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Abstract

Multiobjective integer programs (MOIPs) simultaneously optimize multiple objective func-

tions over a set of linear constraints and integer variables. In this paper, we present continuous,

convex hull and Lagrangian relaxations for MOIPs and examine the relationship among them.

The convex hull relaxation is tight at supported solutions, i.e., those that can be derived via a

weighted-sum scalarization of the MOIP. At unsupported solutions, the convex hull relaxation

is not tight and a Lagrangian relaxation may provide a tighter bound. Using the Lagrangian

relaxation, we define a Lagrangian dual of an MOIP that satisfies weak duality and is strong

at supported solutions under certain conditions on the primal feasible region. We include a

numerical experiment to illustrate that bound sets obtained via Lagrangian duality may yield

tighter bounds than those from a convex hull relaxation. Subsequently, we generalize the in-

teger programming value function to MOIPs and use its properties to motivate a set-valued

superadditive dual that is strong at supported solutions. We also define a simpler vector-valued

superadditive dual that exhibits weak duality but is strongly dual if and only if the primal has

a unique nondominated point.

Keywords: Multiobjective optimization, integer programming, Lagrangian duality, superadditive duality

1 Introduction

Multiobjective optimization problems optimize multiple objective functions over a common set of

constraints. When the constraints and objective functions are linear and the variables are con-

strained to be integers, the resulting problem is called a multiobjective integer (linear) program
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(MOIP); see [7] for a detailed introduction. In this paper, we present relaxations and dual formu-

lations for MOIPs.

Duality is an extensively studied area of optimization that is used in both theoretical analysis

and the development of solution methods. The fundamental idea in duality is to formulate a related

(dual) optimization problem that can provide bounds on the original (primal) problem. For single-

objective integer programs (IPs), several notions of duality have been proposed in the literature

[11, 18, 25, 48, 49]. Gale, Kuhn, and Tucker first studied multiobjective linear programming

(MOLP) duality in the 1950s [13], and the subject continued to receive attention in subsequent

decades [5, 19, 22, 23, 24, 27, 31, 43]. Recent work on MOIPs has explored bound sets that use

relaxations or variations of the original problem to bound nondominated points in the objective

space [3, 4, 9, 10, 35, 36]. Klamroth et al. [30] use IP duality to derive bounds for the multiobjective

problem. To our knowledge, however, a multiobjective duality framework for MOIPs has not been

explored in the literature. In this paper, we extend Lagrangian and superadditive duality from

single-objective IPs to the multiobjective case.

The paper is organized as follows: in Section 2, we formally define an MOIP and some related

concepts of vector and set comparison. We also provide a brief review of duality for IPs and

MOLPs, and an overview of bound sets. In Section 3, we present the Lagrangian relaxation of an

MOIP and compare it with the continuous and convex hull relaxations. In Section 4, we extend

Lagrangian duality to the multiobjective case and illustrate the performance of Lagrangian dual

bound sets via a numerical experiment. In Section 5, we develop superadditive duals for MOIPs.

We present concluding remarks in Section 6.

2 Background

In single-objective optimization problems, the objective function is a scalar-valued function whose

maximum over the feasible region is easily defined. In contrast, a k-objective optimization problem

has a vector-valued objective function that maps points in the feasible region to vectors in Rk. In

this case, the notion of maximization is ambiguous as there may be several objective values that are

mutually incomparable. Therefore, we employ the notion of Pareto efficiency and nondominance

[2, 7, 34, 45]. We first introduce some notation for the usual element-wise order on Rk.

Definition 1. For x, y ∈ Rk, define

(i) x < y if y − x has all positive components,
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(ii) x ≦ y if y − x has all nonnegative components, and

(iii) x ≤ y if x ≦ y but x ̸= y.

Definition 2 (Nondominance). Given a set S ⊆ Rk, s ∈ S is said to be nondominated (from above)

if there does not exist t ∈ S such that s ≤ t.

A set may have multiple nondominated elements that are mutually incomparable, and we denote

the set of all such elements by Max(S). The set Min(S) is analogously defined by reversing the

inequality in Definition 2. Under this definition, solving a multiobjective maximization problem

amounts to finding the nondominated points of the set of feasible objective function values.

An MOIP is defined via linear constraints and objective functions. Let A ∈ Rm×n be the

constraint matrix with right-hand-side b ∈ Rm. Let C ∈ Rk×n be the cost-matrix whose i-th row

comprises the coefficients of the i-th (linear) objective function. An MOIP with these k objectives

is defined as

max Cx

s.t. Ax ≦ b,

x ∈ Zn
≧,

(MOIP)

where Zn
≧ is the set of integer vectors with nonnegative components. The set of positive integer

vectors is denoted by Zn
>; Rn

≧ and Rn
> are defined similarly. Let X denote the feasible region of

(MOIP), and Y = {Cx | x ∈ X} be the set of feasible objective values. The set X is an integer

polyhedron just as in single-objective IP, while Y is a subset of Rk. Solving (MOIP) amounts to

finding the set of nondominated points Max(Y), known as its nondominated set. Feasible solutions

corresponding to these points are called efficient solutions.

Definition 3 (Supported Solution). An efficient solution x∗ is said to be a supported solution if

there exists a scalarizing vector µ ∈ Rk
> such that x∗ is an optimal solution to the scalarized problem

max {µ⊤Cx | Ax ≦ b, x ∈ Zn
≧}.

Remark 1. Henceforth, we use the term “scalarization” to refer to the weighted-sum scalarization

max {µ⊤Cx | Ax ≦ b, x ∈ Zn
≧}, where µ ∈ Rk

>.

Lemma 1 ([26]). A point x∗ is an efficient solution to the MOLP max {Cx | Ax ≦ b, x ∈ Rn
≧} if

and only if there is a vector µ ∈ Rk
> such that x∗ is an optimal solution to the scalarized problem

max {µ⊤Cx | Ax ≦ b, x ∈ Rn
≧}.
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Geoffrion [17] proves a general statement about scalarization for multiobjective concave func-

tions over a convex set. Lemma 1 applies this to MOLPs, asserting that finding efficient solutions to

an MOLP is equivalent to finding optimal solutions to its scalarizations. This, however, is not true

for the integer case – while optimal solutions to the scalarized MOIP are efficient for the original

problem, not all efficient solutions of the MOIP can be recovered in this manner [8, 45].

2.1 Extended Power Set and Set Comparison

When the set of objective values Y is nonempty and bounded above, Max(Y) is a well-defined subset

of Rk. However, this definition is ambiguous if Y is empty or unbounded above. To distinguish

between the two cases, we define an extended power set of Rk (analogous to the extended real line)

that contains two additional “sets” ±M∞.

Define a set S ⊆ Rk to be bounded above if there exists z ∈ Rk such that s ≤ z for all s ∈ S.

Suppose Y is nonempty and not bounded above. Then, we say that the maximization problem

is unbounded and denote Max(Y) = M∞. On the other hand, if Y = ∅, which corresponds to

the problem being infeasible, we define Max(Y) = −M∞. The roles of ±M∞ are reversed in

case of minimization. Thus, ±M∞ are analogous to ±∞ in single-objective optimization. These

definitions extend naturally to any class of multiobjective optimization problems whose sets of

feasible objective values are closed.

Unlike scalar optimization problems whose optimal values can be directly compared, nondomi-

nated sets for multiobjective problems are collections of vectors in Rk. Several authors [4, 10, 32, 40]

have proposed set-orderings to compare them, especially in the context of bound sets (see Section

2.4). We employ the following set-ordering proposed by Ehrgott and Gandibleux [9].

Definition 4 (Pareto Set-Ordering [9]). Let S, T ⊆ Rk be nonempty. Define S⪯ T if

(i) for every s ∈ S, there exists t ∈ T such that s ≦ t, and

(ii) for every s ∈ S and t ∈ T , t ̸≤ s.

In other words, every element of S is dominated by an element of T , but no element of S

dominates an element of T (except possibly itself). This ordering extends to ±M∞ (see Appendix

A for details). We then consider the following subset of the extended power set of Rk.

E = {S ⊆ Rk | S ̸= ∅, if s, t ∈ S, then s ̸≤ t and t ̸≤ s} ∪ {−M∞,M∞}. (1)
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When k = 1, E is the collection of singleton subsets of the extended real line, and the set-ordering

“⪯” coincides with the standard ordering on [−∞,∞]. Proposition 1 implies that nondominated

sets for the multiobjective optimization problems we consider in this paper will always belong to the

family E . Proposition 2 asserts that the relation “⪯” defines a partial order on E . Together, these

results will allow us to use this set-ordering to compare the nondominated sets of multiobjective

optimization problems. Proofs of results from this subsection are provided in Appendix A.

Proposition 1. Let S ⊆ Rk be nonempty. If S has points that are nondominated from above, then

Max(S) ∈ E. If S has points that are nondominated from below, then Min(S) ∈ E.

Proposition 2. The relation ⪯ defines a partial order on E.

The following properties of the set-ordering will be used in later proofs.

Lemma 2. Let T ⊆ S ⊆ Rk be nonempty sets, and let U ∈ E such that S⪯U . Then, T ⪯U .

Lemma 3. Let S ⊆ Rk be a closed set and let U ∈ E such that S⪯U . Then, Max(S)⪯U .

Remark 2. The analog of Lemma 3 for minimization does not hold. That is, S⪯ T does not

imply S⪯Min(T ). This is because the elements of S and Min(T ) may be incomparable (though

we do have s ̸≥ t for all s ∈ S and t ∈ Min(T )). For example, consider S = {(0, 0)⊤} and T =

{(−1, 1)⊤, (2, 2)⊤, (1,−1)⊤}. Then, S⪯ T , but Min(T ) = {(−1, 1)⊤, (1,−1)⊤}, and S ̸⪯Min(T ).

2.2 Duality in Integer Programming

Duality for single-objective IPs has been well studied, and we briefly review Lagrangian and super-

additive duality; see [49] for a comprehensive discussion including the following results. Consider

the IP

zIP = max cx s.t. Ax ≦ b, x ∈ Zn
≧. (IP)

Suppose the constraint matrix A is composed of two sub-matrices, A1 ∈ Rm1×n and A2 ∈

R(m−m1)×n, so that the constraints corresponding to A1 are the so-called complicating constraints,

while those corresponding to A2 are somewhat easier to handle. Then, a Lagrangian dual is

constructed by penalizing the complicating constraints by means of a dual variable λ as follows.

zLD = min
λ∈Rm

≧

max
x∈Q

(cx+ λ⊤(b1 −A1x)), (2)
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where Q = {x ∈ Zn
≧ | A2x ≦ b2}, and b1 and b2 are the sub-vectors of b corresponding to the rows

included in A1 and A2, respectively. The Lagrangian dual (2) satisfies the following properties

[11, 18].

Proposition 3 (Weak Lagrangian Duality). For each λ ∈ Rm1
+ and each x feasible to (IP),

cx ≤ cx+ λ⊤(b1 −A1x).

It follows that zIP ≤ zLD.

Theorem 1. The optimal value zLD of (2) is equal to the optimal value of the following linear

program (LP):

max cx s.t. A1x ≦ b1, x ∈ conv(Q).

Theorem 2. For fixed A1, b1 and Q, the Lagrangian dual (2) is strong for any cost vector c if and

only if

conv
(
Q ∩ {x ∈ Rn

≧ | A1x ≦ b1}
)
= conv(Q) ∩ {x ∈ Rn

≧ | A1x ≦ b1}.

The value function of an IP is defined as its optimal value parameterized by the constraint

right-hand-side b. That is, z(b) = max{cx | Ax ≦ b, x ∈ Zn
≧}. The value function is nondecreasing

and superadditive over its domain, which motivates the following superadditive dual for (IP).

min F (b)

s.t. F (Aj) ≧ cj , j = 1, . . . , n,

F (0) = 0,

F : Rm → R, nondecreasing and superadditive.

(3)

The superadditive dual (3) satisfies weak and strong duality [28, 48].

Proposition 4 (Weak Superadditive Duality). If x is feasible for (IP) and F is feasible for (3),

then cx ≤ F (b). If (IP) is unbounded, then (3) is infeasible.

Theorem 3 (Strong Superadditive Duality). If (IP) has an optimal solution x∗ with cx∗ < ∞,

then (3) has an optimal solution F ∗ with F ∗(b) = cx∗.
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2.3 Duality in Multiobjective Linear Programming

We now provide a brief overview of MOLP duality; see Luc [33] for a survey. Consider the MOLP

max Cx s.t. Ax = b, x ∈ Rn
≧. (4)

A matrix optimization dual for (4) was first proposed by Gale et al. in [13]. Several types of

MOLP duality have since been explored, such as geometric duality [23] and set valued duality [24].

