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Sparse Principal Component Analysis (sPCA) is a cardinal technique for obtaining combinations of features,

or principal components (PCs), that explain the variance of high-dimensional datasets in an interpretable

manner. This involves solving a sparsity and orthogonality constrained convex maximization problem, which

is extremely computationally challenging. Most existing works address sparse PCA via methods—such as

iteratively computing one sparse PC and deflating the covariance matrix—that do not guarantee the orthog-

onality, let alone the optimality, of the resulting solution when we seek multiple mutually orthogonal PCs. We

challenge this status by reformulating the orthogonality conditions as rank constraints and optimizing over

the sparsity and rank constraints simultaneously. We design tight semidefinite relaxations to supply high-

quality upper bounds, which we strengthen via additional second-order cone inequalities when each PC’s

individual sparsity is specified. Further, we derive a combinatorial upper bound on the maximum amount

of variance explained as a function of the support. We exploit these relaxations and bounds to propose

exact methods and rounding mechanisms that, together, obtain solutions with a bound gap on the order of

0%–15% for real-world datasets with p= 100s or 1000s of features and r ∈ {2,3} components. Numerically,

our algorithms match (and sometimes surpass) the best performing methods in terms of fraction of variance

explained and systematically return PCs that are sparse and orthogonal. In contrast, we find that existing

methods like deflation return solutions that violate the orthogonality constraints, even when the data is

generated according to sparse orthogonal PCs. Altogether, our approach solves sparse PCA problems with

multiple components to certifiable (near) optimality in a practically tractable fashion.

Key words : Sparse Principal Component Analysis; Semidefinite Optimization; Practical Tractability

1. Introduction

Principal Component Analysis, or PCA, initially proposed by Pearson (1901), is one of the most

popular techniques used by data practitioners to reduce the dimension of a dataset (see also

Hotelling 1933, Eckart and Young 1936). Given a normalized and centered data matrix A∈Rn×p,

and its sample covariance matrix Σ := 1
n−1

AA⊤, they identify the top r principal components

(r≪ p) of Σ by solving:

max
U∈Rp×r

⟨UU⊤,Σ⟩ s.t. U⊤U = I, (1)
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and subsequently project the data matrix A onto the principal components U . As described by

Hotelling (1933), the principal components of Σ correspond to its r leading eigenvectors and can

efficiently be obtained via a greedy procedure where, at each iteration, the leading eigenvector

of Σ, u, is computed (e.g., by solving (1) with r = 1) and then the matrix Σ is updated (or

deflated) to eliminate the influence of u. PCA is now a cardinal unsupervised learning paradigm

that is practically useful across a range of fields, including pattern recognition (Naikal et al. 2011),

sequence classification (Tan et al. 2014), factor models in finance (Fan et al. 2016), and variable

selection in statistics (Wang et al. 2023).

Despite efficient modern implementations (Udell et al. 2016, Tropp et al. 2017), PCA suffers

from at least two limitations. First, it generates components that are dense linear combination of

the original features and hence uninterpretable (Rudin et al. 2022). Second, it yields inconsistent

estimates in high-dimensional settings where p/n→ α> 0 (Johnstone and Lu 2009). Accordingly,

several authors (such as Jolliffe et al. 2003, d’Aspremont et al. 2007) have proposed sparse PCA,

namely augmenting Problem (1) with a sparsity constraint. When r = 1, sparse PCA can be

formulated as the following optimization problem:

max
u∈Rp

⟨Σ,uu⊤⟩ s.t. ∥u∥22 = 1,∥u∥0 ≤ k, (2)

where ∥u∥0 denotes the cardinality of u or the size of its support: ∥u∥0 = | supp(u)|= |{j : uj ̸=

0}|. From a statistical recovery perspective, assuming the data is generated according to a ‘true’

covariance matrix of the form Σ⋆ = βvv⊤ + Ip, for some v with ∥v∥0 ≤ k and some β > 0, Amini

and Wainwright (2008) show that an exhaustive search algorithm can reliably identify the support

of v provided that the number of samples scales at the rate of k log(p) (n ≳ k log(p), in short),

which constitutes a significant improvement over the traditional PCA formulation that requires

n≳ p. On the other hand, they show that no method can succeed when n≲ k log(p), because of

information theoretic limitations. Berthet and Rigollet (2013) analyze the support recovery ability

of polynomial-time algorithms and show that no polynomial-time algorithm can succeed when

n≲ k2. Hence, there exists a regime, k log(p)≲ n≲ k2, where exhaustive search successfully detects

the support of v, while no polynomial-time algorithm can.

This gap motivated the development of tailored discrete optimization algorithms to efficiently

implement exhaustive search for sparse PCA with a single PC. Indeed, Problem (2) can be for-

mulated as a mixed-integer semidefinite optimization problem and solved via global optimization

techniques such as branch-and-bound (Berk and Bertsimas 2019), or branch-and-cut (Bertsimas

et al. 2022b). Confirming the statistical theory, certifiably optimal methods for (2) are typically

and often significantly more accurate than polynomial-time methods. For example, Berk and Bert-

simas (2019) compared the performance of seven popular sparse PCA heuristics across four UCI
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datasets (k ∈ {5,10}) and observed that no heuristic found an optimal solution across all datasets,

with some methods being routinely 20% suboptimal or more. On the other hand, exact methods

found the optimal solution in all cases on the same benchmark.

Unfortunately, no consensual formulation extends the formulation of Problem (2) to r > 1, and

there are no practically relevant algorithms with optimality guarantees that successfully address

this extension. Indeed, most algorithmic work for sparse PCA with one PC cannot be readily

generalized to the case with r > 1. This is because, in the multiple component case, the sparsity

constraint in (2) causes sparse principal components to no longer be eigenvectors of Σ and deflation

methods to no longer lead to orthogonal, let alone optimal, PCs (Mackey 2008). In other words,

the conventional PCA wisdom that multiple components can be computed one by one fails as soon

as sparsity is required. This observation calls for new methods for sparse PCA with multiple PCs

that optimize the components simultaneously. In response, in this paper, we propose a generic

optimization formulation that extends Problem (2) to r > 1, reformulate it as a sparsity and rank

constrained optimization problem, and design certifiably (near) optimal techniques to solve it.

1.1. A Generic Formulation for Sparse PCA with Multiple PCs

Perhaps the most natural extension of sparse PCA to multiple principal components, and the one

which we advocate in this paper, is to augment Problem (1) with a constraint on the number of

non-zero entries in the matrix U ,

∥U∥0 = |supp(U)|= |{(i, j)∈ [p]× [r] :Ui,j ̸= 0}| ≤ k.

This gives a formulation which enforces two desirable properties on the matrix U : orthogonality

(U⊤U = I), as present in the prototypical formulation of PCA (see, e.g., Horn and Johnson 1985);

and sparsity, to address interpretability and accuracy concerns (c.f. Rudin et al. 2022).

Formally, introducing a binary matrix Z to encode the support of U , we consider the problem:

max
Z∈{0,1}p×r

⟨E,Z⟩≤k

max
U∈Rp×r

⟨UU⊤,Σ⟩ (3)

s.t. U⊤U = I,Ui,t = 0 if Zi,t = 0, ∀i∈ [p], ∀t∈ [r],

where pr > k > r in order that the problem is well-posed and non-trivial.

Alternatively, instead of imposing an overall sparsity budget (k) on the entire matrix U , we

could restrict the size of the support of each column of U separately, i.e., impose ∥Ut∥0 ≤ kt ∀t∈ [r]

and adapt (3) accordingly. Indeed, optimizing this formulation over all integer combinations kt

which sum to k is equivalent to solving (3). We address both modeling options in this paper. We

remark that although Problem (3) is a very natural extension of Problem (2), we are not aware
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of any works that explicitly formulate sparse PCA with multiple components as an orthogonality

constrained problem with logical constraints; the formulation (3) is, to our knowledge, new.

From a generative model perspective, Problem (3) is consistent with a spiked covariance model

(see, e.g., Amini and Wainwright 2008, d’Aspremont et al. 2008), where the true covariance matrix

Σ⋆ can be decomposed as the sum of a sparse and low-rank term plus some noise:

Σ⋆ =
∑
t∈[r]

βtvtv
⊤
t +N , (4)

where vt are sparse vectors that may have non-overlapping, partially overlapping, or completely

overlapping support, and N is a noise matrix. This generative model is referred to as the spiked

Wishart model when N = Ip, and the spiked Wigner model when N is drawn from the Gaussian

orthogonal ensemble (see Ding et al. 2023, for a general theory of both families of assumptions).

1.2. Literature Review

To identify the extent to which the state-of-the-art for sparse PCA could be improved, we now

review methods that have been proposed to approximately solve sparse PCA with multiple PCs.

Methods for sparse PCA with r = 1: Several polynomial-time algorithms have been proposed

to obtain high-quality solutions to (2), including greedy heuristics (d’Aspremont et al. 2008), ℓ1

relaxations (Zou et al. 2006, d’Aspremont et al. 2007, Dey et al. 2022a), linear regression-based

estimators (Bresler et al. 2018, Behdin and Mazumder 2021), or thresholding techniques (Johnstone

and Lu 2009, Deshpande and Montanari 2014b). Note that the covariance thresholding method of

Deshpande and Montanari (2014b) provably recovers the support in the spiked Whishart model

whenever n ≳ k2, which is the best achievable rate for polynomial-time methods (Berthet and

Rigollet 2013). Over the past decade, various authors including Gally and Pfetsch (2016), Bertsimas

et al. (2022b), Li and Xie (2020), Kim et al. (2022) have shown that Problem (2) can be recast as

a mixed-integer semidefinite optimization (MISDO) problem and have derived both high-quality

solutions and valid dual bounds using this discrete optimization lens.

Deflation methods for sparse PCA: It is well known that an optimal solution to Problem (1)

can be obtained via a greedy deflation procedure. Consequently, Mackey (2008) propose a sparse

extension of this deflation scheme where, at each iteration, a sparse PC is computed (e.g., by

solving (2) or a relaxation) and Σ is updated by projecting out the eigenspace modeled by u:

Σnew = (I−uu⊤)Σ(I−uu⊤). Empirically, this method often performs reasonably well (see Berk and

Bertsimas 2019, Section 5.3), particularly when Problem (2) is solved to global optimality; see also

Hein and Bühler (2010), Bühler (2014) for a related deflation-based scheme. However, unlike in the

traditional case, deflation need not return an optimal solution to (3)—see Asteris et al. (2015) for a

simple four-dimensional example. Actually, deflation need not even return a feasible solution, since
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the orthogonality constraint is not explicitly imposed by the method, and is therefore often violated

in practice. Because they cannot guarantee the feasibility (i.e., orthogonality) of the returned

PCs, we consider deflation-based methods as heuristics methods for our sparse PCA problem with

multiple PCs. Furthermore, because of their iterative nature, deflation-based procedures can easily

control the sparsity of each component but usually struggle to enforce global sparsity.

Methods for generic sparse PCA: A second approach for solving Problem (3) is to apply a heuris-

tic which (approximately) optimizes all r PCs simultaneously, rather than sequentially. Among

others, Zou et al. (2006) propose an alternating minimization scheme for an ℓ1 relaxation of

Problem (3), Journée et al. (2010) propose an iterative conditional gradient method to identify

a local optimum of Problem (3) without the orthogonality constraints, Lu and Zhang (2012)

apply an augmented Lagrangian method which solves an ℓ1 relaxation of (3), Vu et al. (2013)

solve a semidefinite relaxation of Problem (3)’s ℓ1 relaxation, and Benidis et al. (2016) adopt a

minorization-maximization approach which also solves Problem (3) approximately. Unfortunately,

these approaches are often suboptimal if r= 1, and only provide candidate solutions, with no indi-

cation on the optimality gap. Indeed, none of these approaches explicitly control both the sparsity

and orthogonality constraints, and therefore none of the methods reviewed here are guaranteed

to return feasible solutions to (3). We should note that the covariance thresholding method of

Deshpande and Montanari (2014b) can be applied to the r > 1 case and can return PCs that are

asymptotically orthogonal. However, for a given dataset, it cannot guarantee the orthogonality of

the returned solution, as we observe empirically in Sections 5.2 and 5.3.

Row-Sparsity: Motivated by tractability concerns, another line of work studies a special case of

(3), namely row-sparse principal component analysis or principal component analysis with global

support. This formulation replaces the sparsity constraint on U with one requiring U has at most

k non-zero rows, as advocated by Boutsidis et al. (2011), Probel and Tropp (2011), Vu and Lei

(2013). This rewrites sparse PCA as performing a top-r SVD on a subset of k rows of Σ, i.e.,

max
z∈{0,1}p:e⊤z≤k

max
U∈Rp×r

⟨UU⊤,Σ⟩ s.t. U⊤U = Ir×r, Ui,t = 0 if zi = 0 ∀i∈ [p],∀t∈ [r]. (5)

Problem (5) is a special case of Problem (3) where each PC has the same support, which corre-

sponds to constraining Z such that zi,t = zj,t, ∀t ∈ [r] in (3), and dividing the “k” in (3) by r.

This restriction is advantageous from a computational perspective, but disadvantageous from a

statistical one. Indeed, because of the global support assumption, Problem (5) can be reformulated

as a mixed-integer semidefinite problem (see Bertsimas et al. 2022b, Li and Xie 2021, Bertsimas

and Kitane 2023, for derivations) and solved via relax-and-round (Dey et al. 2022b, Li and Xie

2021) or branch-and-bound (Del Pia 2023) strategies. However, from a generative model perspec-

tive (4), it is equivalent to making the very strong assumption that all leading eigenvectors vt have
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the same sparsity pattern. Indeed, if one PC vt is sparser than k (∥vt∥0 ≤ kt < k) or two PCs are

partially disjoint then Problem (5) will nonetheless estimate that the support of each ut is of size

k. Therefore, Problem (5) is vulnerable to consistently making false discoveries in the identification

of relevant features.

Disjoint Sparsity: Another relevant special case of sparse PCA with multiple PCs is when the

supports of all r columns of U are assumed mutually disjoint, as originally proposed by Asteris

et al. (2015). This gives rise to the formulation:

max
Z∈{0,1}p×r :

⟨E, Z⟩≤k,Ze≤e

max
U∈Rp×r

⟨UU⊤,Σ⟩ s.t. U⊤U = Ir×r, Ui,t = 0 if Zi,t = 0 ∀i∈ [p], t∈ [r], (6)

where E denotes a matrix of all ones of the appropriate dimension.

Note that (6) is a special case of (3) where we additionally require that
∑

t∈[r]Zi,t ≤ 1 ∀i ∈ [p],

i.e., that each feature can be included in at most one PC. Interestingly, this restriction allows (6)

to be recast as a MISDO and solved as such (c.f. Bertsimas et al. 2022b).

An obvious criticism of formulation (6) is that, in practice, we may wish to include a feature in

multiple PCs. Therefore, (6) is best thought of as a special case of sparse PCA. Indeed, if the true

generative model involves vectors vt with partially overlapping supports, then (6) could not recover

them. Nonetheless, as we explore in our numerical experiments (Section 5), disjoint solutions often

perform well when k is very small relative to p. This is because, in high-dimensional settings, there

are often several disjoint submatrices which are near-optimal in the rank-one case, and selecting

the leading PCs from each of them is often a reasonable approach in practice.

1.3. Contributions and Structure

To our knowledge, no existing algorithm solves sparse PCA problems with multiple components

and obtains certificates of optimality, except in the aforementioned special cases of row-sparsity or

disjoint support. Accordingly, we undertake a detailed study of Problem (3) in its full generality.

The main contributions of the paper are twofold. First, we propose a novel reformulation of

Problem (3) as a mixed-integer low-rank problem. Based on this reformulation, we derive tight,

yet tractable, semidefinite and second-order cone relaxations of (3) and propose valid inequalities

that strengthen the relaxations. Second, by leveraging our convex relaxations and a combinatorial

upper bound that generalizes the Gershgorin circle theorem to encompass multiple components,

we propose rounding techniques and an alternating minimization scheme to obtain high-quality

solutions. By combining strong relaxations and good solutions, we obtain bound gaps of 5% on

real-world instances of sparse PCA with multiple PCs where p= 100s or 1000s. We provide the first

reformulation of the sparse PCA problem (3) that is amenable to certifiably optimal algorithms

and admits tractable relaxations, while demonstrating its benefit compared with state-of-the-art
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heuristics. For example, on the pitprops dataset, with 6 PCs, we explain 81% of the variance with

an overall sparsity of 24 while previous studies could only explain less than 70% of the variance

with twice as many variables (see Section 5.2). The structure of the paper is as follows:

• In Section 2.1, we prove that rank constraints successfully model orthogonality constraints. Lever-

aging this result, we reformulate Problem (3) as a sparsity and rank constrained optimization

problem and derive a semidefinite relaxation. We propose valid inequalities which strengthen the

relaxation in Section 2.2, and additional valid inequalities which hold if we restrict the support

of each PC separately in Section 2.3. For larger instances (p≥ 100 in our experiments), we also

propose a tractable second-order cone relaxation in Section EC.4.2.

• In Section 3, we generalize the Gershgorin Circle Theorem to multiple PCs with sparsity con-

straints, and demonstrate that this generalization gives rise to a combinatorial upper bound on

Problem (3)’s objective value as a function of the support of the PCs.

• In Section 4.1, we develop an exact formulation of Problem (3) in the original space of decision

variables, which can be addressed via global branch-and-bound solvers, and propose valid in-

equalities which improve the tightness of the formulation. In Section 4.2, we develop a greedy

rounding strategy which rounds an optimal solution to one of the relaxations from Section 2

into r sparse PCs with disjoint support (hence, orthogonal). Moreover, we use the combinatorial

upper bound derived in Section 3 to improve the rounding procedure by breaking the symmetry

that may otherwise arise in our semidefinite relaxations. Finally, in Section 4.3, we consider a

Lagrangian relaxation of Problem (3) and design an alternating minimization strategy to ob-

tain near-orthogonal solutions by iteratively solving a sequence of sparse PCA problems with

r= 1. Compared with existing deflation-based techniques, we explicitly penalize the orthogonal-

ity violation at each iteration, with an increasing penalty parameter, thus converging towards

an orthogonal and typically high-quality solution.

