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We propose to use Deep Neural Networks to solve data-driven stochastic optimization problems. Given the

historical data of the observed covariate, taken decision, and the realized cost in past periods, we train a neural

network to predict the objective value as a function of the decision and the covariate. Once trained, for a given

covariate, we optimize the neural network over the decision variable using gradient-based methods with the

analytically-computed gradient and Hessian matrix. We characterize the performance of our methodology

based on the generalization bound of the neural network. We conduct comprehensive experiments on three

signature problems in operations management: the newsvendor problem, the multi-product pricing problem,

and the call center staffing problem. Comparing our framework to existing approaches including conditional

stochastic optimization and analytical approximations, we demonstrate the strength of our method when

the objective function is unknown, with moderate size data, and when the structure of the problem cannot

be approximated by simple or parametric forms.
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1. Introduction

We consider a decision maker, upon observing a covariate X =X0, trying to solve

min
z

E[Y |X0,z] (1)

where z is the decision variable and Y is the random cost that is associated with the covariate X0

and decision z. The objective function can be expressed as f∗(X,z)≜E[Y |X,z]. This framework

encompasses a wide range of real-world applications.

Example 1 (Newsvendor). Consider a newsvendor problem where a firm needs to place an

order for a product having observed some covariates in anticipation of future demand. The covariate

X is the observable information that affects the demand such as weather and market conditions.

The decision z is the order quantity for the product. Let D be the random demand whose distri-

bution depends on X and d∼D|X be the realized demand. Let b and h be, respectively, the unit

back-ordering and holding costs. In this case, we have the realized cost Y = b(d− z)+ +h(z− d)+.
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The objective function to minimize is f∗(X, z) =E[b(D−z)++h(z−D)+|X] and the order quantity

minimizing this objective function is

z∗ := argminE
[
b(D− z)+ +h(z−D)+

)
|X
]
. (2)

If the cumulative distribution functions of the demand given X were known to be F (·), then the

optimal decision is given by the well-known formula

z∗ = inf
{
z : F (z)≥ b

b+h

}
. (3)

Example 2 (Personalized Pricing). Consider a pricing problem where a firm determines

the prices charged for a set of goods for each customer. The covariate X represents the customer

feature(s) such as income and age, potentially extracted from the account profile; the decision Z

is the charged price for the products; Y is the realized revenue gained from the sold products.

Let dj(z|X) be the demand function (or purchasing probability) of a customer with feature X for

product j, given the price vector z. Then the objective function to minimize is

f∗(X,z) =−
|Z|∑
j=1

zjdj(z|X)

Example 3 (Call Center Staffing). Consider a staffing problem where a firm needs to

determine the staffing level in a call center on a given day. The covariate X represents the observ-

able information that may affect that specific day’s operations, such as seasonality and market

conditions; the decision z is the staffing level; Y is the cost, including the staffing cost and implicit

cost associated with the waiting and abandonment of customers over the day. Whether or not the

arrival and service follow standard queueing assumptions, Y depends on z and X through a run-

ning stochastic system. The objective function to minimize is f∗(X, z) = E[Y |X, z], which, unlike

the two previous examples, may not have an explicit expression. □

In these examples, the functional form of f∗(X,z) is typically unknown and the decision maker

cannot simply optimize f∗(X0,z) over z. The recent literature focuses on a data-driven approach:

the decision maker has access to the historical data {(X i,Zi, Y i)}Ni=1, which record the covariate,

chosen decision, and realized cost of past decision epochs. Based on the historical data the decision-

maker determines a good decision given the covariate X0.

We highlight three levels of uncertainty in the data-driven optimization represented by the three

classic applications of Operations Management.

• In Example 1, the objective function depends on an intermediate variable D (the random

demand). The covariate x affects the objective function f∗(x,z) through the unknown dis-

tribution D|x, while the cost function given z and D is known. Therefore, the data informs

the relationship D|x. In the literature, this type of problem is referred to as “conditional

stochastic optimization” (CSO). See Section 2 for a detailed discussion.
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• In Example 2, the unknown quantity is the demand function dj(z|x), which depends on the

decision variable and the covariate. In similar problems, the unknown function f∗(x,z) may

have limited known structure, such as the product form of price and demand in Example 2.

This allows the use of particular models such as the Multinomial Logit choice model for the

unknown component in the objective function.

• In Example 3, the unknown function f∗(x,z) is a black box. The data is the only source

from which we can learn the function and the optimal solution. Additional assumptions are

required to provide a parametric expression of the function or describe its structure. In many

problems, a key contributor to the lack of structure is data aggregation. For example, because

Y is only recorded daily, it is difficult to build and fit a high-resolution queueing model to

map the system input to the cost.

In this study we propose a two-step procedure based on neural networks that can address all

three levels of uncertainty. The steps in our framework, referred to as Data-driven Optimization

with Neural Networks (DONN), can be informally described as follows:

1. Fit the historical data {(X i,Zi, Y i)}Ni=1 using neural networks. We treat it as a regression

problem with Y being the output and (X,Z) being the input. Denote the fitted neural network

as f̂(x,z).

2. Optimize the fitted neural network f̂(X0,z) over z, using the gradient and Hessian matrix of

f̂ , whose closed-form expressions are provided in the paper.

We argue that there are two major benefits of this framework. First, neural networks, especially

deep neural networks (DNNs), have seen tremendous success in the recent decade. Although the

universal approximation theorem of neural networks has long been established (see Pinkus 1999

for a review of earlier papers), the superb empirical performance of DNNs in fitting any complex

function well with sufficient data has recently been confirmed. The computational infrastructure

needed to fit large and deep neural networks is widely accessible to scholars and industry practi-

tioners. Our framework, especially Step 1, can benefit from the empirical performance of neural

networks: if f̂ is easy to fit and approximates f∗ well, the resulting optimal decision is also expected

to be close to the actual optimal solution. (We prove this rigorously in Section 4.)

Second, we show that the optimization of fitted neural networks is computationally efficient. In

particular, we show that the gradient and Hessian matrix of f̂ with respect to z can be derived in

closed form. This allows off-the-shelf continuous optimization tools to be used directly. Although

it has been shown that optimizing a ReLU DNN is in general NP-hard (Anderson et al. 2020),

gradient-based algorithms allow for quick convergence to local minima, and if the objective function

f∗ and the fit f̂ are convex, to the global minimum.
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In studying the performance of our framework, we leverage the generalization bounds of trained

DNNs (Ohn and Kim 2019, Sarraf 2020, Farrell et al. 2021) that have been established recently.

Under some mild technical conditions, we provide a performance guarantee for the output deci-

sion of the framework. More precisely, we link the diminishing generalization error that captures

how well the trained neural network fits the objective function as the sample size increases to

the performance of the output decision from optimizing the fitted DNN. The translation from the

generalization bound to the optimization performance bound is highly nontrivial, as the general-

ization bound is concerned with the fitting of the neural network in terms of the expectation of

the Euclidean norm whereas the optimization bound requires uniform convergence, at least in the

neighborhood of the optimum. We identify a set of conditions and prove the optimization bound

under them.

We conduct extensive numerical studies to assess the effectiveness of our framework in three

cornerstone problems in Operations Management: the data-driven newsvendor problem, the person-

alized assortment pricing problem, and the call center staffing problem. We compare our framework

to existing approaches designed specifically for these problems. For the data-driven newsvendor

problem, we use quantile regression and the kernel approach studied in Ban and Rudin (2019)

and Bertsimas and Kallus (2020), end-to-end optimization with neural networks studied in Oroo-

jlooyjadid et al. (2020), and the reproducing kernel Hilbert space approach studied in Bertsimas

and Koduri (2022) as benchmarks. For the personalized assortment pricing problem, we compare

our approach to a two-step procedure where first a demand model is estimated using conventional

approaches and then prices are optimized. For the call center staffing problem, we compare against

a two-step procedure where the objective function is approximated using Efficiency Driven and

Quality and Efficiency Driven regimes (Zeltyn and Mandelbaum 2005, Mandelbaum and Zeltyn

2009), and then staffing levels are optimized. Details are given in Section 6.

We find that when the data size is small, existing approaches may outperform our framework.

As the data size increases, however, the DNN can fit the data increasingly well, and as a result,

our framework is on par with or outperforms the best of the existing approaches. Surprisingly, this

performance is achieved even using neural networks with small sizes, such as 3 hidden layers and 7

nodes on each layer. numerical results suggest that with arguably small-sized DNNs the framework

demonstrates competitive performance for complex tasks.

The contributions of this work are fourfold. To the best of our knowledge, we are the first

to establish a framework to use DNNs to accurately learn objective functions in a broad array of

problems, ranging from well structured to essentially black-box stochastic optimization problems.

As such, our framework can be readily applied to a wide range of practical problems of interest

in Operations Management. This is a particularly important contribution since a more unified
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framework for utilizing DNNs in operations management could lead to a wider adaptation of these

powerful tools. Due to its generality and computational efficiency, our approach can be used as a

benchmark to assess the performance of other cutting-edge algorithms in a wide range of one-shot

stochastic optimization problems.

Second, we characterize the gradient of the prediction value of the trained DNN with respect to

the decision variables in closed form. Furthermore, we provide a recursive method for calculating

the elements of the Hessian matrix of the trained DNN. This enables state-of-the-art non-linear

optimization algorithms (such as quasi-Newton methods) to be readily applicable to the problem

of optimizing the prediction value of a DNN. The theoretical properties of these algorithms such

as the convergence to a local optimum have been studied extensively in the literature and can be

applied to our procedure.

Third, we provide a performance guarantee for the decision made based on optimizing the pre-

diction value of DNNs using the generalization bound of the fitted DNN. The generalization error

of DNNs is an active research area. The result allows us to leverage the new advances in this

literature and convert it to a performance bound of the output decision by our framework. This

theoretical contribution helps explain why a neural network fitting the objective function well also

leads to a well-behaved optimal solution, as we observe in the numerical experiments.

Fourth, we conduct a comprehensive numerical study and apply our framework to three classic

applications in operations management, as summarized in Examples 1 to 3. We compare to a

number of state-of-the-art approaches developed in the literature and demonstrate the generality

of DNNs and its superb performance. Because the three applications represent various levels of

structure and practical scenarios, this study provides strong empirical evidence for the use of DNNs

in data-driven operational decisions.

2. Related Work

Our study is broadly related to four streams of literature. The first stream considers DNNs in

general and their statistical learning capabilities specifically. The literature on DNNs is vast and

we refer the readers to Fan et al. (2021) and Bartlett et al. (2021) for a comprehensive review. Two

of the learning capabilities of DNNs related to our work are their universal approximation power

and their generalization bounds. Cybenko (1989) show that neural networks with one hidden layer

with the sigmoid activation function can approximate any continuous function arbitrarily well.

Subsequently, Leshno et al. (1993) show that feedforward DNNs with a locally bounded piece-

wise continuous activation function can approximate any continuous function to any degree of

accuracy if and only if the network’s activation function is not a polynomial. While these universal

approximation guarantees are very strong, they do not guarantee that a DNN can be trained. For

that, a generalization bound is needed.
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The generalization bound of a machine learning model is the expected loss of its predictions on

the (unseen) test set (Valle-Pérez and Louis 2020, Jiang et al. 2019). Since one cannot measure

the expected loss on unseen data, one would like to bound the potential difference between the

empirical loss of the training set and the expected loss of a test set, referred to as the generalization

bound. The establishment of generalization bounds to DNN’s has been the topic of much recent

literature. See Jiang et al. (2019), Valle-Pérez and Louis (2020), Bartlett et al. (2021). Of direct

interest to our work, Hardt et al. (2016) show that for both convex and non-convex loss functions,

provided the number of iterations is linear in the number of data points, the generalization bound

of a DNN trained with the commonly used Stochastic Gradient Descent (SGD) method is bounded

by a vanishing function of the sample size. More recently, for DNNs with ReLU activation functions

Farrell et al. (2021) give tight generalization bounds that shrink in the size of the training data.

For DNNs with activation functions that are twice differentiable, Sarraf (2020) provides similar

tight generalization bounds. Our work complements this line of research by proving a performance

guarantee for the decision that leads to the optimal prediction value of trained DNNs, based on

their generalization bound.

In the context of optimizing the prediction value of DNNs, multiple recent works optimize trained

feedforward ReLU DNNs over their input using mixed-integer programming (MIP) (Dutta et al.

2018, Botoeva et al. 2020, Grimstad and Andersson 2019, Wu et al. 2020, Tsay et al. 2021). Fischetti

and Jo (2018) model trained DNNs with ReLU or max pooling activation functions as 0-1 mixed

integer linear programs, and use a tightening technique to generate strong adversarial examples.

Anderson et al. (2020), model similar trained DNNs as tight mixed integer linear programs that

can be used for adversarial verification or solving decision problems. Strong et al. (2021) extend

the existing DNN verifiers such as Reluplex algorithm (Katz et al. 2017) into optimizers that can

be used to globally optimize trained ReLU DNNs. Perakis and Tsiourvas (2022) devise a scalable

approach to globally optimize the trained ReLU DNNs. They utilize the piece-wise linear structure

of ReLU to reduce the initial mixed-integer optimization problem into many easy-to-solve linear

optimization problems through sampling and prove a sample complexity for their approach. Their

framework can potentially be applied to other activation functions. Our paper compliments this

body of work by providing guarantees for the performance of the decision obtained from optimizing

the prediction value of a trained DNN.

Recent work has applied DNNs to problems of interest in operations management and marketing.

