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Abstract

Nonconvex constrained stochastic optimization has emerged in many important application areas. Subject to
general functional constraints it minimizes the sum of an expectation function and a nonsmooth regularizer. Main
challenges arise due to the stochasticity in the random integrand and the possibly nonconvex functional constraints.
To address these issues we propose a momentum-based linearized augmented Lagrangian method (MLALM).
MLALM adopts a single-loop framework and incorporates a recursive momentum scheme to compute the stochastic
gradient, which enables the construction of a stochastic approximation to the augmented Lagrangian function.
We provide an analysis of global convergence of MLALM. Under mild conditions and with unbounded penalty
parameters, we show that the sequences of average stationarity measure and constraint violations are convergent
in expectation. Under a constraint qualification assumption the sequences of average constraint violation and
complementary slackness measure converge to zero in expectation. We also explore properties of those related
metrics when penalty parameters are bounded. Furthermore, we investigate oracle complexities of MLALM in
terms of total number of stochastic gradient evaluations to find an ϵ-stationary point and an ϵ-KKT point when
assuming the constraint qualification. Numerical experiments on two types of test problems reveal promising
performances of the proposed algorithm.

Keywords: Nonconvex optimization, functional constraint, augmented Lagrangian function, stochastic gradient,
momentum, global convergence, oracle complexity
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1 Introduction

In this paper, we consider the nonconvex constrained stochastic optimization problem

min
x∈X

{f(x) ≡ Eξ[F(x; ξ)]}+ h(x)

s.t. ci(x) = 0, i ∈ E ,
ci(x) ≤ 0, i ∈ I,

(1)

where X ⊆ Rn is a closed convex set, ξ is a random variable in the probability space Ξ, and independent of x. Here E
and I are two finite sets of indices. For any fixed ξ ∈ Ξ, F(·; ξ) : Rn → R and ci(·) : Rn → R, i ∈ E∪I, are continuously
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differentiable and possibly nonconvex, and h : Rn → R is proper, lower-semicontinuous and convex. Without loss of
generality we presume that both E and I are nonempty, the feasible set {x ∈ X : ci(x) = 0, i ∈ E ; ci(x) ≤ 0, i ∈ I}
is nonempty, and the objective function value of (1) over X is lower bounded by C∗. For problem (1), it can be
expensive to compute the expectation or the distribution of ξ may not be expressed explicitly. Thus the exact function
or gradient information of f can be hard to obtain. This type of problems widely appear in various application fields.
For example, in deep learning, constraints are imposed on output of the deep neural networks [32] to enforce specific
behaviors or properties, such as physics-constrained deep learning model [57], constraint-aware deep neural network
compression [10], manifold regularized deep learning [39, 45]. Some recent study has also highlighted the advantages
of incorporating various constraints when training deep neural networks [28, 37]. Other applications include, but
not limited to, portfolio allocation [3, 44], two/multi-stage modeling [3, 44] and constrained maximum likelihood
estimation [9, 17].

The past decade has witnessed great developments in nonconvex stochastic optimization. Since Ghadimi and Lan
[18] proposed randomized SGD methods for unconstrained nonconvex optimization, a surge of works have emerged in
this area of research. However, due to stochastic variances of approximate gradients, SGD methods often suffer from
slow convergence [6]. To address this issue, several types of variance reduction techniques have been proposed. Related
works include SAG [41], SAGA [15], SVRG [23], SARAH [33] and SPIDER [16]. Moreover, proximal variants aiming
for stochastic composite optimization have also been studied [19, 52, 43, 34, 50]. Among those methods, SAG- and
SAGA-type methods have high space requirements to store historical gradients at each sample point, while SVRG-,
SARAH- and SPIDER-type methods require to compute a (nearly) accurate gradient at a checkpoint from time to
time, which normally relies on large batch sizes. Recently, a stochastic recursive momentum method [14] attracts
attention, in which only one sample is required to estimate the gradient at each iteration. Later a proximal variant
was studied in [56] for nonconvex stochastic composite problems. Under the mean-squared smoothness condition, the
aforementioned proximal algorithm can produce a stochastic ϵ-stationary point with the oracle complexity bounded
by O(ϵ−3), where the oracle complexity refers to the total number of stochastic gradient evaluations.

Nonconvex optimization with general functional constraints can be challenging since the feasibility to these
constraints can be hard to maintain. Nonconvex constrained optimization in deterministic settings has been studied
for decades [51]. Penalty methods and sequential quadratic programming (SQP) methods are two of most effective
approaches for general constrained optimization. Penalty methods normally transform the original constrained
problem into a sequence of unconstrained ones by penalizing the constraints into the objective in a term measuring
the constraint violation. Among penalty methods, augmented Lagrangian (AL) methods attract much interest due to
the fact that the AL function has more advantages in characterizing the optimality conditions for constrained problems
and in designing effective algorithms. Nevertheless, classic penalty methods are normally double-loop algorithms,
in which a penalty function needs to be (approximately) minimized in the inner-loop. Single-loop penalty methods
with much simpler subproblems, such as Sℓ1QP [51], linearized AL methods [48, 49], have thus been studied for
constrained optimization. On the other hand, SQP methods try to compute search directions by solving a sequence
of quadratic programming subproblems. Along with the developments of complexity theories, numerical methods
for nonconvex constrained optimization with complexity analysis have been widely studied in the past ten years,
including [7, 24, 25, 26, 40, 42, 55].

For general functional constrained optimization in stochastic settings, such as (1), the main concerns lie in that
computing the exact gradient information of the expectation function can be expensive, sometimes even prohibitive,
and that maintaining the feasibility to general constraints can be challenging. Proximal point methods [5, 4, 27]
transfer problem (1) into a sequence of convex subproblems with proximal terms. These methods usually have
multi-loop structure and need to call a subsolver in each inner-loop. For instance, the inexact constrained proximal
point method with ConEx (ICPPC) in [4] transforms the original problem into a sequence of convex subproblems
obtained after adding proximal terms and solves each subproblem with the solver ConEx, which is designed for
convex functional constrained optimization. A level constrained proximal gradient (LCPG) method is developed in
[5] for deterministic constrained optimization, by constructing a sequence of relatively easier subproblems with an
increasing constraint level. The authors also extend LCPG method to stochastic (LCSPG) and variance-reduced
(LCSVRG) variants when the objective takes either expectation or finite-sum form. [47] studies penalty methods
based on first- and zeroth-order stochastic approximations for equality constrained optimization, with each subprob-
lem constructed based on ℓ2 penalty function. Recently stochastic SQP methods have been studied in [2, 11, 12]
for equality constrained stochastic optimization, with complexity analysis provided in [11]. Based on the linearized
AL function, [54] studies a single-loop primal-dual stochastic gradient method (PDSG) for solving convex stochastic
optimization problems. [21] extends PDSG and proposes a single-loop stochastic primal-dual (SPD) method for non-
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Algorithm Problem Stationarity measure Assumptions Comp.

SPD [21]
minx∈X f(x) + h(x)

s.t. ci(x) ≤ 0, i ∈ I

E[d(∇f(x) + ∂h(x) +
∑

i∈I λi∇ci(x),−NX(x))] ≤ ϵ,
1
|I|E[

∑
i∈I [ci(x)]+] ≤ ϵ,

E[
∑

i∈I λi|ci(x)|] ≤ ϵ

nonsingularity

O(ϵ−6)

O(ϵ−5)
(if initial feasible)

SSQP [11]
minx∈Rn f(x)

s.t. ci(x) = 0, i ∈ E

E[∥∇f(x) +
∑

i∈E λtrue
i ∇ci(x)∥] ≤ ϵ,

E[
√∑

i∈E |ci(x)|] ≤ ϵ
strong LICQ

Õ(ϵ−4)

O(ϵ−4)
(if τmin known)

ICPPC [4]
minx∈X f(x) + h(x)

s.t. ci(x) + hi(x) ≤ 0, i ∈ I

E[∥x− x̂∥2] ≤ ϵ2 with x̂ feasible,

E[d2(∇f(x̂) + ∂h(x̂) +
∑

i∈I λi(∇ci(x̂) + ∂hi(x̂)),−NX(x̂))] ≤ ϵ2,

and E[
∑

i∈I λi|ci(x̂) + hi(x̂)|] ≤ ϵ2
strong feasibility O(ϵ−4)

LCSPG [5]
minx∈X f(x) + h(x)

s.t. ci(x) + hi(x) ≤ 0, i ∈ I

E[d2(∇f(x) + ∂h(x) +
∑

i∈I λi(∇ci(x) + ∂hi(x)), 0)] ≤ ϵ2,

and E[
∑

i∈I λi|ci(x) + hi(x)|] ≤ ϵ2,
where x is feasible and λ ≥ 0

uniform MFCQ O(ϵ−4)

MLALM
(this paper)

minx∈X f(x) + h(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I

E[d2(∇f(x) + ∂h(x) +
∑

i∈E∪I λi∇ci(x),−NX(x))] ≤ ϵ2,

E[d2(∇cE(x)cE(x) +∇cI(x)[cI(x)]+,−NX(x))] ≤ ϵ2
mean-squared smoothness

O(ϵ−4)

O(ϵ−3)

(if initial
√
ϵ-feasible)

E[d2(∇f(x) + ∂h(x) +
∑

i∈E∪I λi∇ci(x),−NX(x))] ≤ ϵ2,

E[∥cE(x)∥2 + ∥[cI(x)]+∥2] ≤ ϵ2,

E[
∑

i∈I λi|ci(x)|] ≤ ϵ

mean-squared smoothness
constraint qualification

O(ϵ−4)

O(ϵ−3)

(if initial
√
ϵ-feasible)

Table 1: Comparison between algorithms for nonconvex constrained optimization, where f(x) = Eξ[F(x; ξ)], h and
hi, i ∈ I are convex but possibly nonsmooth, λi, i ∈ I are nonnegative, λtrue is a vector of Lagrange multipliers
corresponding to x, τmin is the merit parameter threshold in SSQP, and “initial

√
ϵ-feasible” means the initial

point satisfies ∥cE(x1)∥2 + ∥[cI(x1)]+∥2 ≤ ϵ, while “initial feasible” means the initial point is feasible to (1). The
“nonsingularity” condition refers to Assumption 3.1 in [21]. The “uniform MFCQ” condition for LCSPG requires
all the feasible points of the considered problem satisfy MFCQ. The “strong LICQ” condition for SSQP represents
that the Jacobian of constraint functions have singular values that are lower bounded away from zero over a set
containing all iterates for all realizations of the random variable. The “mean-squared smoothness” and “constraint
qualification” condition for MLALM refer to Assumptions 3 and 5 in this paper, respectively.

convex problems with a large number of functional constraints. [22] proposes a stochastic nested primal-dual method
for a class of nonconvex constrained composition optimization whose objective is a composition of two expected-value
functions.

1.1 Contributions

Our main contributions in this paper are summarized as follows.

1. We propose a Momentum-based Linearized Augmented Lagrangian Method (MLALM) for solving nonconvex
constrained stochastic optimization problem (1). The presence of potentially nonconvex constraints poses
challenges in finding feasible solutions. To cope with this issue, we adopt the idea of the linearized augmented
Lagrangian (AL) function. This approach allows us to propose a single-loop algorithm framework and simplifies
the subproblem at each iteration significantly, in contrast to double-loop algorithms like proximal point methods
[4, 27]. The integration of the momentum technique within a single-loop algorithm framework is motivated by
the prior work [21]. The SPD method proposed in [21] is based on the linearized AL function and aims for
nonconvex constrained optimization with a large number of functional constraints. However, it requires large
sampling sizes to compute stochastic gradients, resulting in relatively higher total oracle complexity to find an
approximate solution, even when the initial iterate is feasible. To mitigate this issue, we employ a recursive
momentum technique that only necessitates a small sampling size at each iteration, effectively controlling the
variances of stochastic gradients.

2. We investigate the global convergence properties of MLALM. Our analysis reveals that, as the penalty pa-
rameter tends to infinity, the sequence of average stationarity measure in expectation converges to zero, and
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the average constraint violation sequence also exhibits convergence (refer to Theorem 1). Under a constraint
qualification assumption (Assumption 5), we establish that the sequences of average constraint violation and
average complementary slackness measure converge to zero (refer to Theorem 2). Additionally, we analyze
the properties of MLALM when penalty parameters are bounded (refer to Theorem 3). In contrast to recent
research on stochastic SQP methods for inequality constrained optimization, such as [29, 30, 31], which neces-
sitate probabilistic conditions on the accuracy of gradient estimates, the related assumptions enforced in this
paper can be considerably more relaxed (refer to Assumptions 3 and 4). Another closely related study, [13],
investigates the convergence properties of an adaptive stochastic SQP algorithm for problems with determinis-
tic equality and inequality constraints. However, the analysis in [13] relies on the occurrence of an event where
the merit parameter sequence eventually becomes sufficiently small yet remains bounded away from zero.

3. We conduct an oracle complexity analysis for MLALM. Under certain conditions, through analyzing the mea-
sure of the output in terms of stationarity, constraint violations and complementary slackness, we show that
the oracle complexities of MLALM to find an ϵ-stationary point (Definition 1) and to find an ϵ-KKT point
(Definition 2) under the constraint qualification are both in order O(ϵ−4). If the initial point is nearly feasible,
previous orders can be reduced to O(ϵ−3). The SPD method proposed in [21] achieves an ϵ-KKT point with
an oracle complexity of O(ϵ−6) (resp. O(ϵ−5)) without (resp. with) requiring an initial-feasibility condition.
Both SPD and MLALM adopt the idea of using a linearized augmented Lagrangian function. However, the
incorporation of momentum in MLALM enables us to achieve improved oracle complexities under the same
problem settings and under the mean-squared smoothness assumption. The stochastic SQP method proposed
in [11], which is designed for equality constrained optimization, relies on an adaptive strategy to update merit
parameters and assumes prior knowledge of Lipschitz constants for the objective and constraint gradients. This
assumption poses a challenge for the direct application of stochastic SQP to nonsmooth problems. Similarly,
the ICPPC algorithm [4] and LCSPG [5], designed for inequality constrained optimization, requires a strong
feasibility assumption, depending on the availability of a strictly feasible point. The algorithm framework
and theoretical analysis presented in [4, 5] and [11] are specifically tailored for problems with only inequality
or equality constraints. In contrast, MLALM aims for more general problems. A more detailed comparison
between MLALM, stochastic SQP (SSQP), ICPPC and LCSPG is provided in Table 1.

4. We present the numerical performance analysis of the proposed algorithm MLALM on two problem classes:
quadratically constrained nonconvex programs (QCNPs) and multi-class Neyman-Pearson classification prob-
lems (mNPCs). We first investigate the impact of the recursive momentum on QCNPs, to better understand
how the introduction of momentum affects the algorithm’s performance. We then compare MLALM with
ICPPC [4] and LCSVRG (a variance-reduced variant of LCSPG) for QCNPs and with SPD [21] and ICPPC
for mNPCs. Numerical results reveal that the use of momentum brings benefits and delivers competitive
performance.

1.2 Notation and preliminaries

We use ∥ · ∥ to denote the Euclidean norm of a vector without any specification. For brevity, we introduce [k] :=
{1, . . . , k} for any positive integer k. For any u ∈ R, we define its positive and negative parts as [u]+ := max{0, u}
and [u]− := max{0,−u}, respectively. Moreover, for any u ∈ Rn, [u]+ and [u]− are referred to as componentwise
application of the operator [·]+ and [·]−, respectively. The gradient of f at x is denoted by ∇f(x). With a slight
abuse of notation, we define cE : Rn → R|E| with components being ci(·), i ∈ E , and ∇cE : Rn → Rn×|E| with columns
being ∇ci(·), i ∈ E . Notations cI and ∇cI are defined in the same way. Given X,Y ⊆ Rn, the distance between
them is referred to d(X,Y ) = infx∈X,y∈Y ∥x − y∥. Furthermore, given random variables ξ and ζ, Eξ[·] represents
the expectation with respect to ξ and Eξ[· | ζ] represents the expectation conditioned on ζ. The inner product of
x, y ∈ Rn is denoted by ⟨x, y⟩. The normal cone to a closed convex set X at a point x̄ ∈ X is defined as

NX(x̄) = {v | ⟨v, x− x̄⟩ ≤ 0, ∀x ∈ X}.

And its dual cone is denoted by N ∗
X(x̄). Let h : Rn → R ∪ {+∞} be proper, lower-semicontinuous and convex. The

set of subgradient of h at x ∈ dom(h) is defined as

∂h(x) = {v ∈ Rn | h(y) ≥ h(x) + ⟨v, y − x⟩,∀y ∈ domh}.
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In general, finding a global or even a local minimizer for nonconvex constrained optimization can be NP-hard.
Efforts are thus devoted to seeking more trackable solutions. Under certain constraint qualification, a local minimizer
of (1) satisfies necessary conditions, e.g. KKT conditions. A point satisfying these conditions is called a KKT point.
We assume in this paper that, there exist a KKT point x∗ ∈ X and a vector λ∗ ∈ R|E∪I| with λ∗i ≥ 0, i ∈ I, such
that the KKT conditions are satisfied:

d(∇f(x∗) + ∂h(x∗) +
∑

i∈E∪I
λ∗i∇ci(x∗),−NX(x∗)) = 0; cE(x

∗) = 0, cI(x
∗) ≤ 0; λici(x

∗) = 0, i ∈ I.

In practical computations, however, it is inevitable that the iteration may be trapped at an infeasible stationary
point of the problem:

min
x∈X

1

2
∥cE(x)∥2 +

1

2
∥[cI(x)]+∥2. (2)

From the optimality condition for (2), the following stationary holds:

d(∇cE(x)cE(x) +∇cI(x)[cI(x)]+,−NX(x)) = 0.

We next lay out assumptions that are used throughout the remainder of this paper.

