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Abstract

The aim of this paper is to optimize modular systems which cover the construction of
products that can be assembled on a modular basis. Increasing the number of different
variants of individual components on the one hand decreases the cost of oversizing the
assembled product, while on the other hand the cost for maintaining the modular system
increases. For the minimization of the overall cost a mixed-integer problem is derived.
However, this problem cannot simply be passed to a solver for mixed-integer optimization,
since certain dependency structures of the variables occur. We propose a solution approach
for this complicating structure using binary variables to transform the problem into a
mixed-integer optimization problem, which can be solved deterministically. In a numerical
study, this formulation is investigated using the example of a modular system for crane
bridges.
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1 Introduction

In this paper, modular system problems are considered from an optimization point of view.
Modular systems prove to be very useful in practice for products that can be assembled
modularly from different components. Each of these components can consist of different
variants or size which can be combined with each other. Modular systems are a common
concept in many fields of design and manufacturing, where the goal is to decompose a complex
system into simpler modules in order to decrease complexity and increase cost-efficiency [16].

∗corresponding author
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An optimization model is derived that determines an optimal configuration of the modular
system. That is, on the one hand, the optimal configuration shows how many types of a
component should be manufactured and, on the other hand, exactly what these components
look like, for example the geometric dimensions of the variants.

The goal is that the modular system is on the one hand cheap to maintain, so that we have,
for example, few different variants per component. On the other hand, meeting product
properties with such a ‘coarse’ modular system leads to high oversizing costs, which can be
reduced by sufficient variability and flexibility in the modular system.

In Section 2 a short introduction to crane bridges and a literature review on optimization
models for modular systems are given, before we introduce a general model for treating the
trade-off between maintenance and oversizing costs of modular systems. However, the result-
ing optimization problem cannot simply be passed to a solver for mixed-integer optimization
problems, since certain dependency structures of the variables occur by which in the beginning
it is not even clear how many decision variables the problem has. The problem could be refor-
mulated into a two-level problem that takes the dependency structure into account. For such
problems, especially also in the mixed-integer case, decomposition methods or methods from
bilevel optimization are well-known, see [12] for decomposition methods and [13, 3, 11] for
bilevel optimization. In Section 3 of this work, however, a more straightforward solution ap-
proach is proposed, which uses binary variables to transform the problem into a mixed-integer
single-level problem, for which standard solvers can be used. In Section 4 this formulation
is substantiated using the example of a modular system for crane bridges, and a numerical
study indicates that the problem formulation as a single-level problem possesses potential
also for the optimization of other modular systems. Section 5 closes the article with some
final remarks.

2 An optimization model for modular systems

In this paper we consider an optimization approach for modular systems. The aim of a
modular system is to have a minimal set of different parts for various tasks or a set of
different sizes of the same part which can be combined into a product that fulfills a given
requirement of properties [15]. One of the main challenges in the design of modular system
is to balance the number of variants and the product performance [16].

For a better understanding, we look at the example of crane bridges at this point, which will
be considered in detail later on. After presenting the example, we will discuss the existing
literature.

2.1 Crane bridges

Overhead cranes are mostly used to transport objects in production halls and warehouses.
They consist of the crane bridge, the crab with hoist and trolley, and two end carriages at
the ends of the crane bridge. The end carriages travel on the crane runway. End carriages,
hoists and trolleys are already offered by the respective manufacturers as modular systems.
Crane bridges are usually built in one part in the shape of a box or I-profile girder. These
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Figure 1: Crane concept

are manufactured in a series of various different sizes. In order to make the advantages of a
modular system usable for crane bridges as well, a concept was developed in [2, 14] on how
crane bridges can also be constructed modulary. This segmented crane bridge is designed as a
truss profile made of hollow profiles and diagonal connecting plates. The components can be
mass-produced, easily transported and assembled at the crane’s place of use. The structure
of the crane bridge is shown in Figure 1 and is described in detail in [2, 14].

The crane bridge modular system we consider consists of the two components profile and
sheet, each of which is designed as a series in different sizes, as well as matching end sheets,
connecting elements and an individually manufactured compensating element. By combining
a sheet size and a profile size as well as varying the number of these elements, various require-
ments and properties of the crane bridge can be covered while using only a small number of
different part sizes. In our model in Section 4 we will consider profiles that differ in the three
geometry parameters height, thickness and width, and sheets with four geometry parameters.

Each crane bridge is built for a given span and load capacity based on the site and the use
case for the crane. It has to fulfill the requirements for the safety and stability of overhead
cranes. We have oriented ourselves on the German series of standards for crane design EN
13001 [8, 9, 10] and the international standard for the stiffness of overhead cranes ISO 22986
[4]. These mainly include the maximum stress in the material and the deflection under load.
For the model, it is assumed that every combination of profiles and sheets can be used for a
number of span and load capacity combinations while meeting the given safety requirements.

