate each other and are complementary as shown in our numer-
ical experiments, and (iii) all the analyses and selection strategies can be directly extended to
complementary formulations of DDF.

4. Two approximation algorithms for DDF

Motivated by our two CIP formulations of DDF, we investigate simple and scalable approxima-
tion algorithms (i.e., local-search and randomized-sampling algorithms) for providing near-optimal
selections of the new data points.

4.1. A local-search algorithm

In this subsection, we study a local-search algorithm for DDF, which has been successfully applied
to many combinatorial optimization problems (see, for example, [SX20, LX23, LX20]). The algo-
rithm runs as follows: (i) first, we start with a cardinality-s subset Ŝ ⊆ [n]; (ii) next, we swap one
element from the set Ŝ with one from the unchosen set [n]\ Ŝ, and we update the chosen set if the
swapping strictly increases the objective value; and (iii) the algorithm terminates when there is
no improvement. Motivated by R-DDF, we provide an efficient implementation of the local-search
algorithm, as shown in Algorithm 1, with time complexity ofO(nd2+s(n−s)d2) at the for-loop (i.e.,
Steps 5-11). Specifically, at Step 6, the strict improvement det(Id+X−bib

⊤
i +bjb

⊤
j )> det(Id+X),

can be efficiently computed as

det(Id +X − bib
⊤
i + bjb

⊤
j )> det(Id +X)

⇐⇒det(Id +X)(1+ b⊤i Λbi)
[
1+ b⊤j (Id +X − bib

⊤
i )

−1bj
]
> det(Id +X)

⇐⇒b⊤j Λbj − b⊤i Λbib
⊤
j Λbj + b⊤i Λbjb

⊤
j Λbi > b⊤i Λbi,

(13)

which follows from the Sherman–Morrison formula. The update of matrix Λ at Step 8 also follows
from Sherman–Morrison formula, to avoid calculations of inverses from scratch.
We use the proposed Lagrangian-dual of R-DDF, M-DDF, and their complements R-DDF-comp,

M-DDF-comp to provide a valid bound for the output of Algorithm 1 by constructing feasible dual
solutions:
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Algorithm 1 Local-Search Algorithm

1: Input: vectors {bi ∈Rd}i∈[n] and a positive integer s∈ [n]

2: Initialize a cardinality-s subset Ŝ ⊆ [n], matrix X :=
∑

i∈Ŝ bib
⊤
i , and matrix Λ := (Id +X)−1

3: Compute b⊤j Λbj for each j ∈ [n] and b⊤i Λbj for each i∈ Ŝ, j ∈ [n] \ Ŝ
4: do
5: for each pair (i, j)∈ Ŝ× ([n] \ Ŝ)
6: if b⊤j Λbj − b⊤i Λbib

⊤
j Λbj +(b⊤i Λbj)

2 > b⊤i Λbi
7: Update Ŝ := Ŝ ∪{j} \ {i} and X :=X − bib

⊤
i + bjb

⊤
j

8: Compute Λi :=Λ+
Λbib

⊤
i Λ

1−b⊤i Λbi
, and update Λ :=Λi −

Λibjb
⊤
j Λi

1+b⊤j Λibj

9: Update b⊤l Λbl for each l ∈ [n], and update b⊤i′Λbj′ for each i′ ∈ Ŝ, j′ ∈ [n] \ Ŝ
10: end if
11: end for
12: while there is still an improvement (i.e., Step 6 is true for some pair (i, j))
13: Output: Ŝ

Theorem 5. Let Ŝ denote the output of the local-search Algorithm 1, and let s̄ := min{s,n− s},
then the set Ŝ yields a min{d log(1+(s̄/d)σ2

max/(1+σmax)), s̄ log(s̄)}-approximation bound for DDF,
i.e.,

ldet

(
C +

∑
i∈Ŝ

aia
⊤
i

)
≥ z∗ −min

{
d log

(
1+

s̄σ2
max

d(1+σmax)

)
, s̄ log(s̄)

}
,

where the constant σmax :=maxi∈[n]a
⊤
i C

−1ai.

Proof. The approximation bound attains the minimum of d log(1 + (s̄/d)σ2
max/(1 + σmax)) and

s̄ log(s̄), where they are derived based on R-DDF, M-DDF, and their complementary problems,
respectively. Exploring the local optimality of the output solution Ŝ, we can show that

z∗ ≤ ẑR ≤ ldetC + ldet

(
Id +

∑
i∈Ŝ bib

⊤
i

)
+ d log

(
1+ s̄σ2

max
d(1+σmax)

)
,

z∗ ≤ ẑM ≤ log f

(∑
i∈Ŝ viv

⊤
i

)
+ ldet(C)+ smin

{
log(s), log

(
n− s− n

s
+2

)}
,

z∗ ≤ ẑcM ≤ log f

(∑
i∈Ŝ viv

⊤
i

)
+ ldet(C)+ (n− s)min

{
log(n− s), log

(
s− n

n−s
+2

)}
.

The detailed proof can be found in e-companion EC.1.3. □
We make the following remarks concerning Theorem 5:
(i) Either approximation bound with the ‘min’ in Theorem 5 is invariant with s and n− s by

leveraging the two CIPs and their complements;
(ii) The second approximation bound attains zero when s̄= 1, implying that the output solution

of the local-search Algorithm 1 is optimal, and when s = 1, we have ẑM = z∗, and when
s= n− 1, we have ẑcM = z∗, as summarized in Corollary 1;

(iii) The second approximation bound (i.e., s̄ log(s̄)) of the local-search Algorithm 1 improves on
the one for MESP (i.e., s log[s− (s− 1)/s(2s−n)+]) derived by [LX23], when the covariance
matrix of MESP is positive-definite. Figure 1 illustrates the comparisons of two approximation
bounds (i.e., our new bound s̄ log(s̄) versus the existing bound s log[s− (s− 1)/s(2s− n)+])
with n= 10,50, where the greatest improvement of our bound over that in [LX23] is indicated
by a black dashed line. We see that when s > n/2, our new bound provides the local-search
Algorithm 1 with a tighter performance guarantee;
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(iv) The first approximation bound involving the constant σmax is new and is discussed after
Theorem 6, along with that of the sampling algorithm which is also derived based on R-DDF;

(v) Another side product of Theorem 5 is to provide DDF with the optimality gaps of three
proposed Lagrangian dual bounds: ẑR, ẑM , and ẑcM , as presented in Corollary 2; and

(vi) Finally, we provide the maximum number of swaps and time complexity of each swap adopted
in Algorithm 1 in Corollary 3.

Corollary 1. When s = 1 and s = n− 1, we have ẑM = z∗ and ẑcM = z∗, respectively. In both
cases, the local-search Algorithm 1 returns an optimal solution.
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Figure 1 Comparison between our approximation bound from the local-search Algorithm 1 with the existing one

Corollary 2. The continuous relaxation values ẑR of R-DDF, ẑM of M-DDF, and ẑcM of the
complementary M-DDF (M-DDF-comp) satisfy

z∗ ≤ ẑR ≤ z∗ +n log

(
1+ s̄σ2

max
n(1+σmax)

)
;

z∗ ≤ ẑM ≤ z∗ + s log
(
s− s−1

s
(2s−n)+

)
;

z∗ ≤ ẑcM ≤ z∗ +(n− s) log
(
n− s− n−s−1

n−s
(n− 2s)+

)
.