Assumption 1 Set X is closed and convex. Functions f and ci, i ∈ E ∪ I are continuously differentiable over X
with L-Lipschitz continuous gradients. Function h is proper, lower semicontinuous and convex over X. Moreover,
the objective function value of (1) over X is lower bounded by C∗.

Assumption 2 There exist C,G > 0 such that for any x ∈ X,

|ci(x)| ≤ C, ∀i ∈ E ; ci(x) ≤ C, ∀i ∈ I ;

∥∇f(x)∥ ≤ G, ∥∂h(x)∥ ≤ G, and ∥∇ci(x)∥ ≤ G, ∀i ∈ E ∪ I.

Assumption 3 F(·; ξ) is continuously differentiable for each ξ ∈ Ξ and satisfies

Eξ[∥∇F(u; ξ)−∇F(v; ξ)∥2] ≤ L2∥u− v∥2 ∀u, v ∈ X.

Assumption 4 There exists σ > 0 such that for any x ∈ X,

Eξ[∇F(x; ξ)] = ∇f(x), Eξ[∥∇F(x; ξ)−∇f(x)∥2] ≤ σ2,

Remark 1 It is noteworthy that the boundedness in Assumption 2 holds naturally under Assumption 1 when X is
compact, which is assumed in [4, 5, 21]. Assumption 3 refers to the mean-squared smoothness condition, also known
for L-average smoothness, is widely used in stochastic variance reduction-based methods [46, 56, 1]. It is slightly
stronger than Lipschitz continuity of the expected value function f by Jensen’s inequality. In [30, Assumption 3],
a similar yet stronger assumption to Assumption 3 is made, where it requires F be thrice differentiable and that
∇2F(x, ξ) be uniformly bounded over a set containing all iterates and for all ξ. Besides, all constraint functions are
assumed thrice continuously differentiable in [30].

1.3 Outline

The rest of this paper is organized as follows. In Section 2 we introduce a momentum-based linearized augmented
method for solving nonconvex constrained stochastic optimization problem (1). In Section 3 we present auxiliary
lemmas that are required in subsequent sections. In Section 4 we investigate global convergence properties of the
proposed algorithm. In Section 5 we establish oracle complexities to find an ϵ-stationary point and an ϵ-KKT point,
respectively. In Section 6 we report some numerical experimental results and finally we give some conclusional
remarks.
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2 Momentum-based linearized augmented Lagrangian method

As is well-known, the augmented Lagrangian (AL) function plays a crucial role in characterizing optimality conditions
for constrained optimization and is widely used in designing effective algorithms. The AL function associated with
problem (1) is in the form as described in [38]:

Lβ(x, λ) := ϕβ(x, λ) + h(x),

where β > 0 is a penalty parameter, ϕβ(x, λ) := f(x) + Ψβ(x, λ) and

Ψβ(x, λ) :=
∑
i∈E

[λici(x) +
β

2
c2i (x)] +

∑
i∈I

ψβ(ci(x), λi) with ψβ(u, v) :=


vu+

β

2
u2 if βu+ v ≥ 0,

− v2

2β
otherwise.

It is easy to check that

∇xΨβ(x, λ) =
∑
i∈E

(λi + βci(x))∇ci(x) +
∑
i∈I

[λi + βci(x)]+∇ci(x). (3)

Different from classical AL methods which try to minimize the AL function in the inner-loop, the linearized AL
methods [48, 49, 55] construct a much simpler subproblem that minimizes an approximation to the AL function
around current iterate x:

min
y∈X

⟨∇xϕβ(x, λ), y⟩+
1

2η
∥y − x∥2 + h(y),

where η > 0. However, due to the problem setting of (1), it is normally expensive sometimes even prohibitive
to compute the exact gradient ∇f at an inquiry point x ∈ X. Under this circumstance, we can only get access
to a stochastic gradient ∇F(x; ξ) by randomly calling a sample ξ. As a result, we obtain a stochastic gradient
∇Φβ(x, λ; ξ), where

Φβ(x, λ; ξ) := F(x; ξ) + Ψβ(x, λ).

The SPD method [21] also adopts the linearized AL function to construct subproblems, but it requires large batch
sizes when computing mini-batch stochastic gradients in order to derive desired iteration complexity. A natural way
to reduce the total oracle complexity is to try adopting smaller batch size per iteration.

Before proceeding, let us consider the problem of minimizing a continuously differentiable function f(x) =
E[F(x ; ξ)] over Rn with ξ ∈ Ξ. Recall Nesterov’s accelerated gradient approach, which reads

xt+1 = xt − ηts
t; st+1 = ats

t + bt∇f(xt+1 − ats
t), t ≥ 1,

with s1 = ∇f(x1). Nevertheless, since the exact gradient of f cannot be accessed, we have to turn to its stochastic
approximation by randomly picking one sample ξt+1:

st+1 = ats
t + bt∇F(xt+1 − ats

t; ξt+1)

≈ ats
t + bt[(1 +

at
ηt
)∇F(xt+1; ξt+1)− at

ηt
∇F(xt; ξt+1)],

where the above expression uses the linear Lagrange interpolating polynomial. Then, letting at = 1 − αt and
bt = ηt = αt, we obtain the stochastic gradient estimation in the recursive momentum method [14] and its variant
[56]:

st+1 = ∇F(xt+1; ξt+1) + (1− αt)(s
t −∇F(xt; ξt+1)), t ≥ 1.

As shown in [14, 56], under the mean-squared smoothness assumption momentum-based approaches can help to
reduce the oracle complexity of SGD and proximal SGD methods. Motivated by this, we extend the idea to the
general constrained optimization problem (1). Let {βt} be a sequence of penalty parameters for t ≥ 1. We define

dt =

{
1

|Jt|
∑

j∈Jt
∇xΦβt

(xt, λt; ξtj), t = 1,
1

|Jt|
∑

j∈Jt
∇xΦβt

(xt, λt; ξtj) + (1− αt−1)(d
t−1 − 1

|Jt|
∑

j∈Jt
∇xΦβt−1

(xt−1, λt−1; ξtj)), t ≥ 2,
(4)
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where {ξtj , j ∈ Jt} is a batch of samples selected randomly uniformly and independently from Ξ. Obviously, dt is an
approximation to ∇ϕβt(x

t, λt). The first term in the second line of (4) is a stochastic gradient estimated at xt, while
the second term is the difference between dt−1 and a stochastic gradient estimated at xt−1. This correction aims to
improve the accuracy of the stochastic approximation. We define the error

εt := dt −∇xϕβt
(xt, λt), t ≥ 1.

When αt−1 = 1, the expression for dt reduces to the gradient approximation in the vanilla mini-batch SGD method.
In this paper, we choose αt ∈ (0, 1) for t ≥ 1. To a certain extent, αt−1 can replace the batch Jt to reduce variance,
thereby reducing oracle complexity with a smaller batch. Based on the stochastic approximation dt, as defined in
(4), we propose the following scheme to update the primal variable:

xt+1 = argmin
x∈X

{⟨dt, x⟩+ h(x) +
1

2ηt
∥x− xt∥2}, (5)

where ηt > 0, t ≥ 1. To expect λ more trackable we propose to update λt through:

λt+1
i = λti +

{
ρtci(x

t+1), i ∈ E ,
ρt max{−λt

i

βt
, ci(x

t+1)}, i ∈ I,
(6)

where ρt ∈ (0, βt).

Algorithm 1 Momentum-based Linearized Augmented Lagrangian Method (MLALM)

Require: x1 ∈ Rn, λ1 ∈ R|E∪I| with λ1i ≥ 0, i ∈ I, a non-decreasing positive sequence {βt}, and parameters
{ηt > 0}, {ρt ∈ (0, βt)}, {αt ∈ (0, 1)}.

1: for t = 1, 2, . . . do
2: Calculate dt through (4).
3: Calculate xt+1 through (5).
4: Calculate λt+1 through (6).
5: end for

3 Auxiliary lemmas

In this section, we introduce auxiliary lemmas that will be useful in subsequent sections for global convergence and
oracle complexity analysis. Let {xt} and {λt} be generated by Algorithm 1.

Lemma 1 For any t ≥ 1, it holds that λti ≥ 0, i ∈ I.

Proof. It is straightforward to obtain the conclusion by induction from λ1i ≥ 0, ∀i ∈ I, ρt ∈ (0, βt) and (6). □

Lemma 2 Under Assumptions 1-2, it holds that for any t ≥ 1,

|λti| ≤ |λ1i |+ C

t−1∑
k=1

ρk, ∀i ∈ E ; λti ≤ λ1i + C

t−1∑
k=1

ρk, ∀i ∈ I, (7)

and for any t ∈ [T ],
|λt+1

i − λti| ≤ ρtC̃, ∀i ∈ E ∪ I, (8)

where C̃ := max(
|λ1

i |+C
∑∞

k=1 ρk

β1
, C) and

∑0
k=1 ρk := 0.

Proof. Firstly, by applying λ1 = 0 and (6), we have that for any t ≥ 2,

|λti| ≤ |λ1i |+
t−1∑
k=1

|λk+1
i − λki | ≤ |λ1i |+

t−1∑
k=1

ρk|ci(xk+1)| ≤ |λ1i |+ C

t−1∑
k=1

ρk, ∀i ∈ E ,
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λti = λ1i +

t−1∑
k=1

(λk+1
i − λki ) ≤ λ1i +

∑
K
ρkci(x

k+1) ≤ λ1i + C

t−1∑
k=1

ρk, ∀i ∈ I,

where K = {k ∈ [t− 1] | λk+1
i ≥ λki }. We thus obtain (7). Subsequently, for any i ∈ E , it is easy to obtain

|λt+1
i − λti| ≤ ρt|ci(xt+1)| ≤ ρtC̃.

Then, for any i ∈ I, it follows from (6), Lemma 1, Assumption 2 and (7) that

|λt+1
i − λti| = ρt|max(−λ

t
i

βt
, ci(x

t+1))| ≤

{
ρtC, if ci(x

t+1) ≥ 0,
ρtλ

t
i

βt
≤ ρtC̃, otherwise,

which yields (8). □

Lemma 3 Under Assumptions 1-2, it holds that for any t ≥ 1 and β ≥ β1,

|ψβ(ci(x
t+1), λt+1

i )− ψβ(ci(x
t+1), λti)| ≤ ρtC̃

2, i ∈ I, (9)

and
∥∇xΨβ(x

t+1, λt+1)−∇xΨβ(x
t+1, λt)∥ ≤ mρtC̃G, (10)

where m := |E ∪ I|.

Proof. For any t ∈ [T ], by the definition of ψβ(u, v), we know that for any i ∈ I,

ψβ(ci(x
t+1), λi) =

{
λici(x

t+1) + β
2 c

2
i (x

t+1), if βci(x
t+1) + λi ≥ 0,

− (λi)
2

2β , if βci(x
t+1) + λi < 0.

Firstly, we consider the case when βci(x
t+1) + λti < 0. By Lemma 1 and (6), we have λt+1

i ≤ λti. Thus βci(x
t+1) +

λt+1
i < 0. Hence, the following relations hold true:

|ψβ(ci(x
t+1), λt+1

i )− ψβ(ci(x
t+1), λti)| =

(λti)
2 − (λt+1

i )2

2β
=
λti + λt+1

i

2β
|λt+1

i − λti|

≤
λ1i + C

∑t
k=1 ρk

β1
|λt+1

i − λti|

≤ρtC̃2.

Secondly, when βci(x
t+1)+λti ≥ 0, we have −λt

i

β ≤ ci(x
t+1) ≤ C, then (9) is derived obviously if βci(x

t+1)+λt+1
i ≥ 0.

If βci(x
t+1) + λt+1

i < 0, since ψβ(u, v) is monotonically decreasing in v ≥ 0 when u < 0, it follows that

|ψβ(ci(x
t+1), λt+1

i )− ψβ(ci(x
t+1), λti)| = − (λt+1

i )2

2β
− λtici(x

t+1)− β

2
c2i (x

t+1)

≤ λt+1
i ci(x

t+1) +
β

2
c2i (x

t+1)− λtici(x
t+1)− β

2
c2i (x

t+1)

= −ci(xt+1)|λt+1
i − λti|

≤ λti
β
|λt+1

i − λti| ≤ ρtC̃
2

which yields (9). In addition, (3), together with (8), indicates that for any t ≥ 1,

∥∇xΨβ(x
t+1, λt+1)−∇xΨβ(x

t+1, λt)∥

≤∥
∑
i∈E

(λt+1
i − λti)∇ci(xt+1)∥+ ∥

∑
i∈I

([βci(x
t+1) + λt+1

i ]+ − [βci(x
t+1) + λti]+)∇ci(xt+1)∥

8



≤G
∑
i∈E

|λt+1
i − λti|+G

∑
i∈I

|[βci(xt+1) + λt+1
i ]+ − [βci(x

t+1) + λti]+|

≤G
∑

i∈E∪I
|λt+1

i − λti| ≤ mρtC̃G

which is exactly (10). □
The lemma below characterizes the smoothness of ϕβ(x, λ) with respect to x for fixed λ.

Lemma 4 Under Assumptions 1-2, it holds that for any u, v ∈ X, t ≥ 1 and β ≥ β1,

∥∇xϕβ(u, λ
t)−∇xϕβ(v, λ

t)∥ ≤ Lβ∥u− v∥. (11)

Furthermore, if Assumption 3 holds as well, then

Eξ[∥∇xΦβ(u, λ
t; ξ)−∇xΦβ(v, λ

t; ξ)∥2] ≤ L2
β∥u− v∥2, (12)

where Lβ := βL̃ with L̃ :=
L+mCL

∑∞
k=1 ρk

β1
+mG2 +mCL.

Proof. It follows from Assumptions 1-2, (3) and (7) that for any u, v ∈ X,

∥∇xΨβ(u, λ
t)−∇xΨβ(v, λ

t)∥

≤
∑
i∈E

∥(βci(u) + λti)∇ci(u)− (βci(v) + λti)∇ci(v)∥

+
∑
i∈I

∥[βci(u) + λti]+∇ci(u)− [βci(v) + λti]+∇ci(v)∥

=
∑
i∈E

∥
[
(βci(u) + λti)− (βci(v) + λti)

]
∇ci(u) + (βci(v) + λti)(∇ci(u)−∇ci(v))∥

+
∑
i∈I

∥
[
[βci(u) + λti]+ − [βci(v) + λti]+

]
∇ci(u) + [βci(v) + λti]+(∇ci(u)−∇ci(v))∥

≤
∑
i∈E

[
β|ci(u)− ci(v)|∥∇ci(u)∥+ (βci(v) + λti)L∥u− v∥

]
+

∑
i∈I

[
β|ci(u)− ci(v)|∥∇ci(u)∥+ [βci(v) + λti]+L∥u− v∥

]
≤

∑
i∈E∪I

[βG2∥u− v∥+ L(βC + |λti|)∥u− v∥]

≤m(βG2 + CL(β +

t−1∑
k=1

ρk))∥u− v∥.

Then, Assumptions 1 and 2 indicate

∥∇xϕβ(u, λ
t)−∇xϕβ(v, λ

t)∥ ≤ ∥∇f(u)−∇f(v)∥+ ∥∇xΨβ(u, λ
t)−∇xΨβ(v, λ

t)∥ ≤ Lβ∥u− v∥,

where the last inequality is due to β ≥ β1. Analogously, it holds from Assumption 3 that

Eξ[∥∇xΦβ(u, λ
t; ξ)−∇xΦβ(v, λ

t; ξ)∥2]

≤Eξ[∥∇F(u; ξ)−∇F(v; ξ)∥2] + 2Eξ[∥∇F(u; ξ)−∇F(v; ξ)∥]∥∇xΨβ(u, λ
t)−∇xΨβ(v, λ

t)∥

+ ∥∇xΨβ(u, λ
t)−∇xΨβ(v, λ

t)∥2

≤L2∥u− v∥2 + 2mL(βG2 + CL(β +

t−1∑
k=1

ρk))∥u− v∥2 + (m(βG2 + CL(β +

t−1∑
k=1

ρk)))
2∥u− v∥2

which yields (12). □
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Lemma 5 Under Assumptions 1-2, it holds that

d2(∇xϕβt
(xt+1, λt+1) + ∂h(xt+1),−NX(xt+1)) ≤ 4(mρtC̃G)

2 + 4∥εt∥2 + 4(L2
βt

+
1

η2t
)∥xt+1 − xt∥2, (13)

where Lβt := βtL̃.

Proof. Optimality conditions for (5) imply that for any t ≥ 1,

d(dt + ∂h(xt+1) +
1

ηt
(xt+1 − xt),−NX(xt+1)) = 0.

Then from (10) and (11) we obtain

d2(∇xϕβt
(xt+1, λt+1) + ∂h(xt+1),−NX(xt+1))

=d2(dt + ∂h(xt+1) +
1

ηt
(xt+1 − xt) +∇xϕβt

(xt+1, λt+1)− dt − 1

ηt
(xt+1 − xt),−NX(xt+1))

≤∥∇xϕβt(x
t+1, λt+1)− dt − 1

ηt
(xt+1 − xt)∥2

= ∥∇xϕβt
(xt+1, λt+1)−∇xϕβt

(xt+1, λt) +∇xϕβt
(xt+1, λt)−∇xϕβt

(xt, λt) +∇xϕβt
(xt, λt)− dt

− 1

ηt
(xt+1 − xt)∥2

≤ 4(mρtC̃G)
2 + 4L2

βt
∥xt+1 − xt∥2 + 4∥εt∥2 + 4

η2t
∥xt+1 − xt∥2,

which completes the proof. □

Lemma 6 Under Assumptions 1-2, the following relation holds true:

Ψβt+1
(x, λ) ≤ Ψβt

(x, λ) +
βt+1 − βt

2

∑
i∈E∪I

c2i (x). (14)

Furthermore, we have

(
1

2ηt
− Lβt

2
)∥xt+1 − xt∥2 ≤ Lβt(x

t, λt)− Lβt+1(x
t+1, λt+1) +

βt+1 − βt
2

mC2 +
ηt
2
∥εt∥2 +mρtC̃

2. (15)

Proof. The key to prove (14) is to verify

ψβt+1
(ci(x), λi) ≤ ψβt

(ci(x), λi) +
βt+1 − βt

2
c2i (x), ∀i ∈ I.

