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Abstract

In this paper, we study the mixed-integer nonlinear set given by a separable quadratic
constraint on continuous variables, where each continuous variable is controlled by an additional
indicator. This set occurs pervasively in optimization problems with uncertainty and in machine
learning. We show that optimization over this set is NP-hard. Despite this negative result,
we discover links between the convex hull of the set under study, and a family of polyhedral
sets studied in the literature. Moreover, we show that although perspective relaxation in the
literature for this set fails to match the structure of its convex hull, it is guaranteed to be a close
approximation.

1 Introduction

In this paper, given Z ⊆ {0, 1}n, we study set

X
def
= {(x, z) ∈ Rn × Z : ∥x∥22 ≤ 1, x ◦ (e− z) = 0},

where e is a vector of 1s and “◦” denotes the Hadamard (entry-wise) product of vectors. Set
X is non-convex due to the binary constraints encoded by Z, as well as the complementarity
constraints x ◦ (e − z) = 0 linking the continuous and binary variables. Observe that arbitrary
separable quadratic constraints of the form

∑n
i=1(dixi)

2 ≤ b can be modeled with X as well

through the change of variables x̄i
def
= (di/

√
b)xi. Note that since any (x, z) ∈ X satisfies |xi| ≤ 1,

the complementarity constraints can be linearized as the big-M constraints

|xi| ≤ zi, i = 1, . . . , n. (1)

Our overall goal is to understand and characterize the convex hull of X, denoted as conv(X).
Throughout the paper, for simplicity, we use the following convention for division by 0: a/b = 0 if
a = b = 0, and a/b = ∞ (−∞) if b = 0 and a > 0 (or a < 0).

1.1 Applications

Set X arises pervasively in practice. We now discuss three settings where it plays a key role.
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Sparse PCA Set X arises directly in sparse principal component analysis problems [11, 12, 17,
25], a fundamental problem in statistics which can be formulated as

max x′Σx (2a)

s.t. ∥x∥22 ≤ 1, ∥z∥1 ≤ k, x ◦ (e− z) = 0, (2b)

where Σ ⪰ 0 and k ∈ Z+ is a parameter controlling the sparsity of the solution. Observe that
the feasible region given by constraints (2b) corresponds exactly to X with set Z = {z ∈ {0, 1}n :
∥z∥1 ≤ k}. Thus, understanding conv(X) is critical to designing better convex approximations
of (2).

General convex quadratic constraints Given Σ ⪰ 0, consider the system of inequalities

y′Σy ≤ b, y ◦ (e− z) = 0, y ∈ Rn, z ∈ Z ⊆ {0, 1}n. (3)

System (3) arises for example in mean-variance optimization problems [5], where the quadratic
constraint is used to impose an upper bound on the risk (variance) of the solution. While system
(3) involves a non-separable quadratic constraint, a study of set conv(X) can be still used to
construct strong convex relaxations. Indeed, if Σ = D + R where R ⪰ 0, D ≻ 0 and diagonal,
then we can reformulate system (3) by introducing additional variables (x0,x) ∈ Rn+1 as

n∑
i=0

x2i ≤ 1, x ◦ (e− z) = 0, x0(1− z0) = 0, z ∈ Z (4a)

z0 = 1,
√
(y′(R/b)y) ≤ x0,

√
(Dii/b)|yi| ≤ xi for i = 1, . . . , n, (4b)

where constraints (4a) correspond precisely to X and constraints (4b) are convex and SOCP-
representable. Therefore, convex relaxations for system (3) can be obtained by strengthening
constraints (4a) using conv(X).

Robust optimization Consider a robust optimization problem of the form

min
y∈Y

max
a∈U

a′y, (5)

where vector y are the decision variables, set Y ⊆ Rn is the (possibly non-convex) feasible region and
set U ⊆ Rn is an uncertainty set corresponding to the objective coefficients. Robust optimization
(5) is a fundamental tool to tackle decision-making under uncertainty problems. Two popular
choices for the uncertainty set U , each with its own merits and disadvantages, are: the approach
of Ben-Tal and Nemirovski [7], where U is an ellipsoid; and the approach of Bertsimas and Sim [8],
where only a small subset of the coefficients a are allowed to change while satisfying box constraints.

Thus, a natural uncertainty set inspired by the aforementioned two approaches allows few
coefficients to change and imposes ellipsoidal constraint on the changing coefficients, that is, set

U def
=

{
a ∈ Rn : ∃(x, z) ∈ Rn × {0, 1}n s.t. a = ã+ x,

n∑
i=1

(dixi)
2 ≤ b, z ∈ Z, x ◦ (e− z) = 0

}
,

(6)
where ã are the nominal values for the coefficients. The uncertainty set U is appropriate for example
when changes in coefficients a are caused by rare events, and the change in the coefficients (when
such changes occur) can be accurately modeled with a Gaussian distribution. A natural candidates
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for set Z is Z = {z ∈ Z :
∑n

i=1 cizi ≤ k}, where ci is a coefficient related to how likely the objective
coefficients associated with variable yi are likely to change. More sophisticated options of set Z can
also be envisioned to capture more complex relationships on the support of perturbed coefficients.

Since set U is non-convex, solving (5) can be difficult and require sophisticated approaches
[9]. Nonetheless, understanding conv(X) may lead to the possibility of using standard duality
approaches to obtain deterministic counterparts of (5). We further discuss this problem in §5.

