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Abstract Motivated by applications in political districting, we consider the
task of partitioning the n vertices of a planar graph into k connected compo-
nents. We propose an extended formulation for this task that has two desirable
properties: (i) it uses just O(n) variables, constraints, and nonzeros, and (ii)
it is perfect. To explore its ability to solve real-world problems, we apply it
to a political districting problem in which contiguity and population balance
are imposed as hard constraints and compactness is optimized. Computational
experiments show that, despite the model’s small size and integrality for con-
nected partitioning, the population balance constraints are more troublesome
to effectively impose. Nevertheless, we share our findings in hopes that others
may find better ways to impose them.

1 Introduction

In political districting, the task is to partition a state into a given number of
districts for elections. Two basic criteria are that districts have roughly equal
populations and be contiguous on the map. There are many other traditional
and emerging redistricting principles that can guide the redistricting process.
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In the operations research literature, districting problems are usually cast
in terms of a graph G = (V,E) whose vertices represent geographic units (e.g.,
counties, census tracts, or census blocks) and whose edges indicate which pairs
of geographic units are adjacent on the map. Each geographic unit i ∈ V has
an associated population pi. The task is to partition the vertices into k districts
(V1, V2, . . . , Vk) so that each district Vj induces a connected subgraph G[Vj ]
and has a population p(Vj) :=

∑
i∈Vj

pi that is near to the ideal p(V )/k.
For an integer programmer, the question is how to best capture these con-

straints in a mathematical model. A common refrain among researchers is that
the contiguity constraints pose a “major challenge” [28], are “particularly dif-
ficult to deal with” [23], and make districting “much more difficult than other
partitioning problems” [24]. Another huge challenge is the sheer size of redis-
tricting instances [31]. In many states, the number of census tracts exceeds
one thousand, and the number of census blocks approaches one million, thus n
can be quite large. Classic integer programming models for districting include
a capacitated k-median model that uses n2 variables [15], a set partitioning
model that uses exponentially many variables [10], and a labeling model that
uses kn variables and suffers from symmetry [23,13,30].

These challenges with contiguity constraints and huge scale prompted us to
develop something completely different. We propose an extended formulation
for partitioning the n vertices of a planar graph into k connected compo-
nents. The model has linear size, using just O(n) variables, constraints, and
nonzeros. Further, it is perfect, i.e., it projects down to the convex hull of fea-
sible solutions. Key ingredients to the approach include the characterization
of branching polyhedra due to Edmonds [6] and the linear-size formulation for
spanning trees in planar graphs due to Williams [33], cf. [22,29].

At a high level, the model works by selecting a spanning tree and picking
n−k edges from the tree’s edges. This gives a forest with k components. In each
component, a vertex is selected as its root, and the edges of the component are
oriented away from it. Figure 1 illustrates the idea for a 5-by-5 grid instance
that requires k = 5 districts.

Then, we propose a flow-based formulation to impose the population bal-
ance constraints. To evaluate its performance, we apply it to a stylized dis-
tricting problem in which contiguity and population balance are imposed as
hard constraints, and compactness is sought by minimizing the flow variables.
Computational experiments show that, despite the model’s small size and per-
fectness for connected partitioning, the population balance constraints become
the new bottleneck. Nevertheless, we hope that, by sharing our experience
here, other researchers may find better ways to impose the population balance
constraints and make the approach more tractable.

2 Background and Literature Review

We consider a simple (undirected) graph G = (V,E) with n = |V | vertices and
m = |E| edges. Denote by E(S) the subset of edges that have both endpoints
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Fig. 1: 5×5 grid graph (left); a spanning tree (center); and 5 out-trees (right).

in S ⊆ V . We call G = (V,E) a tree if it is connected and satisfies |E| = |V |−1.
A forest is a disjoint union of trees. A spanning tree is a tree subgraph over
the same vertex set. Often, G will be planar, in which case its number of edges
is linear with respect to its number of vertices, namely m ≤ 3n− 6 if n ≥ 3.

We also consider directed graphsD = (V,A). Often, they are obtained from
G by replacing each undirected edge {i, j} ∈ E by two oppositely directed arcs
(i, j) and (j, i). The subsets of arcs that point towards vertex i and away from
vertex i are denoted by δ−(i) and δ+(i), respectively. Their sizes are called
the indegree and outdegree. Denote by A(S) the subset of arcs that have
both endpoints in S ⊆ V . Associated with a directed graph D = (V,A) is its
underlying undirected graph which has the same vertex set and has the edge
{i, j} if at least one of the arcs (i, j) or (j, i) belongs to A.