• In Section 5, we investigate the quality of our semidefinite relaxations and feasible methods and

observe empirically that they collectively give small bound gaps in practice. First, we invoke our

convex relaxations to obtain high-quality upper bounds on UCI datasets in Section 5.1. We also

compare our approximate methods with existing methods from the literature. On both synthetic

and UCI datasets, we demonstrate in Sections 5.2-5.3 that our approaches, particularly the

alternating minimization scheme developed in Section 4.3, explain more of the variance in the

data and exhibit a lower false discovery/higher true discovery rate for a given sparsity budget.

Finally, in Section 5.4, we explore the relationship between the symmetry in the size of each PCs

sparsity budget and the variance explained, and demonstrate that the best asymmetric sparsity

budget tends to explain more variance than a symmetric sparsity budget with the same total

sparsity. For instance, on the Geographical dataset with 3 PCs, sparsity budgets of (12,12,6)

explain 6% more variance than (10,10,10), although both have a total sparsity of 30.
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1.4. Preliminaries and Notation

We let nonbold face characters such as u denote scalars, lowercase bold-faced characters such as

u denote vectors, uppercase bold-faced characters such as U denote matrices, and calligraphic

uppercase characters such as Z denote sets. If U is a matrix then Ut denotes the tth column vector

of U , and Ui,t denotes the (i, t)th entry of U . We let [p] denote the set of running indices {1, ..., p}.

We let e denote a vector of all 1’s, 0 denote a vector of all 0’s, and I denote the identity matrix,

with dimension implied by the context.

We also use an assortment of matrix operators. We let ⟨·, ·⟩ denote the Euclidean inner prod-

uct between two matrices, ∥ · ∥F denote the Frobenius norm, and Sp
+ denote the p × p positive

semidefinite cone; see Horn and Johnson (1985) for a general theory of matrix operators.

Further, we use some basic properties of orthogonal projection matrices. Let Yn := {Y ∈ Sn :

Y 2 = Y } denote the set of n × n projection matrices and Yk
n := {Y ∈ Yn : tr(Y ) ≤ k} denote

projection matrices with rank at most k: note that Rank(Y ) = tr(Y ) for any projection matrix Y .

Among others, the convex hulls of Yn and Yk
n are well-studied, as we now remind the reader:

Lemma 1. (Theorem 3 of Overton and Womersley 1992) Conv(Yn) = {P : 0 ⪯ P ⪯ I} and

Conv(Yk
n) = {P : 0⪯P ⪯ I, tr(P )≤ k}. Moreover, the extreme points of Conv(Yn) are Yn, and the

extreme points of Conv(Yk
n) are Yk

n.

Finally, we repeatedly reference two results on the convex hulls of convex quadratic functions

under logical constraints:

Lemma 2. (Lemma 4 of Günlük and Linderoth 2010) The convex closure of the set

S =

{
(x,z, t)∈Rn×{0,1}n×R : t≥

n∑
i=1

x2
i , e⊤z ≤ k, xi = 0 if zi = 0, ∀i∈ [n]

}
is given by

Sc =

{
(x,z,θ, t)∈Rn× [0,1]n×Rn×R : t≥

n∑
i=1

θi, e⊤z ≤ k, θizi ≥ x2
i ∀i∈ [n]

}
.

The above result is sometimes known as a perspective reformulation, since we strengthen the

quadratic constraint t≥
∑

i x
2
i by replacing x2

i with its perspective zi(xi/zi)
2.

Lemma 3. (Theorem 1 of Atamtürk and Gomez 2019) The convex closure of the set

T =
{
(x,z, t)∈Rn×{0,1}n×R : t≥ (e⊤x)2, e⊤z ≤ k, xi = 0 if zi = 0, ∀i∈ [n]

}
,

is given by

T c =
{
(x,z, t)∈Rn× [0,1]n×R : t ·min(1,e⊤z)≥ (e⊤x)2, e⊤z ≤ k

}
.

Lemma 3 is extremely useful when a single continuous variable depends upon multiple indicator

variables, as occurs in certain substructures of our reformulations of Problem (3).



Cory-Wright and Pauphilet: Sparse PCA With Multiple Components
9

2. Exact Formulations and Their Relaxations

In this section, we reformulate Problem (3) as a mixed-integer low-rank problem, study its semidef-

inite and second-order cone relaxations, and propose valid inequalities for strengthening them.

2.1. An Extended Formulation and Its Semidefinite Relaxation

Our sparse PCA formulation (3) is a mixed-integer quadratic optimization problem that exhibits

three primary sources of difficulty. First, as typical in PCA problems, Problem (3) maximizes a

convex quadratic function in the decision variable U . Second, there is a sparsity constraint, which is

computationally challenging to model, although recent evidence suggests that sparsity constraints

need not imply intractability (see, e.g., Bertsimas et al. 2020). Finally, and more consequentially,

there is an orthogonality constraint. To our knowledge, existing generic non-convex solvers such as

Gurobi cannot optimize over such orthogonality constraints at a scale of p= 100s of features.

To address the three aforementioned difficulties, we now derive an orthogonality-free reformula-

tion in five steps. First, we introduce the matrix Y =UU⊤ ⪯ I, thus linearizing the non-convex

objective. Second, we introduce rank-one matrices Y t to model the outer products of each column

of U , Ut, with itself, UtU
⊤
t . Third, we reassign the indicator variable Zi,t to model whether Y t

i,j,

rather than Ui,t, is non-zero. Fourth, by letting Y =
∑r

t=1Y
t, we observe that we can omit the

matrix U (and the constraints involving U) without altering the set of feasible Y ’s. Finally, we

use the fact that Y t
i,j is only supported on indices i, t where Zi,t > 0 to strengthen the constraint

Y ⪯ I to Y ⪯Diag (min (e,
∑

tZt)). Formally, we have:

Theorem 1. Problem (3) attains the same optimal objective value as the problem:

max
Z∈{0,1}p×r :
⟨E,Z⟩≤k

max
Y ∈Sp,Y t∈Sp

+

⟨Y ,Σ⟩ s.t. Y ⪯Diag

(
min

(
e,
∑
t

Zt

))
,Y =

r∑
t=1

Y t, (7)

tr(Y t) = 1, ∀t∈ [r], Y t
i,j = 0 if Zi,t = 0, ∀t∈ [r], i, j ∈ [p],

Rank(Y t) = 1, ∀t∈ [r].

Remark 1. We do not explicitly require Y ⪰ 0, since Y is the sum of positive semidefinite matrices

Y t. Indeed, omitting Y ⪰ 0 substantially improves the tractability of the relaxations of (7).

The proof of Theorem 1 requires an intermediate result (Proposition 1). Proposition 1 shows that

by imposing rank-one constraints on each Y t, the condition that the Y t’s are mutually orthogonal

can be reformulated as a linear semidefinite constraint. Independently, Proposition 1 is crucial for

designing our main algorithm in Section 4.3 (proof deferred to Section EC.1).

Proposition 1. Consider r matrices, Y t ∈ Sp
+, such that tr(Y t) = 1 and Rank(Y t) = 1. Then,∑

t∈[r]Y
t ⪯ I if and only if ⟨Y t,Y t′⟩= 0 ∀t, t′ ∈ [r] : t ̸= t′.
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Proof of Theorem 1 It suffices to show that for any feasible solution to (3), we can construct a

feasible solution to Problem (7) with an equal or greater payoff, and vice versa.

• Let (U ,Z) be a solution to Problem (3). Then, since Ui,t can only be non-zero if Zi,t = 1 and

U⊤U ⪯ I, it follows that UU⊤ ⪯Diag (min (e,
∑

tZt)). Therefore, (Y :=UU⊤,Y t :=UtU
⊤
t ,Z)

is a feasible solution to (7) with an equal cost.

• Let (Y ,Y t,Z) denote a feasible solution to Problem (7). Then, since each Y t is symmetric and

rank-one, we can decompose Y t as Y t = UtU
⊤
t for a vector Ut such that Ui,t = 0 if Zi,t = 0,

and concatenate these vectors Ut into a matrix U such that (U ,Z) has the same cost in (3) as

(Y ,Y t,Z) does in (7). Therefore, it remains to show that U⊤U = I. To see this, observe that

Y ⪯ I implies (U⊤
t Ut′)

2 = ⟨Y t,Y t′⟩= 0 if t ̸= t′ by Proposition 1. □

Theorem 1 provides a formulation that is less compact than (3) but contains rank constraints

rather than orthogonality constraints. Therefore, it is amenable to exact approaches for addressing

sparsity (Bertsimas et al. 2021) and rank (Bertsimas et al. 2022a) constraints.

Furthermore, this formulation already provides valid upper bounds on the objective of (3) by

relaxing the rank and sparsity constraints:

max
Z∈[0,1]p×r :
⟨E,Z⟩≤k

max
Y ∈Sp

+,Y t∈Sp
+ ∀t∈[k]

⟨Y ,Σ⟩ s.t. Y =
k∑

t=1

Y t,Y ⪯Diag

(
min

(
e,
∑
t

Zt

))
, (8)

tr(Y t) = 1, ∀t∈ [r], |Y t
i,j| ≤Mi,jZi,t, ∀i, j ∈ [p], t∈ [r],

where Mi,i = 1 and Mi,j = 1/2 if i ̸= j is an upper bound on |Y t
i,j|, since Y t was, before relaxing

the rank constraint, a rank one matrix (c.f. Bertsimas et al. 2022b).

2.2. Valid Inequalities for Strengthening the Extended Formulation

In this section, we propose valid inequalities which allow us to improve the quality of the convex

relaxation (8) introduced in the previous section. Formally, we have the following result:

Theorem 2. Let PStrengthened denote the optimal value of the following problem:

max
Z∈[0,1]p×r :
⟨E,Z⟩≤k

max
Y ∈Sp,Y t∈Sp

+,

w∈[0,1]p

⟨Y ,Σ⟩ (9)

s.t. Y ⪯Diag(w),Y =
k∑

t=1

Y t, tr(Y t) = 1,w≤Ze

|Y t
i,j| ≤Mi,jZi,t ∀i, j ∈ [p], t∈ [k],
p∑

j=1

Y t
i,j

2 ≤ Y t
i,iZi,t ∀i∈ [p], t∈ [r],

p∑
j=1

Y 2
i,j ≤ rYi,iwi ∀i∈ [p],
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p∑
j=1

|Yi,j|

)2

≤ kYi,iwi ∀i∈ [p],∑
i∈[p]:i ̸=j

Y 2
i,j ≤ (k− r+1)wj(wj −Yj,j), ∀j ∈ [p],

where wi models min(1,
∑r

t=1Zi,t), and the last four constraints are rotated second-order cone

constraints (see, e.g., Alizadeh and Goldfarb 2003).

Further, let PRelax denote the optimal value of Problem (8), and PExact denote the optimal ob-

jective value of Problem (7). Then, for any covariance matrix Σ and any sparsity and rank (k, r):

PExact ≤PStrengthened ≤PRelax.

Proof of Theorem 2 The first inequality holds by verifying that any feasible solution to (7) is

also a solution to (9) with equal cost. Indeed,
∑p

j=1 Y
t
i,j

2 ≤ Y t
i,iZi,t follows from aggregating the 2×2

minor constraints on Y t,
∑p

j=1 Y
2
i,j ≤ rYi,iwi follows from aggregating the 2×2 minor constraints on

Y and invoking Lemma 3; (Y t
i,j)

2 ≤ Y t
i,iY

t
j,j and invoking Lemma 2;

∑p

j=1 Y
t
i,j

2 ≤ Y t
i,iZi,t follows by

invoking Cauchy-Schwarz to derive
(∑p

j=1 |Yi,j|
)2

≤ kYi,i and invoking Lemma 3;
∑

i∈[p]:i ̸=j Y
2
i,j ≤

(k − r + 1)wj(wj − Yj,j) follows by aggregating the 2 × 2 minors of Diag(w) − Y and invoking

Lemma 3. We provide a full derivation of these valid inequalities in Section EC.2.

The second inequality holds by observing that (8) is a relaxation of (9). □

We remark that of the four groups of valid inequalities introduced in Problem (9), the first

inequality has been previously stated in the case of sparse PCA with one component by Bertsimas

and Cory-Wright (2020), Bertsimas et al. (2022b), Li and Xie (2020), but the three other groups

of valid inequalities are, to our knowledge, new.

2.3. Strong Inequalities with a Per-Component Sparsity Budget

In this section, we consider specifying a sparsity budget kt for each component Y t, in addition

to an overall sparsity budget k (with k≤
∑r

t=1 kt) The primary motivation for this additional

assumption is that, as we observe numerically in Section 5, specifying kt in addition to k often

yields substantially tighter convex relaxations. This assumption is also common in the literature

(e.g., Hein and Bühler 2010, Berk and Bertsimas 2019).

Formally, we have the following result (proof deferred to Section EC.3):

Proposition 2. Suppose that
∑

i∈[p]Zi,t ≤ kt in Problem (7). Then, the following inequalities hold:(
p∑

j=1

|Y t
i,j|

)2

≤ ktY
t
i,iZi,t ∀i∈ [p],∀t∈ [r], (10)∑

i∈[p]:i ̸=j

(Y t
i,j)

2 ≤ (kt− 1)Zj,t(Zj,t−Y t
j,j) ∀j ∈ [p]. (11)
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Interestingly, as we observe in Section 5.1, combining Problem (9) with Constraints (10)-(11)

often yields much tighter upper bounds than (9) alone, even if we take the worst-case upper bound

over all feasible splits kt’s which sum to k.

Now that we introduced the sparsity of each PC, kt, we can further tighten our semidefinite

relaxations by leveraging valid inequalities obtained in the case of a single PC. For example, for

each component t∈ [r], Kim et al. (2022) observe that the feasible set of all kt-sparse components

{u ∈Rp : ∥u∥0 ≤ kt} is permutation and sign invariant, i.e., for any feasible vector u, any vector

obtained by permuting or changing the sign of the coordinates of u is also feasible. Based on this

observation, they propose a lifted formulation for sparse PCA with a single PC, which to the best

of our knowledge, leads to the strongest known relaxation for sparse PCA with r= 1 which can be

solved in polynomial time. For the sake of concision, we denote (Y t,Zt) ∈ T (kt) the set of valid

inequalities comprised in their “T-relaxation” (see Problem (EC.5) in Section EC.4.1 for an explicit

formulation) and consider the following relaxation:

max
Z∈[0,1]p×r :
⟨E,Z⟩≤k,
w∈[0,1]p

max
Y ∈Sp

+,Y t∈Sp
+

⟨Y ,Σ⟩ (12)

s.t. Y ⪯Diag(w), Y =
k∑

t=1

Y t, tr(Y t) = 1, w≤Ze,

p∑
j=1

Y 2
i,j ≤ rYi,iwi ∀i∈ [p],

(
p∑

j=1

|Yi,j|

)2

≤ kYi,iwi ∀i∈ [p],∑
i∈[p]:i ̸=j

Y 2
i,j ≤ (k− r+1)wj(wj −Yj,j) ∀j ∈ [p],

(Y t,Zt)∈ T (kt) ∀t∈ [r].

Remark 2 (Strength). The relaxation of Problem (12) dominates that of Problem (9), even

when (9) is strengthened with the inequalities proposed in (10)-(11). Indeed, Kim et al. (2022,

Theorem 13) can be extended to show that (10)-(11) are redundant in (12). However, this result

only holds after including the inequalities we introduced in Section 2.2 which capture notions of

orthogonality between the Y t’s in (12). Without these inequalities, neither (12) nor (9) would

dominate the other relaxation.

Unfortunately, (12) cannot scale beyond p ≈ 100, at least with current technology, due to the

presence of multiple semidefinite matrices and constraints. To solve instances with p > 100 features,

we develop a more tractable, albeit less tight, version of the relaxation of (12) in Section EC.4.2,

by using second-order cone approximations of the cone of semidefinite matrices and eigenvector

cuts, as presented by Bertsimas and Cory-Wright (2020) and references therein.
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3. A Valid Bound via a Generalization of the Gershgorin Circle Theorem

The Gershgorin circle theorem (c.f. Horn and Johnson 1985, Chapter 6) bounds the largest eigen-

value of a matrix Σ∈ Sp
+ via the combinatorial function:

λmax(Σ)≤max
i∈[p]

∑
j∈[p]

|Σi,j|. (13)

For sparse PCA with a single PC, several authors (Berk and Bertsimas 2019, Bertsimas et al. 2022b)

have leveraged this result to derive an upper bound on (2) that depends on the support of the sparse

PC. Moreover, they observed that integrating this upper bound within mixed-integer algorithms

for solving (2) to optimality significantly accelerates these algorithms in practice. Motivated by

their observations, we now bound the objective value of (3) as a function of the support matrix Z.

One naive upper bound is to apply the circle theorem to each PC separately and bound the

objective of (3) via the sum of the largest eigenvalues of each sub-matrix of Σ induced by a

column of Z. However, this approach is too conservative for non-disjoint PCs, since it does not

take into account any information about overlap between the support of each PC. Indeed, with

fully overlapping support, this approach bounds the sum of the r largest eigenvalues of the relevant

submatrix by r times the largest eigenvalue of the relevant submatrix. Instead, the valid inequalities

we derive in this section rely on a new and non-trivial bound on the variance collectively explained

by r orthogonal PCs. Incidentally, our result leads to the following bound of the sum of the r

largest eigenvalues of a semidefinite matrix Σ:∑
t∈[r]

λt(Σ)≤ max
µ∈{0,1}p:e⊤µ≤r

∑
i,j∈[p]

µi|Σi,j|, (14)

which strictly generalizes (13) and could be of independent interest to the linear algebra community.