The properties that should be fulfilled by the modular system, as mentioned above, are
therefore the load capacity and the span of a crane bridge. We are interested in a modular
system that is cost-effective in some sense. On the one hand we wish to avoid a large number
of different variants of a component and, on the other hand, we want to remain flexible in
fulfilling the required properties of span and load capacity. In detail, this means that on the
one hand we want as few profile and sheet variants as possible, but still want to cover span
and load capacity as well as possible and avoid building oversized crane bridges.
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In Section 4 we will consider the example of crane bridges in more detail. Before that, we
will briefly discuss the existing literature and deduce a flexible model for the optimization of
general modular systems.

2.2 Existing literature

The literature on modular systems in combination with mathematical optimization is very
sparse.

In [6] a formal description of modular systems is presented, possible system boundaries, a cost
model for the optimization of modular systems and a possible procedure for the mathematical
modeling of modular systems is discussed.

The paper [5] divides modular system optimization into three classes: Class I describes the
optimization of individual components, e.g. the design of one component, under a fixed
combination of the components for each product. Class II describes the optimization of
components combinations with explicitly given variants of the components. Class III describes
the simultaneous optimization of the combination of the components and of the design of the
component.

In [7] the optimization of a modular system is modeled as an integer optimization problem
(with only binary variables) and solved using simulated annealing. They use components with
existing parameters and solve an allocation problem with a simple cost model. They classify it
as an Class II problem, since the component parameters are fixed. There is no optimization of
the different parameters (Class III). In [5] it is only mentioned that the optimization problem
resulting from the class III problem is a nonlinear mixed-integer optimization problem, and
that heuristics can play an important role here.

The paper [17] describes the optimization of modular products in reconfigurable production
lines using the example of a powertrain. The optimization problem is described as a subset
selection problem. However, it is based on modules with predefined parameters and there is
no adjustment or optimization of the module parameters here. According to [5], this is again
a Class II problem.

The problem we consider in this paper fits best into the framework of class III problems. In
our model, we want to keep the combination of the individual components variable, as well as
the exact design of the components. In addition, we do not want to fix the number of variants
per component of the modular system. Whether the last-mentioned aspect is considered in
the class III problems remains unclear, as no exact problem is specified.

2.3 An optimization model for general modular systems

In some underlying market we assume a demand of N products which can be characterized
by the same s properties. Therefore we have products pℓ P Rs, ℓ “ 1, . . . , N . A product can
be built of R different components. In the example of the crane bridges we have a demand
of N crane bridges that are built out of R “ 2 components, profiles and sheets.

Each component has specific parameters and through them the components in a modular
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systems will differ. In our example, these are different geometry parameters such as length
and widths of the profiles and sheets. For each component r, r “ 1, . . . , R, there are kr P N
different variants in the modular system. In our model the number of components R will be
a fixed known number and the vector of number of variants κ “ pk1, . . . , kRq will be variable,
but bounded. Hence we have κ P NR X rl, us with a vector l P NR for the lower bounds and
u P NR for the upper bounds of kr, r “ 1, . . . , R.

Besides the variables for the number of variants κ we have a second type of variables, the
variables for the different geometry parameters. With xr,k Ď Rnr we denote the vector for
variant k, k “ 1, . . . , kr of component r, r “ 1, . . . , R, where nr is the number of geometry
parameters of component r. For the crane bridges we have for instance for component 1, the
profiles, n1 “ 3 geometry parameters: length, thickness and width. Each of these vectors
xr,k can additionally be box-constrained for each of the components, which we collect for
simplicity in the set Xr. For instance the length of each profile variant should be nonnegative
and bounded from above. Therefore we have xr,k P Xr Ď Rnr . We summarize all xr,k in the
vector ξ P Xpκq Ď R

řR
r“1 krnr , which is the second variable for our model. The description of

the set Xpκq collects the restrictions for each xr,k and depends on the number of variants κ.
Through this formulation we obtain a dependence of the length of the vector ξ on the variable
κ, which complicates our model.

Besides the specification of the components by the entries of ξ we are interested in the number
of pieces in the modular system. We assume that, to fulfil the product properties, we are
allowed to choose pieces of only one variant for each component. For our example, this means
that we use one profile variant and one sheet variant for each crane bridge in the required
number, which will be specified later. With zℓr,k P N0 we denote the number of pieces we
choose from variant k of component r for product ℓ, k “ 1, . . . , kr, r “ 1, . . . , R, ℓ “ 1, . . . , N .
Since we are only allowed to choose one variant we have for each component r, r “ 1, . . . , R,

|tk P t1, . . . , ru|zℓr,k ą 0u| “ 1.

With zℓ we denote the vector of all variables zℓr,k for one product pℓ. To satisfy the required

product properties, additional constraints on the variables zℓ have to be expected which also
depend on the variable ξ. So we have zℓ P Zℓpκ, ξq with the set Zℓpκ, ξq of all feasible
configurations for product pℓ. By z we denote the vector of all zℓ, ℓ “ 1, . . . , N .

