
Software for data-based stochastic programming using

bootstrap estimation

Xiaotie Chen
Mathematics Department

David L Woodruff
Graduate School of Management

University of California Davis
Davis CA 95616 USA

August 18, 2022

Abstract

In this paper we describe software for stochastic programming that uses only sampled data to
obtain both a consistent sample-average solution and a consistent estimate of confidence intervals
for the optimality gap using bootstrap and bagging. The underlying distribution whence the
samples come is not required.

1 Introduction

Stochastic programming involves optimization when the input data are uncertain; see, e.g., [KW12]
for an introduction. Many research articles on stochastic programming begin with the assumption
that uncertain data come from a known distribution. In this paper we describe software that does
not rely on this assumption, but uses only sampled data to obtain both a consistent sample-average
solution and a consistent estimate of confidence intervals for the optimality gap. The underlying
distribution whence the samples come is not required.

The asymptotic properties of solutions as the sample size grows are well known (see [DW88,
Sha91] for early examples). For consistent estimators of a confidence interval around the objec-
tive function value, we rely on bootstrap and bagging estimators. Consistency and asymptotic
normality of the bootstrapped objective function value estimates was proven under fairly general
conditions by [ER07]. The use of bagging for such confidence intervals is described in [LQ18].
However, these two papers describe very limited computational experiments. Our paper provides
unified notation and a platform for more extensive experimentation based on new open source
software that can support on-going research and practice in data-driven stochastic programming.

There have been other applications of bootstrap to stochastic programming. The bootstrap is
used to compute confidence intervals for stopping rules for a decomposition algorithm for two-stage
stochastic quadratic programs in [LS20] and the authors note that it was used in early versions
of the Stochastic Decomposition algorithm [HS91] for stopping rules. There is a technical report
[AP11] that discusses some of the theoretical properties of bootstrap samples in the context of
stochastic programming. However, their analysis is based on a strong assumption that would
not hold for a two-stage problem with inequality constraints, and the analysis does not seem to
generalize well to multi-stage problems.

Meanwhile, confidence intervals based on the assumption that the distribution of input data
is known in advance have received attention in two main thrusts. The confidence interval for a
candidate solution is considered in, e.g., [MMW99, Sha03, CM04, LSW06]. Sequential sampling
methods [HS91, BM11, BM09, BPL12], develop stopping rules for sequential sampling procedure
that estimate the optimality gap of a sequence of candidate solutions under an increasing sample
size.

The open-source software we describe here takes as input an optimization model and a data
sample for the uncertain parameters of the optimization model. An additional input user-specified

1



division of the data for use estimating a solution versus estimating confidence intervals. As output,
the software provides an estimated solution, a confidence interval for the value of that solution
and a confidence interval for the population solution value. Hence, it provides a mechanism for
data-driven optimization of the expected value, which naturally includes expectation-based risk
measures such as CVaR.

The paper proceeds as follows. The next section introduces some notation. Section 3 describes
the software both in terms of its algorithms and the code. The paper closes with a few conclusions
and directions for further research.

2 Notation

We start by introducing some notation that helps explain the software. We have a sample that has
been divided into M points for finding an estimated optimal solution and N points for estimating
an objective function confidence interval. Alternatively, we could have a sample of N points and
be given an estimated solution obtained independently.

• D = {di, i = 1, . . . , N} is a set of observations from a population Ω. This is the data set
that will be used for confidence intervals.

• FΩ(·) is the unknown actual distribution function of the population.

• The problem that is our ultimate interest is expressed using

min
x
EFΩ(d)g(x, d)

We will consider examples with explicit constraints, but for now we use notation where
they are implicit. A simple example of function g is the newsvendor problem: g(x, d) =
cu(d−x)+ +co(x−d)+, where d represents the demand and the cost pair (cu, co) are given as
deterministic data. In this case the decision variable x and the (random) data d are scalars,
but in general the decision variables and data are vectors. In this paper we never refer
to individual elements of the vectors and occasionally use subscripts to refer to particular
vectors rather than vector elements.

• x∗ is an optimal solution for Ω, so

x∗ = arg min
x
EFΩ(d)g(x, d)

which we don’t know. The function value w.r.t. the entire population for x∗ is

z∗ = EFΩ(d)g(x∗, d)

• x̂ is the candidate solution for which we want to estimate the error, and is independent of
the set D. We use ẑΩ to denote the function value for x̂ under the entire population,

ẑΩ = EFΩ(d)g(x̂, d).

Similarly we define ẑN as the function value of x̂ under observation D of size N ,

ẑN =
1

N

N∑
i=1

g(x̂, di)

• γgap,x̂(Ω) is the optimality gap that we are interested in,

γgap,x̂(Ω) = EFΩ(d)g(x̂, d)− EFΩ(d)g(x∗, d) = EFΩ(d)g(x̂, d)− z∗.