According to the definition of ψβ and βt+1 ≥ βt, one has

ψβt+1
(ci(x), λi)− ψβt

(ci(x), λi) =


βt+1−βt

2 c2i (x), βt+1ci(x) + λi ≥ 0, βtci(x) + λi ≥ 0,

− λ2
i

2βt+1
− λici(x)− βt

2 c
2
i (x), βt+1ci(x) + λi < 0, βtci(x) + λi ≥ 0,

λ2
i

2βt
− λ2

i

2βt+1
, βt+1ci(x) + λi < 0, βtci(x) + λi < 0.

For the second case, βt+1ci(x) + λi < 0, we have

− λ2i
2βt+1

− λici(x)−
βt
2
c2i (x) ≤ λici(x) +

βt+1

2
c2i (x)− λici(x)−

βt
2
c2i (x) =

βt+1 − βt
2

c2i (x).

Further, if βtci(x) + λi < 0, then λ2i < βtβt+1c
2
i (x). It holds that

λ2i
2βt

− λ2i
2βt+1

≤ βt+1 − βt
2

c2i (x).
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Thus, (14) can be derived. Moreover, Assumption 2 together with (8) and (9) implies that

Lβt
(xt+1, λt) =Lβt

(xt+1, λt+1) +
∑
i∈E

[(λtici(x
t+1) +

βt
2
c2i (x

t+1))− (λt+1
i ci(x

t+1) +
βt
2
c2i (x

t+1))]

+
∑
i∈I

[ψβt
(ci(x

t+1), λti)− ψβt
(ci(x

t+1), λt+1
i )]

≥Lβt(x
t+1, λt+1)−

∑
i∈E

|ci(xt+1)||λti − λt+1
i | −

∑
i∈I

ρtC̃
2

≥Lβt
(xt+1, λt+1)−mρtC̃

2. (16)

Note that by optimality conditions for (5), there exists a vector u ∈ ∂h(xt+1) such that

⟨dt + u+
1

ηt
(xt+1 − xt), x− xt+1⟩ ≥ 0, ∀x ∈ X.

Then by the convexity of h and setting x = xt, we obtain

h(xt+1)− h(xt) ≤ ⟨u, xt+1 − xt⟩ ≤ −⟨dt + 1

ηt
(xt+1 − xt), xt+1 − xt⟩. (17)

Thus it indicates

Lβt
(xt+1, λt)− Lβt

(xt, λt)

=ϕβt(x
t+1, λt)− ϕβt(x

t, λt) + h(xt+1)− h(xt)

≤⟨∇xϕβt
(xt, λt), xt+1 − xt⟩+ Lβt

2
∥xt+1 − xt∥2 + h(xt+1)− h(xt)

≤⟨dt − εt, xt+1 − xt⟩ − ⟨dt + 1

ηt
(xt+1 − xt), xt+1 − xt⟩+ Lβt

2
∥xt+1 − xt∥2

= − ⟨εt, xt+1 − xt⟩+ (
Lβt

2
− 1

ηt
)∥xt+1 − xt∥2

≤ ηt
2
∥εt∥2 + 1

2ηt
∥xt+1 − xt∥2 + (

Lβt

2
− 1

ηt
)∥xt+1 − xt∥2

≤ ηt
2
∥εt∥2 + (

Lβt

2
− 1

2ηt
)∥xt+1 − xt∥2, (18)

where the first inequality follows from (11), the second inequality comes from (17), and the third inequality is due
to Young’s inequality. Thus it together with (16) yields that

Lβt
(xt+1, λt+1)− Lβt

(xt, λt) =Lβt
(xt+1, λt+1)− Lβt

(xt+1, λt) + Lβt
(xt+1, λt)− Lβt

(xt, λt)

≤ ηt
2
∥εt∥2 + (

Lβt

2
− 1

2ηt
)∥xt+1 − xt∥2 +mρtC̃

2.

Then rearranging the terms and together with (14) derives (15). □
From now on and for simplicity, we introduce λ̃t ∈ R|E∪I|, t ≥ 1, defined componentwise by

λ̃ti =

{
βt−1ci(x

t) + λti, i ∈ E ,
[βt−1ci(x

t) + λti]+, i ∈ I.
(19)
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Lemma 7 Under Assumptions 1-2, it holds that for any T ≥ 1,

1

T

T∑
t=1

d2(∇cE(xt+1)cE(x
t+1) +∇cI(xt+1)[cI(x

t+1)]+,−NX(xt+1))

≤ 4

β2
1

1

T

T∑
t=1

d2(∇f(xt+1) +
∑

i∈E∪I
λ̃t+1
i ∇ci(xt+1) + ∂h(xt+1),−NX(xt+1))

+
4(2 +m2(∥λ1∥+ C

∑T
k=1 ρk)

2)G2

T

T∑
t=1

1

β2
t

.

Proof. It is apparent that there exists vt+1 ∈ ∂h(xt+1) such that

d(∇f(xt+1) + vt+1 +
∑

i∈E∪I
λ̃t+1
i ∇ci(xt+1),−NX(xt+1))

=d(∇f(xt+1) + ∂h(xt+1) +
∑

i∈E∪I
λ̃t+1
i ∇ci(xt+1),−NX(xt+1)).

Then for any t ≥ 1, one has

d2(∇cE(xt+1)cE(x
t+1) +∇cI(xt+1)[cI(x

t+1)]+,−NX(xt+1))

≤ 1

β2
t

d2(
∑
i∈E

βtci(x
t+1)∇ci(xt+1) +

∑
i∈I

[βtci(x
t+1)]+∇ci(xt+1),−NX(xt+1))

≤ 4

β2
t

[d2(∇f(xt+1) + vt+1 +
∑

i∈E∪I
λ̃t+1
i ∇ci(xt+1),−NX(xt+1)) + ∥∇f(xt+1)∥2

+ ∥vt+1∥2 + (
∑

i∈E∪I
|λt+1

i |∥∇ci(xt+1)∥)2]

≤ 4

β2
t

[d2(∇xϕβt
(xt+1, λt+1) + ∂h(xt+1),−NX(xt+1)) + (2 +m2(∥λ1∥+ C

t∑
k=1

ρk)
2)G2]. (20)

Summing up the above inequality over t = 1, . . . , T and dividing it by T yields the conclusion from βt ≥ β1 for any
t ≥ 1.

□
The lemma below provides a recursive bound on the error εt. For notation simplicity, we denote in the following

that:
ξt = {ξtj , j ∈ Jt}, ξ[t] = {ξ1, . . . , ξt}, t ≥ 1.

Lemma 8 Under Assumptions 1-4, it holds that for any t ≥ 1,

Eξ[t+1] [∥εt+1∥2] ≤ (1− αt)
2Eξ[t] [∥εt∥2] +

1

|Jt+1|
(2α2

tσ
2 + 2(1− αt)

2L2Eξ[t] [∥xt+1 − xt∥2]). (21)

Proof. Recall that

εt+1 = dt+1 −∇xϕβt+1
(xt+1, λt+1)

=
1

|Jt+1|
∑

j∈Jt+1

∇xΦβt+1
(xt+1, λt+1; ξt+1

j )−∇xϕβt+1
(xt+1, λt+1)

+ (1− αt)(d
t − 1

|Jt+1|
∑

j∈Jt+1

∇xΦβt
(xt, λt; ξt+1

j ))
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=
1

|Jt+1|
∑

j∈Jt+1

∇xΦβt+1
(xt+1, λt+1; ξt+1

j )−∇xϕβt+1
(xt+1, λt+1)

+ (1− αt)ε
t + (1− αt)(∇xϕβt(x

t, λt) − 1

|Jt+1|
∑

j∈Jt+1

∇xΦβt(x
t, λt; ξt+1

j )). (22)

Since εt, xt, λt, xt+1 and λt+1 are independent of ξt+1, taking expectation with respect to ξt+1 yields

Eξt+1 [⟨ 1

|Jt+1|
∑

j∈Jt+1

∇xΦβt+1
(xt+1, λt+1; ξt+1

j )−∇xϕβt+1
(xt+1, λt+1), εt⟩] = 0,

Eξt+1 [⟨ 1

|Jt+1|
∑

j∈Jt+1

∇xΦβt
(xt, λt; ξt+1

j )−∇xϕβt
(xt, λt), εt⟩] = 0.

Hence, squaring both sides of (22) and then taking expectation with respect to ξt+1, we have

Eξt+1 [∥εt+1∥2]

≤(1− αt)
2∥εt∥2 + Eξt+1 [∥ 1

|Jt+1|
∑

j∈Jt+1

(∇xΦβt+1(x
t+1, λt+1; ξt+1

j )−∇xϕβt+1(x
t+1, λt+1)

+ (1− αt)(∇xϕβt
(xt, λt)−∇xΦβt

(xt, λt; ξt+1
j )))∥2]

=(1− αt)
2∥εt∥2 + Eξt+1 [

1

|Jt+1|2
∑

j∈Jt+1

∥∇xΦβt+1(x
t+1, λt+1; ξt+1

j )−∇xϕβt+1(x
t+1, λt+1)

+ (1− αt)(∇xϕβt
(xt, λt)−∇xΦβt

(xt, λt; ξt+1
j ))∥2]. (23)

Let us focus on the second term in R.H.S. of (23). Note that for any j ∈ Jt+1,

Eξt+1 [∥∇xΦβt+1(x
t+1, λt+1; ξt+1

j )−∇xϕβt+1(x
t+1, λt+1) + (1− αt)(∇xϕβt(x

t, λt)−∇xΦβt(x
t, λt; ξt+1

j ))∥2]

=Eξt+1 [∥∇F (xt+1; ξt+1
j )−∇f(xt+1) + (1− αt)(∇f(xt)−∇F (xt; ξt+1

j ))∥2]

=Eξt+1 [∥αt(∇F (xt+1; ξt+1
j )−∇f(xt+1)) + (1− αt)(∇F (xt+1; ξt+1

j )−∇f(xt+1) +∇f(xt)−∇F (xt; ξt+1
j ))∥2]

≤Eξt+1 [2α2
t ∥∇F (xt+1; ξt+1

j )−∇f(xt+1)∥2 + 2(1− αt)
2∥∇F (xt+1; ξt+1

j )−∇f(xt+1) +∇f(xt)−∇F (xt; ξt+1
j )∥2]

=Eξt+1 [2α2
t ∥∇F (xt+1; ξt+1

j )−∇f(xt+1)∥2 + 2(1− αt)
2∥∇F (xt+1; ξt+1

j )−∇F (xt; ξt+1
j )∥2

−4(1− αt)
2⟨∇F (xt+1; ξt+1

j )−∇F (xt; ξt+1
j ),∇f(xt+1)−∇f(xt)⟩+ 2(1− αt)

2∥∇f(xt+1)−∇f(xt)∥2]

=Eξt+1 [2α2
t ∥∇F (xt+1; ξt+1

j )−∇f(xt+1)∥2 + 2(1− αt)
2∥∇F (xt+1; ξt+1

j )−∇F (xt; ξt+1
j )∥2

−2(1− αt)
2∥∇f(xt+1)−∇f(xt)∥2]

≤Eξt+1 [2α2
t ∥∇F (xt+1; ξt+1

j )−∇f(xt+1)∥2 + 2(1− αt)
2∥∇F (xt+1; ξt+1

j )−∇F (xt; ξt+1
j )∥2]

≤2α2
tσ

2+2(1− αt)
2L2∥xt+1 − xt∥2.

Hence, we obtain the following relation:

Eξt+1 [∥εt+1∥2] ≤ (1− αt)
2∥εt∥2 + 2α2

tσ
2

|Jt+1|
+
2(1− αt)

2

|Jt+1|
L2∥xt+1 − xt∥2.

13



Taking expectation over ξ[t+1] yields the desired result. □
Interestingly, parameter αt and batch Jt+1 are somewhat intertwined in our approach. More specifically, when

αt = 1, the gradient estimate dt turns to the vanilla mini-batch SGD approximation, where the batch size is normally
chosen large enough to reduce stochastic variances. However, in this paper, we focus on the case where 0 < αt < 1. In
this scenario, the current error εt is controlled by previous error εt−1 and corrections accumulated in past iterations.
We can prove that, under appropriate parameter settings like (33), the term 1

T

∑T
t=1 Eξ[t] [∥εt∥2] tends to zero even

without the use of batches Jt (refer to (31) and (37)). However, it can help ensure the boundedness of Eξ[t] [∥εt∥2],
which is crucial for the global convergence analysis (refer to (39)).

4 Global convergence analysis

In this section, we conduct a global convergence analysis for MLALM. To this end, we assume that the parameters
used in Algorithm 1 satisfy the conditions below:

ηtLβt ≤
1

2
, 8η1ηtL

2 ≤ αt < 1, ηt+1 ≤ ηt. (24)

Lemma 9 Suppose that Assumptions 1-4 and (24) hold. Then for any T ≥ 1 the following is true:

1

T

T∑
t=1

αtEξ[t] [∥εt∥2] ≤
2Eξ1 [∥ε1∥2] + 4

∑T
t=1 α

2
tσ

2

T

+
16η1L

2

T
(Lβ1

(x1, λ1)− C∗ + C∥λ1∥1 +
mC2

2

T∑
t=1

βt+1 − βt
|Jt+1|

+ 2mC̃2
T∑

t=1

ρt),

(25)

where C∗ is the lower bound of the objective function of (1) over X.

Proof. From Lemma 6 it follows that

∥xt+1 − xt∥2 ≤ 2ηt
1− ηtLβt

(Lβt
(xt, λt)− Lβt+1

(xt+1, λt+1) +
βt+1 − βt

2
mC2 +

ηt
2
∥εt∥2 +mρtC̃

2). (26)

We then substitute the above relation into (21) indicating

Eξ[t+1] [∥εt+1∥2]

≤ (1− αt)
2Eξ[t] [∥εt∥2] +

1

|Jt+1|
(2α2

tσ
2 + 2(1− αt)

2L2Eξ[t] [∥xt+1 − xt∥2])

≤ (1− αt)Eξ[t] [∥εt∥2] +
2α2

tσ
2

|Jt+1|

+
4η1L

2

|Jt+1|(1− ηtLβt)
Eξ[t] [Lβt(x

t, λt)− Lβt+1(x
t+1, λt+1) +

βt+1 − βt
2

mC2+
ηt
2
∥εt∥2 +mρtC̃

2],

where the last inequality is due to the condition 0 < αt < 1. By summing the above inequality over t = 1, . . . , T , we
obtain from 1

1−ηtLβt
≤ 2 (thanks to ηtLβt

≤ 1
2 ) and αt ≥ 8η1ηtL

2 that

T∑
t=1

αt

2
Eξ[t] [∥εt∥2] ≤

T∑
t=1

(αt − 4η1ηtL
2)Eξ[t] [∥εt∥2] ≤ Eξ1 [∥ε1∥2] + 2

T∑
t=1

α2
tσ

2

+ 8η1L
2(Lβ1(x

1, λ1)− Eξ[T ] [LβT+1
(xT+1, λT+1)] +

mC2

2

T∑
t=1

βt+1 − βt
|Jt+1|

+mC̃2
T∑

t=1

ρt
|Jt+1|

).

(27)
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Moreover, we can upper bound Lβ1
(x1, λ1)− Eξ[T ] [LβT+1

(xT+1, λT+1)] by

Lβ1
(x1, λ1)− Eξ[T ] [LβT+1

(xT+1, λT+1)]

=Lβ1
(x1, λ1)− Eξ[T ] [f(xT+1) + h(xT+1) +

∑
i∈E

[λT+1
i ci(x

T+1) +
βt
2
c2i (x

T+1)] +
∑
i∈I

ψβt(ci(x
T+1), λT+1

i )]

≤Lβ1
(x1, λ1)− C∗ − Eξ[T ] [

∑
i∈E

[λT+1
i ci(x

T+1) +
βt
2
c2i (x

T+1)] +
∑
i∈I

ψβt
(ci(x

T+1), λT+1
i )]

≤Lβ1
(x1, λ1)− C∗ + Eξ[T ] [

∑
i∈E

|λT+1
i ci(x

T+1)|+
∑
i∈I

(λT+1
i )2

2βt
]

≤Lβ1
(x1, λ1)− C∗ + C(

∑
i∈E

(|λ1i |+ C

T∑
t=1

ρt) +
1

2β1

∑
i∈I

(λ1i + C

T∑
t=1

ρt)
2

≤Lβ1(x
1, λ1)− C∗ + C∥λ1∥1 +mC̃2

T∑
t=1

ρt, (28)

where the second inequality comes from ψβt(u, v) ≥ − v2

2βt
, and the third inequality holds due to (7). Plugging the

above inequality into (27) and dividing the whole inequality by T yield the desired result.
□

Lemma 10 Under the conditions of Lemma 9, suppose that {αt} and {ηt} are non-increasing sequences. Then it
holds that for any T ≥ 1,

1

T

T∑
t=1

Eξ[t] [d
2(∇f(xt+1) +

∑
i∈E∪I

λ̃t+1
i ci(x

t+1) + ∂h(xt+1),−NX(xt+1))]

≤4m2C̃2G2

T

T∑
t=1

ρ2t +
28(Eξ1 [∥ε1∥2] + 2

∑T
t=1 α

2
tσ

2)

αTT

+
1

T
(
224η1L

2

αT
+

20

ηT
)(Lβ1

(x1, λ1)− C∗ + C∥λ1∥1 +
mβT+1C

2

2
+ 2mC̃2

T∑
t=1

ρt). (29)

Proof. By using the definition of ϕβ and summing up (13) for t = 1, . . . , T , we can subsequently divide the resulting
expression by T to obtain

1

T

T∑
t=1

d2(∇f(xt+1) +
∑

i∈E∪I
λ̃t+1
i ci(x

t+1) + ∂h(xt+1),−NX(xt+1))

≤4m2C̃2G2

T

T∑
t=1

ρ2t +
4

T

T∑
t=1

∥εt∥2 + 4

T

T∑
t=1

(L2
βt

+
1

η2t
)∥xt+1 − xt∥2.