1.2 Perspective relaxation and outline

A closely related set to X that is well understood in the literature is the mixed-integer epigraph

of a separable quadratic function with indicators, that is, Xepi
def
= {(x, z, t) ∈ Rn × Z ×R : ∥x∥22 ≤

t, x ◦ (e− z) = 0}. Its convex hull can be described via the perspective relaxation cl conv(Xepi) =
{(x, z, t) ∈ Rn × conv(Z) × R :

∑n
i=1 x

2
i /zi ≤ t}, see [2, 10, 13, 15] for the case Z = {0, 1}n and

[6, 20, 21, 22, 23] for cases with more general constraints. Thus, a natural convex relaxation for set
X is also given by the perspective relaxation

Rpersp
def
=

{
(x, z) ∈ Rn × conv(Z) :

n∑
i=1

x2i /zi ≤ 1

}
. (7)

However, it is unclear to what extent relaxation Rpersp coincides with conv(X): Are they the same?
Does the structure of Rpersp even “match” conv(X)? Is Rpersp a strong relaxation? How can it be
improved?

All these questions can be precisely answered for polyhedral sets: for example, an inequality is
necessary for a polyhedron if it is facet-defining.However, since conv(X) is in general non-polyhedral,
it is unclear (to date) how to formally answer the aforementioned questions. Ideally, one would
like to explicitly compute conv(X) and compare it with Rpersp. Unfortunately, as we show in §2,
optimization over set X is NP-hard even when Z = {0, 1}n. Thus, an explicit computation of
conv(X) is unlikely. This result immediately implies that Rpersp ̸= conv(X), but does not provide
insights into answering the remaining questions.

In this paper, we close this gap in the literature. In §3 we characterize provide an implicit
description of conv(X) in the original space of variables as the intersection of a family of polyhedral
sets; the description is implicit in the sense that the polyhedra are not explicitly given, but rather
defined themselves as convex hulls of a particular class of mixed-integer sets. Interestingly, this
family of polyhedra is well-studied in the literature. In §4 we review how to obtain facet-defining
inequalities for the underlying polyhedral sets, and also show that Rpersp corresponds to using a
strong nonlinear relaxation of these polyhedral sets. In §5 we propose an approximate deterministic
counterpart of the robust optimization problem (5) with discrete uncertainty (6), and in §6 we
present computations with this proposed formulation.

2 NP-hardness

In this section we show that optimization of a linear function over set X is NP-hard. This result
indicates that a compact explicit computation of conv(X) is unlikely to be possible.
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Consider the optimization problem

min
x,z

a′x+ c′z (8a)

s.t. ∥x∥22 ≤ 1 (8b)

x ◦ (e− z) = 0 (8c)

x ∈ Rn, z ∈ Z. (8d)

Proposition 1. Problem (8) is NP-hard even if Z = {0, 1}n.

Proof. Consider problem (8) where vector z is fixed, and let S = {i ∈ {1, . . . , n} : zi = 1} (assume
S ̸= ∅). Then, for this choice of z, problem (8) reduces to

ϵS = min
x

∑
i∈S

ci +
∑
i∈S

aixi (9a)

s.t.
∑
i∈S

x2i ≤ 1 (9b)

x ∈ RS . (9c)

Since the Lagrangian dual of problem (9) has no duality gap (as Slater condition holds), an
optimal objective value ϵS can be computed as

ϵS =
∑
i∈S

ci +max
λ≥0

min
x∈RS

∑
i∈S

aixi + λ
∑
i∈S

x2i − λ

=
∑
i∈S

ci +max
λ≥0

− 1

4λ

∑
i∈S

a2i − λ (∵ 2x∗i = −ai/λ)

=
∑
i∈S

ci −
√∑

i∈S
a2i . (∵ λ∗ = 1

2

√∑
i∈S a2i )

In other words, the optimal vector z of (8) can be found by either setting z = 0 (with objective
value ϵ∅ = 0), or by solving the optimization problem

min
z∈Z

n∑
i=1

cizi −

√√√√ n∑
i=1

a2i zi. (10)

Finally, as the partition problem can be reduced to problem (10) with Z = {0, 1}n (see [1]), problem
(8) is NP-hard even in this case.

Remark 1. If c = 0 but there is a constraint of the form ∥z∥1 = k, then (10) can be solved by
sorting. Polynomial-time solvability of this case suggests that it may be possible to construct a
convex relaxation that guarantees integrality of the solutions under these conditions. In other
words, it may be possible to characterize the convex hull of the set