We can regard γgap,x̂(·) as a function that maps a set to the corresponding optimality gap,
for example, the optimality gap associated with set D can be represented as

γgap,x̂(D) =
1

N

N∑
i=1

g(x̂, di)−min
x

1

N

N∑
i=1

g(x, di)

We drop the subscript x̂ when it does not cause confusion, and write the optimality gap
function as γgap(·).

2



3 Software

3.1 Algorithms implemented

We do not describe algorithms for finding a candidate solution x̂ because that is already the
subject of a large literature. When boot-sp has the task of finding x̂, it calls software from mpi-
sppy [KMM+21], which calls software from Pyomo [BHH+21].

The algorithms given in this section form the basis for the confidence interval part of software.
Given a candidate solution x̂, we are interested in deriving a confidence interval for the optimality
gap:

γgap(Ω) = EFΩ(d)g(x̂, d)− z∗. (1)

One may also be interested in deriving a confidence interval for the optimal function value z∗, or for
the function value for the candidate solution EFΩ(d)g(x̂, d). It turns out that all these estimators
can be derived in a similar way as described in the following subsections.

For ease of notation, we assume that we can solve minx
1
N

∑N
i=1 g(x, di) exactly by simply

passing the problem to a solver. We revisit this assumption in Section 5.

3.2 Classical Bootstrap Method

We describe a bootstrap method for estimating the optimality gap as in [ER07]. In the original
paper, the bootstrap method is applied to find a confidence interval for the optimal function value
z∗, but the same method can be used for optimality gap with minor modification.

At each bootstrap iteration, we resample from set D to get a bootstrap sample D̃b, and compute
the corresponding optimality gap under the set D̃b,

γgap(D̃b) =
1

N

∑
d̃j∈D̃b

g(x̂, d̃j)−min
x

1

N

∑
d̃j∈D̃b

g(x, d̃j).

For notational convenience, we introduce ẑb = 1
N

∑
d̃j∈D̃b

g(x̂, d̃j) as the function value for x̂ under

set D̃b, and z†b as the optimal function value for D̃b, so that z†b = minx
1
N

∑
d̃j∈D̃b

g(x, d̃j), such

notation allows us to rewrite the optimality gap under set D̃b as

γgap(D̃b) = ẑb − z†b

Similarly we can write empirical optimality gap under the set D as

γgap(D) =
1

N

∑
dj∈D

g(x̂, dj)−min
x

1

N

∑
dj∈D

g(x, dj) = ẑN − z†N ,

and the actual optimality gap
γgap(Ω) = ẑΩ − z∗

It is proven in [ER07] that under certain assumptions, the conditional empirical distribution
of z†b − z

†
N has the same limit normal distribution as z†N − z

∗ as N tends to infinity, and it follows
by the sample average approximation property [Mam12] of ẑb and ẑN that γgap(D̃b)−γgap(D) has
the same limit distribution as γgap(D) − γgap(Ω). This in turn allows us to derive a confidence
interval for the actual optimality gap γgap(Ω).

Algorithm 1 describes the procedure for finding an approximate confidence interval by using
the classical bootstrap procedure.

Algorithm 1: Classical Bootstrap

input : A set D, number of batches B, and a candidate solution x̂
Compute γgap(D) = ẑN − z†N ;
for b← 1 to B do

Resample from D to get set D̃b = {d̃1, . . . , d̃N} ;

Compute γgap(D̃b) = ẑb − z†b ,
end

Compute the upper 1− α-quantile %1−α and lower α-quantile %α for {γgap(D̃b)− γgap(D)} ;
Return [γgap(D)− %1−α, γgap(D)− %α] as the (1− 2α) CI for the optimality gap ẑΩ − z∗;

3



If we replace the optimality gap γgap(D) with the optimal function value under set D, i.e. z†N ,
and use z†b in place of γgap(D̃b), then the above algorithm can be used to find an approximate
confidence interval for the optimal function value z∗. The same argument applies to all the
algorithms in the following subsections.

We also note here that Algorithm 1 can have different variations when different bootstrap
procedures are applied. In our software we included a empirical bootstrap procedure as described
above, together with a variation that is based on Gaussian approximation.

3.3 Extended Bootstrap Method

Theoretically, the consistency of the estimated confidence interval in Algorithm 1 may no longer
stand if the stochastic program does not have a unique solution. An extended two-stage bootstrap
method that tackles with such situations is developed in [ER07] and shown in Algorithm 2. Note
that the extended bootstrap method is only applicable if we are able to sample from the whole
population Ω, which may not be desirable in various examples, but we include the algorithm here
for completeness. The consistency for the extended bootstrap method was proven in [ER07] for the
CI estimator for the optimal function value, and the result can be easily extended to the optimality
gap by noticing the normality of the random variable z†b − z

†
N and z†N − z

†
Ω. As with the classical

bootstrap method, the same algorithm can be used to find a confidence interval for the optimal
function value by replacing the optimality gap function γgap(·) with the corresponding empirical
optimal function value.