With given κ and ξ, for each product pℓ we choose among all feasible configurations zℓ P

Zℓpκ, ξq the cheapest one. Therefore we are looking for the minimal point of a cost function
cℓpκ, ξ, zℓq over Zℓpκ, ξq. In addition, there exist maintenance costs Cpκ, ξq which depend
on the size of the modular system. In many applications these costs develop in opposite
directions under changes in the configuration of the modular system.

We obtain the total costs Cpκ, ξq `
N
ř

ℓ“1

cℓpκ, ξ, zℓq and, therefore, altogether the optimization

problem

P : min
κ,ξ,z

Cpκ, ξq `

N
ÿ

ℓ“1

cℓpκ, ξ, zℓq s.t. ξ P Xpκq, (1)

z P Zpκ, ξq, (2)
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κ P NR X rl, us (3)

with Zpκ, ξq “ Z1pκ, ξq ˆ . . . ZN pκ, ξq. Since ξ can be a continuous variable while κ and z
are integer variables, P is in general formulated with mixed-integer variables. As mentioned
before, the constraints yield a dependency structure between the variables that complicates
the solution of the optimization problem. Indeed, the length of the vector ξ is determined by
the entries of the vector κ. In the following we will suggest a reformulation of P which allows
to deal with this fact.

3 Solution approach

One idea to deal with the dependency of ξ on κ is to fix a number of maximum variants
for each component and link each possible number of variants with a binary variable. In
applications the possible maximum number of variants of a component is often known since
the warehouse capacity is bounded. Since the optimization problem P is already mixed-
integer, additional binary variables and corresponding constraints do not change the problem
structure, but the number of variables and restrictions just increase. Although the class of
mixed-integer problems is NP-hard, in many real-world problems standard solvers can treat
instances with several thousands of integer variables in reasonable time.

The solver Gurobi [1] can also be used if the objective function and the constraints are
quadratic (convex or nonconvex). For this reason we will reformulate the problem P into a
linear or quadratic mixed-integer problem. In particular, in Section 4 we will reformulate the
modular system for crane bridges as a nonconvex multiquadratic problem.

Indeed, in the following we assume that for every component r we know a maximum number
of variants, denoted by kr P N. While with the previous notation this yields kr ď kr, from
now on we will no longer consider the vector κ of variables kr but the known constants kr
with associated binary variables vr,k P B, k “ 1, . . . , kr, r “ 1, . . . , R, which indicate whether
a variant is available in the modular system or not. More precisely, we have

vr,k “

#

1, if for component r variant k is available,

0, else.

We need to link the new variables vr,k with the variables zℓr,k since, of course, there can only
be a positive number of a variant k of component r in the modular system if the variant
actually exists. In other words the value of zℓr,k has to be zero if variant k of component r is
not available, which we denote as

vr,k “ 0 ñ zℓr,k “ 0, ℓ “ 1, . . . , N. (4)

This type of restriction is called indicator constraint and can be modeled directly in Gurobi.
It should be noted at this point that the implication arrow is based on Gurobi notation. We
add condition (4) to the set Z and thus obtain the additional dependence of Z on v.

On the other hand, under our assumption that the maximum number of variants is given, the

length of the vector ξ is known to be k “
R
ř

r“1
kr. The sets Xpκq, Zpκ, v, ξq thus simplify to
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X and Zpv, ξq. Furthermore, we can omit the dependency on κ everywhere else in P . Every
function (in objective and constraints) which depends on a variant k of component r must be
supplemented by the binary variable vr,k since the variables xℓr,k and zℓr,k may of course only
enter there if they are available. In summary we obtain the reformulated problem

P : min
v,ξ,z

Cpv, ξq `

N
ÿ

ℓ“1

cℓpv, ξ, zℓq s.t. ξ P X,

z P Zpv, ξq,

v P Bk.

Like in problem P , since ξ can be a continuous variable while v and z are integer variables,
P is in general a mixed-integer optimization problem. In contrast to P , however, the length
of ξ is fixed in P .

4 A specification of the general optimization model to the
modular system for crane bridges

In Section 2 a modular system for crane bridges was briefly introduced. Then a general
optimization model for the cost-minimal configuration of a modular system has been derived.
However, explicit forms of cost functions and constraints have not yet been discussed. In
the present section we use a concrete example of a modular system to derive an explicit
optimization problem. We choose the modeling approach described in Section 3 to formulate
a problem without dependency structures. After some reformulations, we obtain a mixed-
integer optimization problem with quadratic objective function and quadratic constraints.
These functions do not have to be convex, when the resulting problem is solved by Gurobi,
since this solver does not require convexity for quadratic problems. We test our modeling
approach for some example problems.

4.1 Derivation of the optimization model

A rough sketch of a crane bridge is shown in Figure 1. As decribed above, we have a demand
of N crane bridges, the products pℓ, ℓ “ 1, . . . , N , and we take into account the two properties
span width Lℓ and load capacity M ℓ.

