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We consider stochastic optimization with side information where, prior to decision-making, covariate data are
available to inform better decisions. To hedge against data uncertainty while capturing the information structure
revealed from the conditional distribution of random problem parameters given the covariate values, we propose a
distributionally robust formulation based on causal transport distance. We derive a dual reformulation for evaluating
the worst-case expected cost and show that the worst-case distribution in a causal transport distance ball preserves
the conditional information structure from the nominal distribution. When optimizing over affine decision rules,
we identify cases where the overall problem can be solved by convex programming. When optimizing over all
(non-parametric) decision rules, we identify a new class of robust optimal decision rules when the cost function is
convex with respect to a one-dimensional decision variable.
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1. Introduction
Stochastic optimization with side information, also known as contextual optimization or conditional
stochastic optimization, addresses the following problem:

min
F ∈D

E[Ψ(F, /) | - = G], (1)

where the goal is to select a decision F from a feasible set D that minimizes the conditional expectation
of the cost Ψ(F, /), dependent on both the decision F and a random variable /, given some side
information, represented by a covariate -. The increasing utilization of side information from covariate
data has significantly enhanced decision-making in areas such as e-commerce and online platforms,
allowing for more personalized and informed strategies. The performance evaluation often encompasses
the entire covariate population — for example, the manager in an e-commerce company cares about
the overall performance across all customer types. As such, we are interested in finding a decision rule
that minimizes the expected cost over the joint distribution of the covariate - and the random variable
/:

min
5 ∈F

E[Ψ( 5 (-), /)] . (2)

The decision rule 5 offers an end-to-end map from the covariate space X to the decision space D,
chosen from a family F of functions — parametric or non-parametric — on X . The choice of F can
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vary from small parametric classes like affine decision rules to large non-parametric classes and even
all measurable functions to suit different analytical needs and operational constraints.
The formulation (2) covers many contextual optimization problems in operations research and

machine learning. For instance, suppose Ψ(F, I) = ℎ(F − I)+ + 1(I −F)+, where F is the order quantity
decision, I represents the demand of a product, and ℎ, 1 ≥ 0 represent the overage cost and the
underage cost respectively, and then (2) is known as the big-data newsvendor model [7]. If F is the set
of all measurable functions on X , then the optimal order quantity equals the conditional critical fractile
5★(G) = �−1

G ( 1ℎ+1 ), where �G is the conditional cumulative distribution function of demand / given
- = G; and if F is the set of affine functions on X , then (2) finds the optimal affine decision rule for the
big-data newsvendor. As another example, when Ψ(F, I) = (F − I)2 and F is the set of all measurable
functions on X , the optimal solution to (2) is 5★(G) = E[/ | - = G], and thus the formulation (2) finds
the conditional mean of / given -. More examples will be given in Section 2.2. We remark that this is
not the only formulation for contextual decision-making, and we will discuss other related works in
Section 1.3.
Similar to the classical stochastic optimization, the underlying joint distribution ℙtrue of (-, /) is

often not known exactly, but instead, historical data from the underlying distribution are available. As
such, it is reasonable to consider a data-driven, distributionally robust contextual decision-making
framework

min
5 ∈F

max
ℙ∈M

E(-,/ )∼ℙ [Ψ( 5 (-), /)], (3)

a minimax formulation that hedges the data uncertainty. At the core of the distributionally robust
formulation is the choice of the uncertainty set, and the presence of the side information adds new
challenges beyond those for classic stochastic optimization. Below, in Section 1.1, we review some
existing choices of uncertainty sets and discuss their potential issues.

1.1. Discussion on Some Existing Uncertainty Sets

To begin with, we would like to focus on distance-based uncertainty sets, as the other popular choice
— moment-based uncertainty sets — lacks statistical consistency in general.

Two classes of distance-based uncertainty sets have been widely studied in the literature. The first
class is the divergence family, deeply rooted in statistics, information theory, and physics. Consider the
following example.
Example 1 (KL robust solution is degenerate). Suppose M is a Kullback–Leibler (KL) diver-

gence ball, centered at the empirical distribution ℙ̂ constructed from  independently and identically
distributed (i.i.d.) samples from a continuous underlying distribution. Then with probability one, ℙ̂
can be represented as 1

 

∑ 
:=1 �(G: ,I: ) , where  is the sample size and all (Ĝ: , Î:)’s are different from

each other. Let F be the set of all measurable functions on X . Then, we claim that the KL robust
optimal solution would satisfy

5kl(G) =
{
arg minF ∈D Ψ(F, Î:), if G = Ĝ: , : = 1, . . . ,  ,
arbitrary value, otherwise.

Indeed, every distribution in the KL ball is supported only on the data points from ℙ̂, but may
differ from it in the probability weights. On an in-sample data point Ĝ: , regardless of its weight, the
optimal decision would always be the minimizer of Ψ(·, Î:) due to interchangeability principle [76].
Furthermore, since the KL robust cost depends only on the function values on the in-sample data,
the robust optimal solution can take any value on out-of-sample data without changing the objective
value. ♣
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Example 1 shows that the KL robust optimal decision rule is degenerate with probability one when the
underlying distribution is continuous, regardless of the size of the uncertainty set, the sample size, or
the objective function. A similar phenomenon also holds for all other divergence measures due to the
structure of the worst-case distribution [10].
The second class is Wasserstein, or transport cost distance, family. It is well-known that the resulting

uncertainty set avoids some degeneracy issues of the divergence sets in stochastic optimization [52, 36].
Nonetheless, it faces new challenges when additional side information is presented. Let us consider
the following toy example.
Example 2 (Wasserstein set cannot capture conditional information). In Figure 1, ℙ̂ and

ℙ are two uniform distributions supported respectively on the blue and green line segments with a
common endpoint with G-entry Ĝ. The angle between the two line segments is Y radian. Notably, the
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Figure 1 ℙ̂ and ℙ have completely different conditional information structures but with $ (Y) Wasserstein distance. If we
restrict transport plans to causal transport plans, then two distributions are distinguished with $ (1) distance.

conditional distribution ℙY
/ |-=G is a Dirac measure for G > Ĝ, which is apparently very different from

the conditional distribution ℙ̂/ |-=Ĝ that is uniform on the blue line segment. As will be calculated
in Section 2, the Wasserstein distance between ℙ̂ and ℙ is $ (Y), and the optimal transport map is
a rotation. This means a Wasserstein ball centered at ℙ̂ would always contain a distribution that
has a different conditional information structure than that of ℙ̂ regardless of the value of Y. On the
other, as will be revisited in Section 2.1, by restricting to the causal transport map (shown in the right
plot) which, in this case, is the independent joint distribution ℙ̂ ⊗ℙY, distributions with a different
conditional information structure will be ruled out from the uncertainty set. ♣
In practice, the following situation is often seen from data: the conditional distribution can be

estimated accurately under a number of covariate values but is largely unobserved for other values.
For example, historical data may reveal a good estimate of the conditional demand distribution of
the product sold at deployed vending machines, but the demand at new locations is unexplored.
Nonetheless, it is conceivable that the conditional demand distribution should share some resemblance
among similar locations. In such cases, it would be reasonable to expect that the conditional distributions
ℙ/ |-=G and ℙ/ |-=Ĝ corresponding to two similar values G and Ĝ should be close in a certain way.
Therefore, we would like to choose an uncertainty set containing distributions that share a similar
conditional information structure with the nominal distribution. Example 2 demonstrates that the
Wasserstein uncertainty set fails to preserve the conditional information structure and, in fact, the
same phenomenon also holds for the worst-case distribution, as will be shown in Section 3.2. This
raises the concern of the conservativeness of the Wasserstein formulation.

1.2. Our Contributions

To capture the conditional information, in this paper, we consider a distributional uncertainty set based
on causal transport distance, a notion that is related to Wasserstein distance but imposes an additional
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assumption on the transport plan; see Section 2.1 for its definition and a more in-depth discussion.
The causal transport distance uncertainty set brings new computational challenges to the inner
optimization over probability distributions, which require new analysis of tractable reformulations and
interpretations. Moreover, when the outer minimization over the class of decision rules is performed
over a non-parametric class, additional computational challenges are presented due to the involved
infinite-dimensional functional optimization. Our main contributions are as follows.
(I) We develop a strong duality reformulation for computing the worst-case loss of a fixed decision

rule (Section 3.1). Our proof is based on a new analysis of the worst-case distribution, through
which we demonstrate how our choice of distributional uncertainty set helps to capture the
conditional information structure of the random variable given the side information (Section 3.2).

(II) We study tractable reformulations for finding the optimal decision rule when optimizing over
(i) the affine class and (ii) all (non-parametric) decision rules. In the former case, we provide
convex reformulations when the cost function Ψ(F, I) is linear in the decision F or bilinear in F
and I (Section 4.1). In the latter case, we provide convex reformulations when the cost function
Ψ is convex in a one-dimensional decision F. This provides a new class of decision rule with no
sub-optimality gap for adjustable robust optimization (Section 4.2). We illustrate our results with
conditional mean estimation, feature-based newsvendor, personalized pricing, and contextual
linear optimization.

(III) We conduct numerical experiments to demonstrate that the causal transport distance uncertainty
set effectively utilizes conditional information, as compared to the Wasserstein uncertainty set,
and compare the performance of different classes of decision rules (Section 5).

1.3. Related Literature

On stochastic optimization with side information. In the literature, the frameworks for contextual
optimization (with an offline data set) can be broadly classified into three categories: separate prediction
and optimization, conditional stochastic optimization, and optimization over decision rules.