Algorithm 2: Extended Bootstrap

input : A set D, number of batches B, a candidate solution x̂
Compute γgap(D) = ẑN − z†N ;
for b← 1 to B do

Independently sample from Ω to get set Db = {d1 . . . , dN} and compute the corresponding
optimality γgap(Db);

Resample from Db to get D̃b = {d̃1, . . . , d̃N} and compute γgap(D̃b) ;

end

Compute the upper 1− α-quantile %1−α and lower α-quantile %α for {γgap(D̃b)− γgap(Db)} ;

Independently sample from Ω to get D̄N and ĎN , each of size N ;

Compute the center of the confidence interval G = 2 ∗ γgap(D̄N ∪ ĎN )− γgap(D̄N );
Return [G− %1−α, G− %α] as the (1− 2α) CI for the optimality gap ẑΩ − z∗;

3.4 Subsampling

The subsampling method for estimating the confidence interval of z∗ was briefly mentioned in
[ER07]. The procedure is essentially the same as the classical bootstrap method, except that a
smaller subsampling size is adopted for resampling. Algorithm 3 details the procedure for finding
the confidence interval of the optimality gap, and the consistency of the estimator is proven in
[ER07].

Algorithm 3: Subampling

input : A set D, number of batches B, sub-sample size k, and a candidate solution x̂
Compute γgap(D) = ẑN − z†N ;
for b← 1 to B do

Resample from D without replacement to get set D̃b of size k, D̃b = {d̃1, . . . , d̃k} ;

Compute γgap(D̃b),
end
Compute the upper 1− α-quantile %1−α and lower α-quantile %α for
{
√
k(γgap(D̃b)− γgap(D))} ;

Return [γgap(D)−
√

1/N%1−α, γgap(D)−
√

1/N%α] as the (1− 2α) CI for the optimality gap
ẑΩ − z∗;

4



3.5 Bagging

A bagging procedure proposed in [LQ18] approximates the confidence interval from the optimality
gap without the need to sample for the entire population. We note here that the bagging procedure
described in [LQ18] bears some similarity with the subsampling method in Algorithm 3, as in
both cases a smaller subsampling size is used. The difference lies in how the confidence interval
is formed: the subsampling method directly uses the quantiles of the subsamples to derive a
confidence interval, whereas the bagging procedure uses an empirical version of the infinitesimal
jackknife estimator for variance estimation.

Algorithm 4 illustrates the procedure in using bagging to find an approximate confidence inter-
val for the optimality gap. The original algorithm in [LQ18] focuses on finding CI for the optimal
function value, and Algorithm 4 is a small variation of the original one.

Algorithm 4: Bagging-based sampling

input : A set D, number of bags B, bag sample size k, and a candidate solution x̂
Compute γgap(D) = z†N − ẑN ;
for b← 1 to B do

Resample from D to get bagging set D̃b of size k, D̃b = {d̃1, . . . , d̃k} ;

Compute γgap(D̃b),
end

Compute the mean of γgap(D̃b) as the center of the confidence interval, so

G =
1

B

B∑
b=1

γgap(D̃b)

Compute the error term

σ̃2 =

{∑n
i=1 ĉov

2
i if with replacement

n2

(n−k)2

∑n
i=1 ĉov

2
i if without replacement

,

where

ĉov
2
i =

1

B

B∑
b=1

(N b
i − k/n)(γgap(D̃b)−G),

and N b
i = #{j : d̃j = di} ;

Return [G− δ1−ασ̃, G+ δ1−ασ̃] as the (1− 2α) CI for the optimality gap ẑΩ − z∗, with δ1−α
being the (1− α) quantile for a standard normal variable;

3.6 Code

The github site https://github.com/boot-sp/boot-sp.git provides a Python implementation
of software called boot-sp that computes solutions with confidence intervals and also supports
simulations for research purposes. A user of the software provides a Python module that has
a few procedures, the most important of which takes a sample of data, d, as an argument and
returns a Pyomo model for g(x, d). The module also contains a helper procedures to deal with
data processing related to the particular problem.

The algorithms give rise to the following methods supported by the code:

• Classical gaussian,

• Classical quantile,

• Extended,

• Subsampling,

• Bagging with replacement, and

• Bagging without replacement.

5

https://github.com/boot-sp/boot-sp.git


bagging_bootstrap

classical_bootstrap

extended_bootstrap

subsampling

user_boot.py

simulate_boot.py

evaluate_scenarios

solve_routine

boot_sp.py

Figure 1: High level view of software organization.