Formally, we derive the following generalization of the circle theorem bound, which holds with

multiple PCs and a fixed but arbitrary support pattern Z ∈ {0,1}p×r :
∑

i∈[p]Zi,t ≥ 1 ∀t ∈ [r].

Subsequently, we derive a mixed-integer linear representation of this bound:

Theorem 3. For any feasible support pattern Z ∈ {0,1}p×r :
∑

i∈[p]Zi,t ≥ 1 ∀t∈ [r], an upper bound

on the objective value attained by any matrix U such that Ui,t = 0 if Zi,t = 0 ∀i ∈ [p], ∀t ∈ [r] in

Problem (3) is given by:

max
µ∈{0,1}p×r :∑

i∈[p] µi,t=1,∀t∈[r],∑
t∈[r] µi,t≤1∀i∈[p]

∑
i,j∈[p]

∑
t∈[r]

µi,tZi,tZj,t|Σi,j|. (15)

Remark 3. Taking Z =E in Theorem 3 yields (14). If r= 1, this bound is equivalent to the circle

theorem, and if r= p it is equivalent to the (known) fact that
∑

t∈[p] λt(Σ) = tr(Σ)≤
∑

i,j∈[p] |Σi,j|.

More generally, it shows that the eigenvalues of a positive semidefinite matrix are majorized by

the absolute column sums (see Marshall and Olkin 1979, for a general theory of majorization).
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When the supports of each PC are disjoint, (15)’s upper bound is equivalent to applying the

circle theorem to each PC separately. Alternatively, with fully overlapping support, it reduces to

bounding the variance explained by the largest r column sums of the submatrix selected by Z. In

the case with partially overlapping support, it systematically interpolates between these bounds.

Proof of Theorem 3 Fix Z ∈ {0,1}p×r in Problem (3). Then, it follows directly from Theorem

1 that an upper bound on the objective value attained by any orthogonal matrix U such that

Ui,t = 0 if Zi,t = 0 is given by the following maximization problem:

max
Y t∈Sp

+ ∀t∈[r]

∑
t∈[r]

⟨Y t,Σ⟩ s.t. tr(Y t) = 1 ∀t∈ [r],
∑
t∈[r]

Y t ⪯ I, Y t
i,j = 0 if Zi,t = 0 ∀i∈ [p], t∈ [r].

To obtain a non-trivial mixed-integer linear representable upper bound as a function of the support

pattern Z, we now relax this problem. First, we observe that Y t
i,j = 0 if Zi,t = 0 and therefore we

can replace Σ in the objective with Diag(Zt)ΣDiag(Zt) without loss of generality, where Diag(Zt)

is a diagonal matrix with on-diagonal entries specified by the tth column of Z. Further relaxing

the problem by omitting the logical constraints then gives the following semidefinite upper bound:

max
Y t∈Sp

+ ∀t∈[r]

∑
t∈[r]

⟨Y t,Diag(Zt)ΣDiag(Zt)⟩ s.t. tr(Y t) = 1 ∀t∈ [r],
∑
t∈[r]

Y t ⪯ I.

Moreover, strong duality holds between this problem and its dual problem, namely:

min
U∈Sp

+,s∈Rr
tr(U)+e⊤s s.t. U + stI⪰Diag(Zt)ΣDiag(Zt) ∀t∈ [r].

To obtain a linear, rather than semidefinite, upper bound from this problem, we restrict U to be

a diagonal matrix and U +stI−Diag(Zt)ΣDiag(Zt) to be contained within the cone of diagonally

dominant matrices, which is an inner approximation of the positive semidefinite cone (see also

Barker and Carlson 1975, Ahmadi et al. 2017, for detailed studies of this inner approximation).

This gives the following upper bound:

min
u∈Rp

+,s
e⊤u+e⊤s s.t. ui + st ≥

∑
j∈[p]

Zi,tZj,t|Σi,j| ∀i∈ [p],∀t∈ [r].

Finally, we invoke strong duality and use the fact that some (binary) extreme point in the dual

problem must be dual-optimal, to verify that the above problem attains the same value as:

max
µ∈{0,1}p×r :∑

i∈[p] µi,t=1 ∀t∈[r],∑
t∈[r] µi,t≤1 ∀i∈[p]

∑
i,j∈[p]

∑
t∈[r]

µi,tZi,tZj,t|Σi,j|. □

Observe that the proof of Theorem 3 involves invoking strong duality and taking a finitely

generated inner approximation of the positive semidefinite cone. This is quite different to existing

proofs of the Gershgorin circle theorem, which usually leverage properties of eigenvectors and

therefore cannot easily be generalized. Thus, our proof technique could also be useful in other

contexts, e.g., in sparse canonical correlation analysis (Witten et al. 2009).
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To represent Theorem 3’s upper bound as a mixed-integer linear system, we introduce the aux-

iliary variables ρi,t ∀i ∈ [p], t ∈ [r] to model the column sum
∑

j∈[p]Zj,t|Σi,j| if µi,t = 1 and equal 0

if µi,t = 0. This allows us to represent Theorem 3’s upper bound via the following system,

θ=
∑
i,t

ρi,t,

ρi,t =

{∑
j∈[p]Zj,t|Σi,j| if µi,t = 1

ρi,t = 0 if µi,t = 0
∀i∈ [p], t∈ [r],∑

i∈[p]

µi,t = 1 ∀t∈ [r],∑
t∈[r]

µi,t ≤ 1 ∀i∈ [p],

µi,t ≤Zi,t ∀i∈ [p], t∈ [r],

µi,t ∈ {0,1} ∀i∈ [p], t∈ [r],

(16)

where θ is an upper bound on the largest objective value obtainable with a given support pattern

Z, and we omit the term Zi,t from the partial sum
∑

j∈[p]Zj,t|Σi,j| by imposing the constraint

µi,t ≤ Zi,t because if Zi,t = 0 then the (i, t)th column sum is zero and can be omitted from the

bound without loss of generality.

In the above system, we replace the maximization term in Problem (15) with the requirement

that there exists some ρ,µ such that the above system is feasible, because feasibility at value

θ implies that θ is indeed no larger than (15)’s upper bound. Therefore, we can implement this

system of inequalities within an optimization problem by requiring that ⟨Σ,Y ⟩ ≤
∑

i∈[p],t∈[r] ρi,t.

In the next section, we propose utilizing the above bound by combining it with a greedy rounding

mechanism (Section 4.2). We subsequently observe in numerical experiments that this improves

the performance of the rounding mechanism (Section EC.5.4), which reveals that in addition to

being theoretically interesting, the combinatorial bound derived in this section is practically useful.

4. Algorithmic Strategies

In this section, we propose three numerical strategies that provide high-quality solutions to Problem

(3). First, in Section 4.1, we propose a formulation of Problem (3) which is amenable to existing

spatial branch-and-bound codes. Second, in Section 4.2, we propose a rounding mechanism that

converts a solution to one of the convex relaxations from Section 2 into a certifiably near-optimal

solution to Problem (3). Moreover, we observe that it can be used to warm-start the branch-and-

bound scheme proposed in Section 4.1. Finally, in Section 4.3, we propose an iterative deflation

heuristic that exploits the relative maturity of sparse PCA technology in the rank-one case to

obtain high-quality PCs in the rank-r case for r > 1.
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4.1. Exact Non-Convex Formulation with Warmstart and Presolving

The sparse PCA problem with multiple PCs, either in its original formulation (3) or its equivalent

reformulation (7), can be seen as a non-convex mixed-integer quadratically constrained problem—

for (7), the rank constraints can be encoded as non-convex quadratic constraints (Y t)2 =Y t or Y t =

UtU
⊤
t . However, current non-convex MIQCP solvers cannot handle SDP variables and constraints.

Accordingly, we devise a strategy to solve our sparse PCA problem exactly using formulation (3).

Since feasible solutions are extremely challenging for spatial branch-and-bound solvers to recover

when quadratic equality constraints are imposed exactly, especially when these solutions are ir-

rational or of exponential size (c.f. Ramana 1997, Bienstock et al. 2023), we relax the constraint

U⊤U = I to require that it is satisfied to within an elementwise tolerance of ϵ. This gives:

max
Z∈{0,1}p×r :
⟨E,Z⟩≤k

max
U∈Rp×r

⟨UU⊤,Σ⟩ (17)

s.t. ∥U⊤U − I∥∞ ≤ ϵ,

Ui,t = 0 if Zi,t = 0, ∀i∈ [p], t∈ [r].

We set ϵ = 10−4/r2 so that the total constraint violation does not exceed 10−4. Problem (17) is

a non-convex quadratically constrained mixed-integer problem with pr continuous variables, pr

binaries, and r2 quadratic constraints.

In addition, we strengthen Problem (17) with valid inequalities derived from the ℓ1 relaxation of

sparse PCA, as explored by Dey et al. (2022b,a). Indeed, if the sparsity of each PC, kt, is specified

a priori, we have the valid inequalities

∥Ut∥1 ≤
√

kt, ∀t∈ [r]. (18)

Moreover, if k is specified but kt is not, we instead impose the second-order cone inequalities

∥Ut∥21 ≤
∑
i∈[p]

Zi,t, ∀t∈ [r], (19)

which allows us to model kt =
∑p

j=1Zj,t in a tractable fashion.

In practice, this approach allows MIQCP solvers to solve Problem (7) to optimality for pr < 100

(Section 5.2) and obtain high-quality solutions at larger problem sizes. Note that we avoid mixing

both sets of inequalities, as we observed in some preliminary numerical experiments that this

sometimes induces numerical instability. To further improve the performance of branch-and-bound,

we accelerate its convergence by using the solution generated by Algorithm 1 as a warm-start

everywhere except where explicitly stated otherwise.

As spatial branch-and-bound technology improves over time, we believe that it should be possible

to solve Problem (17) exactly at larger problem sizes. Indeed, recent works, e.g., Dong and Luo
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(2018) and Gupta et al. (2023), solve some quadratically constrained problems with up to 50

variables to optimality using custom branch-and-bound solvers, and Gupta et al. (2023) reports

that Gurobi’s off-the-shelf QCQP solver has achieved a machine independent speedup factor of

67.5 in less than two years, which suggests that larger instances of (20)–(17) may soon be in reach.

In Section EC.5.4, we consider the possibility of improving our non-convex formulation by com-

bining it with the combinatorial upper bound derived in Section 3. Unfortunately, introducing

this bound does more harm than good, because it introduces more decision variables into the for-

mulation, and the cost of introducing these variables outweighs the benefits of having a tighter

combinatorial bound. Therefore, we do not consider utilizing this bound within branch-and-bound

elsewhere in the paper. However, the combinatorial bound is useful in practice when combined

with a rounding scheme, as we discuss in the next section.

4.2. Feasible Solutions from the Relaxation via Greedy Disjoint Rounding

In this section, we develop a rounding mechanism that converts an optimal solution to a convex

relaxation (see Section 2) into a high-quality feasible solution. Historically, a useful strategy for

similar integer optimization problems has been to (a) solve a convex relaxation in (Z,Y ), (b)

greedily round Z⋆, the solution to the relaxation, to obtain a feasible binary matrix Ẑ that is close

to Z⋆, and (c) resolve for U under the constraints Ui,t = 0 if Ẑi,t = 0 (c.f. Bertsimas et al. 2022b).

Unlike in the case with a single PC, observe that the “resolve” step (c) is non-trivial. Namely,

solving for U for some arbitrary and fixed sparsity pattern Ẑ, i.e., solving

max
U∈Rp×r

⟨UU⊤,Σ⟩ s.t. U⊤U = I, Ui,t = 0 if Ẑi,t = 0, ∀i∈ [p], t∈ [r], (20)

cannot be done in closed form in general. When Ẑ corresponds to fully overlapping or fully disjoint

supports, however, we can obtain the solution of (20) via an eigenvalue decomposition of the

corresponding submatrix/submatrices.

Therefore, we propose in Algorithm 1 a relax-round-and-resolve strategy where the rounding

step (b) generates a solution with fully disjoint supports, i.e., where
∑

t∈[r] Ẑi,t ≤ 1, ∀i∈ [p].
The rounding step involves a weight parameter λ that controls the importance of obtaining a

solution that is close to the solution of the relaxation (λ = 0 corresponding to greedy rounding)

vs. obtaining a solution that maximizes the upper-bound (16). Numerically, we find that having

λ > 0 is particularly useful when the individual sparsity budgets kt are identical, in order to

break the degeneracy of our relaxation (in this case, the relaxation (12) returns a solution with

Z⋆
i,t =Z⋆

i,t′ , ∀t, t′). In particular, in Section EC.5.4, we observe on the pitprops dataset that across

r ∈ {2,3, . . . ,6} and kt ∈ {2,4, . . . ,10}, setting λ= 1 improves the average objective value obtained

by rounding by 20.14% compared to setting λ= 0 before initiating the rounding step. Accordingly,

we set λ= 1 throughout our numerical experiments, except where explicitly stated otherwise.
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Since Ẑ encodes for disjoint supports, any matrix U with support Ẑ automatically satisfies the

orthogonality constraint. We can obtain U solution of (20) by solving for each PC independently.

For each t ∈ [r], we consider the submatrix of Σ over the indices {i : Ẑi,t = 1}, extract its leading

eigenvector via SVD, and pad it with zeros to construct Ut. Although the restriction to disjoint

support is not without loss of optimality, we will observe numerically in Section 5 that disjoint

solutions are not particularly suboptimal for Problem (3) when k and r are small relative to p—an

observation already made by Asteris et al. (2015).

We close this section by remarking that Algorithm 1 could be adapted to exploit any spar-

sity structure which makes Problem (20) tractable; for instance, fully overlapping support, or a

combination of fully overlapping and fully disjoint supports.

Algorithm 1 A disjoint greedy rounding method for Problem (7)

Require: Covariance matrix Σ, rank parameter r, sparsity parameter k, weight λ

Compute Z⋆ solution of (12) or (EC.6)

Construct Ẑ ∈ {0,1}p×r solution of

max
Z∈{0,1}p×r

⟨Z,Z⋆⟩ +λθ s.t.

p∑
i=1

Zi,t ≥ 1, ∀t∈ [r], ⟨e,Z⟩ ≤ k,

r∑
t=1

Zi,t ≤ 1, ∀i∈ [p],

θ satisfying (16).

Compute U solution of (20) via SVD

return Z,U .

4.3. An Iterative Deflation Heuristic

In this section, we propose a local improvement technique which identifies near-optimal and near-

feasible solutions to Problem (3). The technique is based on the theory of Lagrangian relaxations

(see Geoffrion 1974), which argues that if a non-convex problem is decomposable as a sum of

easier (but still non-convex) subproblems with a coupling constraint, a good strategy is often to

penalize the coupling constraint in the objective and iteratively solve the non-convex subproblems

with different penalty multipliers on the coupling constraint. For example, Lu and Zhang (2012)

propose an augmented Lagrangian method for solving an ℓ1 relaxation of the sparse PCA, where

the sparsity constraints are replaced by an ℓ1 penalty in the objective.
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To apply this perspective to our sparse PCA problem with multiple PCs, we first rewrite (7)

without the variable Y =
∑

t∈[r]Y
t as:

max
Z∈{0,1}p×r :
⟨E,Z⟩≤k

max
Y t∈Sp

+

∑
t∈[r]

⟨Y t,Σ⟩ s.t.
∑
t∈[r]

Y t ⪯ I (21)

tr(Y t) = 1, ∀t∈ [r],

Y t
i,j = 0 if Zi,t = 0, ∀t∈ [r], i, j ∈ [p],

Rank(Y t) = 1, ∀t∈ [r].

Hence, Problem (21) is the sum of r rank-1 sparse PCA problems coupled via linear constraints

on their respective supports Zt and the semidefinite constraint
∑

t∈[r]Y
t ⪯ I. Therefore, if the

coupling constraint can be handled appropriately then this problem can be addressed via scalable

methods for rank-one sparse PCA, as reviewed in the introduction. To this end, we assume that a

sparsity budget kt is imposed for each component as in Section 2.3, i.e.,
∑

i∈[p]Zi,t ≤ kt, ∀t ∈ [r],

and invoke Proposition 1 to replace the orthogonality constraint with r(r − 1)/2 bilinear scalar

constraints ⟨Y t,Y t′⟩= 0, ∀t′ ̸= t. Finally, since ⟨X,W ⟩ ≥ 0 for any positive semidefinite matrices

X,W of the same size, we replace ⟨Y t,Y t′⟩= 0, ∀t′ ̸= t with ⟨Y t,Y t′⟩ ≤ 0, ∀t′ ̸= t without loss of

generality. Therefore, for any penalty λ> 0 we have the following valid Lagrangian relaxation:

max
Z∈{0,1}p×r :
⟨E,Z⟩≤k

max
Y ∈Sp

+,Y t∈Sp
+

∑
t∈[r]

⟨Y t,Σ⟩−λ
∑

t,t′∈[r]:t ̸=t′

⟨Y t,Y t′⟩ s.t. tr(Y t) = 1, ∀t∈ [r], (22)

Y t
i,j = 0 if Zi,t = 0, ∀t∈ [r], i, j ∈ [p],

Rank(Y t) = 1, ∀t∈ [r],∑
i∈[p]

Zi,t ≤ kt, ∀t∈ [r].

Given an index t and a sparsity budget kt, optimizing for Y t (with all other Yt′ , t
′ ̸= t, and λ fixed)

is equivalent to finding the leading kt-sparse PC of the matrix Σ− λ
∑

t′ ̸=tYt′ . Since tr(Y t) = 1,

we can add a constant term λoffsettr(Y
t) to the objective without impacting the optimal solution.