Y =
{
x ∈ Rn : ∥x∥0 ≤ k, ∥x∥22 ≤ 1

}
,

where ∥x∥0 =
∑n

i=1 1{xi ̸=0} is the cardinality of the support of x. Indeed, set Y is permutation-
invariant, and its convex hull conv(Y ) is described in [16], or projection of the perspective relaxation
(i.e., conv(Y ) = projx(Rpersp); see Appendix A for the detailed proof). Note however that these
relaxations are not ideal for X, i.e., solutions of linear optimization problems over conv(Y ) do not
coincide with the solutions of optimization problems over X if c ̸= 0.
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Remark 2. We point that ideal relaxations for X may be substantially more effective than relax-
ations such as Y described in Remark 1 even if c = 0. For example, consider an optimization of
the form

min
x,z

f(x, z) (11a)

s.t. ∥x∥22 ≤ 1, x ◦ (e− z) = 0, e⊤z ≤ k (11b)

x ∈ Rn, z ∈ {0, 1}n, (11c)

where f : Rn× [0, 1]n → R∪{∞} is a convex function on the extended real line. Function f can be
used to capture several structural constraints of the optimization problem, e.g., setting f(x, z) = 0
if Ax+Gz ≤ b and f(x, z) = ∞ otherwise, allows for capturing arbitrary polyhedral constraints.
Ideally, we would like to compute the convex hull of the whole set (which includes interplay between
f and X), but realistically one instead computes relaxations for special substructures, such as the
ones induces by X. In particular, given any relaxation R of X, consider the relaxation of (11) given
by

min
(x,z)∈R

f(x, z) ⇔ min
x1,z1,x2,z2

f(x1, z1) s.t. x1 = x2, z1 = z2, (x2, z2) ∈ R (12)

⇔max
λ,µ

min
x1,z1,x2,z2

f(x1, z1) + λ⊤(x2 − x1) + µ⊤(z2 − z1) s.t. (x2, z2) ∈ R,

where the last equivalence assumes that strong duality holds. Note that the problem decouples in
(x1, z1) and (x2, z2), and we see that the best relaxations of X are those that are tight when the
objective is given by the optimal (and unknown) λ∗,µ∗. Note that conv(X) is thus always a good
relaxation, since it is tight for any linear objective, whereas relaxations such as Y may not be tight
unless µ∗ = 0. We present in Appendix B a detailed example illustrating this point.

3 Implicit convexification

From Proposition 1, we know that an explicit characterization of conv(X) is unlikely to be possible.
In this section, we settle for a weaker structural result: in Theorem 1, we state an explicit description
of conv(X) that relies on the convex hulls of polyhedral sets. Naturally, describing these polyhedral
sets is NP-hard as well; nonetheless, they are substantially easier to handle, thanks to the maturity
of polyhedral theory.

We first define the polyhedral sets that are key to characterizing conv(X).

Definition 1. Given α ∈ Rn, define sets P0(α), P (α) ⊆ R2n as

P0(α)
def
=

(x, z) ∈ Rn × Z :

n∑
i=1

|αixi| ≤

√√√√ n∑
i=1

α2
i zi

 , and

P (α)
def
=conv

(
P0(α)

)
.

Note that set P (α) is the convex hull of a union of a finite number of polytopes, one for each
z ∈ Z. Thus, P (α) is a polytope itself. We defer to §4.1-4.2 the discussion on constructing
relaxations of set P (α). As Proposition 2 below states, set P (α) is a relaxation of set X.

Proposition 2 (Validity). Set conv(X) ⊆ P (α) for all α ∈ Rn.
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Proof. It suffices to show that X ⊆ P0(α). Since x ◦ (e − z) = 0 and z ∈ {0, 1}n, we must have
xi = xizi = xi

√
zi for all i = 1, . . . , n. Hence, we find that

n∑
i=1

|αixi| =
k∑

i=1

|(αi

√
zi)xi| ≤

√√√√ n∑
i=1

α2
i zi

√√√√ n∑
i=1

x2i ≤

√√√√ n∑
i=1

α2
i zi,

where the first inequality is due to Hölder’s inequality, and the second one is because of
∑n

i=1 x
2
i ≤ 1.

Hence, (x, z) ∈ P0(α) ⊆ P (α), concluding the proof.

Moreover, we now show how to use P (α) to construct an equivalent convex formulation of the
NP-hard problem (8). Note that in Proposition 3 below, we set α = a.

Proposition 3 (Optimality). Problem (8) is equivalent to

min
x,z

a′x+ c′z (13a)

s.t. (x, z) ∈ P (a), (13b)

that is, they both have the same optimal objective value and there exists an optimal solution of (13)
that is also optimal for (8).

Proof. It suffices to show that problem (8) is equivalent to

min
x,z

a′x+ c′z (14a)

s.t. (x, z) ∈ P0(a). (14b)

In any feasible solution of (14), we find that

a′x ≥ −
n∑

i=1

|aixi| ≥ −

√√√√ n∑
i=1

a2i zi, (15)

where the first inequality follows directly from the definition of the absolute value and the second
inequality follows from constraints (x, z) ∈ P0(a). Moreover, both inequalities (15) hold at equality
in an optimal solution, since otherwise, it is always possible to increase/decrease xi for some index
i without violating feasibility while improving the objective value. Thus, projecting out variables
x, problem (14) reduces to (10), which, as shown in the proof of Proposition 1, is equivalent to
(8).

Propositions 2 and 3 together come with an alternative representation of conv(X) which is
expressed as intersections of sets P (α) for all α ∈ Rn.

Theorem 1. The convex hull of X can be described (with an infinite number of constraints, one
for each α ∈ Rn) as

conv(X) =
⋂

α∈Rn

P (α) (16)
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Proof. Note that both conv(X) and
⋂

α∈Rn P (α) are convex and bounded. Thus, to show that
they are equivalent, we show that their extreme points coincide. In other words, it is sufficient to
show that the following two optimization problems

min
x,z

{
a′x+ c′z : (x, z) ∈ X

}
(17)

min
x,z

{
a′x+ c′z : (x, z) ∈

⋂
α∈Rn

P (α)

}
(18)

have the same solution for any (a, c). First, due to Proposition 2, we find that (18) is a relaxation
of (17). Second, the problem minx,z { a′x+ c′z : (x, z) ∈ P (a)} is a further relaxation of (18), as
it is obtained by dropping all the constraints but one. Third, due to Proposition 3, this further
relaxation is exact, and thus (18) is exact as well. This concludes the proof.