Figure 1 gives an overview of the top-level software components. For the classical bootstrap, the use
of the Gaussian or quantiles is controlled by parameters as is bagging with, and without, replace-
ment. We are able to exploit the similarities between the methods by creating parameterized func-
tions that do the calculations. The function solve routine calls lower-level code in mpi-sppy and
Pyomo to minimize functions of the form 1

N

∑
dj∈D g(x, dj . The function solve routine calls lower-

level code in mpi-sppy and Pyomo to evaluate expectations of the form such as 1
N

∑
dj∈D g(x̂, dj .

The differences in methods are due to the way in which these functions are used.
The algorithms given in Section 3.1 have loops over B. In boot-sp, those loops are parallelized

using MPI. MPI offers advantages for distributed memory computers at the expense of being
difficult to install, particularly on Windows computers.

In most serious applications, we expect that boot sp.py will be used as a callable library.
Nonetheless, the user boot.py program is provided to demonstrate the concept of data-driven
stochastic programming so it provides full command line arguments. The main contribution of
boot-sp is bootstrap or bagging esimation of confidence intervals. Consequently, it is expected the
users will have other code to find a candidate solution x̂. However, in order for boot-sp to give a
concrete illustration of the concept of data-driving stochastic programming we offer an option to
call a function that uses mpi-sppy to compute x̂.

The simulate boot.py software is callable from the command line, but that is mainly for
illustration purposes. We also distribute the program simulate experiments.py that runs the
experiments described in Section 4. It calls simulate boot.py in a loop to compute coverage and
width statistics for the confidence intervals.

4 Experiments

We demonstrate experiments on the algorithms over a few examples as detailed in the following
subsections. For simulation purpose, we grant ourselves the access to the distribution of the
entire population FΩ, and approximate the theoretical optimal function value z∗ by drawing an
extremely large number of samples from the distribution FΩ, then compute the corresponding
optimal function value, which we use as z∗ for the simulations

We replicate the execution of each algorithm a large number (e.g., 500) times with a fixed
candidate solution x̂. At each replication, a new set D is drawn independently from FΩ, and the
algorithm is executed to return a (1 − 2α) confidence interval for the optimal function value z∗.
The coverage rate is then reported as the percentages of the confidence intervals that contains z∗

6



over the 500 runs. We also report the average length of the confidence intervals, denoted as “avg
len”, over the repeated experiments for each algorithm. The average length of the CIs to some
extent represents the sharpness of the intervals computed by the algorithms.

4.1 Small Schultz Examples

4.1.1 Unique Solution

This examples is from [SSVDV98] used in [ER07, p. 129]. Results are shown in Table 1.

4.1.2 Nonunique Solution

This example is a modified version of the previous problem that used in [ER07, p. 131]. Results
are shown in Table 2. This problem has multiple optima.

4.2 CVaR

A one-stage CVaR problem is used by [LQ18]:

min
x

{
x+

1

a
E [(ξ − x)+]

}
where (·)+ is defined as max ·, 0, a = 0.1 and ξ is a drawn from a standard normal distribution.
Results are shown in Table 3.

4.3 Scalable Farmer

This example is based on the well-known farmer example from [BL97] as modifed for stress-testing
various pieces of software such as [KMM+21]. To make it scalable, two instance creation parameters
cropsmult and numscens are added. The original problem has three crops and three scenarios.
The scalable instances have cropsmult sets of the original three crops with the characteristics as
in the original problem and yields that depend on the scenario. Scenarios are in groups of three
with a uniformly distributed psuedo-random number added to the yield values of the original three
scenarios.

For the results shown in Tables 4 and 5, we used the original three crops and 1000 scenarios
to get an assumed value for z∗.

4.4 Discussion of Results

These experiments are intended mainly to illustrate that the software can be used for such experi-
ments. They do illustrate the unsurprising result that if the samples are too small, the confidence
intervals will not be very good. They also suggest that the method we call Extended, which is sort
of an afterthought in [ER07], does not seem to work all that well.

The results are mostly reasonable, but mixed and depend on the availability of enough data
as well as the choice of method and parameters. Detailed conclusions are beyond the scope of
this small study. One other thing to note, though, concerns CVaR. Since CVaR considers the
tail, getting good confidence intervals requires a larger value of N . Perhaps for similar reasons,
quantile-based intervals do not seem to be as good as Gausian.

5 Conclusions and Directions for Further Research

This paper describes software support for the idea that stochastic programming need not be based
on an assumption that data come from a known distribution. Clearly, sampled data can be used
to obtain an estimated solution in a way that is asymptotically valid. The main thing that is new
here is that we have created software that also uses sampled data to estimate the quality of that
solution in a way that is asymptotically valid. We now describe a sample from opportunities for
further work.

Throughout the paper, for notational convenience we have worked with exact optimizations
for samples of size N , but with more notation any method (such as a decomposition) that can get
upper and lower bounds could be used. This gives rise to empirical questions about the interaction
between the tightness of the bounds and the quality of the confidence intervals.