Proof. The proof follows from that of Theorem 5. □
As mentioned before, R-DDF and its complement R-DDF-comp have the same continuous relax-

ation value, whereas M-DDF and its complement M-DDF-comp do not. This fact is captured by
Corollary 2, where we demonstrate a symmetric optimality gap of ẑR and non-symmetric gaps of
ẑM and ẑcM .

Corollary 3. The local-search Algorithm 1 takes at most log1+δ(sL) swaps and each swap takes
O(nd2+ s(n− s)d2) arithmetic operations, where δ > 0 denotes the strict improvement factor, and
L denotes the natural logarithm of the largest eigenvalue of matrix Id +BB⊤.

Proof. For any cardinality-s subset Ŝ ⊆ [n], suppose λmax denotes the largest eigenvalue of matrix∑
i∈Ŝ bib

⊤
i , then we have

ldet
(
Id +

∑
i∈Ŝ bib

⊤
i

)
≤ s log(1+λmax)≤ sL,

where the first inequality stems from the fact that matrix
∑

i∈Ŝ bib
⊤
i admits only s nonzero eigen-

values.
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For Step 6 of the local-search Algorithm 1, we add a factor δ to the right-hand side of the strict
inequality, where δ > 0 denotes a strict improvement factor. Therefore, Algorithm 1 takes at most
log1+δ(sL) swaps. Also, note that for each swapping pair (i, j) satisfying the condition at Step 6,
all of the following arithmetic operations over d× d matrices are O(nd2 + s(n− s)d2). □

4.2. A randomized-sampling algorithm

In this subsection, we study a randomized-sampling algorithm which relies on the opti-
mal continuous-relaxation solutions of R-DDF, M-DDF, and M-DDF-comp. Given an optimal
continuous-relaxation solution x̂ of either problem, our Algorithm 2 samples a cardinality-s subset
S ⊆ [n] with appropriate probability.

Algorithm 2 Sampling Algorithm

1: Input: An optimal solution x̂ ∈ [0,1]n of the continuous relaxation of R-DDF, M-DDF, or
M-DDF-comp and a positive integer s∈ [n]

2: For a cardinality-s subset S ∈ [n], its probability to be chosen is

P[S̃ = S] =

∏
i∈S x̂i∑

S̄∈([n]
s )

∏
i∈S̄ x̂i

.

3: Output: Random set S̃

The sampling procedure has O(n logn) complexity, and its detailed efficient implementation can
be found in [SX20, Section 3.1]. The approximation bound of the output of Algorithm 2 depends
on the choice of the relaxation, as presented in Theorem 6.

Theorem 6. Let x̂D, x̂M , x̂c
M denote optimal continuous-relaxation solutions of R-DDF, M-DDF,

and M-DDF-comp, respectively. Suppose that Algorithm 2 generates random sets S̃D, S̃M , S̃Mc with
x̂D, x̂M , x̂c

M as inputs, respectively, then we have

(i) logE
[
det

(
C +

∑
i∈S̃D

aia
⊤
i

)]
≥ z∗ + n log(xmin) − (n − s) log(1 + δ), where xmin > 0 is the

least non-zero entry in x̂D and δ := λmax(A
⊤C−1A);

(ii) logE
[
det

(
C +

∑
i∈S̃M

aia
⊤
i

)]
≥ z∗ − s log

(
s
n

)
− log

((
n
s

))
;

(iii) logE
[
det

(
C +

∑
i∈S̃c

M
aia

⊤
i

)]
≥ z∗ − (n− s) log

(
n−s
n

)
− log

((
n

n−s

))
;

(iv) Algorithm 2 can be derandomized as a polynomial-time algorithm with the same performance
guarantees.

We establish the approximation bounds for Algorithm 2, using the solutions of R-DDF, M-DDF,
and M-DDF-comp. The detailed proof can be found in e-companion EC.1.4. We further remark:
(i) The performance of Algorithm 2 depends on the quality of the continuous-relaxation solution

x̂, i.e., a tighter continuous relaxation bound yields better sampling results. It can be also
seen that the running time of Algorithm 2 is dependent of the dimensionality of the data,
i.e., d;

(ii) The first and third approximation bounds in Theorem 6 are new, and the second one follows
the one for MESP [LX23].

(iii) Using the optimal continuous-relaxation solutions from M-DDF and M-DDF-comp, the out-
put from Algorithm 2 can be at most s̄ log(s̄/n)+log(

(
n
s̄

)
) away from the optimal value (recall

that s̄ := min{s,n − s}), which improves the approximation bound (s log(s̄/n) + log(
(
n
s

)
))

of Algorithm 2 for solving MESP in [LX23]. The comparison between these two bounds is
displayed in Figure 2; and
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(iv) Similar to the corollaries of Theorem 5, Theorem 6 also implies the optimality of Algorithm 2
for two special cases in Corollary 4 and alternative optimality gaps of the proposed continuous
relaxation values in Corollary 5.
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Figure 2 Comparison between our approximation bound from the sampling Algorithm 2 with the existing one

Corollary 4. When s = 1 and s = n− 1, Algorithm 2 returns an optimal solution when using
x̂M and x̂c

M as the input, respectively.

Proof. According to Theorem 6, if s= 1 and x̂M is used as the input, the approximation bound
of Algorithm 2 is equal to 0. When s= n− 1, the same argument follows. □

Corollary 5. The continuous relaxation values ẑR of R-DDF, ẑM of M-DDF, and ẑcM of M-
DDF-comp satisfy

z∗ ≤ ẑR ≤ z∗ −n log(xmin)+ (n− s) log(1+ δ);
z∗ ≤ ẑM ≤ z∗ + s log

(
s
n

)
+ log

((
n
s

))
;

z∗ ≤ ẑcM ≤ z∗ +(n− s) log
(
n−s
n

)
+ log

((
n

n−s

))
.

Proof. The proof follows directly from that of Theorem 6. □
Note that the theoretical optimality gaps of the three continuous relaxation values in Corollary 2

and Corollary 5 are not comparable; thus, taking the minimum of both values yields a better
optimality gap. Specifically, for the continuous relaxation value ẑR, the two optimality gaps from
Corollary 2 and Corollary 5 depend on parameters σmax, δ, and xmin and thus are not comparable.
The explicit comparison of alternative optimality gaps for ẑM and ẑcM with n= 10,50 can be found
in Figure 3, where the blue diamond line and red circle line represent the results in Corollary 2 and
Corollary 5, respectively. We observe that (i) for either continuous relaxation value, the optimality
gap in Corollary 5 is tighter than that of Corollary 2, except one case; and (ii) if s≤ n/2, then ẑM
outperforms ẑcM and is a tighter upper bound for DDF.