The description (16) of conv(X) can be highly nonlinear, since it involves an infinite number
of constraints. However, the significance of Theorem 1 is that to understand conv(X) it suffices
to study the polyhedral set P (α), which is arguably a simpler task due to advances in polyhedral
theory, and since this set does not involve complementarity or other constraints linking the discrete
and continuous variables. In §4.1 and §4.2 we discuss how to obtain strong relaxation of P (α) in
general. However, an alternative approach to obtain valid inequalities is to restrict the values of α,
as the examples below show.

Example 1. Let α = ei for some i ∈ {1, . . . , n}, where ei is the standard i-th basis vector of Rn.
In this case,

P (ei) = conv ({(x, z) ∈ Rn × Z : |xi| ≤
√
zi})

= {(x, z) ∈ Rn × conv(Z) : |xi| ≤ zi} .

Thus, we find that big-M constraints (1) are derived from the partial convexification
⋂n

i=1 P (ei) ⊇
conv(X).

Example 2. Suppose that Z = {z ∈ {0, 1}n : ∥z∥1 = k}, and let α = e. In this case

P (e) = conv
({

(x, z) ∈ Rn × {0, 1}n : ∥x∥1 ≤
√
∥z∥1, ∥z∥1 = k

})
=

{
(x, z) ∈ Rn × [0, 1]n : ∥x∥1 ≤

√
k, ∥z∥1 = k

}
.

In particular we find that the inequality ∥x∥1 ≤
√
k, which was studied in [12] in the context of

sparse PCA, is precisely the relaxation P (e) ⊇ conv(X).

4 Relaxations

This section discusses how to describe or approximate P (α). Interestingly, this family of poly-
hedra has already been studied in the literature. In §4.1 we review existing results on the facial
structure of P (α). In §4.2 we study the natural nonlinear relaxation of P (α), show that this re-
laxation is guaranteed to be strong, and establish links between this relaxation and the perspective
relaxation Rpersp.
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4.1 Short review of relaxations via linear inequalities

We assume in this section that Z = {0, 1}n. Given α ∈ Rn, the facial structure of polyhedron P (α)
was first studied in [1], and the results were later refined in [19]. We now review these results, as
they can be used to generate valid inequalities for conv(X).

Define N
def
= {1, . . . , n}, and define the set function g : 2N → R as g(S) =

√∑
i∈S α2

i . Since

function g is submodular, the submodular inequalities of Nemhauser et al. [18] are valid for its
hypograph. In particular, letting ρi(S) = g(S ∪ {i})− g(S), the inequalities

n∑
i=1

|αixi| ≤ g(S)−
∑
i∈S

ρi(S \ {i})(1− zi) +
∑

i∈N\S

ρi(∅)zi ∀S ⊆ N (19a)

n∑
i=1

|αixi| ≤ g(S)−
∑
i∈S

ρi(N \ {i})(1− zi) +
∑

i∈N\S

ρi(S)zi ∀S ⊆ N (19b)

are valid for P (α). However, coefficients ρi(∅) in (19a) and ρi(N \ {i}) in (19b) are not tight.
Thus, inequalities (19) are, in general, weak, and better inequalities can be obtained via lifting.
Specifically, given S ⊆ N , the base inequality

n∑
i=1

|αixi| ≤ g(S)−
∑
i∈S

ρi(S \ {i})(1− zi) (20)

is facet-defining for conv
({

(x, z) ∈ Rn × {0, 1}n :
∑n

i=1 |αixi| ≤
√∑n

i=1 α
2
i zi, zi = 0 ∀i ∈ N \ S

})
.

Inequality (20) can then be lifted into a facet-defining inequality for P (α) through maximal lift-
ing. In this case, lifting is sequence independent and the resulting inequality can be obtained
in closed form, see [19, Theorem 4]. Similarly, inequality (19b) can be improved through lifting,
see [19, Theorem 5]. Any of the resulting valid inequalities of the form

∑n
i=1 |αixi| ≤ ρπ + π′

αz
–where (ρα,πα) ∈ Rn+1 depends on α– are valid for conv(X) for all values of α, and can thus
be used to improve formulations. While the inequalities discussed here are facet-defining for the
case Z = {0, 1}n, they may be weaker for the case with more general constraints. Nonetheless, we
point out that strong valid inequalities have also been proposed for the case where Z is defined by
a knapsack constraint, see [24].
On separation: Given a relaxation R ⊃ conv(X) – for example, one may take R = Rpersp–, we
show that it is possible to separate extreme points of R from conv(X) by calling a separation oracle
for polyhedra P (α). Indeed, let (x̄, z̄) be an extreme point of R. Then there exists coefficients
(ā, c̄) ∈ R2n such that (x̄, z̄) is the unique solution to min(x,z)∈R ā⊤x + c̄⊤z. We now show that
separation of (x̄, z̄) from conv(X) is equivalent to separation from P (ā).