(I) Separate prediction and optimization is a classical two-step process that first estimates a
conditional distribution of / given a new context - = G, and then optimizes for the conditional
expectation minF ∈D E[Ψ(F, /) | - = G] (e.g., [80, 92]). There are some theoretical guarantees
in this approach discussed in [27, 44]. One main issue of this framework, as discussed in [56, 7],
is that the statistical estimation error and model misspecification error may propagate to the
decision optimization model and thus lead to sub-optimal performance. Recent developments in
contextual decision-making highlight the need for integrating prediction and optimization [16].

(II) Conditional stochastic optimization avoids estimating the conditional distribution by directly
estimating the conditional expected objective E[Ψ(F, /) | - = G]. Various estimation approaches
have been studied, for example, based on Dirichlet process [42], Nadaraya–Watson kernel regres-
sion [41, 7, 77], local regression and classification [16, 18], smart prediction-then-optimization
[30, 27, 29, 43], trees and forests [16, 18, 6, 49], robustness optimization and regularization
[81, 93, 20, 57, 32, 83, 82, 26, 59, 71, 61], regret minimization [33], empirical residuals [50, 51],
bilevel optimization [58, 24, 45], etc. This approach requires solving a decision optimization
problem for each individual context.

(III) Optimization over decision rules is an end-to-end formulation that finds a decision rule
prescribing the decision for every possible context. Due to the computational difficulty of
this infinite-dimensional optimization, typically, the policies are parameterized by a finite-
dimensional vector, such as coefficients in an affine function of features [23, 7, 11, 19] or in a
reproducing kernel Hilbert space [17], and weight matrices in a neural network [60, 72, 55, 75].

Our formulation falls into the third category, but our results in Section 4 do not necessarily restrict
the class of decision rules on a parametric family. In this respect, the closest work to ours is [37],
which considers robust optimization over decision rules with the Wasserstein uncertainty set; see
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the last paragraph of the literature review for a detailed comparison. We remark that in the online
setting, stochastic optimization with side information has also been considered under the umbrella of
contextual bandits and reinforcement learning, and there have been some studies of decision-dependent
uncertainty [9, 84, 90]. These are beyond the scope of this paper.
On transport-distance based distributionally robust optimization. Distributionally robust optimization

(DRO) has received significant attention recently as a tool for decision-making under uncertainty, and
different approaches mainly differ in how the uncertainty set is constructed. We refer to [73] for a
thorough review of choices of uncertainty set. Our choice of uncertainty set is aligned with DRO with
transport distance, such as Wasserstein distance [63, 85, 31, 22, 21, 36, 35, 34] and nested distance
[3, 68, 74] — a symmetrized analogue of casual transport distance. The origin of causal transport could
be traced back to the Yamada–Watanabe criterion for stochastic differential equations [89, 47, 53]. In
optimal transport theory, Lassalle [54] investigated the transport problem in continuous time under
the causal constraints, and [5] studied a discrete-time analogue. Causal transport has been applied to
continuous-time stochastic optimization in [2], as well as other areas such as stochastic control [1] and
machine learning [86]. In discrete time stochastic programming, the nested distance has been exploited
to study the stability and sensitivity of multistage stochastic programming [62, 64, 65, 66, 67, 8].
Our problem can be viewed as a two-stage DRO with causal transport distance. After our paper’s

first draft appeared online, several works studied DRO with causal transport distance. [4] studied the
dynamic programming reformulation for multi-stage DRO with nested distance. [48] derives duality
for DRO problem with causal transport penalty. Compared with their methodology, our constructive
proof of duality enables the characterization of the structure of the worst-case distribution, and we
develop tractable reformulations for decision rule optimization.
On decision-rule approach in adjustable robust optimization. In the literature for adjustable robust

optimization, different choices of decision rules have been thoroughly investigated, including affine
families [25, 14, 15, 13, 46, 28, 19, 38], k-adaptability [39, 40, 79], iterative splitting of uncertainty
sets [70], binary decision rules [12], non-parametric Markovian stopping rules [78], etc. Most of
these works do not consider side information in their problem formulations. [19] considers dynamic
decision-making with side information using affine decision rules, whereas we consider general decision
rules in a static setting; and [37] considers the newsvendor problem with Wasserstein distance, whereas
we consider a different uncertainty set, and we adopt a completely different proof strategy and obtain
a broader class of optimal policies for adjustable robust optimization that encapsulates the Shapley
policy proposed therein.

The rest of the paper proceeds as follows. We introduce the causal transport distance and cor-
responding robust model in Section 2. In Section 3, we develop a duality result for evaluating the
worst-case expected cost by exploiting the structure of the worst-case distribution Section. In Section
4, we consider the outer optimization over affine decision rules and over all decision rules. Finally,
we present numerical results in Section 5 and conclude the paper in Section 6. Proofs and additional
results are deferred to Appendices.

2. Distributionally Robust Optimization with Causal Transport Distance
In this section, we briefly introduce notation and provide some background on distributionally robust
optimization with causal transport distance.
Notation. Let (X , ‖·‖X ), (Z , ‖·‖Z ) be subsets of normed vector spaces. For notational simplicity,

the subscripts in ‖·‖X and ‖·‖Z will be omitted as long as they can be inferred from the context. Let
? ∈ [1,∞) and denote by @ its Hölder conjugate number, i.e., 1

?
+ 1
@
= 1. We denote by P? (Z) the set of

probability measures of Z with finite ?-th moment, namely, ℚ ∈ P? (Z) if and only if EI∼ℚ [‖I‖ ?] <∞.
The support of a distribution is denoted by suppℚ. The set of all possible transport plans between the
given marginals ℚ1,ℚ2 ∈ P (X ×Z), on the product space (X ×Z) × (X ×Z), is denoted as Γ(ℚ1,ℚ2).
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2.1. Causal Transport Distance

Our motivation to adopt the causal transport distance in DRO is illustrated by the following example.
Consider the feature-based newsvendor problem, where the historical demand for a product in a
vending machine is affected by covariates such as location, weather, economic state, etc. In such a
scenario, the causal relationship is directed; the distributional uncertainty of the features can lead to
the uncertainty of the demand, but not vice versa. Therefore, if we consider a data perturbation map

) : ( -̂, /̂) ↦→) ( -̂, /̂) =
(
)- ( -̂, /̂),)/ ( -̂, /̂)

)
,

the perturbation of features (e.g., location, weather, economic state) should not depend on the demand,
but the perturbation of demand can be affected by the perturbation of features. In other words, the
perturbation map should have the form

) ( -̂, /̂) =
(
)- ( -̂),)/ ( -̂, /̂)

)
,

where -̂ is transported to )- ( -̂), and given -̂, - = )1( -̂) is a constant. This implies that - is
conditionally independent of /̂ , represented as - ⊥ /̂ | -̂. Extending upon this notion of conditional
independence, we introduce the following definition of causal transport plan and causal transport
distance.
Definition 1 (Causal Transport Distance). A joint distribution W ∈ Γ(ℙ̂,ℙ) is called a causal

transport plan if for (( -̂, /̂), (-, /)) ∼ W, - and /̂ are conditionally independent given -̂:

- ⊥ /̂ | -̂ .

We denote by Γ2 (ℙ̂,ℙ) the set of all transport plans W ∈ Γ(ℙ̂,ℙ) that are causal. Let ? ∈ [1,∞). The
?-causal transport distance between ℙ̂ and ℙ is defined as

C? (ℙ̂,ℙ) :=
(

inf
W∈Γ2 (ℙ̂,ℙ)

E( (-,/ ) , (-̂ ,/̂ ))∼W

[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

] )1/?

. ♦

The conditional independence condition in Definition 1 basically means that the destination - of
a sample in a causal transport plan should depend only on the origin -̂ but not on the associated
information of /̂ . There are other equivalent definitions of a causal transport plan, which are provided
in Appendix EC.1.
Like Wasserstein distance, causal transport distance finds the minimal transport cost between two

distributions, where norms capture the geometry of the data space and similarity between samples.
Nevertheless, causal transport distance differs from Wasserstein distance in the involved class of
transport plans: Wasserstein distance considers all transport plans with given marginals while causal
transport distance restricts causal transport plans as defined in Definition 1.
Let us use the following example to visually explain a causal transport plan.
Example 3 (Causal Transport between Colored Images). Let X = {1,2, . . . , �}2, where � rep-

resents the width of a squared image, and let Z = {R,G,B}, representing the three color channels, red
(R), green (G), and blue(B). A bitmap image stores the position-color information of an image via an
� ×� × 3 tensor � = (�8 9:)8, 9∈{1,2,...,� },:∈{1,2,3}. Its (8, 9 , :)-th entry �8 9: ∈ {0,1, . . . ,255} represents
the 8-bit indexed color at pixel position (8, 9) in the :-th channel. With a normalizing constant
" =

∑
8, 9 ,: �8 9: , the tensor �/" represents a probability mass function on X ×Z. Let us equip norms

‖·‖X = ‖·‖1 and ‖·‖Z = 21{· ≠ 0}, where 2 is a scaling parameter.
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Figure 2 An image (a) and its variations by shifting the position (b), adjusting the hue (c), or splitting the RGB channels
(d)

Figure 2 contains four images of a cat: (a)(b)(c) can be viewed as real natural images with different
poses or lighting conditions, whereas (d) can be viewed as an artificial image in which the pose
exhibited via the red channel is different from that via the green/blue channel.
(I) The movement of the cat yields a causal transport plan from (a) to (b), as under such movement,

the destination (-, /) in (b) of a position-channel pair ( -̂, /̂) in (a) depends only on its original
position -̂ but not on the channel information /̂ , or put it differently, all channels are moved in
the same way from -̂ to - without changing the channel value /̂. This matches precisely the
definition of causal transport.