Note that in Theorem 5 and Theorem 6, Corollary 2 and Corollary 5, the magnitudes of σmax and
δ depend on the contained information difference of new and existing data. If the existing data are
very informative, i.e., σmax and δ tend to be small, and the proposed approximation bounds based
on R-DDF get tighter. Hence, for Algorithm 2, we recommend applying the continuous-relaxation
solution of R-DDF if the existing data are more informative; otherwise, applying M-DDF and its
complement.
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1 5 9 13 17 21 25 29 33 37 41 45 49
s

0

20

40

60

80

100

120
Optimality gap of zc

M in Corollary 18
Optimality gap of zc

M in Corollary 22

(d) Optimality gap for ẑcM , n=50

Figure 3 Comparison between optimality gaps for the two continuous relaxation values ẑM and ẑcM

5. Numerical study on sensor fusion in power systems
In this section, we present a real-world sensor-fusion problem in power systems, which can be
formulated as DDF. We tested the proposed formulations and algorithms with varying-scale
instances. All the experiments were conducted in Python 3.6 with calls to Gurobi 9.0 on a
PC with 2.8 GHz Intel Core i5 processor and 8G of memory. All times reported are wall-clock
times. The codes for the proposed algorithms and data are available in a Github repository at
https://github.com/yongchunli-13/D-optimal-Data-Fusion.
In power systems, phasor measurement units (PMUs) are the most accurate and high-speed

time-synchronized devices used to measure phasors of bus voltages and currents in an electric
grid (see [Nuq01]). PMUs have broad applications, including state estimation, security assessment,
system monitoring, and wide-area control (see [DLRCTP10, The17]). In particular, reliable state
estimation is an essential component of managing a modern energy system, aiming at determining
the true voltages at all buses, based on available measurements and information that consist of
observed voltage angles, power flows, and injections (see [TVC+10]).

Before the advent of PMUs, the conventional sensors, including supervisory control and data
acquisition (SCADA) meter readings, were widely used to perform state estimation in power sys-
tems (see [Mon00]). It is recognized that, in many cases, one barely equips a power grid with a
sufficient number of PMUs to achieve the state estimation fully (see [ZCTP06]), due to the budget
and resource constraints. Therefore, it is important to make an intelligent choice of fusing PMUs
and SCADA when deciding the PMU locations out of non-reference buses, in order to collect
maximum information to best improve the state estimation. According to the PMU and SCADA

https://github.com/yongchunli-13/D-optimal-Data-Fusion
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measurement model in [LNI11], for an n-bus power system, the overall Fisher information matrix
(FIM) is defined as

C +
∑
i∈S

1

σ̂2
i

eie
⊤
i , (14)

where matrix C ∈ Sn
++ denotes the FIM obtained from conventional sensors and is positive definite

[Pal81], the set S ⊆ [n] denotes the bus locations of installed PMUs, and for each i∈ [n], σ̂i denotes
the standard deviation of PMU measurements at i-th bus. The matrix C in the FIM (14) is positive
definite because power-system states are typically observable with conventional SCADAs installed
(see, e.g., [LNI11]). The FIM (14) of the sensor fusion problem in power systems can reduce to
the objective matrix in DDF by letting ai = 1/σ̂iei for each i ∈ [n] and d = n. When employing
D-optimality as the information selection criterion of the sensor fusion problem, based on the FIM
(14), it follows that DDF exactly formulates this sensor fusion problem (see [LNI11]). Please note
that even when all standard deviations {σ̂i}i∈[n] are equal, the DDF built on the special FIM (14)
is still NP-hard as shown in e-companion EC.2. Nevertheless, in the next subsection, we randomly
generate the PMU standard deviations to compare the proposed continuous relaxations across
various settings. Additionally, all other numerical experiments are based on a pre-specified PMU
standard error commonly used in the literature.

5.1. A comparison of continuous relaxations: IEEE 118- and 300-bus instances

From our theoretical analysis, we see that a tight continuous-relaxation bound for DDF has an
important role in the performance of Algorithm 2 and the effectiveness of optimality cuts. Therefore,
we first investigated the three continuous-relaxation bounds of R-DDF, M-DDF, and M-DDF-
comp, i.e., ẑR, ẑM , and ẑcM , respectively, using two IEEE benchmark instances with 118 and 300
buses (see [AKFFS09]) of the PMU placement problem that provide the matrix C in DDF. For
each instance, we set the first bus to be the reference bus and renumber non-reference buses from
one, as seen in [LNI11]. Hence, it suffices to focus on the n= 117, n= 299 non-reference buses when
solving the IEEE-118, 300 instance. To compare the three alternative continuous-relaxation values,
we conducted a controlled experiment with respect to the PMU standard deviations {σ̂i}i∈[n],
where large and small PMU standard deviations separately represent the two cases where either
the existing sensors or the new sensors are more accurate for state estimation.
We used the Frank-Wolfe algorithm to compute the three upper bounds on the optimal value

of DDF. The computational results for the two instances are displayed in Figure 4 and Figure 5,
where the optimality gap is equal to the difference between an upper bound and a lower bound
for DDF returned by our local-search Algorithm 1. We note that the Frank-Wolfe algorithm and
our local-search Algorithm 1 are very efficient, and their computational time is negligible (i.e., less
than one minute), so we do not report them.
For the 118-bus instance (Figure 4), we consider cases where the number of installed PMUs

s ∈ {10,15, · · · ,105}, for n= 117, in order to compare the upper bounds for a wide range of the
parameter s. In Figure 4(a), we sample the PMU variances {σ̂2

i }i∈[n] as n independent uniform
random variables in the range [0,1000], and the new sensors contribute less to the state estimation
than the existing ones. We see that the continuous-relaxation value ẑR is smaller than both ẑM
and ẑcM in most cases in Figure 4(a). By contrast, in Figure 4(b), we sample the PMU variances
{σ̂2

i }i∈[n] as n independent uniform random variables in the range [0,0.1], assuming new more
accurate sensors. In this setting, we see that the continuous-relaxation values ẑM and ẑcM are much
smaller than ẑR, so we use a pair of vertical axes to illustrate their performance. The comparison
results parallel our theoretical findings in Section 2.
The comparison of the three upper bounds is also illustrated in Figure 5 for the IEEE 300-bus

instance and the conclusions are the same. Specifically, given the gain matrix C of this instance, we
generate the relatively large and small PMU variances {σ̂2

i }i∈[n] from the uniform distribution in the
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range [0,10] and [0,0.01], respectively. Thus, both theoretical analyses and numerical comparisons
in Figure 4 and Figure 5 demonstrate that the continuous relaxation of M-DDF is more stable and
tighter than that of R-DDF when the new sensors are subject to smaller measurement variances.
In addition, we observe in both figures that ẑM tends to be stronger than ẑcM if s is small; otherwise
ẑcM is stronger. In practice, PMUs are much more accurate than other sensors (see [ZTW+19]),
and the measurement error is controlled within the range of [−0.6◦,0.6◦]; and the number of PMUs
to be installed is usually small due to budget constraints, i.e., s is small. Thus, we identify the
continuous-relaxation value ẑM of M-DDF as a better upper bound for the PMU placement problem
in power systems that will be used in the following numerical study, where we also set the PMU
standard deviation to 0.02◦, a known PMU standard error in the literature (see [ZMST10]).
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Figure 4 Comparison between continuous-relaxation bounds on IEEE 118-bus instance
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Figure 5 Comparison between continuous-relaxation bounds on IEEE 300-bus instance