Oroojlooyjadid et al. (2020) use the empirical cost of the newsvendor problem as the loss function to

train ReLU DNNs and hence predict the optimal newsvendor order quantity. Neghab et al. (2022)

apply DNNs to a newsvendor problem with partially unobservable features to predict optimal order

quantities. In a study of the effects of various levels of data integration into inventory management,
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Huber et al. (2019) use DNNs in a similar way and also as a method for estimating demand.

Similarly, Seubert et al. (2020) develop a data-driven system of ordering for a bakery chain using

DNNs to estimate demand and optimal order quantity. Babier et al. (2018) use a DNN-based

approach to directly predict optimal solutions for constrained optimization problems with linear

objective functions such as the portfolio optimization problem. Qi et al. (2020) apply DNNs to

multi-period inventory management to predict the optimal replenishment quantity. Liu et al. (2021)

study a similar problem, offering a performance guarantee for their framework. Other recent work

(Oroojlooyjadid et al. 2022, Gijsbrechts et al. 2022) has shown strong performance in various

hard multi-period inventory management problems by integrating DNNs within a reinforcement

learning framework. Recently, Gabel and Timoshenko (2022), Cai et al. (2022), Aouad and Desir

(2022) use DNNs to predict customer choice in the context of assortment planning and show strong

performance in both simulated and real-world data.

There is a body of literature on using DNNs in Reinforcement Learning and contextual multi-

armed bandit problems (Li 2017, Mousavi et al. 2018, Collier and Llorens 2018, Xu et al. 2020,

Marković et al. 2021, Wang and Kadıoğlu 2021). Simchi-Levi and Xu (2022) consider the online

contextual bandit problem with a discrete action space using an off-line regression oracle, possibly a

DNN. While they investigate an online optimization problem in which the data arrive sequentially,

we study the offline problem. Further, they study a discrete decision space with a specially designed

exploration scheme by the decision maker, while we study the continuous decision space and assume

sufficient exploration around the optimal solution and the domain. Our approach is better suited to

the context of the problems we address. For applications such as assortment pricing, it is unclear if a

discrete analysis is practical when the decision space is high-dimensional. Further, it is unreasonable

to assume a specific algorithm or exploration scheme that governs the generation of the data when

the offline data is potentially provided by another party. Finally, Simchi-Levi and Xu (2022) mainly

focus on the theoretical performance of their algorithm, while we are also interested in the empirical

performance of the proposed approach.

Our work is also related to the recent literature on data-driven prescriptive analytics, e.g., Ban

and Rudin (2019), Oroojlooyjadid et al. (2020), Bertsimas and Kallus (2020), Elmachtoub and

Grigas (2022), Bertsimas and Koduri (2022), Kallus and Mao (2022). In this literature, a variant

of (1), referred to as conditional stochastic optimization, is considered:

min
z

E[c(z,W )|X0], (4)

where z is found to optimize known cost function c(z,W ) given covariate X0 and intermediate

random variableW . In this framework, the conditional distributionW |X0 needs to be learned from
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Figure 1 DONN Framework.

the historical data record {(X i,W i)}Ni=1. Our framework differs from this problem in two regards.

First, we do not assume the knowledge of the cost function and the structure of an intermediate

random variable. We can take (4) as a special case of ours by setting Y = c(z,W ). Second, this

literature focuses on integrated approaches that do not first learn W |X and then plug in the

estimation for downstream optimization. For example, Kallus and Mao (2022) use random forests

but propose to split trees based on the cost c(z,W ) instead of the predictive error of W . Bertsimas

and Koduri (2022) propose to use reproducing kernel Hilbert space to map the covariate directly to

a decision based on the data. While Hu et al. (2022) posit that for contextual linear optimization

problems, a predict then optimize approach may perform very well, the theoretical and empirical

benefits of the integrated approach have been shown in different situations. In contrast, we use

neural networks to first fit the objective f∗(x,z) and then optimize the fitted neural network

over z. The less integrated, two-step procedure is needed because of the unstructured problem we

consider. We acknowledge that as problem (4) is a special case of (1), the approaches developed in

the literature can be more effective than ours when the special structure holds.

3. The Data-driven Optimization with Neural Networks Framework

In this section, we briefly explain how our Data-driven Optimization with Neural Networks

(DONN) approach works. We consider a decision maker who observes a covariate X0 and needs to

make a decision z. As introduced in (1), the problem is

min
z∈Z

f∗(X0,z) =min
z∈Z

E[Y |X0,z], (5)

where Z denotes some generic feasible set. In most practical situations, the function f∗(X0,z) is

unknown. Rather, the decision maker has data from previous decision epochs of the covariate, the

decision that was made, and the resulting outcome at that time. Formally, suppose there are N

previous decision epochs. For i= 1 . . .N , let X i ∈RdX be the observed covariate, Zi ∈RdZ be the
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decision vector and Y i ∈R be the observed realized cost in epoch i. The decision maker, using the

historical samples of {(X i,Zi, Y i)}Ni=1, must determine z based on X0, to maximize the unknown

function f∗(X0,z). In the DONN approach we first fit the historical data {(X i,Zi, Y i)}Ni=1 using

neural networks, and subsequently, given X0, we optimize the fitted neural network fθ̂(X0,z) over

z using its gradient and Hessian matrix. The approach is depicted in Figure 1.

Note that Y i may be a noisy observation of the objective function. For example, it may be that

Y i = f∗(X
i,Zi) + ϵ for some mean-zero noise ϵ. In any case, the historical samples are generated

under the same functional relationship as (5), E[Y i|X i,Zi] = f∗(X
i,Zi). The data informs the

decision maker of the objective function and can be used to make a decision in a new decision

epoch when the covariate X0 is observed.

Recall Examples 1 to 3 introduced in Section 1. In the newsvendor problem, the objective function

to minimize is f∗(X, z) =E[b(D−z)++h(z−D)+|X] for covariate X encoding observable market

conditions, order quantity z, random demand D whose distribution depends on X, and the unit

back-ordering and holding costs b and h. The historical samples {(X i,Zi, Y i)}Ni=1 are collected

where Y i is the realized newsvendor cost Y i = b(Di−Zi)++h(Zi−Di)+ for realized demand Di ∼

D|X i. In the personalized pricing problem, to maximize the expected revenue
∑|Z|

j=1 zjdj(z|X),

the decision maker relies on the data {(X i,Zi, Y i)}Ni=1, where for customer i, X i represents the

customer feature extracted from the account profile, Zi is the charged prices for the products, and

Y i is the realized revenue gained from the sold products. The data helps the decision maker to

learn the demand function dj(z|X), a customer with feature X given the price vector z for product

j. In the call center staffing problem, to minimize the expected cost E[Y |X, z], the decision maker

relies on the data {(X i,Zi, Y i)}Ni=1, where for day i, X i represents the observable features, such

as customer arrival rate, Zi is the day i′s staffing level, and Y i is the realized cost at the end of

the day.

Remark 1 (Connection to CSO). As stated in Section 2, Example 1 can be cast in the CSO

framework. By letting c(z,W ) in (4) be the newsvendor cost withW =D, the unknown component

in the objective function (the demand) is affected only by the market condition X. The CSO

framework requires data {(X i,Di)}Ni=1 to learn D|X, instead of requiring {(X i,Zi, Y i)}Ni=1, the

data structure in our framework. It does not allow for the decision history to affect the unknown

values. As such it cannot be used to solve the personalized pricing problem in Example 2, because

the pricing decision may affect the unknown demand function, or the staffing problem in Example 3,

because the decisions may affect customer abandonment or probability of waiting in unknown ways.

In other words, Examples 2 and 3 cannot be cast into (4). Nevertheless, they can be expressed as

(5) and solved in the DONN framework. □
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We propose to find the best fit objective function f̂(x,z) from the data {(X i,Zi, Y i)}Ni=1 within

the class of DNN functions FNN. That is, assuming a quadratic loss function, and a clear specifi-

cation of FNN, we seek:

f̂ = argmin
f∈FNN

N∑
i=1

(f(X i,Zi)−Y i)2. (6)

The class FNN is the set of functions that can be represented through a particular DNN. The

function class FNN is determined by the architecture of the network and the form of interactions

between the nodes. We consider feedforward DNNs. Given a network architecture with L layers

and H nodes in each layer, FNN(L,H,σ), a function within the class is specified by parameters

θ= (W1x,W1z,b1,W2,b2, . . . ,WL,bL,wL+1, bL+1), where W1x ∈RH×dX , W1z ∈RH×dZ , bk ∈RH for

k= 1, . . . ,L, Wk ∈RH×H for k= 2, . . . ,L, wL+1×RH and bL+1 ∈R. Given (x,z) and a parameter

θ,

fθ(x,z) =w⊤
L+1σ

(
· · ·σ

(
W3σ

(
W2σ(W1xx+W1zz+ b1)+ b2

)
+ b3

)
+ · · ·

)
+ bL+1. (7)

Here, σ(·) : RH → RH represents the vectorized activation function that applies σ(·) : R→ R ele-

mentwise. We discuss the choice of the activation function in Section 5. The numerical results are

given using Swish (σ(x) = x/(1+e−x)). For a more complete overview of DNNs used in this paper,

we refer the reader to Section EC.1.

Let θ̂ denote the fitted DNN (the optimized weights W and constant terms b), we propose to

find:

ẑ(X0)∈ argmin
z∈Z

fθ̂(X0,z). (8)

In Section EC.2 we explain in detail how to do so and provide sufficient conditions for gradient-

based algorithms, equipped with the exact gradient of fθ̂(X,z) with respect to z, to converge to a

stationary point of fθ̂(X,z). For brevity, here we only present our main results on characterizing

the gradient and the Hessian matrix of fθ̂(X0,z) with respect to z. To derive the expression for

the gradient, we first introduce some additional notation. Let σh,l(x,z) indicate the scalar output

of the hth node in the lth layer of the fitted DNN:

σh,l(x,z) = σ

(
w⊤

h,lσ

(
Wl−1 · · ·σ

(
W2σ(W1xx+W1zz+ b1)+ b2

)
+ · · ·+ bl−1

)
+ bh,l

)
,

where w⊤
h,l and bh,l are the elements of Wl and bl associated with the focal node. We write the

derivative of σh,l(x,z) with respect to z as
∂σh,l(x,z)

∂z
. Moreover, for l ≥ 2, we write its derivative

with respect to its scalar input value as σ′
h,l(x,z) where:

σ′
h,l(x,z) =

∂σh,l(x,z)

∂
(∑H

h′=1w
h′
h,lσh′,l−1(x,z)+ bh,l

)
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while if l= 1, we write

σ′
h,1(x,z) =

∂σh,1(x,z)

∂
(∑dX

j=1w
j
h,1xxj +

∑dZ
j=1w

j
h,1zzj + bh,1

) ,
where wh′

h,l are the elements of wh,l.

Proposition 1 (Gradient w.r.t. Inputs in Neural Networks). Given a neural network in

the form

fθ̂(x,z) =w⊤
L+1σ

(
· · ·σ

(
W3σ

(
W2σ(W1xx+W1zz+ b1)+ b2

)
+ b3

)
+ · · ·

)
+ bL+1,

we have

∂fθ̂(x,z)

∂z
=w⊤

L+1×diag
(
σ′
1,L

(
x,z), . . . , σ′

H,L(x,z)
)
×· · ·×W2×diag

(
σ′
1,1

(
x,z), . . . , σ′

H,1(x,z)
)
×W1z,

(9)

if σ is continuously differentiable function.

While Proposition 1 can help optimize the trained DNN by providing the gradient in closed form,

it is also of independent interest as it provides managerial interpretability for the decisions made

based on the DNN. Specifically, given observed covariates x and for action z̄, Proposition 1 provides

the improvements in the prediction value of the objective function per unit change of each of the

decision variables. For example, in the context of a personalized assortment pricing problem, for a

vector of prices, Proposition 1 allows the decision maker to gauge the predicted change in revenue

per unit change of price for each of the products in the assortment.

We note that state-of-the-art non-linear optimization algorithms can leverage the Hessian of the

objective function to be readily applicable to Problem (8). We conclude this section by showing

that the Hessian of the fitted DNN can be recursively calculated in closed-form, under the condition

that σ(·) be twice continuously differentiable. To do so, we first need to introduce some additional

notation. If l ≥ 2, we write σ′′
h,l(x,z) to denote the second derivative of σ(·) with respect to its

scalar input value, where

σ′′
h,l(x,z) =

∂σ′
h,l(x,z)

∂
(∑H

h′=1w
h′
h,lσh′,l−1(x,z)+ bh,l

) ,
while if l= 1, we write

σ′′
h,1(x,z) =

∂σ′
h,1(x,z)

∂
(∑dX

j=1w
j
h,1xxj +

∑dZ
j=1w

j
h,1zzj + bh,1

) .
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Proposition 2 (Hessian w.r.t. Inputs in Neural Networks). Given a neural network in

the form

fθ̂(x,z) =w⊤
L+1σ

(
· · ·σ

(
W3σ

(
W2σ(W1xx+W1zz+ b1)+ b2

)
+ b3

)
+ · · ·

)
+ bL+1,

we have the derivative of the hth node of the first layer as

∂σh,1(x,z)

∂zj
=wj

h1σ
′
h,1(x,z),

and we have the second derivative of the hth node of the first layer as:

∂2σh,l(x,z)

∂zj∂zk
=wj

h1w
k
h1σ

′′
h,l(x,z).