We assume that the modular system contains at most k1 “ n profile variants and k2 “ m
sheet variants. Profiles are characterized by the three geometry parameters height, thickness
and width, i.e. x1,i “ P i “

`

hiP , t
i
P , w

i
P

˘

P X1 Ď R3, i “ 1 . . . , n. Sheets, on the other hand,
are described by the four geometry parameters height, segment length, thickness and width

i.e. x2,j “ Sj “

´

hjS , l
j
S , t

j
S , w

j
S

¯

P X2 Ď R4, j “ 1, . . . ,m. The description of the sets X1 and

X2 also contains box constraints for the individual geometry parameters which we will specify
later. It should be noted that the length of the profiles is not explicitly included in the model.
This is characterized by the double segment length of the corresponding sheet, see Figure 2
or Figure 3. With the above notation we obtain the variable ξ “

`

P 1, . . . , Pn, S1, . . . , Sm
˘

.
The modular concept and the geometry parameters are shown in Figure 2 in detail.
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Figure 2: a) Modular concept of the crane’s parts; b) Geometry parameters

Next we describe the functions and sets from problem P in more detail. The main effort will
be to describe the set of feasible configurations of the modular system, that is, the description
of the set Zpv, ξq.

Set of feasible configurations

A crane bridge (here explicitly crane bridge ℓ) must fulfill two properties, as described above.
Profiles of one variant and sheets of one variant must be taken from the modular system in
such a way that the crane bridge results in the span Lℓ and that the crane bridge carries at
least a load of M ℓ (in tons). Figure 2a shows how a crane bridge can be built from profiles
and sheets. For the chosen profile-sheet combination pi, jq we can calculate the total number
zℓ1,i of profiles and the total number of sheets zℓ2,j by

zℓ1,i “ 4

[

Lℓ

2ljS

_

´ 2, zℓ2,j “ 2

[

Lℓ

2ljS

_

´ 2.

Let M be the load capacity function for a combination of profile P i and a sheet Sj . Since
this function is generally difficult to determine, we approximate it by the (rough) estimate

MpP i, Sjq “
c1
Lℓ

¨

˝c2h
j
S ` c3h

i
P ` c4w

i
P ` c5w

j
S ´ c6

˜

hjS ´ 2hiP

ljS
´

?
3

¸2
˛

‚ (5)

with c P R6
`. To motivate the shape of this estimate, note that, the larger the span of the

crane bridge, the lower is the load capacity. Moreover, the height of the profiles and sheets
is more important than their widths, so that we choose c2 and c3 greater than c4 and c5,
respectively. Parameter studies for a truss model have shown that the best distributions of
forces in the truss are achieved at an angle of around 60° between the sheets and the profiles.

With Figure 3 it can be seen that this exists when
hj
S´2hi

P

ljS
“

?
3 “ tanp60˝q holds.
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With the load capacity function we can claim the second important property for crane bridge
ℓ, ℓ “ 1, . . . , N , namely the load capacity M ℓ that has to be achieved at least by the chosen
profile-sheet combination. This yields the constraint

MpP i, Sjq ě M ℓ.

In addition, the set of permissible configurations must take into account that not every profile-
sheet combination is possible due to possible instabilities. Indeed, the four additional restric-
tions

wj
S ě 2wi

P ` tjS , hjS ě 3hiP , 2ljS ě hjS , 2ljS ď 3hjS (6)

must also apply.

By the first condition in (6) we achieve that there is a minimum distance between the profiles,
see Figure 2b. The other three conditions achieve a boundary of the angle of the sheet, see
Figures 2 and 3. We summarize these inequalities into a set F , which can be described with
linear functions. Therefore we require pP i, Sjq P F for a chosen combination.

Under our assumption that only one variant may be chosen, we obtain for crane bridge ℓ,
ℓ “ 1, . . . , N , the set of feasible configurations

Zℓpv, ξq “ tzℓ1,1, . . . , z
ℓ
1,n, z

ℓ
2,1, . . . , z

ℓ
2,m P N0|

|ti P t1, . . . , nu| zℓ1,i ą 0u| “ 1, (7)

|tj P t1, . . . ,mu| zℓ2,j ą 0u| “ 1, (8)

zℓ1,i, z
ℓ
2,j ą 0 ñ zℓ1,i “ 4

[

Lℓ

2ljS

_

´ 2, (9)

zℓ2,j ą 0 ñ zℓ2,j “ 2

[

Lℓ

2ljS

_

´ 2 (10)

zℓ1,i, z
ℓ
2,j ą 0 ñ MpP i, Sjq ě M ℓ (11)

zℓ1,i, z
ℓ
2,j ą 0 ñ pP i, Sjq P F (12)

v1,i “ 0 ñ zℓ1,i “ 0, (13)

v2,j “ 0 ñ zℓ2,j “ 0u. (14)
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From this definition of Zℓpv, ξq it is clear how the set of feasible configurations explicitly
depends on the variable ξ. In Section 4.2 we will derive reformulations for the constraints in
Zℓpv, ξq as well as for the appearing fractions, since this problem cannot be passed directly
to a solver like Gurobi.