Another experimental question concerns the common problem of allocation of the finite samples:
what fraction should go to computing x̂ and what fraction should go to estimation of confidence

7



method N nB k avg len coverage
Classical gaussian 40 100 0 8.04 0.92
Classical gaussian 80 100 0 5.58 0.90
Classical gaussian 40 500 0 8.01 0.92
Classical gaussian 80 500 0 5.73 0.93
Classical quantile 40 100 0 7.82 0.88
Classical quantile 80 100 0 5.41 0.87
Classical quantile 40 500 0 7.97 0.90
Classical quantile 80 500 0 5.69 0.89
Bagging with replacement 40 100 16 9.36 0.93
Bagging with replacement 40 100 24 9.38 0.95
Bagging with replacement 40 100 32 9.42 0.96
Bagging with replacement 80 100 32 7.62 0.97
Bagging with replacement 80 100 48 7.39 0.97
Bagging with replacement 80 100 64 7.49 0.98
Bagging with replacement 40 500 16 8.21 0.90
Bagging with replacement 40 500 24 8.15 0.89
Bagging with replacement 40 500 32 8.26 0.91
Bagging with replacement 80 500 32 6.08 0.93
Bagging with replacement 80 500 48 6.05 0.95
Bagging with replacement 80 500 64 6.07 0.95
Bagging without replacement 40 100 16 9.32 0.95
Bagging without replacement 40 100 24 9.59 0.93
Bagging without replacement 40 100 32 9.43 0.94
Bagging without replacement 80 100 32 7.54 0.98
Bagging without replacement 80 100 48 7.83 0.98
Bagging without replacement 80 100 64 7.68 0.95
Bagging without replacement 40 500 16 8.42 0.91
Bagging without replacement 40 500 24 8.58 0.94
Bagging without replacement 40 500 32 8.60 0.93
Bagging without replacement 80 500 32 6.16 0.93
Bagging without replacement 80 500 48 6.29 0.95
Bagging without replacement 80 500 64 6.26 0.95
Subsampling 40 100 16 6.15 0.79
Subsampling 40 100 24 5.08 0.73
Subsampling 40 100 32 3.52 0.58
Subsampling 80 100 32 4.36 0.80
Subsampling 80 100 48 3.62 0.72
Subsampling 80 100 64 2.54 0.55
Subsampling 40 500 16 6.30 0.81
Subsampling 40 500 24 5.18 0.74
Subsampling 40 500 32 3.65 0.56
Subsampling 80 500 32 4.45 0.82
Subsampling 80 500 48 3.68 0.74
Subsampling 80 500 64 2.58 0.56
Extended 40 100 0 8.29 0.88
Extended 80 100 0 5.37 0.81
Extended 40 500 0 8.22 0.90
Extended 80 500 0 5.60 0.86

Table 1: Results for unique schultz with α=0.05 based on 100 replications.

8



method N nB k avg len coverage
Classical gaussian 40 100 0 7.92 0.90
Classical gaussian 80 100 0 5.46 0.91
Classical gaussian 40 500 0 7.89 0.89
Classical gaussian 80 500 0 5.60 0.93
Classical quantile 40 100 0 7.72 0.89
Classical quantile 80 100 0 5.30 0.86
Classical quantile 40 500 0 7.84 0.90
Classical quantile 80 500 0 5.57 0.92
Bagging with replacement 40 100 16 9.23 0.93
Bagging with replacement 40 100 24 9.24 0.94
Bagging with replacement 40 100 32 9.28 0.96
Bagging with replacement 80 100 32 7.45 0.96
Bagging with replacement 80 100 48 7.23 0.97
Bagging with replacement 80 100 64 7.32 0.97
Bagging with replacement 40 500 16 8.10 0.89
Bagging with replacement 40 500 24 8.02 0.89
Bagging with replacement 40 500 32 8.13 0.91
Bagging with replacement 80 500 32 5.95 0.92
Bagging with replacement 80 500 48 5.92 0.94
Bagging with replacement 80 500 64 5.94 0.94
Bagging without replacement 40 100 16 9.19 0.95
Bagging without replacement 40 100 24 9.43 0.93
Bagging without replacement 40 100 32 9.27 0.92
Bagging without replacement 80 100 32 7.38 0.98
Bagging without replacement 80 100 48 7.63 0.98
Bagging without replacement 80 100 64 7.50 0.96
Bagging without replacement 40 500 16 8.29 0.90
Bagging without replacement 40 500 24 8.44 0.91
Bagging without replacement 40 500 32 8.46 0.93
Bagging without replacement 80 500 32 6.03 0.93
Bagging without replacement 80 500 48 6.14 0.96
Bagging without replacement 80 500 64 6.11 0.94
Subsampling 40 100 16 6.04 0.82
Subsampling 40 100 24 4.99 0.72
Subsampling 40 100 32 3.45 0.61
Subsampling 80 100 32 4.28 0.81
Subsampling 80 100 48 3.52 0.76
Subsampling 80 100 64 2.48 0.57
Subsampling 40 500 16 6.21 0.83
Subsampling 40 500 24 5.10 0.78
Subsampling 40 500 32 3.59 0.60
Subsampling 80 500 32 4.36 0.83
Subsampling 80 500 48 3.60 0.78
Subsampling 80 500 64 2.52 0.56
Extended 40 100 0 8.16 0.86
Extended 80 100 0 5.16 0.81
Extended 40 500 0 8.08 0.88
Extended 80 500 0 5.45 0.89