(30)

On the one hand, since {αt} is non-increasing and |Jt| ≥ 1, by Lemma 9 the second term in R.H.S. of (30) can be
upper bounded by using

1

T

T∑
t=1

Eξ[t] [∥εt∥2] ≤
2Eξ1 [∥ε1∥2] + 4

∑T
t=1 α

2
tσ

2

αTT
+

16η1L
2

αTT
(Lβ1

(x1, λ1)− C∗ + C∥λ1∥1 +
mβT+1C

2

2
+ 2mC̃2

T∑
t=1

ρt).

(31)
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On the other hand, it follows from (26) that

1

T

T∑
t=1

(L2
βt

+
1

η2t
)∥xt+1 − xt∥2

≤ 1

T

T∑
t=1

2(1 + η2tL
2
βt
)

ηt(1− ηtLβt
)
(Lβt

(xt, λt)− Lβt+1
(xt+1, λt+1) +

βt+1 − βt
2

mC2 +
ηt
2
∥εt∥2 +mρtC̃

2)

≤ 5

ηTT

T∑
t=1

(Lβt(x
t, λt)− Lβt+1(x

t+1, λt+1) +
βt+1 − βt

2
mC2 +mρtC̃

2) +
5

2T

T∑
t=1

∥εt∥2

≤ 5

ηTT
(Lβ1(x

1, λ1)− C∗ + C∥λ1∥1 +
mβT+1C

2

2
+ 2mC̃2

T∑
t=1

ρt) +
5

2T

T∑
t=1

∥εt∥2, (32)

where the second inequality follows from the fact that 1+u2

1−u < 5
2 when 0 < u < 1

2 and ηT ≤ ηt, the last comes from
(28). Therefore, we obtain the conclusion.

□

4.1 Unbounded penalty parameters

In this subsection, we detect the global convergence of MLALM with unbounded penalty parameters. The theorem
below shows global convergence properties of the sequences of average stationarity measure and average constraint
violation in expectation, respectively.

Theorem 1 Suppose that Assumptions 1-4 hold, and the parameters used in Algorithm 1 satisfy βt = β0t
ι and

ρt =
ρ

tθ
, ηt =

η

tι max{L, L̃}
, αt =

8αη2

tι
, t ≥ 1, (33)

where ρ, β0 > 0, 0 < η ≤ min{ 1
2β0

,
√
2
4 }, θ ∈ (1,∞), ι ∈ (0, 12 ) and α ∈ [1, 1

8η2 ) are given constants. Then the
followings are true:

lim
T→∞

1

T

T∑
t=1

Eξ[t] [d
2(∇f(xt+1) + ∂h(xt+1) +

∑
i∈E∪I

λ̃t+1
i ∇ci(xt+1),−NX(xt+1))] = 0, (34)

lim
T→∞

1

T

T∑
t=1

Eξ[t] [d
2(∇cE(xt+1)cE(x

t+1) +∇cI(xt+1)[cI(x
t+1)]+,−NX(xt+1))] = 0. (35)

Furthermore, if |Jt| = tq with q > 1, suppose that there exists Cu > 0 such that E[f(xt) + h(xt)] ≤ Cu for any t ≥ 1.
Then

lim
T→∞

1

T

T∑
t=1

Eξ[t] [∥cE(xt)∥2 + ∥[cI(xt)]+∥2] exists and is finite. (36)

Proof. We can verify that the settings defined in (33) satisfy the required conditions specified in (24). It is note-
worthy that the values of α ∈ [1, 1

8η2 ] are derived from the inequality αt ≤ 1. Additionally, the range for η, i.e.,

0 < η ≤ min{ 1
2β0

,
√
2
4 } is determined based on the conditions ηtβt ≤ 1

2 and 1
8η2 > 1. From the upper bounds as

shown in (29) and Lemma 7, the key to prove (34) and (35) is to derive∑T
t=1 ρ

2
t

T
→ 0,

∑T
t=1 α

2
t

αTT
→ 0,

1

T

T∑
t=1

1

β2
t

→ 0 and
1

T
(
η1
αT

+
1

ηT
)(βT+1 +

T∑
t=1

ρt) → 0, (37)
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as T increases to infinity. These can be achieved under parameter settings of the theorem.
We next prove (36). Recall that it is derived in (18) that

Lβt
(xt+1, λt)− Lβt

(xt, λt)≤ ηt
2
∥εt∥2 + (

Lβt

2
− 1

2ηt
)∥xt+1 − xt∥2

which yields

∥xt+1 − xt∥2 ≤ 2ηt
1− ηtLβt

(Lβt
(xt, λt)− Lβt

(xt+1, λt) +
ηt
2
∥εt∥2).

Plugging the above inequality into (21) implies

Eξ[t+1] [∥εt+1∥2] ≤ (1− αt)
2Eξ[t] [∥εt∥2] +

1

|Jt+1|
(2α2

tσ
2 + 2(1− αt)

2L2tιEξ[t] [∥xt+1 − xt∥2])

≤ (1− αt)
2(1 +

2η2tL
2tι

1− ηtLβt

)Eξ[t] [∥εt∥2] +
4(1− αt)

2ηtL
2tι

1− ηtLβt

(Eξ[t] [Lβt(x
t, λt)− Lβt(x

t+1, λt)]) +
2α2

tσ
2

|Jt+1|

≤Eξ[t] [∥εt∥2] +
4(1− αt)

2ηtL
2tι

1− ηtLβt

(Eξ[t] [Lβt
(xt, λt)− Lβt

(xt+1, λt)]) +
2α2

tσ
2

|Jt+1|
,

where the last inequality uses (1 − αt)
2(1 +

2η2
tL

2tι

1−ηtLβt
) ≤ 1 thanks to

2η2
tL

2tι

1−ηtLβt
≤ 4η1ηtL

2 ≤ αt. Moreover, dividing

both sides of the above inequality by βt, rearranging the terms and taking the expectation lead to

At := Eξ[t+1] [
1

βt
Lβt(x

t+1, λt) +
1− ηtLβt

4(1− αt)2ηtβtL2tι
∥εt+1∥2]

≤Eξ[t] [
1

βt
Lβt

(xt, λt) +
1− ηtLβt

4(1− αt)2ηtβtL2tι
(∥εt∥2 + 2α2

tσ
2

|Jt+1|
)] =: Bt.

Thus, { 1
T

∑T
p=1

∑p
t=1(At − Bt)}T≥1 is a non-increasing sequence as T increases to infinity. Recalling the definition

of Lβ , it is obvious that

1

T

T∑
p=1

p∑
t=1

(At −Bt)

=
1

T

T∑
p=1

p∑
t=1

Eξ[t+1] [f(xt+1) + h(xt+1)− f(xt)− h(xt)]

βt

+
1

T

T∑
p=1

Eξ[p] [

p∑
t=1

Ψβt
(xt+1, λt)−Ψβt

(xt, λt)

βt
− 1

2
(∥cE(xp+1)∥2 + ∥[cI(xp+1)]+∥2)]

+
1

2T

T∑
p=1

Eξ[p] [∥cE(xp+1)∥2 + ∥[cI(xp+1)]+∥2]

+
1

T

T∑
p=1

p∑
t=1

1− ηtLβt

4(1− αt)2ηtβtL2tι
(Eξ[t+1] [∥εt+1∥2 − ∥εt∥2]− 2α2

tσ
2

|Jt+1|
). (38)

Firstly, under assumptions of this theorem, we can infer that the following inequality holds for any p ≥ 1:

|
p∑

t=1

E[f(xt+1) + h(xt+1)− f(xt)− h(xt)]| = |E[f(xp+1) + h(xp+1)]− f(x1)− h(x1)| ≤ Cu + C∗.
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Then, due to the fact that the sequence {βt}t≥1 is monotonically increasing and limt→∞
1
βt

= 0, by utilizing Dirichlet’s
Test we deduce that

lim
p→∞

p∑
t=1

E[f(xt+1) + h(xt+1)− f(xt)− h(xt)]

βt
exists.

Therefore, the arithmetic mean (the first item on R.H.S. of (38)) converges as T → ∞. Secondly, by Lemma A.1 we
are able to prove that

lim
T→∞

1

T

T∑
p=1

p∑
t=1

E[Ψβt
(xt+1, λt)−Ψβt

(xt, λt)]

βt
− 1

2
E[∥cE(xp+1)∥2 + ∥[cI(xp+1)]+∥2] exists.

Thirdly, for the last item in R.H.S. of (38), it implies from (23) that for any t ≥ 1,

Eξ[t] [∥εt∥2] ≤ Eξ[t−1] [∥εt−1∥2] + 4σ2

|Jt|
≤ Eξ1 [∥ε1∥2] +

t∑
k=2

4σ2

|Jk|
= σ2 +

t∑
k=2

4σ2

kq
. (39)

Then it derives that

|
p∑

t=1

(E[∥εt+1∥2 − ∥εt∥2]− 2α2
tσ

2

|Jt+1|
)| = |E[∥εp+1∥2]− ∥ε1∥2 −

p∑
t=1

2α2
tσ

2

|Jt+1|
|

is bounded following the settings of αt and Jt+1. At the meanwhile, we can verify that { 1−ηtLβt

4(1−αt)2ηtβtL2tι }t≥1 is

monotonically decreasing and converging to zero, as t increases to infinity. Therefore, the last term of (38) is
also convergent by applying Dirichlet’s test. In summary, our analysis has demonstrated that the first, second,
and fourth terms in R.H.S. of (38) converge to finite values as T increases to infinity. Consequently, the sequence

{ 1
T

∑T
p=1

∑p
t=1(At − Bt)}T≥1 is uniformly lower bounded by a finite value, and since it is non-increasing, it must

converge as T tends to infinity. Therefore, the third term in R.H.S. of (38), which represents the average of constraint
violations across all previous T iterates, also converges to a finite value as T approaches infinity. This completes the
proof of (36).

□
Like in most penalty methods for nonconvex constrained optimization, the iterates generated by MLALM may

get trapped around an infeasible stationary point, when no constraint qualification is assumed. Hence, to further
analyze feasibility and the complementary slackness of iterates, it is necessary to impose a constraint qualification.
Various constraint qualification conditions have been used in the literature for nonconvex constrained optimization.
Given that MLALM operates as a stochastic approximation method, it becomes necessary to analyze its theoretical
performance in an average sense by considering the average of relevant stationarity measures over all previous iterates.
However, it is important to note that the iterates produced by MLALM can be infeasible during the algorithmic
process. Therefore, it is crucial to establish a broader region beyond the feasible region where a constraint qualification
holds. Drawing motivation from [20] and [35, 36, 53], we introduce the following assumption regarding a constraint
qualification.

Assumption 5 There exist positive constants δ and Z such that for any t ≥ 1 the linear system

δ · sgn(ci(xt)) +∇ci(xt)T z = 0, i ∈ E : ci(x
t) ̸= 0 ;

δ +∇ci(xt)Tz ≤ 0, i ∈ I : ci(x
t) > 0

(40)

has a solution zt ∈ −N ∗
X(xt) with ∥zt∥ ≤ Z.

Remark 2 The constraint qualification assumed in Assumption 5 can be regarded as an extended variant of MFCQ
which was originally proposed for smooth nonconvex constrained optimization [51]. In the case of infeasible methods,
especially stochastic approximation methods for nonconvex constrained optimization, a constraint qualification (or
nonsingularity condition) is often imposed on infeasible iterates in the literature. The necessity of a nonsingularity
condition is evident in works such as [24, 26, 40], where it is utilized to analyze the complexity of penalty methods for
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nonconvex constrained optimization. Compared with the constraint qualification assumed in [30, Assumption 4] for
smooth deterministic constrained stochastic optimization, we replace ci(x

t) with δ · sgn(ci(xt)) for infeasible equality
constraints and with δ for infeasible inequality constraints in the linear system (40). When I = ∅ and X = Rn, the
condition required by Assumption 5 is weaker than the strong LICQ in [2], where it assumes that ∇c(x)T has full row
rank and its singular values are uniformly lower bounded away from zero over a convex and compact set containing
all iterates. Under Assumption 5, we are able to prove the average of expected Lagrange multiplier vectors λ̃t, t ≥ 1,
as defined in (19), is upper bounded in the lemma below.

Lemma 11 Under the conditions and parameter settings of Theorem 1 with ι ∈ (0, 13 ], suppose that Assumption 5

holds, then {Eξ[T ] [ 1T
∑T

t=1 ∥λ̃t∥]}T≥1 is uniformly bounded.

Proof. The detailed proof is presented in Appendix B.
□

The following theorem provides a characterization of global convergence, in which the average of expected con-
straint violation and complementary slackness converge to zero, respectively.

Theorem 2 Under the same conditions and parameter settings of Theorem 1 with ι ∈ (0, 13 ], suppose that Assumption
5 holds, then

lim
T→∞

1

T

T∑
t=1

Eξ[t] [∥cE(xt+1)∥ 1
2 + ∥[cI(xt+1)]+∥

1
2 ] = 0, (41)

lim
T→∞

1

T

T∑
t=1

Eξ[t] [
∑
i∈I

(λ̃t+1
i |ci(xt+1)|) 1

4 ] = 0. (42)

Proof. As demonstrated in Lemma 11, there exists a constant Λ̃ > 0 such that

Eξ[T ] [
1

T

T∑
t=1

∥λ̃t+1∥] ≤ Λ̃ ∀T ≥ 1.

Recall that as shown in Lemma 2, there exists Λ > 0 such that ∥λt∥ ≤ Λ, t ≥ 1. Then by the definition of λ̃t, we
obtain

Eξ[T ] [
1

T

T∑
t=1

βt(∥cE(xt+1)∥+ ∥[cI(xt+1)]+∥)] ≤ Λ̃ + Λ ∀T ≥ 1. (43)

Therefore, the following relation holds true:

1

T

T∑
t=1

Eξ[t] [(∥cE(xt+1)∥+ ∥[cI(xt+1)]+∥)
1
2 ]

=Eξ[T ] [
1

T

T∑
t=1

β
− 1

2
t β

1
2
t (∥cE(xt+1)∥+ ∥[cI(xt+1)]+∥)

1
2 ]

≤(
1

T

T∑
t=1

β−1
t )

1
2Eξ[T ] [(

1

T

T∑
t=1

βt(∥cE(xt+1)∥+ ∥[cI(xt+1)]+∥))
1
2 ] ≤ (

1

T

T∑
t=1

β−1
t )

1
2

√
Λ̃ + Λ (44)

which indicates (41) from a
1
2 + b

1
2 ≤

√
2(a+ b)

1
2 and the setting of βt. The remainder of the proof is to show (42).

Note that if ci(x
t+1) ≤ −λt+1

i

βt
, λ̃t+1

i = 0. Then by using notations

I1 := {i ∈ I : ci(x
t+1) > 0}, I2 := {i ∈ I : −λ

t
i

βt
≤ ci(x

t+1) ≤ 0}, (45)
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we derive∑
i∈I

(λ̃t+1
i |ci(xt+1)|) 1

4 =
∑
i∈I1

(βt(ci(x
t+1))2 + λt+1

i ci(x
t+1))

1
4 +

∑
i∈I2

(−λt+1
i ci(x

t+1)− βt(ci(x
t+1))2)

1
4

≤
∑
i∈I1

(β
1
4
t c

1
2
i (x

t+1) + (λt+1
i ci(x

t+1))
1
4 ) +

∑
i∈I2

(−λt+1
i ci(x

t+1))
1
4

≤
∑
i∈I1

β
1
4
t c

1
2
i (x

t+1) +
∑

i∈I1∪I2

(λt+1
i |ci(xt+1)|) 1

4

≤β
1
4
t

∑
i∈I1

c
1
2
i (x

t+1) + Λ
1
4

∑
i∈I1

c
1
4
i (x

t+1) + Λ
1
2 |I2|β

− 1
4

t

≤ |I1|
3
4 β

1
4
t ∥cI1(x

t+1)∥ 1
2 + |I1|

7
8Λ

1
4 ∥cI(xt+1)∥ 1

4 + Λ
1
2 |I2|β

− 1
4

t

≤ |I| 34 β
1
4
t ∥[cI(xt+1)]+∥

1
2 + |I| 78Λ 1

4 ∥[cI(xt+1)]+∥
1
4 + Λ

1
2 |I|β− 1

4
t , (46)

where the last inequality holds by Jensen’s inequality. Then taking expectation with respect to ξ[t] on both sides of
(46) and sum-averaging over the first T iterations yield

1

T

T∑
t=1

Eξ[t] [
∑
i∈I

(λ̃t+1
i |ci(xt+1)|) 1

4 ]

≤ 1

T

T∑
t=1

(Eξ[t] [|I|
3
4 β

1
4
t ∥[cI(xt+1)]+∥

1
2 + |I| 78Λ 1

4 ∥[cI(xt+1)]+∥
1
4 + Λ

1
2 |I|β− 1

4
t ])

≤ |I| 34 ( 1
T

T∑
t=1

Eξ[t] [βt∥[cI(xt+1)]+∥])
1
2 (

1

T

T∑
t=1

β
− 1

2
t )

1
2 + |I| 78Λ 1

4 (
1

T

T∑
t=1

Eξ[t] [∥[cI(xt+1)]+∥
1
2 ])

1
2

+
|I|Λ 1

2

T

T∑
t=1

β
− 1

4
t ,

where the second equality comes from Cauchy–Schwarz inequality and (E[u])2 ≤ E[u2] for a random variable u > 0.
Then the desired result is concluded by (43) and (44).