Isermann [27] proposed a vector-valued dual problem over a space of matrices as an extension of

the single-objective LP dual. This dual is strong in the sense that if both the primal and dual

problems are feasible, then they have nondominated points that coincide. Isermann’s dual has also

been extended to other variants by considering different feasible sets for the dual matrix variables,

such as Corley’s duality in [5].

Lagrangian duality for MOLPs was introduced by Hamel et al. [22] and extended by Gourion

and Luc [19]. Given the MOLP (4), define a set-valued function G on Rk×m as G(Λ) = Max ({Cx+

Λ(b− Ax) | x ≧ 0}). Then, the Lagrangian minmax problem min{G(Λ) | Λ ∈ Rk×m} is expressed

as

min Λb+ (C − ΛA)u

s.t. α⊤ΛA ≧ α⊤C,

α⊤(C − ΛA)u = 0,

α ∈ Rk
>, u ∈ Rn

≧.

(5)

Lemma 4 (Strong duality of (5) [34]). If YM and YL are the sets of feasible objective values of (4)

and (5) respectively, then Max(YM) = Min(YL).

2.4 Bound Sets for Multiobjective Integer Programming

While MOLP duality is well-studied, duality for MOIPs remain relatively unexplored. However,

the related idea of using relaxations or variations of an MOIP to derive bounds on its nondominated

points has been explored through bound sets [7, 9, 10]. Bound sets are helpful in computing the

entire nondominated set of an MOIP and have been popular in recent work on MOIPs [3, 4, 6, 20,

30, 35, 36]; see [21] for a survey of algorithms for MOIPs.

A common upper bound on Y is given by the ideal point defined coordinatewise as yIi =

max
x∈X

(Cx)i, i = 1, 2, . . . , k. Similarly, a common lower bound is the nadir point defined as yNi =
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min{(Cx)i | x efficient for (MOIP)}, i = 1, 2, . . . , k [7]. Then, for each y ∈ Max(Y), yN ≦ y ≦ yI .

Because Max(Y) is in general a set with more than one element, the notion of bounding has been

extended to sets. Fix a subset Y ⊆ Y. Ehrgott and Gandibleux [9] define an upper (resp. lower)

bound set U (resp. L) as a subset of Rk such that Y ⪯U (resp. L⪯ Y ). Note that this definition

of bound sets is not unique. For example, in [10], Ehrgott and Gandibleux use an alternative defi-

nition that imposes additional conditions on the sets L and U . However, in this paper, we follow

[9] and define bound sets through “⪯”.

In [1], the authors solve a sequence of scalarized problems to obtain an upper bound set. Their

approach uses the fact that the nondominated set of the convex hull of the supported nondominated

points of (MOIP) is an upper bound set for Y. Moreover, because the scalarization of a relaxation is

a relaxation of the scalarization, this approach can be extended to problems for which the supported

efficient solutions are difficult to compute [10]. This technique has further been adapted to specific

problems by leveraging the problem features [4, 35, 36]. Alternatively, bound sets may be derived

via search space decomposition, which uses local information based on regions of the search space

[3, 6]. Klamroth et al. [30] compute bound sets using single-objective duality applied to ε-constraint

scalarizations [20] of the MOIP.

In the subsequent sections, we provide several bounds on the nondominated points of MOIPs

through relaxations and multiobjective dual problems.

3 Relaxations for Multiobjective Integer Programs

A k-objective maximization problem is a relaxation of (MOIP) if its feasible region contains the

feasible region of (MOIP), and its nondominated set is an upper bound set for Max(Y). In this

section, we first review the continuous and convex hull relaxations, and then present Lagrangian

relaxation for MOIPs.

3.1 The MOLP Relaxation

The continuous relaxation of (MOIP) is obtained by dropping the integrality constraints, which

yields the following MOLP.

max Cx s.t. Ax ≦ b, x ∈ Rn
≧. (MOLP)

In recent years, the MOLP relaxation has been used in several search-based methods for solving
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MOIPs [12, 29, 38, 47]. The feasible region of (MOLP) clearly contains the feasible region of

(MOIP). Proposition 5 shows that its nondominated set provides an upper bound for Max(YMOIP)
1,

so that (MOLP) is a relaxation of (MOIP); the proof is provided in Appendix B.

Proposition 5. If YMOLP is the set of feasible objective values of (MOLP), then Max(YMOIP)⪯Max(YMOLP).

3.2 The Convex Hull Relaxation

The convex hull relaxation of (MOIP) is defined as

max Cx s.t. x ∈ conv
({

x ∈ Zn
≧ | Ax ≦ b

})
. (CH)

Again, the feasible region of (CH) clearly contains the feasible region of (MOIP), and Proposition

6 asserts that its nondominated set provides an upper bound for Max(YMOIP). Thus, (CH) is a

relaxation of (MOIP). The convex hull relaxation has been widely used in solution algorithms for

MOIPs [10, 39, 41, 44]. We include some relevant results here; proofs are available in Appendix B.

Proposition 6. If YCH is the set of feasible objective values of (CH), then Max(YMOIP)⪯Max(YCH).

Remark 3. Because XCH ⊆ XMOLP, the convex hull relaxation of an MOIP is tighter than its

continuous relaxation. That is, Max(YCH)⪯Max(YMOLP).

The inequality in Proposition 6 does not necessarily hold with equality. In the subsequent

results, we explore connections between efficient solutions of (CH) and (MOIP).

Proposition 7. Let x∗ be an efficient solution of (CH). Then, x∗ is an efficient solution of

(MOIP) if and only if x∗ is integral.

Proposition 8. If (CH) has efficient solutions, then it must have an integral efficient solution.

Propositions 7 and 8 imply that solving (CH) returns at least one efficient solution of (MOIP).

Solutions to an MOIP obtained via its convex hull relaxation are further characterized as supported

solutions in Proposition 9.

Proposition 9 ([8, 42]). Let x∗ be an efficient solution of (MOIP). Then, x∗ is a supported

solution if and only if it is an efficient solution of (CH).

1Because we consider multiple optimization problems in this section, we use XP and YP to denote the feasible
region and set of feasible objective values for problem (P), respectively.
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In contrast to single-objective IPs, where every optimal solution to the IP is also optimal for its

convex hull relaxation, (MOIP) may have efficient solutions that are not efficient for (CH). This is

because the images of unsupported solutions do not lie on the nondominated frontier of conv(Y).

3.3 Lagrangian Relaxation for MOIPs

In this section, we extend Lagrangian relaxation to MOIPs. Suppose the constraint matrix A

is comprised of two sub-matrices A1 ∈ Rm1×n corresponding to “complicating” constraints, and

A2 ∈ R(m−m1)×n corresponding to “simple” constraints. Let b1 and b2 be the corresponding sub-

vectors of the constraint right-hand-side b. As in the single-objective case, we only dualize the

complicating constraints. Given a matrix of multipliers Λ ∈ Rk×m1

≧ , the Lagrangian relaxation of

(MOIP) is the following multiobjective optimization problem.

max Cx+ Λ(b1 −A1x)

s.t. x ∈ Q = {x ∈ Zn
≧ | A2x ≦ b2}.

(LR(Λ))

If x is feasible to (MOIP), then it is feasible to (LR(Λ)) as well. Therefore, (LR(Λ)) is a relaxation of

(MOIP) provided its nondominated set yields an upper bound for Max(YMOIP). This is established

in Proposition 10.

Proposition 10. For Λ ∈ Rk×m1

≧ , let YLR(Λ) be the set of feasible objective values of (LR(Λ)).

Then, Max(YMOIP)⪯Max(YLR(Λ)).

Proof. If (MOIP) is infeasible, then Max(YMOIP) = −M∞ and the result follows trivially. Next, if

x ∈ X , then x is feasible to (LR(Λ)) and Cx ≦ Cx+Λ(b1−A1x). So, if (MOIP) is unbounded above,

then so is (LR(Λ)) and the result holds. Finally, suppose (MOIP) is feasible and bounded and let

y∗ = Cx∗ ∈ Max(YMOIP). Then x∗ is feasible for (LR(Λ)) as well. If (LR(Λ)) is unbounded, then

the result holds. Otherwise, there exists ŷ ∈ Max(YLR(Λ)) such that ŷ ≧ Cx∗+Λ(b1−A1x∗) ≧ Cx∗.

On the other hand, suppose there is ỹ ∈ Max(YLR(Λ)) such that ỹ ≤ y∗. This implies ỹ ≤ ŷ, which

contradicts the nondominance of ỹ for (LR(Λ)). Thus, Max(YMOIP)⪯Max(YLR(Λ)).

Remark 4. We noted in Remark 3 that Max(YCH)⪯Max(YMOLP) for any MOIP. In general,

there is no such relationship between Max(YLR(Λ)) and either Max(YCH) or Max(YMOLP). This is

illustrated in Example 1.
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Example 1. Consider the MOIP

max

 1 −1
2

−1
2 1

x1
x2

 s.t x1 + x2 ≦
3

2
, x1, x2 ∈ {0, 1}.

For the Lagrangian relaxations, we dualize the linear constraint. Then, for each Λ = (λ1, λ2)
⊤ ≧

0, the set of feasible objective values for the Lagrangian relaxation is

YLR(Λ) =


3

2λ1

3
2λ2

 ,

 1 + 1
2λ1

−1
2 + 1

2λ2

 ,

−1
2 + 1

2λ1

1 + 1
2λ2

 ,

1
2 − 1

2λ1

1
2 − 1

2λ2

 .

In particular, the points (1,−1
2)

⊤ and (−1
2 , 1)

⊤ are feasible objective values for the Lagrangian

relaxation with Λ = (0, 0)⊤, and correspond to the supported efficient solutions (1, 0)⊤ and (0, 1)⊤

of the MOIP. This shows that the Lagrangian relaxation can be tight at some points in Max(YMOIP).

Next, if Λ = (0, 14 + ϵ)⊤ for small ϵ > 0,

Max(YLR(Λ)) =


 0

3
8 + 3

2ϵ

 ,

 1

−3
8 + 1

2ϵ

 ,

 −1
2

9
8 + 1

2ϵ

 ,

 1
2

3
8 − 1

2ϵ

 .

The relaxations are illustrated in Figure 1, which depicts Max(YMOIP), Max(YCH), and Max(YMOLP),

and the nondominated sets Max(YLR((0,0)⊤)) and Max(YLR((0,1/4+ϵ)⊤)) corresponding to Lagrangian

relaxations. In this case, there is a subset

S =
{(

− 1

2
, 1
)⊤

,
(
0,

3

8
+

3ϵ

2

)⊤
,
(
1,−1

2

)⊤}
= Min

(
Max(YLR((0,0)⊤))

⋃
Max(YLR((0,1/4+ϵ)⊤))

)
,

such that Max(YMOIP)⪯ S⪯Max(YCH)⪯Max(YMOLP), and none of the inequalities holds with

equality.

Example 1 demonstrates that there are problems for which Lagrangian relaxations can provide

strictly tighter upper bounds on the nondominated set of (MOIP) than the convex hull relaxation.
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(a) Feasible Regions
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Max(YCH)

Max(YLR(0,0))

Max(YLR(0,1/4+ϵ))

(b) Objective Values

Figure 1: Feasible regions and nondominated sets for the MOIP in Example 1 and its continuous,
convex hull, and Lagrangian relaxations. For this example, a subset of Lagrangian upper bounds
outperforms both the continuous and convex hull relaxations.

4 Lagrangian Duality for Multiobjective Integer Programs

In the previous section, we showed that for any nonnegative matrix Λ, the nondominated set of

the Lagrangian relaxation provides an upper bound set for (MOIP). Moreover, in Example 1, we

found that at unsupported solutions, an appropriate choice of Λ may yield a bound that is tighter

than the convex hull relaxation. This motivates a strategy where we search for the “best” among

all the upper bounds obtained via Lagrangian relaxation. To this end, we consider the set

YLD =
⋃

Λ∈Rk×m1
≧

Max(YLR(Λ)).

Thus, YLD is a subset of Rk comprised of the nondominated points of all possible Lagrangian

relaxations of (MOIP). Then, a natural approach to finding the best bounds due to the Lagrangian

relaxations is to consider the elements of YLD that are nondominated from below. Therefore, we

define the Lagrangian dual of (MOIP) as

Min(YLD) = Min

( ⋃
Λ≧0

Max(YLR(Λ))

)
. (LD)
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4.1 Geometry of the Set of Lagrangian Dual Feasible Values

Before we establish properties of the Lagrangian dual (LD), we first analyze its set of feasible

objectives YLD. Because YLD is an uncountable union of closed sets in Rk, it is not guaranteed

to be closed (or open). This is illustrated in Example 1, where we analytically derive the set

Max(YLR(Λ)) for all Λ ≧ 0 and use it to obtain a complete description of YLD. In general, however,

an explicit description of YLD may be difficult to derive.