5.2. Testing submodular and optimality cuts: IEEE 118- and 300-bus instances

Next, we tested the submodular and optimality cuts introduced in Section 3. For our experiments,
the proposed primal and dual selection strategies of subsets S1 and S0 only depend on the contin-
uous relaxation of M-DDF, and its Lagrangian dual, due to their strength for the power-system
instances. Similarly, for the selected subsets and their resulting restricted problems (10), we only
computed the Lagrangian dual value ẑM(S1, S0) in (12) to check whether this value is less than a
lower bound returned by the local-search Algorithm 1. That is, for a pair (S1, S0), we applied the
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Frank-Wolfe algorithm with a warm start to compute the restricted dual bound ẑM(S1, S0), unless
the optimality cuts based on (S1, S0) could be directly obtained using Proposition 7.
We considered different settings to generate a pair (S1, S0) to construct optimality cuts, includ-

ing: (a) S1 = ∅, S0 is singleton; (b) S1 is singleton, S0 = ∅; (c) S1 = ∅, S0 has 2 elements; (d) S1 has
2 elements, S0 = ∅; and (e) both S1 and S0 are singletons. The subsets are set to be small due to
the effectiveness of their corresponding optimality cuts and tightness of the continuous-relaxation
bounds. Besides, except setting (e), as one of subsets is empty, we did not need auxiliary binary
variables to construct the optimality cuts (11). We used both the primal and dual strategies for
selecting the subsets S1 and S0, because each one has its own advantage.
The well-known variable-fixing technique is a combination of settings (a) and (b), thus it can

be viewed as a special case of our optimality cuts. It was originated for MESP with [AFLW96,
AFLW99] and has recently been applied to MESP in [Ans18, Ans20, CFL23]. These existing works
do not consider optimizing the restricted Lagrangian dual problem to strengthen the upper bound,
nor explore the subsets based on the primal continuous-relaxation solution. Figure 6 presents the
number of fixed variables on two IEEE instances by using our strategy (i.e., the integration of
settings (a) and (b)), compared to that of [CFL23]. Because both methods manage to fix s variables
to one and the remaining n−s variables to zero within one second, when s≤ 4 in 118-bus instance
and s≤ 31 in 300-bus instances, we do not display these results.
In Figure 6, we see that the number of variables fixed to one tends to steadily increase and

the number of variables fixed to zero decreases as s increases. From Figure 6(a) and Figure 6(b),
we observe that our primal selection strategy successfully finds several optimal variables equal to
one, but the variable-fixing by [CFL23] fails to fix any variable to one in our test instances. It is
worth mentioning that the variables being fixed to one can significantly reduce the problem size
and represent the best buses in power systems for installation of new PMU sensors. In Figure 6(c)
and Figure 6(d), our dual strategy slightly outperforms that of [CFL23] when fixing variables to
zero, and we are able to fix 13 more variables compared to that of [CFL23] for some cases. Finally,
we compare the time for both methods in Figure 6(e) and Figure 6(f). We see that the overall
performance of our primal and dual strategies is better than that of [CFL23], and our method takes
more time but is still negligible compared to what it takes to solve DDF to optimality. We present
the “Gap” in Figure 7, i.e., the difference between M-DDF continuous relaxation value ẑM and a
lower bound returned by the local search Algorithm 1. The decrease of gaps precisely explains the
sudden jumps in Figure 6(a)-Figure 6(d) at points of s= 32,63, because the optimality gap used
in Proposition 7 is a key factor in the variable-fixing performance, i.e., a lower gap implies more
variable fixings.
For the other three settings (c), (d), and (e) that involve two binary variables, their number

of optimality cuts and overall time are illustrated in Figure 8. We see that when s increases, the
number of optimality cuts tends to increase, but as seen in Figure 6, the variable-fixing gets worse,
implying the fact that optimality cuts can be complementary to each other. Thus, in order to ensure
the effectiveness of optimality cuts in our algorithmic framework, we may need to try various types
of optimality cuts.

5.3. Exact and approximation algorithms: IEEE 118- and 300-bus instances

We tested the two IEEE instances and found that with the benefit of submodular and optimality
cuts, the LP/NLP B&B can efficiently solve DDF and approximation algorithms can find high-
quality solutions within one minute.
In Table 2, we compare the time and the optimality gap of the LP/NLP B&B algorithm with

and without submodular and optimality cuts. For LP/NLP B&B with submodular and optimality
cuts, we also present the time to generate the optimality cuts. The time to generate the submodular
cuts is negligible. We used the optimality cuts based on subsets from settings (a) and (b) (i.e.,
variable-fixing) to reduce the problem size of DDF, and we added the other optimality cuts from
settings (c), (d), and (e) to the initial MILP relaxation M 0 solved in LP/NLP B&B. Columns “#a
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(a) Number of variables fixed at one for n=117
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(b) Number of variables fixed at one for n=299
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(c) Number of variables fixed at zero for n=117
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(d) Number of variables fixed at zero for n=299
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(e) Time for n=117
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(f) Time for n=299

Figure 6 Comparison between variable-fixing techniques on IEEE instances

− #e” present the number of optimality cuts corresponding to settings (a)−(e). For each test case,
the time limit was set to four hours.
Just using submodular cuts, we can solve five more cases within the time limit, and even for the

cases that are not solved to optimality, the MIPgap is dramatically reduced. When additionally,
optimality cuts are included, all cases are solved to optimality within the time limit. For the four
cases that took a substantial amount of time using only submodular cuts, with optimality cuts we
could solve them much faster. We can see that many variables were fixed for all test cases using
optimality cuts based on settings (a) and (b). According to [LNI11], it is difficult to compute the
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(b) Gap for n=299

Figure 7 Gap between ẑM and the lower bound returned by Algorithm 1 on IEEE instances
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(a) Optimality cuts with two variables for n=117
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(b) Optimality cuts with two variables for n=299
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(c) Time for n=117
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Figure 8 Performance of optimality cuts with two binary variables on IEEE instances

optimal value of DDF for a power system with more than 100 buses. However, our LP/NLP B&B
using the submodular and optimality cuts enables us to effectively solve these cases to optimality.
More details on this experiment are in Table EC.1, in e-companion EC.3.
Using the optimal values of DDF in Table 2, we evaluate the bounds given by the continuous

relaxation of M-DDF and the performance of the approximation algorithms on the same testing
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Table 2 Impact of submodular and optimality cuts on LP/NLP B&B on IEEE instances

n s
LP/NLP B&B LP/NLP B&B LP/NLP B&B

+ submod. cuts + submod. and opt. cuts

MIPgap1 time2 MIPgap1 time2 MIPgap1 time2 #a #b #c #d #e cut time3

117 5 0.00 11 0.00 1 0.00 2 3 109 0 0 1 2

117 10 0.00 423 0.00 5 0.00 5 6 96 0 7 11 5

117 15 3.18 - 0.00 1019 0.00 34 4 59 4 39 13 20

117 16 4.27 - 0.00 5368 0.00 58 4 51 5 37 16 19

117 17 5.19 - 0.61 - 0.00 344 4 34 3 81 37 24

117 18 4.81 - 1.34 - 0.00 626 4 33 4 75 28 25

117 19 8.47 - 2.16 - 0.00 1542 4 28 5 82 29 36

117 20 11.11 - 2.20 - 0.00 7111 4 24 5 91 24 29

299 35 7.76 - 0.00 33 0.00 31 30 253 0 0 0 30

299 40 83.52 - 0.00 505 0.00 69 29 229 0 15 2 63

299 45 48.06 - 0.00 1334 0.00 109 29 228 8 7 20 96

299 50 52.67 - 0.88 - 0.00 135 35 197 7 53 17 107

299 51 40.41 - 0.90 - 0.00 218 35 184 7 64 12 126

299 52 140.05 - 2.44 - 0.00 219 35 181 9 82 22 124

299 53 186.13 - 3.27 - 0.00 328 36 174 6 84 20 132

299 54 168.61 - 3.55 - 0.00 560 37 161 3 113 7 115

299 55 158.67 - 4.60 - 0.00 1240 37 152 9 119 17 142

299 56 143.81 - 5.29 - 0.00 5072 38 151 3 113 16 143

299 57 129.59 - 4.57 - 0.00 11462 38 143 3 125 21 136
1 MIPgap = upper bound − best feasible-solution value (both obtained by LP/NLP B&B)
2 total time in seconds; “-”: instance not solved within four hours
3 time to generate optimality cuts in seconds