An out-tree is a directed graph in which each vertex has indegree at most
one and whose underlying graph is a tree. An out-tree has one vertex with
indegree zero that is often called its root. An out-forest is a disjoint union
of out-trees. A spanning out-tree is an out-tree subgraph that has the same
vertex set. Terms like out-tree and out-forest are used by [11,1,4]. Elsewhere,
spanning out-trees are often called arborescences, and out-forests are often
called branchings, see [25, Ch. 52] and [18, Ch. 6].

Forests, spanning trees, and their directed counterparts are well-studied in
the literature from the polyhedral perspective. For example, the forest poly-
tope of undirected graph G = (V,E), which is the convex hull of characteristic
vectors of its forests, admits the polyhedral representation:

x(E(S)) ≤ |S| − 1 ∀S ⊆ V, S ̸= ∅ (1a)

xe ≥ 0 ∀e ∈ E, (1b)

where x(E(S)) is shorthand for
∑

e∈E(S) xe. Further, adding the constraint

x(E) = n− 1 gives the spanning tree polytope, see [7] and [25, Ch. 50].
Similarly, the out-forest polytope of D = (V,A), which is the convex hull

of its out-forests, admits the following polyhedral representation [25, Ch. 52]:

x(A(S)) ≤ |S| − 1 ∀S ⊆ V, S ̸= ∅ (2a)

x(δ−(i)) ≤ 1 ∀i ∈ V (2b)

xa ≥ 0 ∀a ∈ A. (2c)
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By adding the constraint x(A) = n − 1 to system (2), we get the spanning
out-tree polytope, i.e., the convex hull of out-forests with n−1 arcs. Generally,
the convex hull of out-forests with n − k arcs is obtained from system (2) by
adding the cardinality constraint x(A) = n− k, see Corollary 52.6b of [25].

These polyhedral characterizations of (out-)forests and spanning (out-)trees
are quite large as they use exponentially many cycle-elimination constraints (1a)
and (2a). However, they admit much smaller representations. For example,
there are extended formulations for spanning (out-)tree polytopes of arbitrary
graphs that use O(nm) variables, constraints, and nonzeros [34,19]. Mean-
while, when G is planar, there are extended formulations of size O(n), as
shown by Williams [33]. While Williams’ original formulation had a flaw in
the sense that it permitted (disconnected) solutions other than spanning trees,
there is a simple fix [22,29]. Building on Williams’ formulation, Fiorini et al. [8]
provide extended formulations of size O(g1/2n3/2+g3/2n1/2) for spanning tree
polytopes of genus g graphs. Later this was generalized by Aprile et al. [2]
who give size O(n1+β) extended formulations for spanning tree polytopes of
graphs that admit 1/2-balanced separators of size O(nβ) with 0 < β < 1.

3 Extended Formulation for Connected Partitioning

Before giving the linear-size extended formulation for connected partitioning
in planar graphs, we first give an exponentially large formulation for selecting
k disjoint out-trees. It is obtained from the out-forest polytope (2) by adding
a cardinality constraint. Further, to capture which vertices are roots (which
will be important in the districting context), we introduce slack variables si
for the indegree constraints (2b) which gives:

x(A(S)) ≤ |S| − 1 ∀S ⊆ V, S ̸= ∅ (3a)

x(δ−(i)) + si = 1 ∀i ∈ V (3b)

x(A) = n− k (3c)

xa ≥ 0 ∀a ∈ A (3d)

si ≥ 0 ∀i ∈ V. (3e)

This formulation selects an out-forest with n−k arcs, thus giving k disjoint
out-trees. Further, system (3) defines an integral polyhedron, as introducing
slack variables in (3b) preserves integrality by the following folklore lemma.

Lemma 1 Suppose the polytope P = {x | Ax ≤ b, Cx = d, x ≥ 0} is integral.
If A and b are integral, then introducing slack variables preserves integrality,
i.e., Q = {(x, s) | Ax+ s = b, Cx = d, x ≥ 0, s ≥ 0} is integral.