(II) The cats in (a) and (c) have identical poses but different hue values. Changing the hue values
of an image would affect its RGB values and thus the distribution on Z. Such color adjustment
(changing RGB values while fixing the position) defines a causal transport plan from (a) to (c).
Indeed, under such movement, a position-channel pair ( -̂, /̂) in (a) keeps its position in 2, namely,
- = -̂, regardless of the value of /̂ . Note that in a causal transport plan, we allow the destination
/ of /̂ to be dependent on both -̂ and /̂, that is, at each position of the image, changes in the
color are permitted.

(III) The green and blue channels of (d) have the same pose as (a), whereas the red channel of (d) has
the same pose as (b). If we consider a transport plan that keeps a position-channel pair ( -̂, /̂) if
/̂ ∈ {�, �}, and transport it according to the cat’s movement if /̂ = ', then such a transport plan
is not causal, because given -̂, where this position-channel pair is transported depends on the
channel information /̂ .

Table 1 Distance between Figure 2(a) and the other three variations

Variations (b) (c) (d)
Wasserstein distance 2.303 2.044 0.495

Causal transport distance 2.767 2.535 6.388

In Table 1, we compute the Wasserstein distance and causal transport distance between Fig. 2(a) and
the other three variations, with � = 32 and 2 = 4. We find that the causal transport distance between
Fig. 2(a) and the artificial image Fig. 2(d) is much larger than that between Fig. (a) and natrual images
Fig. 2(b)(c). In contrast, the Wasserstein distance fails to capture such an intuition. ♣
As hinted in Example 3, one of the main advantages of causal transport distance over Wasserstein

distance is that it captures the structure of the conditional distribution. To further illustrate this, let us
revisit the toy Example 2.
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Example 2 (revisited). We compute the causal transport distance and the Wasserstein distance
between ℙ̂ and ℙY shown in Example 2. Since the conditional distribution of ℙY is a Dirac measure
for every G, the causal transport distance between ℙ̂ and ℙY is uniformly bounded from below by a
positive constant for all Y > 0. In fact, it is not hard to see that the only causal transport plan is the
independent joint distribution ℙ̂ ⊗ℙY, so

C? (ℙ̂,ℙY) ? =
1

sin Y

∫ sin Y

0
|G − 0|? dG + 1

cos Y

∫ 1

0

∫ cos Y

0
| Î − I |? dI dÎ

=
sin? Y
? + 1 +

1+ cos?+2 Y − (1− cos Y) ?+2
(? + 1) (? + 2) cos Y

=

(
(1+ ?) (1+ ?2 )

)− 1
? +$ (Y).

As a result, ℙ would not belong to the uncertainty set induced by the causal transport distance with a
small radius. This is consistent with our intuition. In contrast, for the Wasserstein distance, observe
that the optimal transport plan is simply the rotation transform, thereby the Wasserstein distance
is (? + 1)− 1

? (sin? Y + (1− cos Y) ?) 1
? =$ (Y), which is small whenever the angle between the two line

segments is small. Consequently, any Wasserstein uncertainty set with a positive radius contains
infinitely many distributions with dramatically different conditional information structures from the
nominal one, and therefore may lead to an overly conservative solution. ♣
Next, we point out an important property of the uncertainty set constructed using the causal

transport distance: for any ℙ̂ ∈ P (X ×Z) and d > 0, the set M= {ℙ ∈ P (X ×Z) : C? (ℙ̂,ℙ) ≤ d} is
convex, as indicated in the following lemma.
Lemma 1 (Convexity). If W (0) and W (1) are two causal transport plans from ℙ̂ to ℙ(0) and ℙ(1)

respectively, then for any @ ∈ [0,1], W@ := (1− @)W (0) + @W (1) is also a causal transport plan from ℙ̂ to
ℙ(@) = (1− @)ℙ(0) + @ℙ(1) . Moreover, everything follows even if we replace @ by any measurable function
@ : X → [0,1].

We remark that the direction of the transport plan matters: if W (0) and W (1) are two causal transport
plans from ℙ̂(0) and ℙ̂(1) to ℙ respectively, we cannot assert that their convex combination W (@) is also
a causal transport plan. For a counterexample, please refer to Fig. 1.17 in [65].

2.2. Distributionally Robust Formulation

Based on the definition in the previous subsection, we study the following distributionally robust
optimization problem with causal transport distance

EP := inf
5 ∈F

max
ℙ∈M

E(-,/ )∼ℙ [Ψ( 5 (-), /)], whereM=
{
ℙ ∈ P (X ×Z) : C? (ℙ̂,ℙ) ≤ d

}
. (P)

Below, we list a few examples.
Example 4 (Conditional Mean Estimation). The conditional mean of / given - can be estimated

by minimizing the square loss ( 5 (-) − /)2. Thus, we consider the following robust conditional mean
estimation problem

inf
5 ∈F

sup
ℙ∈M

E(-,/ )∼ℙ
[
( 5 (-) − /)2

]
. ♣

Example 5 (Feature-based Newsvendor). Let ℎ and 1 represent the unit overage cost and the
unit underage cost, respectively, and let / be the random demand and - be the covariate features.
The goal is to minimize the newsvendor cost function Ψ(F, I) = ℎ(F − I)+ + 1(I −F)+. Consider

inf
5 ∈F

sup
ℙ∈M

E(-,/ )∼ℙ
[
ℎ( 5 (-) − /)+ + 1(/ − 5 (-))+

]
.
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Note that this model also serves as the conditional 1
1+ℎ -quantile estimation. In particular, when ℎ = 1 = 1,

this is the conditional median estimation. ♣
Example 6 (Personalized Pricing). Consider an affine demand model � (F) = I1F + I2 = />

(
F

1
)
,

where F is the price and I are unknown coefficients, with I2 > 0 representing the demand at zero price
and I1 < 0 representing the price sensitivity coefficient, which is the rate at which the price affects
the demand. In practice, both coefficients I1 and I2 may exhibit heterogeneity among populations.
As such, we model it as a two-dimensional random variable /, which is affected by the contextual
information -, based on which the decision maker can adjust the price directly or indirectly through
personalized promotion. The revenue is calculated as F(/1F + /2). Consider revenue maximization
with personalized pricing

inf
5 ∈F

sup
ℙ∈M

E(-,/ )∼ℙ

[
− 5 (-)/>

(
5 (-)

1
)]
. ♣

In the last example, we consider a contextual linear optimization problem where the decision rule is
restricted to be affine.
Example 7 (Contextual linear optimization with affine decision rule). Consider a contex-

tual linear optimization problem in which one minimizes the loss function Ψ(F, I) = F>I. Take a linear
policy class FΘ defined by

FΘ =
{
G ↦→ �>G + X : (�, X) ∈Θ

}
, where Θ= {

(�, X) ∈ℝ3×< ×ℝ : �>G + X ∈D,∀G ∈ X
}
, (4)

so that 5 (X ) ⊂D for each 5 ∈FΘ. The robust contextual linear optimization problem is given by
inf
5 ∈FΘ

sup
ℙ∈M

E(-,/ )∼ℙ
[
5 (-)>/

]
. ♣

3. Evaluating the Worst-case Expectation
In this section, we develop a tractable reformulation for the inner maximization of (P) based on strong
duality. As a byproduct of our proof, we also derive the structure of the worst-case distribution, which
demonstrates how our choice of causal transport distance-based distributional uncertainty set helps to
preserve the conditional information structure of the nominal distribution in the worst case.
Throughout this paper, we make the following assumption, which focuses on the data-driven setting

where the nominal distribution is discrete, although our proof technique can be extended to a general
metric space with additional technical treatment.
Assumption 1. X , Z, D are subsets of normed vector spaces. The cost function Ψ : D ×Z → ℝ is

measurable. The nominal distribution ℙ̂ ∈ P (X ×Z) is a discrete probability measure

ℙ̂ =
 ∑
:=1

=:∑
8=1

?̂:8X ( Ĝ: , Î:8) , with
 ∑
:=1

=:∑
8=1

?̂:8 = 1.

3.1. Strong Duality Reformulation

We begin by developing a tractable reformulation by deriving its strong dual. For a fixed decision rule
5 , we define the primal problem as

E
5

P :=max
ℙ∈M

E(-,/ )∼ℙ [Ψ( 5 (-), /)], (P 5 )

and the dual problem as

E
5

D := inf
_≥0

{
_d? +E

ℙ̂
-̂

[
sup
G∈X

{
E
ℙ̂
/̂ |-̂

[
sup
I∈Z

{
Ψ( 5 (G), I) −_‖I − /̂ ‖ ?

}
| -̂

]
−_‖G − -̂ ‖ ?

}]}
. (D 5 )



10

The dual variable _ corresponds to the Lagrangian multiplier of the causal constraint in the primal
problem. We will show that (P 5 ) and (D 5 ) are equal, leading to the main result of Theorem 1 by
taking the infimum over 5 .
To prove the strong duality, we first develop a relatively straightforward weak duality result.
Proposition 1 (Weak Duality). Let 5 : X →D be a measurable function. Then E 5P ≤ E

5

D .
Proof. The proof is based on an application of Lagrangian weak duality. First, we derive from the

Lagrangian weak duality the following
E
5

P = sup
ℙ

{
E(-,/ )∼ℙ [Ψ( 5 (-), /)] : C? (ℙ̂,ℙ) ? ≤ d?