Accordingly, we pick λoffset > 0 to be sufficiently large that the matrix Σ− λ
∑

t′ ̸=tYt′ + λoffsetI is

positive semidefinite, as required by most sparse PCA algorithms for r= 1. In our implementation,

we solve these subproblems approximately using the truncated power method of Yuan and Zhang

(2013). Algorithm 2 proceeds by optimizing for each Y t sequentially and then iteratively increasing

the penalty parameter λ> 0 to improve the orthogonality of the resulting PCs.

Regarding the penalty parameter λ, we increase it progressively via update rules of the form

λℓ+1 ← λℓ + αℓδℓ. Typically, one can take δℓ equal to the gradient of the Langrangian with

respect to λ,
∑

t ̸=t′⟨Y t,Y t′⟩, or as a scaling factor between the two concurrent objectives,∑
t∈[r]⟨Y t,Σ⟩

/∑
t,t′∈[r]:t̸=t′⟨Y t,Y t′⟩ . In our implementation, we use the former during the first
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Algorithm 2 Lagrangian Alternating Minimization for Problem (3)

Require: Matrix Σ, rank parameter r, sparsity parameters k1, . . . , kr, number of iterations L

Require: Update scheme {λℓ}ℓ∈[L]

ℓ← 1

repeat

t← 1

repeat

λoffset← ϵ−λmin

(
Σ−λℓ

∑
t′∈[r]:t′ ̸=tYt′

)
Compute Y t (approximate) solution of

max
z∈{0,1}p:
e⊤z≤kt

max
Y ∈Sp

+

〈
Σ−λℓ

∑
t′∈[r]:t′ ̸=t

Yt′ +λoffsetI,Y

〉
s.t. tr(Y ) = 1,Rank(Y ) = 1,

Yi,j = 0 if zi = 0 ∀i, j ∈ [p].

t← t+1

until t > r

ℓ← ℓ+1

until ℓ > L

Return Y =
∑

t∈[r]Y
t

iterations (ℓ≤ ⌊0.15L⌋), and the latter (which is typically larger) at later stages. We fix αℓ = 0.01

for ℓ≤ ⌊0.75L⌋, and 0.05 otherwise. Finally, for each PC t ∈ [r], we set the initial value λt
0 to the

value of ⟨Y t,Σ⟩ at the first iteration.

5. Numerical Results

In this section, we evaluate the algorithmic strategies derived in the previous two sections, imple-

mented in Julia 1.9 using JuMP.jl 1.12.0, Gurobi version 10.0.0 to solve all non-convex quadrat-

ically constrained problems, and Mosek 10.1.11 to solve all conic relaxations. For the sake of

conciseness, we defer full details of our experimental setup to Section EC.5.1.

For the purpose of averaging results across datasets with different p’s, we report the proportion

of variance explained whenever we report an objective value. For a correlation matrix, this corre-

sponds to dividing by p, the number of features. We make our code freely available on GitHub at

github.com/ryancorywright/MultipleComponentsSoftware.

Description of Data Sources: We perform experiments on eleven datasets from the UCI database

in Sections 5.1-5.2 and 5.4, and experiments on synthetic data in Section 5.3 (see therein for details).

https://github.com/ryancorywright/MultipleComponentsSoftware
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Of the eleven datasets (described in detail in Section EC.5.2), six datasets are overdetermined

(meaning n> p), while five datasets are underdetermined (meaning p > n).

5.1. Performance of Upper Bounds

In this section, we compare the upper bounds from our extended formulation and permutation

invariant semidefinite relaxations—(9) with (10)-(11), hereafter “Extended-Ineq”, and (12), here-

after “Perm-Ineq”—against the bound obtained from the exact formulation (17) strengthened with

the ℓ1 valid inequalities (18)-(19) after a time limit of 7200s, hereafter “Branch-and-Bound”. We

also explore the scalability of these formulations, and their conic relaxations.

Benchmarking on Pitprops Data We first compare the bounds generated by each method—in

terms of proportion of correlation explained—on the UCI pitprops dataset (p= 13) as we vary

r ∈ {2,3} and k, in Table 1. We consider both imposing an overall sparsity budget alone (denoted

by “k,−”) and imposing a separate budget for each PC, denoted by “k, (k1, . . . , kt)”. We set the

Gurobi parameters FuncPieceError and FuncPieceLength to 10−6 and 10−5 respectively (their

minimum possible values; see Gurobi API’s documentation), and report the final upper bound.

Note that we do not provide Gurobi with a warm-start for this set of experiments.

On the instances presented in Table 1, we observe that branch-and-bound on our non-convex

formulation (17) terminates within minutes and provides the tightest (i.e., smallest) upper bound.

In comparison, on the same instances, the conic relaxations terminate in less than a second, while

providing upper bounds —especially, for “Perm-Ineq”— often only weaker at the third decimal.

However, further experiments on the same dataset show that Gurobi’s upper bound does not

scale as well as our conic relaxations when the number of PCs r increases (see Tables EC.4-EC.5

in Section EC.5.4). For r ∈ {4,5,6}, Gurobi’s upper bound after ten minutes routinely exceeds

1 (which is a trivial upper bound). On the other hand, the upper bound from the Perm-Ineq

relaxation is typically accurate to the first two decimal places on these instances. Accordingly, in

the rest of this paper, we only use our convex relaxations to certify the quality of a solution.

Regarding the two semidefinite relaxations “Extended-Ineq” and “Perm-Ineq”, we remind the

reader that Perm-Ineq cannot compute a bound if we specify an overall sparsity budget k only.

Extended-Ineq’s bound for a given k is much weaker than the worst-case bound over all possible

allocations of kt’s that sum to k. This can be explained by the strong second-order cone inequal-

ities (10)-(11) that can be added in the latter case. Therefore, time permitting, we recommend

computing the lower bound by solving the relaxations for all possible allocations of kt and taking

the worst-case bound. Furthermore, when individual sparsity budgets kt are given, we observe that

Perm-Ineq provides uniformly and sometimes significantly tighter bounds than Extended-Ineq. Ac-

cordingly, in the rest of the paper, we only consider instances of Problem (3) where we know both

k and kt and consider Perm-Ineq and its second-order cone relaxations, but not Extended-Ineq.

https://www.gurobi.com/documentation/current/
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Rank (r) Sparsity (k, kt) Extended-Ineq Perm-Ineq Branch-and-Bound

UB T(s) UB T(s) UB Nodes T(s)

2 4, - 0.297 20.28 - - 0.295 5,300 13.95
2 4, (1, 3) 0.267 20.58 0.267 1.97 0.267 1,600 4.03
2 4, (2, 2) 0.295 0.37 0.295 0.47 0.295 3,600 12.2

2 6, 0.384 0.78 - - 0.371 32,800 28.00
2 6, (1, 5) 0.339 0.44 0.339 0.25 0.339 10,300 6.15
2 6, (2, 4) 0.371 0.47 0.371 0.57 0.371 9,900 24.01
2 6, (3, 3) 0.361 0.42 0.360 0.45 0.360 18,300 34.80

2 8, - 0.451 0.75 - - 0.435 67,200 52.85
2 8, (1, 7) 0.384 0.46 0.384 0.4 0.384 332,500 38.79
2 8, (2, 6) 0.435 0.43 0.435 0.48 0.435 9,700 18.93
2 8, (3, 5) 0.420 0.52 0.418 0.65 0.418 36,300 56.20
2 8, (4, 4) 0.412 0.48 0.408 0.54 0.404 109,500 195.6

2 10, - 0.490 0.72 - - 0.458 611,000 391.6
2 10, (1, 9) 0.395 0.43 0.395 0.3 0.395 5,333,000 585.4
2 10, (2, 8) 0.457 0.53 0.457 0.5 0.457 13,200 14.61
2 10, (3, 7) 0.461 0.41 0.459 0.5 0.458 34,300 37.22
2 10, (4, 6) 0.458 0.44 0.455 0.6 0.451 364,600 306.5
2 10, (5, 5) 0.453 0.55 0.449 0.45 0.439 1,814,900 775.5

3 6, - 0.443 25.76 - - 0.435 201,300 324.2
3 6, (1, 1, 4) 0.380 42.92 0.380 5.02 0.380 9,000 11.60
3 6, (1, 2, 3) 0.412 0.94 0.412 1.54 0.412 13,600 10.49
3 6, (2, 2, 2) 0.435 0.68 0.435 2.65 0.435 22,400 27.36

3 9, - 0.570 2.10 - - 0.539 2,334,600 > 7200
3 9, (1, 1, 7) 0.461 0.80 0.461 1.21 0.461 41,300 10.58
3 9, (1, 2, 6) 0.512 0.84 0.512 0.59 0.512 15,200 8.08
3 9, (1, 3, 5) 0.497 0.71 0.495 0.80 0.495 95,900 27.18
3 9, (1, 4, 4) 0.489 0.65 0.485 0.54 0.481 329,500 142.6
3 9, (2, 2, 5) 0.539 0.78 0.539 0.73 0.539 70,400 52.83
3 9, (2, 3, 4) 0.532 0.77 0.531 0.98 0.530 161,400 171.0
3 9, (3, 3, 3) 0.520 0.88 0.512 0.58 0.511 735,900 680.0

Table 1 Performance of upper bounds on the pitprops dataset (p= 13), as we vary the overall sparsity (k), the

number of PCs (r) and the allocation of a sparsity budget to the different PCs. We denote the best performing

solution (least upper bound) in bold. Note that all results are normalized by dividing by the trace of Σ, i.e., p, the

number of features, to report results in terms of the proportion of variance explained.

Benchmarking on Larger-Scale Datasets We now investigate the scalability of the relaxation

Perm-Ineq and its second-order cone relaxations on larger UCI datasets. Table EC.2 (see Section

EC.5.3) compares the performance of the original semidefinite formulation (12), its second-order

cone relaxation (EC.6) and up to 50 PSD cuts (SOC-Cuts) as in Remark EC.1, and the second-order

cone relaxation alone (EC.6) (SOC). Note that if p > 1000 we only include sets of second-order

cone constraints with fewer than O(p2) members, to avoid excessively memory-intensive problems.

We observe that the PSD relaxation can be solved within a few minutes for p≈ 50 but quickly

requires a prohibitive amount of memory and time at higher dimensions. The SOC-Cuts relaxation

scales up to p≈ 300 and provides a high-quality upper bound, within 1− 2% of PSD. Without the

additional cuts, the SOC relaxation alone is weak when (k, r) are large relative to p. For example,
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for the pitprops dataset, when kt = (10,10,10), SOC returns an upper bound of 1.007 while the

proportion of correlation explain can trivially not exceed 1. However, SOC is still preferable in

high-dimensional settings, where the semidefinite formulation cannot be solved via an interior point

method due to excessive memory requirements, and the formulation SOC-Cuts provides a small

improvement in the upper bound at the price of significantly more runtime.

5.2. Performance of Feasible Methods

In this section, we numerically evaluate the quality of the three methods developed in Section 4 in

terms of their ability to recover approximately orthogonal and high-quality principal components

on real-world datasets. We first compare different implementation variants of our methods and

validate that they are capable of recovering feasible and near-optimal solutions to small-scale

sparse PCA problems with multiple PCs. We then compare our algorithms with four state-of-the-

art techniques on eleven UCI datasets. Since Algorithm 2 and all four benchmarked algorithms

from the literature require that the sparsity of each PC is specified separately, we consider this

formulation in this section (and fix kt = k/r for concision).

Benchmarking on Pitprops Data: We first investigate the performance of different variants

of the three methods presented in Section 4 on the pitprops dataset, in order to select the

best-performing variants to use for our remaining experiments. We consider: Branch-and-bound

with/without the combinatorial bound developed in Section 3 and with/without a warm-start

(from Algorithm 1 with λ = 1); Algorithm 1 with λ = 0 (so that it disregards the combinatorial

bound developed in Section 3) and with λ= 1; and Algorithm 2. Algorithm 1 involves solving a

convex relaxation from Section 2. We impose a two hour time limit for branch-and-bound. Based

on the scalability results presented in the previous section, we use different convex relaxations de-

pending on the dimensionality of the problem. Namely, for Algorithm 1, we use the full semidefinite

relaxation (12) if p ≤ 50, the SOC relaxation (EC.6) with 50 PSD cuts if p ≤ 200, and the SOC

relaxation (EC.6) otherwise.

Detailed results are reported in Tables EC.3–EC.5. Based on these results, we find that branch-

and-bound with a warm-start but without the combinatorial bound (16) performs best among the

four branch-and-bound implementations considered, and Algorithm 1 performs best with λ = 1.

We only consider these variants of branch-and-bound and Algorithm 1 in the rest of the paper.

It is worth noting that, on the same dataset, Lu and Zhang (2012) extensively compared the

performance of existing sparse PCA methods with r= 6 PCs. All six methods they benchmarked

required an overall sparsity of around 45–60 to explain less than 70% of the variance. The best

performing method could explain 69.55% of the variance with an overall sparsity of 46 (Lu and

Zhang 2012, Table 11). They concluded that “there do not exist six highly sparse, nearly orthogonal
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and uncorrelated PCs while explaining most of variance”. As reported in Tables EC.3–EC.5, with

r= 6 PCs and kt = 2, hence an overall sparsity of 12, solutions returned by any of our three main

methods explain 73%–75% of the variance. Algorithm 2 even provides a solution that explains 81%

of the variance with an overall sparsity of 6×4 = 24. That is to say, what was previously considered

by the community to be impossible can be done with the techniques in this paper, in seconds.

Benchmarking on Larger-Scale Datasets We now investigate the performance of Algorithm 1,

Algorithm 2, and branch-and-bound on eleven UCI datasets, whose dimension range from p= 13

(pitprops) to p= 1300 (micromass). We compare them with four state-of-the-art methods from

the literature. Namely,

• The branch-and-bound method of Berk and Bertsimas (2019) for optimally computing one sparse

PC, combined with the deflation scheme of Mackey (2008) to obtain multiple PCs, implemented

in Julia and made available at github.com/lauren897/Optimal-SPCA. According to Berk and

Bertsimas (2019), this method outperformed four others across three UCI datasets (r= 3, k= 5).

• The deflation method of Hein and Bühler (2010), using the custom deflation method

developed in Bühler (2014), implemented in Matlab and made publicly available at

github.com/tbuehler/sparsePCA, using default parameters. This approach was found by Berk

and Bertsimas (2019, Table 9) to be second-best of the methods in their comparison.

• The Lasso-inspired method of Zou et al. (2006), using the spca function in the elasticnet

package version 1.3, using default parameters. This approach is perhaps the most commonly

used one in practice, since it is distributed via the ubiquitous elasticnet package.

• The covariance thresholding method of Deshpande and Montanari (2014b), building upon the

works of Krauthgamer et al. (2015), which relies on applying a soft-thresholding operation first

on the entries of the covariance matrix and then on its r leading eigenvectors. We implemented

this method natively in Julia and release it as part of our codebase.

We report summary results in Table 2 (see also Tables EC.6–EC.12 in Section EC.5.5 for instance-

wise results). We remind the reader that the methods from the literature we benchmark against

do not provide any upper bound; we need Algorithm 1 to compute optimality gaps. Also, when

the returned solution violates the orthogonality condition, its objective value is not necessarily a

valid bound on the objective of (3) and the reported gap may be an optimistic estimate.

First, we observe that our methods are the only one to return PCs that are systematically orthog-

onal (with an average orthogonality violation < 10−3). Among them, we observe that Algorithm

2 and Algorithm 1 perform the best overall, with an average fraction of correlation explained of

0.199 and 0.195 respectively (8.84% and 9.64% optimality gap respectively). Excluding a minority

of small-scale instances with p≤ 34, branch-and-bound is largely dominated by Algorithms 1 and
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Method Obj. Rel. gap (%) Viol. T(s)

Algorithm 1 0.195 9.64% 0.000 2588
Algorithm 2 0.199 8.81% 0.000 61.38
Branch-and-bound 0.187 14.67% 0.000 > 7200
Berk and Bertsimas (2019) 0.205 3.66% 0.031 25.57
Deshpande and Montanari (2014b) 0.197 8.20% 0.094 12.05
Hein and Bühler (2010) 0.180 23.24% 0.023 0.20
Zou et al. (2006) 0.049 80.52% 1.458 4.26

Table 2 Average performance of methods across the 11 UCI datasets described in Table EC.1 with

k ∈ {5,10,20}, r ∈ {2,3} : k≤ p. Note that the average conic upper bound across these instances is 0.213.

2, both in terms of objective value and computational time. However, our conclusions should be

revisited as global non-convex solvers further improve.

Of the remaining methods, the method of Berk and Bertsimas (2019) performs the next best,

in terms of explaining a large proportion of the correlation (0.205) while not violating feasibility

significantly (0.031). Finally, the methods of Hein and Bühler (2010), Deshpande and Montanari

(2014b), Zou et al. (2006) arguably perform less well, because they repeatedly violate the orthog-

onality constraint, and explain less correlation than Algorithm 2 on average.

Finally, we remark that no one method performs best on every instance. The method of Berk

and Bertsimas (2019) performs best on instances where k is small relative to p and where disjoint

solutions are nearly optimal, in which case the orthogonality constraint can essentially be ignored

(avg. relative gap of 3.46% and avg. constraint violation of 0.002 over instances where p≥ 101).

Algorithm 2, on the other hand, performs best on instances where k is large relative to p and the

orthogonality constraint is important to account for (avg. relative gap of 3.93% and avg. constraint

violation of 0.000 over instances where p≤ 54). These results suggest that both k and the amount

of overlap between the optimal PCs impact the performance of each method, and motivate a

comparison on synthetic data, where we control the ground truth, in the next section.