Cost functions

As described in Section 2, the objective function of the optimization problem is composed of
two parts. On the one hand, there is the cost C of the size of the modular system, which
leads to increasing costs for an increasing number of variants. On the other hand, we have
the cost component cℓ which decreases for increasing numbers of variants. A significant part
of this term is the cost of oversizing the crane bridges. Indeed, if profiles and sheets can be
chosen from a large number of variants, we can expect that the desired load capacities will
hardly be exceeded. If however, when there is little choice, crane bridges will be oversized,
and respective penalizing costs occur.

In our model we assume that the cost for maintaining the modular system amounts to

CP
n

ÿ

i“1

v1,i ` CS
m
ÿ

j“1

v2,j

with costs CP per profile variant and CS per sheet variant. The costs for oversizing the
modular system are modelled as

CO
N
ÿ

ℓ“1

n
ÿ

i“1

m
ÿ

j“1

cℓi,j

´

MpP i, Sjq ´ M ℓ
¯

with cost CO per ton discrepancy in load capacity and binary variables cℓi,j , i “ 1, . . . , n, j “

1, . . . ,m, ℓ “ 1, . . . , N with

cℓi,j “

#

1, if profile-sheet combination pi, jq is chosen for crane bridge ℓ,

0, otherwise.
(15)

Through reformulations and renaming variables in the function M , we can find a quadratic
reformulation of the objective function.

In addition to the costs mentioned above, it is also interesting to investigate the weight of
the bridges. The goal is to build the crane bridges as light as possible. In penalizing the
overdimensioning of bridges, it is certainly already included that the bridges are not too
heavy. Nevertheless, we will explicitly consider the weight of the bridges in the numerical
studies in Section 4.2 and investigate whether it makes a difference in the solution whether
the total weight is part of the objective function or not. In this cost, we then also include for
the first time the number variables zℓ1,i and zℓ2,j of the chosen variant of profiles and sheets
from the modular system. We denote by w the weight function for a crane bridge, which
depends on the geometry parameters of the profiles and sheets and the corresponding number
variables. Thus, we additionally obtain the weight cost
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CW
N
ÿ

ℓ“1

n
ÿ

i“1

m
ÿ

j“1

cℓi,jwpP i, Sj , zℓq (16)

with costs CW per ton. The weight functions can be easily determined with the geometry of
the profiles and sheets, see Figure 2 and 3. Through renaming variables we can find again a
quadratic reformulation of the total weight costs from (16).

4.2 Reformulation of the set of feasible configurations

The set Zℓpv, ξq contains fractions and constraints that we cannot directly pass to a solver
like Gurobi, but we need reformulations for them. We start with the fractions. We define new

integer variables yℓj P Z, j “ 1, . . . ,m, ℓ “ 1, . . . , N , which correspond to

Z

Lℓ

2ljS

^

. Therefore we

have for j “ 1, . . . ,m, ℓ “ 1, . . . , N ,

Lℓ

2ljS
` εfloor ´ 1 ď yℓj ď

Lℓ

2ljS
(17)

while εfloor is small enough (a little bit larger than the feasibily tolerance and integer feasibily
tolerance of the solver Gurobi). The constraints in (17) can be reformulated to quadratic
constraints through multiplication by 2ljS . We recall at this point that, for passing them to
Gurobi, quadratic constraints do not have to be convex.

Next we consider the indicator constraints. Gurobi can handle indicator constraints of the
type

y “ f ñ aJx ď b,

with variables y P B and x P Rn. This means that, if the binary variable y is equal to
f P t0, 1u, the linear constraint aJx ď b with a P Rn, b P R, has to be satisfied. In the other
case (y “ 1 ´ f) the constraint may be violated [1].

Through this form of the constraints, we introduce binary variables bℓ1,i P B, i “ 1, . . . , n, and

bℓ2,j P B which specify if variant i of profiles and variant j of sheets is chosen for crane bridge
ℓ. Therefore we have

bℓ1,i “

#

1, if profile variant i is chosen for crane bridge ℓ,

0, else,

bℓ2,j “

#

1, if sheet variant j is chosen for crane bridge ℓ,

0, else,

i “ 1, . . . , n, j “ 1, . . . ,m, ℓ “ 1, . . . , N . The conditions (7) and (8) can be summarized to

n
ÿ

i“1

bℓ1,i “ 1,
m
ÿ

j“1

bℓ2,j “ 1.
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Further we use bℓ1,i “ 1 instead of z1,i ą 0 in (9) and for the sheets bℓ2,j “ 1 instead of zℓ2,j ą 0,

so that we can use the Gurobi indicator constraints. The condition bℓ1,i “ bℓ2,j “ 1 can be

easily reformulated with the binary variable cℓi,j from (15) since we have

cℓi,j “

#

1, if bℓ1,i “ bℓ2,j “ 1,

0, else
, i “ 1, . . . , n, j “ 1, . . . ,m, ℓ “ 1, . . . , N.