Proposition 4. If (x̄, z̄) ̸∈ conv(X), then (x̄, z̄) ̸∈ P (ā).

Observe that reverse claim, (x̄, z̄) ̸∈ P (ā) =⇒ (x̄, z̄) ̸∈ conv(X) always holds from Theorem 1.
Thus, Proposition 4 precisely characterizes which polytope is needed to separate an extreme point
of R.

Proof of Proposition 4. Let (x̄, z̄) ̸∈ conv(X), and note that

ā⊤x̄+ c̄⊤z̄ = min
(x,z)∈R

ā⊤x+ c̄⊤x < min
(x,z)∈conv(X)

ā⊤x+ c̄⊤x. (21)
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Indeed, any optimal solution to the right hand side problem in (21) is feasible for R (since R is
a relaxation); since (x̄, z̄) is the unique minimizer of this problem over R, the strict inequality
follows. Thus, we find that

ā⊤x̄+ c̄⊤z̄ < min
(x,z)∈conv(X)

ā⊤x+ c̄⊤x = min
(x,z)∈X

ā⊤x+ c̄⊤z = min
(x,z)∈P (ā)

ā⊤x+ c̄⊤z,

where the last equality follows from Proposition 3. In particular we find that (x̄, z̄) ̸∈ P (ā),
concluding the proof.

4.2 Nonlinear relaxation and approximation

Consider the natural nonlinear relaxation of P (α), obtained by simply dropping the integrality
constraints on variables z:

C(α)
def
=

(x, z) ∈ Rn × conv(Z) :

n∑
i=1

|αixi| ≤

√√√√ n∑
i=1

α2
i zi

 .

While C(α) is hard to compute in general as it involves computing the convex hull of the feasible
region Z, it can be obtained easily for example if Z = {0, 1}n, Z = {z ∈ {0, 1}n :

∑n
i=1 zi ≤ k} for

some k ∈ Z+, or more generally if the constraints defining Z are totally unimodular. Moreover, the
nonlinear constraint defining C(α) is SOCP-representable. Thus, this continuous relaxation can
be used with many off-the-shelf solvers.

Optimization over relaxation C(α) has also been studied in the literature [3]. Specifically,
consider the convex relaxation of the problem (13) given by

ζ̄ = min
x,z

a′x+ c′z (22a)

s.t. (x, z) ∈ C(a), (22b)

Proposition 5. There exists an optimal solution (x̄, z̄) of (22) where z̄ lies on an edge of conv(Z).
Moreover, if c′z ≤ 0 for all z ∈ Z, then (4/5)ζ̄ ≥ ζ∗ ≥ (5/4)ζr, where ζ∗ is the optimal objective
value of problem (13) –equivalently, problem (8)–, and ζr is the objective value of the feasible
solution obtained by rounding z̄ to the best of the two extreme points of conv(Z) defining the edge
where it lies.

In other words, Proposition 5 states that the solution of (22) is “close” to integral (e.g., if
Z = {0, 1}n, then z̄ has at most one fractional coordinate), that its associated objective value
is similar to the optimal objective value of the mixed-integer problem, and that rounding of this
solution yields a constant factor approximation algorithm under mild conditions.

Proof of Proposition 5. Projecting out variables x exactly the same as the proof of Proposition 3,
we find that problem (22) simplifies to

min
z∈conv(Z)

n∑
i=1

cizi −

√√√√ n∑
i=1

a2i zi. (23)

This particular continuous relaxation of the discrete problem with feasible region z ∈ Z was studied
in [3]. The fact that there exists an optimal solution in an edge of conv(Z) follows from Proposition 5
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in [3]: at a high level, the main idea of the argument is that any optimal solution (x∗, z∗) of (23)
is also optimal for

min
z

n∑
i=1

cizi s.t.
n∑

i=1

a2i zi =
n∑

i=1

a2i z
∗
i , z ∈ conv(Z),

and the extreme points of conv(Z) ∩
{
z ∈ Rn :

∑n
i=1 a

2
i zi =

∑n
i=1 a

2
i z

∗
i

}
lies in edges of conv(Z).

The approximation ratio of (4/5) follows from Proposition 7 and Corollary 2 in the same paper:
the main idea is that since an optimal solution (x∗, z∗) of (23) lies on an edge of conv(z), there
exists two points (x1, z1) and (x2, z2) in Z such that (x∗, z∗) is a convex combination of the two.
Then, using properties of the square root function, it is possible to establish that the best point
(xi, zi) has an objective value similar to (x∗, z∗).

Now consider the relaxation of conv(X), as defined in (16), obtained by replacing polyhedra
P (α) with their nonlinear relaxations C(α):

C̄
def
=

⋂
α∈Rn

C(α) =
{
(x, z) ∈ R2n : (x, z) ∈ C(α), ∀α ∈ Rn

}
. (24)

Proposition 6 below states that the relaxation C̄ is in fact equivalent to the perspective relaxation.

Proposition 6. C̄ = Rpersp.

Proof. Note that the set C̄ can be described with constraint z ∈ conv(Z) and the single nonlinear
constraint

0 ≥ max
α∈Rn

n∑
i=1

|αixi| −

√√√√ n∑
i=1

α2
i zi. (25)

Since the function in (25) is positively homogeneous in α, it follows that either the optimization
problem in unbounded (and the constrained is violated), or the optimization problem is bounded
(and the constraint is satisfied). Finally, a characterization on whether this problem is bounded or
not can be found in [14, Proposition 2]: problem (25) is unbounded if and only if

∑n
i=1 x

2
i /zi > 1.