Moreover, we have the derivative of the hth node of the lth (l≥ 2) layer as

∂σh,l(x,z)

∂zj
= σ′

h,l(x,z)
( H∑
h′=1

wh′

h,l

∂σh,l−1(x,z)

∂zj

)
,

and we have the second derivative of the hth node of the lth (l≥ 2) layer as:

∂2σh,l(x,z)

∂zj∂zk
= σ′′

h,l(x,z)
( H∑
h′=1

wh′
h,l

∂σh′,l−1(x,z)

∂zk

)( H∑
h′=1

wh′
h,l

∂σh′,l−1(x,z)

∂zj

)
+σ′

h,l(x,z)
( H∑
h′=1

wh′
h,l

∂2σh′,l−1(x,z)

∂zj∂zk

)
.

Finally, we have the second derivative of fθ̂ as:

∂2fθ̂(x,z)

∂zj∂zk
=

H∑
h=1

wh
L+1

∂2σh,L(x,z)

∂zj∂zk
,

if σ(·) is twice continuously differentiable and wh
L+1 are the elements of wL+1.

4. Generalization Bound to Optimization Performance

The investigation of the predictive power of (deep) neural networks has been an active research

area. See Bartlett et al. (2021), Fan et al. (2021) for recent reviews of the advances in this area.

One of the most widely used notion of the predictive power is the generalization bound of neural

networks. In this section, we take a generalization bound of a neural network as given in the

literature and convert it to the performance bound for the data-driven decision. That is, we attempt

to answer the following question: If a neural network fits the objective function accurately with

enough data, will the DONN framework output high-quality decisions?

We next introduce the technical conditions for the theoretical analysis. The first assumption is

concerned with how the data is generated.

Assumption 1 (i.i.d. samples). The samples {(X i, Y i,Zi)}Ni=1 are i.i.d. copies of (X, Y,Z),

where ∥X∥∞,∥Z∥∞ ∈ [−1,1], Y ∈ [−M,M ] for some M > 0.
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The i.i.d. assumption is rather standard in statistical analysis. We assume all the data are bounded,

presumably after normalization. Similarly, we restrict all decisions to [−1,1]. By the definition of

f∗ in (5), Assumption 1 implies that |f∗| ≤M .

In decision epoch i, the decision maker first observes the covariate X i, then makes a decision

Zi, possibly depending on X i. Finally, the realized objective Y is observed. Therefore, one can

think of the data generating process for the distribution of (X, Y,Z) in Assumption 1, as X ∼ µX ,

Z ∼ µZ|X , and Y ∼ µY |X,Z . A typical form is Y = f∗(X,Z) + ϵ for some independent and mean-

zero noise ϵ, although this is not assumed in this section. We use µX,Y to denote the marginal

distribution of (X,Z).

The next assumption imposes a generalization bound of the neural network. In particular, after

fitting an objective function with a neural network as explained in Section EC.1, we assume:

Assumption 2 (Generalization bound). The fitted neural network fθ̂(x,z) satisfies:

EµX,Z
[(f∗(X,Z)− fθ̂(X,Z))2]≤ δN ,

for some δN > 0.

Note that in Assumption 2 we treat fθ̂ as given and take the expectation over the random (X,Z).

Also, fθ̂ itself is dependant on the random sample {(X i, Y i,Zi)}Ni=1 and, in many studies, the

generalization bound is derived as a high-probability event (see Fan et al. (2021) and Bartlett

et al. (2021) for a review). We omit the dependence on the random sample in this paper. The

generalization bound δN is typically a diminishing term in N . For a given data set and a trained

DNN using this data, a bound δN can be calculated using bounds developed in many recent studies.

It remains an active research area to investigate how the network architecture such as width,

depth, and activation function affects this bound. For example, in Theorem 2 of Farrell et al.

(2021), δN scales with WL log(W ) log(N)/N , where L is the depth and W is the total number of

parameters in the neural network with ReLU activation functions. Similarly, Sarraf (2020) provides

generalization bounds that are architecture dependent for DNNs with two times continuously

differentiable activation functions, such as sigmoid and Swish activation functions. In this study,

we take δN as given and derive optimization performance based on the generalization bound.

The next assumption imposes the Lipschitz continuity of the objective function, which is standard

in the literature.

Assumption 3 (Lipschitz continuity). f∗(x,z) is K∗-Lipschitz continuous with respect to the

Euclidean norm.



14 Chen et al.: Using Neural Networks to Guide Data-driven Operational Decisions

Similar to Assumption 3, we also require the Lipschitz continuity of the fitted neural network fθ̂. If

the activation function is Lipschitz continuous, which is true for most activation functions including

ReLU and Swish, then fθ̂ is Lipschitz continuous as it is a composition of activation functions and

linear transformations. Moreover, an analytical upper bound on the Lipschitz constant of fθ̂, Kθ̂

was established by Szegedy et al. (2013),

Kθ̂ ≤ (Kσ)
L
( L∏

i=1

∥Wl∥2
)
∥wl+1∥2.

Here Kσ is the Lipschitz constant of the activation function used in fθ̂ (KReLU = 1, Ksigmoid = 1,

and KSwish = 1.1), ∥Wl∥2 indicates the spectral norm of the weight matrix of the lth layer of the

network and L is the number of hidden layers. Based on this result and Assumption 3, it follows

that |f∗(x,z)− fθ̂(x,z)| will also be Lipschitz continuous, with a Lipschitz constant of

K =K∗ +Kθ̂. (10)

Our objective is to translate the performance of the fitted neural network (Assumption 2) to the

performance of the prescribed decision for X0, that is, ẑ(X0) defined in (8). The key difference

between the two measures is that the generalization bound is a global property concerned with the

fit of the DNN in the (x,z) space according to the distribution µX,Z , while the performance of

ẑ(X0) primarily depends on the local fitting of the DNN near the optimal solution. Our goal is to

show that the prescribed decision will be close to the actual optimal solution. To do so, we impose

the following assumption.

Assumption 4 (Unique maximizer). Given x0, z = z∗(x0) is the unique minimizer of

f∗(x0,z).

Based on the generalization bound and Assumption 4 we would like to control the error ∥ẑ(x0)−

z∗(x0)∥. (We use x0 instead to de-emphasize the random nature ofX0 and focus on a generic covari-

ate). Our first step is to narrow down the generalization bound in a neighborhood of (x0,z
∗(x0)).

In particular, we show that fθ̂ approximates f∗ uniformly well in the neighborhood of (x0,z
∗(x0)).

A uniform bound is needed because the generalization bound only bounds the expected error and

does not rule out spurious spikes in the fitted DNN. These spikes do not violate the generalization

bound but may significantly distort ẑ(x0). By establishing uniform convergence we can use the

Lipschitz continuity of f∗ and fθ̂ to control the error ∥ẑ(x0)−z∗(x0)∥.

The next lemma is key to establishing uniform convergence. We show that for a given covariate

x0 and a corresponding decision z, the output of the DNN can accurately predict f∗(x,z) within a

ball B of radius b that contains (x0,z) if the ball is sufficiently explored in the data, i.e., µX,Z(B)

is bounded away from zero.
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Lemma 1. Suppose Assumptions 1, 2 and 3 hold. Consider a ball B ⊂RdX+dZ of radius b. Then

max(x,z)∈B |f∗(x,z)−fθ̂(x,z)| ≤ (δN/S)
1/2+2bK, where S =

∫
(x,z)∈B

dµX,Z and K is the Lipschitz

constant defined in (10).

The bound exhibits two opposing effects of the size of the ball B, represented by b and S. The

first term is decreasing while the second term is increasing in the size of B. Intuitively, on the

one hand, a larger radius b would mean the DNN has seen more samples from the ball under

consideration and hence better generalizes to samples from the ball. On the other hand, a large

radius would allow for larger changes in the value of f∗ across the ball, which is only limited by

K∗, the Lipschitz constant of f∗, making prediction harder for the DNN. We will choose b carefully

when using Lemma 1 in the proof of the main theorem.

To apply Lemma 1 to the neighborhood of (x0,z
∗(x0)), we require µX,Z , to be bounded away

from zero around (x0,z
∗(x0)). This would allow us to choose b freely as long as it is sufficiently

small.

Assumption 5 (Exploration around the optimal solution). There exists r > 0 such that

for (x,z)∈RdX ×RdZ and ∥(x,z)− (x0,z
∗(x0))∥2 ≤ r, we have c1 > 0 and the density dµX,Z ≥ c1.

In practice, Assumption 5 ensures that the covariates around x0 have positive probability to

have appeared in the data, z∗(x0) is strictly in the interior of [−1,1]dZ , and the decisions around

it have been sampled sufficiently when the data is large. Combining Lemma 1 and Assumption 5,

we can show uniform convergence within a vicinity of (x0,z
∗(x0)).

To control the error of ∥ẑ(x0)− z∗(x0)∥, we need to rule out those candidates for ẑ(x0) that

are far away from z∗(x0). In particular, for the optimal decision variable obtained from the DONN

approach to be close to the true optimal decision, the value of f∗ should increase enough when the

decision variable is far away from the true optimal solution. Moreover, there needs to be enough

exploration in the data regarding those far away regions so the DNN can generalize to them.

Assumption 6 lays the ground work for this. From a practical point of view, Assumption 6 means

that f∗ admits a large enough increase when considering solutions far away from the optimal, and

that the training data fed to the DNN includes sub-optimal decisions as well, allowing the DNN

to generalize to those regions.

Assumption 6 (Exploration of suboptimal regions). For all z such that ∥z − z∗(x0)∥ ≥

r, there exists c2 > 0 such that f∗(x0,z) − f∗(x0,z
∗(x0)) ≥ c2. Moreover, for all (x0,z) ∈

[−1,1]dX+dZ such that ∥(x0,z) − (x0,z
∗(x0))∥ ≥ r, there exists c3 > 0 and c4 > 0 such that∫

(x,w):∥(x,w)−(x0,z)∥≤c3
dµX,Z ≥ c4 and we have c2 > 2(c3 + r)K.
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Our goal to control the error of ∥ẑ(x0)−z∗(x0)∥ using δN can be stated as finding a smallest rδN

such that ∥ẑ(x0)− z∗(x0)∥ ≤ rδN . To do so, we need to ensure f∗ admits some local curvature in

close proximity of (x0,z
∗(x0)). The following assumption, which is relatively mild in only imposing

a locally quadratic decay on f∗, ensures this.

Assumption 7 (Local convexity). Assume x0 is such that for all z ∈ RdZ where ∥z −

z∗(x0)∥ ≤ r, there exists c5 > 0 such that we have f∗(x0,z)≥ f∗(x0,z
∗(x0))+ c5∥z−z∗(x0)∥2.

To ensure the result regarding the error of ∥ẑ(x0)− z∗(x0)∥ and the performance guarantee of

ẑ(x0) will be self-contained, we first define the volume of a generic dX + dZ dimensional ball.

Definition 1. LdX+dZ := π(dX+dZ)/2
/
Γ
(
(dX + dZ)/2 + 1

)
. Thus LdX+dZr

dX+dZ is the volume

of a dX + dZ dimensional ball of radius r (Here Γ is Euler’s gamma function and π is the number

pi.)

Proposition 3. Let Assumptions 1, 2, 3 and 4 hold. For some x0 that satisfies the conditions

of Assumption 5, let ẑ(x0) ∈ argminz∈[−1,1]dZ fθ̂(x0,z). If Assumptions 6, and 7 hold, and δN is

small enough, then we have

∥ẑ(x0)−z∗(x0)∥ ≤
[
2

c5

(
δN(dX + dZ)

4Kc1LdX+dZ

+2K

(
(dX + dZ)

2δN
16K2c1LdX+dZ

) 1
dX+dZ+2

)] 1
2

.

Moreover, we have:

|f∗(x0,z
∗(x0))− f∗(x0, ẑ(x0))| ≤K∗

[
2

c5

(
δN(dX + dZ)

4Kc1LdX+dZ

+2K

(
(dX + dZ)

2δN
16K2c1LdX+dZ

) 1
dX+dZ+2

)] 1
2

.

The proof of Proposition 3 which appears in Section EC.3 in the E-companion, is rather involved.

We provide some high level intuition here. We first develop an upper bound on fθ̂(x0, ẑ(x0)) and

a lower bound on fθ̂(x0,z) for any z that has a Euclidean distance of more than r from z∗(x0).

Then, by showing the lower bound is larger than the upper bound, we rule out faraway candidates

for ẑ(x0). Furthermore, by optimizing the radius of the ball around (x0,z
∗(x0)), we find the

tightest upper bound implied by Lemma 1 for fθ̂(x0,z
∗(x0)). However, even with Assumption 7,

the increase in the value f∗ outside of this ball may not be large enough to rule out candidate

points outside of this ball for ẑ(x0). Hence, we next find the smallest ball around (x0,z
∗(x0)) that

the value of f∗ increases enough outside of it to rule out candidate points. The radius of this latter

ball serves as the bound for ∥ẑ(x0)−z∗(x0)∥.

The bound in Proposition 3 is dependent on the dimensions of the covariates and decision

variables, dX and dZ , respectively, in an intricate way. Both terms of the bound have a term LdX+dZ

appearing in the denominator, which shrinks as dX + dZ grows very large. Intuitively, this would

suggest a need for more data samples for the same performance guarantee in larger dimensions.
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Proposition 3 constitutes our major theoretical result. It provides a performance guarantee for

ẑ(x0) that approaches 1 when δN approaches zero. Moreover, it controls the distance of ẑ(x0)

from the true optimal solution z∗(x0), and this distance decreases in δN . This distance decreases

in δN under four conditions. The first and second conditions are primarily concerned with ensuring

the estimation quality of the DNN. They amount to assuming that the density of µX,Z around

z∗(x0) is bounded away from zero and that the decision maker occasionally has taken sub-optimal

decisions. As discussed before, these assumptions are not particularly limiting assumptions. The

third condition implies f∗ has a minimum gradient at x0 for decisions that are far away (in the

Euclidean sense) from z∗(x0). This assumption is also not too limiting, since otherwise any learning

approach may struggle to differentiate between the noise and the quality of the past decisions.