5.3. Statistical Recovery on Synthetic Data

To evaluate the support recovery ability of each method, we now compare the performance of

Algorithms 1 and 2 against the same four methods from the literature on synthetic data. We

use a spiked Wishart model with multiple spikes, as in Deshpande and Montanari (2014a), Ding

et al. (2023), to generate data. Namely, we consider an underlying covariance matrix of the form

Σ= Ip +βx1x
⊤
1 +βx2x

⊤
2 , where β = 2 is the signal-to-noise ratio. The vectors x1,x2 ∈ {−1,0,1}p

are random ktrue-sparse orthogonal vectors. We also control the proportion of overlap between the

supports of x1 and x2, q ∈ [0,1] (q = 0 corresponds to disjoint support while q = 1 corresponds to

row-sparsity). In our experiments, we take p= 50, ktrue = 20 and vary q ∈ {0.1,0.5,0.9}. Finally,

we sample n observations from a multivariate centered normal distribution with covariance matrix
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Σ and construct the empirical covariance matrix Σ̂. We investigate the performance of different

methods as n increases (so that the empirical covariance matrix converges to the underlying truth,

Σ). We impose a limit of 100 iterations for Algorithm 2.

For each algorithm, we compute the fraction of variance explained and the feasibility violation

(i.e., the inner product between the two PCs computed). We average these performance metrics

over 20 random instances and report them in Figure 1. The method of Zou et al. (2006) is clearly

dominated by all other methods since it explains a significantly lower fraction of the variance,

while returning the least orthogonal vectors. In terms of objective value (left panel), we observe

that Algorithm 2, Berk and Bertsimas (2019), Hein and Bühler (2010) perform almost identically,

followed closely by covariance thresholding. They all explain a larger fraction of the variance than

Algorithm 1. However, we observe on the right panel that Algorithms 1 and 2 are the only methods

to return orthogonal PCs, across all values of n. In addition, the gap between the methods (and

especially the gap between the four best performing methods) seems to shrink as q increases, i.e.,

when the overlap between the support increases.

Since the data is synthetically generated, we can also evaluate the ability to recover the true

support. For two ktrue-sparse candidate PCs u1 and u2, we measure how well supp(u1)∪ supp(u2)

recovers the support of supp(x1)∪ supp(x2) in terms of accuracy and false detection rate:

A :=
|S ∩S⋆|
|S⋆|

,

with S = supp(u1)∪ supp(u2) and S⋆ = supp(x1)∪ supp(x2). This definition of support recovery

corresponds to the one used in statistical studies for sparse PCA with multiple PCs (e.g., Deshpande

and Montanari 2014b). Figure 2 (left panel) reports the value of A for different algorithms, including

Algorithms 1 and 2, as n increases. Since we do not explicitly control for the overlap between

the returned PCs (except for Algorithm 1), methods might differ in the size of the support they

return, |S|. Hence, to allow for a fair comparison, we also report |S| in the right panel of Figure 2.

Regarding A, we observe that Algorithm 1 detects a noticeably higher fraction of the true features

than other methods, which is not surprising given the fact that it returns disjoint supports. For

the remaining methods, their relative performance is aligned with their performance in terms of

fraction of variance explained (Figure 1, left panel). It is interesting to observe that Algorithm 1

does not systematically return a support of size 2ktrue. As the number of observations increases, it

detects that some of these features are not needed and sets more coordinates to zero than what is

encoded in the binary variable Z, leading to a support size |S| closer to |S⋆|.
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(a) Support overlap q= 0.1

(b) Support overlap q= 0.5

(c) Support overlap q= 0.9
Figure 1 Variance explained (left panel) and feasiblity violation (right panel) on synthetic instances of sparse PCA

with two 20-sparse PCs with partially overlapping support. Results are averaged over 20 replications.
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(a) Support overlap q= 0.1

(b) Support overlap q= 0.5

(c) Support overlap q= 0.9
Figure 2 Accuracy (left panel) and joint support size (right panel) for the recovery of supp(x1)∪ supp(x2), on

synthetic instances of sparse PCA with two 20-sparse PCs with partially overlapping support. Results

are averaged over 20 replications.
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5.4. Specifying the Sparsity Pattern: The Benefits of Asymmetry

While Problem (3) only requires a bound on the total sparsity, thus allowing flexibility on how this

budget is allocated across PCs, the worst-case semidefinite upper bound over all sparsity patterns

(k1, . . . , kr) :
∑

t∈[r] kt = k is often significantly tighter than the semidefinite relaxation of (3) with

a sparsity budget of k alone, as demonstrated in Section 5.1. Moreover, Algorithm 2, which as

demonstrated in Sections 5.2–5.3 is currently the best performing method for obtaining feasible

solutions to Problem (3), requires that (k1, . . . , kt) are individually specified. Collectively, these

observations suggest that it may be necessary to enumerate all allocations of the sparsity budget

k, which could be expensive. In our experiments, as is often done in practice, we restricted our

search to symmetric allocations. In this section, we revisit the symmetry assumption, investigate

when it is justified, and study the relative benefits of asymmetric sparsity budget allocations in

terms of obtaining equally sparse sets of PCs that explain more variance.

We consider the pitprops, ionosphere, geographical and communities UCI datasets with a

fixed number of PCs r= 3 and a given overall sparsity budget k ∈ {15,30}. Accordingly, in Figures

3 and EC.1 of Section EC.5.6, we depict the relationship between the proportion of correlation

explained in the data for each possible allocation of the sparsity budget (k1, k2, k3) : k1 + k2 + k3 =

k, p≥ k1 ≥ k2 ≥ k3 ≥ 1, as computed by Algorithm 2 with a limit of 200 iterations and the same

setup as in Section 5.2 (and the corresponding upper bound computed by Algorithm 1), against

the relative asymmetry in the sparsity budget, as measured by

KL((k1, k2, k3)||(k/3, k/3, k/3))
maxp≥k1≥k2≥k3:k1+k2+k3=kKL((k1, k2, k3)||(k/3, k/3, k/3))

,

where KL(p||q) :=
∑

i pi log(pi/qi) denotes the KL divergence.

Figure 3 Symmetry of sparsity budget allocation vs. proportion of correlation in the dataset explained for the

pitprops k = 15 (left) and ionosphere k = 30 (right) where r = 3. Note that we normalize the KL

divergence for k= 15 and k= 30 separately.
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We observe a general trend that more symmetric sparsity budget allocations tend to explain

more of the correlation in the data (both in terms of actual correlation explained by a solution

from Algorithm 2 and in terms of the upper bound). This suggests that, when time is a concern,

requiring that all PCs are equally sparse is a reasonable approach.

Table 3 compares the quality of Algorithm 2’s solution (a) when all PCs have the sparsity budget

of k/r and (b) the maximum possible correlation explained over all feasible allocations of the

sparsity budget k (computed by enumerating all possible allocations of the sparsity budget-18 such

allocations for k= 15, p≥ k and 74 allocations for k= 30, p≥ 30), together with the upper bound on

the proportion of correlation explained obtained in each case. We observe that in several instances

a perfectly symmetric allocation of the sparsity budget yields the highest quality solution, and in

all instances a perfectly symmetric allocation is within 7% in the worst-case (and within 1.75% in

average) of the best solution. In the enumerated case, we also compute the optimality gap between

the worst-case upper bound over all sparsity budget allocations, and the best solution found, and

observe that on average it is less than 1% over the instances considered. Note that this is a different

gap to the one reported in Section 5.2, where the upper bound is computed after assuming that

all PCs are equally sparse.

Dataset p r k Symmetric Enumerated Improvement (%)

k UB Obj. Viol. UB kt Obj. Rel. gap (%) Viol.

Pitprops 13 3 15 0.616 0.590 0.000 0.618 (6, 6, 3) 0.593 4.06% 0.000 0.47%
30 0.652 0.650 0.000 0.652 (10, 10, 10) 0.650 0.19% 0.000 0%

Ionosphere 34 3 15 0.297 0.286 0.000 0.299 (7, 6, 2) 0.299 0% 0.001 4.48%
30 0.411 0.400 0.000 0.412 (15, 8, 7) 0.402 2.34% 0.000 0.60%

Geographical 68 3 15 0.221 0.221 0.000 0.221 (5, 5, 5) 0.221 0% 0.000 0.00%
30 0.410 0.389 0.000 0.420 (12, 12, 6) 0.415 1.07% 0.000 6.29%

Communities 101 3 15 0.141 0.141 0.000 0.142 (6, 5, 4) 0.142 0.02% 0.000 0.48%
30 0.246 0.243 0.000 0.247 (11, 10, 9) 0.247 0.02% 0.000 1.71%

Table 3 Comparison of symmetric and enumerated solution computed by Algorithm 2 for a given sparsity

budget ktotal and given number of PCs (r= 3). We report the largest upper bound over all sparsity budget

allocations as our enumerated upper bound, and report the relative optimality gap between the best solution and

the worst-case bound. On average, considering asymmetric sparsity budget allocations improves the proportion of

correlation explained by 1.65%.

In summary, more symmetric allocations of the sparsity budget tend to perform better on aver-

age. Therefore, for a given sparsity budget k, a reasonable strategy could be to (a) run Algorithm

2 to compute a perfectly symmetric allocation, (b) compute an upper bound using (12) across all

possible allocations, and (c) run Algorithm 2 only on the asymmetric allocations for which the

upper bound from (b) allows for a significant potential improvement upon the symmetric solution.
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5.5. Summary and Guidelines From Numerical Experiments

In summary, our main findings from our numerical experiments are as follows:

• The sparsity constraint on U can either be imposed via an overall sparsity budget of ∥U∥0 ≤ k or

with component-specific sparsity constraints ∥Ut∥0 ≤ kt. As reflected in Section 5.1, constraining

each column separately yields substantially tighter conic relaxations. Moreover, some of the

best performing algorithms for obtaining feasible solutions, including our Algorithm 2, explicitly

require a constraint on the non-zero entries in each column. Therefore, constraining the sparsity

of each column separately should be preferred wherever feasible.

• If practitioners have an overall sparsity budget but are agnostic about the sparsity of each

column, a reasonable strategy is to require that all columns are equally sparse (i.e., set kt = k/r),

as shown in Section 5.4. In our experiments, considering asymmetrically sparse sets of PCs

increases the amount of variance explained by around 2% on average, at the price of increasing

the total runtime by an order of magnitude.

• Under a separate sparsity constraint on each column of U , our proposed combination of solving

a conic relaxation and either rounding to obtain a disjoint solution or running Algorithm 2 yields

certifiably near optimal solutions within minutes (resp. hours) for problems with hundreds (resp.

thousands) of features. Moreover, it substantially outperforms existing methods for sparse PCA

with multiple PCs in terms of obtaining higher-quality solutions (Section 5.2) with a lower false

discovery rate (Section 5.3). Therefore, it should be considered as a viable and more accurate

alternative for sparse PCA problems with multiple PCs.

6. Conclusion

In this paper, we studied the problem of selecting a set of mutually orthogonal sparse principal

components and proposed techniques which, for the first time, allow this problem to be solved to

certifiable (near) optimality with 100s or 1000s of features in minutes or hours. In particular, we

proposed a strong semidefinite relaxation (Section 2) which provides high-quality upper bounds

on the amount of variance explainable by any set of sparse and mutually orthogonal components,

we derived a new combinatorial upper bound on the objective value that depends only on the

sparsity pattern (Section 3) and a suite of numerically efficient algorithms (Section 4) which,

as demonstrated in Section 5, recover components that nearly match these upper bounds. This

contributes towards an ever-growing body of work demonstrating that computationally challenging

non-convex optimization problems can often be solved to provable (near) optimality in practice.
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Günlük O, Linderoth J (2010) Perspective reformulations of mixed integer nonlinear programs with indicator variables.

Mathematical Programming 124(1):183–205.

Gupta SD, Van Parys BP, Ryu EK (2023) Branch-and-bound performance estimation programming: A unified

methodology for constructing optimal optimization methods. Mathematical Programming .

Hein M, Bühler T (2010) An inverse power method for nonlinear eigenproblems with applications in 1-spectral

clustering and sparse PCA. Advances in Neural Information Processing Systems 23.

Horn RA, Johnson CR (1985) Matrix analysis (Cambridge University Press, New York).

Hotelling H (1933) Analysis of a complex of statistical variables into principal components. Journal of Educational

Psychology 24(6):417.

Jeffers JN (1967) Two case studies in the application of principal component analysis. Journal of the Royal Statistical

Society: Series C (Applied Statistics) 16(3):225–236.

Johnstone IM, Lu AY (2009) On consistency and sparsity for principal components analysis in high dimensions.

Journal of the American Statistical Association 104(486):682–693.

Jolliffe IT, Trendafilov NT, Uddin M (2003) A modified principal component technique based on the LASSO. Journal

of Computational and Graphical Statistics 12(3):531–547.
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Supplementary Material

EC.1. Proof of Proposition 1

Proof of Proposition 1 We decompose each matrix Y t into Y t =utu
⊤
t with ∥ut∥2 = tr(Y t) = 1.

Hence, for any pair (t, t′), ⟨Y t,Y t′⟩=u⊤
t Y

t′ut = (u⊤
t ut′)

2 ≥ 0.

(⇒) If Y :=
∑

t′∈[r]Y
t′ ⪯ I, then, for any t ∈ [r], u⊤

t Y ut ≤ ∥ut∥2 = 1. However, u⊤
t Y ut = 1 +∑

t′ ̸=t⟨Y t,Y t′⟩. Hence, for all t′ ̸= t, we must have ⟨Y t,Y t′⟩= 0.

(⇐) If ⟨Y t,Y t′⟩= 0 for all t′ ̸= t, then {ut}t∈[r] is an orthonormal family that can be completed

to form an orthonormal basis {ut}t∈[p]. For any t∈ [p], t′ ∈ [r], u⊤
t Y

t′ut = 1 if t= t′, 0 otherwise so

for any t∈ [p], u⊤
t Y ut ≤ ∥ut∥2 and Y =

∑
t′∈[r]Y

t′ ⪯ I. □

EC.2. A derivation of some valid inequalities

In this section, we derive the valid inequalities introduced in Theorem 2 from first principles. We

proceed in two ways. First, we derive inequalites which hold for each Y t separately. Second, we

observe that these inequalities can be generalized to also apply for Y =
∑

t∈[r]Y
t, and also derive

new inequalities which reflect the interaction of the sparsity and rank constraints.

Rank-One Valid Inequalities First, inspired by Bertsimas and Cory-Wright (2020), we observe

that in a feasible solution to Problem (8) the 2× 2 minors of Y t are certainly non-negative, i.e.,

(Y t
i,j)

2 ≤ Y t
i,iY

t
j,j, ∀i, j ∈ [p].

These constraints are implied by Y t ⪰ 0 and hence redundant in-and-of-themselves. However, we

can sum over all such constraints i∈ [p] and use tr(Y t) = 1, to obtain the constraint∑
i∈[p]

(Y t
i,j)

2 ≤ Y t
j,j, ∀j ∈ [p].

This constraint is a sum of redundant constraints and hence redundant. However, we can strengthen

it, by noting that it is a separable convex quadratic inequality under logical constraints. Indeed,

by Lemma 2, its convex closure under the logical constraints Y t
i,j = 0 if Zi,t = 0 is given by:

p∑
j=1

(Y t
i,j)

2 ≤ Y t
i,iZi,t, ∀i∈ [p], t∈ [k]. (EC.1)

Rank-r Valid Inequalities In the same spirit as in the rank one case, we can obtain strong valid

inequalities by summing the 2×2 minors of Yi,i =
∑r

t=1 Y
t
i,i. Indeed, since Y is positive semidefinite,

summing its 2× 2 minors implies that:
p∑

j=1

(Yi,j)
2 ≤ rYi,i.



ec2 e-companion to Cory-Wright and Pauphilet: Sparse PCA With Multiple Components

Moreover, since Yi,j =
∑r

t=1Y
t
i,j is a rank-one quadratic under logical constraints Y t

i,j = 0 if Zi,t = 0,

invoking Lemma 3 reveals that the convex closure of this quadratic constraint under these logical

constraints is given by the strengthened inequality:

p∑
j=1

(Yi,j)
2 ≤ rYi,imin

(
1,

r∑
t=1

Zi,t

)
, ∀i∈ [p]. (EC.2)

Second, in any feasible solution we have:

|Yi,j| ≤
r∑

t=1

|Y t
i,j|=

r∑
t=1

|Ui,t||Uj,t|.

Let us denote by kt the sparsity of the tth column ofU ,Ut . Then, it is well known that ∥Ut∥1 ≤
√
kt.

Therefore:
p∑

j=1

|Yi,j| ≤
p∑

j=1

(
r∑

t=1

|Ui,t|Uj,t|

)
≤

r∑
t=1

√
kt|Ui,t|.

Next, squaring both sides and invoking the Cauchy-Schwarz inequality reveals that(
p∑

j=1

|Yi,j|

)2

≤

(
r∑

t=1

U 2
i,t

)(
r∑

t=1

kt

)
= kYi,i.

Finally, noting that the expression
(∑p

j=1 |Yi,j|
)2

≤ kYi,i is a convex quadratic under logical con-

straints Y t
i,j = 0 if Zi,t = 0 and invoking Lemma 3 to obtain its convex closure yields the strengthened

second-order cone inequality(
p∑

j=1

|Yi,j|

)2

≤ kYi,imin

1,
∑
t∈[r]

Zi,t

 , ∀i∈ [p], t∈ [k]. (EC.3)

Third, in the same spirit, the 2× 2 minors of Y ⪯Diag
(
min

(
e,
∑

t∈[r]Zt

))
aremin

1,
∑
t∈[r]

Zi,t

−Yi,i

min

1,
∑
t∈[r]

Zj,t

−Yj,j

≥
min

1,
∑
t∈[r]

Zi,t

 δi,j −Yi,j

2

,

where δi,j = 1{i = j} is an indicator denoting whether i = j. Summing these constraints over all

indices i ̸= j and using k− r+1 as an upper bound on
∑

i∈[p]:i ̸=j

∑
t∈[r]Zi,t−Yi,i then yields

(k− r+1)

min

1,
∑
t∈[r]

Zj,t

−Yj,j

≥ ∑
i∈[p]:i ̸=j

Y 2
i,j, ∀j ∈ [p].