Thus, concluding the proof.

Remark 3. Observe that the big-M constraints (1) are not implied by relaxation C̄ = Rpersp.
Although these inequalities are not hugely beneficial (in light of Proposition 5), they should be still
added to the relaxation due to their simplicity (see Example 1).

5 Approximate robust counterpart

We now turn our attention to the robust optimization problem (5) with uncertainty set (6), dis-
cussed in §1.1. Instead of solving (5) directly, which is difficult due to the discrete uncertainty set,
we propose to solve instead the perspective approximation

ξ = min
y∈Y

ã′y + max
(x,z)∈Rn×[0,1]n

{
x′y :

n∑
i=1

(dixi)
2/zi ≤ b, z ∈ conv(Z)

}
. (26)

Since we relaxed the inner maximization problem, it follows that (26) is a conservative approxima-
tion of (5). Moreover, since z does not appear in the objective of the inner maximization problem,

10



the condition of Proposition 5 is satisfied: for any fixed y the objective value of the inner maximiza-
tion problem in (26) is at most 5/4 times the corresponding objective value in (5). Thus, if ã′y ≥ 0
for all y ∈ Y , then solving (26) results in a 1.25-approximation algorithm for (5). We now derive
a conic-quadratic formulation of problem (26). The condition is necessary to have non-negative
objective values and well-defined approximation ratios: otherwise, it would be possible to construct
an instance where ξ = 0, and any suboptimal solution would have an infinite optimality gap.

Clearly, to solve (26), one needs to compute conv(Z), which is in principle a difficult task.
However it can be naturally accomplished if Z is a simple set, e.g., Z is totally unimodular
(where the natural relaxation describes the convex hull) or if Z =

{
z ∈ {0, 1}n : c⊤z ≤ k

}
with

all coefficients ci ∈ Z ∩ [0, u] (where conv(Z) can be expressed in an extended formulation us-
ing the path polytope with a network with (O)(nu) nodes and arcs). We now assume that
conv(Z) = {z ∈ [0, 1]n : Az ≤ k} for a suitable matrix A ∈ Rm×n and vector k ∈ Rm, and de-
note by Ai the i-th column of A.

Proposition 7. Problem (26) can be reformulated as the SOCP

min
y,t,λ,µ

ã′y + λb+ µk +
n∑

i=1

ti (27a)

s.t. (yi/di)
2 ≤ 4(ti + µ⊤Ai)λ i = 1, . . . , n (27b)

y ∈ Y (27c)

t ∈ Rn
+, λ ∈ R+, µ ∈ Rm

+ . (27d)

Observe that since both λ ≥ 0 and ti + µ ≥ 0, (27b) are rotated cone constraints and thus (27)
is indeed SOCP-representable (provided that Y is). The derivation of Proposition 7 is based on
the following Fenchel duality result used in [4].

Lemma 1 (Fenchel dual). For any x ∈ R and 0 ≤ z ≤ 1,

x2

z
= max

p∈R
px− p2

4
z.

Proof. If x = z = 0, then both sides of the equality are 0. If z = 0 and x ̸= 0, then both sides
are equal to +∞. Otherwise, an optimal solution of the maximization problem is p∗ = 2x

z , and the

corresponding objective value is x2

z .

11



Proof of Proposition 7. We find that

ξ = min
y∈Y

λ∈R+,µ∈Rm
+

ã′y + λb+ µ⊤k + max
(x,z)∈Rn×[0,1]n

{
y′x− λ

n∑
i=1

(dixi)
2/zi − µ⊤Az

}

(∵ Slater condition holds and strong duality of Lagrangian relaxation)

= min
y∈Y

λ∈R+,µ∈Rm
+ ,p∈Rn

ã′y + λb+ µ⊤k + max
(x,z)∈Rn×[0,1]n

{
n∑

i=1

(yi − λdipi)xi +
n∑

i=1

(
0.25λp2i − µ⊤Ai

)
zi

}
(∵ Lemma 1:(dixi)

2/zi → pidixi − p2i zi/4; and Sion’s minimax theorem)

= min
y∈Y

λ∈R+,µ∈Rm
+

ã′y + λb+ µ⊤k + max
z∈[0,1]n

{
n∑

i=1

(
0.25

(yi/di)
2

λ
− µ⊤Ai

)
zi

}
(∵ p∗i = yi/(λdi))

= min
y∈Y

λ∈R+,µ∈Rm
+

ã′y + λb+ µ⊤k +

n∑
i=1

max

{
0, 0.25

(yi/di)
2

λ
− µ⊤Ai

}
.

(∵ z∗i = 1{0.25(yi/di)2>λ(µ⊤Ai)})

The formulation above corresponds directly to the SOCP formulation (27).