Proof Let (x∗, s∗) be an extreme point of Q. We are to show that (x∗, s∗) is
integral. First, we claim that x∗ is an extreme point of P . If not, then x∗ can
be written as a strict convex combination of points in P , i.e., x∗ =

∑q
i=1 λix

i

and
∑q

i=1 λi = 1 for some λ strictly positive and q ≥ 2. For each i = 1, 2, . . . , q,
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let si = b−Axi. Then, we can write (x∗, s∗) as a strict convex combination of
points (xi, si) from Q as follows:

(x∗, s∗) = (x∗, b−Ax∗) = (

q∑
i=1

λix
i, b−A(

q∑
i=1

λix
i))

=

q∑
i=1

λi(x
i, b−Axi) =

q∑
i=1

λi(x
i, si).

This contradicts that (x∗, s∗) is an extreme point of Q, thus showing that x∗

is an extreme point of P . Then, by assumption that P is integral, we have that
x∗ is integral, and so is s∗ = b − Ax∗ as A and b are integral. We have thus
shown that an arbitrary extreme point (x∗, s∗) of Q is integral, as desired. ⊓⊔

Proposition 1 summarizes our observations about the linear system (3).

Proposition 1 The linear system (3) gives a correct formulation for selecting
k disjoint out-trees of a directed graph D = (V,A) and defines an integral
polyhedron.

Aside from the cycle-elimination constraints (3a), formulation (3) has just
O(n) variables, constraints, and nonzeros. To get the full formulation’s size
down to O(n), we use Williams’ spanning tree formulation PWilliams(G).
Specifically, we impose that the spanning tree edge variables y satisfy the con-
straints of Williams’ formulation, which we simply write as y ∈ PWilliams(G),
and that the out-forest arc variables satisfy xij + xji ≤ ye. That is, the pro-
posed formulation is as follows, where G = (V,E) is a connected simple planar
graph, and D = (V,A) is obtained from G by bidirecting its edges, i.e., re-
placing each undirected edge {i, j} by oppositely directed arcs (i, j) and (j, i).

y ∈ PWilliams(G) (4a)

xij + xji ≤ ye ∀e = {i, j} ∈ E (4b)

x(δ−(i)) + si = 1 ∀i ∈ V (4c)

x(A) = n− k (4d)

si ≥ 0 ∀i ∈ V (4e)

xa ≥ 0 ∀a ∈ A. (4f)

Theorem 1 The linear system (4) gives a correct formulation of size O(n)
for selecting k disjoint out-trees of the bidirected graph D = (V,A) and projects
to an integral polyhedron in the (s, x)-space of variables.

Proof Denote by P as the set of all (s, x) satisfying the exponentially large for-
mulation (3), and denote by Q as the set of all (s, x, y) satisfying the Williams-
based extended formulation (4). By Proposition 1, P is a correct formulation
and is integral. So, to prove the claim, we show that P = projs,x Q.
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To prove P ⊆ projs,x Q, it suffices to show that the extreme points of P
belong to projs,x Q. So, let (ŝ, x̂) be an extreme point of P . By Proposition 1,
(ŝ, x̂) is integral and thus binary. The arcs A′ = {(i, j) ∈ A | x̂ij = 1} selected
by x̂ thus form an out-forest consisting of k out-trees. The underlying edge set

E′ = {{i, j} ∈ E | (i, j) ∈ A′ or (j, i) ∈ A′}

induces a subgraph of G that is a forest with k components. Since G is con-
nected, it admits a spanning tree (V,E′′) such that E′ ⊆ E′′. Let ŷ be the
characteristic vector of E′′. Since ŷ represents the edge set of a spanning
tree, we have ŷ ∈ PWilliams(G), and by construction of E′ and E′′ we have
x̂ij + x̂ji ≤ ŷe for each edge {i, j} ∈ E. So, (ŝ, x̂, ŷ) satisfies constraints (4a)
and (4b). The other constraints from (4) also define P and are thus satisfied by
the assumption that (ŝ, x̂) ∈ P . So, (ŝ, x̂, ŷ) ∈ Q and thus (ŝ, x̂) ∈ projs,x Q.