Remark 5. The set YLD may be non-convex, disconnected, and neither open nor closed; this is

illustrated in Example 1 and Figure 2.

Example 1. Consider the MOIP

max

 1 −1
2

−1
2 1

x1
x2

 s.t. x1 + x2 ≦ 1, x1, x2 ∈ {0, 1}.

As in Example (1), we dualize the linear constraints. For a fixed Λ, this yields the following

Lagrangian relaxation.

max

 1 −1
2

−1
2 1

x1
x2

+

λ1

λ2

1−
[
1 1

]x1
x2

 s.t. x1, x2 ∈ {0, 1}. (6)

For each Λ, let YLR(Λ) be the set of feasible objective values of (6). Enumerating the feasible

objective values, we have

YLR(Λ) =

{
(λ1, λ2)

⊤,
(
1,−1

2

)⊤
,
(
− 1

2
, 1
)⊤

,
(1
2
− λ1,

1

2
− λ2

)⊤}
.

Then, the nondominated points of (6) are given by Max(YLR(Λ)). Considering various sub-cases,

13



we derive the following description of Max(YLR(Λ)).

Max(YLR(Λ))=



{(λ1,λ2)}, λ1,λ2 ≥ 1,

{(λ1,λ2),(−1
2,1)}, λ1 ≥ 1,0 ≤ λ2 < 1,

{(λ1,λ2),(1,−1
2)}, 0 ≤ λ1 < 1,λ2 ≥ 1,

{(λ1,λ2),(−1
2,1),(1,−

1
2)},

1
4 ≤ λ1,λ2 < 1,

{(−1
2,1),(1,−

1
2),(

1
2−λ1,

1
2−λ2)}, 0 ≤ λ1,λ2 <

1
4,

{(λ1,λ2),(−1
2,1),(1,−

1
2),(

1
2−λ1,

1
2−λ2)}, 0 ≤ λ1 <

1
4,
1
4 ≤ λ2 < 1,

{(λ1,λ2),(−1
2,1),(1,−

1
2),(

1
2−λ1,

1
2−λ2)}, 1

4 ≤ λ1 < 1,0 ≤ λ2 <
1
4.

The set YLD is plotted in Figure 2.

We first show that YLD is not open. For Λ = (0, 0)⊤, we have (1,−1
2)

⊤ ∈ Max(YLR(Λ)) ⊆ YLD.

Consider an arbitrary ϵ > 0 and suppose (1−ϵ,−1
2−ϵ)⊤ ∈ YLD. Then, there exists Λ ≧ 0 such that

(1− ϵ,−1
2 − ϵ)⊤ is a nondominated element of the set YLR(Λ). However, (1− ϵ,−1

2 − ϵ)⊤ ≤ (1,−1
2)

⊤

for any such Λ, which is a contradiction. Thus, for each ϵ > 0, the ball of radius ϵ
√
2 centered at

(1,−1
2)

⊤ is not contained in YLD, so YLD is not open.

Next we show that YLD is not closed either. For this, we show that (14 , 0)
⊤ is a limit point of

YLD that is not contained in YLD. For all 0 < ϵ < 1
4 , setting λ1 =

1
4 + ϵ and λ2 = 0 gives

Max(YLR((1/4+ϵ,0)⊤)) =

{(1
4
+ ϵ, 0

)⊤
,
(
1,−1

2

)⊤
,
(
− 1

2
, 1
)⊤

,
(1
4
− ϵ,

1

2

)⊤}
.

Thus, for all ϵ small enough, (14 + ϵ, 0)⊤ is an element of YLD. It follows that (14 , 0)
⊤ is a

limit point of YLD. However, for (14 , 0)
⊤ to be a feasible objective value to LR(Λ), we must have

Λ = (14 , 0)
⊤ or Λ = (14 ,

1
2)

⊤. In either case,

Max(YLR(Λ)) =

{(
1,−1

2

)⊤
,
(
− 1

2
, 1
)⊤

,
(1
4
,
1

2

)⊤}
.

Hence, YLD has an unattained limit point, and YLD is not closed.

Because YLD is not guaranteed to be closed, one possible avenue is to define the Lagrangian

dual via the closure of YLD, denoted by cl(YLD). However, this may not be fruitful because points

in Min(cl(YLD)) do not necessarily provide upper bounds on Max(YMOIP). To see this in Example

1, consider the point (14 ,−
1
2)

⊤ that lies on the boundary of cl(YLD) but is not contained in YLD,
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Figure 2: The set YLD comprising the nondominated points of Lagrangian relaxations of the MOIP
in Example 1. YLD is non-convex, disconnected, and neither closed nor open. Moreover, the limit
point of YLD at (14 ,−

1
2)

⊤ is dominated by the primal nondominated point (1,−1
2)

⊤.

and is dominated by the primal nondominated point (1,−1
2)

⊤.

This breakdown at unattained limit points of YLD can occur even for more structured problems.

For example, consider the primal problem

max


x1
x2

 ∣∣∣ x1 + x2 ≤ 2, x1, x2 ∈ {0, 1}

 .

It has a unique efficient solution at (1, 1)⊤, but dualizing the constraints x1 ≤ 1 and x2 ≤ 1 and

taking Λϵ =

2 2

0 1− ϵ

 yields yϵ =

 0

1 + ϵ

 ∈ Max(YLR(Λϵ)) for small ϵ > 0. However, the limit

point (0, 1)⊤ is dominated by (1, 1)⊤.

Owing to the geometry of YLD, we note that points in YLD may provide better bounds than

Min(YLD). For instance, in Example 1, (14 ,
1
4)

⊤ is the only upper bound in Min(YLD) on the

nondominated point (0, 0)⊤. However, points (14 + ϵ, 0)⊤ and (0, 14 + ϵ)⊤ obtained via Lagrangian

relaxation provide tighter upper bounds (for small ϵ). These observations suggest that considering

(a finite set of) Lagrangian relaxations may yield a better upper bound set than one obtained by

restricting our attention to Min(YLD). A numerical illustration of the quality of (an approximation

to) Min(YLD) as an upper bound set is given in Section 4.4. Note that any approximation to YLD

that considers finitely many values of Λ will result in a closed set that is bounded below, so that

its nondominated set is guaranteed to be nonempty.

While it may be difficult to obtain an explicit description of YLD, we can approximate it through

its relationship with the set YMOIP. Proposition 11 shows that for any y ∈ YMOIP, cl(YLD) is

15
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Figure 3: The set YLD for the MOIP in Example 1 as well as the approximation of its closure
given by Proposition 11. Elements of cl(YLD) are weakly dominated by elements of Max(YMOIP).
However, for every y ∈ YMOIP and z ∈ cl(YLD), there is an objective i for which yi ≦ zi.

contained in the union of the half-spaces {z ∈ Rk | zi ≥ yi}, i = 1, . . . , k.

Proposition 11. If z ∈ cl(YLD), then for each y ∈ YMOIP, zi ≥ yi for some i. That is, cl(YLD) ⊆⋂
y∈YMOIP

k⋃
i=1

{z ∈ Rk | zi ≥ yi}.

Proof. Consider a fixed y ∈ YMOIP and z ∈ YLD. By Proposition 10, there exists i ∈ {1, . . . , k}

for which zi ≥ yi. That is, YLD ⊆ {z ∈ Rk | zi ≥ yi} for some i = 1, . . . , k. As y ∈ YMOIP was

arbitrary, we have YLD ⊆ ∩y∈YMOIP
∪k
i=1 {z ∈ Rk | zi ≥ yi}.

To see that the containment extends to cl(YLD), note that for each y ∈ Y,
⋃k

i=1{z ∈ Rk | zi ≥ yi}

is a finite union of closed sets and is therefore closed. Then,
⋂

y∈YMOIP

⋃k
i=1{z ∈ Rk | zi ≥ yi} is

also closed so that YLD ⊆ cl(YLD) ⊆
⋂

y∈YMOIP

⋃k
i=1{z ∈ Rk | zi ≥ yi}.

Figure 3 illustrates the superset described in Proposition 11 on Example 1. Some limit points

of YLD are dominated by primal nondominated points. Nonetheless, every element of cl(YLD) has

at least one component that exceeds the corresponding objective value of a primal feasible solution.

4.2 Properties of the Lagrangian dual

We now proceed to establish properties of the Lagrangian dual (LD).

Corollary 1 (Weak Duality for (LD)). If x is feasible to (MOIP) and Λ ∈ Rk×m1, then {Cx}⪯Max(YLR(Λ)).

Proof. By Proposition 10, we have {Cx}⪯Max(YMOIP)⪯Max(YLR(Λ)).
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Note that Corollary 1 does not imply Max(YMOIP)⪯Min(YLD). As discussed in Remark 2, for

S, T ⊆ Rk with S⪯ T , we do not necessarily have S⪯Min(T ). We can only assert that elements

of Max(YMOIP) do not dominate elements of Min(YLD).

Theorem 1 states that the optimal value of the Lagrangian dual of an IP can be obtained

by solving an LP. An analogous result does not hold for the multiobjective problem. That is,

the Lagrangian dual of an MOIP cannot be posed as an MOLP in general. This is illustrated in

Example 1. The set Min(YLD) consists of three isolated points which can never be obtained from

a single MOLP because the nondominated set of an MOLP is connected. Nonetheless, Theorem 4

uses an MOLP to derive an upper bound on the dual nondominated points. Recall that if A1 and

A2 are the sub-matrices of A corresponding to the complicating and simple constraints respectively,

then Q = {x ∈ Zn
≧ | A2x ≦ b2}.

Theorem 4. Let YLDLP be the set of feasible objective values of the MOLP

max {Cx | A1x ≦ b1, x ∈ conv(Q)}. (7)

Then, Min(YLD)⪯Max(YLDLP).

Proof. Because conv(Q) is a polyhedron, there is a matrix B and a vector d such that conv(Q) =

{x ∈ Rn
≧ | Bx ≦ d}. Strong Lagrangian duality for MOLPs (Lemma 4) implies that

Max(YLDLP) = max {Cx | A1x ≦ b1, x ∈ conv(Q)}

= min
Λ,Γ≧0

max
x∈Rn

(Cx+ Λ(b1 −A1x) + Γ(d−Bx))

⪰min
Λ≧0

max
x∈conv(Q)

(Cx+ Λ(b1 −A1x)) (8)

⪰min
Λ≧0

max
x∈Q

(Cx+ Λ(b1 −A1x)) (9)

⪰Min (YLD).

The inequality in (8) holds because for a fixed Λ ≧ 0 and for every Γ ≧ 0, x ∈ conv(Q), we have

Cx+ Λ(b1 −A1x) + Γ(d−Bx) ≧ Cx+ Λ(b1 −A1x). In particular,

max
x∈Rn

{Cx+ Λ(b1 −A1x) + Γ(d−Bx)}⪰max{Cx+ Λ(b1 −A1x) | Bx ≦ d}.

Further, (9) holds because for any Λ ≧ 0, if x ∈ Q is an efficient solution for max
x∈Q

(Cx+Λ(b1−A1x)),
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then it is either also an efficient solution for max
x∈conv(Q)

(Cx + Λ(b1 − A1x)), or an interior point of

conv(Q). In the latter case, {Cx + Λ(b1 − A1)x}⪯ max
x∈conv(Q)

(Cx + Λ(b1 − A1x)). Thus, for each

Λ ≧ 0,

max
x∈conv(Q)

(Cx+ Λ(b1 −A1x)) ⪰ max
x∈Q

(Cx+ Λ(b1 −A1x)).

Corollary 2 establishes that the Lagrangian dual provides a tighter upper bound than that given

by the continuous relaxation (MOLP).

Corollary 2. Let YMOLP be the set of feasible objective values for (MOLP). Then, Min(YLD)⪯Max(YMOLP).

Proof. The feasible region of (MOLP) contains the feasible region of (7). Therefore, Max(YMOLP)⪰Max(YLDLP)⪰Min(YLD).

Corollary 2 implies that if x∗ and x̃ are efficient solutions to (MOIP) and its MOLP relaxation

respectively and y ∈ Min(YLD) is such that Cx∗, Cx̃, and y are all comparable, then Cx∗ ≦ y ≦ Cx̃.

Example 1 illustrates that both the inequalities can be strict.

Theorem 4 gives a loose upper bound on the Lagrangian dual. In the remainder of this section,

we investigate relationships that hold with equality. To do so, we solve a scalarized problem and

apply results from single-objective duality.

Theorem 5. For all µ ∈ Rk
>,

min
Λ≧0

max
x∈Q

µ⊤Cx+ µ⊤Λ(b1 −A1x) = max
x∈conv(Q)

{µ⊤Cx | A1x ≦ b1}.