Finally, we recognize the right hand side as a sum of rank-one quadratic terms (
∑r

t=1 Y
t
i,j)

2 under

logical constraints Y t
i,j = 0 if Zj,t = 0 and invoke Lemma 3 to obtain the convex closure, giving:

(k− r+1)min

1,
∑
t∈[r]

Zj,t

 (min

1,
∑
t∈[r]

Zj,t

−Yj,j)≥
∑

i∈[p]:i ̸=j

Y 2
i,j ∀j ∈ [p]. (EC.4)

The result then follows by introducing a vector w such that wi models min(1,
∑

t∈[r]Zi,t) via

w ∈ [0,1]p, w≤Ze, and noting that we can replace Y ⪯Diag(min(e,Ze) with Y ⪯Diag(w).
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EC.3. Proof of Proposition 2

Proof of Proposition 2 First, let us observe that if
∑

i∈[p]Zi,t ≤ k and Y t =UtU
⊤
t is a rank-one

matrix such that ∥U∥2 = 1 then we have ∥U∥1 ≤
√
kt by norm equivalence. Therefore

p∑
j=1

|Y t
i,j| ≤

p∑
j=1

|Ui,t||Uj,t| ≤
√

kt|Ui,t|.

Squaring both sides of this inequality then yields(
p∑

j=1

|Y t
i,j|

)2

≤ ktY
t
i,i,

and combining Lemma 2 with this inequality yields (10).

Second, in the same spirit, since UtU
⊤
t is only supported on indices where Zt is non-zero, we

have that Y t ⪯Diag(Zt). This constraint implies the following 2× 2 minors are non-negative

(Zi,t−Y t
i,i)(Zj,t−Y t

j,j)≥ (δi,j −Y t
i,j)

2
, ∀i, j ∈ [p],

where δi,j = 1 if i= j and 0 otherwise. Summing these inequalities over indices i ̸= j and setting

kt− 1 as a valid upper bound on
∑

i∈[p]:i ̸=j Zi,t−Y t
i,i whenever Zj,t = 1 (as Y t

i,j = 0 if Zj,t = 0) gives

(kt− 1)(Zj,t−Y t
j,j)≥

∑
i∈[p]:i ̸=j

Y t
i,j

2
, ∀j ∈ [p].

Finally, using Lemma 2 to take the convex closure of this inequality under the logical constraints

Y t
i,j = 0 if Zj,t = 0 gives Equation (11). □

EC.4. Complete Formulations for the Semidefinite and Second-Order Cone
Relaxations

In this section, we provide the complete formulation for our SDP relaxation (12) as well as its

second-order cone approximation.

EC.4.1. Semidefinite Relaxation

In Section 2.3, we proposed a semidefinite relaxation, (12), in the case where a sparsity budget for

each PC, kt, is provided. In particular, this relaxation involves valid inequalities that Kim et al.

(2022) have derived in the single-PC case. To the best of our knowledge, their formulation leads to

the strongest known relaxation for sparse PCA with r= 1 which can be solved in polynomial time.

We note however that invoking a fixed but sufficiently large level of the sum-of-squares hierarchy

may give tighter relaxations, although we do not write these relaxations down as they involve very

large semidefinite constraints and are therefore intractable in practice (see also Dey et al. (2022a)

for an NP-hard relaxation that uses the ℓ1 norm).

In (12), we concisely denoted (Y t,Zt)∈ T (kt) the set of valid inequalities involved in Kim et al.

(2022)’s “T-relaxation”. We now elicit the constraints involved in the set T (kt) and provide the



ec4 e-companion to Cory-Wright and Pauphilet: Sparse PCA With Multiple Components

complete formulation of the SDP relaxation (12). For each t ∈ [r], we introduce an additional

variable F t to capture the entry-wise absolute value of Y t, and an additional matrix Gt which

contains a sorted version of F t. We obtain:

max
Z∈[0,1]p×r :
⟨E,Z⟩≤k,
w∈[0,1]p

max
Y ∈Sp

+,Y t,F t,Gt∈Sp
+,

T t∈Rp×p
+ ,

rt,D∈Rp−1,tt,D∈Rp×p−1
+

⟨Y ,Σ⟩ (EC.5)

s.t. Y ⪯Diag(w), Y =
k∑

t=1

Y t, w≤Ze,

p∑
j=1

Y 2
i,j ≤ rYi,iwi ∀i∈ [p],

(
p∑

j=1

|Yi,j|

)2

≤ kYi,iwi ∀i∈ [p],∑
i∈[p]:i ̸=j

Y 2
i,j ≤ (k− r+1)wj(wj −Yj,j) ∀j ∈ [p],

±Y t ≤F t ∀t∈ [r],

Gt
i,1 ≥Gt

i,2 ≥ . . .≥Gt
i,kt

∀i∈ [kt], ∀t∈ [r],

Gt
i,j = 0 ∀i > kt or j > kt, ∀t∈ [r],

tr(Y t) = tr(Gt) = tr(F t) = 1 ∀t∈ [r],

⟨E,Gt⟩= ⟨E,F t⟩ ∀t∈ [r],
j∑

i=1

Gt
i,i ≥ jrD,t

j +
n∑

j=1

tt,Di,j ∀j ∈ [p− 1], t∈ [r],

Y t
i,i ≤ rt,Dj + tt,Di,j ∀i∈ [p], j ∈ [p− 1], t∈ [r],

(F t
i,j)

2 ≤ T t
i,jT

t
j,i, T

t
i,i = F t

i,i ∀i∈ [p], j ∈ [i− 1], t∈ [r],∑
j∈[p]

T t
i,j =Zi,t,

∑
i∈[p]

T t
i,j = ktF

t
j,j ∀i∈ [p],∀j ∈ [p], t∈ [r],

0≤ T t
i,j ≤ F t

i,j ∀i, j ∈ [p], t∈ [r].

The additional variables rt,D and tt,D are introduced to enforce coupling constraints between the

diagonal entries of F t and Gt (Kim et al. 2022, eq. 44), while T t allows to couple F t with the

binary variables Z (Kim et al. 2022, eq. 50). In contrast to Kim et al. (2022), we explicitly require

that each F t is positive semidefinite (rather than that its 2× 2 minors are), in order to obtain a

stronger relaxation; we consider the 2× 2 minors when developing a more tractable relaxation in

the next section.
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EC.4.2. A Second-Order Cone Relaxation for High-Dimensional Settings

Unfortunately, (12) cannot scale beyond p = 100, at least with current technology, due to the

presence of multiple semidefinite matrices and constraints.

We now develop a more tractable, albeit less tight, version of the relaxation of (12) which scales

to p > 100 features. Namely, we replace all semidefinite constraints of the form X ∈ Sp
+ with the

non-negativity of their 2 × 2 minors, Xi,iXj,j ≥ X2
i,j ∀i, j ∈ [p], as presented by Bertsimas and

Cory-Wright (2020) and references therein. This gives the following second-order cone relaxation

of (12):

max
Z∈[0,1]p×r :

⟨E,Z⟩≤k,,w∈[0,1]p

max
Y ∈Sp,Y t,Ft,Gt∈Sp,

Tt∈Rp×p
+ ∀t∈[k],

rt,D∈Rp−1,tt,D∈Rp×p−1
+

⟨Y ,Σ⟩ (EC.6)

s.t. Y =
k∑

t=1

Y t, tr(Y t) = 1,w≤Ze ∀t∈ [r],

Y t
i,j

2 ≤ Y t
i,iY

t
j,j ∀i, j ∈ [p],∀t∈ [r],

(δi,j −Yi,j)
2 ≤ (wi−Yi,i)(wj −Yj,j) ∀i, j ∈ [p],∀t∈ [r],

p∑
j=1

Yi,j
2 ≤ rYi,iwi ∀i∈ [p]

(
p∑

j=1

|Yi,j|

)2

≤ kYi,iwi, ±Y t ≤Ft ∀i∈ [p], ∀t∈ [r],∑
i∈[p]:i ̸=j

Y 2
i,j ≤ (k− r+1)wj(wj −Yj,j) ∀j ∈ [p],

Y t
i,i ≤ tt,Di,j + rt,Dj ∀i∈ [p], j ∈ [p− 1], t∈ [r],

tr(Y t) = tr(Gt) = tr(Ft) = 1 ∀t∈ [r],

⟨E,Gt−Ft⟩= 0 ∀t∈ [r],

Gt
i,j

2 ≤Gt
i,iG

t
j,j ∀i, j ∈ [p],∀t∈ [r],

Gt
i,1 ≥Gt

i,2 ≥ . . .≥Gt
i,kt

∀i∈ [kt], ∀t∈ [r],

Gt
i,j = 0 ∀i > kt or j > kt ∀t∈ [r],
j∑

i=1

Gt
i,i ≥ jrD,t

j +
n∑

j=1

tt,Di,j ∀j ∈ [p− 1], t∈ [r],

F t
i,j

2 ≤ T t
i,jT

t
j,i, T

t
i,i = F t

i,i ∀i∈ [p], j ∈ [i− 1], t∈ [r],∑
j∈[p]

T t
i,j =Zi,t,

∑
i∈[p]

T t
i,j = ktF

t
j,j ∀i∈ [p],∀j ∈ [p], t∈ [r],

0≤ T t
i,j ≤ F t

i,j,F
t
i,j

2 ≤ F t
i,iF

t
j,j ∀i, j ∈ [p],∀t∈ [r].
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Remark EC.1. We can further improve the second-order cone relaxation (EC.6) without com-

promising its tractability by iteratively solving (EC.6) and imposing linear cuts of the form

⟨X,vv⊤⟩ ≥ 0,

for each matrix X which is positive semidefinite in (12), where v is a trailing eigenvector of X in

the most recent solution to the relaxation, as presented in Bertsimas and Cory-Wright (2020). In

our numerical experiments (Section 5), we consider a version of this scheme where we iteratively

impose one such cut corresponding to the most negative eigenvector in the matrices Y t,Gt, F t, and

Diag(w)−Y , and perform up to 50 iterations of this scheme, stopping early if the most negative

eigenvalue in all constraints is −10−4 or larger.

EC.5. Supplementary Numerical Results

This section provides supplementary results supporting the numerical experiments performed in

Section 5.

EC.5.1. Description of the Experimental Setup

All experiments were performed on MIT’s supercloud cluster (Reuther et al. 2018), which hosts

Intel Xeon Platinum 8260 processors and Intel Xeon Gold 6248 processors. For experiments where

p < 100, we use Platinum processors with a budget of 32 GB RAM, for experiments where p ∈
[100,250], use Platinum processors with a budget of 100 GB RAM, while for experiments where

p > 250, we use Gold processors with a budget of 370 GB RAM.

We also implement some existing algorithmic strategies from the literature, to provide a baseline

for the performance of our methods. To abide by software licensing restrictions, all existing strate-

gies from the literature were benchmarked using a MacBook Pro laptop with a 2.9GHz 6-Core

Intel i9 CPU, using 16 GB DDR4 RAM. Therefore, runtimes are not directly comparable across

strategies, although hardware differences should not cause significant deviations in runtime.

EC.5.2. Description of the Data Sources

We perform experiments on eleven datasets from the frequently used UCI database in Sections

5.1-5.2 and 5.4. Of the eleven datasets, six datasets are overdetermined (meaning n > p), while

five datasets are underdetermined (meaning p < n). Moreover, many existing works on sparse PCA

report results on similar datasets. For instance, the pitprops dataset was also considered by Jolliffe

et al. (2003), Zou et al. (2006), Journée et al. (2010) among others, and three of the datasets studied

by Berk and Bertsimas (2019) are included within our suite of datasets. Thus, our experimental

setup is broadly representative of both the underdetermined and overdetermined regimes, and the

literature. For completeness, we summarize the datasets we benchmark on and their dimensionality

in Table EC.1.
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Dataset p n

Pitprops 13 180
Wine 13 178
Ionosphere 34 351
Lung (Lung cancer) 54 32
Geographical (Geographical Original of Music) 68 1059
Communities (Communities and Crime) 101 1994
Arrhythmia 274 452
Voice (LSVT Voice Rehabilitation) 310 126
Gait (Gait Classification) 320 48
Gastro (Gastrointestinal Lesions in Regular Colonoscopy) 466 152
Micromass 1300 931

Table EC.1 Summary of the 11 datasets in our library, where n denotes the number of observations and p the

number of features. For conciseness, the names of certain datasets are abbreviated throughout. For these datasets,

we first state the abbreviation used, followed by their full names in brackets. Further, we report the dimensionality

of each dataset after preprocessing to remove all features with missing values. All datasets can be found in the UCI

database, except the pitprops dataset, which is due to Jeffers (1967) and distributed via the R package ElasticNet.

EC.5.3. Performance of Conic Relaxations
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Dataset Dim. (p) Rank (r) Sparsity (k, kt) PSD SOC-Cuts SOC

UB T(s) UB T(s) UB T(s)

Pitprops 13 2 10, (5, 5) 0.449 17.81 0.450 19.83 0.524 0.22
2 20, (10, 10) 0.507 0.59 0.516 16.33 0.672 0.23
3 15, (5, 5, 5) 0.616 0.87 0.619 29.53 0.761 0.42
3 30, (10, 10, 10) 0.652 0.72 0.678 26.61 1.007 0.46

Wine 13 2 10, (5, 5) 0.458 0.57 0.459 18.32 0.529 0.25
2 20, (10, 10) 0.554 0.55 0.56 16.25 0.722 0.22
3 15, (5, 5, 5) 0.632 0.79 0.634 25.49 0.762 0.52
3 30, (10, 10, 10) 0.665 0.74 0.689 26.66 1.083 0.57

Ionosphere 34 2 10, (5, 5) 0.209 8.22 0.209 118.9 0.221 1.45
2 20, (10, 10) 0.305 8.35 0.31 113.5 0.363 1.53
2 40, (20, 20) 0.378 9.84 0.391 89.17 0.504 1.85
3 15, (5, 5, 5) 0.297 12.74 0.298 272.1 0.331 4.39
3 30, (10, 10, 10) 0.411 11.93 0.419 206.8 0.545 4.49
3 60, (20, 20, 20) 0.464 13.38 0.495 291.8 0.757 5.95

Geographical 68 2 10, (5, 5) 0.147 81.93 0.147 67.86 0.147 17.45
2 20, (10, 10) 0.294 59.82 0.294 53.28 0.294 19.32
2 40, (20, 20) 0.432 101.1 0.433 652.9 0.567 13.08
3 15, (5, 5, 5) 0.221 93.60 0.221 82.31 0.221 28.63
3 30, (10, 10, 10) 0.410 79.02 0.41 2292 0.441 29.76
3 60, (20, 20, 20) 0.520 111.4 0.529 1241 0.852 29.02

Communities 101 2 20, (10, 10) 0.169 307.7 0.169 2583 0.175 44.83
2 40, (20, 20) 0.263 373.9 0.268 2431 0.286 40.13
3 15, (5, 5, 5) 0.141 441.6 0.141 2122 0.144 80.3
3 30, (10, 10, 10) 0.245 564.2 0.246 4142 0.262 65.25
3 60, (20, 20, 20) 0.378 447.3 0.386 4581 0.429 54.71

Arrhythmia 274 2 10, (5, 5) - - 0.031 36830 0.031 54.71
2 20, (10, 10) - - 0.052 37140 0.055 456.0
2 40, (20, 20) - - 0.080 39940 0.086 445.8
3 15, (5, 5, 5) - - 0.046 71670 0.047 671.8
3 30, (10, 10, 10) - - 0.076 74840 0.083 812.2
3 60, (20, 20, 20) - - 0.118 69390 0.129 803.7

Micromass 1300 2 10, (5, 5) - - - - 0.008 1089
2 20, (10, 10) - - - - 0.015 13620
2 40, (20, 20) - - - - 0.027 9213
3 15, (5, 5, 5) - - - - 0.012 7953
3 30, (10, 10, 10) - - - - 0.023 19640
3 60, (20, 20, 20) - - - - 0.043 18630

Table EC.2 Performance of bounds across UCI datasets. All bounds are normalized by dividing by p= tr(Σ),

i.e., the number of features, to report in terms of the proportion of correlation explained. The notation ”-” denotes

that an instances could not be solved using the provided memory budget, namely 32 GB for instances where

p≤ 101, 100 GB for instances where p∈ [102,250], 370 GB for instances where p > 250, and a time budget of 2 days.

EC.5.4. Preliminary Experiments With Pitprops Dataset

We now provide instancewise results for different variants of our methods on the pitprops dataset.