To prove projs,x Q ⊆ P , let (ŝ, x̂, ŷ) be a point from Q. It suffices to show
that it satisfies constraints (3a), so consider S ⊆ V with S ̸= ∅. We have

x̂(A(S)) =
∑

(i,j)∈A(S)

x̂ij ≤
∑

e∈E(S)

ŷe = ŷ(E(S)) ≤ |S| − 1,

where the first inequality holds by constraints (4b), and the last inequality
holds by the fact that ŷ belongs to PWilliams(G) which is equivalent to the
spanning tree polytope, and any point ŷ in the spanning tree polytope satisfies
the cycle-elimination constraints ŷ(E(S)) ≤ |S| − 1, see constraints (1a). So,
(ŝ, x̂) satisfies the constraints of (3) and thus belongs to P . ⊓⊔

4 Application in Political Districting

Three of the most basic political districting criteria are population balance,
contiguity, and compactness. The formulation (4) captures the contiguity con-
straints, which researchers have often suggested is the bottleneck for approaches
based on integer programming. In this section, we consider how to incorporate
population balance constraints and a compactness objective in the context of
model (4). One goal is to preserve the model’s linear size, O(n). This task
has eluded previous research. Even those who adopt Williams’ spanning tree
formulation arrive at models of size Θ(kn) or Θ(n2), see [12,16,17].

In the USA, the population balance constraints are enforced quite strictly
by the courts, see [14]. A common rule-of-thumb is that congressional districts
should satisfy a 1% population deviation (±0.5%), meaning that each district
should have a population between L = ⌈0.995p(V )/k⌉ and U = ⌊1.005p(V )/k⌋.
However, to avoid litigation, many states draw their congressional districts to
meet a 1-person deviation, L = ⌊p(V )/k⌋ and U = ⌈p(V )/k⌉. Other states like
Iowa and West Virginia strive to keep all counties whole and thus may be able
to justify the need for a larger deviation. For example, the US Supreme Court
upheld West Virginia’s 2010 districts which exhibited a 0.79% deviation [20].

To ensure population balance, we propose a flow-based formulation. The
root of each out-tree serves as a source vertex that sends out flow to the other
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vertices in the same district. The flow generated at vertex i is represented by
the variable gi. Flow is only permitted to be sent across arcs of the out-forest,
written using a flow variable fij for each arc (i, j) ∈ A of the bidirected graph
D = (V,A). The population balance constraints are then written as follows.

Lsi ≤ gi ≤ Usi ∀i ∈ V (5a)

gi + f(δ−(i)) = f(δ+(i)) + pi ∀i ∈ V (5b)

0 ≤ fij ≤ (U − pi)xij ∀(i, j) ∈ A. (5c)

Constraints (5a) state that if vertex i ∈ V is selected as a root, then it gener-
ates a flow of between L and U for its district; otherwise, it generates zero flow.
The flow-balance constraints (5b) ensure that each vertex i ∈ V consumes a
flow equal to its population pi. By constraints (5c), flows are not sent across
unselected arcs, with a big-M coefficient of U − pi. Under these population
balance constraints (5), the integrality of the s and x variables is certainly not
guaranteed, so we will place explicit integrality restrictions on them. Techni-
cally, it suffices to impose integrality solely on x, as the integrality of s would
follow by the indegree constraints (4c). However, our implementation defines
the root variables s as binary, as they represent key decisions on which a MIP
solver may find it advantageous to branch.

To favor districts that are compact in shape, we choose to minimize the
total population flow, subject to contiguity and population balance constraints:

min
{
f(A)

∣∣ (f, g, s, x, y) satisfies (4) and (5), (s, x) binary
}
.

The population flow objective has the following interpretation. For each
district, place its total population at its root. Have the people walk home along
the edges of their district. The objective value is then the total number of edges
crossed, aggregated over all people. Observe that once a district S ⊆ V and
root r have been chosen, an optimal out-tree for the district can be constructed
as a shortest path tree of G[S] rooted at r. To find the best out-tree for a
district S, one can try all possible roots r ∈ S and compute the resulting
objectives. This is very similar to a k-median objective and the moment-of-
inertia objective that are discussed next.