}
= sup

ℙ

inf
_≥0

{
E(-,/ )∼ℙ [Ψ( 5 (-), /)] −_

(
C? (ℙ̂,ℙ) ? − d?

)}
≤ inf
_≥0

sup
ℙ

{
E(-,/ )∼ℙ [Ψ( 5 (-), /)] −_

(
C? (ℙ̂,ℙ) ? − d?

)}
.

Since for any W ∈ Γ2 (ℙ̂,ℙ),
E(-,/ )∼ℙ [Ψ( 5 (-), /)] = E( (-,/ ) , (-̂ ,/̂ ))∼W [Ψ( 5 (-), /)],

so we can write
E(-,/ )∼ℙ [Ψ( 5 (-), /)] −_

(
C? (ℙ̂,ℙ) ? − d?

)
= _d? + sup

W∈Γ2 (ℙ̂,ℙ)
EW

[
Ψ( 5 (-), /) −_‖- − -̂ ‖ ? −_‖/ − /̂ ‖ ?

]
.

By the tower property,

EW [·] = Eℙ̂
-̂

[
EW

- |-̂

[
EW

/̂ | (-̂ ,- )

[
EW

/ | (-̂ ,/̂ ,- )

[
· | -̂, /̂ , -

]
| -̂, -

]
| -̂

] ]
= E

ℙ̂
-̂

[
EW

- |-̂

[
E
ℙ̂
/̂ |-̂

[
EW

/ | (-̂ ,/̂ ,- )

[
· | -̂, /̂ , -

]
| -̂, -

]
| -̂

] ]
where we use W

/̂ | (-̂ ,- ) = ℙ̂/̂ |-̂ for a.e.-( -̂, -) because W is causal. Therefore we have

EW

[
Ψ( 5 (-), /) −_‖- − -̂ ‖ ? −_‖/ − /̂ ‖ ?

]
= E

ℙ̂
-̂

[
EW

- |-̂

[
E
ℙ̂
/̂ |-̂

[
EW

/ | (-̂ ,/̂ ,- )

[
Ψ( 5 (-), /) −_‖- − -̂ ‖ ? −_‖/ − /̂ ‖ ? | -̂, /̂ , -

]
| -̂, -

]
| -̂

] ]
≤ E

ℙ̂
-̂

[
sup
G∈X

{
E
ℙ̂
/̂ |-̂

[
sup
I∈Z

{
Ψ( 5 (G), I) −_‖I − /̂ ‖ ?

}
| -̂

]
−_‖G − -̂ ‖ ?

}]
.

This completes the proof of the weak duality. �

The strong duality result states as follows.
Theorem 1 (Strong Duality). Let 5 : X →D be a measurable function. Then E 5P = E

5

D .
Proof Sketch. The proof idea of Theorem 1 is to construct a nearly worst-case distribution of

the primal problem based on the first-order optimality condition of the weak dual problem (D 5 ).
Conceptually, it shares some similar aspects to the duality proof for Wasserstein DRO [36], but differs
from it in terms of the construction of a nearly worst-case distribution.
The worst-case distribution maximizes the expected loss within a given transport budget. With a

fixed dual variable _, the worst-case distribution for the soft constraint problem
max

ℙ∈P (X×Z)
E(-,/ )∼ℙ [Ψ( 5 (-), /)] −_C? (ℙ̂,ℙ) ?
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is obtained by moving Î:8 toward the maximizer of the innermost maximization problem of (D 5 )

Υ(_; G, Î:8) := sup
I∈Z

{
Ψ( 5 (G), I) −_‖I − Î:8 ‖ ?

}
,

and moving Ĝ: toward the maximizer of the maximization problem

sup
G∈X

{
E
ℙ̂
/̂ |-̂
[Υ(_; G, /̂) | -̂ = Ĝ:] −_‖G − Ĝ: ‖ ?

}
.

One can see that such a transport plan is causal: the perturbation of Ĝ: is solely determined by itself,
independent of Î:8. If both maximizers over G and over I exist and are unique at the critical _∗ dual to
the given transport distance d?, then the transport plan would induce a worst-case distribution. If
the maximizer does not exist or is not unique, two alternative transport plans are considered: one
produces a feasible but suboptimal distribution, and the other, although infeasible, achieves a higher
objective value. Interpolating between these distributions allows for a near-optimal solution to the
primal problem.
As can be seen from the definition of Υ, the worst-case distribution for the soft constraint problem is

obtained by moving mass with loss-to-distance “efficiency” higher than _. Efficiency here refers to the
ratio of gain (or loss reduction) to the ?-th power of distance. Specifically, the efficiency of moving Ĝ to
G is E[Υ(_;G,/̂ ) ]−E[Υ(_;Ĝ,/̂ ) ]

‖G−Ĝ ‖? , in which Υ already incorporated the efficiency of moving Î to I, calculated
by Ψ( 5 (G) ,I)−Ψ( 5 (G) , Î)

‖I−Î ‖? .
There are several possibilities where the near-optimal distribution is located, depending on the critical

threshold _∗ that minimizes (D 5 ). Indeed, the dual objective function is an extended-real-valued,
monotonically decreasing convex function of _. It coincides with the above soft constraint problem. Let
^ ∈ [0,+∞] be the smallest value such that the dual objective is finite in (^,+∞). The infimum over _
in (D 5 ) can have several possibilities:
• Case 1: ^ = +∞, so the dual objective is +∞ for any _ > 0. This means that by transporting an

arbitrarily small distance, one can generate an arbitrarily large loss.
• Case 2: ^ < +∞ and minimization over _ in (D 5 ) is achieved in the interior of (^,+∞). The dual
objective can be arbitrarily large if _ is smaller than ^, but it would require transporting mass
that exhausts the transport distance budget. We interpolate two transport plans: moving all the
masses with “efficiency” above _1 < _∗ (superoptimal but infeasible) v.s. moving all the masses
with efficiency above _2 > _∗ (feasible but suboptimal).

• Case 3: ^ < +∞ and E 5D is minimized at ^. Moving all the mass with efficiency strictly above ^ does
not exhaust the transport distance budget. This is further divided into
� Case 3.1: ^ = 0. Any positive _ corresponds to a finite soft loss. We simply move all the mass
with positive efficiency.

� Case 3.2: ^ > 0. We again interpolate two transport plans: moving all the masses with efficiency
above _2 > _∗ (feasible but suboptimal) v.s. moving some of the masses with efficiency above
^1 < _∗ (superoptimal but infeasible). We can only move the latter up to some distance, in
contrast to Case 2, because moving them all would travel an infinite distance.

We refer to the next subsection for a more detailed construction of a worst-case distribution and
Appendix EC.3 for a complete proof. �

Remark 1 (Comparison with Wasserstein DRO). Recall the Wasserstein DRO problem

sup
ℙ

{
E(-,/ )∼ℙ [Ψ( 5 (-), /)] : W? (ℙ̂,ℙ) ≤ d

}
,
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which has the following equivalent dual form [36, 91]

inf
_≥0

{
_d? +E

ℙ̂

[
sup
G∈X
I∈Z

{
Ψ( 5 (G), I) −_‖I − /̂ ‖ ? −_‖G − -̂ ‖ ?

}]}
= inf
_≥0

{
_d? +E

ℙ̂
-̂

[
E
ℙ̂
/̂ |-̂

[
sup
G∈X

{
sup
I∈Z

{
Ψ( 5 (G), I) −_‖I − /̂ ‖ ?

}
−_‖G − -̂ ‖ ?

}
| -̂

] ]}
.

Comparing it with the dual problem (D 5 ) of causal transport distance DRO, the difference is the swap
of supremum over G and the conditional expectation of /̂ given -̂. Hence, if the switching does not
change the objective value, which holds, for instance, when the conditional distribution ℙ̂

/̂ |-̂ is a Dirac
measure for every -̂, then the Wasserstein DRO dual problem and causal transport distance DRO dual
problems are equal. From a primal point of view, if ℙ̂

/̂ |-̂ is Dirac for every -̂, then every transport plan
from ℙ̂ to ℙ is causal. In this case, the causal transport distance DRO and Wasserstein DRO coincide.
Intuitively, if every conditional distribution ℙ̂

/̂ |-̂ is Dirac, then the nominal distribution does not have
any meaningful conditional information structure to exploit, and thus the causal transport distance
DRO reduces to Wasserstein DRO.
Without considering the causality constraint, the optimal strategy is the greedy one. When a unit of

mass is moved from (Ĝ, Î) to (G, I), it generates a revenue of Ψ( 5 (G), I) −Ψ( 5 (Ĝ), Î), while incurring a
transport distance ‖G − Ĝ‖ ? + ‖I − Î‖ ?. The efficiency of this transportation is thus Ψ( 5 (G) ,I)−Ψ( 5 ( Ĝ) , Î)

‖G−Ĝ ‖?+‖I−Î ‖? .
It will move (Ĝ, Î) to a destination with the (near-) highest efficiency, and (Ĝ, Î) is moved only after all
other sources (Ĝ ′, Î′)’s with higher efficiency have been depleted. This greedy strategy is reflected in
E
5

D . The dual objective computes the net profit of transporting all the mass with efficiency higher than
threshold _ with transport cost multiplied by a factor of _ (toll rate), and E 5D computes the revenue by
reimbursing the transport cost _d? and then searches for the critical threshold _∗. ♦

3.2. Worst-case Distribution
In this subsection, we investigate the structure of the worst-case distribution and its existence conditions.
Compared with the results in Section 3.1, in the following result, we require X and Z to be finite-
dimensional and thus locally compact and require some continuity assumptions on Ψ so that the
maximizers are attainable.
Theorem 2 (Worst-case Distribution). Suppose X ,Z are finite dimensional, and Ψ( 5 (·), ·) is upper

semi-continuous. If the optimal value of (D 5 ) is attaineat some _∗ > ^ for ^ specified in Lemma EC.2, then
a worst-case distribution exists and has the following form

ℙ∗ =
∑
:≠:0

=:∑
8=1

?̂:8X (G∗
:
,I∗
:8
) +

=:0∑
8=1

?̂:08

(
@X (G:0 ,I:08) + (1− @)X (G:0 ,I:08

)
)
,

where 1 ≤ :0 ≤  , 0 ≤ @ ≤ 1, (G∗
:
, I∗
:8
) = (G: , I:8), and for every : and 8,

G: , G: ∈ arg max
G∈X

{
E
ℙ̂
/̂ |-̂

[
sup
I∈Z

{
Ψ( 5 (G), I) −_∗‖I − /̂ ‖ ?