□

Remark 3 Assumption 5 plays a crucial role in the convergence analysis of MLALM. To verify the frequency that
Assumption 5 holds at iterates, we provide an example in Appendix C and report the experiment results for different
cases. In addition, more discussions on CQ conditions and potential extensions are presented in Appendix D.

4.2 Bounded penalty parameters

In this subsection, we analyze convergence properties of MLALM when the penalty parameters are bounded. Without
loss of generality, we assume that βt ≡ β for all t ≥ 1.

Theorem 3 Suppose that Assumptions 1-4 hold, and the parameters used in Algorithm 1 satisfy (33) and βt ≡ β,
t ≥ 1. Then (34) holds and there exists a positive constant δ1 (independent of β) such that

1

T

T∑
t=1

Eξ[t] [d
2(∇cE(xt+1)cE(x

t+1) +∇cI(xt+1)[cI(x
t+1)]+,−NX(xt+1))] ≤ δ1β

−2. (47)
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Furthermore, assume that |Jt| = tq, t ≥ 1, with q > 1, and there exists Cu > 0 such that E[f(xt) + h(xt)] ≤ Cu for
any t ≥ 1. Then there exists a positive constant δ2 (independent of β) such that for all sufficiently large T ,

1

T

T∑
t=1

Eξ[t] [∥cE(xt)∥2 + ∥[cI(xt)]+∥2] ≤ C1
vio + δ2β

−1, (48)

1

T

T∑
t=1

Eξ[t] [
∑
i∈I

(λ̃t+1
i )

1
2 |ci(xt+1)|] ≤ |I| 14 (β 1

2 (C1
vio + δ2β

−1)3/4 + Λ
1
2 (C1

vio + δ2β
−1)1/2 + β−1Λ3/2), (49)

where C1
vio = ∥cE(x1)∥2 + ∥[cI(x1)]+∥2.

Proof. In analogy to Theorem 1, by analyzing the upper bound in (29) and following the parameter setting, we can
obtain (34). Lemma 7 can be applied to derive (47).

To prove (48), it suffices to analyze the bound of (38) when βt ≡ β for all t ≥ 1. Following the analysis to (38)
in previous theorem and by Lemma A.2, we can obtain

0 ≥ 1

T

T∑
p=1

p∑
t=1

(At −Bt) =
1

2T

T∑
p=1

Eξ[p] [∥cE(xp+1)∥2 + ∥[cI(xp+1)]+∥2]

− 1

2
(∥cE(x1)∥2 + ∥[cI(x1)]+∥2) +O(β−1).

Due to the non-increasing property of At −Bt we derive (48).
To prove (49), it follows from the definitions of I1 and I2 in (45) that∑

i∈I
(λ̃t+1

i )
1
2 |ci(xt+1)| =

∑
i∈I1∪I2

([λt+1
i + βci(x

t+1)]+)
1
2 |ci(xt+1)|

≤β 1
2

∑
i∈I1

(ci(x
t+1))

3
2 +

∑
i∈I1

(λt+1
i )

1
2 ci(x

t+1) +
∑
i∈I2

(λt+1
i )

1
2 |ci(xt+1)|

≤|I1|
1
4 (β

1
2 ∥[cI(xt+1)]+∥

3
2 + Λ

1
2 ∥[cI(xt+1)]+∥) + |I2|

1
4 β−1Λ

3
2

≤|I| 14 (β 1
2 ∥[cI(xt+1)]+∥

3
2 + Λ

1
2 ∥[cI(xt+1)]+∥+ β−1Λ

3
2 ).

Therefore, taking the expectation of the above formula and the average over t = 1, . . . , T yields

1

T

T∑
t=1

Eξ[t] [
∑
i∈I

(λ̃t+1
i )

1
2 |ci(xt+1)|]

≤|I| 14 (β
1
2

T

T∑
t=1

Eξ[t] [∥[cI(xt+1)]+∥
3
2 ] +

Λ
1
2

T

T∑
t=1

Eξ[t] [∥[cI(xt+1)]+∥] + β−1Λ
3
2 )

≤|I| 14 (β
1
2

T

T∑
t=1

(Eξ[t] [∥[cI(xt+1)]+∥2])
3
4 +

Λ
1
2

T

T∑
t=1

(Eξ[t] [∥[cI(xt+1)]+∥2])
1
2 + β−1Λ

3
2 )

≤|I| 14 (β 1
2 (

1

T

T∑
t=1

Eξ[t] [∥[cI(xt+1)]+∥2])
3
4 + Λ

1
2 (

1

T

T∑
t=1

Eξ[t] [∥[cI(xt+1)]+∥2])
1
2 + β−1Λ

3
2 )

≤|I| 14 (β 1
2 (C1

vio + δ2β
−1)

3
4 + Λ

1
2 (C1

vio + δ2β
−1)

1
2 + β−1Λ

3
2 ),

where the second and third inequalities come from Jensen’s inequality.
□
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Remark 4 It is noteworthy that Theorem 3 does not assume Assumption 5. However, if we do impose this assump-
tion, we can actually obtain stronger results, which can be seen in Subsection 5.2.

5 Oracle complexity analysis

In order to investigate oracle complexities of MLALM, we limit the maximum number of iterations to a fixed integer,
denoted by T with a little abuse of notation, and set the batch size

|Jt| = 1, t = 1, . . . , T.

We randomly select an iterate xR+1 as the output, where R follows a uniform distribution over {1, . . . , T}. To
characterize the output of the algorithm, we define two types of approximate solutions for problem (1), and we will
analyze oracle complexities of MLALM to find those solutions accordingly.

Definition 1 Given ϵ > 0, we call x ∈ X an ϵ-stationary point of (1), if there exists λ ∈ R|E∪I| with λi ≥ 0, i ∈ I,
such that

E[d2(∇f(x) + ∂h(x) +
∑

i∈E∪I
λi∇ci(x),−NX(x))] ≤ ϵ2, (50)

E[d2(∇cE(x)cE(x) +∇cI(x)[cI(x)]+,−NX(x))] ≤ ϵ2. (51)

Definition 2 Given ϵ > 0, we call x ∈ X an ϵ-KKT point of (1), if there exists λ ∈ R|E∪I| with λi ≥ 0, i ∈ I, such
that (50) holds and

E[∥cE(x)∥2 + ∥cI(x)]+∥2] ≤ ϵ2, E[
∑
i∈I

λi|ci(x)|] ≤ ϵ.

5.1 Towards an ϵ-stationary point

In this subsection, we will analyze the complexity of MLALM for finding an ϵ-stationary point of (1). Towards this
end, we need to first estimate the stationarity measure, i.e., L.H.S. of (50), at xR+1.

Lemma 12 Under Assumptions 1-4 and (24), set ρt ≡ ρ
T and positive parameters βt ≡ β1, ηt ≡ η1, αt ≡ α1, t ≥ 1,

then it holds that with λ̃ defined through (19),

ER;ξ[T ] [d2(∇f(xR+1) + ∂h(xR+1) +
∑

i∈E∪I
λ̃R+1
i ∇ci(xR+1),−NX(xR+1))]

≤4m2ρ2C̃2G2

T 2
+

1

T
(
224η1L

2

α1
+

20

η1
)(Lβ1(x

1, λ1)− C∗ + C∥λ1∥1 + 2mρC̃2) +
28(Eξ1 [∥ε1∥2] + 2

∑T
t=1 α

2
tσ

2)

α1T
.

Proof. Similar to the proof of Lemma 10, we first give an upper bound on the stationarity measure as shown in
(50). By taking expectation on both sides of (13) and average over t = 1, . . . , T , we obtain

1

T

T∑
t=1

Eξ[t] [d
2(∇xϕβt

(xt+1, λt+1) + ∂h(xt+1),−NX(xt+1))]

≤4(mρC̃G)2

T 2
+

4

T

T∑
t=1

Eξ[t] [∥εt∥2] +
4

T

T∑
t=1

(L2
βt

+
1

η2t
)Eξ[t] [∥xt+1 − xt∥2]. (52)

From (25) with αt = α1 and βt = β1, it follows that

1

T

T∑
t=1

Eξ[t] [∥εt∥2] ≤
2Eξ1 [∥ε1∥2] + 4

∑T
t=1 α

2
tσ

2

α1T
+

16η1L
2

α1T
(Lβ1(x

1, λ1)− C∗ + C∥λ1∥1 + 2mC̃2
T∑

t=1

ρt). (53)
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For the last term in R.H.S. of (52), it is easy to attain from (26) that

1

T

T∑
t=1

(L2
βt

+
1

η2t
)Eξ[t] [∥xt+1 − xt∥2]

≤ 1

T

T∑
t=1

2(1 + η2tL
2
βt
)

ηt(1− ηtLβt
)
Eξ[t] [(Lβt

(xt, λt)− Lβt+1
(xt+1, λt+1) +

ηt
2
∥εt∥2 +mρtC̃

2)]

≤ 5

η1T
(Lβ1(x

1, λ1)− C∗ + C∥λ1∥1 + 2mρC̃2) +
5

2T

T∑
t=1

Eξ[t] [∥εt∥2], (54)

where the last inequality is due to 1+u2

1−u ≤ 5
2 for 0 < u ≤ 1

2 and ηt = η1 for all t ∈ [T ]. Then, plugging (54) and (53)

into (52) together with the definition of λ̃ in (19), we obtain

ER;ξ[T ] [d2(∇f(xR+1) + ∂h(xR+1) +
∑

i∈E∪I
λ̃R+1
i ∇ci(xR+1),−NX(xR+1))]

=
1

T

T∑
t=1

Eξ[t] [d
2(∇xϕβt(x

t+1, λt+1) + ∂h(xt+1),−NX(xt+1))]

≤4m2ρ2C̃2G2

T 2
+

20

η1T
(Lβ1(x

1, λ1)− C∗ + C∥λ1∥1 + 2mρC̃2) +
14

T

T∑
t=1

Eξ[t] [∥εt∥2]

≤4m2ρ2C̃2G2

T 2
+

1

T
(
224η1L

2

α1
+

20

η1
)(Lβ1

(x1, λ1)− C∗ + C∥λ1∥1 + 2mρC̃2) +
28(Eξ1 [∥ε1∥2] + 2

∑T
t=1 α

2
tσ

2)

α1T

which yields the conclusion.
□

As in general it may be intractable to find a feasible solution for a nonconvex constrained optimization problem.
Hence, we need to characterize the infeasible stationarity measure.

Lemma 13 Under the conditions of Lemma 12, it holds that

ER;ξ[T ] [d2(∇cE(xR+1)cE(x
R+1) +∇cI(xR+1)[cI(x

R+1)]+,−NX(xR+1))]

≤ 4

β2
1

((2 +m2(∥λ1∥+ ρC)2)G2 +
4m2ρ2C̃2G2

T 2

+
1

T
(
224η1L

2

α1
+

20

η1
)(Lβ1

(x1, λ1)− C∗ + C∥λ1∥1 + 2mρC̃2) +
28(Eξ1 [∥ε1∥2] + 2

∑T
t=1 α

2
tσ

2)

α1T
).

Proof. By applying (20) and taking expectation with respect to R and ξ[T ] on both sides, we obtain the conclusion
from the setting of βt. □

Selecting appropriate parameters is crucial as the ultimate oracle complexities depend on these choices. To ensure
(24), we set the parameters as follows:

βt = β0T
ι, ηt =

η

T ι max{L, L̃}
, αt =

8αη2

T τ
, (55)

where β0 ≥ 0, τ ≤ 2ι, 0 < η ≤ min{ 1
2β0

,
√
2
4 }, α ∈ [1, 1

8η2 ] are given constants that are independent of T . Then the
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upper bound shown in Lemma 12 is of order

O(T−2 + T−1(T τ−ι + T ι)(Lβ1
(x1, λ1) + 1) + T τ−1Eξ1 [∥ε1∥2] + T−τ )

= O(T−2 + T ι−1(Lβ1
(x1, λ1) + 1) + T τ−1Eξ1 [∥ε1∥2] + T−τ ).

(56)

Obviously, when τ = 2ι = 1
2 , above order can reach the lowest order. We summarize above analysis into the following

theorem.

Theorem 4 Under Assumptions 1-4, suppose that

ρt ≡
ρ

T
, βt = β0T

1/4, ηt =
η

T 1/4 max{L, L̃}
, αt =

8αη2

T 1/2
, ∀t ∈ [T ]

with ρ ∈ (0, T 5/4], β0 ≥ 0, 0 < η ≤ min{ 1
2β0

,
√
2
4 }, α ∈ [1, 1

8η2 ] being constants independent of T .Then it holds that

with λ̃ defined through (19),

ER;ξ[T ] [d2(∇f(xR+1) + ∂h(xR+1) +
∑

i∈E∪I
λ̃R+1
i ∇ci(xR+1),−NX(xR+1))] = O(T−1/2), (57)

ER;ξ[T ] [d2(∇cE(xR+1)cE(x
R+1) +∇cI(xR+1)[cI(x

R+1)]+,−NX(xR+1))] = O(T−1/2). (58)

Consequently, the oracle complexity of MLALM to reach an ϵ-stationary point of (1) is of order O(ϵ−4).

Proof. It is straightforward to obtain (57) by Lemma 12 together with the analysis to (56). Under the parameter
setting (55), the upper bound in Lemma 13 is of order O(T−2ι+T−ι−1(Lβ1

(x1, λ1)+1)+T τ−1−2ιEξ1 [∥ε1∥2]+T−τ−2ι).
Then (58) can be derived from ι = 1

4 . Hence, to achieve an ϵ-stationary point of (1), the maximum number of
iterations T should be of order O(ϵ−4). Since the computation of the stochastic gradient only requires sampling once
per iteration, as shown in (4), the total number of stochastic oracle calls is in the order of O(T ), which is of order
O(ϵ−4).

□
It is important to note that Lemmas 12 and 13 demonstrate that the term Lβ1

(x1, λ1) explicitly appears in the

upper bounds. Then the term β1

2 (∥cE(x1)∥2 + ∥[cI(x1)]+∥2) directly affects these upper bounds. In particular, we
need to consider the impact of potentially large values of β1 on the complexity order derived in (56). However,
when the initial point is sufficiently close to the feasible region, such that the aforementioned term is of order O(1),
the influence of large β1 on the complexity order can be reduced. Besides, Eξ1 [∥ε1∥2] also affects the order in (56).
Therefore, if we sample T ι times at the initial point, one has Eξ1 [∥ε1∥2] = O(T−ι). In this case, under the parameter
setting (55) the upper bound in Lemma 12 is of order

O(T−2 + T ι−1 + T τ−1−ι + T−τ ).

Thus to achieve the lowest order O(T− 2
3 ) we can choose τ = 2ι = 2

3 . We can also obtain that the upper bound in

Lemma 13 is of order O(T− 2
3 ). We thus derive the following corollary, with the proof omitted.

Corollary 1 Under Assumptions 1-4, suppose that

ρt ≡
ρ

T
, βt = β0T

1/3, ηt =
η

T 1/3 max{L, L̃}
, αt =

8αη2

T 2/3
, ∀t ∈ [T ]

with ρ ∈ (0, T 5/4], β0 ≥ 0, 0 < η ≤ min{ 1
2β0

,
√
2
4 }, α ∈ [1, 1

8η2 ] being constants independent of T . If ∥cE(x1)∥2 +
∥[cI(x1)]+∥2 = O(T−1/3) and Eξ1 [∥ε1∥2] = O(T−1/3), the oracle complexity to reach an ϵ-stationary point of (1) is
of order O(ϵ−3).
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5.2 Towards an ϵ-KKT point

In this subsection, we will analyze the oracle complexity of MLALM towards an ϵ-KKT point of (1). With the help of
Assumption 5 we can obtain the following lemma characterizing the near-feasibility of xR+1 and the complementary
slackness in expectation.

Theorem 5 Suppose that Assumption 5 and the conditions of Theorem 4 hold, then

ER;ξ[T ] [∥cE(xR+1)∥2 + ∥[cI(xR+1)]+∥2] = O(T−1/2), (59)

ER;ξ[T ] [
∑
i∈I

λ̃R+1
i |ci(xR+1)|] = O(T−1/4). (60)

Consequently, the oracle complexity of MLALM to reach an ϵ-KKT point of (1) is of order O(ϵ−4).

Proof. Under Assumption 5, it is easy to obtain

ci(x
t)T∇ci(xt)Tzt = −δ|ci(xt)|, i ∈ E : ci(x

t) ̸= 0,

[ci(x
t)]T+∇ci(xt)Tzt ≤ −δ[ci(xt)]+, i ∈ I : ci(x

t) > 0,

which further yields

cE(x
t)T∇cE(xt)Tz + [cI(x

t)]T+∇cI(xt)Tz ≤ −δ(∥cE(xt)∥1 + ∥[cI(xt)]+∥1).

Moreover, since vTz ≤ 0 for all v ∈ NX(xt), we have

cE(x
t)T∇cE(xt)Tz + [cI(x

t)]T+∇cI(xt)Tzt + vTz ≤ −δ(∥cE(xt)∥1 + ∥[cI(xt)]+∥1).

Hence, it holds that for any v ∈ NX(xt),

δ(∥cE(xt)∥1 + ∥[cI(xt)]+∥1) ≤|cE(xt)T∇cE(xt)Tzt + [cI(x
t)]T+∇cI(xt)Tzt + vTzt|

≤∥∇cE(xt)cE(xt) +∇cI(xt)[cI(xt)]+ + v∥∥zt∥.

Due to ∥zt∥ ≤ Z and the arbitrariness of v ∈ NX(xt), we obtain

δ

Z
(∥cE(xt)∥1 + ∥[cI(xt)]+∥1) ≤ d(∇cE(xt)cE(xt) +∇cI(xt)[cI(xt)]+,−NX(xt)).