4.1 An existing MIP for comparison

To evaluate the computational performance of the proposed districting model,
we compare it with the classic integer programming model of Hess et al. [15].
The Hess model has a binary variable zij for each pair of vertices i, j ∈ V
indicating whether vertex i is assigned to (the district centered at) vertex j.
Setting zjj = 1 represents vertex j being selected as a district center (root).
Originally, Hess et al. choose to minimize the moment-of-inertia:

min
∑
i∈V

∑
j∈V

pid
2
ijzij ,
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where distances dij are Euclidean distances between centroids. However, we
will instead use hop-based distances in graph G and will not square them, in
an attempt to mimic the flow objective. The (revised) Hess model is then:

min
∑
i∈V

∑
j∈V

pidijzij (6a)

s.t.
∑
j∈V

zij = 1 ∀i ∈ V (6b)

Lzjj ≤
∑
i∈V

pizij ≤ Uzjj ∀j ∈ V (6c)∑
j∈V

zjj = k (6d)

zij ≤ zjj ∀i, j ∈ V (6e)

zij ∈ {0, 1} ∀i, j ∈ V. (6f)

The assignment constraints (6b) ensure that each vertex is assigned to one dis-
trict. Constraints (6c) are the population balance constraints. Constraints (6d)
ensure that k district centers (and thus k districts) are selected. The coupling
constraints (6e) ensure that assignments are not made to unselected district
centers. Observe that the Hess model (6) has n2 binary variables and a pro-
portional number of constraints and nonzeros.

To guarantee contiguity, we add the popular constraints of Shirabe [26,
27] which use a flow variable f j

uv for each vertex j ∈ V and arc (u, v) ∈ A
of the bidirected graph D. Several other formulations for imposing contiguity
in the Hess model have been proposed, including a cut-based model that uses
a, b-separator inequalities [21], cf. [3,9,32], as well as the length-bounded cut
model proposed by Validi et al. [31]. In our experience, these cut-based models
perform slightly better than flow-based models on county-level instances (see
Table 3 of Validi et al. [31]) and significantly better on tract-level instances (see
Table 4 of Validi et al. [31]). Additional computational tricks like Lagrangian
reduced-cost fixing are needed to handle larger tract-level instances [31]. How-
ever, for the purposes of this paper, the Hess-Shirabe model suffices to show
the limitations of the proposed linear-size formulation.

5 Computational Experiments

For our experiments, we apply the linear-size formulation and the Hess-Shirabe
formulation to real districting instances. The data arises with the 2020 U.S.
Census, which was processed by Daryl DeFord and kindly shared with us. This
includes the county-level graphs G = (V,E), county populations pi, and num-
ber of congressional districts k. We permit a 1% population deviation (±0.5%).
Experiments are conducted on a PC running Windows 10 Pro with an Intel
Core i7-10700T processor (2 GHz base, 4.5 GHz turbo) and 16 GB RAM. Our
code is written in Python and solves MIPs using Gurobi 9.5.2 with 16 threads.
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Default settings are used, with the exception of a zero MIPGap to ensure truly
optimal solutions and a branchPriority of one for the si and zjj variables
as these key decisions are convenient to branch on, following Validi et al. [31].
For Williams’ spanning tree formulation, we must find a planar embedding of
G and construct the planar dual graph, which we obtain using [5]. Our code
and data are available at https://github.com/JackDaihanZhang/Linear-size-
formulations-for-connected-planar-graph-partitioning-and-political-districting.

Most county-level instances are trivial (k = 1) or infeasible (e.g., because
of a county whose population exceeds U). Such states are excluded, and com-
putational results for the remaining feasible states are given in Table 1.

Table 1: Computational results on county-level instances, without MIP start.

Linear-size model Hess-Shirabe model
state n k B&B objective time(s) B&B objective time(s)
ME 16 2 97 1,200,838 0.07 1 1,200,838 0.03
NM 33 3 286 1,753,079 0.45 1 1,743,350 0.70
ID 44 2 1 3,237,073 0.40 1 3,237,073 0.27
WV 55 2 2,072 3,900,450 0.79 1 3,900,450 0.52
MT 56 2 805 1,750,471 2.64 1 1,750,471 0.46
AL 67 7 36,729 4,844,289 126.13 3,834 4,844,289 53.46
AR 75 4 11,315 3,933,012 83.20 1 3,930,146 1.67
MS 82 4 12,572 4,723,142 148.47 1 4,721,804 3.23
NE 93 3 945 2,525,974 7.18 1 2,525,974 2.68
IA 99 4 23,062 5,288,753 333.63 1 5,286,772 5.23
KS 105 4 55,429 4,015,151 367.65 1 4,007,553 10.34

The objective values of the two models are similar across the states, with
the linear-size model sometimes having a slightly larger objective. This is be-
cause it effectively measures distances inside the districts, while the Hess-
Shirabe model is based on distances in G, which can be less, cf. [12]. Figure 2
illustrates solutions for New Mexico, showing that the two models sometimes
generate different solutions, not just different objective values.