Proof. Consider the single-objective IP

max µ⊤Cx s.t. A1x ≦ b1, x ∈ Q. (10)

The Lagrangian dual of (10) is

min
u∈Rm

≧

max
x∈Q

µ⊤Cx+ u⊤(b1 −A1x). (11)

For any u ∈ Rm1

≧ , we can write u⊤ = µ⊤Λ for some Λ ∈ Rk×m1

≧ . Conversely, if µ ∈ Rk
> and

18



Λ ∈ Rk×m1

≧ , then (µ⊤Λ)⊤ ∈ Rm1

≧ . Thus, we can rewrite (11) as

min
Λ∈Rk×m1

≧

max
x∈Q

µ⊤Cx+ µ⊤Λ(b1 −A1x). (12)

Moreover, Theorem 1 implies that the Lagrangian dual (11) to (10) has the same optimal value

as the LP

max µ⊤Cx s.t. A1x ≦ b1, x ∈ conv(Q). (13)

Therefore,

min
Λ≧0

max
x∈Q

µ⊤Cx+ µ⊤Λ(b1 −A1x) = max
x∈conv(Q)

{
µ⊤Cx | A1x ≦ b1

}
.

Thus, single-objective LPs can solve the scalarized dual problem.

4.3 Strong Lagrangian Duality

A dual problem to (MOIP) is strong at a solution x if there exists a point y ∈ Min(YLD) such that

y = Cx. In this subsection, we seek conditions on (MOIP) under which the Lagrangian dual is

strong. Theorem 4 used an MOLP to prescribe an upper bound for Min(YLD). Theorem 6 uses

this MOLP to derive a sufficient condition for strong duality.

Theorem 6. Let x∗ be an efficient solution of (MOIP) such that Cx∗ ≦ y for some y ∈ Min(YLD).

The Lagrangian dual (LD) is strong at x∗ if there exists a vector α ∈ Rk
> such that

α⊤C(x∗ − x) ≦ 0 for all x ∈ conv(Q) ∩ {x ∈ Rn | A1x ≦ b1}. (14)

Proof. Condition (14) holds if and only if x∗ is an efficient solution to the MOLP max{Cx | A1 ≦

b1, x ∈ conv(Q)} [34, Theorem 4.2.6(i)]. Moreover, Theorem 4 implies that Min(YLD)⪯max{Cx |A1 ≦

b1, x ∈ conv(Q)} so that if y ∈ Min(YLD) is comparable to Cx∗, then y ≦ Cx∗. Corollary 1 then

implies that y ̸≤ Cx∗. Thus, y = Cx∗.

Restricting our attention to supported solutions, we next derive conditions for strong Lagrangian

duality that are independent of the objective function. These results are analogous to the single-

objective case (see Theorem 2).

19



Theorem 7. If the Lagrangian dual is strong at supported efficient solutions for all matrices C,

then

conv(Q ∩ {x ∈ Rn | A1x ≦ b1}) = conv(Q) ∩ {x ∈ Rn | A1x ≦ b1}. (15)

Proof. By Theorem 2, it suffices to show that under the hypothesis of Theorem 7, strong Lagrangian

duality holds for any single-objective IP with the same feasible region as (MOIP), i.e, Q ∩ {x ∈

Rn | A1x ≦ b1}.

Let c ∈ Rn be an arbitrary cost vector and consider the cost matrix C =
[
c 0 . . . 0

]⊤
∈

Rk×n. Set µ ∈ Rk
> to be the vector of all ones so that µ⊤C = c⊤. Let x∗ be a supported efficient

solution to (MOIP) with supporting vector µ. Then x∗ is an efficient solution to the single-objective

IP max{c⊤x | A1x ≦ b1, x ∈ Q}.

By the hypothesis, there exists y ∈ Min(YLD) such that Cx∗ = y. So, y = Cx̂ + Λ̂(b1 − A1x̂)

for some x̂ ∈ Q and Λ̂ ≧ 0. Then,

c⊤x∗ = µ⊤Cx∗ = µ⊤y = µ⊤Cx̂+ µ⊤Λ̂(b1 −A1x̂) = c⊤x̂+ λ̂(b1 −A1x̂),

where λ̂ = µ⊤Λ̂ ∈ Rm1

≧ . Thus, the Lagrangian dual of the IP max{c⊤x | A1x ≦ b1, x ∈ Q} is strong.

Because c was arbitrary, Theorem 2 implies that (15) holds.

An example to illustrate Theorem 7 is provided in Appendix C, where we present an MOIP

whose feasible region does not satisfy condition (15), and show that the Lagrangian dual for this

problem is not strong at a supported solution. A modified converse to Theorem 7 is derived in

Theorem 8, but we first show that optimal objective values for the scalarized dual problem lift to

feasible objective values for the multiobjective dual.

Lemma 5. For any µ ∈ Rk
>, let

w = min
Λ∈Rk×m1

≧

max
x∈Q

µ⊤Cx+ µ⊤Λ(b1 −A1x),

be the optimal objective value for the scalarized dual problem. Then, there exists y ∈ YLD such that

µ⊤y = w.

Proof. Fix µ ∈ Rk
>. Let w = min

Λ∈Rk×m1
≧

max
x∈Q

µ⊤Cx + µ⊤Λ(b1 − A1x). Then, there exists Λ∗ ∈

Rk×m1

≧ and x∗ ∈ Q such that x∗ is optimal for the inner maximization and w = µ⊤y∗ where
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y∗ = Cx∗ + Λ∗(b1 − A1x∗). Because x∗ is optimal to the scalarized problem, it is a supported

efficient solution for the relaxation LR(Λ∗). Hence, y∗ ∈ Max(YLR(Λ∗)) ⊆ YLD.

Theorem 8. Suppose (15) holds. Given an objective matrix C and a supporting vector µ ∈ Rk
>,

let x∗ be a corresponding supported solution to (MOIP). If there exists y ∈ Min(YLD) that is

comparable to Cx∗, then the Lagrangian dual is strong at x∗.

Proof. Let µ ∈ Rk
> and C ∈ Rk×m be arbitrary. If (15) holds, then we have by Theorem 2 that

max
x∈Q

{µ⊤Cx | A1x ≦ b1} = min
Λ≧0

max
x∈Q

µ⊤Cx+ µ⊤Λ(b1 −A1x).

Let x∗ be an optimal solution to the scalarized problem

max
x∈Q

{µ⊤Cx | A1x ≦ b1},

such that there exists ỹ ∈ Min(YLD) that is comparable with Cx∗. Corollary 1 implies that Cx∗ ≦ ỹ.

Lemma 5 implies that there is a y ∈ YLD such that µ⊤Cx∗ = µ⊤y. But then, because

µ⊤y = min
Λ≧0

max
x∈Q

µ⊤Cx+ y⊤Λ(b1 −A1x) = max
x∈conv(Q)

{µ⊤Cx | A1x ≦ b1},

and {ỹ}⪯maxx∈conv(Q){Cx | A1x ≦ b1} by Theorem 4, it follows that

µ⊤ỹ ≦ max
x∈conv(Q)

{µ⊤Cx | A1x ≦ b1}.

Then,

µ⊤y = µ⊤Cx∗ ≦ µ⊤ỹ ≦ µ⊤y.

This implies that µ⊤Cx∗ = µ⊤ỹ. So, µ⊤(ỹ −Cx∗) = 0 and ỹ −Cx∗ has all nonnegative entries, so

that ỹ − Cx∗ = 0. Thus, strong duality holds at x∗.

In the single-objective case, every efficient solution is a supported solution and the extended

real line is totally ordered. Then, Theorem 8 is the converse of Theorem 7, and together, they

coincide with Theorem 2.

Remark 6. Theorems 7 and 8 do not address the strength of the Lagrangian dual at unsupported

solutions. Example 2 illustrates that even if the feasible region satisfies condition (15) and the
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Lagrangian dual is strong at supported solutions, it may not be strong at an unsupported solution.

Example 2. We revisit the MOIP from Example 1. For this problem, we have Max(YMOIP)

= {(1,−1
2)

⊤, (0, 0)⊤, (−1
2 , 1)

⊤}. For µ = (µ1, µ2)
⊤ ∈ R2

>, the scalarized IP is

max
(
µ1 −

1

2
µ2

)
x1 +

(
µ2 −

1

2
µ1

)
x2

s.t. x1 + x2 ≦ 1,

x1, x2 ∈ {0, 1}.

The optimal solution for this IP is (1, 0)⊤ if µ1 ≥ µ2 and (0, 1)⊤ for µ2 ≥ µ1. Thus, (1, 0)⊤ and

(0, 1)⊤ are supported efficient solutions to the primal problem. Moreover, Example 1 shows that

their corresponding objective vectors (1,−1
2)

⊤ and (−1
2 , 1)

⊤ are feasible objective values for the

Lagrangian dual problem, so that strong duality holds for the supported efficient solutions.

On the other hand, (0, 0)⊤ is not a feasible objective value to the dual problem, so that strong

duality does not hold for the unsupported solution (0, 0)⊤, despite the fact that

conv
(
{0, 1}2 ∩ {x ∈ Rn|x1 + x2 ≦ 1}

)
=conv

(
{0, 1}2

)
∩ {x ∈ Rn|x1 + x2 ≦ 1}.

Theorems 7 and 8 analyze strong duality at the supported solutions of (MOIP). We now

consider the unsupported solutions. Theorem 9 derives a sufficient condition under which (LD) is

not strong at unsupported solutions.

Theorem 9. Let x be an unsupported efficient solution to (MOIP). Suppose there exists Λ∗ ∈

Rk×m1

≧ and a supported solution x∗ to (LR(Λ)) such that

i) Cx ≤ Cx∗ + Λ∗(b1 −A1x∗), and

ii) for all Λ ∈ Rk×m1

≧ , {v ∈ Max(YLR(Λ)) | v ≦ Cx∗ +Λ∗(b1 −A1x∗)} is either empty or consists

only of supported objective values.

Then, (LD) is not strong at x.

Proof. Note that if y ∈ Min(YLD) satisfies y = Cx, then y ∈ Max(YLR(Λ)) ∩ {v ∈ Rk | v ≦

Cx∗ + Λ∗(b1 − A1x∗)} for some Λ ∈ Rk×m1

≧ . By hypothesis, y is a supported nondominated point
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to (LR(Λ)) so that there exists a vector µ ∈ Rk
> such that

µ⊤y = max
ξ∈Q

µ⊤Cξ + µ⊤Λ(b1 −A1ξ).

Then, because y is an optimal objective value of the single-objective Lagrangian relaxation of

max {µ⊤Cξ | ξ ∈ X} we have by Proposition 3

max
ξ∈X

µ⊤Cξ ≤ µ⊤y.

On the other hand, if x is an unsupported efficient solution to (MOIP), then µ⊤Cx < max
ξ∈X

µ⊤Cξ.

So, Cx ̸= y.

4.4 Numerical Illustration

As discussed in Section 2.4, bound sets are a key component of search-based algorithms for solving

MOIPs. In this section, we derive an upper bound set that approximates the Lagrangian dual

and test its performance on two biobjective MOIPs. We compare this set with the upper bound

set derived by Ehrgott and Gandibleux in [10]2, which amounts to the convex hull of supported

nondominated points. As such, we present computational evidence that a Lagrangian dual-based

approach can provide a tighter upper bound than that obtained via the convex hull relaxation.

Remark 4 noted that the bound sets due to Lagrangian and convex hull relaxations are mutually

incomparable in general, but this section illustrates that (an approximation of) the Lagrangian

dual may present a computational advantage.

We test the quality of the bound sets on 100 randomly generated instances of two classes of biob-

jective problems: a linear assignment problem, and a knapsack problem, each with one additional

randomly generated constraint that is subsequently dualized. The linear assignment problem con-

sists of 16 binary variables. Problem parameters are taken from a binary linear assignment problem

appearing in [46], included as an example file with the Julia-based MOIP solver vOptSolveGeneric

[14]. The knapsack problem has 20 binary variables; coefficients for the objectives and constraints

are generated randomly in each trial by sampling uniformly at random over the sets {1, . . . , 15}

and {1, . . . , 5} respectively. For both problems, coefficients for the one additional constraint are

randomly generated in each trial by sampling uniformly over {1, . . . , 5}. All computations were

2[10] presents a minimization problem, so the roles of upper and lower bound sets are reversed and accordingly
adapted here.
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Lagrangian Dual Convex Hull

Problem Mean d SD d # Strong Mean d SD d # Strong

Linear Assignment 3.930 0.587 59/100 4.801 0.956 9/100
Knapsack 5.869 1.980 3/100 6.384 1.803 9/100

Table 1: Mean and standard deviation (SD) of the metric d, as well as number of problem instances
(out of 100) where the upper bound sets are strong (#Strong), for bound sets computed by an
approximation of the Lagrangian dual and the convex hull of the supported nondominated points.

performed in Julia using the vOptSolve package [14, 15, 16] with the GLPK optimizer [37].