Therefore, (59) can be derived from (58).
In light of |ci(xt+1)| = [ci(x

t+1)]+ + [ci(x
t+1)]− for i ∈ I and using the notations

It+1
1 := {i | ci(xt+1) ≥ 0}, It+1

2 := {i | −λ
t+1
i

βt
≤ ci(x

t+1) < 0},

we can derive the following relations∑
i∈I

λ̃t+1
i |ci(xt+1)| =

∑
i∈It+1

1

[βtc
2
i (x

t+1) + λt+1
i ci(x

t+1)] +
∑

i∈It+1
2

[−ci(xt+1)(βtci(x
t+1) + λt+1

i )]

≤
∑

i∈It+1
1

[βtc
2
i (x

t+1) + λt+1
i ci(x

t+1)] +
∑

i∈It+1
2

|λt+1
i |2

βt

≤βt
∑

i∈It+1
1

c2i (x
t+1) + ρC

∑
i∈It+1

1

ci(x
t+1) +

mρ2C2

βt
, (61)
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where the first inequality comes from −u(bu + a) ≤ a2

b ,∀u ∈ R with b > 0, and the second inequality is due to

|λt+1
i | ≤ λ1i + ρC, ∀i ∈ I by (7) and ρt =

ρ
T . Then taking expectation with respect to R and ξ[T ] on both sides of

(61) yields

ER;ξ[T ] [
∑
i∈I

λ̃R+1
i |ci(xR+1)|] = 1

T

T∑
t=1

Eξ[T ] [
∑
i∈I

λ̃t+1
i |ci(xt+1)|]

≤ 1

T

T∑
t=1

Eξ[T ] [βt
∑

i∈It+1
1

c2i (x
t+1) + ρC

∑
i∈It+1

1

ci(x
t+1)] +

mρ2C2

βt

=β1ER;ξ[T ] [∥[cI(xR+1)]+∥2] + ρC|I|ER;ξ[T ] [∥[cI(xR+1)]+∥] +
mρ2C2

β1

=O(T−1/4),

where the third equality comes from (59) and (E[u])2 ≤ E[u2] for a random variable u ∈ R.
Consequently, the oracle complexity of MLALM to reach an ϵ-KKT point of (1) is O(T ) which is in order O(ϵ−4).

□
In analogy to Corollary 1, when the initial point is sufficiently close to the feasible region of (1), it is straightforward

to obtain the following results.

Corollary 2 Suppose that Assumption 5 and the conditions of Corollary 1 hold, then the oracle complexity of
MLALM to reach an ϵ-KKT point of (1) is in order O(ϵ−3).

6 Numerical Simulations

In this section, we conduct a series of numerical experiments to evaluate the practical performance of MLALM, as
outlined in Algorithm 1. All experiments were performed using Matlab 2021b on a 64-bit Linux machine equipped
with a 4.90 GHz Intel Core i7-12700K CPU and 32GB of memory.

6.1 Quadratically Constrained Nonconvex Program

In this subsection, we test the proposed method on solving quadratically constrained nonconvex programs [21]:

min
x∈X

f(x) =
1

N

N∑
i=1

log(1 +
1

2
∥Hix− ci∥2)

s.t. fj(x) =
1

2
xTQjx+ aTj x ≤ bj , j = 1, . . . ,M,

(62)

where X = [−10, 10]n. For each i ∈ [N ], we generate Hi ∈ Rp×n randomly with elements independently following the
standard Gaussian distribution. For each j ∈ [M ], Qj ∈ Rn×n is sum of a random matrix and a diagonal matrix with
elements randomly selected from U[−1, 1], and aj is randomly generated following U[0.1, 1.1]n. Then we generate a
random point x∗ ∼ U(0, 1)n and set ci = Hix∗, i ∈ [N ], bj = 1

2x
T
∗Qjx∗ + aTj x∗, j ∈ [M ]. It is worth noting that x∗

is feasible for (62) and has an objective value of f(x∗) = 0. Therefore, x∗ is the optimal solution for problem (62).
In this subsection, we present the average performance over 10 independent runs of the algorithm in each scenario.

To assess the impact of the parameter αt on the numerical performance of (4), we implement experiments by
solving (62). We select αt from the set {0, 0.2, 0.4, 0.6, 0.8, 1}. In all experiments, we set n = M = 50, p = 5,
N = 1000, and initialize the algorithm with x1 = 0. The maximum number of iterations is set to T = 2000,
and the penalty parameter is chosen as βt = T 1/4. Additionally, we set ρt = T 1/4 and consider two step sizes,
ηt ∈ {0.15/T 1/4, 0.17/T 1/4}. To obtain reliable results, in Figures 1 and 2 the left subplot presents the trend of
average objective function values at all previous iterates, while the right one illustrates the average of constraint
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violation
∑M

j=1[fj(x) − bj ]+ over past iterates. We observe that, for a given step size ηt, the best-performing value
of αt tends to lie within an intermediate range, rather than being the largest or smallest option. Additionally, by
comparing the optimal αt values depicted in Figures 1 and 2, we notice that as the step size ηt increases, the optimal
αt value also increases. This aligns with the positive correlation between αt and ηt, as indicated in the parameter
settings of Theorem 1. They highlight the importance of selecting an appropriate αt value within an intermediate
range to achieve optimal performance in terms of both the objective function value and the constraint violation.

Figure 1: The impact of αt on MLALM with ηt = 0.15/T 1/4

Figure 2: The impact of αt on MLALM with ηt = 0.17/T 1/4

We next compare the performance of MLALM with that of ICPPC [4] and LCSVRG [5] for solving problem (62).
We adopt the following experimental settings. For those algorithms, we set n ∈ {50, 100}, p = 5, N = 1000, and
M ∈ {50, 100}. The initial point is chosen as x1 = 0, and the maximum number of iterations is set to T = 2000. For
ICPPC, we set t0 = 2, M = 0.1M . All other parameters for ICPPC are set according to the requirements specified
in [4]. It is important to note that for ICPPC we set the maximum umber of inner iterations as 2, based on its
favorable performance observed in numerical tests. LCSVRG is the variance-reduced variant of LCPG [5], aiming
to solve finite-sum optimization problems. For LCSVRG, we set its batch size |Jt| = 30, maximum outer iteration
number T = 50, ensuring that the total complexity of computing stochastic gradient equals to that of the other
two algorithms, i.e. (1000 + 50 × 30 × 2). Regarding MLALM, we set ηt = 0.05/T 1/4, αt = 0.5, βt = T 1/4, and
ρt = 10. Figure 3 illustrates the performance of both algorithms in terms of objective function values and constraint
violations on QCNP problems under different scenarios. All reported results are the average values obtained from
10 independent runs of each algorithm. The observations from the figures indicate that, within the same number of
stochastic gradient evaluations, MLALM reduces the constraint violations much faster throughout the algorithm’s
progress, although the speed to reduce the objective function value by both algorithms is comparable.

6.2 Multi-class Neyman-Pearson classification problems

In this subsection, we consider multi-class Neyman-Pearson classification (mNPC) problems [26]. The mNPC problem
focuses on the task of learning K models xk, where k ∈ [K], in order to predict the class of a potential data point
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n = 50,M = 50

n = 100,M = 100

Figure 3: Comparison between MLALM, ICPPC and LCSVRG for solving QCNP problems

ξ by selecting the model that maximizes the inner product xTk ξ. More precisely, the optimization problem aims to
minimize the loss associated with one specific class while controlling the loss values for the remaining classes. The
problem formulation can be expressed as follows:

min
∥xk∥≤λ, k∈[K]

1

|D1|
∑
l>1

∑
ξ∈D1

h(xT1 ξ − xTl ξ)

s.t.
1

|Dk|
∑
l ̸=k

∑
ξ∈Dk

h(xTk ξ − xTl ξ) ≤ γk, k = 2, . . . ,K,

(63)

where h(z) = 1/(1 + ez) is the loss function and Dk represents the training data of the k-th class. We use two
datasets from LibSVM [8]: covtype (K = 7) and mnist (K = 10). Besides, we set γk = 0.5(K − 1) and λ = 0.3.

We now compare MLALM with SPD [21] and ICPPC [4]. For these three algorithms, we set the maximum
number of stochastic gradient computations is 4000. For MLALM, we set parameter αt = 0.7 for both datasets.
Other parameters are set same for both MLALM and SPD. Specifically, for covtype we set ηt = 0.01/t1/4, βt =
5T 1/4, ρt = 0.67, while for mnist we set ηt = 0.005/t1/4, βt = T 1/4, ρt = 0.0067. It is worth noting that the number
of stochastic gradients calculated by SPD at tth iteration is t1/4. Figures 4 and 5 present the performances of
MLALM and SPD on the respective datasets for solving mNPC problems. The parameters of the ICPPC algorithm
for the two datasets are selected as follows: For covtype, we set θt = 0.67, τt = 2.5 and ηt = 2.6×10−4 in subproblem
solver ConEx; for mnist, we set θt = 0.67, τt = 2.5 and ηt = 0.003. The inner-iteration number is set to 2.
All reported results are the average values obtained from 5 independent runs of each algorithm. From the figures
we observe that for the covtype dataset, MLALM demonstrates a faster reduction in the objective function value
compared to the other algorithms, while ICPPC maintains a lower level of constraint violations. Regarding themnist
dataset, MLALM exhibits superior performance in both the objective function value and the constraint violations.
Furthermore, it is worth mentioning that MLALM outperforms SPD significantly, indicating that the incorporation
of momentum brings notable benefits to the numerical performance.
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Figure 4: Comparison between MLALM, ICPPC and SPD on dataset covtype

Figure 5: Comparison between MLALM, ICPPC and SPD on dataset mnist

7 Conclusion

In this paper, we present MLALM, a single-loop linearized augmented Lagrangian method for nonconvex optimiza-
tion problems with an expectation function in the objective and deterministic functional constraints. To address
potentially nonconvex constraints, we leverage the linearized augmented Lagrangian function to construct a stochas-
tic approximation, enabling updates to the primal variable. Inspired by recent developments in momentum-type
methods for unconstrained optimization in the literature, we introduce a momentum step to compute the stochastic
gradient at each iteration. We conduct a comprehensive analysis of the global convergence properties of the pro-
posed algorithm. Our analysis reveals that, under appropriate parameter settings and with unbounded increasing
penalty parameters, the sequence of average stationarity measure in expectation converges to zero. Additionally,
the sequence of average constraint violations exhibits convergence in expectation. Moreover, under a constraint
qualification assumption, both the sequences of average expected constraint violations and complementary slackness
measures converge to zero. We also investigate the properties of MLALM when penalty parameters are bounded.
Furthermore, we analyze the oracle complexity of the algorithm in achieving an ϵ-stationary point and an ϵ-KKT
point. Specifically, the oracle complexity to reach an ϵ-stationary point is of the order O(ϵ−4). Under the constraint
qualification assumption, the proposed algorithm can reach an ϵ-KKT point with oracle complexity bounded by
O(ϵ−4). When the initial point is nearly feasible within a certain accuracy, the complexity orders can be improved
to O(ϵ−3) accordingly. Finally, we implement numerical experiments on two types of test problems to evaluate
the performance of our algorithm. The experimental results demonstrate promising performance and validate the
effectiveness of our proposed approach.
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Appendix

A. Auxiliary lemmas

Lemma A.1 Under the same conditions of Theorem 1, it holds that

lim
p→∞

p∑
t=1

Ψβt
(xt+1, λt)−Ψβt

(xt, λt)

βt
− 1

2
(∥cE(xp+1)∥2 + ∥[cI(xp+1)]+∥2) exists.
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Proof. By the definition of Ψβt
, we have

p∑
t=1

Ψβt(x
t+1, λt)−Ψβt(x

t, λt)

βt
− 1

2
(∥cE(xp+1)∥2 + ∥[cI(xp+1)]+∥2)

=

p∑
t=1

∑
i∈E

(
λti
βt
ci(x

t+1) +
1

2
c2i (x

t+1)− λti
βt
ci(x

t)− 1

2
c2i (x

t))− 1

2
∥cE(xp+1)∥2

+

p∑
t=1

∑
i∈I

ψβt
(ci(x

t+1), λti)− ψβt
(ci(x

t), λti)

βt
− 1

2
∥[cI(xp+1)]+∥2. (64)

We next consider the terms in (64) related with equality constraints and inequality constraints in the following
part (a) and (b) separately.

(a) Note that

p∑
t=1

∑
i∈E

(
λti
βt
ci(x

t+1) +
1

2
c2i (x

t+1)− λti
βt
ci(x

t)− 1

2
c2i (x

t))− 1

2
∥cE(xp+1)∥2

=
1

2
(∥cE(xp+1)∥2 − ∥cE(x1)∥2) +

∑
i∈E

p∑
t=1

λti
βt

(ci(x
t+1)− ci(x

t))− 1

2
∥cE(xp+1)∥2

=− 1

2
∥cE(x1)∥2 +

∑
i∈E

p∑
t=1

λti
βt

(ci(x
t+1)− ci(x

t)). (65)

For the second term in above equation:

∑
i∈E

p∑
t=1

λti
βt

(ci(x
t+1)− ci(x

t)) =
∑
i∈E

λpi
βp
ci(x

p+1) +
∑
i∈E

p−1∑
t=1

(
λti
βt

− λt+1
i

βt+1
)ci(x

t+1), (66)

it is noteworthy that for any i ∈ E , {λp
i

βp
ci(x

p+1)}p≥1 converges to zero by the boundedness of λt and ci(x
t) for all

i ∈ E , t ≥ 1, and

p−1∑
t=1

(
λti
βt

− λt+1
i

βt+1
)ci(x

t+1) =

p−1∑
t=1

(
λti
βt

− λt+1
i

βt
+
λt+1
i

βt
− λt+1

i

βt+1
)ci(x

t+1)

=

p−1∑
t=1

−ρtc2i (xt+1)

βt
+

p−1∑
t=1

(
1

βt
− 1

βt+1
)λt+1

i ci(x
t+1)

=

p−1∑
t=1

−ρtc2i (xt+1)

βt
+

p−1∑
t=1

(t+ 1)
ι
2

β0tι
1

(t+ 1)
ι
2
(1− (

t

t+ 1
)ι)λt+1

i ci(x
t+1). (67)

Here, |
∑p−1

t=1 −ρtc2i (xt+1)| is bounded following the setting of ρt. Since ι < 1, one has 1 − ( t
t+1 )

ι < 1
t+1 , then

|
∑p−1

t=1
1

(t+1)
ι
2
(1− ( t

t+1 )
ι)λt+1

i ci(x
t+1)| is bounded due to the boundedness of λt, t ≥ 1. Then owing to the fact that

both sequences { 1
βt
} and { (t+1)

ι
2

β0tι
}t≥1 are monotonically decreasing and converging to zero, it follows from Dirichlet’s

Test that
∑p−1

t=1 (
λt
i

βt
− λt+1

i

βt+1
)ci(x

t+1) converges as p→ ∞, so does (66). Therefore, it is straightforward to obtain the

convergence of L.H.S. of (65) as p→ ∞.
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(b) We now consider the remaining part in (64) related with inequality constraints. Our goal is to prove its
convergence as p→ ∞. Towards this end, for any i ∈ I we consider the following index sets:

T1 = {t ∈ [p− 1] : βtci(x
t+1) + λti ≥ 0, βt+1ci(x

t+1) + λt+1
i ≥ 0};

T2 = {t ∈ [p− 1] : βtci(x
t+1) + λti ≥ 0, βt+1ci(x

t+1) + λt+1
i < 0};

T3 = {t ∈ [p− 1] : βtci(x
t+1) + λti < 0, βt+1ci(x

t+1) + λt+1
i < 0};

T4 = {t ∈ [p− 1] : βtci(x
t+1) + λti < 0, βt+1ci(x

t+1) + λt+1
i ≥ 0}.

(68)

Here we omit their dependence upon i. Obviously, ∪j∈[4]Tj = [p − 1]. One can verify that T4 = ∅. This is

because whenever βtci(x
t+1) + λti < 0, ci(x

t+1) < 0 and λt+1 = λt − ρtλ
t

βt
< λt by (6), thus there must have

βt+1ci(x
t+1) + λt+1 < βtci(x

t+1) + λt < 0. Then the following relations hold from the definition of ψβ :
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). (69)

Without loss of generality, we assume that as p approaches infinity, T1, T2, and T3 are infinite sets. It is easy to
see that the sum of the first three terms in R.H.S. of (69) converges to zero as p approaches infinity. Therefore, to
demonstrate the convergence of L.H.S. of (69), it suffices to prove that the terms pertaining to sets T1, T2, and T3
converge as p→ ∞.