In particular, we consider invoking the valid inequalities (16) derived in Section 3 to improve

branch-and-bound further. When we do so, we also invoke a branching callback each time we expand

a node, to determine whether the subtree rooted at this node can improve upon the incumbent
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solution. This is justified by the fact that, at each node, some variables Zi,t have been fixed to 0,

some have been fixed to 1, and some have not been fixed. Accordingly, we can compute an upper

bound on any solution with the same fixed variables by relaxing the orthogonality constraint and

applying the Gershgorin circle theorem to each component separately; see Bertsimas et al. (2022b,

Section 2.4) for a discussion of this callback in the rank-one case. In particular, if the Gershgorin

bound for a given subtree is weaker than an incumbent solution, then this subtree does not contain

any optimal solutions and we can prune it from our search tree.

r kt Alg. 1 λ= 0 Alg. 1 λ= 1 Alg. 2

UB Obj. Viol. T(s) Obj. Viol. T(s) Obj. Viol. T(s)

2 2 0.295 0.295 0 20.64 0.295 0 0.43 0.295 0 7.54
2 4 0.408 0.378 0 20.80 0.404 0 0.52 0.400 0 4.94
2 6 0.477 0.437 0 20.62 0.443 0 0.62 0.452 0 6.77
2 8 0.501 0.375 0 20.93 0.446 0 0.640 0.476 0 7.83
2 10 0.507 0.463 0 21.01 0.464 0 0.72 0.500 0 6.36

3 2 0.435 0.435 0 20.81 0.435 0 0.71 0.424 0 9.98
3 4 0.572 0.525 0 21.03 0.555 0 1.01 0.551 0 7.24
3 6 0.641 0.463 0 23.03 0.569 0 0.92 0.608 0 10.21
3 8 0.652 0.580 0 20.94 0.569 0 1.06 0.638 0 8.88
3 10 0.652 0.392 0 20.81 0.569 0 1.39 0.650 0 11.43

4 2 0.554 0.554 0 21.22 0.554 0 0.97 0.554 0 11.05
4 4 0.704 0.470 0 21.07 0.657 0 3.25 0.657 0.003 13.81
4 6 0.737 0.537 0 22.22 0.644 0 2.07 0.697 0.002 12.14
4 8 0.737 0.553 0 22.71 0.644 0 3.48 0.720 0 11.84
4 10 0.737 0.508 0 21.03 0.644 0 3.16 0.736 0 11.22

5 2 0.657 0.455 0 20.87 0.648 0 1.57 0.647 0 12.23
5 4 0.795 0.586 0 21.27 0.709 0 8.12 0.743 0 15.6
5 6 0.807 0.538 0 23.47 0.713 0 16.54 0.779 0.016 13.95
5 8 0.807 0.563 0 21.02 0.713 0 24.78 0.800 0.004 17.94
5 10 0.807 0.525 0 21.97 0.713 0 7.39 0.807 0.001 15.01

6 2 0.749 0.581 0 21.45 0.749 0 4.87 0.746 0 12.61
6 4 0.866 0.576 0 21.23 0.780 0 54.2 0.807 0.035 23.08
6 6 0.870 0.617 0 23.45 0.780 0 12.54 0.839 0.044 15.63
6 8 0.870 0.628 0 21.69 0.780 0 8.45 0.849 0.011 17.20
6 10 0.870 0.664 0 21.12 0.780 0 86.88 0.866 0.006 25.91

Avg 0.668 0.508 0 21.46 0.610 0 9.85 0.649 0.005 12.42

Table EC.3 Performance of Algorithms 1 and 2 on the pitprops dataset (p= 13) using the experimental setup

laid out in Section 5.2. We denote the best-performing solution (in terms of the proportion of variance explained

minus the total orthogonality constraint violation) in bold. We report the semidefinite upper bound obtained from

solving Problem (12) as part of our analysis of Algorithm 1 with λ= 0, but do not report it as part of our analysis

of Algorithm 1 with λ= 1 to avoid redundancy. Note that kt denotes the sparsity of each individual component,

meaning a set of r PCs have a collective sparsity budget of ktr, and that all objective values are reported in terms

of the proportion of variance explained by dividing by p, the number of features.
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r kt Branch-and-Bound Branch-and-Bound with (15)

UB Obj. Viol. Nodes T(s) UB Obj. Viol. Nodes T(s)

2 2 0.295 0.295 0 5100 10.9 0.295 0.295 0 3557 19.42
2 4 0.404 0.404 0 99800 59.49 0.404 0.404 0 109485 238.48
2 6 0.514 0.456 0 1405600 > 600 0.521 0.452 0 1038059 > 600
2 8 0.595 0.467 0 1266600 > 600 0.604 0.465 0 1413722 > 600
2 10 0.633 0.486 0 640900 > 600 0.635 0.488 0 848164 > 600

3 2 0.435 0.435 0 22400 17.92 0.435 0.435 0 17924 176.79
3 4 0.717 0.530 0 542700 > 600 0.753 0.524 0 222894 > 600
3 6 0.846 0.551 0 518100 > 600 0.879 0.560 0 387403 > 600
3 8 0.933 0.585 0 564200 > 600 0.935 0.570 0 612382 > 600
3 10 0.962 0.627 0 383100 > 600 0.963 0.595 0 455231 > 600

4 2 0.566 0.554 0 783600 > 600 0.774 0.554 0 36000 > 600
4 4 1.089 0.636 0 269900 > 600 1.114 0.610 0 203231 > 600
4 6 1.213 0.642 0 268300 > 600 1.226 0.617 0 201271 > 600
4 8 1.267 0.648 0 251800 > 600 1.266 0.699 0 308274 > 600
4 10 1.289 0.713 0 163200 > 600 1.289 0.714 0 266105 > 600

5 2 0.946 0.641 0 702700 > 600 1.073 0.603 0 44795 > 600
5 4 1.430 0.697 0 215200 > 600 1.468 0.652 0 113951 > 600
5 6 1.555 0.692 0 199400 > 600 1.555 0.686 0 152744 > 600
5 8 1.592 0.761 0 191100 > 600 1.610 0.714 0 156767 > 600
5 10 1.616 0.801 0 147500 > 600 1.620 0.804 0 108311 > 600

6 2 1.323 0.702 0 323700 > 600 1.430 0.698 0 43880 > 600
6 4 1.822 0.761 0 139900 > 600 1.807 0.711 0 93572 > 600
6 6 1.903 0.771 0 114000 > 600 1.907 0.776 0 43754 > 600
6 8 1.932 0.846 0 141700 > 600 1.946 0.833 0 62657 > 600
6 10 1.947 0.868 0 31200 > 600 1.947 0.864 0 68429 > 600

Avg 1.113 0.623 0 375700 533.28 1.138 0.613 0 280500 547.62

Table EC.4 Performance of branch-and-bound without warmstart on the pitprops dataset (p= 13) using the

experimental setup laid out in Section 5.2, except we use a time limit of 600s for branch-and-bound. We report the

performance of branch-and-bound with and without the upper bound developed in Section 5.1 separately. The

column “UB” reports the upper bound obtained by the branch-and-bound scheme at the time limit. We use > 600

to denote an instance where branch-and-bound terminates at the 600s time limit. We denote the best-performing

solution (in terms of the proportion of variance explained minus the total orthogonality constraint violation) in bold

(cont.).



e-companion to Cory-Wright and Pauphilet: Sparse PCA With Multiple Components ec11

r kt Branch-and-Bound (warm-start) Branch-and-Bound with (15) (warm-start)

UB Obj. Viol. Nodes T(s) UB Obj. Viol. Nodes T(s)

2 2 0.295 0.295 0 6400 10.90 0.295 0.295 0 143 19.42
4 0.404 0.404 0 75200 59.49 0.404 0.404 0 88735 238.5
6 0.521 0.453 0 1051700 > 600 0.524 0.445 0 744000 > 600
8 0.598 0.463 0 826700 > 600 0.604 0.462 0 1447055 > 600
10 0.633 0.489 0 686100 > 600 0.636 0.487 0 687944 > 600

3 2 0.435 0.435 0 48600 17.92 0.435 0.435 0 2490 176.8
4 0.716 0.536 0 491800 > 600 0.752 0.524 0 240207 > 600
6 0.863 0.560 0 470900 > 600 0.855 0.567 0 598767 > 600
8 0.935 0.578 0 383000 > 600 0.937 0.566 0 239381 > 600
10 0.963 0.603 0 297600 > 600 0.963 0.595 0 355350 > 600

4 2 0.554 0.554 0 604900 > 600 0.554 0.544 0 29467 > 600
4 1.107 0.627 0 264300 > 600 1.126 0.646 0 136767 > 600
6 1.208 0.633 0 250300 > 600 1.220 0.625 0 247504 > 600
8 1.273 0.676 0 225600 > 600 1.271 0.651 0 216736 > 600
10 1.289 0.702 0 210000 > 600 1.291 0.712 0 165362 > 600

5 2 0.907 0.656 0 279800 > 600 1.132 0.616 0 28514 > 600
4 1.419 0.718 0 251000 > 600 1.475 0.680 0 141932 > 600
6 1.549 0.699 0 225900 > 600 1.555 0.677 0 229664 > 600
8 1.609 0.743 0 223700 > 600 1.603 0.743 0 200306 > 600
10 1.619 0.800 0 126300 > 600 1.621 0.794 0 135142 > 600

6 2 1.285 0.749 0 253200 > 600 1.647 0.749 0 11818 > 600
4 1.821 0.778 0 89900 > 600 1.859 0.737 0 141476 > 600
6 1.891 0.780 0 185600 > 600 1.906 0.768 0 126387 > 600
8 1.927 0.833 0 124300 > 600 1.942 0.856 0 91093 > 600
10 1.948 0.867 0 43200 > 600 1.948 0.866 0 82759 > 600

Avg 1.111 0.625 0 307800 > 600 1.150 0.618 0 255600 > 600

Table EC.5 Performance of branch-and-bound with warmstart on the pitprops dataset (p= 13) using the

experimental setup laid out in Section 5.2, except we use a time limit of 600s for branch-and-bound. We report the

performance of branch-and-bound with and without the upper bound developed in Section 5.1 separately. We use

> 600 to denote an instance where branch-and-bound terminates at the 600s time limit. We denote the

best-performing solution (in terms of the proportion of variance explained minus the orthogonality violation) in

bold (cont.).
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We observe that including the combinatorial upper bound developed in Section 3 within the

branch-and-bound scheme does more harm than good, and therefore we do not consider combining

the combinatorial bound with branch-and-bound elsewhere.

Furthermore, we observe that the upper bound returned by branch-and-bound outperforms the

semidefinite upper bound from Problem (12) for the smallest combinations of r and k, but rapidly

becomes worse as k and r increases, to the extent that it is unable to provide an upper bound

better than the trivial bound of 1 for the largest combinations of r and k. This suggests that the

upper bound from branch-and-bound is not practically useful for larger problem instances, and

therefore we do not consider branch-and-bound beyond this dataset as a method for obtaining

upper bounds.

EC.5.5. Instance-Wise Results on Larger UCI Datasets

Next, we provide an instance-by-instance account of the results summarized in Table 2, in Ta-

bles EC.6-EC.12. Subsequently, we report the instancewise duality gap between the upper bound

obtained by Algorithm 1 and the objective value obtained by each method, in Tables EC.12–EC.15
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Dataset p r kt Alg. 1 Alg. 2 Branch-and-bound

UB Obj. Viol. T(s) Obj. Viol. T(s) Obj. Viol. T(s)

Pitprops 13 2 5 0.449 0.429 0 21.27 0.433 0 5.01 0.439 0 11291
2 10 0.507 0.464 0 0.82 0.500 0 4.1 0.498 0 > 7200
3 5 0.616 0.568 0 1.11 0.582 0 6.48 0.555 0 > 7200
3 10 0.652 0.569 0 1.57 0.650 0 6.41 0.618 0 > 7200

Wine 13 2 5 0.458 0.429 0 0.73 0.446 0 2.19 0.448 0 1073
2 10 0.554 0.508 0 0.78 0.544 0 4.03 0.537 0 > 7200
3 5 0.632 0.577 0 1.66 0.613 0 3.56 0.576 0 > 7200
3 10 0.665 0.580 0 1.43 0.660 0 6.47 0.640 0 > 7200

Ionosphere 34 2 5 0.209 0.202 0 7.78 0.204 0 3.18 0.202 0 > 7200
2 10 0.305 0.275 0 8.44 0.285 0 3.95 0.285 0 > 7200
2 20 0.378 0.357 0 10.84 0.360 0 7.64 0.344 0 > 7200
3 5 0.297 0.289 0 13.54 0.279 0 6.72 0.289 0 > 7200
3 10 0.411 0.402 0 15.01 0.397 0 11.89 0.375 0 > 7200
3 20 0.464 0.408 0 60.95 0.458 0 12.17 0.383 0 > 7200

Lung 54 2 5 0.119 0.119 0 42.17 0.110 0 3.81 0.113 0 > 7200
2 10 0.176 0.175 0 28.12 0.171 0 2.06 0.168 0 > 7200
2 20 0.234 0.222 0 36.74 0.217 0 4.12 0.185 0 > 7200
3 5 0.173 0.172 0 90.07 0.160 0 4.45 0.169 0 > 7200
3 10 0.249 0.226 0 55.09 0.240 0 4.31 0.188 0 > 7200
3 20 0.324 0.271 0 55.49 0.303 0 9.51 0.213 0 > 7200

Geography 68 2 5 0.147 0.144 0 83.2 0.147 0 2.99 0.145 0 > 7200
2 10 0.294 0.290 0 51.02 0.294 0 1.81 0.292 0 > 7200
2 20 0.433 0.395 0 942.1 0.376 0 6.32 0.327 0 > 7200
3 5 0.221 0.216 0 80.63 0.221 0 2.58 0.215 0 > 7200
3 10 0.410 0.345 0 2680 0.348 0 5.39 0.355 0 > 7200
3 20 0.529 0.444 0 1237 0.345 0 11.51 0.352 0 > 7200

Communities 101 2 5 0.095 0.095 0 1088 0.078 0 3.73 0.095 0 > 7200
2 10 0.169 0.169 0 2601 0.159 0 4.81 0.160 0 > 7200
2 20 0.268 0.244 0 2427 0.244 0 6.26 0.198 0 > 7200
3 5 0.141 0.141 0 2571 0.119 0 7.63 0.141 0 > 7200
3 10 0.246 0.244 0 4219 0.243 0 8.92 0.205 0 > 7200
3 20 0.386 0.306 0 4609 0.370 0 8.28 0.300 0 > 7200

Arrhythmia 274 2 5 0.031 0.030 0 503.7 0.027 0 16.57 0.027 0 > 7200
2 10 0.055 0.049 0 493.5 0.047 0 24.72 0.044 0 > 7200
2 20 0.086 0.071 0 688.1 0.071 0.002 49.41 0.059 0 > 7200
3 5 0.047 0.045 0 1411 0.039 0 27.99 0.044 0 > 7200
3 10 0.083 0.072 0 958.9 0.067 0 38.16 0.065 0 > 7200
3 20 0.129 0.102 0 1241 0.105 0 28.96 0.068 0 > 7200

Table EC.6 Performance of our three algorithms proposed in Section 4 on UCI datasets. kt denotes the sparsity

of each individual component, meaning a set of r PCs have a collective sparsity budget of ktr. Note that all objective

values are reported in terms of the proportion of correlation explained by dividing by p, the number of features.
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Dataset p r kt Alg. 1 Alg. 2 Branch-and-bound

UB Obj. Viol. T(s) Obj. Viol. T(s) Obj. Viol. T(s)

Voice 310 2 5 0.032 0.032 0 699.4 0.032 0 21.14 0.032 0 > 7200
2 10 0.064 0.064 0 741.2 0.063 0 21.99 0.064 0 > 7200
2 20 0.127 0.127 0 630.6 0.124 0 20.97 0.109 0 > 7200
3 5 0.048 0.048 0 1225 0.047 0 29.94 0.048 0 > 7200
3 10 0.096 0.096 0 1372 0.093 0 34.52 0.096 0 > 7200
3 20 0.191 0.190 0 1195 0.183 0 31.06 0.155 0 > 7200

Gait 320 2 5 0.031 0.030 0 854.6 0.028 0 19.40 0.028 0 > 7200
2 10 0.057 0.054 0 840.7 0.050 0 24.64 0.047 0 > 7200
2 20 0.103 0.096 0 918.1 0.081 0 24.51 0.067 0 > 7200
3 5 0.046 0.045 0 1548 0.041 0 27.80 0.045 0 > 7200
3 10 0.085 0.081 0 1437 0.077 0 34.99 0.060 0 > 7200
3 20 0.154 0.135 0 1306 0.121 0 34.11 0.111 0 > 7200

Gastro 466 2 5 0.021 0.021 0 3557 0.021 0 452.9 0.021 0 > 7200
2 10 0.043 0.043 0 4242 0.043 0 38.95 0.043 0 > 7200
2 20 0.086 0.086 0 4485 0.085 0 535.4 0.086 0 > 7200
3 5 0.032 0.032 0 4974 0.032 0 59.97 0.032 0 > 7200
3 10 0.064 0.064 0 5859 0.064 0 73.39 0.064 0 > 7200
3 20 0.129 0.128 0 6602 0.121 0 529.8 0.128 0 > 7200

Micromass 1300 2 5 0.008 0.004 0 13870 0.006 0 170.5 0.004 0 > 7200
2 10 0.015 0.008 0 10440 0.011 0 158.6 0.011 0 6100
2 20 0.027 0.017 0 9515 0.019 0 440.3 0.018 0 6826
3 5 0.012 0.009 0 19640 0.010 0 238.0 0.006 0 > 7200
3 10 0.023 0.010 0 17820 0.018 0 208.5 0.009 0 > 7200
3 20 0.043 0.015 0 18370 0.030 0 205.9 0.010 0 > 7200

Avg 0.213 0.195 0.000 2588 0.199 0.000 61.38 0.187 0.000 > 7200

Table EC.7 Performance of our three algorithms proposed in Section 4 on UCI datasets (cont). kt denotes the

sparsity of each individual component, meaning a set of r PCs have a collective sparsity budget of ktr. Note that all

objective values are reported in terms of the proportion of correlation explained by dividing by p, the number of

features.



e-companion to Cory-Wright and Pauphilet: Sparse PCA With Multiple Components ec15

Dataset p r kt Berk and Bertsimas (2019) Hein and Bühler (2010) Zou et al. (2006)

Obj. Viol. T(s) Obj. Viol. T(s) Obj. Viol. T(s)

Pitprops 13 2 5 0.421 0.168 1.67 0.418 0 0.11 0.177 1.341 0.12
2 10 0.502 0.008 0.14 0.502 0.008 0.01 0.139 1.827 0.22
3 5 0.592 0.675 0.08 0.575 0.166 0.02 0.169 3.462 0.04
3 10 0.648 0.073 0.07 0.647 0.084 0 0.181 3.771 0.36