Fig. 2: Solutions to the linear-size model (left) and Hess-Shirabe model (right).

https://github.com/JackDaihanZhang/Linear-size-formulations-for-connected-planar-graph-partitioning-and-political-districting
https://github.com/JackDaihanZhang/Linear-size-formulations-for-connected-planar-graph-partitioning-and-political-districting
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In terms of computational performance, both models easily handle smaller
instances. However, as the number of nodes and districts increases, the linear-
size model performs worse than the Hess-Shirabe model, with running times
often larger by one or two orders of magnitude. The linear-size model visits
many more branch-and-bound nodes, by up to four orders of magnitude.

Inspecting the computational logs, we observe that our MIP solver (Gurobi)
sometimes takes a while to find a good feasible solution for the linear-size
model. So, we ask—maybe its performance could be significantly improved if
we provide a MIP start? Table 2 shows results when an optimal MIP start is
given. Still, the linear-size model underperforms the Hess-Shirabe model. It is
no better at proving the optimality of a given solution.

Table 2: Computational results on county-level instances, when given an op-
timal MIP start.

Linear-size model Hess-Shirabe model
state n k B&B objective time(s) B&B objective time(s)
ME 16 2 1 1,200,838 0.05 1 1,200,838 0.03
NM 33 3 199 1,753,079 0.20 1 1,743,350 0.21
ID 44 2 197 3,237,073 0.32 1 3,237,073 0.19
WV 55 2 2,140 3,900,450 0.65 1 3,900,450 0.40
MT 56 2 802 1,750,471 2.18 1 1,750,471 0.22
AL 67 7 18,808 4,844,289 64.34 921 4,844,289 13.40
AR 75 4 7,267 3,933,012 22.95 1 3,930,146 1.17
MS 82 4 2,3015 4,723,142 210.33 1 4,721,804 2.78
NE 93 3 1,145 2,525,974 6.14 1 2,525,974 1.66
IA 99 4 15,808 5,288,753 261.04 1 5,286,772 4.71
KS 105 4 9,226 4,015,151 220.79 1 4,007,553 4.39

6 Conclusion and Future Work

In this paper, our motivation was twofold. First, redistricting instances can
be huge, involving potentially thousands of census tracts or nearly one million
census blocks. This poses a challenge for existing integer programming mod-
els that use Θ(kn), Θ(n2), or exponentially many variables. Second, many
researchers believe that contiguity constraints make districting “much more
difficult than other partitioning problems.” This motivated us to develop a
size Θ(n) integer programming model for political districting that exhibits
desirable theoretical properties, at least in terms of contiguity.

Two key ingredients to our approach are the polyhedral characterization
of cardinality-constrained out-forests due to Edmonds [6] and the linear-size
extended formulation for spanning trees due to Williams [33]. They permit us
to write a linear-size extended formulation for partitioning the n vertices of a
planar graph into k districts; moreover, the formulation is perfect, projecting
down to an integral polytope. Using additional flow variables, we impose the
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population balance constraints and a compactness objective. Computational
experiments on 2020 US Census data show that the resulting integer program-
ming model, despite its small size, is outperformed by existing models, e.g.,
the model of Hess et al. [15] with contiguity constraints of Shirabe [26,27],
cf. even faster approaches [21,31].

So, we finish this paper in a districting whack-a-mole situation; after strik-
ing the “contiguity mole” with our MIP mallet, a new “population balance
mole” has popped up. While this is an unfortunate outcome, we hope that
sharing our experiences here may lead others to find better ways to impose the
population balance constraints. Aside from the flow-based population balance
constraints discussed in this paper, we have also (unsuccessfully) attempted
to use analogues of the rounded capacity inequalities originally designed for
capacitated vehicle routing. That rabbit hole has many moles.
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9. Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin,
D., Sinnl, M.: Thinning out Steiner trees: a node-based model for uniform edge costs.
Mathematical Programming Computation 9(2), 203–229 (2017)