Finally, the last conditions translates into f∗ admitting a quadratic increase in proximity of z∗(x0).

We point out that while Proposition 3 provides a performance guarantee for ẑ(x0), it does not

guarantee convergence to z∗(x0) even though the numerical experiments in Section 6 suggest such

a convergence. This is because, while the error of ∥ẑ(x0)− z∗(x0)∥ shrinks with δN , it is possible
that the Lipschitz constant of the DNN, Kθ̂, will increase as δN shrinks. Because using theoretical

weight regularization in training DNNs is not necessarily well justified (Srivastava et al. 2014,

Farrell et al. 2021), such an increase is possible. However, there is a growing body of literature,

(Aziznejad et al. 2020, Gouk et al. 2021, Pauli et al. 2021) on regularizing the Lipschitz constant

of DNNs while training, to ensure the trained DNNs will have a bounded Lipschitz constant.

Moreover, Finlay et al. (2018) have recently shown that Lipschitz regularized DNNs generalize and

converge. Therefore, in contexts where convergence to the true optimal decisions is necessary, our

framework can be used by integrating trained DNNs that are Lipschitz regularized. Whether this

leads to a stronger performance in real world problems is a question for future research.

Remark 2. We note that assuming covariate vectorX is continuous is without loss of generality.

In particular, if some or all of the covaiates are discrete, indicated by X̃, one can scale δN inversely

proportionate to the probability of having observed a specific value for the discrete covariates. For

example, upon observing x̃0, if γ(x̃0)> 0 is a valid lower bound on the probability of observing x̃0,

all of the results will hold, by rescaling δN to be δN
γ(x̃0)

. □

5. The Choice of Activation Functions

The choice of activation functions has a substantial impact on the performance of DNNs, as doc-

umented in a number of empirical studies (for example, see Ramachandran et al. 2017). Although

the field of deep learning is evolving rapidly and new activation functions are constantly proposed,

ReLU remains one of the most popular choices (Ramachandran et al. 2017, Agarap 2018, Nwankpa

et al. 2018). In addition to the empirical success, DNNs with ReLU activation functions possess

benign theoretical properties, achieving the minimax convergence rate (Schmidt-Hieber 2020).
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Figure 2 The illustration of the prediction value for DNNs using ReLU and Swish activation functions.

In our framework, since the quality of the data-driven decision is closely related to how well f∗

can be learned from the data and ReLU has had tremendous empirical success in deep learning,

it seems a natural choice to use ReLU. However, we point out a surprising observation that is

specific to our framework using DNNs for data-driven decision-making: using ReLU may lead to

worse data-driven decisions compared to smooth activation functions such as sigmoid and Swish.

We illustrate this observation using the following toy example.

Example 4 (Using ReLU leads to worse outcomes). Consider a scenario without

covariates and a one-dimensional objective function f∗(z) = z − z2, z ∈ [0,1]. The function is

shown by the dashed lines in Figure 2. We compare the ability of two DNNs to fit this function.

The DNNs have one hidden layer and 29 nodes. They differ only in their activation function, one

with ReLU and one with Swish. We then sample a large number of observations of f∗(z) and fit

the DNNs. The ReLU network has a smaller out of sample prediction error (MSE 7.24× 10−6)

compared to that of the Swish network (MSE 1.86× 10−5). After fitting the DNNs, we solve for

the optimal ẑ for the DNNs. In Figure 2 we observe the optimal ẑ for the Swish network is much

closer to z∗ than that of the ReLU network.

6. Numerical Results

In this section, we numerically compare the performance of our methodology with other state-

of-the-art approaches. The results demonstrate strong empirical performance of our framework,

especially for large training datasets. Computationally, the required solution time for our approach

increases more slowly in the data size compared with some of the benchmarks.

6.1. Performance on the Newsvendor Problem with Features

In this section, we investigate the performance of the DONN methodology on the newsvendor

problem (Example 1). We create the synthetic dataset using the following setup. There are 10
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products across 10 stores, and three observed covariates: the temperature, t, generated from a

normal distribution with t ∼ N(20,4), the humidity, ψ, generated from a uniform distribution

ψ∼U [0,10], and day of the day of the week, generated from a uniform distribution d∼U{0, · · · ,6}.

For given covariate x= (t,ψ, d), for product k at store j, the demand is distributed as

D|x∼N
(
100+ (t− 20)+20× (ψ− 8)+ +5× I(d=weekend)+βk−βj,16

)
(11)

For any k and j, βk and βj are randomly chosen from a normal distribution with N(10,4). This is

a similar setting to Bertsimas and Van Parys (2021) and Ban and Rudin (2019), and the extension

to a multi-product, multi-store setting is inspired by Huber et al. (2019) and Seubert et al. (2020)

which use data from a bakery chain with multiple bread products. We use a nonlinear trend

(ψ−8)+ to reflect the increased demand due to higher humidity and the I(d=weekend) for higher

demand during weekends and demonstrate the potential pitfall for linear methods when the model

is misspecified. As we have 10 products and 10 stores, on any given day 100 samples will be

collected. We emphasize that in the synthetic data, on a given day products in the same store will

experience the same temperature and humidity. We consider the cost function

E[h(D− z)+ + b(z−D)+|X], (12)

where b= 10 and h= 1 are, respectively, the unit back-ordering and holding costs.

In each decision epoch in the sample, we record the covariateXi = (ti,ψi, di), the realized demand

Di generated according to (11), the ordered quantity that is uniformly distributed Zi ∼U([80,180])

and the realized newsvendor cost Yi = h(Di−zi)++b(zi−Di)
+. In some of the benchmark methods

described below, (Xi,Di) along with b and h are required, instead of (Xi,Zi, Yi). However, because

of the structure of the newsvendor problem, one can simulate (Xi,Zi, Yi) from (Xi,Di) with a set

of counterfactual and exploratory order quantities using the realized newsvendor cost Yi. Therefore,

the DONN framework has less stringent requirements for how the the data is generated.

We compare our framework to four benchmark policies that have been shown to perform well.

Quantile Regression (QR). The newsvendor problem is closely related to quantile regression

because the optimal solution to (12) is the b/(b + h)-th quantile of the distribution D|X. QR

postulates a linear function of the covariate to predict the quantile. In particular, QR outputs a

vector β ∈RdX and recommends a decision zQR(X0) =X⊤
0 β, where β minimizes

β = argmin
1

N

N∑
i=1

[b(Di−X⊤
i β)

+ +h(X⊤
i β−Di)

+]. (13)

We use one-hot encoding for the day of the week in QR. Despite this, note that QR essentially

misspecifies the model because the actual optimal solution depends on (ψ − 8)+ and cannot be
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represented by a linear function. This is an intentional design: if the model is indeed linear, then

QR tends to outperform most other methods due to the data efficiency of linear models. On the

other hand, real-world applications rarely follow exact linear patterns. We consider arguably mild

misspecification because (ψ − 8)+ is piecewise linear with two segments. As we shall see, QR is

significantly outperformed by other methods including DONN.

Kernel Optimization (KO). KO is a non-parametric approach to solve (2). In this approach,

the order quantity is estimated using a weighted sample average approximation from historical

demand observations. The weights are determined based on the distance between the new covariate

X0 and the historical covariates:

Ki =
Kw(X0−Xi)∑N

j=1Kw(X0−Xj)
, Kw(u) =

1√
2π

exp

(
−∥u∥

2
2

2w

)
, (14)

where Kw(·) is the Gaussian kernel, and w is the kernel bandwidth that has to be tuned from

the data. After calculating Ki for i = 1, . . . ,N , the order quantity for X0 is solved from inf
{
z :∑N

i=1KiI(Di ≤ z)≥ b/(b+h)
}
. We note that this method is also studied in Ban and Rudin (2019),

Bertsimas and Kallus (2020) and Oroojlooyjadid et al. (2020).

End-To-End Optimization with Neural Networks (EENN). This approach is proposed

in Oroojlooyjadid et al. (2020). Here the recommended decision is zEENN(X0) = f̂(X0), where f̂

is a DNN that minimizes f̂ = argminf∈FNN

1
N

∑N

i=1[b(Di− f̂(Xi))
+ +h(f̂(Xi)−Di)

+].

Reproducing Kernel Hilbert Space (RKHS). This approach is proposed in Bertsimas

and Koduri (2022). It can be postulated that the order quantity for covariate X0 has the form∑N

i=1Kw(X0−Xi)ai for some coefficients {ai}Ni=1, where the Gaussian kernel is introduced in (14).

The coefficients are chosen to minimize the empirical risk. While we omit the details, we note that

this optimization problem can be formulated as quadratic programming (with regularization as

stated in Bertsimas and Koduri 2022) with 3N variables and 4N linear constraints.

Next we explain the implementation of the four benchmarks along with DONN. The implemen-

tation of QR is relatively straightforward, as it does not have hyperparameters to be tuned. For

KO, we select the best bandwidth w by randomly splitting the training data into 80% and 20%.

The latter is used as the validation set to select w that has the best performance in it. We conduct a

grid search for w from 0.1 to 2.1 with increments of 0.1 and record the average optimal cost output

by KO relative to the true optimal cost in the validation set. We chose the optimal bandwidth and

rerun KO in the whole training data. It is then examined in a separate test set. For EENN, we use

the specialized loss function as explained above, and use a similar architecture as that of DONN,

to isolate the specific effect of the choice of methodology. We use a feedforward fully connected

network with L = 3 layers and H = 7 nodes in each layer. We use a Swish activation function.
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As generally advised (Goodfellow et al. 2016, page 428, and in concordance with Oroojlooyjadid

et al. (2020)) we consider learning rates from {10−3,10−4,10−5}, and for each learning rate, we

consider number of epochs starting from 0 to 4,000, with a grid sizes of 100, and a batch size of

200. This specific batch size lead to best performance for EENN. For RKHS, similar to KO, we

select the bandwidth w and the regularization hyperparameter using the validation-set approach.

The bandwidth is searched on a grid from 0.1 to 20.1 with increments of 2 (on training data sets of

size up to 7500 and fixed for subsequent data set sizes, as the optimal bandwidth stabilizes) and the

regularization is selected from {10−3,10−4,10−5,10−6}. To solve the optimization problem, we use

Gurobi version 9.0.1. Note that RKHS is the most computationally intense among the approaches,

and thus we are not able to test a finer grid for the hyperparameters.

For DONN, we use a feedforward, fully connected network with L= 3 layers and H = 7 nodes in

each layer and a Swish activation function. To tune the hyperparameters, we use the validation-set

approach to perform a grid search for the learning rate and number of epochs. We consider a

learning rate of 10−7, and the number of epochs starting from 0 to 1,000, with a grid size of 100, and

a batch size of 50. We use the Stochastic Gradient Descent algorithm with a Nesterov Momentum

of 0.9 (see Sutskever et al. 2013 page 4 and Goodfellow et al. 2016 page 294) for training the DNN.

The Stochastic Gradient Descent algorithm has been known to have superior generalization ability

compared to other adaptive optimization methods (e.g., Adam, Adagrad or RMSprop) (Wilson

et al. 2017, Keskar and Socher 2017). To calculate the optimal order quantity of the fitted DNN,

we use the results in Propositions 1 and 2 and the scipy.optimize package in Python (it allows us

to provide the closed-form gradient and Hessian matrix), with 100 equidistant starting points, and

choose the one that results in the lowest predicted cost by the DNN after convergence.

To test the scaling of the approaches in the sample size, we considerN ∈ {2500,10000, . . . ,25000},

translating to 25 to 250 days of collected training data. For each N , we generate 25 pairs of train

and test data sets where for each pair, the train set is of size N and the test set is of size 300.

Figure 3a shows the average cost relative to the true optimal cost of the four approaches in the

test sets. The x-axis indicates the number of days of collected training data. The y-axis indicates

the average cost from each methodology, relative to the true optimal cost calculated from solving

(3) on the test data set. We plot the error bar as the standard error for the 25 test sets.

We list a number of observations from Figure 3a. Due to the high-dimensional nature of the

problem (we have 23 covariates as we one-hot encode store and product identifiers), KO suffers

from the curse of dimensionality. We also note that both DNN-based approaches, EENN and

DONN, are relatively data-hungry. It takes at least 50 days of collected training data for them to

outperform other methodologies. Overall, DONN and EENN have relatively similar performances

with DONN having a marginally better performance after 75 days of data has been collected,
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(a) Performance of the tested methods.
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(b) Effect of humidity on predicted cost.
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Figure 3 Illustration of the performance of DONN in the newsvendor problem.

eventually performing within 9% of the optimal cost. This is particularly interesting, as EENN is

a highly specialized, integrated CSO approach that does not apply to Examples 2 and 3 where the

decisions affect the uncertain parameters (see Remark 1 for further explanation). We suggest this

result further accentuates the findings of Hu et al. (2022) on the excellent performance of two-stage

predict-then-optimize approaches.

We note that a particularly interesting aspect of the DONN approach is how well the trained

DNNs capture the nuances of the objective function. Figure 3b portrays the predicted effect of

humidity on the newsvendor cost (after training with 250 days of data), when everything else is

kept fixed. It accurately reflects the actual effect of humidity on demand, 20(h− 8)+.