To approximate the Lagrangian dual problem, we consider a finite set of Lagrangian relaxations

parameterized by multipliers Λ ∈ M, constructed by dualizing the additional constraint for each

problem instance. The values of Λ inM are näıvely selected as equally spaced gridpoints in [0, 2.5]2.

The set M consists of 512 and 262 values of Λ for the linear assignment and knapsack problems

respectively. Then, U = Min
( ⋃

Λ∈M
Max

(
YLR(Λ)

) )
is an upper bound set that approximates the

Lagrangian bound set Min(YLD) defined in (LD). To determine the quality of this bound, we used

a scaled distance

d(L,U) =
1

γ
max
ℓ∈L

min
u∈U

∥u− ℓ∥2,

where L is a lower bound set consisting of local nadir points between supported solutions [10], and

γ is the average of ∥y∥2 for y ∈ L∪U . A smaller value of d corresponds to a better bound. The set

L is the collection of points of the form (min(y11, y
2
1),min(y12, y

2
2))

T where the pair (y1, y2) ranges

over adjacent supported solutions; it is computed as in [10].

We note that the metric d is a re-scaled version of the measure µ1 used in [10], which is sensitive

to outliers in the set L ∪ U . Because the set U derived from Lagrangian relaxations can contain

points far from the nondominated set of (MOIP) (as in Figure 4), this could lead to misleading

comparisons and spuriously improve the performance of U . Therefore, we choose the modified

scaling parameter γ which is less sensitive to far away points. We also report the number of

instances for which the upper bound is strong (i.e. Max(YMOIP) ⊆ U).

We compare the performance of U with Max(YCH) as computed in [10, Algorithm 1], which

recursively solves a sequence of scalarized problems to obtain the supported nondominated points

and their convex hull. Each single-objective problem is solved exactly—and not approximately as

proposed in [10]—to derive the exact convex hull relaxation. Again, we measure the quality of this

upper bound set using the measure d and the lower bound set L of local nadir points, and report

the number of instances for which the bound is tight.
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Figure 4: An example of upper bounds computed by an approximation of the Lagrangian dual and
the convex hull of the supported nondominated points, as well as a lower bound set derived from
the local nadir points of the supported efficient solutions. Note that the Lagrangian upper bound
is tight for this instance of the linear assignment problem, but not for the knapsack problem. Due
to the presence of unsupported solutions, the convex hull bound is not strong in either instance.

The results are summarized in Table 1. We find that for both problems, the Lagrangian dual

approximation outperforms the convex hull bound with respect to the metric d averaged across

the 100 trials. However, the extent of improvement is not uniform across the two problem classes.

Specifically, for the linear assignment problem, the standard deviation in d is notably smaller and

the Lagrangian dual provides tight bounds in a much larger fraction of trials. In contrast, for the

knapsack problem, the convex hull upper bound yields a lower standard deviation in d and provides

tight bounds more frequently than the Lagrangian dual. Examples of the bounds for each problem

are illustrated in Figure 4.

The above numerical experiments are a proof of concept rather than a detailed computational

study. The results are promising and point towards several avenues for future investigation. For

instance, our approach näıvely enumerates over a range of Lagrange multiplier matrices Λ, which

limits our ability to scale to larger problems. Future research could explore more sophisticated

techniques for searching over the space of multipliers. Additionally, in our experiment we use a

lower bound set derived from information from the convex hull relaxation of our problem, and the

question of similarly using information from the Lagrange relaxation/dual to derive a lower bound

set, remains open. Although the scope of our experiments is limited, the results are encouraging

and highlight the potential of the Lagrangian approach in deriving bound sets for MOIP solution
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methods.

5 Superadditive Duality for Multiobjective Integer Programs

In this section, we develop a multiobjective counterpart of the superadditive dual of an IP. For

β ∈ Rm, define X (β) = {x ∈ Zn
≧ | Ax ≦ β} as the feasible region of (MOIP) parameterized by the

right-hand-side β. We define the value function of an MOIP as

Z(β) = max Cx s.t. x ∈ X (β). (16)

Unlike the single-objective case, where the value function maps onto the extended real line, the

multiobjective value function Z is multi-valued in general, and maps to the nondominated set of

the MOIP. Moreover, the cardinality of the image set Z(β) is not known a priori. Therefore, the

first step towards developing a superadditive dual is to extend the definitions of monotonicity and

superadditivity to set-valued functions. Recall from (1) that E is the collection of nonempty subsets

of Rk whose elements are mutually incomparable, along with ±M∞.

Definition 5 (Nondecreasing Function). A function F : Rm → E is nondecreasing (with respect to

⪯) if for all β1 ≦ β2, F (β1)⪯ F (β2).

Definition 6 (Superadditive Function). A function F : Rm → E is superadditive (with respect to

⪯) if for all β1, β2, F (β1) + F (β2)⪯ F (β1 + β2).

Here, F (β1) + F (β2) denotes the Minkowski sum of the two sets, defined as F (β1) + F (β2) =

{z1 + z2 | z1 ∈ F (β1), z2 ∈ F (β2)}. If F : Rm → E is superadditive and nondecreasing with respect

to ⪯, then
∑ℓ

j=1 F (βj)⪯ F
(∑ℓ

j=1 βj

)
for any finite sum (by induction on ℓ). It follows that for

any positive integer κ, we must have κ · F (β)⪯ F (κ · β), where κ · F (β) is the Minkowski sum of κ

copies of F (β).

Proposition 12. The value function Z is nondecreasing and superadditive with respect to ⪯.

Proof. We first show that Z is nondecreasing. Let β1 ≦ β2. Then X (β1) ⊆ X (β2). Therefore if

Cx1 = z1 ∈ Z(β1), then there is a z2 ∈ Z(β2) such that z1 ≦ z2. Moreover, there is no z3 ∈ Z(β2)

with z3 ≤ z1, because that would imply z3 ≤ z1 ≦ z2 which contradicts the nondominance of z3 for

the MOIP with RHS β2.
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Next, we prove that Z is superadditive. If Cx1 = z1 ∈ Z(β1) and Cx2 = z2 ∈ Z(β2), then

x1 + x2 ∈ X (β1 + β2). Thus, there exists z3 ∈ Z(β1 + β2) such that z1 + z2 ≦ z3. Also, there is no

z4 ∈ Z(β1 + β2) such that z4 ≤ z1 + z2, because such a z4 would not be a nondominated point for

the MOIP with RHS β1 + β2.

Because the value function is set-valued, it is not immediate how to define an analog of single-

objective superadditive duality. We present two variants, both of which coincide with the standard

superadditive dual in the single-objective case.

5.1 Set-valued Superadditive Dual

Recall from Section 2 that the superadditive IP dual contains the constraints F (Aj) ≥ cj . Our first

formulation (SDP) generalizes this constraint to a set-valued counterpart. Consider the following

problem.

min F (b)

s.t. {Cj}⪯ F (Aj) for j = 1, . . . , n,

0 ∈ F (0),

F : Rm → E superadditive and nondecreasing.

(SDP)

Let F be the set of functions feasible to (SDP). Then, F (b) ∈ E for all F ∈ F . We interpret

the objective of (SDP) as finding the elements of the collection {F (b) | F ∈ F} ⊆ E that are

nondominated from below with respect to the set-ordering “⪯”. This objective is well-defined

because “⪯” defines a partial order on E . Proposition 13 establishes weak duality for (SDP).

Proposition 13 (Weak Duality for (SDP)). If x ∈ X (b) and F is feasible to (SDP), then

{Cx}⪯ F (b).

Proof. Let x ∈ X (b). As F is nondecreasing and Ax ≦ b, we have F (Ax)⪯ F (b). Now, consider

the set

S =

{ n∑
j=1

zjxj

∣∣∣zj ∈ F (Aj)

}
.

We claim that S⪯ F (b). Because xj is a nonnegative integer, we can express zjxj as
xj∑
i=1

zj . (If

xj = 0, the sum is empty and equal to 0 ∈ Rk.) Then,

S =

{ n∑
j=1

xj∑
i=1

zj

∣∣∣zj ∈ F (Aj)

}
⊆

n∑
j=1

xj∑
i=1

F (Aj) =

n∑
j=1

xjF (Aj).

27



Note that Ax =
n∑

j=1
Ajxj . Then, the superadditivity of F implies that

n∑
j=1

xjF (Aj)⪯ F (Ax).

By Lemma 2, S⪯ F (Ax). By transitivity of the order, we have S⪯ F (b). It follows by Lemma 3

that Max(S)⪯ F (b).

Next, we will show that {Cx}⪯Max(S). Because F (Aj)⪰{Cj} for all j = 1, . . . , n, there is a

zj ∈ F (Aj) such that Cj ≦ zj . Then, w =
n∑

j=1
zjxj ∈ S is such that Cx ≦ w. Therefore, there

exists w̃ ∈ Max(S) such that w̃ ≧ w ≧ Cx.

Further, suppose that zj ∈ F (Aj) are such that
∑n

j=1 zjxj ≤
∑n

j=1Cjxj . We have already

shown that there exists w̃ ∈ S such that Cx ≦ w̃. Therefore,

n∑
j=1

zjxj ≤
n∑

j=1

Cjxj = Cx ≦ w̃,

so that
∑n

j=1 zjxj ̸∈ Max(S). Thus, {Cx}⪯Max(S)⪯ F (b), which implies {Cx}⪯ F (b).

We say that the dual problem (SDP) is strong at an efficient solution x∗ of (MOIP) if there is

a function F feasible to (SDP) such that Cx∗ ∈ F (b). Theorems 10 and 11 guarantee that (SDP)

is strong at the supported primal solutions.

Theorem 10 (Strong Duality for (SDP)). If x∗ is a supported efficient solution for (MOIP), then

there is a function F feasible to (SDP) such that Cx∗ ∈ F (b).

Proof. Let x∗ be a supported efficient solution to (MOIP) and let µ ∈ Rk
> be a supporting vector

such that x∗ is optimal to the scalarized problem

max µ⊤Cx s.t. Ax ≦ b, x ∈ Zn
≧.

Let z∗ = Cx∗. We need to show that there is a function F feasible for (SDP) such that z∗ ∈ F (b).

By strong superadditive duality for single-objective IPs (Theorem 3), there exists a nondecreasing

superadditive function fµ : Rm → R such that fµ(0) = 0, fµ(Aj) ≥ µ⊤Cj for all j, and fµ(b) =

µ⊤Cx∗ = µ⊤z∗. We use fµ to define a function Fµ : Rm → E as follows:

Fµ(v) = {w ∈ Rk | µ⊤w = fµ(v)}.

We first show that Fµ is well-defined. Let µ̂ = 1
∥µ∥2µ. Then, Fµ(v) ̸= ∅ for all v because

(fµ(v)µ̂) ∈ Fµ(v). Also, 0 ∈ Fµ(0) because fµ(0) = 0. For arbitrary v, let w1, w2 ∈ Fµ(v) with
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w1 ̸= w2. Then, w1 ̸≤ w2 and w1 ̸≥ w2 because µ⊤(w1 − w2) = 0. Thus, Fµ(v) ∈ E .

Next, we show that Fµ is feasible to (SDP). Let v1, v2 ∈ Rm, v1 ≦ v2. Then, fµ(v1) ≦ fµ(v2)

as fµ is nondecreasing. We need to show that Fµ(v1)⪯ Fµ(v2). Let w1 ∈ Fµ(v1). Define w2 =

w1 + (fµ(v2)− fµ(v1))µ̂ so that

µ⊤w2 = µ⊤ [w1+(fµ(v2)− fµ(v1))µ̂] = µ⊤w1 + (fµ(v2)− µ⊤w1)
µ⊤µ

∥µ∥2
= fµ(v2).

Thus, w2 ∈ Fµ(v2). Because µ̂ ∈ Rk
> and (fµ(v2)− fµ(v1)) ≧ 0, w1 ≦ w2.

Also, for any w3 ∈ Fµ(v2), µ
⊤w1 = fµ(v1) ≦ fµ(v2) = µ⊤w3, which implies that w1 ̸≥ w3.

Thus, Fµ(v1)⪯ Fµ(v2) and Fµ is nondecreasing.

Second, for any v1, v2 ∈ Rm, fµ(v1) + fµ(v2) ≦ fµ(v1 + v2) because f is superadditive. If

w1 ∈ Fµ(v1), w2 ∈ Fµ(v2), and w3 ∈ Fµ(v1 + v2), then µ⊤w3 ≧ µ⊤(w1 +w2) so that w3 ̸≤ w1 +w2.