We may formulate this relation by the linear constraints

cℓi,j P B, cℓi,j ď bℓ1,i, cℓi,j ď bℓ2,j , cℓi,j ě bℓ1,i ` bℓ2,j ´ 1. (18)

We summarize all the binary variables bℓ1,i and bℓ2,j for crane bridge ℓ into the vector bℓ, all

binary variables cℓi,j into cℓ, all yℓi into yℓ and all the variables for the number of the variants

into a vector zℓ (as before). Hence we obtain the set of feasible configurations

Zℓpv, ξq “ t bℓ P Bn`m, cℓ P Bnm, yℓ P ZmN , zℓ P Nn`m|

n
ÿ

i“1

bℓ1,i “ 1,
m
ÿ

j“1

bℓ2,j “ 1,

cℓi,j “ 1 ñ zℓ1,i “ 4yℓj ´ 2,

bℓ2,j “ 1 ñ zℓ2,j “ 2yℓj ´ 2,

cℓi,j “ 1 ñ MpP i, Sjq ě M ℓ,

cℓi,j “ 1 ñ pP i, Sjq P F,

bℓ1,i “ 0 ñ zℓ1,i “ 0,

bℓ2,j “ 0 ñ zℓ2,j “ 0,

reformulation (17),

coupling(18),

v1,i “ 0 ñ bℓ1,i “ 0,

v2,j “ 0 ñ bℓ2,j “ 0u.

(19)

We also reformulate (4) in terms of the new binary variables, which explains the last two
constraints. All constraints in (19) can be passed to Gurobi, as long as we find a linear
formulation of the function M .

12



4.3 A mixed-integer quadratic optimization problem for the modular sys-
tem for crane bridges

With the results from Sections 4.1 and 4.2 we can specify the optimization problem P for the
example of crane bridges

P crane : min
b,c,v,ξ,y,z

CP
n

ÿ

i“1

v1,i`CS
m
ÿ

j“1

v2,j ` CO
N
ÿ

ℓ“1

n
ÿ

i“1

m
ÿ

j“1

cℓi,j

´

MpP i, Sjq ´ M ℓ
¯

s.t. P i P X1, i “ 1, . . . , n,

Sj P X2, j “ 1, . . . ,m,

pbℓ, cℓ, yℓ, zℓq P Zℓpv, ξq, ℓ “ 1, . . . , N,

v1,i, v2,j P B, i “ 1, . . . , n, j “ 1, . . . ,m,

(20)

with b “ pb1, . . . , bLq, y and z respectively and ξ “
`

P i, . . . , Pn, S1, . . . , Sm
˘

and Zℓpv, ξq from
(19). In P crane we do not consider the total weight costs in particular.

The following problem considers the total weight cost of the crane bridges in the objective
function

P crane,w : min
b,c,v,ξ,y,z

CP
n

ÿ

i“1

v1,i`CS
m
ÿ

j“1

v2,j ` CO
N
ÿ

ℓ“1

n
ÿ

i“1

m
ÿ

j“1

cℓi,j

´

MpP i, Sjq ´ M ℓ
¯

`CW
N
ÿ

ℓ“1

n
ÿ

i“1

m
ÿ

j“1

cℓi,jwpP i, Sj , zℓq

s.t. P i P X1, i “ 1, . . . , n,

Sj P X2, j “ 1, . . . ,m,

pbℓ, cℓ, yℓ, zℓq P Zℓpv, ξq, ℓ “ 1, . . . , N,

v1,i, v2,j P B, i “ 1, . . . , n, j “ 1, . . . ,m,

(21)

with the same designations as above.

The problems P crane and P crane,w have clearly more variables than the problem P . However,
we need these for the necessary reformulations so that the problem can be passed to the solver
Gurobi.

Overall, we obtain mixed-integer optimization problems in (20) and (21). The load capacity
function M and the weight function w can greatly complicate the problems. In particular
the load capacity function enters both in objective function and the constraints. If we find a
linear formulation of these functions, the resulting objective functions are quadratic and the
constraint cℓi,j “ 1 ñ MpP i, Sjq ě M ℓ can be modelled and solved globally with Gurobi. In
the following subsection, we examine some example problems.

4.4 Numerical results

As mentioned in Section 4.3, we can solve the problems P crane and P crane,w globally with
Gurobi if we find linear representations for the load function M and the weight functions wP
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and wS . Using the structure of M from (5), a linear representation can be found by renaming
variables. The same can be done for the weight functions. By adding quadratic equality
constraints, which can be handled with Gurobi, any polynomially representable function can
be linearized.