6 Computations

According to the results of §4.2, the perspective is a simple relaxation that is guaranteed to be
strong (Proposition 5). Thus, we suggest its use in practice. Note that if set X appears directly
in an optimization problem (e.g., the first two applications discussed in §1.1), the perspective
is arguably already the state-of-the-art relaxation – thus we omit computations for those cases.
However, we illustrate its application to the robust optimization problem (5) with uncertainty
set (6). In particular, we consider a simple portfolio optimization problem with Y = {y ∈ Rn :∑n

i=1 yi = 1, y ≥ 0} and Z = {z ∈ {0, 1}n :
∑n

i=1 zi ≤ k}. Since Z is totally unimodular, conv(Z)
is simply its natural continuous relaxation. Moreover, since z does not appear in the objective of
the inner maximization problem (5), Z is permutation-invariant and thus the perspective relaxation
guarantees exact solutions (Proposition 8 in the appendix), the formulation is exact in this case.

6.1 Methods

We compare three conservative approximations of (5) – the first two are based on commonly used
methods in the literature.

Budgeted uncertainty This approach, inspired by [8], replaces the ellipsoidal constraint with
simple bound constraints and solves instead

min
y∈Y

ã′y + max
(x,z)∈Rn×{0,1}n

{
x′y : |xi| ≤

√
b/di,

n∑
i=1

zi ≤ k, x ◦ (e− z) = 0

}
.
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This optimization problem can be reformulated as the linear optimization [8]

min
y,t,µ

ã′y + bµ+
n∑

i=1

ti

s.t. (
√
b/di)|yi| ≤ µ+ ti i = 1, . . . , n

y ∈ Y, t ∈ Rn
+, µ ∈ R+.

Note that y ≥ 0 in our experiments. Thus, we replace |yi| with yi in all constraints.

Ellipsoidal uncertainty This approach, inspired by [7], ignores the cardinality constraint and
solves instead

min
y∈Y

ã′y + max
x∈Rn

{
x′y :

n∑
i=1

(dixi)
2 ≤ b

}
.

This optimization problem can be reformulated as the SOCP [7]

min
y,t,µ

ã′y +
√
b ·

√√√√ n∑
i=1

(yi/di)2

s.t. y ∈ Y, t ∈ Rn
+, µ ∈ R+.

Perspective approximation The approach we propose, described in §5.

6.2 Results

We set n = 200 in our computations, and we set k ∈ {5, 10, 20} and b ∈ {5, 10, 20} in our compu-
tations. Each entry of a and d is drawn from an uniform distribution on the interval [0, 1]. All
optimization problems are solved using CPLEX 12.8 with the default settings, in a laptop with
Intel Core i7-8550U CPU and 16 GB RAM. Solution times for all methods are less than 0.1 seconds
in all cases.

For each combination of parameters (b, k), we generate 10 instances and record for each method:
the nominal objective value ã′y∗, where y∗ is the solution produced; and the worst-case realization
given by

ã′y∗ + max
(x,z)∈Rn×{0,1}n

{
x′y∗ :

n∑
i=1

(dixi)
2/zi ≤ b,

n∑
i=1

zi ≤ k, x ◦ (e− z) = 0

}
. (28)

Note that computing the worst-case realization requires solving a mixed-integer optimization prob-
lem. However, since the perspective reformulation results in a strong relaxation and n = 200 is not
too large, problem (28) can be comfortably solved to optimality using CPLEX. Figure 1 presents
the results, showing the nominal objective value and worst-case realization for each combination of
parameters and each instance.

We observe that the budgeted uncertainty approach consistently has the worst nominal perfor-
mance, although it tends to be better in terms of robustness than the ellipsoidal uncertainty. The
perspective approximation results in the “best” worse-case realizations for all the combinations of
parameters (as expected, since it delivers optimal solutions with respect to this metric). It also
results in the best solutions in terms of the nominal values, except for the case with k = 20 and
b = 5 (where the ellipsoidal uncertainty has slightly better nominal performance). Thus, in our
experiments, we can conclude that the perspective approximation is the best approach, delivering the
most reliable solutions without affecting (and in most cases improving) the nominal performance.
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(a) k = 5, b = 5
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(b) k = 5, b = 10
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(c) k = 5, b = 20
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(d) k = 10, b = 5
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(e) k = 10, b = 10
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(f) k = 10, b = 20
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(g) k = 20, b = 5
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(h) k = 20, b = 10
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(i) k = 20, b = 20

Figure 1: Nominal value versus worst-case realization for different cardinality and budget parameters.
The budgeted uncertainty approach (red triangles) typically yields solutions with large nominal values,
particularly for large values of k. The ellipsoidal uncertainty approach (blue rhombuses) often results in
good nominal values (particularly for large k), but the worst-case realizations are large. The perspective
approximation (red circles) always results in the best worst-case realizations, and often in the best nominal
values.
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7 Conclusion

We gave an implicit description of conv(X), established links between the convexification of this
set and convexification of polyhedral sets, and studied the strength of the perspective relaxation
Rpersp. On the one hand, we showed in this paper that the perspective reformulation is insufficient
to describe conv(X), and that it can be interpreted as a nonlinear relaxation of the polyhedral
sets. On the other hand, we showed that while the perspective reformulation can be strengthened
using polyhedral theory as discussed in §4.1, it is already quite strong. Our experiments on robust
optimization suggest that explicitly accounting for discrete nonlinear uncertainty sets can deliver
better quality solutions than existing approaches while preserving tractability.
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A The Equivalence in Remark 1

Let us consider

Y =
{
x ∈ Rn : ∥x∥0 ≤ k, ∥x∥22 ≤ 1

}
, (29)

and its corresponding perspective relaxation

Rpersp
def
=

{
(x, z) ∈ Rn × [0, 1]n :

n∑
i=1

x2i /zi ≤ 1,

n∑
i=1

zi ≤ k

}
. (30)

Proposition 8. We have that conv(Y ) := projx(Rpersp).