Moreover, by choosing w3 = (w1+w2)+[fµ(v1 + v2)− fµ(v1)− fµ(v2)] µ̂, we have w3 ∈ Fµ(v1+v2)

with w3 ≧ w1 + w2. Thus, Fµ(v1) + Fµ(v2)⪯ Fµ(v1 + v2), and Fµ is superadditive.

Finally, note that fµ(Aj) ≧ µ⊤Cj . If w ∈ Fµ(Aj), then µ⊤w ≧ µ⊤Cj so that w ̸≤ Cj . Moreover,

for w = Cj + (fµ(Aj)− µ⊤Cj)µ̂, we have w ∈ Fµ(Aj) and w ≧ Cj . Thus, {Cj}⪯ Fµ(Aj).

Thus, Fµ is feasible to (SDP). Because µ⊤z∗ = fµ(b), z
∗ ∈ Fµ(b).

Theorem 10 does not address the behavior of (SDP) if the primal is infeasible. As in single-

objective IPs [49], the dual is unbounded in that case. The result is presented later in Corollary 4,

as the proof uses properties derived in Section 5.2.

Theorem 10 implies that for each primal supported solution x, there is a dual solution G feasible

to (SDP) such that G(b) contains Cx. However, the theorem makes no statement about the number

of feasible functions needed to obtain all such points. That is, Theorem 10 alone does not guarantee

the existence of a single function F ∗ feasible to (SDP) such that Cx∗ ∈ F ∗(b) for all supported

efficient solutions x∗ to MOIP. Theorem 11 shows that such a function always exists. To prove this,

we first establish that finitely many scalarizations suffice to recover all supported efficient solutions

of (MOIP).

Lemma 6. There exist scalarizing vectors µ1, µ2, . . . , µℓ ∈ Rk
> such that every supported efficient

solution x∗ of (MOIP) is an optimal solution of the scalarized problem

max µ⊤
i Cx s.t. Ax ≦ b, x ∈ Zn

+, (MOIPµi)
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for some i = 1, . . . , ℓ.

Proof. By Proposition 9, the supported efficient solutions of (MOIP) are precisely the integral

efficient solutions to (CH). Because (CH) is an MOLP, there are finitely many scalarizing vectors

µ1, µ2, . . . , µℓ ∈ Rk
> such that each efficient solution of (CH) is an optimal solution to the LP

max µ⊤
i Cx s.t. x ∈ conv(X ), (CHyi)

for some i = 1, . . . , ℓ [34, Corollary 4.3.3]. So, if x is a supported efficient solution of (MOIP), then

x is an integral optimal solution to (CHyi) for some i = 1, . . . , ℓ and therefore an optimal solution

to (MOIPµi).

Theorem 11. There exists a function F ∗ feasible to (SDP) such that if x∗ is a supported efficient

solution of (MOIP), then Cx∗ ∈ F ∗(b).

Proof. Lemma 6 implies that there are finitely many vectors µ1, µ2, . . . , µℓ ∈ Rk
> such that every

supported efficient solution of (MOIP) is an optimal solution to the scalarized IP (MOIPµi) for

some i = 1, . . . , ℓ.

For every i = 1, . . . ℓ, define µ̂i =
µi

∥µi∥2 . Then, there is a superadditive nondecreasing function

fµi : Rm → R such that fµi(Aj) ≥ µ⊤
i Cj for all j = 1, . . . , n, and µ⊤

i Cx∗ = fµi(b) for all x
∗ optimal

to (MOIPµi). For i = 1, . . . , ℓ, consider the functions Fµi : Rm → E given by

Fµi(v) = {w ∈ Rk | µ⊤
i w = fµi(v)}

As in the proof of Theorem 10, each Fµi(v) is feasible to (SDP). Define the set S(v) = ∪ℓ
i=1Fµi(v)

and consider the function

F ∗(v) = Min (S(v)) = Min
( ℓ⋃

i=1

Fµi(v)
)
.

We claim that F ∗ is feasible to (SDP). For each v, the set S(v) is a finite union of hyperplanes

in Rk. Therefore, either F ∗(v) = −M∞ or S(v) has points that are nondominated from below. In

either case, F ∗(v) ∈ E .

Next, we show that 0 ∈ F ∗(0). For each i = 1, . . . , ℓ, we have 0 ∈ Fµi(0) and there is no

z ∈ Fµi(0) with z ≤ 0 because Fµi(0) ∈ E . In particular, there are no elements of S(0) which are

dominated by 0. Thus, 0 is a nondominated point of S(0), that is, 0 ∈ F ∗(0).
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Because Fµi(Aj)⪰Cj for all i = 1, . . . ℓ, there is no z ∈ S(Aj) such that z ≤ Cj . In particular,

because F ∗(Aj) ⊆ S(Aj), there is no z ∈ F ∗(Aj) such that z ≤ Cj .

Next, we show that for every j, there is a z ∈ F ∗(Aj) such that z ≧ Cj . Consider Zj =

{z ∈ S(Aj) | Cj ≦ z}. Note that Zj ∩ Fµi(Aj) ̸= ∅ for all i, j because each Fµi is feasible to

(SDP). Let z ∈ Min(Zj), and we claim that z ∈ F ∗(Aj). Suppose if possible that there exists

w ∈ S(Aj) such that w ≤ z. Then there exists i ∈ {1, . . . , ℓ} such that w ∈ Fµi(Aj). Then,

z̃ = z+(fµi(Aj)−µ⊤
i z)µ̂i satisfies z̃ ∈ Fµi(Aj) and z ≦ z̃ because z ∈ Min(Zj) and z̃ is comparable

with z. Then, the following three statements hold: µ⊤
i z ≦ µ⊤

i z̃, µ
⊤
i w = µ⊤

i z̃, and µ⊤
i w < µ⊤

i z,

which is a contradiction. Thus, there is no such w, and we have z ∈ F ∗(Aj). So, {Cj}⪯ F ∗(Aj).

To see that F ∗(v) is nondecreasing, let v ≦ ṽ. Let w ∈ F ∗(v) and w̃ ∈ F ∗(ṽ), and suppose

without loss of generality that w̃ ∈ Fµ1(ṽ). Because Fµ1 is nondecreasing, z ̸≥ w̃ for all z ∈ Fµ1(v).

If w ∈ Fµi(v) for i ̸= 1, then

z = w +
(
fµ1(v)− µ⊤

1 w
)
µ̂1

is an element of Fµ1(v). If w ∈ F ∗(v), then w ≦ z because µ̂1 ∈ Rk
> and therefore w and z are

comparable. It follows that w̃ ̸≤ w because w ≦ z and w̃ ̸≤ z as z ∈ Fµ1(v).

We now show that if w ∈ F ∗(v), then there is a w̃ ∈ F ∗(ṽ) such that w̃ ≧ w. For each

i = 1, . . . , ℓ, define

w̃i = w +
(
fµi(ṽ)− µ⊤

i w
)
µ̂i,

and note that w̃i ∈ Fµi(ṽ). Moreover, because F is nondecreasing and because w ∈ F ∗(v), we have

w ≦ w̃i for all i. Let w̃ ∈ Min({w̃i | i = 1, . . . , n}). Suppose there is some i ∈ {1, . . . , ℓ} and

z ∈ Fµi(ṽ) such that z ≤ w̃. Then, if z̃ = w̃ +
(
fµi(ṽ)− µ⊤

i w̃
)
µ̂i, it would follow that µ⊤

i z < µ⊤
i w̃,

µ⊤
i z = µ⊤

i z̃, and µi⊤w̃ ≦ µ⊤
i z̃, which is a contradiction. So, no such z exists and we have w̃ ∈ F ∗(ṽ).

Thus, F ∗(v)⪯ F ∗(ṽ).

Next, we prove that F ∗ is superadditive. Let w1 ∈ F ∗(v1) and w2 ∈ F ∗(v2), and w̃ ∈ F ∗(v1+v2).

Suppose without loss of generality that w̃ ∈ Fµ1(v1 + v2). Then, for every z1 ∈ Fµ1(v1) and

z2 ∈ Fµ1(v2), w̃ ̸≤ z1 + z2 by the superadditivity of Fµ1 . In particular, setting

z1 = w1 +
(
fµ1(v1)− µ⊤

1 w1

)
µ̂1 and z2 = w2 +

(
fµ1(v2)− µ⊤

1 w2

)
µ̂1,

we have z1 ∈ Fµ1(v1), z2 ∈ Fµ1(v2) and w1 + w2 ≦ z1 + z2. This in turn implies that w̃ ̸≤ w1 + w2

because w̃ ̸≤ z1 + z2.
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Let w1 ∈ F ∗(v1), w2 ∈ F ∗(v2), and let

w̃ ∈ Min {(w1 + w2) +
(
fµi(v1 + v2)− µ⊤

i (w1 + w2)
)
µ̂i | 1 ≤ i ≤ ℓ}.

Then, for each i, there is a z2 ∈ Fµi(v1+v2) such that w̃ ≦ z2. Therefore, there is no z ∈ Fµi(v1+v2)

with z ≤ w̃ because if there were, then µ⊤
i z < µ⊤

i w̃, µ
⊤
i w̃ ≦ µ⊤

i z2, and µ⊤
i z = µ⊤

i z2, which cannot

happen. So, w̃ ∈ F ∗(v1 + v2). Therefore, F
∗(v1) + F ∗(v2)⪯ F ∗(v1 + v2).

So, F ∗ is feasible to (SDP). For each supported primal efficient solution x∗, there exists a

1 ≤ i ≤ ℓ such that Cx∗ ∈ Fµi(b). Because {Cx∗}⪯ F ∗(b) by Proposition 13, it follows that

Cx∗ ∈ F ∗(b).

Thus, the superadditive dual (SDP) is a strong dual to (MOIP) at supported primal efficient

solutions. However, the set-valued functions it employs are difficult to characterize, which limits

the immediate algorithmic utility of this dual in providing a bound set for search-based solution

methods. Several researchers have developed methods to approximate the single-objective IP value

function, and future research in this area could extend those methods to approximate the set-valued

MOIP value function. In this paper, we consider a restricted dual that only includes vector-valued

functions.

5.2 Vector-Valued Superadditive Dual

We formulate another dual problem to (MOIP) by restricting the feasible region in (SDP) to include

only vector-valued functions. In other words, we consider only those functions F feasible to (SDP)

for which F (v) is a singleton set in Rk for all v ∈ Rm. In this case, we denote F as a k-tuple with

components fi, i = 1, . . . , k, where fi : Rm → R, and have the following dual formulation

min F (b) = (f1(b), . . . , fk(b))
⊤

s.t. fi(Aj) ≧ cij for all i, j,

fi(0) = 0 for all i,

fi : Rm → R nondecreasing and superadditive for all i.

(VSDP)

Proposition 14 (Weak Duality for (VSDP)). If F is feasible to (VSDP), then Cx ≦ F (b) for all

x ∈ X (b).
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Proof. For any x ∈ X (b),

Cx =


∑n

j=1 c1,jxj
...∑n

j=1 ck,jxj

 ≦


∑n

j=1 f1(Aj)xj
...∑n

j=1 fk(Aj)xj

 ≦


f1(Ax)

...

fk(Ax)

 ≦ F (b),

where the first inequality follows from the fi(Aj) ≧ ci,j constraint, the second inequality is due to

fi being superadditive, and the third inequality follows from fi being nondecreasing.

As in (SDP), the minimization in (VSDP) is with respect to the partial order ⪯. However, if

{Fα(b) | α ∈ I} is the set of nondominated points of (VSDP) for some indexing set I, then Fα1(b)

and Fα2(b) are incomparable under ⪯ for all α1, α2 ∈ I, α1 ̸= α2. Because Fα(b) is a singleton

set for each α ∈ I, we can identify Fα(b) with its sole element zα. Under this identification, the

nondominated set {Fα(b) | α ∈ I} is equivalent to {zα | α ∈ I} ∈ E . Moreover,

{zα | α ∈ I} = Min
( ⋃
F feasible to (VSDP)

F (b)
)
.

In this way, (VSDP) is equivalent to solving a multiobjective problem whose objective values are

elements of Rk. For the remainder of this section, we view (VSDP) as a problem in Rk and make

the identification of F (b) with its sole element for a singleton set F (b).

If an objective of (MOIP) is unbounded, then the corresponding objective of (VSDP) is infea-

sible by Proposition 4, so that (VSDP) is infeasible. Proposition 15 shows that the upper bound

due to (VSDP) is tighter than any other singleton upper bound set for the MOIP.

Proposition 15. Let y ∈ Rk such that Cx ≦ y for all x ∈ X (b). Then, there exists a feasible

solution F of (VSDP) such that F (b) ≦ y. Moreover, if (VSDP) has efficient solutions, then there

is an efficient solution F ∗ of (VSDP) such that F ∗(b) ≦ y.