10. Garfinkel, R.S., Nemhauser, G.L.: Optimal political districting by implicit enumeration
techniques. Management Science 16(8), B–495 (1970)

11. Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press (1985)
12. Haunert, J.H.: Aggregation in map generalization by combinatorial optimization. Ph.D.

thesis, Fachrichtung Geodäsie und Geoinformatik der Leibniz-Univ. (2008)
13. Haunert, J.H., Wolff, A.: Generalization of land cover maps by mixed integer program-

ming. In: Proceedings of the 14th annual ACM international symposium on advances
in geographic information systems, pp. 75–82 (2006)

14. Hebert, J.G., Vandenberg, M.E., Smith, P.: The Realist’s Guide to Redistricting: Avoid-
ing the Legal Pitfalls. American Bar Association (2010)

15. Hess, S., Weaver, J., Siegfeldt, H., Whelan, J., Zitlau, P.: Nonpartisan political redis-
tricting by computer. Operations Research 13(6), 998–1006 (1965)

16. Kim, M., Xiao, N.: Contiguity-based optimization models for political redistricting prob-
lems. International Journal of Applied Geospatial Research (IJAGR) 8(4), 1–18 (2017)

17. Kim, M.J.: Multiobjective spanning tree based optimization model to political redis-
tricting. Spatial Information Research 26(3), 317–325 (2018)

18. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, Algorithms
and Combinatorics, vol. 21, 6th edn. Springer (2018)

19. Martin, R.K.: Using separation algorithms to generate mixed integer model reformula-
tions. Operations Research Letters 10(3), 119–128 (1991)

20. NCSL: 2010 redistricting deviation table. https://www.ncsl.org/research/

redistricting/2010-ncsl-redistricting-deviation-table.aspx (2020). Accessed:
2022-07-21

21. Oehrlein, J., Haunert, J.H.: A cutting-plane method for contiguity-constrained spatial
aggregation. Journal of Spatial Information Science 15, 89–120 (2017)

22. Pashkovich, K.: Extended formulations for combinatorial polytopes. Ph.D. thesis, Otto-
von-Guericke-Universität Magdeburg (2012)

23. Ricca, F., Scozzari, A., Simeone, B.: Political districting: from classical models to recent
approaches. Annals of Operations Research 204(1), 271–299 (2013)

24. Ricca, F., Simeone, B.: Local search algorithms for political districting. European Jour-
nal of Operational Research 189(3), 1409–1426 (2008)

25. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and
Combinatorics, vol. 24. Springer (2003)

26. Shirabe, T.: A model of contiguity for spatial unit allocation. Geographical Analysis
37(1), 2–16 (2005)

27. Shirabe, T.: Districting modeling with exact contiguity constraints. Environment and
Planning B: Planning and Design 36(6), 1053–1066 (2009)

28. Swamy, R., King, D.M., Jacobson, S.H.: Multiobjective optimization for politically fair
districting: A scalable multilevel approach. Operations Research 71(2), 536–562 (2023)

29. Validi, H., Buchanan, A.: A note on “a linear-size zero-one programming model for the
minimum spanning tree problem in planar graphs”. Networks 73(1), 135–142 (2019)

30. Validi, H., Buchanan, A.: Political districting to minimize cut edges. Mathematical
Programming Computation 14(4), 623–672 (2022)

31. Validi, H., Buchanan, A., Lykhovyd, E.: Imposing contiguity constraints in political
districting models. Operations Research 70(2), 867–892 (2022)

32. Wang, Y., Buchanan, A., Butenko, S.: On imposing connectivity constraints in integer
programs. Mathematical Programming 166(1), 241–271 (2017)

33. Williams, J.C.: A linear-size zero-one programming model for the minimum spanning
tree problem in planar graphs. Networks 39(1), 53–60 (2002)

34. Wong, R.T.: A dual ascent approach for Steiner tree problems on a directed graph.
Mathematical Programming 28(3), 271–287 (1984)

https://www.ncsl.org/research/redistricting/2010-ncsl-redistricting-deviation-table.aspx
https://www.ncsl.org/research/redistricting/2010-ncsl-redistricting-deviation-table.aspx

	Introduction
	Background and Literature Review
	Extended Formulation for Connected Partitioning
	Application in Political Districting
	Computational Experiments
	Conclusion and Future Work