}
| -̂ = Ĝ:

]
−_∗‖G − Ĝ: ‖ ?

}
,

I:8 ∈ arg max
I∈Z

{Ψ( 5 (G:), I) −_∗‖I − Î:8 ‖ ?} , I
:8
∈ arg max

I∈Z

{
Ψ( 5 (G

:
), I) −_∗‖I − Î:8 ‖ ?

}
.

From Theorem 2, we see that there exists a worst-case distribution ℙ∗ supported on at most # + =:0
points, and its marginal ℙ∗

-
is supported on at most  + 1 points. We demonstrate the structure of

the worst-case distribution in Figure 3 (left). In this plot, the support of ℙ̂ is represented by ‘•’, and
we have  = 3, =: = 3, : = 1,2,3 and :0 = 2. These points are transported to ‘★’s, which form the
worst-case distribution ℙ∗. For : = 1,3, we observe that Ĝ: is transported to G∗

:
, and the conditional
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distribution ℙ∗
/ |-=G∗

:

has the same structure as the conditional distribution ℙ̂
/̂ |-=Ĝ: , both supported on

3 points with identical probability mass function ( ?̂:8)8=1,2,3. Furthermore, Ĝ2 is split into two values G2
and G2, and the conditional distributions ℙ∗

/ |-=G2
, ℙ∗

/ |-=G2
have the same structure as the conditional

distribution ℙ̂
/̂ |-=Ĝ2

, both supported on 3 points with identical probability mass function ( ?̂28)8=1,2,3.

G

I

|
G∗1

|
Ĝ1

|
G2

|
Ĝ2

|
G2

|
Ĝ3

|
G∗3

causal transport DRO

G

I

|
Ĝ1

|
Ĝ2

|
Ĝ3

Wasserstein DRO
Figure 3 Structure of the worst-case distributions

As a comparison, on the right side of Figure 3, we plot the worst-case distribution resulting from
Wasserstein DRO. According to [36], the worst-case distribution can be supported on # + 1 points,
and points with the same G-value could have different G-values after transportation or splitting. The
conditional distributions of the worst-case distribution change completely, each of which is a Dirac
measure. This example illustrates that the worst-case distribution of the causal transport distance DRO
preserves the conditional information structure of the nominal distribution, whereas the Wasserstein
DRO fails to do so.
We illustrate the worst-case distributions under Wasserstein DRO and causal transport DRO as

follows using the mean estimation problem.
Example 4 (revisited). Consider the conditional mean estimation problem in Example 4. We

compare the worst-case distributions with 2-Wasserstein DRO and 2-causal transport DRO when the
decision rule 5 = 5true is the true conditional mean, and the uncertainty set radius is d = 0.2. As can be
seen from Figure 4, in the worst case of Wasserstein DRO, the conditional information structure is not
preserved. ♣

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

4

z

training data
true conditional mean
support of distribution
worst case distribution

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

4

z

training data
true conditional mean
support of distribution
worst case distribution

Figure 4 Structure of the 2-Wasserstein (left) v.s. causal (right) worst-case distributions for mean estimation.
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4. Finding the Optimal Decision Rule
In this section, we study the outer optimization over decision rules in (P). As a direct consequence of
Theorem 1, problem (P) is equivalent to the following:

ED := inf
5 ∈F
_≥0

{
_d? +E

ℙ̂
-̂

[
sup
G∈X

{
E
ℙ̂
/̂ |-̂

[
sup
I∈Z

{
Ψ( 5 (G), I) −_‖I − /̂ ‖ ?

}
| -̂

]
−_‖G − -̂ ‖ ?

}]}
. (D)

In particular, if we define ‖I − Î‖Z :=∞1 {I ≠ Î}, which is often used when the side information is
relatively accurate, then (D) is simplified to

ED := inf
5 ∈F
_≥0

{
_d? +E

ℙ̂
-̂

[
sup
G∈X

{
E
ℙ̂
/̂ |-̂

[
Ψ( 5 (G), /̂) | -̂

]
−_‖G − -̂ ‖ ?

}]}
. (5)

The tractability of the optimization over 5 ∈F depends on the class of decision rules F . If F admits
a finite-dimensional parameterization, such as affine class, then the problem (D) is a finite-dimensional
optimization, and we identify cases where the overall problem can be solved by off-the-shelf convex
programming solvers (Section 4.1). Otherwise, if F is a non-parametric class, and particularly the class
of all decision rules, then the optimization over F is an infinite-dimensional functional optimization,
yet still, we identify cases where the overall problem can be solved efficiently (Section 4.2).

4.1. Optimizing over Affine Decision Rules
In this subsection, we provide tractable formulations when F is the affine class. Suppose affine
functions in F are parametrized by Θ:

FΘ =
{
G ↦→ �>G + X : (�, X) ∈Θ

} (6)

where Θ is a finite-dimensional convex set.
Our first result shows that (5) is tractable when Ψ is affine in the decision variable F. The proof can

be found in EC.4.
Corollary 1. Suppose F =FΘ as defined in (6), and Ψ(·, I) is affine for every I, that is, there exists

functions V(·), 1(·) such that
Ψ(F, I) = V(I)>F + 1(I).

Set

?̂: :=
=:∑
8=1

?̂:8, V: := E
ℙ̂
/̂ |-̂
[V(/̂) | -̂ = Ĝ:], 1: := E

ℙ̂
/̂ |-̂
[1(/̂) | -̂ = Ĝ:] .

Then, the dual problem (5) is equivalent to the following convex programs. When ? = 1, (5) is equivalent
to

inf
(�,X) ∈Θ

d? · max
:∈[ ]

‖�V: ‖∗ +
 ∑
:=1

?̂:
(
V>: (�

>Ĝ: + X) + 1:
)
.

When ? ∈ (1,+∞), (5) is equivalent to

inf
_≥0, (�,X) ∈Θ

_d? +
 ∑
:=1

?̂:

(
V>: (�

>Ĝ: + X) + 1: +_(? − 1)
(
‖�V: ‖∗
_?

) ?

?−1
)
.

Here ‖·‖∗ is the dual norm of ‖·‖X .
As a special case, we assume further that Ψ(F, I) is bilinear. When ? = 2, the above convex program

can be written as a positive semidefinite program.
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Corollary 2. Suppose F =FΘ as defined in (6) and Ψ(F, I) is bilinear:
Ψ(F, I) = F>�I + V>F +U>I + 1.

Set

?̂: =

=:∑
8=1

?̂:8, Ī: = Eℙ̂
/̂ |-̂
[/̂ | -̂ = Ĝ:] . (7)

Then (D) with ? = 2 is equivalent to the following positive semidefinite program

inf
(�,X) ∈Θ

_≥0, {H: }: ⊂ℝ

_d2 +
 ∑
:=1

?̂: H:

s.t. ©­«
_� −1

2�� −1
2�V−_Ĝ:

−1
2 (��)

> _� −1
2 (�

>X +U) −_Ī:
−1

2 (�V)
> −_Ĝ>

:
−1

2 (�
>X +U)> −_Ī>

:
H: − V>X − 1 +_‖ Ī: ‖2 +_‖Ĝ: ‖2

ª®¬ �$, : ∈ [ ] .

Here $ stands for the zero matrix and � represents the identity matrix.
Example 7 (revisited). We revisit the contextual linear optimization problem in Example 7, where

the decision is restricted to a polygon D = {F ∈ℝ< : �F ≤ 2}, and the context - is bounded in an
ellipsoid X =

{
G ∈ℝ3 : (G − G0)>Σ(G − G0) ≤ '

}. Here Σ ∈ ℝ3×3 is symmetric and positive definite,
G0 ∈ℝ3, ' > 0, � ∈ℝ!×<, and 2 ∈ℝ!. �F ≤ 2 means �>

ℓ
F ≤ 2ℓ , where �>ℓ is the ℓ-th row of � and 2ℓ

is the ℓ-th entry of 2, for each ℓ ∈ [!]. Θ defined by (4) is convex. Using Corollary 2, (D) with ? = 2
can be reformulated as the following positive semidefinite program

inf
�∈ℝ3×<, X∈ℝ
_≥0, {H: }: ∈ℝ 
{`: }: ≥0, {aℓ }ℓ ≥0

_d2 +
 ∑
:=1

?̂: H:

s.t.
©­­­«

_� + `:Σ −1
2� −_Ĝ: − `:ΣG0

−1
2�
> _� −1

2X −_Ī:
−_Ĝ>

:
− `: (ΣG0)> −1

2X
> −_Ī>

:

H: +_‖ Ī: ‖2 +_‖Ĝ: ‖2
+ `:G>0ΣG0 − `:'

ª®®®¬ �$ ∀: ∈ [ ],

(
aℓΣ

1
2��ℓ − aℓΣG0

1
2�
>
ℓ
�> − aℓ (ΣG0)> �>ℓ X − 2ℓ + aℓG

>
0ΣG0 − aℓ'

)
�$ ∀ℓ ∈ [!] .