cases. The computational results are displayed in Table 3. The “gap” for M-DDF is the difference
between the continuous relaxation value ẑM and the optimal value z∗. The “gap” for the approxi-
mation algorithms is the difference between z∗ and the solution returned by them. For comparison
purposes, we also tested the greedy algorithm for solving the PMU placement problem in power
systems studied in [LNI11, LCW+12], whose implementations recalculate the objective function
value at each iteration without exploring the rank-one update. We feed the continuous-relaxation
solution of M-DDF to Algorithm 2, and thus the time for Algorithm 2 includes that of solving
the continuous relaxation. We see that the upper bound given by the solution of the continuous-
relaxation of M-DDF is always close to the optimal value. We also see that Algorithm 1 consistently
gives better times and gaps than Algorithm 2. Although Algorithm 1 and the greedy algorithm
have the same gap for each instance, in our implementations Algorithm 1 is much faster due to
the rank-one updating technique.

5.4. Scalability and near-optimality of approximation algorithms: IEEE 118-, 300-, and Polish
2383-bus instances

To better understand the overall performance of our approximation algorithms, we tested cases
with a full range of selected data points (i.e., s) on the two IEEE instances and on a larger instance
with 2383 buses, one of the largest power systems in the literature (see [ZMSG97]). Note that
LP/NLP B&B is unable to solve many of the large-s cases to optimality within a four-hour time
limit. Thus, here we use the continuous-relaxation value ẑM of M-DDF to evaluate the quality
of the feasible solutions obtained using the approximation algorithms. The value for “gap” in
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Table 3 Relaxation and approximation algorithms on IEEE instances

n s
M-DDF local-search sampling greedy

relaxation Algorithm 1 Algorithm 2 algorithm

gap time1 gap time1 gap time1 gap time1

117 5 0.10 < 1 0.00 < 1 0.00 5 0.00 < 1

117 10 0.16 1 0.00 < 1 0.00 5 0.00 < 1

117 15 0.42 1 0.00 < 1 0.08 6 0.00 < 1

117 16 0.48 1 0.00 < 1 0.32 6 0.00 < 1

117 17 0.55 1 0.00 < 1 0.17 6 0.00 < 1

117 18 0.57 2 0.00 < 1 0.23 7 0.00 < 1

117 19 0.60 1 0.00 < 1 0.79 6 0.00 < 1

117 20 0.64 2 0.00 < 1 0.87 6 0.00 < 1

299 35 0.11 6 0.00 < 1 0.00 34 0.00 14

299 40 0.31 11 0.00 < 1 2.04 46 0.00 13

299 45 0.26 5 0.00 < 1 4.40 41 0.00 12

299 50 0.37 5 0.00 < 1 3.98 37 0.00 11

299 51 0.41 7 0.00 < 1 2.25 39 0.00 12

299 52 0.40 6 0.00 < 1 4.18 45 0.00 11

299 53 0.42 8 0.00 < 1 4.36 45 0.00 12

299 54 0.46 10 0.00 < 1 3.56 38 0.00 12

299 55 0.47 10 0.00 < 1 2.29 46 0.00 12

299 56 0.47 14 0.00 < 1 7.41 42 0.00 13

299 57 0.46 11 0.05 < 1 5.07 46 0.05 17
1 time in seconds; “< 1”: time less than one second

Table 4 and Figure 9 is equal to the difference between ẑM and the output values produced by the
approximation algorithm.
We compare our proposed approximation algorithms with the greedy algorithm in Figure 9, for

which we test 23 cases with number of installed PMUs from 5,10, . . . ,115 and 29 cases with number
of installed PMUs from 10,20, . . . ,290 for the two IEEE instances with 117 and 299 non-reference
buses, respectively. We see that Algorithm 1 clearly outperforms the other two, considering the
gaps and times. Besides, we see that the time of sampling Algorithm 2 decreases when s becomes
close to n. This is because when s→ n is large, the Frank-Wolfe converges quickly and takes less
time to compute the M-DDF continuous relaxation value ẑM , which serves as Step 1 of the sampling
Algorithm 2 and accounts for a large portion of its running time. Such numerical phenomenon is
supported by the complementary property of DDF. Specifically, it is expected that cases with small
s→ 1 has the similar performances as those with large s→ n due to the complement. In addition,
the optimality gap of M-DDF continuous relaxation value ẑM starts to decrease with large s as
shown in Figure 3.
In Table 4, we present results where we tested a large-scale instance with 2383 buses in the Polish

power system (see [ZMSG97]), which admits n= 2382 non-reference buses. The greedy algorithm
is omitted in this table because it could not finish on these cases within four hours. On the other
hand, our proposed approximation algorithms scale well. It is evident that Algorithm 1 performs
very well in time and solution quality, dominating the performance of Algorithm 2 in both respects.
Thus, we recommend using Algorithm 1 (with an efficient implementation) to solve practical PMU
placement problems. We note that the gaps for Algorithm 1 could be even smaller if we could
compare to the optimal value. Another observation, is that the small gaps for Algorithm 1 establish
the quality of the M-DDF relaxation on these cases.
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(a) Gaps for n=117 (b) Gaps for n= 299

(c) Time for n=117 (d) Time for n= 299

Figure 9 Comparison between approximation algorithms on IEEE instances

Table 4 Relaxation and approximation algorithms on the Polish instance

n s

M-DDF local-search sampling

relaxation Algorithm 1 Algorithm 2

ẑM time1 gap time1 gap time1

2382 75 750.11 421 0.98 9 14.24 424

2382 100 1165.74 545 1.24 17 33.82 552

2382 125 1576.29 608 1.43 17 41.81 675

2382 150 1982.08 666 1.93 17 62.18 740

2382 175 2383.14 807 2.58 25 78.23 853

2382 200 2779.27 794 3.25 28 61.03 822

2382 225 3172.16 1064 4.08 31 93.11 1101

2382 250 3561.82 1301 4.95 37 105.06 1368

2382 275 3948.40 1333 5.15 46 122.23 1426

2382 300 4332.33 1244 5.41 47 135.21 1448

2382 325 4713.75 1293 6.11 45 130.45 1514

2382 350 5092.40 1392 6.92 49 149.43 1661

2382 375 5468.35 1510 8.02 51 123.27 1768
1 time in seconds
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6. Conclusion
We studied the D-optimal data fusion problem, which can be of vital importance in many fields,
such as monitoring, operation, planning, control, and decision making of various environmental,
structural, agricultural, food processing, and manufacturing systems. The developed exact and
approximation algorithms come with theoretical performance guarantees. Our numerical study
confirms the efficacy of the proposed algorithms. We expect the proposed methods can be applicable
to many machine learning problems under a cardinality constraint such as sparse PCA, sparse
regression, sparse matrix completion, and so on. Besides, the work in [NS16] provides an interesting
geometric relaxation for MESP under more general matroid constraints. Thus, one possible future
direction is to explore this relaxation for solving DDF under general settings.
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EC.1. Proofs

EC.1.1. Proof of Proposition 2

Proposition 2. The Lagrangian dual of the continuous relaxation of R-DDF is

ẑR := ldetC + min
Λ∈Sd++,

ν,µ∈Rn
+

{
− ldet(Λ)+ trΛ+ sν+

∑
i∈[n]

µi − d : b⊤i Λbi ≤ ν+µi, i∈ [n]

}
. (3)

Proof. First, we introduce an auxiliary matrix variable X ∈ Sd
++ and reformulate R-DDF as

ldetC + max
X∈Sd++,x∈Zs

{
ldet(X) : Id +

∑
i∈[n]

xibib
⊤
i ⪰X

}
.