For simplicity, we fix the profile and sheet thickness, so we have tiP “ tjS “ 6, i “ 1, . . . , n, j “

1, . . . ,m. All lengths are measured in millimeters. For the profiles we set hiP P r40, 100s,

wi
P P r100, 200s and for the sheets hjS P r400, 1000s, ljS P r150, 600s, and wj

S P r300, 400s.

We choose c “
`

50, 1, 3, 25 ,
1
5 , 100

˘

. With this choice of c, we obtain approximately suitable
load capacities. A more accurate representation of the load capacity function with suitable
validated values for c remains an open question and is worth further investigation in the
future. The input data given in the following were randomly generated and can be found
in the tables below as well as the optimization results and the optimal configuration of the
modular systems. By formulating the problems and reformulating them into a quadratic
problem, we need to solve optimization problems that are nonconvex in both the objective
function and the constraints.

Example 1

In Ex1 and Ex1W we consider a small example with 5 demanded cranes and 5 possible
profile and sheet variants. In Ex1W also the weight costs are considered in the objective
function.

n 5
m 5
L 5
CO 10.0000
CP 10.0000
CS 5.0000
runtime [s] 1.79
total costs 42.1999
number of binary variables 185
number of continuous variables 85
number of integer variables (with binary) 260
number of quadratic constraints 300
number of indicator constraints 925
total weight rts 2.06

Table 1: General input data and optimization stats for Ex1
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wP hP

i

1 100.00 68.89
4 100.00 95.90

wS hS lS

j

1 300.00 400.00 375.00
2 391.64 532.81 464.75
3 394.53 815.97 496.55
4 400.00 1,000.00 555.55

Table 2: Optimal configuration of the modular system for Ex1: profiles (left) and sheets
(right)

i j M rts M ℓrts Lℓrmms weight rts
ℓ

0 4 4 14.00 14.00 5,000 0.27
1 1 1 10.00 10.00 3,000 0.16
2 4 2 8.39 8.00 5,000 0.29
3 1 2 3.00 3.00 13,000 0.69
4 4 3 6.00 6.00 10,000 0.65

costs variants 40.00
costs oversizing 3.92

Table 3: Mapping crane bridges to profile and sheet variant with requested load capacity and
actual load capacity and span for Ex1 (left); overview of the costs (right)

The following are the tables for Ex1W

n 5
m 5
L 5
CO 10.0000
CP 10.0000
CS 5.0000
CW 100.0000
runtime [s] 1.96
total costs 247.7879
number of binary variables 185
number of continuous variables 315
number of integer variables (with binary) 260
number of quadratic constraints 520
number of indicator constraints 925
total weight rts 2.39

Table 4: General input data and optimization stats for Ex1W
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wP hP

i

1 153.31 66.89
3 154.65 90.00
4 100.00 55.00

wS hS lS
j

0 400.00 449.21 225.705368
3 400.00 1,000.00 590.909628

Table 5: Optimal configuration of the modular system for Ex1W: profiles (left) and sheets
(right)

i j M rts M ℓrts Lℓrmms weight rts
ℓ

0 3 3 14.00 14.00 5,000 0.36
1 3 0 13.87 10.00 3,000 0.22
2 3 3 14.00 8.00 5,000 0.36
3 1 0 3.00 3.00 13,000 0.97
4 4 3 6.40 6.00 10,000 0.48

costs variants 40.00
costs oversizing 102.66
costs total weight 239.43

Table 6: Mapping crane bridges to profile and sheet variant with requested load capacity and
actual load capacity and span for Ex1W (left); overview of the costs (right)

As expected, Ex1W is more complex to solve because the number of variables and constraints
is larger. This has an effect on the runtime. Nevertheless, the solver quickly finds a global
optimum point for both problems. We can also see that it makes a difference whether we take
the weight into account in the optimization or not. However, it is difficult to say in general
terms which problem should be solved. Depending on the application, it must be decided
how much the weight costs should be taken into account or whether they should be included
in the objective function.

Example 2 (Ex2)

In the second example, we consider a larger data set with 50 crane bridges. The solver takes
considerably more time, but terminates with a global optimal point. The problem Ex2 is the
variant without weight costs, Ex2W considers the total weight of the crane bridges.
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n 10
m 5
L 20
CO 1.0000
CP 20.0000
CS 10.0000
runtime [s] 85.96
total costs 105.1276
number of binary variables 1,315
number of continuous variables 150
number of integer variables (with binary) 1,715
number of quadratic constraints 2,100
number of indicator constraints 7,300
total weight rts 8.68

Table 7: General input data and optimization stats for Ex2

wP hP

i

5 146.52 87.35

wS hS lS

j

1 400.00 517.25 261.73
2 400.00 1,000.00 500.00
3 300.00 400.00 422.43

Table 8: Optimal configuration of the modular system for Ex2: profiles (left) and sheets
(right)
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i j M rts M ℓrts Lℓrmms weight rts
ℓ