Proof. If Cx ≦ y for all x ∈ X (b), then for each 1 ≤ i ≤ k, cix ≤ yi is a valid inequality.

This implies that there is a superadditive nondecreasing function fi : Rm → R such that for

each 1 ≤ j ≤ n, fi(Aj) ≥ ci,j , fi(0) = 0, and fi(b) ≤ yi. Then, F = (f1, . . . , fk)
⊤ is feasible

to (VSDP). So, if (VSDP) has efficient solutions, then there exists F ∗ efficient to (VSDP) with

F ∗(b) ≦ F (b) ≦ y.

Proposition 15 has several corollaries that describe the nondominated points of (VSDP).
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Corollary 3. If (MOIP) is infeasible, then (VSDP) is unbounded.

Proof. If (MOIP) is infeasible, then for each y ∈ Rk, Cx ≦ y for all x ∈ X (b). So, by Proposition

15, for each y ∈ Rk there is a feasible objective value F (b) to (SDP) with F (b) ≦ y.

Corollary 4. If (MOIP) is infeasible, then (SDP) is unbounded.

Proof. (SDP) is a relaxation of (VSDP). Corollary 3 therefore implies that if (MOIP) is infeasible,

then for each y ∈ Rk there is a feasible objective value F (b) to (SDP) with F (b)⪯{y}.

Corollary 5. If G∗(b) is a nondominated point of (VSDP), then G∗(b) is the unique nondominated

point of (VSDP).

Proof. Let G∗(b) be a nondominated point of (VSDP). This implies that (VSDP) is feasible and

each single-objective IP max {cix | x ∈ X (b)} has a finite optimal value. Let y ∈ Rk be the

vector with components yi = max {cix | x ∈ X (b)}. Proposition 14 then implies that for each

i ∈ {1, 2, . . . , k}, the ith objective of G∗(b) is bounded below by yi. That is, y ≦ G∗(b).

On the other hand, Cx ≦ y holds for all x ∈ X (b) so that Proposition 15 implies the existence of

a feasible function F ∗(b) to (VSDP) such that F ∗(b) ≦ y. Then, F ∗(b) ≦ G∗(b) by the transitivity

of ≦. Because F ∗(b) and G∗(b) are both nondominated points of (VSDP), this inequality must

hold with equality. Because G∗(b) was an arbitrary nondominated point, this implies that (VSDP)

has a unique nondominated point.

Remark 7. Proposition 15 and Corollary 5 imply that (VSDP) computes the ideal point yI of

(MOIP).

One approach to proving strong duality of (VSDP) is to show that Proposition 15 holds for

every z ∈ Z(b). This, however, may not be true as an element of Z(b) may be incomparable with

some Cx in the value-set of the MOIP. This is illustrated in Example 1.

Example 1. Consider again the MOIP from Example 1.

max

 1 −1
2

−1
2 1

x1
x2

 s.t. x1 + x2 ≦ 1, x1, x2 ∈ Z+,

This problem has nondominated points
{
(1,−0.5)⊤, (0, 0)⊤, (−0.5, 1)⊤

}
= Z(1). But for any z ∈

Z(1), there is a feasible x such that Cx ̸≦ z, where C is the objective matrix. For example, if
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z = (1,−0.5)⊤, then x = (0, 0)⊤ is feasible but Cx ̸≦ z. So, there is no z ∈ Z(1) such that Cx ≦ z

holds for all x ∈ X .

In the special case when (MOIP) has a unique nondominated point, all elements of the set

of feasible objective values must be comparable with the sole element in the singleton set Z(b).

This is established in Lemma 7. We slightly abuse the notation Z(b) to also denote the unique

nondominated point contained in the set Z(b).

Lemma 7. If (MOIP) has a unique nondominated point, then Cx ≦ Z(b) for all x ∈ X (b).

Proof. Let x∗ be an efficient solution of (MOIP), so that Cx∗ = Z(b). Suppose for the sake of a

contradiction that there was an x ∈ Zn
+ such that Ax ≦ b but Cx ̸≦ Z(b). Then, there would be

an objective i ∈ {1, . . . , k} such that cix > cix
∗, which contradicts the hypothesis that Cx∗ is the

unique nondominated point.

The statement Cx ≦ Z(b) may be ill-defined if (MOIP) does not have a unique nondominated

point. So, the direct converse of Lemma 7 is not well defined, but a modified converse holds.

Lemma 8. If there exists z ∈ Z(b) such that Cx ≦ z for all x ∈ X (b), then (MOIP) has a unique

nondominated point.

Proof. Let z1, z2 ∈ Z(b) such that Cx ≦ z1 is a valid inequality. Because z1, z2 are feasible objective

values, there are x1, x2 ∈ X (b) such that z1 = Cx1 and z2 = Cx2. If Cx ≦ z1 is a valid inequality,

then z1 ≧ Cx2 = z2. On the other hand, if z2 ∈ Z(b), then z1 ̸≥ z2, which implies that z1 = z2.

Because z2 ∈ Z(b) was arbitrary, this implies that Z(b) has only one element. Therefore, (MOIP)

has a unique nondominated point.

Theorem 12 completely characterizes the strength of (VSDP).

Theorem 12. The dual problem (VSDP) is strong if and only if the primal problem (MOIP) has

a unique nondominated point.

Proof. Suppose that (VSDP) is strong. Then, there exists an efficient solution F ∗ to (VSDP) such

that F ∗(b) ∈ Z(b). Then, Proposition 14 implies that Cx ≦ F ∗(b) is a valid inequality. Because

F ∗(b) ∈ Z(b), Lemma 8 implies that (MOIP) has a unique nondominated point.

Conversely suppose that (MOIP) has a unique nondominated point Z(b) = (z1(b), . . . , zk(b))
⊤.

Then, Cx ≦ Z(b) is a valid inequality by Lemma 7. Proposition 15 implies that there is a feasible

solution F (b) to (VSDP) with F (b) ≦ Z(b). Proposition 14 implies that this inequality must hold
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with equality. Moreover, F (b) must be an efficient solution because otherwise there would be a

feasible solution G(b) with G(b) ≤ F (b) ≦ Z(b), a contradiction with Proposition 14. Then, F (b)

is an efficient solution to (VSDP) with F (b) = Z(b).

In the single-objective case, every (MOIP) has a unique nondominated point, so that Theorem

12 coincides with Theorem 3.

5.2.1 MOLP reformulation of (VSDP)

The superadditive dual of a single-objective IP can be formulated as an (exponentially large) LP

in the special case where all entries of A and b are nonnegative integers. The subsequent discussion

shows that (VSDP) can be cast as an MOLP in a similar manner.

If (VSDP) has a nondominated point, it must be unique. Then, there exists a dual efficient

function F ∗ = (f∗
1 , . . . , f

∗
k )

⊤ such that each f∗
i is an optimal solution to the problem

min{fi(b) | fi(0) = 0, fi(Aj) ≥ ci,j , fi superadditive and nondecreasing},

which is the superadditive dual for the single-objective IP max{cix | x ∈ X (b)}. If A and b have

all nonnegative integral entries, then f∗
i (b) is the optimal value of the following LP (see [48] for

details).

min fi(b)

s.t. fi(Aj) ≧ ci,j 1 ≤ j ≤ n,

fi(d1) + fi(d2)− fi(d1 + d2) ≦ 0 for all 0 ≦ d1, d2, (d1 + d2) ≦ b,

fi(0) = 0, fi(d) ≧ 0.

This leads to the following MOLP reformulation of (VSDP) for instances in which all entries

of A and b are nonnegative integers.

min F (b) = (f1(b), . . . , fk(b))
⊤

s.t. fi(Aj) ≧ ci,j for all i, j,

fi(d1) + fi(d2)− fi(d1 + d2) ≦ 0 for all 0 ≦ d1, d2, (d1 + d2) ≦ b,

fi(0) = 0, fi(d) ≧ 0.

(SDMOLP)

Because (VSDP) (and therefore (SDMOLP)) has a unique nondominated point, a single scalar-

ization suffices to recover an efficient solution to (SDMOLP). Thus, the vector-valued dual of this
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problem is an MOLP with a unique nondominated point. However, this dual is not strong unless

the MOIP itself has a unique nondominated point.

Remark 8. From Remark 7 and the above discussion, it follows that the ideal point yI for an

MOIP with nonnegative constraint and objective coefficients can be obtained by solving a single

(large) LP.

Example 2 illustrates the MOLP reformulation on a bi-objective knapsack problem. Note that

this MOLP has a unique nondominated point. Because the primal problem does not have a unique

nondominated point, the vector-valued dual is not strong. Nonetheless, its (unique) nondominated

point provides an upper bound on Max(YMOIP).

Example 2. Consider the MOIP

max

2 1

1 2

x1
x2

 s.t. x1 + x2 ≦ 2, x1, x2 ∈ Z+.

Following the steps described above, the MOLP formulation of the vector-valued superadditive dual

for this problem is

min F (2) = (f1(2), f2(2))
⊤

s.t. (f1(1), f2(1))
⊤ ≧ (2, 1)⊤,

(f1(1), f2(1))
⊤ ≧ (1, 2)⊤,

2(f1(1), f2(1))
⊤ − (f1(2), f2(2))

⊤ ≦ (0, 0)⊤.

This MOLP has a unique nondominated point F ∗(2) = (4, 4)⊤. On the other hand, the original

MOIP has nondominated points
{
(4, 2)⊤, (3, 3)⊤, (2, 4)⊤

}
.

6 Conclusion

In this paper, we analyzed relaxations and developed a duality framework for MOIPs by leveraging

results from single-objective integer programming. In particular, we formulated the Lagrangian

relaxation of an MOIP and compared it with the continuous and convex hull relaxations. The

convex hull relaxation is tight at supported efficient solutions of the MOIP but not at unsupported

solutions. We showed via an example that a Lagrangian relaxation can provide a tighter upper

bound at unsupported nondominated points.
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We presented an MOIP Lagrangian dual that generalizes the single-objective counterpart, re-

lying on the idea of finding the best upper bound over all Lagrangian relaxations. The behavior of

this dual at supported solutions, including conditions for strong duality, mimics those derived in the

single-objective case; the analysis is aided by scalarization techniques. The properties of the dual

are harder to analyze at unsupported solutions. This is due in part to the complicated geometry of

the dual feasible set YLD. Every point in the primal nondominated set has an upper bound in the

dual feasible set YLD, but the non-convexity of YLD implies that it also contains elements that are

incomparable with the primal nondominated points. In particular, Min(YLD) does not necessarily

provide the “best” upper bound on the primal nondominated points and the Lagrangian relax-

ations themselves may be more informative in this respect. We presented computational evidence

to illustrate that a näıve approximation to the Lagrangian dual bound set can provide a tighter

upper bound than one obtained via convex hull relaxation.

We also introduced two superadditive duals, namely, a set-valued formulation and a vector-

valued variant. The set-valued problem considers set-valued functions that are non-decreasing

and superadditive, inspired by the properties of the MOIP value function. This dual is strong at

supported efficient solutions of the primal. The vector-valued dual is constructed by restricting

the set-valued dual to functions from Rm to Rk; it is strong if and only if the primal has a unique

nondominated point. Given any upper bound z on the set of feasible primal objective values,

there exists a vector-valued dual feasible solution that provides a tighter upper bound. In the

special case where the constraint parameters are nonnegative integers, the vector-valued dual can

be formulated as an MOLP. Notably, the vector-valued superadditive dual provides an alternate

method for computing the ideal point of an MOIP via a single (large) LP in case of nonnegative

problem parameters.

Our computational experiments have promising results, but our approach of enumerating a set

of Lagrange multipliers over an equispaced grid does not scale well to larger problems. Future work

in this area could focus on algorithmic aspects of the Lagrangian dual, especially with a view on

techniques for selecting Lagrange multipliers. The IP value function is hard to compute even for

the single-objective IP in the general case, but several researchers have developed algorithms for

value function approximation for structured IPs. Extension of these methods to the multiobjective

superadditive dual offers another promising avenue for future research.

38



Acknowledgements

This research was supported by the National Science Foundation grant CMMI-1933373 and the

Office of Naval Research grant N00014-21-1-2262. The authors thank David Mildebrath of Ama-

zon.com, Inc., and Tyler Perini of Rice University for their helpful comments. The authors also

thank two anonymous referees and an anonymous associate editor whose insightful feedback helped

significantly improve the paper.

References

[1] Y. P. Aneja and K. P. K. Nair. Bicriteria transportation problem. Management Science,

25(1):73–78, 1979.

[2] H. P. Benson. Multi-objective optimization: Pareto optimal solutions, properties. In C. A.