We remark on the computational time of the five approaches when N = 15,000. All of the

algorithms were executed on a node in a large server equipped with 40 Intel “Skylake” cores at

2.4 GHz and 202 GB of RAM. The QR method takes less than 1 second to train, and outputs an

order quantity for a test data point almost instantly (within less than 0.01 of a second). Similarly,

for a given bandwidth, the KO methodology takes less than 3 seconds to output an order quantity

for a test data point. The DONN approach, for a given learning rate and with a batch size of 50,

takes less than 30 seconds to train for 100 epochs, and after training is completed, outputs an

order quantity for a test data point within 5 seconds. Similarly, for a given learning rate and for a

batch size of 200, EENN takes around 14 seconds to train for 100 epochs and instantly outputs an

order quantity for a test data point. Meanwhile, for a given bandwidth and regularizing parameter,

the RKHS methodology takes over 7 hours to train and outputs an order quantity for a test data

point almost instantly. We note that even when the size of the training data grows to 25000, for a
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given learning rate the DONN method takes less than 1 minutes to train for 100 epochs, and after

training is completed, outputs an order quantity for a test data point within 5 seconds.

Finally, we remark on the satisfaction of the assumptions of Proposition 3 for the newsvendor

problem. Assumptions 1 and 2 mainly pertain to how the data is generated and the quality of the

fitted DNNs. In light of Remark 2, we can focus on the continuous covariates, and it is easy to

check that (12) is Lipchitz continuous, as long as daily demand is finite, satisfying Assumption 3.

Assumptions 4 and 7 are satisfied due to the structure of (12), as long as h, b > 0. Assumptions 5

and 6 are arguably the most restrictive ones. However, in the newsvendor problem, as long as the

cost parameters are known, we can augment the data with any order quantity we like and observe

its associated realized cost, making these assumptions naturally satisfied in this case.

6.2. Performance on the Personalized Assortment Pricing Problem with
Observable Customer Features

Next we test the DONN methodology on Example 2, the personalized assortment pricing prob-

lem. For each customer, the firm observes a covariate vector X (related to the customer and the

market conditions) and sets prices z = (z1, . . . , zm) to maximize its conditional expected revenue

from the customer who will purchase at most one of the m products. Such problems arise in many

settings (Chen et al. 2022b). The conditional expected revenue under price vector z is:

m∑
j=1

zjdj(z|X), (15)

where dj(z|X) is the conditional probability of the customer purchasing product j after observing

price vector z and
∑m

j=1 dj(z|X)≤ 1. The optimization problem is:

z∗ = argmax
z≥0

m∑
j=1

zjdj(z|X). (16)

The difficulty in solving (16) is that the decision maker does not know the expression of dj(z|X) in

closed form and needs to learn it from past data. Traditionally, this is done by specifying a model

for dj(z|X) and estimating the parameters of this model from the data (Chen et al. 2022b,a).

We consider two experimental setups to create a synthetic test dataset. In both setups the

covariate vector X represents the age of the selling season, Age, and the estimated income of the

customer, Income (see, e.g., Shen et al. (2020)). In the first setup, the historical data is generated

by a Multinomial Logit (MNL) choice model where the probability of customer i choosing product

j from a set of m products priced at (z1, . . . , zm) is given by

exp(αij(Xi)−λzj)
1+

∑m

k=1 exp(αik(Xi)−λzk)
, (17)
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where αij(Xi) =Uj +X ′
iβ and Uj ∈R and β ∈RdX . Parameters {αik}mk=1(Xi) and λ represent the

average attractiveness of the products and the price sensitivity, respectively. We let:

αij(Xi) =Uj −w1jAgei +w2jIncomei

where Uj is generated randomly from N(2,0.5), w1 is generated uniformly from [0,1] and w2 is

generated uniformly from [0,1/70]. Age is uniformly generated from [0,1] and Income is randomly

distributed with N(70,10), in accordance with the reported median household income in the US

(United States Census Bureau 2021). We let λ= 0.5. The historical price seen by customer i for

each product j is generated randomly from N(6,2), truncated at 0. This distribution of historical

prices reflects that decision makers may know the optimal price for the average customer while

engaging in regular price markup and markdowns. For example, Amazon changes prices every 10

minutes for an average listed product (Mehta et al. 2018). After observing zi, each customer i

decides on purchasing at most one of the products, based on probabilities calculated from (17).

In the second setup, historical data is generated based on a linear demand model. The choice

probability of product j is assumed to be

αij(Xi)+
m∑

k=1

λjkzik, (18)

where αij(Xi) = Uj + X ′
iβ and Uj ∈ R and β ∈ RdX . In the setup, αij(Xi) = Uj − w1jAgei +

w2jIncomei. The no-purchase probability is one minus the sum of the purchase probabilities of all

the products. We let λjj =−0.01 for all j, while λjk is uniformly sampled from [0.0002,0.00024]

for j ̸= k. Uj is uniform generated from [0.13,0.15]. w1j are uniformly and independently generated

from [0,0.05]. w2j are uniformly and independently generated from [0,0.05/70]. As before, Age is

uniformly distributed on [0,1] and Income is randomly distributed with N(70,10). The historical

price seen by customer i for each product j is generated randomly from N(8,2.5), however, the

price is truncated such that dij(z)≥ 0 for all i and j, while
∑

j dij(z)≤ 1.

In each dataset, for each customer i, the feature vector Xi, the price vector zi, the choice of the

customer and the revenue from the customer is recorded. For each experimental setup we simulate

25 independent training sets of size N and test sets of size 250.

We consider three different approaches to solving (16) and numerically test their performance

on the synthetic dataset. First we assume dj(z|x) is determined based on the MNL model specified

in (17) and estimate the parameters of the model from the gathered data. We use the BIOGEME

package developed by Bierlaire (2003) to estimate the parameters of the MNL model with the

historical data, and then calculate the optimal price based on the fitted model.
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Second, we assume dj(z|x) is determined based on the linear demand model specified in (18)

and estimate the parameters of the model from the gathered data, and then calculate the optimal

price based on the fitted model.

Third, in the DONN approach, we estimate the conditional expected revenue using a DNN where

the input for each historical customer i is Xi and zi while the target variable is the revenue from

customer i. The revenue from customer i is the price paid by the customer for her purchased

product, or 0 if no purchase is made. For covariate vector x and price z, the output of the DNN

is fθ̂(X,z). Then, for observed covariates X0 the optimal DONN price can be obtained by solving

the following optimization problem:

z∗DONN = max
z∈[

¯
z,z̄]

{
fθ̂(X0,z)

}
, (19)

where
¯
z and z̄ are the highest and lowest prices recorded in the data.

The DNN architecture is the same as the one used in Section 6.1. To calculate the optimal

prices of the fitted DNN, z∗DONN , we use the scipy.optimize package from Python to solve for

Problem (19), with 100 equidistant starting points, and choose the one that results in the highest

predicted revenue by the DNN, after convergence.

Figure 4 shows the results where customer demand is given by the MNL choice model, where

we fit the observed demand to the MNL model, the linear demand model, and use the DONN

approach. We give the average ratio of the revenue generated to the optimal revenue for the MNL

model when the true parameters are known. The size of the training transaction data, given on

the x axis, grows on a log(10) scale. The MNL estimated revenue converges quickly to the true

optimal revenue as is expected for the correctly specified model. We see that for a small dataset

of 100 observations, DONN achieves 60% of the optimal revenue, but this increases as the size of

the training data grows, approaching the optimal value. The revenue of the linear demand model

does not converge to the true optimal revenue due to the underlying model misspecification.

Figure 5 displays the results for the second setup where customer demand is given by the linear

demand model. As expected, the linear demand model is able to converge to the true optimal

prices and it performs near-optimal with approximately 10000 training data points. The DONN

methodology, even with as few as 100 training data points, is able to generate on average more than

50% of the optimal revenue, converging to the true optimal prices as the size of the training data

grows. Interestingly, while the MNL estimation methodology is able to outperform the other two

methodologies when the size of the training data is less than 1000 data points, due to its inherent

misspecification, its performance stagnates and is unable to converge to the true optimal prices as

the size of the training data increases.
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Figure 4 The performance of DONN, MNL

Estimation and Linear Demand Estimation, when

MNL is correctly specified
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Figure 5 The performance of DONN, MNL

Estimation and Linear Demand Estimation, when

Linear Demand is correctly specified
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In both setups, the DONN approach needs nearly 100,000 training data points to consistently

perform near optimal. In the context of online sales, this translates to mere days of data collection.

For example, on Prime Day 2022, Amazon recorded 100,000 purchases per minute (Amazon 2023).

We note other approaches may not be easily applicable to the assortment pricing problem we

consider. Bertsimas and Kallus (2020) and Biggs et al. (2021) consider machine-learning-based

pricing problems. However, both works primarily use discrete prices and only consider the problem

of pricing a single product. It seems highly non-trivial to extend them to the setting with multiple

substitutable products. Similarly, Simchi-Levi and Xu (2022) consider a discrete action space and

extending their results to the continuous action space of assortment prices seems highly non-trivial.

Further, their Algorithms 1 and 2 require an optimization problem in step 6 to be easy, which may

no longer be true in the case of multiple products, even when considering discrete sets of prices.

Finally, we remark on how the assumptions of Proposition 3 are satisfied in this personalized

assortment pricing problem. It is easy to check that (15) is Lipschitz continuous for both demand

models (17) and (18), satisfying Assumption 3. Assumptions 4 and 7 are satisfied for both demand

models. Assumptions 5 and 6 pertain to the historical price decisions of the firm and the assumed

normal distribution of historical prices satisfies them as the size of the data grows. Moreover, these

assumptions together are comparable to the positive propensity score assumptions used in causal

inference for identifiability (Bertsimas and Kallus 2020, Biggs et al. 2021, Biggs 2022). For example,

the overlap assumption of Biggs et al. (2021), Biggs (2022) would assume the probability density

function of prices in the data is known and strictly positive over R+.

6.3. Performance on the Call Center Staffing Problem

Next we assess the performance of DONN on Example 3, the call center staffing problem. The

firm observes covariatesX (such as the weather conditions) that may help it forecast the arrival rate
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of customers the next day. To simplify the comparison with the existing methods in the literature,

we assume X only includes the forecast arrival rate. The firm then determines the staffing level

z to minimize its conditional expected cost. We assume the cost rate function reflects the staffing

costs, the probability of waiting, and the probability of abandonment (Zeltyn and Mandelbaum

2005, Mandelbaum and Zeltyn 2009):

C(z|λ,µ) =Cs(z)+
Cw

∑A

l=1 I(Wl > 0)

T
+
CAB

∑A

l=1 I(ABl = 1)

T
, (20)

where λ is the customer arrival rate, µ is the service rate, z is the number of agents working and T

is the length of the day, e.g. 8 hours. A is the random variable indicating the number of customers

arriving at the call center throughout [0, T ]. Wl is the random variable indicating the amount of

time customer l had to wait before receiving service. ABl is the random binary variable indicating

that customer l arrived at the call center but abandoned. Cs(z) is the cost rate of staffing z agents,

Cw is the cost per customer who waits, and CAB is the cost per abandonment. The long-run

expected value of C is:

lim
T→∞

E[C(z|λ,µ)] =Cs(z)+CwλP(W > 0)+CABλP(AB = 1). (21)

There are existing approaches to approximating (21). When the customer inter-arrival times

and service times are independent and exponentially distributed and customer patience time is

independently distributed, the call center is an M/M/z+G queue, with G being the cumulative

distribution of customer patience. Characterizing the performance metrics of such a queue analyti-

cally is very complex. However, assuming knowledge of G, under three different operational regimes,

based on the offered load λ/µ, Zeltyn and Mandelbaum (2005), Mandelbaum and Zeltyn (2009)

develop closed-form approximations for P(W > 0) and P(AB = 1). The three operational regimes

are Quality Driven (QD), Efficiency Driven (ED), and Quality and Efficiency Driven (QED). For

each regime, z is given by the offered load λ/µ and a tuning parameter:
1− zQD

λ/µ
= γ, γ > 0,

zED
λ/µ
− 1 = γ, γ > 0,

zQED−λ/µ√
λ/µ

= β, ∞<β <∞.

As suggested in Zeltyn and Mandelbaum (2005) “The QD approximations should be applied

only for very high-performance systems. (For example, in emergency call centers.)”. As such, we

do not present the numerical results for this regime. Under the QED regime, based on the results

from Zeltyn and Mandelbaum (2005), for a given β we have P(W > 0) = [1 +
√

g0
µ
· h(β̂)

h(−β)
]−1,

where h(·) is the hazard rate of the standard normal distribution, g0 = g(0), where g(·) is the
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probability distribution function of customer patience, and β̂ = β
√

µ
g0
. Further, we have P(AB =

1) = [1+
√

g0
µ
· h(β̂)

h(−β)
]−1 · 1√

zQED

√
g0
µ
· [h(β̂)− β̂]. Therefore,

z∗QED = argmin
ZQED≥0,−∞<β<∞

(
Cs(zQED)+CWλ[1+

√
g0
µ

· h(β̂)

h(−β)
]−1+CABλ[1+

√
g0
µ

· h(β̂)

h(−β)
]−1 · 1

√
zQED

√
g0
µ

· [h(β̂)−β̂]

)
(22)

In the ED regime, for a given γ > 0, we have: P(W > 0) = 1− [ 1
γ
·
√

g(x∗)
2πλ
· e−λk(γ)], where x∗ is the

unique solution to G(x) = γ and k(γ) = x∗ · (1− zED(γ)µ

λ
)−
∫ x∗

0
G(u)du. Moreover, P(AB = 1) = γ.

Therefore,

z∗ED = argmin
ZED≥0,γ>0

(
Cs(zED)+CWλ

(
1− [

1

γ
·
√
g(x∗)

2πλ
· e−λk(γ)]

)
+CABλγ

)
(23)

As pointed out in Zeltyn and Mandelbaum (2005), when the utilization, λ/(zµ) is close to 1, the

QED regime offers a near exact approximation, while for larger utilization, the ED regime may

be more accurate. The difficulty for a manager would be to know ahead of time which of the two

regimes will be more appropriate, depending on the expected offered load. Note that even when

applied with the correct regime, both ED and QED are slightly mis-specified, as E[C(z|λ,µ)] may

differ from limT→∞E[C(z|λ,µ)] for finite T .