Then we derive the Lagrangian dual of the above maximization problem over x,X. Let Λ ∈ Sd
++,

ν ∈R, υ ∈Rn
+, µ∈Rn

+ denote the Lagrangian multipliers. The Lagrangian function L is

L(x,X,Λ, ν,υ,µ) = ldet(X)+ trΛ− tr(XΛ)+
∑
i∈[n]

(
b⊤i Λbi − ν+ υi −µi

)
xi + sν+

∑
i∈[n]

µi.

Maximizing L over (x,X) yields

Λ=X−1, b⊤i Λbi − ν+ υi −µi = 0,∀i∈ [n].

Then the Lagrangian dual problem can be obtained by plugging the above result into L, removing
υ, and minimizing L over (Λ, ν,µ). □

EC.1.2. Proof of Proposition 3

Proposition 3. For any x∈ [0,1]n, the gradient g ∈Rn and the Hessian H ∈Rn×n of the objective
function in the continuous relaxation of R-DDF are

g(x) := [b⊤1 X
−1b1, · · · ,b⊤nX−1bn], H(x) :=−(B⊤X−1B) ◦ (B⊤X−1B), and H(x)⪰−δ2In,

where X := Id +
∑

i∈[n] xibib
⊤
i and δ := λmax(B

⊤B).

Proof. For any Y ∈ Sd
++, it is well-known that the function ldet(Y ) has first- and second-order

derivatives: Y −1 and −Y −1∂Y Y −1. Thus, the gradient and Hessian of the objective function over
x in R-DDF can be derived.
According to [Joh74], the least eigenvalue of Hessian matrix H(x) satisfies

λmin (H(x)) =−λmax (−H(x))≥−λ2
max(B

⊤X−1B)≥−λ2
max(B

⊤B),

where the last inequality is due to X ⪰ Id. □

EC.1.3. Proof of Theorem 5

Theorem 5. Let Ŝ denote the output of the local-search Algorithm 1, and let s̄ := min{s,n− s},
then the set Ŝ yields a min{d log(1+(s̄/d)σ2

max/(1+σmax)), s̄ log(s̄)}-approximation bound for DDF,
i.e.,

ldet

(
C +

∑
i∈Ŝ

aia
⊤
i

)
≥ z∗ −min

{
d log

(
1+

s̄σ2
max

d(1+σmax)

)
, s̄ log(s̄)

}
,

where the constant σmax :=maxi∈[n]a
⊤
i C

−1ai.
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Proof. We will prove the two approximation bounds (i) n log(1 + (s̄/n)σ2
max/(1 + σmax)) and (ii)

s̄ log(s̄), using R-DDF, M-DDF, and their complements, respectively.
(i) d log(1+ (s̄/d)σ2

max/(1+σmax))-approximation bound.
Using the Lagrangian dual problem (3) of R-DDF (R-DDF), let us first show a non-

symmetric approximation bound, d log(1+ (s̄/d)σ2
max/(1+σmax)).

Given the output Ŝ of the local-search Algorithm 1, letX =
∑

ℓ∈Ŝ bℓb
⊤
ℓ andΛ= (Id+X)−1.

Because Ŝ is a locally-optimal solution of DDF, for any i ∈ Ŝ and j ∈ [n]\Ŝ, following the
inequalities in (13), the local-optimality conditions can be written as

b⊤j Λbj − b⊤i Λbib
⊤
j Λbj + b⊤i Λbjb

⊤
j Λbi ≤ b⊤i Λbi. (EC.1)

Next, we will explore the inequality (EC.1) to construct a feasible solution to the Lagrangian
dual problem (3) of the R-DDF. For any i ∈ Ŝ and j ∈ [n]\Ŝ, by dropping the nonnegative
term b⊤i Λbjb

⊤
j Λbi in the left-hand side of inequality (13), we obtain

b⊤j Λbj ≤
1

1− b⊤i Λbi
b⊤i Λbi. (EC.2)

On the other hand, for each i∈ Ŝ, we have

b⊤i Λbi ≤ b⊤i (Id + bib
⊤
i )

−1bi =
b⊤i bi

1+ b⊤i bi
=

a⊤
i C

−1ai

1+a⊤
i C

−1ai

≤ σmax

1+σmax

, (EC.3)

where the last inequality is due to σmax := maxi∈[n]a
⊤
i C

−1ai and the fact that the function
h(t) = t/(1+ t) is non-decreasing in t∈R+.

Combining the results (EC.2) and (EC.3), it follows that

b⊤j Λbj ≤
1

1− b⊤i Λbi
b⊤i Λbi ≤ (1+σmax)b

⊤
i Λbi,∀i∈ Ŝ,∀j ∈ [n] \ Ŝ, (EC.4)

where the second inequality is due to non-decreasing of h(t) = 1/(1− t) over t∈ [0,1).
Let us denote βmin := mini∈Ŝ b

⊤
i Λbi. Then, according to the inequality (EC.4), a feasible

solution to the Lagrangian dual problem (3) can be constructed by

Λ̂= tΛ, ν̂ = t(1+σmax)βmin, µ̂i = t(1+σmax)b
⊤
i Λbi − ν̂,∀i∈ Ŝ, µ̂i = 0,∀i∈ [n] \ Ŝ,

where t > 0 is a scalar and will be specified later.
Plugging solution (Λ̂, ν̂, µ̂) to problem (3), the objective value with the scalar t satisfies

ẑR ≤min
t
{ldetC − ldetΛ− d log(t)+ t trΛ+ t(1+σmax) tr(XΛ)− d}

=min
t
{ldetC − ldetΛ− d log(t)+ td+ tσmax tr(XΛ)− d},

where the equation is from the fact tr((Id +X)Λ) = d.
Minimizing the left-hand side above over t, the optimal scalar is t∗ = d/(d+σmax tr(XΛ))

and thus the final objective value with t∗ of problem (3) is equal to

z∗ ≤ ẑR ≤ ldetC + ldet(Id +X)+ d log(1+σmax/d tr(XΛ))

≤ ldetC + ldet(Id +X)+ d log

(
1+

σmax

d

sσmax

1+σmax

)
,

where the first inequality is from Proposition 2 and the last one is due to inequality (EC.3).
Now we use the Lagrangian dual problem (4) of R-DDF-comp to establish a complementary

approximation bound of the previous one, d log(1 + (n− s)/dσ2
max/(1 + σmax)). Because the
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objective function of R-DDF-comp is ldet(Id −
∑

i∈[n]\Ŝ qiq
⊤
i ), for any i ∈ [n] \ Ŝ and j ∈ Ŝ,

the local-optimality condition becomes

det(Id +X)≥ det(Id +X + qiq
⊤
i − qjq

⊤
j )⇐⇒ q⊤

j Λqj − q⊤
i Λqjq

⊤
j Λqi ≥ q⊤

i Λqi(1− q⊤
j Λqj),

where we define X :=−
∑

ℓ∈[n]\Ŝ qℓq
⊤
ℓ and Λ := (Id +X)−1 here.