Floudas and P. M. Pardalos, editors, Encyclopedia of Optimization, pages 2478–2481. Springer

US, Boston, MA, 2009.

[3] N. Boland, H. Charkhgard, and M. Savelsbergh. A new method for optimizing a linear function

over the efficient set of a multiobjective integer program. European Journal of Operational

Research, 260(3):904–919, 2017.

[4] A. Cerqueus, A. Przybylski, and X. Gandibleux. Surrogate upper bound sets for bi-objective bi-

dimensional binary knapsack problems. European Journal of Operational Research, 244(2):417–

433, 2015.

[5] H. Corley. Duality theory for the matrix linear programming problem. Journal of Mathematical

Analysis and Applications, 104(1):47–52, 1984.
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Appendix

A Proofs of Results in Section 2.1

The set-ordering in Definition 4 is well-defined for subsets of Rk. We extend it to ±M∞ by defining

−M∞⪯ S⪯M∞ for all nonempty sets S ⊆ Rk, −M∞⪯−M∞, and M∞⪯M∞. We further assume

that S ̸⪯ −M∞, and M∞ ̸⪯ S for any S ⊆ Rk. The relation “⪯” is thus defined on the extended

power set of Rk (excluding the empty set) and is transitive thereon, but neither reflexive nor

antisymmetric. However, the relation defines a partial order on the family of sets E defined in (1).

Proposition 1. Let S ⊆ Rk be nonempty. If S has points that are nondominated from above, then

Max(S) ∈ E. If S has points that are nondominated from below, then Min(S) ∈ E.

Proof. We prove the result for Max(S); the proof for Min(S) is similar and therefore omitted.

Suppose S is nonempty and has points that are nondominated from above. Let s, t ∈ Max(S) with

s ̸= t. By definition of nondominance, s ̸≤ t and t ̸≤ s. Thus, Max(A) ∈ E .
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Proposition 2. The relation ⪯ defines a partial order on E.

Proof. We first show that the relations is reflexive. Consider a set S ∈ E . If S = ±M∞, then S⪯ S

by definition of ±M∞. Otherwise, if s ∈ S, then s ≦ s by the reflexivity of ≦. Moreover, if t ∈ S

with s ̸= t, then t ̸≤ s because distinct elements of S are incomparable as S ∈ E . Therefore S⪯ S.

Next, to see that ⪯ is antisymmetric, consider S, T ∈ E with S⪯ T and T ⪯ S. If one of

S, T = ±M∞, then S = T . Otherwise, let S, T ⊆ Rk and s ∈ S. Because S⪯ T , there exists

t ∈ T such that s ≦ t. On the other hand, because T ⪯ S, there is s′ ∈ S such that t ≦ s′.

Therefore, s ≦ t ≦ s′. But distinct elements of S are incomparable, which implies that s = s′, so

that s = s′ = t. Therefore S ⊆ T . Similarly, T ⊆ S as well, so that S = T .

Finally, to establish transitivity, suppose S, T, U ∈ E with S⪯ T and T ⪯U . If S = −M∞

or U = M∞, the results holds trivially. If S or T = M∞, then U = M∞ and the result holds.

Similarly, if T or U equals −M∞, then so does S and the result follows. Assume, therefore, that

S, T, U ̸= ±M∞.

Let s ∈ S. Then, there exists t ∈ T such that s ≦ t and u ∈ U such that t ≦ u. Therefore

s ≦ u. On the other hand, suppose there exists u ∈ U and s ∈ S such that u ≤ s. Then, there is

t ∈ T such that s ≦ t, which implies that u ≤ s ≦ t. This contradicts the hypothesis that T ⪯U .

So, s and u must be incomparable. Therefore, S⪯U .

Thus, the relation ⪯ is reflexive, antisymmetric and transitive on E and therefore defines a

partial order thereon.

Lemma 2. Let T ⊆ S ⊆ Rk be nonempty sets, and let U ∈ E such that S⪯U . Then, T ⪯U .

Proof. If U = M∞, the result holds by definition. Therefore, suppose U ̸= M∞, and let t ∈ T .

Because t ∈ S, there is an element u ∈ U such that t ≦ u. Moreover, given u ∈ U , there is no t ∈ T

such that u ≤ t because that would contradict S⪯U . Thus, T ⪯U .

Lemma 3. Let S ⊆ Rk be a closed set and let U ∈ E such that S⪯U . Then, Max(S)⪯U .

Proof. If S = ∅, then Max(S) = −M∞⪯U . If S is unbounded above, then we must have U = M∞

and Max(S) = M∞⪯U . Suppose, therefore, that S is nonempty and bounded above. The result

then follows from Lemma 2 by choosing T = Max(S).
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B Omitted Proofs from Section 3

Proposition 5. If YMOLP is the set of feasible objective values of (MOLP), then Max(YMOIP)⪯Max(YMOLP).

Proof. If (MOIP) is infeasible, then Max(YMOIP) = −M∞ and the result is trivially true. If (MOIP)

is unbounded then so is (MOLP) because YMOIP ⊆ YMOLP. Finally, if Cx∗ ∈ Max(YMOIP), then

Cx∗ is a feasible objective to (MOLP). Therefore either Max(YMOLP) = M∞ or there exists

y ∈ Max(YMOLP) such that Cx∗ ≦ y.

Now suppose Cx̃ ∈ Max(YMOLP) such that Cx∗ ̸= Cx̃. Suppose if possible that Cx̃ ≤ Cx∗.

Then, because x∗ ∈ X , it is also feasible to (MOLP), which contradicts the nondominance of x̃.

Thus, Cx̃ ̸≤ Cx∗ so that Cx∗ and Cx̃ are incomparable.

Proposition 6. If YCH is the set of feasible objective values of (CH), then Max(YMOIP)⪯Max(YCH).

Proof. The proof is similar to that of Proposition 5 and is omitted.

Proposition 7. Let x∗ be an efficient solution of (CH). Then, x∗ is an efficient solution of

(MOIP) if and only if x∗ is integral.

Proof. If x∗ is efficient for (MOIP), then it must be feasible to (MOIP) and therefore integral. To

see the opposite containment, suppose x∗ is efficient for (CH) and integral. Then, x∗ is an integral

point in the feasible region of (CH) and therefore x∗ ∈ XMOIP. Suppose if possible that x∗ is

not efficient for (MOIP). Proposition 6 implies that for every feasible x to (MOIP), there is a y

feasible to (CH) such that Cx ≦ Cy. In particular, if x∗ is not efficient for (MOIP), then there is

a y feasible to (CH) such that Cx∗ ≤ Cy. However, this contradicts the hypothesis that x∗ was

efficient to (CH). Thus, x∗ must be efficient for (MOIP).

Proposition 8. If (CH) has efficient solutions, then it must have an integral efficient solution.

Proof. Suppose that conv(XMOIP) has a vertex. If an MOLP has efficient solutions, then at least

one must occur at a vertex of the feasible region [34, Theorem 4.3.8(ii)]. In particular, (CH) has at

least one efficient vertex. Because the vertices of the feasible region of (CH) are all integral, this

implies that there is at least one integral efficient solution to (CH).

Now suppose that conv(XMOIP) does not have vertices. Then, by [34, Theorem 4.3.8(iii)], it

has a nonempty face F such that every x ∈ F is an efficient solution. Because F is a face of

conv(XMOIP), there is a matrix B and a vector d such that F = {x ∈ conv(XMOIP) | Bx = d} and
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such that Bx ≦ d for all x ∈ XMOIP. If x∗ ∈ F , then x∗ =
∑p

i=1 t
ixi for some positive integer p,

t1, t2, . . . , tp ∈ [0, 1] and x1, x2, . . . , xp ∈ XMOIP with
∑p

i=1 t
i = 1 because F ⊆ conv(XMOIP). Then,

Bx∗ = B
( p∑

i=1

tixi
)
=

p∑
i=1

tiBxi = d.

Because Bxi ≦ d for each i, this implies that Bxi = d for each i. So, xi ∈ F and therefore (CH)

has an integral efficient solution.

Proposition 9 ([8, 42]). Let x∗ be an efficient solution of (MOIP). Then, x∗ is a supported

solution if and only if it is an efficient solution of (CH).

Proof. Let x∗ be an efficient solution of (CH). By Lemma 1, there is a scalarizing vector µ ∈ R>

such that x∗ is optimal to

max µ⊤Cx

s.t. x ∈ conv({x ∈ Zn
+ | Ax ≦ b}).

(CHµ)

On the other hand, because x∗ is feasible to (MOIP), it is feasible to the IP

max µ⊤Cx

s.t. x ∈ {x ∈ Zn
+ | Ax ≦ b}.

(MOIPµ)

Note that (CHµ) is the convex-hull relaxation of the single-objective IP (MOIPµ). Thus, x∗

must be optimal to (MOIPµ). Therefore, x
∗ is a supported efficient solution to (MOIP).

Conversely, suppose x∗ is a supported efficient solution of (MOIP). Then, there exists a scalar-

izing vector µ ∈ Rk
> such that x∗ is an optimal solution to (MOIPµ). Once again, because (CHµ)

is the convex hull relaxation of (MOIPµ), x
∗ is optimal to (CHµ) as well. It follows from Lemma

1 that x∗ is efficient for (CH).

C An Example to Illustrate Theorem 7

This example illustrates Theorem 7. We consider an MOIP whose feasible region does not satisfy

condition (15) and show that the Lagrangian dual for this problem is not strong at a supported

solution.
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Example 1. Consider the problem

max

1 0

0 1

x1
x2

 s.t. 2x1 + 4x2 ≦ 5, 4x1 + 2x2 ≦ 5, x1, x2 ∈ {0, 1}.

For this problem, X = Y = {(0, 0)⊤, (1, 0)⊤, (0, 1)⊤} and the supported nondominated points

are (1, 0)⊤ and (0, 1)⊤. Set Q = {0, 1}2, A1 =

2 4

4 2

, and b1 = (5, 5)⊤. Then,

conv(Q ∩ {x ∈ Rn | A1x ≦ b1}) ⊂ conv(Q) ∩ {x ∈ Rn | A1x ≦ b1},

where the containment is strict. Enumerating x ∈ Q, we have the Lagrangian dual

Min(YLD) = Min

( ⋃
Λ≧0

Max

{5λ11 + 5λ12

5λ21 + 5λ22

 ,

 3λ11 + λ12

1 + λ21 + 3λ22

 ,

1 + λ11 + 3λ12

3λ21 + λ22

 ,

1− λ11 − λ12

1− λ21 − λ22

}).
Then, there is no Λ ∈ R2×2

+ such that (1, 0)⊤ ∈ Min(YLD). To see this, first suppose that Λ was

such that

5λ11 + 5λ12

5λ21 + 5λ22

 = (1, 0)⊤. Then, we must have λ11 + λ12 = 1
5 and λ21 = λ22 = 0. But

then, because one of λ11, λ12 must be positive, there are positive parameters δ1 = 3λ11 + λ12 and

δ2 = λ11 + 3λ22 with δ1, δ2 ≥ 1
5 such that the relaxation (LR(Λ)) is

Max


1

0

 ,

δ1

1

 ,

1 + δ2

0

 ,

4
5

1

 .

Then, 1 + δ2 ≥ 6
5 > 1, which implies that (1, 0) ̸∈ Max(YLR(Λ)).

Because λ21, λ22 ≥ 0, there is no feasible Λ such that 1+λ21+3λ22 = 0. So,

 3λ11 + λ12

1 + λ21 + 3λ22

 ̸=1

0

 .
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Next, if

1 + λ11 + 3λ12

3λ21 + λ22

 =

1

0

, then Λ = 0. However, (1, 0) ̸∈ Max(YLR(0)) because

Max(YLR(0)) = Max{(0, 0), (0, 1), (1, 0), (1, 1)} = {(1, 1)}.

Finally, if Λ was such that

1− λ11 − λ12

1− λ21 − λ22

 =

1

0

 then λ11 = λ12 = 0 and λ21 + λ22 = 1.

Then, there are positive parameters δ1 = λ21 + 3λ22 and δ2 = 3λ21 + λ22 such that δ1, δ2 ≥ 1 and

Max(YLR(Λ)) = Max


0

5

 ,

 0

1 + δ1

 ,

 1

δ2

 ,

1

0

 ,

so that (1, 0) ̸∈ Max(YLR(Λ)) because δ2 ≥ 1. Therefore, there are no Lagrangian relaxations which

are tight at (1, 0)⊤. Moreover, the relaxations are bounded away from (1, 0)⊤ so that (1, 0)⊤ cannot

be a limit point of YLD.

Thus, condition (15) is not satisfied, and the Lagrangian dual for this problem is not strong at

a supported efficient solution.
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