In contrast to ED and QED, the DONN approach does not rely on any specific assumptions

regarding the utilization, the distribution of customer arrivals, service times, and customer patience

distribution. In the DONN approach, we estimate E[C(z|λ,µ)] using a DNN where the input

for each historical day i is λi and zi while the target variable is C(zi|λi, µi). We use the same

architecture and hyperparameter tuning as in Examples 1 and 2. For λ and staffing level z, the

output of the DNN is fθ̂(λ, z). Then, for the new day’s arrival rate λ0 the optimal DONN staffing

level can be obtained by solving the following optimization problem:

z∗DONN = argmin
z∈{

¯
z,z̄}

fθ̂(λ0,z), (24)

where
¯
z and z̄ are the highest and lowest staffing levels recorded in the data.

Given the low dimensional nature of the experiments in this chapter, one could posit that

E[C(z|λ,µ)] may be an easy function to estimate, especially since µ will be fixed in the experiments.

To evaluate this, we consider an alternative methodology to DONN, where we fit a polynomial

regression (PR) to the historically collected data to estimate E[C(z|λ,µ)] as a function of λ and

z. We fit polynomials of various degrees (1 to 6) using a quadratic loss function. Let fPR be the

best-performing polynomial regression and define

z∗PR = argmin
z≥0

fPR(λ0, z). (25)
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(b) Staffing decisions
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Figure 6 M/M/z+G queue with linear staffing cost.

We conduct three experiments. Throughout we assume the call center operates 8 hours a day,

each customer experiencing positive wait time costs $0.3 (CW = 0.3) and each abandoning customer

costs $1 (CAB = 1). We fix the mean service rate µ = 1/3 per minute. As in Mandelbaum and

Zeltyn (2009), we assume customers have exponentially distributed patience with either mean 1 or

mean 5, each occurring with probability p= 0.5.

In the first experiment, as in Section 6.1. of Mandelbaum and Zeltyn (2009), we assume a linear

staffing cost with each scheduled agent costs $100 per day (Cs(z) = (100/480)z), Poisson arrivals

with the mean rate each day between 20 and 50 arrivals per minute and exponentially distributed

service times with mean 3 minutes. The synthetic historical data is generated as follows: we simulate

1000 days (N = 1000) based on a first-come/first-serve (FCFS)M/M/z+G queue and for everyday

i, the customer arrival rate per minute is chosen from a uniform distribution λi ∼U [20,50] and the

staffing level is randomly distributed with z ∼max{⌊N(λ
µ
, λ
3µ
)⌋,1}.

To assess the out-of-sample performance of the four methodologies we consider arrival rates

from 20 to 50 in increments of 0.5 and simulate 10 days for each arrival rate and the prescribed

staffing level of each of the methodologies. Figure 6a presents the normalized average daily cost

for the M/M/z+G experiment with linear staffing cost where the result of each method is divided

by DONN’s average daily cost. Figure 6b presents the associated staffing for each of the solution

approaches. We observe the cost of DONN is statistically the same as QED (mean difference 0.05%

with standard error 0.05%), while PR is consistently higher (mean 2.3% higher with standard error

0.1%). The cost of ED exceeds 15% throughout and is not shown. For the range of arrival rates,

λ/(z∗QEDµ) is near 1 and hence QED is the appropriate regime and z∗QED must be nearly optimal
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(b) Staffing decisions
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Figure 7 M/M/z+G queue with convex staffing cost.

(Zeltyn and Mandelbaum 2005). Figure 6b suggests that the staffing decisions made by DONN

and QED are nearly identical while PR consistently over-staffs and ED greatly under-staffs.

Next we consider the case where the cost rate of staffing is a convex increasing function Cs(z) =

(100z + [(z − 40)+]2)/480. When the arrival rate is high, it would be more economical to under-

staff and incur a high rate of customer waiting and abandoning. As the utilization increases, the

ED staffing level may be more accurate than QED. Balancing between the staffing and customer

waiting and abandonment costs may be difficult for managers. Figures 7a and Figure 7b presents

the results in this case. We observe that for arrival rates less than 40, the DONN and QED solutions

give the lowest cost, while for greater arrival rates, the DONN and ED provide the lowest dost.

For lower arrival rates, a higher staffing level performs better and for higher arrival rates, a lower

staffing level is better. The DONN approach switches between the two, performing within 0.3%

of the cost of the best of ED and QED, with a standard error of less than 0.1%. In contrast,

the polynomial regression approach consistently performs similarly to the worst of ED and QED

suggesting the need for a nuanced data-driven approach to this complex staffing problem.

In the third experiment we consider non-Markovian arrival and service, i.e., a G/GI/z+G queue

with linear staffing costs. We assume customer interarrival times are uniformly distributed on [1/

λ−0.01,1/λ+0.01] and the service times are uniformly distributed on [1,5]. The customer patience

distribution and the daily staffing cost are the same as before. Despite work in approximating

asymptotic queue lengths for G/GI/z +G (Whitt 2004, Mandelbaum and Momčilović 2012, Lu

et al. 2016), closed-form approximations analogous to (22) and (23) are not available.

Figure 8a presents the results for this case. With 1000 training data points the DONN approach

consistently outperforms both QED and ER by 2.5% (standard error 0.1%) and 8.2% (standard
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Figure 8 G/GI/z+G queue with linear staffing cost.

error 0.3%), respectively. The cost for ED exceeds 15%. Figure 8b suggests that QED and PR

consistently over-staff while ED significantly under-staffs. In appendix EC.4 we show that PR

cannot approximate well the non-convex cost structure while the relatively small neural network

in the DONN offers a near-exact fit of the actual cost function.

Regarding the assumptions of Proposition 3, the assumed normal distribution of historical

staffing levels around the offered load imply assumptions 5 and 6 are satisfied. Assumptions 3, 4

and 7 are not verifiable as (20) does not have a closed-form expression.

To summarize the takeaways from the numerical experiments we note:

• The DONN approach performs very well with small DNNs and moderate-size training data.

• The DONN approach computationally scales well with the size of the training data.

• These observations are robust across different problems and specifications.

7. Practical Considerations and Concluding Remarks

A few comments on applying our approach to real-world problems are due. Oroojlooyjadid et al.

(2020) mentions when applying DNNs to large, real world problems, practitioners may need to

carefully tune the hyper-parameters (such as the number of layers and nodes in each layer as well

as the activation function) of the DNN to find the most suitable one for their application. However,

our paper alleviates this concern to some extent by showing that even arguably toy sized DNNs

trained with mostly open source and widely available packages (primarily PyTorch) can tackle very

hard problems and lead to very strong performance in a variety of scenarios.

Another important criticism usually directed at using DNNs is their apparent lack of inter-

pretability (Lipton 2018, Oroojlooyjadid et al. 2020). However, in this work we help ease managerial
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concerns regarding using DNNs in two ways. First, by designing a framework that uses DNNs to

learn the true objective function, and by providing performance guarantees for decisions in our

framework, a decision maker may be able to trust the output, especially if the trained DNN shows

strong generalization properties in the training data. Moreover, by providing the gradient of the

trained DNN with respect to the decision variables in closed form, our framework demonstrates the

direction of improvement predicted by the DNN for every reasonable decision value (e.g., increase

or decrease in predicted revenue for a unit increase in the price of a product in the assortment)

allowing for the decisions to be interpretable. This is especially relevant as DNNs are capable of

approximating any arbitrary function and its derivative (Hornik et al. 1990, 1994).

We also note that the degree to which the solutions from our framework can be trusted depends

on the Lipschitz constant of the trained DNN as well as its generalization bound. While there

are several ways to gauge the generalization abilities of a DNN (including the performance of

holdout data samples), assessing the Lipschitz constant exactly is NP-hard in general (Virmaux

and Scaman 2018). However, there is a growing body of literature on estimating upper bounds on

the Lipschitz constant of a trained DNN (Virmaux and Scaman 2018, Latorre et al. 2020, Herrera

et al. 2020). Such work can be used in our framework to assess its performance guarantees.
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Valle-Pérez G, Louis AA (2020) Generalization bounds for deep learning. Working Paper ArXiv preprint

arXiv:2012.04115.

Virmaux A, Scaman K (2018) Lipschitz regularity of deep neural networks: analysis and efficient estimation.

Advances in Neural Information Processing Systems 31.
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Table EC.1 Table of variables and parameters.

Acronym Meaning
f∗ True unknown objective function
Y i A noisy observation of f∗ in epoch i
x Observed covariates
z Decision taken
dX Dimension of the observed covariates
dZ Dimension of the decision taken
fθ A generic DNN function
fθ̂ A realized fitted DNN function
σ(·) The activation function

σ′
h,l(x,z) The point-wise first derivative of the activation function at the h-th node and l-th layer
σ′′
h,l(x,z) The point-wise second derivative of the activation function at the h-th node and l-th layer
z∗(x0) The true optimal solution given x0

ẑ(x0) The DNN based optimal solution given x0

∂ The partial derivative
K∗ The Lipschitz constant of f∗
Kθ̂ The Lipschitz constant of fθ̂
K The Lipschitz constant of ∥f∗− fθ̂∥
µX,Z The marginal distribution of (X,Z)
δN The generalization bound with N data points.
c1 The lower bound on the density function of µX,Z

c3 Min. radius of a ball away from the optimal solution to have probability measure c4
c4 Probability measure of a ball of radius c3 away from the optimal solution.
c2 Lower bound on the increase of f∗ for solutions far away from optimal solution.
c5 Quadratic increase rate of f∗ for solutions near the optimal solution.

LdX+dZ Constant for volume of a dX + dZ dimensional ball.

E-Companion to Using Neural Networks To Guide
Data-driven Operational Decisions

EC.1. Using Neural Networks to Fit the Objective Function

As mentioned in Section 3, we propose to find the best fit objective function f̂(x,z) from the

data {(X i,Zi, Y i)}Ni=1 within the class of DNN functions FNN. That is, assuming a quadratic loss

function, and a clear specification of FNN, we seek:

f̂ = argmin
f∈FNN

N∑
i=1

(f(X i,Zi)−Y i)2. (EC.1)

The class FNN is the set of functions that can be represented through a particular DNN. The

function class FNN is determined by the architecture of the network and the form of interactions

between the nodes. We consider feedforward DNNs consisting of:

• L layers (the depth of the network),
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Figure EC.1 The illustration of a fully connected feedforward neural network with L= 2 layers and H = 3 nodes

in each layer. The activation function is applied to the input at each of the nodes.

• H nodes per layer (the width)1,

• fully connected layers,

• an activation function σ(·) :R→R.

An example of a network architecture is illustrated in Figure EC.1. The neural network takes as

input two scalars (x, z) and outputs a single scalar (y). It has L= 2 layers and each layer has H = 3

width (note that we do not count the first and the last layers).

The commonly use activation functions are:

1. sigmoid: σ(x) = 1/(1+ e−x)

2. Swish: σ(x) = x/(1+ e−x)

3. ReLU: σ(x) =max{0, x}.

Given a network architecture FNN(L,H,σ), a function withing the class is specified by a param-

eterization θ= (W1x,W1z,b1,W2,b2, . . . ,WL,bL,wL+1, bL+1), where W1x ∈RH×dX , W1z ∈RH×dZ ,

bk ∈RH for k = 1, . . . ,L, Wk ∈RH×H for k = 2, . . . ,L, wL+1×RH and bL+1 ∈R. Given (x,z) and

a parameter θ,

fθ(x,z) =w⊤
L+1σ

(
· · ·σ

(
W3σ

(
W2σ(W1xx+W1zz+ b1)+ b2

)
+ b3

)
+ · · ·

)
+ bL+1.

Here, σ(·) : RH → RH represents the vectorized activation function that applies σ(·) : R→ R ele-

mentwise.

By this formulation, FNN is the set of all functions fθ(x,z). One may use Figure EC.1 to better

understand fθ(x,z). Consider the left-most layer (the input layer), the edges leading to the second

layer (also referred to as the first hidden layer) and the term w1xx+w1zz+ b1. The upper edges

coming from node x represent w1xx and the lower edges coming from node z represent w1zz. The

vector b1 is referred to as the constant term (or bias). Observe that w1xx :Rdx→RH . In this case

the scalar x is transferred by the weights w1x into H inputs to the second layer, and similarly for

z. At each node in the second layer the function σ(·) : R1→ R1 is applied to the H-dimensional

1 This is without loss of generality since H can be set equal to the number of nodes in the widest layer, and for other
layers, one can consider dummy nodes with weight set to zero and the constant parameter set to be equal to the root
point of the activation function (0 for ReLU and Swish and a large negative number such as −100 for sigmoid).
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term w1xx+w1zz + b1 element wise to produce H outputs. Then, recursively, in a feedforward

fashion, the results are fed to the edges between the second and third layer, represented by W2 and

b2, and so on. In the output layer, an inner product using weight wL+1 is applied to the output

of the penultimate layer (the last hidden layer). Adding the scalar constant term bL+1 gives the

scalar output.