Proof. By definition, we have set Y ⊆ projx(Rpersp). To show the equivalence, since both sets Y
and Rpersp are compact. It is sufficient to show that for any a ∈ Rn, we must have

v1
def
= min

x∈Y
a⊤x = v2

def
= min

x∈projx(Rpersp)
a⊤x.

First of all, let zi = 1 if xi ̸= 0 for each i = 1, . . . , n. Then v1 = minx∈Y is equivalent to

v1 := min
x,z

a′x

s.t. ∥x∥22 ≤ 1

x ◦ (e− z) = 0

x ∈ Rn, z ∈ {0, 1}n
n∑

i=1

zi ≤ k, .

According to the proof of Proposition 1, without loss of generality, suppose that a1 ≥ a2 ≥ . . . ≥ an,

we have v1 =
√∑k

i=1 a
2
i .

On the other hand, v2 := minx∈projx(Rpersp) a
⊤x is equivalent to

v2 := min
x,z

a′x

s.t.
n∑

i=1

x2i
zi

≤ 1

x ∈ Rn, z ∈ [0, 1]n
n∑

i=1

zi ≤ k,

which is equivalent to

v2 := min
x,z

n∑
i=1

ai
√
zi

xi√
zi

s.t.

n∑
i=1

x2i
zi

≤ 1

x ∈ Rn, z ∈ [0, 1]n
n∑

i=1

zi ≤ k.
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For any given z ∈ [0, 1]n, according to the Cauchy-schwartz inequality, we have

v2 ≥ min
z

−

√√√√ n∑
i=1

a2i zi

s.t. z ∈ [0, 1]n
n∑

i=1

zi ≤ k.

Next, optimizing over z on the right-hand side of the inequality, we obtain that v2 ≥
√∑k

i=1 a
2
i =

v1. Note that the the equality is obtainable by letting xi = ai/
√∑k

ℓ=1 a
2
ℓ for each i = 1, . . . , k and

0, otherwise, and zi = 1 for each i = 1, . . . , k and 0, otherwise. Thus, we have v2 =
√∑k

i=1 a
2
i = v1.

This completes the proof.

B Detailed example

Consider the optimization problem

min
x∈R2,z∈{0,1}2

x21 + 3x22 + (2x1 − x2)
2 − 6x1 − 7x2 (31a)

s.t. z1 + z2 ≤ 1 (31b)

x21 + x22 ≤ 1 (31c)

x1(1− z1) = 0, x2(1− z2) = 0. (31d)

Observe that variables z do not appear directly in the objective. We now discuss several relaxations
of (31).

B.1 Reformulation of the norm constraint

Consider three possible formulations of (31c).

basic The constraint is directly formulated as (31c).

p. inv. Reformulating the constraint based on the permutation-invariance of set Y given in
Remark 1 [16]. This formulation calls for the introduction of five additional variables u1, u2, r, t1, t2
and replaces constraint (31c) with the system

u21 + u22 ≤ 1, u1 ≥ u2, u1 + u2 = x1 + x2, u1 ≥ r + t1, x1 ≤ t1 + r, x2 ≤ t2 + r

u1 ≥ 0, u2 = 0, t1 ≥ 0, t2 ≥ 0, r free.

persp. Using the perspective reformulation, as advocated in the paper, and replacing (31c) with
x21/z1 + x22/z2 ≤ 1.

B.2 Reformulation of the objective

Consider two reformulations of the objective.
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basic The objective is directly formulated as (31a).

persp. Using the perspective reformulation, as commonly advocated in the literature, replacing
(31a) with x21/z1 + 3x22/z2 + (2x1 − x2)

2 − 6x1 − 7x2

B.3 Relaxation quality

Table 1 presents solutions and objective value of several combinations of the reformulations of (31).
Note that the ideal convex reformulation of (31) (which in general cannot be obtained in practice)
can be obtained in this case by exploiting the fact that z1 + z2 ≤ 1 implies x1x2 = 0, and is given
by

min
x,z

5x21/z1 + 4x22 − 6x1 − 7x2 s.t. z1 + z2 ≤ 1, |xi| ≤ zi for i ∈ {1, 2}.

Table 1: Solution and objective values of convex relaxations of (31).

Norm constraint Objective Solution

basic p. inv. persp. basic persp. x1 x2 z1 z2 obj.

x x 0.63 0.77 0.48 0.50 -6.78
x x 0.42 0.58 0.42 0.57 -5.33

x x 0.42 0.58 0.42 0.57 -5.33
x x 0.40 0.60 0.27 0.73 -4.49

x x 0.39 0.60 0.32 0.68 -4.44
—— ideal —— 0.00 0.88 0.00 1.00 -3.06

The key observations are: • if the reformulation of the objective is “basic”, e.g., does not involve
the discrete variables, then the permutation invariant relaxation of set Y and the perspective are
equivalent; • however, if the objective is improved by using variables z, then better approximations
of conv(X) than conv(Y ) yield stronger formulations (rows 4 and 5 of the table).
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