Then, by dropping the term q⊤
i Λqjq

⊤
j Λqi above, we obtain

−q⊤
j Λqj ≤−q⊤

i Λqi(1− q⊤
j Λqj)≤−q⊤

i Λqi

1

1+σmax

,∀i∈ [n] \ Ŝ,∀j ∈ Ŝ, (EC.5)

where the second inequality is from by plugging the expressions of qj and qi, i.e.,

qjΛqj = a⊤
j (C +AA⊤)−

1
2

[
Id − (C +AA⊤)−

1
2A[n]\ŜA

⊤
[n]\Ŝ(C +AA⊤)−

1
2

]−1

(C +AA⊤)−
1
2aj = a⊤

j

(
C +AA⊤ −A[n]\ŜA

⊤
[n]\Ŝ

)−1

aj ≤ a⊤
j (C +aja

⊤
j )

−1aj ≤
σmax

1+σmax

.

Using inequality (EC.5), we can construct a feasible solution to the Lagrangian dual prob-
lem (4) as below

Λ̂= tΛ, ν̂ = t
1

1+σmax

βc
min, µ̂i =−t

1

1+σmax

q⊤
i Λqi − ν̂,∀i∈ [n] \ Ŝ, µ̂i = 0,∀i∈ Ŝ,

where βc
min :=−maxi∈[n]\Ŝ q

⊤
i Λqi.

Analogous to analyzing the previous approximation bound, we calculate the optimal scalar
t∗ = d/[d− σmax/(1 + σmax) tr(XΛ)] and plugging the optimal scalar, the objective value of
problem (4) satisfies

z∗ ≤ ẑR ≤ ldet(C +AA⊤)+ ldet(Id +X)+ d log

(
1− σmax

d(1+σmax)
tr(XΛ)

)
= ldet(C +AA⊤)+ ldet(Id +X)+ d log

(
1+

σmax

d(1+σmax)

∑
i∈[n]\Ŝ

q⊤
i Λqi

)

≤ ldet

(
C +

∑
i∈Ŝ

aia
⊤
i

)
+ d log

(
1+

(n− s)σ2
max

d(1+σmax)

)
,

where the last inequality is because for any i∈ [n] \ Ŝ, we have

qiΛqi = a⊤
i

(
C +AA⊤ −A[n]\ŜA

⊤
[n]\Ŝ

)−1

ai ≤ a⊤
i C

−1ai ≤ σmax.

Minimizing the two approximation bounds gives us the symmetric one, d log(1+ s̄σ2
max

d(1+σmax)
).

(ii) s̄ log(s̄)-approximation bound.
According to M-DDF, the output value of the local-search Algorithm 1 becomes

z∗ ≤ ẑM ≤ log f

(∑
i∈Ŝ

viv
⊤
i

)
+ ldet(C)+ smin

{
log(s), log

(
n− s− n

s
+2

)}
,

where the inequality results from [?][Theorem 7].
Using the complementary M-DDF, we can also show

z∗ ≤ ẑcM ≤ log f

(∑
i∈Ŝ

viv
⊤
i

)
+ ldet(C)+ (n− s)min

{
log(n− s), log

(
s− n

n− s
+2

)}
.

Taking the minimum of the two bounds above and using the identity log f(
∑

i∈Ŝ viv
⊤
i ) +

ldet(C) = ldet(C +
∑

i∈Ŝ aia
⊤
i ) complete the proof.

□
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EC.1.4. Proof of Theorem 6

Theorem 6. Let x̂D, x̂M , x̂c
M denote optimal continuous-relaxation solutions of R-DDF, M-DDF,

and M-DDF-comp, respectively. Suppose that Algorithm 2 generates random sets S̃D, S̃M , S̃Mc with
x̂D, x̂M , x̂c

M as inputs, respectively, then we have

(i) logE
[
det

(
C +

∑
i∈S̃D

aia
⊤
i

)]
≥ z∗ + n log(xmin) − (n − s) log(1 + δ), where xmin > 0 is the

least non-zero entry in x̂D and δ := λmax(A
⊤C−1A);

(ii) logE
[
det

(
C +

∑
i∈S̃M

aia
⊤
i

)]
≥ z∗ − s log

(
s
n

)
− log

((
n
s

))
;

(iii) logE
[
det

(
C +

∑
i∈S̃c

M
aia

⊤
i

)]
≥ z∗ − (n− s) log

(
n−s
n

)
− log

((
n

n−s

))
;

(iv) Algorithm 2 can be derandomized as a polynomial-time algorithm with the same performance
guarantees.

To facilitate the analysis of approximation bounds, let us first introduce the elementary sym-
metric polynomial function and its relation with eigenvalues.

Definition EC.1 (elementary symmetric polynomial). For a vector y ∈Rn and an integer
k ∈ [n], let ek(y) denote the degree k elementary symmetric polynomial, i.e.,

ek(y) :=
∑

S∈([n]
k )

∏
i∈S

yi.

For any symmetric matrix X ∈ Sn with its eigenvalue vector λ∈Rn and an integer k ∈ [n], it is
well-known that ek(λ) is equal to

ek(λ) =
∑

S∈([n]
k )

det(XS,S). (EC.6)

Now we are ready to prove Theorem 6.
Proof. The proof can be split into four parts, corresponding to three approximation bounds and
derandomization.
Part (i) Let T := supp(x̂D) be the index set of nonzero entries in x̂D.
For notational convenience, we define two matrices X ∈ Sn

+ and Y ∈ Sn
+ as

X := Diag(x̂D)+Y , Y := Diag
1
2 (x̂D)B

⊤BDiag
1
2 (x̂D).

For each i∈ [n]\T , we can show that the i-th column and row vectors of X and Y consist of zeros
as (x̂D)i = 0. It follows that both X and Y have rank at most |T |. Thus, we let λ1 ≥ · · · ≥ λ|T | ≥
0 = λ|T |+1 = · · · = λn and β1 ≥ · · · ≥ β|T | ≥ 0 = β|T |+1 = · · · = βn denote the eigenvalues of X and
Y , respectively. Furthermore, according to Weyl’s inequalities and the fact that 0<xmin ≤ 1, two
eigenvalue vectors λ and β satisfy

λi ≥ xmin +βi ≥ xmin(1+βi),∀i= 1, · · · , |T |. (EC.7)

Next, the exponential expectation of the objective value of R-DDF is equal to

E
[
det

(
Id +

∑
i∈S̃D

bib
⊤
i

)]
=

∑
S∈([n]

s )

P[S̃D = S] det

(
Id +

∑
i∈S

bib
⊤
i

)

=
1∑

S̄∈([n]
s )

∏
i∈S̄(x̂D)i

∑
S∈([n]

s )

∏
i∈S

(x̂D)i det
(
In +B⊤B

)
S,S
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=
1

es(x̂D)