Given observations {(X i,Zi, Y i)}Ni=1, we seek fθ that solves (EC.1). That is, we train the DNN

by selecting W ’s and b’s that minimize the quadratic loss. A common approach is to use Stochastic

Gradient Descent (SGD) which relies on the observation that the gradient of fθ with respect to θ

can be given in closed form, when σ is differentiable (Rumelhart et al. 1986). SGD has shown good

empirical performance (Zhang et al. 2021). See Goodfellow et al. (2016) for an overview of SGD

applied to fitting DNNs.

EC.2. Optimize the Fitted Neural Network

In this section, we discuss how to choose z given a covariate X0 so that the output of the fitted

DNN is optimized. Let θ̂ denote the fitted DNN (the optimized weights W and constant terms b).

Then, following (5), we would want to find

ẑ(X0)∈ argmin
z∈Z

fθ̂(X0,z). (EC.2)

We assume

Z = {z ∈RdZ |
¯
Zi ≤ zi ≤ Z̄i, ∀ i≤ dZ},

where
¯
Zi and Z̄i indicate the lowest and highest values of the ith coordinate of Z in the data.

Consider Figure EC.1. We are suggesting that we have X0 and fθ̂ and want to choose z to minimize

Y . Solving (EC.2) may be NP-hard, depending on the choice of the activation function (Katz et al.

2017, Anderson et al. 2020).

Define ẑ(x) to be a local minimum if there exists δ > 0, such that

∀z ∈Z : ∥z− ẑ(x)∥2 ≤ δ, fθ̂(x, ẑ(x))≤ fθ̂(x,z). (EC.3)

We suggest using a gradient-based approach to finding a local minimum to (EC.2). We can use

backpropagation to derive the gradient of fθ̂(x,z) with respect to z in closed form. Hence, we may

hope to efficiently find all the local minima to (EC.2). Moreover, we can use the tools developed

for SGD in the training of DNNs to find the ẑ(x) that minimizes fθ̂(x,z).

Similar to the the backpropagation algorithm (Rumelhart et al. 1986), we use the layer by layer

structure of the DNN to calculate the derivative of fθ̂(x,z) with respect to z.
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We can find a local minimum of fθ̂(x,z) using a gradient descent algorithm. Let ĝ=
∂f

θ̂
(x,z)

∂z
and

let K̂ be the Lipschitz constant of
∂f

θ̂
(x,z)

∂z
and let and [z]+ be the projection operator onto the

feasible set Z , defined as

[z]+i =


Z̄i if zi ≥ Z̄i,

¯
Zi if zi ≤

¯
Zi,

zi otherwise.

Algorithm 1 Projected gradient update

Require: K̂, 0< s< 2

K̂

Require: Starting point decision value z(0) ∈Z

k← 1

while Stopping criterion not met do

Compute gradient: ĝ← ∂f̂θ(x,z
(k))

∂z

Apply update: ẑ(k)← z(k)− sĝ

Project back to feasible set: z(k+1)← [ẑ(k)]+

k← k+1

end while

There is a large body of literature on how to choose the step size (s) in Algorithm 1 to ensure

faster convergence (Bertsekas 1999). However, if fθ̂(x,z) is continuously differentiable, Z is a closed

and nonempty convex set, and
∂f

θ̂
(x,z)

∂z
is Lipschitz continuous with a known Lipschitz constant,

Algorithm 1 as stated will converge in the limit to a stationary point of fθ̂(x,z) (Bertsekas (1999),

Proposition 2.3.2). If
∂f

θ̂
(x,z)

∂z
is only locally Lipschitz continuous or its Lipschitz constant is not

known, one can alternatively use the celebrated Armijo rule to determine the step size schedule

that will guarantee convergence in the limit (Bertsekas (1999), Proposition 2.3.3).

Remark EC.1. The differentiability of σ is imperative for Proposition 1. If σ is a non-

differentiable function such as ReLU, as pointed out by several recent works such as Bolte and

Pauwels (2021) and Bianchi et al. (2022), backpropagation for ReLU networks does not necessar-

ily compute any kind of known derivative or even subdifferential of fθ̂ and may not even return

the correct derivative of fθ̂ at points where it is differentiable. Moreover, we do not know of any

research that shows in such a case, similar to Proposition 1, convergence to a stationary point

of fθ̂(x, ·) would result. In particular, the results of Bianchi et al. (2022) which are developed for

SGD, can be extended to the deterministic case of Algorithm 1 for ReLU activated DNNs, with

backpropagation used to calculate ĝ. However their results only guarantee convergence to the set

of zeros of the conservative field of fθ̂(x, ·) and this set is not necessarily identical to the set of
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its stationary points. (See Bolte and Pauwels (2021) for a comprehensive review of conservative

fields). □

EC.3. Proofs

Proof of Proposition 1 As σ is differentiable everywhere fθ̂(x,z) is differentiable. Thus, we can

apply the chain rule layer by layer, inductively.

Then, we observe
∂σh,1(x,z)

∂z
= σ′(w⊤

h,1xx+w⊤
h,1zz+ bh,1).wh,1z.

So

∂σ1(x,z)

∂z
=diag

(
σ′
1,1(x,z), . . . , σ

′
H,1(x,z)

)
×W1z.

Furthermore,

∂σ2(x,z)

∂z
=
∂σ2(x,z)

∂σ1(x,z)
× ∂σ1(x,z)

∂z
=diag

(
σ′
1,2(x,z), . . . , σ

′
H,2(x,z)

)
×W2×

∂σ1(x,z)

∂z
.

Assume for some l≥ 2, that

∂σl(x,z)

∂z
=diag

(
σ′
1,l(x,z), . . . , σ

′
H,l(x,z)

)
×Wl×

∂σl−1(x,z)

∂z
.

Then, we have

∂σl+1(x,z)

∂z
=
∂σl+1(x,z)

∂σl(x,z)
× ∂σl(x,z)

∂z
=diag

(
σ′
1,l+1(x,z), . . . , σ

′
H,l+1(x,z)

)
×Wl+1×

∂σl(x,z)

∂z
.

Then, finally,

∂fθ̂(x,z)

∂z
=

∂fθ̂
∂σL(x,z)

× ∂σL(x,z)

∂z
=w⊤

L+1×
∂σL(x,z)

∂z
,

which completes the proof. □

Proof of Proposition 2 We note that by assumption σ(·) is twice continuously differentiable and

hence fθ̂(x,z) is twice continuously differentiable. Moreover, we can apply the chain rule to the

nodes in each layer, inductively. Thus, the proof follows from applying the chain rule to σ(·) and
its derivative. To elaborate, it is trivial to show that

∂σh,1(x,z)

∂zj
=wj

h1σ
′
h,1(x,z),

∂2σh,l(x,z)

∂zj∂zk
=wj

h1w
k
h1σ

′′
h,l(x,z).

Now, assume l≥ 2, from the chain rule we have

∂σh,l(x,z)

∂zj
=

∂σh,l(x,z)

∂
(∑H

h′=1w
h′
h,lσh′,l−1(x,z)+ bh,l

) ∂(∑H
h′=1w

h′
h,lσh′,l−1(x,z)+ bh,l

)
∂zj

= σ′
h,l(x,z)

( H∑
h′=1

wh′
h,l

∂σh,l−1(x,z)

∂zj

)
,
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while
∂2σh,l(x,z)

∂zj∂zk
=
∂σ′

h,l(x,z)

∂zk

( H∑
h′=1

wh′

h,l

∂σh,l−1(x,z)

∂zj

)
+
∂
(∑H

h′=1w
h′

h,l

∂σh,l−1(x,z)

∂zj

)
∂zk

σ′
h,l(x,z)

by applying the chain rule to the term
∂σ′

h,l(x,z)

∂zk
, we get

∂2σh,l(x,z)

∂zj∂zk
=

∂σ′
h,l(x,z)

∂
(∑H

h′=1w
h′
h,lσh′,l−1(x,z)+ bh,l

) ∂(∑H

h′=1w
h′

h,lσh′,l−1(x,z)+ bh,l
)

∂zk

( H∑
h′=1

wh′

h,l

∂σh,l−1(x,z)

∂zj

)
+σ′

h,l(x,z)
( H∑
h′=1

wh′

h,l

∂2σh′,l−1(x,z)

∂zj∂zk

)
,

which leads to

∂2σh,l(x,z)

∂zj∂zk
= σ′′

h,l(x,z)
( H∑
h′=1

wh′
h,l

∂σh′,l−1(x,z)

∂zk

)( H∑
h′=1

wh′
h,l

∂σh′,l−1(x,z)

∂zj

)
+σ′

h,l(x,z)
( H∑
h′=1

wh′
h,l

∂2σh′,l−1(x,z)

∂zj∂zk

)
.

The last part of the Proposition follows trivially from noticing that fθ̂(x,z) =
∑H

h′=1w
h′
L+1σh,L(x,z),

and hence:
∂2fθ̂(x,z)

∂zj∂zk
=

H∑
h=1

wh
L+1

∂2σh′,L(x,z)

∂zj∂zk
.

□

Proof of Lemma 1 By Assumption 2, we have that E∥f∗(X,Z) − fθ̂(X,Z)∥2 ≤ δN . Now let

(xmin,zmin) ∈ argmin(x,z)∈B ∥f∗(x,z) − fθ̂(x,z)∥ and (xmax,zmax) ∈ argmax(x,z)∈B ∥f∗(x,z) −
fθ̂(x,z)∥.

We have:∫
(x,z)∈B

∥f∗(xmin,zmin)− fθ̂(xmin,zmin)∥2dµX,Z ≤
∫
(x,z)∈B

∥f∗(x,z)− fθ̂(x,z)∥2dµX,Z ,

while we know :

∫
(x,z)∈B

∥f∗(x,z)− fθ̂(x,z)∥2dµX,Z ≤
∫
(x,z)∈(X,Z)

∥f∗(x,z)− fθ̂(x,z)∥2dµX,Z ≤ δN .

=⇒ S∥f∗(xmin,zmin)− fθ̂(xmin,zmin)∥2 ≤ δN

Thus we can see that:

|f∗(xmin,zmin)− fθ̂(xmin,zmin)| ≤
√
δN
S
. (EC.4)

At this point, we need to relate |f∗(xmax,zmax) − fθ̂(x
max,zmax)| to |f∗(xmin,zmin) −

fθ̂(x
min,zmin)|. We have

|f∗(xmax,zmax)− fθ̂(xmax,zmax)| − |f∗(xmin,zmin)− fθ̂(xmin,zmin)| ≤∥∥f∗(xmax,zmax)− fθ̂(xmax,zmax)| − |f∗(xmin,zmin)− fθ̂(xmin,zmin)|
∣∣.
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Moreover, since we know |f∗(x,z) − fθ̂(x,z)| is K-Lipschitz continuous, and by definition

∥(xmax,zmax)− (xmin,zmin)∥ ≤ 2b, we have

∥∥f∗(xmax,zmax)− fθ̂(xmax,zmax)| − |f∗(xmin,zmin)− fθ̂(xmin,zmin)|
∣∣≤ 2bK.

Therefore, it follows that

|f∗(xmax,zmax)− fθ̂(xmax,zmax)| − |f∗(xmin,zmin)− fθ̂(xmin,zmin)| ≤ 2bK.

Hence, we have

|f∗(xmax,zmax)− fθ̂(xmax,zmax)| ≤ |f∗(xmin,zmin)− fθ̂(xmin,zmin)|+2bK ≤
√
δN
S

+2bK,

where the last inequality follows from (EC.4). □

Proof of Proposition 3. To ease with notation, for a given (x0,z
∗(x0)), we define a dX + dZ

dimensional ball around it.

Definition EC.1. For some x0 that satisfies the conditions of Assumption 5, we define Br :=

{(x,z)∈RdX ×RdZ : ∥(x,z)− (x0,z
∗(x0))∥ ≤ r}.

First, we will show that for any z such that ∥z− z∗(x0)∥> r, z ̸= ẑ(x0). By Assumption 6 we

have c2− 2(c3 + r)K > 0.

Let δN is small enough such that c2 − 2(c3 + r)K > (
√

δN
c4

+
√

δN
LdX+dZ

c1r
dX+dZ

). Define Sr =∫
(x,z)∈Br

dµX,Z . Then we have

c2− 2(c3 + r)K > (

√
δN
c4

+

√
δN

LdX+dZc1r
dX+dZ

)≥ (

√
δN
c4

+

√
δN
Sr

). (EC.5)

The last inequality follows from Assumption 5 and the fact that∫
(x,z)∈Br

dµX,Z ≥ c1LdX+dZr
dX+dZ .