Recall ?̂: and Ī: are defined in (7). Detailed computation can be found in Appendix EC.5. ♣

4.2. Optimizing over All (Non-parametric) Decision Rules
In this subsection, we consider F to be unrestricted and contain all measurable functions { 5 : X →D}.
In general, this infinite-dimensional problem is hard to solve. Nonetheless, below, we provide a tractable
way to find the optimal decision rule for this problem in certain settings.
Recall that our dual reformulation in Theorem 1 states that

ED = min
5 :X→D

min
_≥0

{
_d +E

ℙ̂
-̂

[
sup
G∈X

{
i( 5 (G);_, -̂) −_‖G − -̂ ‖

}]}
, (8)

where i(F;_, Ĝ) := E
ℙ̂
/̂ |-̂

[
supI∈Z

{
Ψ(F, I) −_‖I− /̂ ‖

}
| -̂ = Ĝ

]
. By replacing X with supp ℙ̂, we define

the in-sample dual problem as

ED̂ := min
5 :X→D
_≥0

{
_d +E

ℙ̂
-̂

[
max

1≤:≤ 

{
i( 5 (G:);_, -̂) −_‖G: − -̂ ‖

}]}
(9)
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=min
5̂ ∈F̂
_≥0

{
_d +E

ℙ̂
-̂

[
max

1≤:≤ 

{
i( 5̂ (G:);_, -̂) −_‖G: − -̂ ‖

}]}
, (10)

where the second equality holds because the objective value in (9) depends only on the value of 5
on supp ℙ̂. Note that (10) is a finite-dimensional convex optimization problem with  + 1 decision
variables in the outer minimization.
Theorem 3. Suppose ? = 1, D ⊂ ℝ is convex, and Ψ(F, I) is convex in F. Let (_∗, 5̂ ∗) be a minimizer to

the in-sample dual problem (10). Denote i: (F) := i(F;_∗, Ĝ:), F: := 5̂ ∗(Ĝ:), and q: :=max 9{i: (F 9) −
_∗‖Ĝ: − Ĝ 9 ‖}. For G ∈ X , define

�: (G) := {F ∈D : i: (F) ≤ _∗‖G − Ĝ: ‖ + q: } .

Then the intersection of �: (G)’s is nonempty, and every decision rule 5 ∗ ∈ F satisfying 5 ∗(G) ∈ ∩: �: (G)
for all G ∈ X is a minimizer to (8). Moreover, let (_∗, 5 ∗) be a minimizer to the dual problem (D), then
(_∗, 5̂ ∗) is a minimizer to (10), and 5 ∗(G) ∈ ∩: �: (G) defined above.

Theorem 3 shows that problems (8) and (10) share the same optimal dual variable _∗, and to solve the
infinite-dimensional optimization over decision rules (8), it suffices first to solve a finite-dimensional
robust in-sample optimization (10) and then extend the robust optimal in-sample decision rule to
X \ supp ℙ̂ such that it is optimal to the original problem. Note that once the in-sample problem (10)
is solved, the values F: , q: are immediately available, and the set �: is defined precisely. There may
be more than one way to extend the in-sample robust optimal decision rule 5̂ to the entire space, as
long as it belongs to the range of ∩: �: (G).
Proof Sketch. The proof idea of Theorem 3 is as follows. To show the optimality of the decision

rules that lie within the intersection ∩: �: , the key step is to show ED = ED̂. Observe that ED ≥ ED̂, sincethe inner supremum in (8) is taken with respect to a larger set compared with the maximization
in (9). To see the other direction, the main step is to show that �: (G) has a nonempty intersection.
Once this is shown, it is easy to verify by simple algebra that 5 ∗(G) ∈ ∩: �: (G) attains the value ED̂,thereby ED is dominated by the objective value of 5 ∗ which equals ED̂. Thus we have ED = ED̂. To show
�: (G) has a nonempty intersection, since they are one-dimensional intervals, it suffices to show they
pairwise intersect. This can be established using the convexity of i. The necessity of the above interval
condition, i.e., for any optimal policy 5 ∗, 5 ∗(G) ∈ ∩: �: (G), could be justified by contradiction. The
detailed proof can be found in EC.4. �

Remark 2 (Comparison with the Shapley Policy in [37]). In [37], the authors study (3) with
Wasserstein uncertainty sets, focusing on the newsvendor cost. They show that when optimization over
all decision rules, the optimal decision rule, called Shapley policy, can be found by first solving for the
in-sample Wasserstein robust optimal decision rule 5̂W, then extending to the entire space by solving

5W (G) ∈ arg min
F ∈ℝ

max
:

|F − 5̂W (Ĝ:) |
‖G − Ĝ: ‖

, (WLip)

which minimizes the maximal slope. Using the same idea, if we define

5∞(G) ∈ arg min
F ∈ℝ

max
:

|F − 5̂ ∗(Ĝ:) |
‖G − Ĝ: ‖

, (CLip)

where 5̂ ∗(Ĝ:)’s are defined in Theorem 3, then it can be verified that 5∞(G) ∈ ∩: �: (G). Therefore, this
shows that 5∞(G) defined a robust optimal decision rule for (8). Note that we use the subscript ∞ to
indicate the ∞-norm (maximum) of the slope function : ↦→ |F− 5̂ ∗ ( Ĝ: ) |

‖G−Ĝ: ‖ .
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Differently, we can define another decision rule that minimizes the 1-norm of the slope function,

51(G) ∈ arg min
F ∈ℝ

∑
:

|F − 5̂ ∗(Ĝ:) |
‖G − Ĝ: ‖

. (CTV)

The resulting decision rule may not necessarily be optimal, but we can always truncate its values to
force them to fall into ∩: �: (G) and thereby make it robust optimal. Namely, if we use � (·) and � (·) to
represent the upper and lower bound of the region ∩: �: (G), then we define

5̄1(G) :=max
(
� (G), min (

51(G), � (G)
) )
. (CTV-trunc)

We denote the truncated decision rule as 5̄1(G).
We illustrate the two robust optimal decision rules defined above using a conditional median estimate

problem with / = `(-) + Y, Y ∼N (0,1), `(G) = sin(2G) + 2 exp(−16G2).

Figure 5 Two robust optimal decision rules 5∞ and 5̄1 of a median estimation problem

Example 5 (revisited). Consider the feature-based newsvendor problem in Example 5. When
ℎ = 1 = 1, this is equivalent to conditional median estimation. As detailed in EC.5, the in-sample dual
problem (10) can be transformed into a linear programming problem

inf
{F: }: , {H: }: ⊂ℝ
{2: 98 }: 98⊂ℝ,_≥1

_d +
 ∑
:=1

H:

s.t. H 9 ≥
= 9∑
8=1

?̂:8 (2: 98 −_‖Ĝ: − Ĝ 9 ‖) ∀ 9 , : ∈ [ ],

2: 98 ≥ F: − Î 98 ∀:, 9 ∈ [ ], 8 ∈ [= 9],
2: 98 ≥ Î 98 −F: ∀:, 9 ∈ [ ], 8 ∈ [= 9] .

This is a linear programming with  (= + 2) + 1 variables and  (2= + ) + 1 constraints. ♣



18

Example 6 (revisited). Consider the personalized pricing problem in Example 6. By Theorem 1,
its strong dual problem can be written as

inf
5 :X→ℝ
_≥0

{
_d? +E

ℙ̂
-̂

[
sup
G∈X

{
E
ℙ̂
/̂ |-̂

[
sup
I∈Z

{
− 5 (G)I>

(
5 (G)
1

)
−_‖I − /̂ ‖ ?

}
| -̂

]
−_‖G − -̂ ‖ ?

}]}
.

In the case of ? = 1, we notice that 5 is real-valued and Ψ is convex in F, so we may use Theorem 3 to
reformulate the problem as

inf
5̂ :X̂→ℝ
_≥0

{
_d +E

ℙ̂
-̂

[
max

1≤:≤ 

{
i( 5̂ (Ĝ:);_, -̂) −_‖Ĝ: − -̂ ‖

}]}
.

where
i(F;_; Ĝ) = E

ℙ̂
/̂ |-̂

[
sup
I∈Z

{
−FI>

(
F

1
)
−_‖I − /̂ ‖

}
| -̂ = Ĝ

]
.

In particular, it can be reformulated as the following

inf
{F: }: , {2: }: ,_≥0

_d +
∑
:∈[ ]

?̂:2:

s.t. 2 9 +
(
F2
:
F:

)
Ī: +_‖Ĝ: − Ĝ 9 ‖ ≥ 0 ∀ 9 , : ∈ [ ],

‖(F2
: F:)‖∗ ≤ _ ∀: ∈ [ ] .