Table 2: Results for nonunique schultz with α=0.05 based on 100 replications.

9



method N nB k avg len coverage
Classical gaussian 300 100 0 0.36 0.90
Classical gaussian 600 100 0 0.26 0.82
Classical gaussian 300 1000 0 0.36 0.94
Classical gaussian 600 1000 0 0.26 0.80
Classical quantile 300 100 0 0.35 0.50
Classical quantile 600 100 0 0.25 0.57
Classical quantile 300 1000 0 0.36 0.69
Classical quantile 600 1000 0 0.26 0.58
Bagging with replacement 300 100 120 0.63 1.00
Bagging with replacement 300 100 180 0.62 1.00
Bagging with replacement 300 100 240 0.62 1.00
Bagging with replacement 600 100 240 0.62 1.00
Bagging with replacement 600 100 360 0.63 1.00
Bagging with replacement 600 100 480 0.62 1.00
Bagging with replacement 300 1000 120 0.20 1.00
Bagging with replacement 300 1000 180 0.20 1.00
Bagging with replacement 300 1000 240 0.20 1.00
Bagging with replacement 600 1000 240 0.20 1.00
Bagging with replacement 600 1000 360 0.20 1.00
Bagging with replacement 600 1000 480 0.20 1.00
Bagging without replacement 300 100 120 0.81 1.00
Bagging without replacement 300 100 180 0.99 1.00
Bagging without replacement 300 100 240 1.39 1.00
Bagging without replacement 600 100 240 0.80 1.00
Bagging without replacement 600 100 360 0.99 1.00
Bagging without replacement 600 100 480 1.39 1.00
Bagging without replacement 300 1000 120 0.26 1.00
Bagging without replacement 300 1000 180 0.31 1.00
Bagging without replacement 300 1000 240 0.45 1.00
Bagging without replacement 600 1000 240 0.26 1.00
Bagging without replacement 600 1000 360 0.32 1.00
Bagging without replacement 600 1000 480 0.45 1.00
Subsampling 300 100 120 0.36 0.65
Subsampling 300 100 180 0.35 0.61
Subsampling 300 100 240 0.35 0.60
Subsampling 600 100 240 0.26 0.64
Subsampling 600 100 360 0.26 0.60
Subsampling 600 100 480 0.25 0.50
Subsampling 300 1000 120 0.36 0.67
Subsampling 300 1000 180 0.36 0.65
Subsampling 300 1000 240 0.36 0.62
Subsampling 600 1000 240 0.26 0.63
Subsampling 600 1000 360 0.26 0.62
Subsampling 600 1000 480 0.26 0.67
Extended 300 100 0 0.50 0.79
Extended 600 100 0 0.36 0.71
Extended 300 1000 0 0.51 0.85
Extended 600 1000 0 0.36 0.81

Table 3: Results for cvar with α=0.05 based on 100 replications.