Now, consider some z ∈ [−1,1]dZ such that ∥z−z∗(x0)∥> r. Then ∥(x0,z)− (x0,z
∗(x0))∥> r. It

directly follows from the definition of ẑ(x0) and Lemma 1 that:

fθ̂(x0, ẑ(x0))≤ fθ̂(x0,z
∗(x0))≤ f∗(x0,z

∗(x0))+

√
δN
Sr

+2rK. (EC.6)

Moreover, from Assumption 6, we have that f∗(x0,z)− f∗(x0,z
∗(x0))≥ c2. Thus

f∗(x0,z
∗(x0))+

√
δN
Sr

+2rK ≤ f∗(x0,z)− c2 +
√
δN
Sr

+2rK. (EC.7)

Furthermore, given (EC.5), from Inequalities (EC.6) and (EC.7) we have:

fθ̂(x0, ẑ(x0))≤ f∗(x0,z)− c2 +
√
δN
Sr

+2rK < f∗(x0,z)−
√
δN
c4
− 2c3K. (EC.8)
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Now, we need to bound the error of fθ̂ at (x0,z). By Assumption 6 we know that a dX + dZ

dimensional ball of radius c3 around (x0,z) has a probability measure of c4. Hence we can use

Lemma 1, suggesting:

|fθ̂(x0,z)− f∗(x0,z)| ≤
√
δN
c4

+2c3K.

This would imply:

f∗(x0,z)−
√
δN
c4
− 2c3K ≤ fθ̂(x0,z)

Along with Inequality (EC.8) we finally have:

fθ̂(x0, ẑ(x0))≤ f∗(x0,z)− c2 +
√
δN
Sr

+2rK < f∗(x0,z)−
√
δN
c4
− 2c3K ≤ fθ̂(x0,z).

Thus, we have proven that for some z if ∥z−z∗(x0)∥> r, we have:

fθ̂(x0, ẑ(x0))< fθ̂(x0,z),

which proves we have:

∥ẑ(x0)−z∗(x0)∥ ≤ r.

In other words, the optimal decision output by the fitted NN is within a neighborhood of the actual

optimal decision. Next we find the smallest such neighborhood and show that they are getting

closer as δN decreases.

For some r1 < r, We want to show that for any z such that ∥z−z∗(x0)∥> r1, we have

fθ̂(x0,z
∗(x0))< fθ̂(x0,z).

Now consider z′ such that r1 < ∥z′−z∗(x0)∥ ≤ r. We know from Assumption 7 that:

f∗(x0,z
′)> f∗(x0,z

∗(x0))+ c5r
2
1.

At this point, we would like to lower bound fθ̂(x0,z
′) using f∗(x0,z

′). To that avail, consider a

(dX + dZ) dimensional ball Br2 that contains (x0,z
′) with radius r2 that is entirely within the

Euclidean distance r from (x0,z
∗(x0)). As long as r2 < r, we can always achieve this, since this

ball does not need to be centered around (x0,z
′). From Lemma 1 we have:

fθ̂(x0,z
′)≥ f∗(x0,z

′)−
√
δN
S
− 2r2K ≥ f∗(x0,z

′)−
√

δN

c1LdX+dZr
dX+dZ
2

− 2r2K, (EC.9)

where S =
∫
(x,z)∈Br2

dµX,Z . The last inequality follows from Assumption 5 and the fact that∫
(x,z)∈Br2

dµX,Z ≥ c1LdX+dZr
dX+dZ
2 .
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Next, we would like to also develop an upper bound on fθ̂(x0,z
∗(x0)). Thus, let us consider

another Euclidean ball around (x0,z
∗(x0)) with radius r2. Then, by Lemma 1 we know that

fθ̂(x0,z
∗(x0))≤ f∗(x0,z

∗(x0))+

√
δN

c1LdX+dZr
dX+dZ
2

+2r2K. (EC.10)

Then following Inequality (EC.10) and remembering that by construction we had ∥z′−z∗(x0)∥>
r1, form Assumption 7 it follows that:

fθ̂(x0,z
∗(x0))≤ f∗(x0,z

∗(x0))+

√
δN

c1LdX+dZr
dX+dZ
2

+2r2K <f∗(x0,z
′)−c5r21+

√
δN

c1LdX+dZr
dX+dZ
2

+2r2K.

(EC.11)

Therefore, if the following inequality holds

√
δN

LdX+dZc1r
dX+dZ
2

+2r2K ≤
c5r

2
1

2
, (EC.12)

for the right hand side of Inequality EC.10 and from Inequality (EC.9) we will have:

f∗(x0,z
′)−c5r21+

√
δN

c1LdX+dZr
dX+dZ
2

+2r2K ≤ f∗(x0,z
′)−

√
δN

c1LdX+dZr
dX+dZ
2

−2r2K ≤ fθ̂(x0,z
′).

This, along with Inequality (EC.11), proves that

fθ̂(x0,z
∗(x0))< fθ̂(x0,z

′).

To find the smallest r1 for which Inequality (EC.12) holds, we note that r1 will achieve its lowest

value (that satisfies Inequality (EC.12)) when r2 is set to be the minimizer of the left hand side

of Inequality (EC.12), which happens to be convex with respect to r2. To prove the convexity, we

notice that:

(

√
δN

LdX+dZc1r
dX+dZ
2

+2r2K)′ =−dX + dZ
2

√
δN

LdX+dZc1
r
− dX+dZ+2

2
2 +2K,

while:

(−dX + dZ
2

√
δN

LdX+dZc1
r
− dX+dZ+2

2
2 +2K)′ =

(dX + dZ)(dX + dZ +2)

4

√
δN

c1LdX+dZ

r
− dX+dZ+4

2
2 ≥ 0.

Hence, the best r2 would satisfy the first order condition of the left hand side of Inequality (EC.12)

with respect to r2. Therefore, we have:

r2 = (
(dX + dZ)

2δN
16K2c1LdX+dZ

)
1

dX+dZ+2 .



ec10 e-companion to Chen et al.: Using Neural Networks to Guide Data-driven Operational Decisions

Then by plugging r2 into the left hand side of Inequality (EC.12), we will have:√
δN

c1LdX+dZr
dX+dZ
2

+2r2K =
δN(dX + dZ)

4Kc1LdX+dZ

+2K(
(dX + dZ)

2δN
16K2c1LdX+dZ

)
1

dX+dZ+2 .

Therefore, setting

r1 =

√√√√
2

δN (dX+dZ)

4Kc1LdX+dZ

+2K( (dX+dZ)2δN
16K2c1LdX+dZ

)
1

dX+dZ+2

c5
,

completes the proof. We note that as long as δN is small enough such that:

(
(dX + dZ)

2δN
16K2c1LdX+dZ

)
1

dX+dZ+2 ≤

√√√√
2

δN (dX+dZ)

4Kc1LdX+dZ

+2K( (dX+dZ)2δN
16K2c1LdX+dZ

)
1

dX+dZ+2

c5
≤ r,

we have also ensured the ball Br2 containing (x,z′) was entirely within radius r of (x0,z
∗(x0)).

To finalize the proof, we note that since ∥ẑ(x0)−z∗(x0)∥ ≤ r1, it follows directly from Assump-

tion 3 that:

|f∗(x0,z
∗(x0))− f∗(x0, ẑ(x0))| ≤K∗

√√√√
2

δN (dX+dZ)

4Kc1LdX+dZ

+2K( (dX+dZ)2δN
16K2c1LdX+dZ

)
1

dX+dZ+2

c5
.

□
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Figure EC.2 MSE loss of the linear interpolation of small and large batch DNNs.

EC.4. Additional Investigations and Figures

In some applications of neural networks such as image classification, researchers have pointed

out that neural networks trained with SGD with large batch sizes may not generalize well (Keskar

et al. 2016, Li et al. 2018). The existing research suggests this could be because large batch methods

tend to converge to sharp minimizers of the training and testing loss functions (Keskar et al. 2016).

Given the importance of generalization bounds in our paper, we look into such potential sharpness

in Equation (6). Similar to Li et al. (2018), to visualize such sharpness, we consider two batch sizes

of 50 (small batch) and 1000 (large batch) in the newsvendor experiment. On a data set comprised

of 20,000 training data points and 5,000 test data points, we look at the converged DNNs of the

small batch SGD and that of the large batch one. Let θ̂S denote the parameters of the fitted DNN

with small batch, and θ̂L that of the large batch. Following Li et al. (2018), let fθ̂α be the neural

network with parameters α× θ̂L + (1−α)× θ̂S. Figure EC.2 portrays the training and validation

MSE loss of fθ̂α as a function of α varying for −.5 to 1.5. The result suggests that in the application,

such sharpness of loss function for neural networks trained with large batch size SGD may not be

present.

Figure EC.3 depicts the training and validation error as a function of training epochs for one

of the DNNs in Example 1 when training with 20,000 data points and validating with 5,000.

It portrays a robust effect across the experiments. The training error does not shrink to zero as

observed in other applications of DNNs (most probably because we use relatively small DNNs),

and further, the validation error tends to be slightly larger than the training error. In other words,

we do not observe benign overfitting documented in, e.g., Bartlett et al. (2020). This is because we

focus on the classic statistical learning regime in which the data size is not huge and the number

of parameters is significantly less than the number of data points. Moreover, the figure provides

evidence that in the newsvendor experiment, the SGD method used to train the DNNs does not

suffer from unstable convergence, as reported elsewhere in the literature (Ahn et al. 2022).
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Figure EC.3 Training versus Validation Loss.

Figure EC.4 The illustration of the effect of order quantity on predicted cost.

Figure EC.5 G/GI/z+G actual and predicted costs. Left is the actual cost, middle is the DONN prediction

and right is the PR prediction.

Figure EC.4 depicts the predicted newsvendor cost as a function of order quantity when all

other covariates are fixed (after training with 250 days of data for one of the DNNs). The figure

suggests a smooth and well-behaved objective function that strongly resembles the actual newsven-

dor objective function in Equation 12. Hence, if the true objective function does not suffer from

local optima, we expect the fitted DNNs prediction value to exhibit a similar trend. In Example 1

we optimize the DNNs from multiple starting points and all of the results are nearly identical

suggesting a lack of local optima issues.
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Figure EC.6 Prediction error of DNN and Polynomial Regression in the G/GI/z+G case.

Figure EC.5 presents the actual cost (left figure) and predicted cost (DONN center figure, PR

right figure) of the G/GI/z +G queue for various arrival rates and staffing levels. Figure EC.6

compliments Figure EC.5. The left-hand side figure suggests that when predicting the daily cost

of the call center staffing problem (Example 3) for the G/GI/z +G case, the error by the DNN

is quite small (generally less than 1%) and centered around zero throughout the tested ranges of

staffing levels and arrival rates. The error is never larger than 5% of the actual objective function

(portrayed in the left figure in Figure EC.5). The right figure in Figure EC.6 suggests the same

cannot be said about Polynomial Regression method that we tested and it may suffer from very

large errors in certain regions.

Figures EC.7a, EC.7b and EC.7c pertain to the predicted optimal cost using each methodology, in

the linear staffing case, increasing convex staffing and G/GI/z+G case, respectively. We emphasize

that these results are not simulated and are the values obtained by plugging each method’s optimal

staffing level into its approximation of Equation (21).
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(a) Increasing linear staffing case
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(b) Increasing convex staffing case
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(c) G/GI case
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Figure EC.7 The illustration of the predicted costs of each methodology in the queuing setting.

EC.5. Example

In this section, we look at an example on how to apply our framework in details. 2. Consider an

example with one scalar covariate x and one scalar decision variable z where f∗(x, z) = (x−z)2. We

simulate a large data set with 50,000 data points where x and z are uniformly and independently

drawn from [−10,10]. We train a DNN with L= 3, H = 3 and Swish activation function. The fitted

DNN has the following weight matrices and constant terms.

2 See https://github.com/saman-lagzi/Data-driven-Optimization-with-Neural-Networks for a detailed Python
implementation of Example EC.5 along with the generated dataset.

https://github.com/saman-lagzi/Data-driven-Optimization-with-Neural-Networks
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W1=

 −1.7124 1.7100
0.0081 −0.0080
1.7235 −1.7209

, W1z=

 1.7100
−0.0080
−1.7209

, b1=
 −1.68241.3022
−1.7184

,
W2=

 4.6518 1.9831 4.5889
0.2762 −1.0031 −0.2200
−1.4228 3.8292 −1.4879

, b2=
 2.3721
−2.2213
3.6026

 ,
W3=

 1.4862 −1.1508 −5.0347
−0.1134 −0.1684 −0.1325
4.0344 −0.6634 −1.0397

, b3=
 2.4532
0.1484
2.0276

 ,
W4=

 2.1921
0.8658
3.2429

, b4 = 0.9145.

First, we note that the derivative of the fitted DNN with respect to the decision variable z

at any given point, calculated through Proposition 1 is identical to the value calculated using

torch.autograd function in PyTorch. For example, at input point [1,1] both methods return a

gradient of
∂f

θ̂
∂z

(1,1) = 0.183. Moreover, the point x= 0 translates into 0.0014 when standardized

for input to the fitted DNN, and using both Proposition 1 and the torch.autograd in PyTorch we

have ẑ(0.0014) =−0.0055 where
∂f

θ̂
∂z

(0.0014,−0.0055) = 0.

To find ẑ(0.0014) = argminz fθ̂(0.0014, z), we use the scipy.optimize package from Python with

a starting point of z0 = −1.96. We provide the gradient
∂f

θ̂
(0.0014,z)

∂z
, using both our approach

highlighted in Proposition 1 and the torch.autograd function in PyTorch. While both methods lead

to ẑ(0.0014) = −0.0055, the execution time is 0.10 second for the first method and 0.12 second

for the latter. The faster execution time based on Proposition 1 is well within expectation as it

provides the closed form formula for
∂f

θ̂
(0.0014,z)

∂z
based on the weight matrices and constant terms

of fθ̂, however, torch.autograd is a generalized method and needs to apply the chain rule, layer by

layer to fθ̂ to find
∂f

θ̂
(0.0014,z)

∂z
.
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