0 5 2 14.00 14.00 5,000 0.29
1 5 3 10.62 10.00 3,000 0.18
2 5 1 9.00 8.00 5,000 0.37
3 5 2 5.38 3.00 13,000 0.96
4 5 2 7.00 6.00 10,000 0.71
5 5 1 11.25 5.00 4,000 0.28
6 5 3 9.10 5.00 3,500 0.25
7 5 2 7.78 6.00 9,000 0.63
8 5 2 8.75 7.00 8,000 0.54
9 5 3 15.92 8.00 2,000 0.11
10 5 3 6.37 6.00 5,000 0.32
11 5 1 15.00 7.00 3,000 0.20
12 5 1 9.00 9.00 5,000 0.37
13 5 2 5.38 4.00 13,000 0.96
14 5 2 7.00 7.00 10,000 0.71
15 5 1 11.25 6.00 4,000 0.28
16 5 1 12.86 7.00 3,500 0.24
17 5 2 7.78 7.00 9,000 0.63
18 5 2 8.75 8.00 8,000 0.54
19 5 3 15.92 10.00 2,000 0.11

costs variants 50.00
costs oversizing 55.12

Table 9: Mapping crane bridges to profile and sheet variant with requested load capacity and
actual load capacity and span for Ex2 (left); overview of the costs (right)
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The following are the tables for Ex2W:

n 10
m 5
L 20
CO 1.0000
CP 20.0000
CS 10.0000
CW 10.0000
runtime [s] 140.45
total costs 165.6109
number of binary variables 1,315
number of continuous variables 1,360
number of integer variables (with binary) 1,715
number of quadratic constraints 3,290
number of indicator constraints 7,300
total weight rts 7.68

Table 10: General input data and optimization stats for Ex2W

wP hP

i

9 100.00 93.71

wS hS lS

j

0 300.00 409.65 416.67
2 400.00 1,000.00 500.00
4 300.00 400.00 250.28

Table 11: Optimal configuration of the modular system for Ex2W: profiles (left) and sheets
(right)
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i j M rts M ℓrts Lℓrmms weight rts
ℓ

0 9 2 14.00 14.00 5,000 0.31
1 9 0 10.79 10.00 3,000 0.14
2 9 2 14.00 8.00 5,000 0.31
3 9 2 5.38 3.00 13,000 0.86
4 9 2 7.00 6.00 10,000 0.65
5 9 0 8.09 5.00 4,000 0.20
6 9 0 9.24 5.00 3,500 0.20
7 9 2 7.78 6.00 9,000 0.58
8 9 2 8.75 7.00 8,000 0.51
9 9 4 17.58 8.00 2,000 0.09
10 9 4 7.03 6.00 5,000 0.29
11 9 0 10.79 7.00 3,000 0.14
12 9 2 14.00 9.00 5,000 0.31
13 9 2 5.38 4.00 13,000 0.86
14 9 2 7.00 7.00 10,000 0.65
15 9 0 8.09 6.00 4,000 0.20
16 9 4 10.05 7.00 3,500 0.19
17 9 2 7.78 7.00 9,000 0.58
18 9 2 8.75 8.00 8,000 0.51
19 9 2 35.00 10.00 2,000 0.10

costs variants 50.00
costs oversizing 73.48
costs total weight 76.81

Table 12: Mapping crane bridges to profile and sheet variant with requested load capacity
and actual load capacity and span for Ex2W (left); overview of the costs (right)

All experiments were run on an Intel i7 processor with 8 cores with 3.60 GHz and 32 GB of
RAM and with version 9.5.1 of GUROBI.

We observe that the optimization model finds a global solution even for a larger data set.
This indicates that the modeling approach for modular systems problems from Section 3 may
be considered suitable. However, the computational cost becomes very large due to the large
increase in binary variables, despite the use of an efficient solver.

It should also be mentioned that the example is simplified and may not yet have a relevant
dimension for practice, but that for the first time a model and a deterministic solution method
were presented for modular system problems in which neither component combinations, num-
bers of variants nor component design were fixed.

5 Final remarks

As described in Section 4.4, the high problem dimension, especially the many binary vari-
ables that arise when we reformulate the original optimization problem, makes it very time
consuming to solve the problem P crane and P crane,w globally. Therefore, there is an interest
in solving the problem faster.
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One possibility to treat larger applications is to solve the problem locally instead of globally.
So it must be weighed whether only local optimal points would be sufficient in place of global
ones. Another difficulty is the nonconvexity of the optimization problem, which is largely
due to the product of a binary variable with the load function M . Another idea would be
to find a convex reformulation of the problem by a more suitable load capacity function or
to work with a convex relaxation. Another idea for future research is to try to exploit the
dependency structure of the original problem P in (1) by techniques from bilevel optimization
and decomposition methods.

References

[1] Gurobi constraints. https://www.gurobi.com/documentation/9.5/refman/constraints.html.
called at 01.06.2022.

[2] S. Bolender, J. Oellerich, M. Braun, and M. Golder. Skalierbarer modularer
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