(11)

where ?̂: =∑=:
8=1 ?̂:8 and Ī: = E

ℙ̂
/̂ |-̂
[/̂ | -̂ = Ĝ:]. Here ‖·‖∗ is the dual norm of ‖·‖Z . When Z =ℝ2 is

equipped with ℓ1 or ℓ∞ norm, (11) can be reduced to a quadratic constraint program, whereas when
ℓ2 norm is chosen, (11) can be written as a second order conic program. A detailed calculation can be
found in EC.5. ♣

5. Numerical Experiments
In this section, we illustrate our proposed approach in the context of feature-based newsvendor. We
consider a similar setup as in [37], where the demand / depends on - in a nonlinear way:

/ = 5 (V>-) + Y, 5 (_) := 2[sin(2_) + 2 exp(−16_2) + 1],

where Y ∼N (0,1) is a standard Gaussian variable independent from V and -. Let the coefficient vector
V ∈ ℝ100, with each component independently sampled from a uniform distribution U ( [−0.1,0.1]).
The covariate - is sampled from a 100-dimensional multivariate normal distribution N (0, (f8 9)8 9),
with mean zero and covariate matrix defined by f8 9 = 0.5 |8− 9 | with 8, 9 = 1, . . . ,100. The constant
2 = 1.7 is chosen such that the signal-to-noise ratio is approximately 3:1. Since the demand should be
positive, we reject all samples with / < 0.
We experiment with different unit overage cost ℎ ∈ {0.2,0.5,0.8,1} while fixing the unit underage

cost 1 = 1. To understand the effect of the sample size, we choose  ∈ {10,30,100,300} and =: ∈
{1,3,10,30,100}. The testing data size is 10000. The hyper-parameters are tuned based on 5-fold
cross-validation. We set ‖·‖X = ‖·‖2 and ‖·‖Z =∞ · 1{I ≠ Î}. To generate the boxplots, we run 20
repeated experiments (except for  = 10, we run 50 experiments to get a more accurate depiction).
All experiments are performed in Ubuntu 18.04 using Python 3.6.9 with a convex optimization solver
Gurobi 9.1.1, on a Dell Precision 5820 Tower Workstation with Intel® Xeon® W-2125 CPU (32 cores)
and 32GB RAM (DDR4 2666MHz). Due to constraints associated with the solver’s capabilities, the
experiments with =: = 30,  = 300 and =: = 100,  = 100,300 are not included in the comparison.
In the following subsections, we want to deepen our comparative analysis across the following

dimensions:
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(I) Comparison among different distributional uncertainty sets, namely, the Wasserstein DRO with
Shapley extension (WLip) in [37] versus causal transport DRO with Shapley extension (CLip).

(II) Comparison among different extensions of the in-sample optimal decision rule within the causal
transport DRO framework, specifically, the differences between the Shapley extension (CLip) and
its 1-norm counterpart (CTV-trunc), as defined in Remark 2.

(III) Comparisons between (CTV) and (CTV-trunc), and other decision rules alongside their truncated
variants, to further the insights of the optimal region as identified in Theorem 3.

5.1. Comparison of CLip and WLip

In our first set of experiments, we delve into the effects of adopting different distributional uncertainty
sets of the inner worst-case expectation. Specifically, we compare the performance of using the
Wasserstein distance (WLip) with the causal transport distance (CLip). Both approaches incorporate the
Shapley extension to extend the in-sample optimal policy. Figure 6 shows the relative difference in the
out-of-sample expected cost between CLip and WLip with the same training and testing data set — a
negative number indicates that CLip outperforms W-DRO.
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Figure 6 Boxplots of the relative differences in the out-of-sample performance between WLip (baseline) and CLip

We have the following observations.
(I) When each covariate group contains only a single sample (=: = 1), CLip and WLip have the same

performance because the two formulations are equivalent (Remark 1).
(II) As the sample size per covariate group increases beyond a single sample, CLip begins to exhibit

a performance advantage over WLip, particularly when dealing with skewed loss functions
(ℎ = 0.2,0.5,0.8). This edge is most pronounced at lower sample sizes =: = 3,10, which shows
the value of (even a little) conditional information. The marginal benefit provided by CLip tends to
diminish with larger sample sizes per covariate group (=: = 30,100). One explanation is that the
worst-case distribution of WLip does not deteriorate the conditional information structure greatly
when there are many samples at the same covariate value.

(III) The comparative advantage of CLip over WLip generally amplifies with the increase in the number
of covariate groups  . An explanation is that when  is large, CLip can fully take advantage of
the conditional information to extrapolate other conditional distributions.

5.2. Comparison of Shapley and Non-Shapley Extension
Next, in our second set of experiments, we aim to compare the performance among different extensions
of the in-sample optimal policy that are optimal to the DRO with causal transport distance, as discussed
in Theorem 3 and Remark 2. We first compare the performance between CLip and CTV-trunc. Figure
7 shows the relative differences in out-of-sample expected cost between CLip — a positive number
indicates that CLip outperforms CTV-trunc.
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Figure 7 Boxplots of the relative differences in the out-of-sample performance between CLip (baseline) and CTV-trunc

We observe that both CLip and CTV-trunc have their own competitive advantages. Specifically, CLip
demonstrates superior performance compared to CTV-trunc when dealing with a relatively small sample
size  , given the same =/ . On the other hand, for a fixed sample size  , CLip outperforms CTV-trunc
when the ratio of =/ is low. This can be attributed to CLip minimizing the ∞-norm, which leads to
a more conservative approach than that of CTV-trunc. CLip is more adept at managing situations with
sparse data per covariate group. It minimizes the impact of potential outliers or extreme scenarios,
which is helpful when individual covariate groups have fewer observations. However, this conservatism
may reduce its effectiveness when the sample size is large.

5.3. Comparison of Truncated and Non-truncated Policy
Moreover, we want to investigate further the relationship between different policies versus their
truncated versions on the optimal region, as identified in Theorem 3. To begin with, we compare the
performance of CTV with CTV-trunc. Figure 8 shows the mean of the differences of out-of-sample costs
between CTV-trunc and CTV with the same training and testing data set. A negative number implies that
CTV is outperformed by CTV-trunc. In general, CTV-trunc has an advantage over CTV, especially when the
overage cost ℎ is small or =/ is small. Their differences are not very large in general, as CTV lies
within the optimal region under most covariate values.

Figure 8 The differences (‰) in the out-of-sample performance between CTV and CTV-trunc

To deepen our understanding of the performance differences between policies and their truncated
counterparts, we also compare the performance of empirical risk minimization using affine policy with
ℓ1 and ℓ2 regularization (ERM2 (ℓ1/ℓ2)) in [7] and their truncated versions. The results are shown in
Figure 9. Setting CLip as the baseline, the enhanced performance of the truncated versions emphasizes
the efficacy of the optimal region.
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Figure 9 Boxplots of the relative differences in the out-of-sample performance between CLip (baseline) and ERM2 (ℓ1/ℓ2)

6. Concluding Remarks
In this paper, we propose a new distributionally robust decision-rule optimization for decision-making
with side information based on causal transport distance. These results open up new research directions
for distributionally robust optimization and adjustable robust optimization. For future work, it would
be interesting to investigate the performance guarantees of the proposed framework.
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Proofs of Statements

EC.1. Causal Transport Distance
Lemma EC.1 (Equivalent Definition). Let W ∈ Γ(ℙ̂,ℙ) be a transport plan. Then the following are

equivalent.
(I) W ∈ Γ2 (ℙ̂,ℙ).
(II) For ℙ̂-almost every ( -̂, /̂) ∈ X ×Z,

W
- | (-̂ ,/̂ ) = W- |-̂ .

(III) Let Proj- : X ×Z→X be the projection into - coordinate. For ℙ̂-almost every (Ĝ, Î1), (Ĝ, Î2) ∈ X ×Z,

(Proj- )#W(dG |Ĝ, Î1) = (Proj- )#W(dG |Ĝ, Î2).

(IV) For ℙ̂
-̂
-almost every -̂ and ℙ- -almost every -,

W
/̂ | (-̂ ,- ) = W/̂ |-̂ = ℙ̂/̂ |-̂ .

(V) Let Proj
/̂

: Z ×Z → Z be the projection into /̂ coordinate: Proj
/̂
( Î, I) = Î. For ℙ̂

-̂
-almost every

Ĝ ∈ X and ℙ- -almost every G1, G2 ∈ X ,

(Proj
/̂
)#W(dÎ |Ĝ, G1) = (Proj

/̂
)#W(dÎ |Ĝ, G2).

Moreover, W ∈ Γ(ℙ̂,ℙ) plus any one from the above is equivalent to W ∈ P ((X ×Z) × (X ×Z)), satisfying
(VI) W has a decomposition into successive regular kernels

W(dĜ dÎ dG dI) = W1(dĜ dG)W2(dÎ dI |Ĝ, G)
satisfying

W1 ∈ Γ(ℙ̂-̂ ,ℙ- ),
(Proj

/̂
)#W2(dÎ |Ĝ, G) = ℙ̂/̂ |-̂ (dÎ |Ĝ) for W1-almost every (Ĝ, G),

(Proj(-,/ ) )#W/ |- (dI |G) =ℙ/ |- (dI |G) for ℙ- -almost every G.

That is,

W1 ∈ Γ(ℙ̂-̂ ,ℙ- ), W2 ∈ Γ(ℙ̂/̂ |-̂ ,ℚ
(-̂ ) ) where E

-̂∼(W1)-̂ |-
[ℚ(-̂ ) |-] =ℙ/ |- .