10



method N nB k avg len coverage
Classical gaussian 30 100 0 28259.46 0.887
Classical gaussian 60 100 0 20181.52 0.892
Classical gaussian 30 1000 0 28294.08 0.885
Classical gaussian 60 1000 0 20272.41 0.907
Classical quantile 30 100 0 27343.29 0.870
Classical quantile 60 100 0 19645.95 0.877
Classical quantile 30 1000 0 28236.30 0.880
Classical quantile 60 1000 0 20235.36 0.905
Bagging with replacement 30 100 12 31422.27 0.932
Bagging with replacement 30 100 18 31257.34 0.938
Bagging with replacement 30 100 24 32061.31 0.932
Bagging with replacement 60 100 24 25164.00 0.955
Bagging with replacement 60 100 36 25298.68 0.953
Bagging with replacement 60 100 48 25285.28 0.950
Bagging with replacement 30 1000 12 28323.03 0.895
Bagging with replacement 30 1000 18 28489.61 0.902
Bagging with replacement 30 1000 24 28554.10 0.900
Bagging with replacement 60 1000 24 20614.13 0.907
Bagging with replacement 60 1000 36 20688.71 0.907
Bagging with replacement 60 1000 48 20751.51 0.905
Bagging without replacement 30 100 12 32638.99 0.935
Bagging without replacement 30 100 18 32640.54 0.920
Bagging without replacement 30 100 24 32558.19 0.930
Bagging without replacement 60 100 24 25546.72 0.965
Bagging without replacement 60 100 36 25369.97 0.963
Bagging without replacement 60 100 48 25711.17 0.970
Bagging without replacement 30 1000 12 29438.81 0.902
Bagging without replacement 30 1000 18 29629.62 0.905
Bagging without replacement 30 1000 24 29664.24 0.895
Bagging without replacement 60 1000 24 21069.04 0.915
Bagging without replacement 60 1000 36 21175.03 0.917
Bagging without replacement 60 1000 48 21287.06 0.922
Subsampling 30 100 12 21560.28 0.777
Subsampling 30 100 18 17703.34 0.680
Subsampling 30 100 24 12593.48 0.502
Subsampling 60 100 24 15389.09 0.785
Subsampling 60 100 36 12457.75 0.680
Subsampling 60 100 48 8943.31 0.500
Subsampling 30 1000 12 22124.33 0.797
Subsampling 30 1000 18 18209.22 0.690
Subsampling 30 1000 24 12877.64 0.510
Subsampling 60 1000 24 15739.58 0.790
Subsampling 60 1000 36 12903.63 0.700
Subsampling 60 1000 48 9166.89 0.525
Extended 30 100 0 26890.50 0.848
Extended 60 100 0 19620.82 0.863
Extended 30 1000 0 28080.65 0.870
Extended 60 1000 0 20435.31 0.875

Table 4: Results for farmer based on 400 replications.

11



method N nB k avg len coverage
Classical gaussian 30 100 0 21809.65 0.750
Classical gaussian 60 100 0 15622.85 0.740
Classical gaussian 30 1000 0 21955.60 0.770
Classical gaussian 60 1000 0 15648.47 0.730
Classical quantile 30 100 0 21348.92 0.740
Classical quantile 60 100 0 15337.17 0.740
Classical quantile 30 1000 0 22030.79 0.740
Classical quantile 60 1000 0 15641.96 0.740
Bagging with replacement 30 100 12 24013.20 0.800
Bagging with replacement 30 100 18 24468.50 0.790
Bagging with replacement 30 100 24 25117.26 0.830
Bagging with replacement 60 100 24 19617.59 0.830
Bagging with replacement 60 100 36 19544.47 0.820
Bagging with replacement 60 100 48 19788.37 0.860
Bagging with replacement 30 1000 12 21923.88 0.730
Bagging with replacement 30 1000 18 22105.87 0.760
Bagging with replacement 30 1000 24 22159.09 0.770
Bagging with replacement 60 1000 24 16040.28 0.750
Bagging with replacement 60 1000 36 16049.88 0.760
Bagging with replacement 60 1000 48 16071.97 0.760
Bagging without replacement 30 100 12 25178.82 0.830
Bagging without replacement 30 100 18 25316.79 0.780
Bagging without replacement 30 100 24 25361.81 0.790
Bagging without replacement 60 100 24 19903.04 0.890
Bagging without replacement 60 100 36 19887.07 0.860
Bagging without replacement 60 100 48 19734.46 0.880
Bagging without replacement 30 1000 12 22641.34 0.760
Bagging without replacement 30 1000 18 23047.99 0.780
Bagging without replacement 30 1000 24 23065.88 0.770
Bagging without replacement 60 1000 24 16416.91 0.750
Bagging without replacement 60 1000 36 16428.75 0.780
Bagging without replacement 60 1000 48 16453.14 0.760
Subsampling 30 100 12 17165.90 0.700
Subsampling 30 100 18 13965.11 0.550
Subsampling 30 100 24 9980.19 0.400
Subsampling 60 100 24 12253.03 0.640
Subsampling 60 100 36 9822.92 0.520
Subsampling 60 100 48 6949.98 0.370
Subsampling 30 1000 12 17245.27 0.670
Subsampling 30 1000 18 14230.53 0.550
Subsampling 30 1000 24 10112.13 0.410
Subsampling 60 1000 24 12336.30 0.630
Subsampling 60 1000 36 10034.51 0.510
Subsampling 60 1000 48 7141.78 0.350
Extended 30 100 0 21392.68 0.760
Extended 60 100 0 16125.62 0.730
Extended 30 1000 0 21603.71 0.770
Extended 60 1000 0 16038.97 0.780

Table 5: Results for farmer with α=0.1 based on 100 replications.

12



intervals. Another thing to explore is that there is no requirement x̂ be obtained by solving a
problem of minimizing expected value. Other models, such as Robust Optimization (see, e.g.,
[BTN02]) or Distributionally Robust Optimization (see, e.g., [VPEK21]),might be used, but there
may still be an interest in using sampled data to evaluate confidence intervals for the expected
value and conditional value at risk.