Wine 13 2 5 0.448 0 0.04 0.422 0.004 0.01 0.127 0.315 0.04
2 10 0.545 0.020 0.04 0.545 0.02 0 0.068 0.731 0.06
3 5 0.610 0.019 0.06 0.559 0.092 0 0.225 2.830 0.05
3 10 0.654 0.059 0.06 0.655 0.093 0 0.232 2.771 0.32

Ionosphere 34 2 5 0.205 0 0.08 0.153 0 0.08 0.078 0 0.02
2 10 0.289 0 0.30 0.288 0 0.01 0.106 0 0.04
2 20 0.369 0.058 4.45 0.370 0.010 0.17 0.147 0.305 0.12
3 5 0.291 0 0.14 0.227 0 0.02 0.097 1.666 0.07
3 10 0.392 0.109 0.38 0.365 0.255 0.01 0.100 1.909 0.12
3 20 0.449 0.183 0.27 0.451 0.037 0.03 0.111 2.111 4.51

Lung 54 2 5 0.119 0 0.43 0.107 0 0.34 0.040 0.587 0.04
2 10 0.176 0 0.10 0.170 0 0.03 0.044 0.639 0.12
2 20 0.220 0.008 0.44 0.184 0 0.05 0.044 0.908 0.63
3 5 0.172 0 0.10 0.149 0 0.03 0.061 2.755 0.15
3 10 0.243 0 0.11 0.234 0.113 0.05 0.054 1.593 0.20
3 20 0.300 0.219 0.16 0.261 0.081 0.04 0.044 1.703 1.20

Geography 68 2 5 0.147 0 0.09 0.097 0 0.01 0.034 1.793 0.41
2 10 0.294 0 0.08 0.164 0 0 0.068 1.939 0.66
2 20 0.395 0 5.95 0.316 0.135 0.04 0.062 1.754 0.53
3 5 0.221 0 0.13 0.122 0 0.01 0.061 2.720 0.57
3 10 0.389 0 0.18 0.192 0 0.01 0.054 4.021 0.90
3 20 0.484 0.273 23.66 0.387 0.261 0.06 0.090 5.009 1.40

Communities 101 2 5 0.095 0 0.73 0.093 0 0 0.032 0.576 0.05
2 10 0.169 0 1.68 0.154 0 0 0.029 0.605 0.18
2 20 0.258 0 120 0.258 0 0.07 0.027 0.090 1.49
3 5 0.141 0 1.18 0.129 0 0.01 0.050 1.854 0.29
3 10 0.245 0 2.85 0.181 0 0.02 0.044 1.504 1.76
3 20 0.361 0.058 180.1 0.350 0.064 0.02 0.043 1.869 5.27

Arrhythmia 274 2 5 0.031 0 2.81 0.012 0 0.02 0.007 1.799 0.71
2 10 0.052 0 61.25 0.011 0 0.03 0.007 1.143 1.08
2 20 0.077 0 120.0 0.043 0.005 0.06 0.006 1.140 4.62
3 5 0.046 0 5.35 0.016 0 0.02 0.012 1.076 0.53
3 10 0.074 0 121.6 0.018 0 0.05 0.012 0.876 3.82
3 20 0.109 0 180.0 0.074 0.005 0.07 0.012 0.694 10.65

Table EC.8 Performance of the methods by Berk and Bertsimas (2019), Hein and Bühler (2010), and Zou et al.

(2006) on UCI datasets.
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Dataset p r kt Berk and Bertsimas (2019) Hein and Bühler (2010) Zou et al. (2006)

Obj. Viol. T(s) Obj. Viol. T(s) Obj. Viol. T(s)

Voice 310 2 5 0.032 0 1.04 0.032 0 0.05 0.006 0.874 0.71
2 10 0.064 0 1.09 0.064 0 0.04 0.006 0.907 2.68
2 20 0.127 0 0.66 0.127 0 0.02 0.006 1.017 16.02
3 5 0.048 0 1.72 0.039 0 0.16 0.009 1.834 0.94
3 10 0.096 0 1.56 0.069 0 0.08 0.012 0.242 12.8
3 20 0.190 0 1.22 0.187 0 0.12 0.021 2.121 26.18

Gait 320 2 5 0.030 0 0.93 0.027 0 0.02 0.006 1.071 1.75
2 10 0.055 0 0.61 0.051 0 0.05 0.004 1.054 1.27
2 20 0.094 0 1.36 0.080 0 0.080 0.005 0.852 3.88
3 5 0.045 0 1.02 0.041 0 0.06 0.01 1.16 4.81
3 10 0.082 0 1.64 0.070 0 0.06 0.009 1.821 5
3 20 0.135 0 1.94 0.095 0 0.15 0.008 1.477 9.49

Gastro 466 2 5 0.021 0 2.71 0.020 0 0.05 0.007 1.154 1.14
2 10 0.043 0 1.42 0.039 0 0.08 0.007 0.178 1.62
2 20 0.086 0 1.95 0.076 0 0.07 0.005 0.456 3.61
3 5 0.032 0 2.79 0.029 0 0.05 0.006 2.303 1.59
3 10 0.064 0 3.51 0.053 0 0.12 0.007 1.826 3.33
3 20 0.128 0 2.81 0.085 0 0.24 0.008 1.139 46.05

Micromass 1300 2 5 0.008 0 45.4 0.004 0 0.77 0.002 0.014 18.05
2 10 0.014 0 120.2 0.007 0 1.09 0.002 0.323 41.97
2 20 0.023 0 120.2 0.012 0 1.34 0.002 0.361 2.64
3 5 0.011 0 71.97 0.005 0 1.54 0.002 3.004 24.30
3 10 0.020 0 180.3 0.008 0 1.80 0.002 2.301 31.89
3 20 0.034 0 180.3 0.013 0 2.64 0.002 1.252 2.02

Avg 0.205 0.031 25.57 0.180 0.023 0.19 0.049 1.458 4.95

Table EC.9 Performance of the methods by Berk and Bertsimas (2019), Hein and Bühler (2010), and Zou et al.

(2006) on UCI datasets (cont.).
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Dataset p r kt Deshpande and Montanari (2014b)

Obj. Viol. T(s)

Pitprops 13 2 5 0.422 0.226 1.00
2 10 0.501 0.104 0.00
3 5 0.592 0.661 0.00
3 10 0.644 0.214 0.00

Wine 13 2 5 0.434 0.211 0.02
2 10 0.545 0.021 0
3 5 0.546 0.510 0
3 10 0.656 0.228 0

Ionosphere 34 2 5 0.203 0 0.12
2 10 0.287 0 0.02
2 20 0.368 0.011 0.02
3 5 0.276 0 0.02
3 10 0.357 0.143 0.02
3 20 0.447 0.166 0.02

Lung 54 2 5 0.117 0 0.45
2 10 0.154 0.291 0.04
2 20 0.217 0.495 0.03
3 5 0.164 0 0.03
3 10 0.200 0.558 0.03
3 20 0.290 0.591 0.03

Geography 68 2 5 0.130 0 0.09
2 10 0.294 0 0.07
2 20 0.395 0 0.08
3 5 0.184 0 0.08
3 10 0.378 0 0.07
3 20 0.462 0.073 0.08

Communities 101 2 5 0.089 0 0.19
2 10 0.158 0 0.23
2 20 0.249 0.145 0.19
3 5 0.140 0 0.19
3 10 0.208 0.138 0.20
3 20 0.317 0.669 0.19

Arrhythmia 274 2 5 0.030 0 1.79
2 10 0.051 0.113 1.84
2 20 0.074 0.019 1.88
3 5 0.039 0 1.97
3 10 0.072 0 2.35
3 20 0.103 0.243 2.23

Table EC.10 Performance of the method of Deshpande and Montanari (2014b) on UCI datasets.
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Dataset p r kt Deshpande and Montanari (2014b)

Obj. Viol. T(s)

Voice 310 2 5 0.032 0 60.46
2 10 0.063 0 54.59
2 20 0.124 0 39.19
3 5 0.047 0 1.42
3 10 0.093 0 1.75
3 20 0.184 0 1.42

Gait 320 2 5 0.030 0 1.45
2 10 0.054 0 1.45
2 20 0.089 0 1.42
3 5 0.042 0 1.85
3 10 0.078 0 1.65
3 20 0.128 0 3.04

Gastro 466 2 5 0.021 0 6.59
2 10 0.042 0 4.33
2 20 0.083 0 3.67
3 5 0.031 0 3.26
3 10 0.061 0 3.12
3 20 0.117 0 3.11

Micromass 1300 2 5 0.007 0 75.38
2 10 0.012 0 147.9
2 20 0.022 0 98.34
3 5 0.010 0 71.05
3 10 0.018 0 71.88
3 20 0.033 0 73.00

Avg 0.197 0.094 12.04

Table EC.11 Performance of the method of Deshpande and Montanari (2014b) on UCI datasets. (cont.).
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Dataset p r kt Algorithm 1 Algorithm 2 Branch-and-Bound Berk and Bertsimas (2019)

Pitprops 13 2 5 4.29% 3.55% 2.07% 6.05%
2 10 8.60% 1.40% 1.83% 1.14%
3 5 7.81% 5.65% 9.89% 3.93%
3 10 12.65% 0.36% 5.16% 0.58%

Wine 13 2 5 6.43% 2.72% 2.18% 2.18%
2 10 8.28% 1.89% 3.13% 1.58%
3 5 8.64% 2.93% 8.83% 3.50%
3 10 12.81% 0.83% 3.82% 1.63%

Ionosphere 34 2 5 2.91% 2.30% 2.91% 1.49%
2 10 9.68% 6.54% 6.25% 5.23%
2 20 5.44% 4.79% 8.97% 2.22%
3 5 2.77% 6.15% 2.79% 1.99%
3 10 2.34% 3.34% 8.7% 4.57%
3 20 12.03% 1.27% 17.42% 3.11%

Lung 54 2 5 0% 7.88% 5.44% 0%
2 10 0.16% 2.65% 4.20% 0.12%
2 20 4.97% 7.07% 20.83% 6.03%
3 5 0.72% 7.41% 2.55% 0.72%
3 10 9.20% 3.66% 24.75% 2.75%
3 20 16.09% 6.26% 34.09% 7.29%

Geography 68 2 5 2.06% 0% 1.36% 0%
2 10 1.35% 0% 0.75% 0%
2 20 8.79% 13.15% 24.43% 8.77%
3 5 2.28% 0% 2.74% 0%
3 10 15.87% 15.19% 13.5% 5.09%
3 20 16.15% 34.86% 33.56% 8.60%

Communities 101 2 5 0.15% 17.79% 0.16% 0.15%
2 10 0.05% 5.88% 5.08% 0.05%
2 20 8.98% 9.00% 26.04% 3.74%
3 5 0.28% 16.01% 0.30% 0.28%
3 10 0.60% 1.12% 16.59% 0.33%
3 20 20.71% 4.07% 22.13% 6.29%

Table EC.12 Instancewise relative optimality gap between the upper bound obtained by Algorithm 1 and the

objective value obtained by each feasible method (for branch-and-bound, note that the upper bound used differs

from the upper bound computed by Gurobi). Note that certain methods return infeasible solutions on some

instances, and when this occurs, the optimality gap may be small (or even negative) partly because of this

infeasibility.
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Dataset p r kt Algorithm 1 Algorithm 2 Branch-and-Bound Berk and Bertsimas (2019)

Arrhythmia 274 2 5 5.02% 12.88% 14.13% 0.92%
2 10 11.31% 14.32% 20.19% 5.91%
2 20 17.40% 16.98% 31.25% 10.08%
3 5 4.49% 16.55% 6.54% 1.64%
3 10 13.02% 18.52% 21.12% 10.59%
3 20 20.64% 18.52% 47.48% 15.03%

Voice 310 2 5 0.01% 1.55% 0.01% 0.01%
2 10 0.86% 2.53% 0.86% 0.17%
2 20 0.13% 3.04% 14.58% 0.14%
3 5 0.01% 2.09% 0.01% 0.01%
3 10 0.28% 3.84% 0.28% 0.27%
3 20 0.65% 4.13% 19.07% 0.81%

Gait 320 2 5 1.14% 8.03% 9.91% 1.82%
2 10 4.92% 11.12% 17.32% 2.56%
2 20 6.88% 20.75% 34.54% 8.37%
3 5 1.72% 11.05% 1.73% 1.72%
3 10 4.98% 10.13% 29.87% 3.91%
3 20 12.42% 21.77% 27.79% 12.40%

Gastro 466 2 5 0.05% 0.12% 0.05% 0%
2 10 0.01% 0.24% 0.01% 0.01%
2 20 0.07% 1.19% 0.07% 0.07%
3 5 0.04% 0.13% 0.04% 0%
3 10 0.02% 0.17% 0.02% 0.02%
3 20 0.27% 6.25% 0.28% 0.22%

Micromass 1300 2 5 49.96% 17.44% 50.67% 1.42%
2 10 47.65% 28.42% 23.94% 8.63%
2 20 39.41% 32.08% 35.50% 17.54%
3 5 20.57% 14.85% 44.73% 1.57%
3 10 55.31% 22.90% 58.40% 10.38%
3 20 65.44% 29.13% 76.96% 21.06%

Table EC.13 Instancewise relative optimality gap between the upper bound obtained by Algorithm 1 and the

objective value obtained by each feasible method (for branch-and-bound, note that the upper bound used differs

from the upper bound computed by Gurobi). Note that certain methods return infeasible solutions on some

instances, and when this occurs, the optimality gap may be small partly because of this infeasibility.
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Dataset p r kt Hein and Bühler (2010) Zou et al. (2006) Deshpande and Montanari (2014a)

Pitprops 13 2 5 6.92% 60.58% 6.01%
2 10 1.14% 72.59% 1.34%
3 5 6.65% 72.51% 4.03%
3 10 0.70% 72.18% 1.17%

Wine 13 2 5 7.86% 72.36% 5.38%
2 10 1.58% 87.8% 1.61%
3 5 11.56% 64.46% 13.57%
3 10 1.59% 65.08% 1.36%

Ionosphere 34 2 5 26.57% 62.51% 2.72%
2 10 5.34% 65.35% 5.82%
2 20 2.17% 61.14% 2.51%
3 5 23.56% 67.29% 6.95%
3 10 11.23% 75.63% 13.14%
3 20 2.76% 76.07% 3.70%

Lung 54 2 5 10.57% 66.76% 1.9%
2 10 3.20% 74.86% 12.26%
2 20 21.24% 81.18% 7.44%
3 5 13.94% 64.88% 5.14%
3 10 6.15% 78.46% 19.75%
3 20 19.19% 86.39% 10.39%

Geography 68 2 5 33.96% 77.21% 11.46%
2 10 44.23% 77.04% 0%
2 20 26.98% 85.70% 8.84%
3 5 44.58% 72.51% 16.71%
3 10 53.06% 86.88% 7.74%
3 20 26.98% 83.02% 12.72%

Communities 101 2 5 2.31% 66.78% 6.81%
2 10 8.46% 82.53% 6.46%
2 20 3.85% 89.96% 6.92%
3 5 8.77% 64.79% 0.63%
3 10 26.24% 81.88% 15.29%
3 20 9.39% 88.81% 17.78%

Table EC.14 Instancewise relative optimality gap between the upper bound obtained by Algorithm 1 and the

objective value obtained by each feasible method (cont).



ec22 e-companion to Cory-Wright and Pauphilet: Sparse PCA With Multiple Components

Dataset p r kt Hein and Bühler (2010) Zou et al. (2006) Deshpande and Montanari (2014a)

Arrhythmia 274 2 5 61.03% 78.56% 4.76%
2 10 80.17% 87.44% 6.95%
2 20 50.39% 92.57% 13.43%
3 5 66.20% 74.80% 15.63%
3 10 78.13% 85.67% 12.45%
3 20 42.49% 90.51% 20.33%

Voice 310 2 5 0.62% 82.64% 0.71%
2 10 0.84% 90.37% 2.27%
2 20 0.13% 95.14% 3.05%
3 5 19.64% 81.79% 2.00%
3 10 28.23% 87.4% 3.89%
3 20 2.43% 88.96% 3.84%

Gait 320 2 5 13.13% 81.89% 2.75%
2 10 9.47% 92.97% 4.47%
2 20 22.45% 94.82% 13.3%
3 5 10.19% 77.63% 9.04%
3 10 17.54% 88.96% 8.04%
3 20 38.17% 94.77% 17.11%

Gastro 466 2 5 5.76% 66.34% 1.16%
2 10 10.14% 84.56% 2.19%
2 20 11.81% 94.45% 3.62%
3 5 10.15% 80.11% 2.91%
3 10 17.35% 88.44% 5.13%
3 20 33.91% 94.08% 9.20%

Micromass 1300 2 5 41.78% 80.07% 11.94%
2 10 50.11% 89.54% 17.45%
2 20 57.05% 93.89% 18.99%
3 5 54.53% 82.63% 10.59%
3 10 63.80% 91.41% 22.09%
3 20 70.69% 95.07% 21.71%

Table EC.15 Instancewise relative optimality gap between the upper bound obtained by Algorithm 1 and the

objective value obtained by each feasible method (cont).
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EC.5.6. Instance-Wise Plots of Symmetry vs. Proportion of Correlation Explained

Figure EC.1 Symmetry of sparsity budget allocation vs. proportion of correlation in the dataset explained for

pitprops k = 30 (top left), ionosphere k = 15 (top right), geographical k = 15 (middle left), geo-

graphical k= 30 (middle right), communities k= 15 (bottom left), and communities k= 30 (bottom

right). Note that we normalize the KL divergence for k= 15 and k= 30 separately.
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