(b1) Our first claim is that
∑

t∈T1
(
λt
i

βt
− λt+1

i

βt+1
)ci(x

t+1) converges as p approaches infinity. This claim can be shown

by following the same analysis as in the previous proof for (67).
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Then we multiply both sides of the above inequality by βt+1

t
ι
2

and subsequently sum up the resulting inequality over
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By Lemma 2 and the setting of ρt, there exists Λ > 0 such that ∥λt∥ ≤ Λ for any t ≥ 1. And for any t ∈ T2,
λti ≥ λt+1

i = λti + ρtci(x
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t∈T2

1

t
ι
2 (t+ 1)ι

((1− ρt
βt

)2 − (t+ 1)2ι

t2ι
)Λ2

≥ 1

β0

∑
t∈T2

1

t
ι
2 (t+ 1)ι

(1− 2ρt
βt

− 1− 1

t
)Λ2

≥ 1

β0

∑
t∈T2

1

t
ι
2 (t+ 1)ι

(− 2ρ

β0tθ+ι
− 1

t
)Λ2

=
1

β0

∑
t∈T2

1

t1+
ι
2 (t+ 1)ι

(− 2ρ

β0tθ+ι−1
− 1)Λ2, (72)

which is lower bounded by a finite value, since θ+ι > 1. On the other hand, it follows from βt+1 ≥ βt ≥ β1, ∥λt∥ ≤ Λ
and λt+1

i ≥ (1− ρt

βt
)λti that

∑
t∈T2

βt+1

2t
ι
2
(
λt+1
i

βt+1
− λti
βt

)2 ≤
∑
t∈T2

βt+1

2t
ι
2
(
(1− ρt

βt
)

βt+1
λti −

λti
βt

)2

≤
∑
t∈T2

1

2βt+1t
ι
2
((1− ρt

βt
)− βt+1

βt
)2Λ2

=
∑
t∈T2

1

2βt+1t
ι
2
((1− ρ

β0tθ+ι
)− (1 +

1

t
)ι)2Λ2

≤
∑
t∈T2

1

2βt+1t
ι
2
(

ρ

β0tθ+ι
+

1

t
)2Λ2,

which is upper bounded by a finite value since θ > 1. Therefore, by (71),
∑

t∈T2

βt+1

t
ι
2
(
(λt+1

i )2

2β2
t+1

+
λt
i

βt
ci(x

t+1) +

1
2∥ci(x

t+1)∥2) is bounded, then from t
ι
2

βt+1
→ 0 as t→ ∞ we derive that

∑
t∈T2

(
(λt+1

i )2

2β2
t+1

+
λt
i

βt
ci(x

t+1) + 1
2∥ci(x

t+1)∥2)
converges as p→ ∞.

(b3) For t ∈ T3, by (6) we have λt+1
i = (1− ρt

βt
)λti. Then it indicates from the monotonically increasing property

of {βt} that
λt+1
i

βt+1
≤ λt

i

βt
, and from (72) that

∑
t∈T3

βt+1

t
ι
2
(
(λt+1

i )2

2β2
t+1

− (λt
i)

2

2β2
t
) is bounded. Furthermore, since { t

ι
2

βt+1
}t≥1 is

a monotonically decreasing sequence converging to zero, then
∑

t∈T3
(
(λt+1

i )2

2β2
t+1

− (λt
i)

2

2β2
t
) converges as p→ ∞.

□

Lemma A.2 Under the same conditions of Theorem 3, it holds that

|
p∑

t=1

Ψβ(x
t+1, λt)−Ψβ(x

t, λt)

β
− 1

2
(∥cE(xp+1)∥2 + ∥[cI(xp+1)]+∥2)| = C1

vio +O(β−1),

where C1
vio = 1

2∥cE(x
1)∥2 + 1

2∥[cI(x
1)]+∥2.
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Proof. Similar to Lemma A.1, to prove the conclusion it suffices to provide estimate bounds on terms in (64) with
βt ≡ β for all t ≥ 1, that is

p∑
t=1

Ψβ(x
t+1, λt)−Ψβ(x

t, λt)

β
− 1

2
(∥cE(xp+1)∥2 + ∥[cI(xp+1)]+∥2)

=

p∑
t=1

∑
i∈E

(
λti
β
ci(x

t+1) +
1

2
c2i (x

t+1)− λti
β
ci(x

t)− 1

2
c2i (x

t))− 1

2
∥cE(xp+1)∥2

+

p∑
t=1

∑
i∈I

ψβ(ci(x
t+1), λti)− ψβ(ci(x

t), λti)

β
− 1

2
∥[cI(xp+1)]+∥2.

Since the analysis is essentially the same as Lemma A.1 except replacing βt with constant β, we simply state the
main ideas here.

(a) Following (65)-(66), we obtain

p∑
t=1

∑
i∈E

(
λti
β
ci(x

t+1) +
1

2
c2i (x

t+1)− λti
β
ci(x

t)− 1

2
c2i (x

t))− 1

2
∥cE(xp+1)∥2 = −1

2
∥cE(x1)∥2 +O(β−1).

(b) With a slight abuse of notation, corresponding to inequality constraints we still use Ti, i = 1, . . . , 4 as defined
in (68), except βt ≡ β in this scenario. It is easy to check from the definition of T1 together with (8) and the setting
of ρt that for any i ∈ I,

|
∑
t∈T1

(
λti
β

− λt+1
i

β
)ci(x

t+1)| ≤β−1
∑
t∈T1

|λti − λt+1
i ||ci(xt+1)|

≤β−1
∑
t∈T1

|λti − λt+1
i | ·max{λ

t
i

β
,
λt+1
i

β
,C} = O(β−1).

From (70), Lemma 2 and the setting of ρt, it follows that for any i ∈ I,

|
∑
t∈T2

(
(λt+1

i )2

2β2
+
λti
β
ci(x

t+1) +
1

2
∥ci(xt+1)∥2)| = O(β−2),

|
∑
t∈T3

(
(λt+1

i )2

2β2
− (λti)

2

2β2
)| = O(β−2).

Hence, we obtain from (69) that

p∑
t=1

∑
i∈I

ψβ(ci(x
t+1), λti)− ψβt

(ci(x
t), λti)

βt
− 1

2
([ci(x

p+1)]+)
2 = −1

2
∥[cI(x1)]+∥2 +O(β−1).

Consequently, the conclusion of this lemma can be derived.
□

B. Proof of Lemma 11

Let us prove the conclusion by contradiction. For notation simplicity, we define ak := Eξ[k] [ 1k
∑k

t=1 ∥λ̂t∥], k ≥ 1 with

λ̂ti :=

{
βtci(x

t) + λti, i ∈ E ,
[βtci(x

t) + λti]+, i ∈ I.
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We assume that lim supk→∞ ak = +∞, that is, for any M > 0, there exists an infinite subsequence {ak}k∈K such
that ak ≥ M , for all k ∈ K. In view of the first-order optimality condition of the subproblem (5), there exists
ut+1 ∈ ∂h(xt+1) such that

⟨dt + ut+1 +
1

ηt
(xt+1 − xt), x− xt+1⟩ ≥ 0, ∀x ∈ X;∀t ≥ 1.

Subsequently, dividing both sides of the above inequality by ak and recalling dt = ∇f(xt) +∇c(xt)λ̂t + εt we have
for any x ∈ X, t > 0, k ∈ K,

1

ak
⟨∇f(xt) +∇c(xt)λ̂t + εt + ut+1 +

1

ηt
(xt+1 − xt), x− xt+1⟩ ≥ 0.

Equivalently, there exists vt+1 ∈ NX(xt+1) such that

∇f(xt)
ak

+
∇c(xt)λ̂t

ak
+
εt

ak
+
uk+1

ak
+
xt+1 − xt

ηtak
+ vt+1 = 0, ∀t > 0;∀k ∈ K. (73)

Following Assumption 5, for any t ≥ 1, there exists zt+1 ∈ −N ∗
X(xt+1) with ∥zt+1∥ ≤ Z such that

∇ci(xt+1)Tzt+1 = −δ · sgn(ci(xt+1)), i ∈ E : ci(x
t+1) ̸= 0;

∇ci(xt+1)Tzt+1 ≤ −δ, i ∈ I : ci(x
t+1) > 0.

(74)

Then taking inner product with zt+1 on both sides, summing (73) over [k], dividing the result by k, and concurrently
taking the expectation yield

0 =Eξ[k] [
1

k

k∑
t=1

(zt+1)T(
∇f(xt)
ak

+
∇c(xt)λ̂t

ak
+
εt

ak
+
ut+1

ak
+
xt+1 − xt

ηtak
+ vt+1)]

=Eξ[k] [
1

k

k∑
t=1

(zt+1)T(
∇f(xt)
ak

+
εt

ak
+
ut+1

ak
+

(∇c(xt)−∇c(xt+1))λ̂t

ak
+
xt+1 − xt

ηtak
)]

+ Eξ[k] [
1

k

k∑
t=1

(zt+1)T(
∇c(xt+1)λ̂t

ak
+ vt+1)]. (75)

It is easy to prove that for all k ∈ K, one has

|Eξ[k] [
1

k

k∑
t=1

(zt+1)T∇f(xt)
ak

]| ≤ 1

ak
· Eξ[k] [

1

k

k∑
t=1

∥zt+1∥∥∇f(xt)∥] ≤ ZG

M
,

and

|Eξ[k] [
1

k

k∑
t=1

(zt+1)Tut+1

ak
]| ≤ 1

ak
· Eξ[k] [

1

k

k∑
t=1

∥zt+1∥∥ut+1∥] ≤ ZG

M
.

Besides, we can also verify that

|Eξ[k] [
1

k

k∑
t=1

(zt+1)Tεt

ak
]| ≤ 1

ak
· Eξ[k] [

1

k

k∑
t=1

∥zt+1∥∥εt∥]

≤ Z

ak
· Eξ[k] [

√√√√1

k

k∑
t=1

∥εt∥2]
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≤ Z

ak
·

√√√√Eξ[k] [
1

k

k∑
t=1

∥εt∥2].

With the setting of αt, βt and ρt in (33), we have

k∑
t=1

α2
t =

k∑
t=1

64α2η4

t2ι
≤ 64α2η4

1− 2ι
(k1−2ι − 1) + 64α2η4,

k∑
t=1

ρt ≤
k∑

t=1

ρ0t
−θ.

Since ι < 1
2 ,

∑k
t=1(βt+1 − βt)

2,
∑k

t=1 ρ
2
t ,

∑k
t=1 ρt are upper bounded by a positive constant, and

∑k
t=1 α

2
t is upper

bounded by O(k1−2ι). Therefore, from (31), there exists a positive constant Ceps such that

Eξ[k] [
1

k

k∑
t=1

∥εt∥2] = 1

k

k∑
t=1

Eξ[t] [∥εt∥2] ≤
C2

eps

3
kι−1(k1−2ι + kι + 1) ≤ C2

eps. (76)

Hence, we obtain

|Eξ[k] [
1

k

k∑
t=1

(zt+1)Tεt

ak
]| ≤ ZCeps

M
.

Furthermore, the following relations hold:

|Eξ[k] [
1

k

k∑
t=1

(zt+1)T(
(∇c(xt)−∇c(xt+1))λ̂t

ak
+
xt+1 − xt

ηtak
)]|

≤ 1

ak
· Eξ[k] [

1

k

k∑
t=1

(∥zt+1∥∥∇c(xt)−∇c(xt+1)∥F∥λ̂t∥+
∥zt+1∥∥xt+1 − xt∥

ηt
)]

≤ Z

ak
· Eξ[k] [

1

k

k∑
t=1

(CλLβt
∥∇c(xt)−∇c(xt+1)∥F +

∥xt+1 − xt∥
ηt

)]

≤ Z

ak
· Eξ[k] [

1

k

k∑
t=1

(
√
mLCλLβt∥xt+1 − xt∥+ ∥xt+1 − xt∥

ηt
)]

≤ Z

ak
· Eξ[k] [

√
mLCλ + 1

k

k∑
t=1

(Lβt
+

1

ηt
)∥xt+1 − xt∥]

≤ Z

ak
· Eξ[k] [(

√
mLCλ + 1)

√√√√1

k

k∑
t=1

(Lβt +
1

ηt
)2∥xt+1 − xt∥2]

≤ Z

ak
·
√
2(
√
mLCλ + 1)

√√√√Eξ[k] [
1

k

k∑
t=1

(L2
βt

+
1

η2t
)∥xt+1 − xt∥2]

≤ Z

ak
·
√
2(
√
mLCλ + 1)Csum ≤

√
2Z(

√
mLCλ + 1)Csum

M
,

where the second inequality is due to the fact that there exists Cλ independent of βt such that ∥λ̂t∥ ≤ CλLβt
and

Csum denotes the upper bound derived by (32) and (76), i.e., there is a Csum > 0 such that

Eξ[k] [
1

k

k∑
t=1

(L2
βt

+
1

η2t
)∥xt+1 − xt∥2]
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≤ 5

ηkk
(Lβ1

(x1, λ1)− C∗ +
mβk+1C

2

2
+ 2mC̃2

k∑
t=1

ρt) + Eξ[k] [
5

2k

k∑
t=1

∥εt∥2]

≤ 5

ηkk
(Lβ1

(x1, λ1)− C∗ +
mβk+1C

2

2
+ 2mC̃2

k∑
t=1

ρt) +
5

2
C2

eps ≤ C2
sum,

owing to the setting of ηt, βt, ρt in (33) and ι < 1
2 . Therefore, it follows from (75) that

Eξ[k] [
1

k

k∑
t=1

(zt+1)T(
∇c(xt+1)λ̂t

ak
+ vt+1)] ≥ −Z(2G+Ceps +

√
2(
√
mLCλ + 1)Csum)

M
=:

Clower

M
.

We next introduce notations:

E1 := {i ∈ E : ci(x
t+1) ̸= 0}, E2 := {i ∈ E : ci(x

t+1) = 0}, I1 := {i ∈ I : ci(x
t+1) > 0},

I2 := {i ∈ I : −λ
t
i

βt
≤ ci(x

t+1) ≤ 0}, I3 := {i ∈ I : ci(x
t+1) < −λ

t
i

βt
}.

(77)

For the sake of simplicity, and without causing any potential confusion, we omit the index t in the notations as defined
in (77). For any i ∈ E1, it follows from |λti| ≥ |λ̂ti| − βt|ci(xt)| and βt|ci(xt)| − βt|ci(xt+1)| ≤ βt|ci(xt)− ci(x

t+1)| that

(zt+1)T∇ci(xt+1)λ̂ti = −δ · sgn(ci(xt+1))λ̂ti

= −δ · sgn(ci(xt+1))(λti + βtci(x
t+1)− βtci(x

t+1) + βtc(x
t))

≤ −δ|λti|+ 2δ|λti| − δβt|ci(xt+1)|+ δβt|ci(xt+1)− ci(x
t)|

≤ −δ|λ̂ti|+ δβt|ci(xt)|+ 2δ|λti| − δβt|ci(xt+1)|+ δβt|ci(xt+1)− ci(x
t)|

≤ −δ|λ̂ti|+ 2δ|λti|+ 2δβt|ci(xt+1)− ci(x
t)|

≤ −δ|λ̂ti|+ 2δ|λti|+ 2δGβt∥xt+1 − xt∥.

In addition, for any i ∈ I1, it follows from (74) and λ̂ti ≥ 0 that (zt+1)T∇ci(xt+1)λ̂ti ≤ −δλ̂ti. We then obtain from
(74) together with L̃ ≥ mCL+mG2 and (zt+1)Tvt+1 ≤ 0 that

Eξ[k] [
1

k

k∑
t=1

(zt+1)T(
∇c(xt+1)λ̂t

ak
+ vt+1)] ≤ 1

ak
· Eξ[k] [

1

k

k∑
t=1

(zt+1)T∇c(xt+1)λ̂t]

≤ 1

ak
· Eξ[k] [

1

k

k∑
t=1

(−δ∥λ̂tE1
∥1 + 2δ∥λtE1

∥1 + 2δ|E1|Gβt∥xt+1 − xt∥)]

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

(−δ∥λ̂tI1
∥1 + (zt+1)T∇cE2∪I2∪I3

(xt+1)λ̂tE2∪I2∪I3
)]

≤ 1

ak
· (−δEξ[k] [

1

k

k∑
t=1

∥λ̂t∥1] + Eξ[k] [
1

k

k∑
t=1

(2δ∥λtE1
∥1 + δ∥λ̂tE2∪I2∪I3

∥1 + (zt+1)T∇cE2∪I2∪I3
(xt+1)λ̂tE2∪I2∪I3

)])

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

2δ|E1|Gβt∥xt+1 − xt∥]
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≤− δ +
2δ|E|Λ
ak

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

(δ + ZG)∥λ̂tE2∪I2∪I3
∥1 + 2δ|E1|Gβt∥xt+1 − xt∥]

≤− δ +
2δ|E|Λ
ak

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

(δ + ZG)(∥λtE2
+ βtcE2

(xt)∥1 + ∥[λtI2∪I3
+ βtcI2∪I3

(xt)]+∥1)]

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

2δG−1L̃βt∥xt+1 − xt∥]

≤− δ +
2δ|E|Λ
ak

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

(δ + ZG)∥λtE2
+ βtcE2

(xt)− βtcE2
(xt+1)∥1]

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

(δ + ZG)∥[λtI2∪I3
+ βtcI2∪I3

(xt)− βtcI2∪I3
(xt+1)]+∥1]

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

2δG−1L̃βt∥xt+1 − xt∥]

≤− δ +
2δ|E|Λ
ak

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

(δ + ZG)∥λtE2∪I2∪I3
+ βtcE2∪I2∪I3(x

t)− βtcE2∪I2∪I3(x
t+1)∥1]

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

2δG−1L̃βt∥xt+1 − xt∥]

≤− δ +
2δ|E|Λ
ak

+
δ + ZG

ak
· Eξ[k] [

1

k

k∑
t=1

(∥λtE2∪I2∪I3
∥1 + βt∥cE2∪I2∪I3

(xt)− cE2∪I2∪I3
(xt+1)∥1)

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

2δG−1L̃βt∥xt+1 − xt∥]

≤− δ +
m(3δ + ZG)Λ

ak
+
δ + ZG

ak
· Eξ[k] [

1

k

k∑
t=1

βt∥cE2∪I2∪I3
(xt)− cE2∪I2∪I3

(xt+1)∥1]

+
1

ak
· Eξ[k] [

1

k

k∑
t=1

2δG−1L̃βt∥xt+1 − xt∥]

≤− δ +
m(3δ + ZG)Λ

ak
+

(3δ + ZG)G−1

ak
· Eξ[k] [

1

k

k∑
t=1

L̃βt∥xt+1 − xt∥]

≤− δ +
m(3δ + ZG)Λ

ak
+

(3δ + ZG)G−1

ak
· (Eξ[k] [

1

k

k∑
t=1

L2
βt
∥xt+1 − xt∥2]) 1

2

≤− δ +
(3δ + ZG)(mΛ +G−1Csum)

ak
≤ −δ + (3δ + ZG)(mΛ +G−1Csum)

M
=: −δ + Cupper

M
,
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where Λ > 0 is a constant such that ∥λt∥ ≤ Λ for any t ≥ 1 by Lemma 2 and the setting of ρt, and the 5-th inequality
is due to cE2(x

t+1) = 0 and cI2∪I3(x
t+1) ≤ 0. Summarizing above analysis we obtain M ≤ δ−1(Cupper − Clower).