References

[AP11] Mihai Anitescu and C Petra. Higher-order confidence intervals for stochastic program-
ming using bootstrapping. Technical report, Citeseer, 2011.

[BHH+21] Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird, Bethany L.
Nicholson, John D. Siirola, Jean-Paul Watson, and David L. Woodruff. Pyomo–
optimization modeling in python, volume 67. Springer Science & Business Media,
third edition, 2021.

[BL97] John. R. Birge and François Louveaux. Introduction to Stochastic Programming.
Springer Verlag, 1997.

[BM09] Güzin Bayraksan and David P Morton. Assessing solution quality in stochastic pro-
grams via sampling. In Decision Technologies and Applications, pages 102–122. In-
forms, 2009.

[BM11] Güzin Bayraksan and David P Morton. A sequential sampling procedure for stochastic
programming. Operations Research, 59(4):898–913, 2011.

[BPL12] Guzin Bayraksan and Péguy Pierre-Louis. Fixed-width sequential stopping rules for a
class of stochastic programs. SIAM Journal on Optimization, 22(4):1518–1548, 2012.

[BTN02] Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization–methodology and ap-
plications. Mathematical programming, 92(3):453–480, 2002.

[CM04] Anukal Chiralaksanakul and David P Morton. Assessing policy quality in multi-
stage stochastic programming. Humboldt-Universität zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultät . . . , 2004.

[DW88] Jitka Dupacová and Roger Wets. Asymptotic behavior of statistical estimators and
of optimal solutions of stochastic optimization problems. The annals of statistics,
16(4):1517–1549, 1988.

[ER07] Andreas Eichhorn and Werner Römisch. Stochastic integer programming: Limit the-
orems and confidence intervals. Mathematics of Operations Research, 32(1):118–135,
2007.

[HS91] Julia L Higle and Suvrajeet Sen. Stochastic decomposition: An algorithm for two-stage
linear programs with recourse. Mathematics of operations research, 16(3):650–669,
1991.

[KMM+21] Bernard Knueven, David Mildebrath, Christopher Muir, John D Siirola, Jean-Paul
Watson, and David L Woodruff. A parallel hub-and-spoke system for large-scale
scenario-based optimization under uncertainty. https: // mpi-sppy. readthedocs.

io/ en/ latest/ , 2021.

[KW12] Alan J. King and Stein W. Wallace. Modeling with Stochastic Programming. Springer,
2012.

[LQ18] Henry Lam and Huajie Qian. Assessing solution quality in stochastic optimization via
bootstrap aggregating. In 2018 Winter Simulation Conference (WSC), pages 2061–
2071. IEEE, 2018.

[LS20] Junyi Liu and Suvrajeet Sen. Asymptotic results of stochastic decomposition for two-
stage stochastic quadratic programming. SIAM Journal on Optimization, 30(1):823–
852, 2020.

13

https://mpi-sppy.readthedocs.io/en/latest/
https://mpi-sppy.readthedocs.io/en/latest/


[LSW06] Jeff Linderoth, Alexander Shapiro, and Stephen Wright. The empirical behavior
of sampling methods for stochastic programming. Annals of Operations Research,
142(1):215–241, 2006.

[Mam12] Enno Mammen. When does bootstrap work?: asymptotic results and simulations,
volume 77. Springer Science & Business Media, 2012.

[MMW99] Wai-Kei Mak, David P Morton, and R Kevin Wood. Monte carlo bounding techniques
for determining solution quality in stochastic programs. Operations research letters,
24(1-2):47–56, 1999.

[Sha91] Alexander Shapiro. Asymptotic analysis of stochastic programs. Annals of Operations
Research, 30(1):169–186, 1991.

[Sha03] Alexander Shapiro. Inference of statistical bounds for multistage stochastic program-
ming problems. Mathematical Methods of Operations Research, 58(1):57–68, 2003.

[SSVDV98] Rüdiger Schultz, Leen Stougie, and Maarten H Van Der Vlerk. Solving stochastic
programs with integer recourse by enumeration: A framework using gröbner basis.
Mathematical Programming, 83(1):229–252, 1998.

[VPEK21] Bart PG Van Parys, Peyman Mohajerin Esfahani, and Daniel Kuhn. From data
to decisions: Distributionally robust optimization is optimal. Management Science,
67(6):3387–3402, 2021.

14


	Introduction
	Notation 
	Software 
	Algorithms implemented 
	Classical Bootstrap Method
	Extended Bootstrap Method
	Subsampling
	Bagging
	Code 

	Experiments 
	Small Schultz Examples
	Unique Solution
	Nonunique Solution

	CVaR
	Scalable Farmer
	Discussion of Results

	Conclusions and Directions for Further Research 