∑
S∈([n]

s )

det(XS,S) =
1

es(x̂D)
es(λ) =

1

es(x̂D)
λs
1es

(
1

λ1

λ

)

≥ 1

es(x̂D)
λs
1

(
|T |
s

)
e|T |

(
1

λ1

λ

)
=

1

es(x̂D)
λ
s−|T |
1

(
|T |
s

)
e|T | (λ)

=
1

es(x̂D)
λ
s−|T |
1

(
|T |
s

)
en

([
λ1, · · · , λ|T |,1, · · · ,1

]⊤)
≥ 1

es(x̂D)
λ
s−|T |
1

(
|T |
s

)
en

([
xmin(β1 +1), · · · , xmin(1+β|T |),1, · · · ,1

]⊤)
≥ 1(

s
|T |

)s (|T |
s

)λs−|T |
1

(
|T |
s

)
x
|T |
minen(1+β) =

(
|T |
s

)s

λ
s−|T |
1 x

|T |
min det(In +Y )

=

(
|T |
s

)s

λ
s−|T |
1 x

|T |
min det(Id +BDiag(x̂D)B

⊤)

≥
(
|T |
s

)s

xn
minλ

s−|T |
1 exp(ẑR − ldetC)

≥
(
|T |
s

)s

xn
minλ

s−|T |
1 exp(z∗ − ldetC),

where the first inequality stems from the fact that each element of vector 1
λ1
λ is no larger than

1, the sixth equality is due to λi = 0 for all i ∈ [|T |+ 1, n], the second inequality is from (EC.7),
the third inequality is obtained by Maclaurin’s inequality, the last equation is from the fact that
matrices Y and BDiag(x̂D)B

⊤ have the same nonzero eigenvalues, the fourth inequality is because
x̂D is an optimal solution and xmin ≤ 1, and the last inequality is due to ẑR ≥ z∗.

Taking logarithm on both sides of the inequality above, we obtain

ldetC + logE
[
det

(
In +

∑
i∈S̃D

bib
⊤
i

)]
≥ z∗ +n log(xmin)+ (s− |T |) log(λ1)− s log

(
s

|T |

)
≥ z∗ +n log(xmin)− (n− s) log(1+λmax(B

⊤B)),

where the inequality is because λ1 ≤ 1+β1 ≤ 1+λmax(B
⊤B).

Part (ii) The objective value led by the output S̃M of Algorithm 2 with x̂= x̂M is bounded by

logE
[
f

( ∑
i∈S̃M

viv
⊤
i

)]
+ ldet(C)≥ ẑM − s log

( s

n

)
− log

((
n

s

))
,

where the inequality is from [?, Theorem 5] and using the fact ẑM ≥ z∗, we obtain the approximation
bound.
Part (iii) Given the output S̃c

M of Algorithm 2 with x̂= x̂c
M , the objective value of Complementary

DDF satisfies

logE
[
f

( ∑
i∈S̃c

M

viv
⊤
i

)]
+ ldet(C)≥ ẑM − (n− s) log

(
n− s

n

)
− log

((
n

n− s

))
,

where the inequality is from [?, Theorem 5] and using the fact ẑM ≥ z∗, we obtain the approximation
bound.
Part (iv) According the proof of Theorem 3, for any cardinality-s subset S ⊆ [n], we must have

det

(
C +

∑
i∈S

aia
⊤
i

)
= f

(∑
i∈[n]

xiviv
⊤
i

)
.

The remainder of the proof follows the de-randomization procedure of [?, Thm. 6]. □
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EC.2. NP-Hardness of sensor fusion in power systems
In this section, we show that the sensor fusion problem in power systems, as a special case of DDF,
is still NP-hard. In this case, plugging the FIM (14) into DDF exactly formulates the sensor fusion
problem as

z∗ := max
S⊆[n],|S|=s

ldet

(
C +

∑
i∈S

1

σ̂2
i

eie
⊤
i

)
, (EC.8)

where C ∈ Sn
++ and ei ∈Rn denotes the ith column of matrix In.

Proposition EC.1. Even when all standard deviations {σ̂i > 0}i are equal, the problem (EC.8),
as a special case of our DDF, is NP-hard.

Proof. Suppose that σ̂i = σ̂ holds for all i ∈ [n]. We will show that there is σ̂ > 0 such that the
problem (EC.8) is NP-hard.
As shown in Theorem 2, the problem (EC.8) is equivalent to

z∗ := max
S⊆[n],|S|=s

ldet

(
C +

∑
i∈S

1

σ̂2
i

eie
⊤
i

)
= ldetC + max

S⊆[n],|S|=s
ldet

(
In +

1

σ̂2
C−1

)
S,S

.

Then following the proof of [KLQ95][theorem 1], one can find proper σ̂ > 0 and C−1 ∈ Sn
++ to

reduce the problem (EC.8) to the well-known NP-hard stable set problem. □

EC.3. Supplementary numerical results

As a supplement of Table 2, we present in Table EC.1 detailed numerical results for LP/NLP B&B
with and without submodular cuts. In particular, we directly solve the maximization problem in
M-DDF or R-DDF and thus the optimal value returned by the B&B is equal to the difference of z∗

and the constant ldet(C). The results expose the quality of the lower bound (LB) and the upper
bound (UB) computed by LP/NLP B&B when the instances are not solved to optimality.
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Table EC.1 LP/NLP B&B with and without submodular cuts on IEEE instances

n s
z∗ −
ldet(C)

LP/NLP B&B LP/NLP B&B + submod. cuts

LB UB MIPgap1 time2 LB UB MIPgap1 time2

117 5 80.15 80.15 80.15 0.00 11 80.15 80.15 0.00 1

117 10 156.90 156.90 156.90 0.00 423 156.90 156.90 0.00 5

117 15 231.63 230.68 233.86 3.18 - 231.63 231.63 0.00 1019

117 16 246.31 244.65 248.92 4.27 - 246.31 246.31 0.00 5368

117 17 260.94 259.77 264.96 5.19 - 260.94 261.55 0.61 -

117 18 275.56 275.01 279.82 4.81 - 275.30 276.64 1.34 -

117 19 290.15 287.34 295.82 8.47 - 289.53 291.69 2.16 -

117 20 304.69 300.83 311.94 11.11 - 304.07 306.27 2.20 -

299 35 367.49 360.53 368.29 7.76 - 367.49 367.49 0.00 33

299 40 404.02 326.62 410.14 83.52 - 404.02 404.02 0.00 505

299 45 439.81 394.85 442.91 48.06 - 439.81 439.81 0.00 1334

299 50 474.49 425.78 478.45 52.67 - 474.31 475.19 0.88 -

299 51 481.24 444.43 484.84 40.41 - 481.17 482.07 0.90 -

299 52 487.98 364.09 504.14 140.05 - 487.64 490.08 2.44 -

299 53 494.66 323.89 510.02 186.13 - 493.93 497.20 3.27 -

299 54 501.27 345.42 514.02 168.61 - 500.36 503.91 3.55 -

299 55 507.84 360.22 518.89 158.67 - 506.21 510.81 4.60 -

299 56 514.37 381.03 524.84 143.81 - 512.14 517.43 5.29 -

299 57 520.89 400.04 529.63 129.59 - 519.55 524.12 4.57 -
1 MIPgap = UB − LB
2 time in seconds; “-”: instance not solved within four hours
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