However, this contradicts the arbitrariness of M . Thus we derive that lim supk→∞ ak < +∞.

We now bound Eξ[k] [ 1k
∑k

t=1 ∥λ̃t∥]. According to the definitions of λ̃t and λ̂t, we have

∥λ̃t∥ ≤ ∥λtE + βt−1cE(x
t)∥+ ∥[λtI + βt−1cI(x

t)]+∥

= ∥λtE + βt−1cE(x
t)− βtcE(x

t) + βtcE(x
t)∥+ ∥[λtI + βt−1cI(x

t)− βtcI(x
t) + βtcI(x

t)]+∥

≤ ∥λ̂tE∥+ ∥βt−1cE(x
t)− βtcE(x

t)∥+ ∥λ̂tI∥+ ∥[βt−1cI(x
t)− βtcI(x

t)]+∥

≤
√
2∥λ̂t∥+mC(βt − βt−1).

Therefore, it yields from the setting of βt that

lim sup
k→∞

Eξ[k] [
1

k

k∑
t=1

∥λ̃t∥] ≤
√
2 lim sup

k→∞
ak +mC lim sup

k→∞

1

k

k∑
t=1

(βt − βt−1) < +∞.

The proof is completed.

C. Verification of Assumption 5.

We apply MLALM to solve the following problem with both equality and inequality constraints:

min
x∈X

f(x) =
1

N

N∑
i=1

log(1 +
1

2
∥Hix− ci∥2)

s.t. fj(x) =
1

2
xTQjx+ aTj x ≤ bj , j = 1, . . . ,M1,

fk(x) =
1

2
xTQkx+ aTk x = bk, k = 1, . . . ,M2,

where M1,M2 ≥ 1 and X = [−10, 10]n is a convex set. Each matrix Hi ∈ Rp×n, i ∈ [N ], is generated randomly,
with elements independently selected following a standard Gaussian distribution. Elements of Qj , Qk ∈ Rn×n are
also randomly and independently selected from U[−0.5, 0.5]. Here, aj , j ∈ [M1] and ak, k ∈ [M2] are randomly
generated following U[0.1, 1.1]n. Then we generate a random point x∗ ∼ U(0, 1)n and set ci = Hix∗, i ∈ [N ],
bj =

1
2x

T
∗Qjx∗ + aTj x∗, j ∈ [M1], bk = 1

2x
T
∗Qkx∗ + aTk x∗, k ∈ [M2].

To observe how often Assumption 5 holds during the iteration process, we solve the auxiliary problem

min
z

0

s.t. δ · sgn(ci(xt)) +∇ci(xt)T z = 0, i ∈ E : ci(x
t) ̸= 0 ;

δ +∇ci(xt)Tz ≤ 0, i ∈ I : ci(x
t) > 0

(78)

by calling linprog function in matlab. Here we set δ = 1. The linprog function will return an exitflag. When exitflag
= 1 the solution of (78) is reliable. Then Assumption 5 holds, if the solution z ∈ −N ∗

X(xt) with

−N ∗
X(xt) =

z ∈ Rn |
zi ≥ 0, if xti = −10
zi ≤ 0, if xti = 10
zi ∈ R, o.w.

 .

We consider the case with p = 5, n = 50 and N = 1000. Initial point is chosen as x1 = 0, and the maximum
number of iterations is set to T = 5000. With varying numbers of constraints, we report the successful rate during
all iterations when Assumption 5 holds at iterates.
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The following figures report the performances of MLALM in terms of objective value f(xt) and constraint violation∑
j∈[M1]

[fj(x
t)− bj , 0]+

∑
k∈[M2]

|fk(xt)− bk|, the successful rate of Assumption 5 and the KKT residual at iteration
t0 when Assumption 5 holds for all t ≥ t0. We can see from Figures 6 and 7 that when the number of constraints is
relatively small (M1+M2 ≤ 60), Assumption 5 always holds, while it holds with a high percentage when the number
of constraints is slightly more (70 ≤M1 +M2 ≤ 90).

Figure 6: M1 +M2 ≤ 60
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Figure 7: 70 ≤M1 +M2 ≤ 90

As the number of constraints increases, Assumption 5 gradually transitions from being satisfied by all iterates
to being satisfied only at iterates in later stage of the algorithmic process. This occurs because at the earlier stage
of the algorithm, since the number of infeasible constraints exceeds the dimension of the variable x, the system of
equations is normally overdetermined, causing Assumption 5 hard to hold. However, as the iteration proceeds, less
constraints are violated, leading to Assumption 5 more likely to hold.
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D. More discussions and extensions.

In this part we will discuss more about CQ conditions and explore potential extensions. For the sake of simplicity,
we consider (1) with X = Rn and h ≡ 0, i.e.

min
x∈Rn

{f(x) ≡ Eξ[F(x; ξ)]}

s.t. ci(x) = 0, i ∈ E ,

ci(x) ≤ 0, i ∈ I.

(79)

Here, n ≥ |E|+ |I|. We apply MLALM to solve (79) and let {xt} be the generated sequence of iterates.
The following proposition provides some insight on the relationship between LICQ and Assumption 5.

Proposition D.1 Let LICQ hold at a feasible point x̃ and δ > 0. Then there exist Z > 0 and a neighborhood of x̃,
denoted by N (x̃), such that for any x ∈ N (x̃) the linear system

δ · sgn(ci(x)) +∇ci(x)T z = 0, i ∈ E : ci(x) ̸= 0 ;

δ +∇ci(x)Tz ≤ 0, i ∈ I : ci(x) > 0

(80)

has a solution located in the ball {z : ∥z∥ ≤ Z}.

Proof. Recall that LICQ holds at x̃, if the gradients

∇ci(x̃) ∈ Rn, i ∈ Ã := E ∪ {i | ci(x̃) = 0, i ∈ I}

are linearly independent. Introduce ∇cÃ(x) ∈ Rn×|Ã| with columns consisting of ∇ci(x), i ∈ Ã, i.e.

∇cÃ(x) = (∇ci(x), i ∈ E ,∇ci(x), i ∈ Ã ∩ I).

By the linear independence and continuity, there exist positive constants κ and a neighborhood N (x̃) of x̃ such that
for all x ∈ N (x̃), ∇ci(x) ∈ Rn, i ∈ Ã are linearly independent,

ci(x) < 0, ∀i /∈ Ã, and singular values of ∇cÃ(x) are lower bounded by κ.

Obviously, there exists an index set B(x) ⊆ [n] with |B(x)| = |Ã| such that

{∇ci(x), i ∈ Ã} ⊆ span{qi, i ∈ B(x)},

where qi, i ∈ [n] denote n orthonormal vectors spanning Rn. Then we can construct Q0(x) ∈ Rn×(n−|Ã|) with columns
being qi, i ∈ [n]\B(x). It is straightforward to attain

Q0(x)
TQ0(x) = In−|Ã| and Q0(x)

T∇cÃ(x) = 0.

Here, In−|Ã| is the identity matrix with dimension (n− |Ã|). Hence, the matrix Q(x) := [∇cÃ(x̃), Q0] is non-singular
and

Q(x)TQ(x) =

[
∇cÃ(x)T∇cÃ(x) 0

0 In−|Ã|

]
.

And the vector of singular values of Q(x), denoted by s(Q(x)), is

s(Q(x)) = (singular values of ∇cÃ(x), 1, . . . , 1)
T ,

and thus the SVD of Q(x) can be denoted as Q(x) = UΣV T with U, V ∈ Rn×n being orthogonal matrices and
Σ = Diag(s(Q(x))) ∈ Rn×n. Therefore, it is easy to obtain

∥(Q(x)T )−1∥ ≤ max(κ−1, 1), ∀x ∈ N (x̃).
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Moreover, for any given x ∈ N (x̃), there exists a nonzero vector z(ω) ∈ Rn such that the matrix

Q(x)T z(ω) = −δ · ω,

where
ω = (sgn(ci(x)), i ∈ E , sgn([ci(x)]+), i ∈ Ã ∩ I, 0, . . . , 0)T ∈ Rn.

Then it holds that
∥z(ω)∥ ≤ Z := δn ·max(κ−1, 1).

And due to {i ∈ I : ci(x) > 0} ⊆ Ã ∩ I, we obtain

δ · sgn(ci(x)) +∇ci(x)T z(ω) = 0, i ∈ E : ci(x) ̸= 0 ;

δ +∇ci(x)T z(ω) ≤ 0, i ∈ I : ci(x) > 0 ,

which implies the conclusion.
□

By Proposition D.1, if iterates are sufficiently close to a feasible point at which LICQ holds, then Assumption
5 is satisfied at those iterates. As can be seen, Assumption 5 is required on all infeasible iterates, depending on a
specific algorithm’s behavior. A natural question that arises is whether we can relax such requirement and assume
a CQ condition on limit points of iterates. We next explore the answer to this question.

Although we are looking for a feasible solution of (79), in general due to the nonconvexity of this problem it is
difficult to obtain a global minimizer of the feasibility minimization problem

min
x

1

2
∥cE(x)∥2 +

1

2
∥[cI(x)]+∥2. (81)

Instead, we may only reach a stationary point x̃⋆ satisfying

∇cE(x̃⋆)cE(x̃⋆) +∇cI(x̃⋆)[cI(x̃⋆)]+ = 0. (82)

Define
Y⋆ := {y ∈ Rn : ∥∇cE(y)cE(y) +∇cI(y)[cI(y)]+∥ = 0} . (83)

Obviously, Y⋆ is closed due to the continuity of ∇c and c. The lemma characterizes a property for the points in Y⋆.

Lemma D.1 For any x̃⋆ ∈ Y⋆, either x̃⋆ is feasible, or the linear system (80) at x̃⋆ has no solution for any δ > 0.

Proof. Suppose that x̃⋆ is infeasible. If there exist δ and z such that (80) holds at x̃⋆, then by (82) we obtain the
following relations:

0 = cE(x̃
⋆)T∇cE(x̃⋆)T z + [cI(x̃

⋆)]T+∇cI(x̃⋆)T z ≤ −δ∥cE(x̃⋆)∥1 − δ∥[cI(x̃⋆)]+∥1,

which however contradicts the infeasibility of x̃∗. Hence, the conclusion is derived.
□

We now introduce the sequence {yt}, where for each t ≥ 1, yt = xkt with kt being randomly and uniformly chosen
from {1, . . . , t}. Then by Theorem 1 we have

lim
t→∞

E[d2(∇f(yt) +
∑

i∈E∪I
λ̄ti∇ci(yt), 0)] = 0,

lim
t→∞

E[∥∇cE(yt)cE(yt) +∇cI(yt)[cI(yt)]+∥2] = 0.

Here λ̄t is defined as

λ̄ti =

{
βkt−1ci(y

t) + λkt
i , i ∈ E ,

[βkt−1ci(y
t) + λkt

i ]+, i ∈ I.
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It then implies the convergence in probability1:

∥∇f(yt) +
∑

i∈E∪I
λ̄ti∇ci(yt)∥

p−→ 0, (84)

∥∇cE(yt)cE(yt) +∇cI(yt)[cI(yt)]+∥
p−→ 0. (85)

To proceed, we lay out another assumption.

Assumption D.1 Y⋆ as defined in (83) is bounded.

Lemma D.2 Let Assumption D.1 hold and C be a closed subset of Rn such that Y⋆∩C = ∅. Then miny∈C ∥∇cE(y)cE(y)+
∇cI(y)[cI(y)]+∥ > 0.

Proof. Since C is closed, the minimum value of ∥∇cE(y)cE(y) + ∇cI(y)[cI(y)]+∥ over C is reachable. Arguing by
contradiction, we assume that this value is equal to 0. Then there exists a subsequence {yk} ⊆ C such that yk → ŷ
and ∥∇cE(yk)cE(yk) +∇cI(yk)[cI(yk)]+∥ → 0 as k → ∞. It obviously holds that ŷ ∈ C by the closedness of C, and
∥∇cE(ŷ)cE(ŷ) + ∇cI(ŷ)[cI(ŷ)]+∥ = 0, thus ŷ ∈ Y⋆. However, it contradicts the assumption that C is closed and
disjoint from Y⋆. Therefore, the conclusion is derived.

□
The next proposition establishes that {yt} converges in probability to Y⋆.

Proposition D.2 Let Assumption D.1 hold, then we have

d
(
yt,Y⋆

) p−→ 0, i.e., lim
t→∞

P(d
(
yt,Y⋆

)
≤ ϵ) = 1, ∀ϵ > 0. (86)

Proof. Given ϵ̄ > 0, define C := {y | d (y,Y⋆) ≥ ϵ̄}. It is obvious that C is closed and Y⋆ ∩ C = ∅. Then it follows
from Lemma D.2 that

0 < ϵ̂ := min
y∈C

∥∇cE(y)cE(y) +∇cI(y)[cI(y)]+∥ ≤ ∥∇cE(y)cE(y) +∇cI(y)[cI(y)]+∥, ∀y ∈ C.

Since ∥∇cE(yt)cE(yt) +∇cI(yt)[cI(yt)]+∥
p−→ 0, we have

lim
t→∞

P(∥∇cE(yt)cE(yt) +∇cI(yt)[cI(yt)]+∥ < ϵ̂) = 1,

which together with
P(d

(
yt,Y⋆

)
< ϵ̄) ≥ P(∥∇cE(yt)cE(yt) +∇cI(yt)[cI(yt)]+∥ < ϵ̂)

indicates
lim
t→∞

P(d
(
yt,Y⋆

)
< ϵ̄) = 1.

Therefore, due to the arbitrariness of ϵ̄, we derive the conclusion.
□

By Lemma D.1, any point in Y⋆ is either feasible or the linear system (80) at this point has no solution for any
δ > 0. To make sure that {yt} is approaching a KKT point of (79) (at least with high probability), we need to
impose the following assumption on Y⋆.

Assumption D.2 There exists ν > 0 such that singular values of ∇c(y), y ∈ Y⋆ are uniformly lower bounded away
from ν, where ∇c(y) = (∇cE(y),∇cI(y)).

Assumption D.2 guarantees the feasibility of any point in Y⋆. Moreover, there exists ϵ̃ > 0 such that singular
values of ∇c(y) are uniformly lower bounded away from ν/

√
2 for any y satisfying d(y,Y⋆) < ϵ̃. Then for any yt

satisfying d(yt,Y⋆) < ϵ̃, we have

∥cE(yt)∥+ ∥[cI(yt)]+∥ ≤ 2

ν
∥∇cE(yt)cE(yt) +∇cI(yt)[cI(yt)]+∥

1A sequence of random variables {xt}t≥1 ⊆ Rn is called to converge in probability to a random variable x, denoted by xt
p−→ x, if

limn→∞ P (∥xt − x∥ ≥ ϵ) = 0 for any ϵ > 0.
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which implies that

P(∥cE(yt)∥+ ∥[cI(yt)]+∥ < ϵ) ≥ P(∥∇cE(yt)cE(yt) +∇cI(yt)[cI(yt)]+∥ <
ν

2
ϵ) ∀ϵ > 0.

Hence, it indicates from (85) that limt→∞ P(∥cE(yt)∥+ ∥[cI(yt)]+∥ < ϵ) = 1 for any ϵ > 0, i.e.,

∥cE(yt)∥+ ∥[cI(yt)]+∥
p−→ 0. (87)

Based on above analysis, for any ϵ ∈ (0, ϵ̃) and γ ∈ (0, 1), we obtain the following statements.

(i) By (86), there exists T1(γ, ϵ) such that

P(d(yt,Y∗) < ϵ) ≥ 1− γ, ∀t ≥ T1(γ, ϵ).

Then it implies that the probability where singular values of ∇c(yt), yt ∈ Y⋆ for all t ≥ T1(γ, ϵ) are lower
bounded away from ν/

√
2 is at least 1− γ.

(ii) By (84), there exists T2(γ, ϵ) such that

P(∥∇f(yt) +∇c(yt)λ̄t∥ < ϵ) ≥ 1− γ, ∀t ≥ T2(γ, ϵ). (88)

Then combining (i) we obtain that with probability at least (1 − γ)2, (88) holds and meanwhile λ̄t is upper
bounded for all t ≥ max{T1(γ, ϵ), T2(γ, ϵ)}. Let us denote this upper bound by Λ̄ for simplicity. Then we have
P(∥λt∥ < Λ̄) ≥ (1− γ)2 for all t ≥ max{T1(γ, ϵ), T2(γ, ϵ)}.

(iii) By (87), there exists T3(γ, ϵ) such that,

P(∥cE(yt)∥+ ∥[cI(yt)]+∥ <
ϵ

max{1, Λ̄}
) ≥ 1− γ, ∀t ≥ T3(γ, ϵ).

Then together with (ii) we derive that

P(
∑
i∈I

λ̄ti[ci(y
t)]+ < ϵ) ≥ P(∥λ̄t∥∥[cI(yt)]+∥ < ϵ) ≥ (1− γ)3, ∀t ≥ max{T1(γ, ϵ), T2(γ, ϵ), T3(γ, ϵ)}.

We thus arrive at the main proposition. Here we define

U t := max{∥cE(yt)∥+ ∥[cI(yt)]+∥, ∥∇f(yt) +∇c(yt)λ̄t∥,
∑
i∈I

λ̄ti[ci(y
t)]+}.

Proposition D.3 Under Assumptions D.1 and D.2, for any sufficiently small ϵ > 0 and any γ ∈ (0, 1), there exists
T (γ, ϵ) such that P(U t < ϵ) ≥ 1− γ for all t ≥ T (γ, ϵ).
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