Proof. The equivalence of (I), (II), and (IV) follows from the definition. It is also easy to check
from the definition that (II) is equivalent to (III), and (IV) is equivalent to (V).
Suppose (VI) holds, then projecting W onto (-, -̂, /̂) coordinate, we have

(Proj(-,-̂ ,/̂ ) )#W(dG dĜ dÎ) = W1(dĜ dG) · (Proj
/̂
)#W2(dÎ |Ĝ, G) = W1(dĜ dG)ℙ̂

/̂ |-̂ (dÎ |Ĝ).

Projecting onto ( -̂, /̂) yields
(Proj(-̂ ,/̂ ) )#W(dĜ dÎ) = (Proj

-̂
)#W1(dĜ)ℙ̂/̂ |-̂ (dÎ |Ĝ) = ℙ̂-̂ (dĜ)ℙ̂/̂ |-̂ (dÎ |Ĝ) = ℙ̂(Ĝ, Î).

As for the other marginal,
(Proj(-,/ ) )#W(dG dI) = (Proj- )#W1(dG) · (Proj(-,/ ) )#W/ |- (dI |G) =ℙ- (dG)ℙ/ |- (dI |G) =ℙ(dG dI).

So indeed we have W ∈ Γ(ℙ̂,ℙ). �
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Proof of Lemma 1. Since W (@) are transport plans starting from ℙ̂,
W
(@)
(-̂ ,/̂ )

= ℙ̂, W
(@)
-̂
= ℙ̂

-̂
, ∀@ ∈ [0,1] .

Together with
W
(@)
(-,-̂ ,/̂ )

= (1− @)W (0)
(-,-̂ ,/̂ )

+ @W (1)
(-,-̂ ,/̂ )

, W
(@)
(-,-̂ )

= (1− @)W (0)
(-,-̂ )

+ @W (1)
(-,-̂ )

,

we know that
W
(@)
- | (-̂ ,/̂ )

= (1− @)W (0)
- | (-̂ ,/̂ )

+ @W (1)
- | (-̂ ,/̂ )

, W
(@)
- |-̂

= (1− @)W (0)
- |-̂
+ @W (1)

- |-̂
.

Because W (0) and W (1) are causal, by equivalent definition (II), for ℙ̂-almost every ( -̂, /̂) ∈ X ×Z,
W
(0)
- | (-̂ ,/̂ )

= W
(0)
- |-̂

, W
(1)
- | (-̂ ,/̂ )

= W
(1)
- |-̂

.

Therefore
W
(@)
- | (-̂ ,/̂ )

= W
(@)
- |-̂

,

so W (@) is also causal.

Proof. With probability one, each Ĝ in the support of ℙ̂ corresponds to only one Î, so that
ℙ̂
/̂ |-̂=Ĝ: = X Î: .

Now let W ∈ Γ(ℙ̂,ℙ). Because
E
- |-̂ [W/̂ | (-̂ ,- ) ] = W/̂ |-̂ = X/̂ ,

the only choice is W
/̂ | (-̂ ,- ) = X-̂ , for (W1)- |-̂ -a.e. -. Therefore W is causal. �

EC.2. Supremum of Convex Functions
In this subsection, we provide several auxiliary results on the properties of the supremum of a family
of convex functions. Analysis in this subsection will be used in the proof of Theorem 1.
Lemma EC.2 (Dual Objective Function). The dual objective function ℎ has the following properties.

Let I = {ℎ <∞}. Then
(I) There exists ^ ≥ 0, such that either I = (^,∞) or I = [^,∞).
(II) ℎ is convex and continuous in I.
(III) ℎ(_) →∞ as _→∞.
(IV) ℎ has a minimizer _∗ ∈ [^,∞).

Proof. (I) ℎ(_) − _d? is monotonously decreasing in _, therefore we can find ^ such that ℎ is
infinite for smaller _, and finite for greater _.

(II) ℎ is a combination of supremums and expectations of convex functions, and therefore ℎ is convex.
Since ℎ <∞ in I, ℎ is continuous in I with only a possible exception at ^ ∈ I. Notice that

lim inf
_↓^

�(G) (_; Ĝ) = lim inf
_↓^

E
ℙ̂
/̂ |-̂

[
sup
I∈Z

{
� (I) (_; G, /̂)

}
| -̂ = Ĝ

]
− ^‖G − Ĝ‖ ?

≥ E
ℙ̂
/̂ |-̂

[
lim inf
_↓^

sup
I∈Z

{
� (I) (_; G, /̂)

}
| -̂ = Ĝ

]
− ^‖G − Ĝ‖ ?

≥ E
ℙ̂
/̂ |-̂

[
sup
I∈Z

{
lim inf
_↓^

� (I) (_; G, /̂)
}
| -̂ = Ĝ

]
− ^‖G − Ĝ‖ ?

≥ E
ℙ̂
/̂ |-̂

[
sup
I∈Z

{
� (I) (^; G, /̂)

}
| -̂ = Ĝ

]
− ^‖G − Ĝ‖ ? = �(G) (^; Ĝ).
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Similarly

lim inf
_↓^

ℎ(_) = ^d? + lim inf
_↓^

E
ℙ̂
-̂

[
sup
G∈X

{
�(G) (_; -̂)

}]
≥ ^d? +E

ℙ̂
-̂

[
sup
G∈X

{
�(G) (^; -̂)

}]
= ℎ(^).

Therefore ℎ is continuous in I.
(III) This is simply because we can pick G = -̂, I = /̂ so

ℎ(_) ≥ _d? +E
ℙ̂
-̂

[
E
ℙ̂
/̂ |-̂

[
Ψ( 5 ( -̂), /̂) −_‖ /̂ − /̂ ‖ ? | -̂

]
−_‖ -̂ − -̂ ‖ ?

]
= _d? +E

ℙ̂
-̂

[
E
ℙ̂
/̂ |-̂

[
Ψ( 5 ( -̂), /̂) | -̂

] ]
= _d? +E

ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
→+∞

as _→+∞.
(IV) It follows from (I)-(III). �

Lemma EC.3 (Exchange Sup and Derivative for Convex Functions). Let Λ be an index set. Let
{�U}U∈Λ be a family of real-valued convex functions defined on an interval I. Suppose its sup is pointwise
bounded, Φ(_) = supU∈Λ �U (_) <∞. Denote 5U (_) = � ′U (_), and q(_) = Φ′(_). For any function 5 we
denote 5 ∗ [resp. 5∗] to be the upper [resp. lower] semicontinous envelope of 5 . For every Y > 0, define the
Y-argmax set ΩY and �, � by

ΩY (_) := {U ∈ Λ : �U (_) ≥Φ(_) − Y} ,
� Y (_) := sup

U∈ΩY (_)
5 ∗U (_), � (_) = lim

Y→0
� Y (_),

� Y (_) := inf
U∈ΩY (_)

5U∗(_), � (_) = lim
Y→0

� Y (_).

Then
(I) For every _ ∈ I, � (_) ≤ � (_).
(II) For every _, ` ∈ I with _ < `, � (_) ≤ q∗(_) ≤ q∗(`) ≤ � (`).
(III) Fix _ ∈ I, X > 0, n > 0. If _1 ∈ I such that _1 < _ is sufficiently close to _, then we can find U ∈ Λ such

that

5 ∗U (_1) ≤ q∗(_) + X, �U (_2) ≥Φ(_) − n .

If _2 ∈ I such that _2 > _ is sufficiently close to _, we can find V ∈ Λ such that

5V∗(_2) ≥ q∗(_) − X, �V (_2) ≥Φ(_) − n .

Proof. Φ is the sup of a family of convex functions, so Φ is convex. Since Φ and �U are convex and
finite in I, they have locally Lipschitz, monotonously increasing derivatives q and 5U. Monotonicity
implies 5 ∗U and q∗ [resp. 5U∗ and q∗] are right [resp. left] continuous, and thus convexity implies for
_ < `,

5U
∗(_) ≤ �U (`) − �U (_)

` −_ ≤ 5U∗(`), q∗(_) ≤ Φ(`) −Φ(_)
` −_ ≤ q∗(`). (EC.1)

(I) Y-argmax set ΩY is never empty by definition. Therefore, � Y (_) ≤ � Y (_) holds for all Y. As Y→ 0,
ΩY (_) shrinks, so � Y (_) ↓� (_), � Y (_) ↑� (_), we have � (_) ≤ � (_).
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(II) Fix any Y > 0, and _ < `. For any U ∈ΩY (_), V ∈ΩY (`), using (EC.1) we have

�U (`) − Y ≤Φ(`) − Y ≤ �V (`) ≤ �V (_) + (` −_) 5V∗(`) ≤Φ(_) + (` −_) 5V∗(`),
�V (_) − Y ≤Φ(_) − Y ≤ �U (_) ≤ �U (`) − (` −_) 5U∗(_) ≤Φ(`) − (` −_) 5U∗(_).

By these two inequalities, we conclude

−Y + (` −_) 5 ∗U (_) ≤Φ(`) −Φ(_) ≤ Y + (` −_) 5V∗(`),

⇒− Y

` −_ + 5
∗
U (_) ≤

Φ(`) −Φ(_)
` −_ ≤ Y

` −_ + 5V∗(`).

By taking the sup over U ∈ΩY (_), taking the inf over V ∈ΩY (`), we have

− Y

` −_ +� Y (_) ≤
Φ(`) −Φ(_)

` −_ ≤ Y

` −_ +� Y (`).

Let Y→ 0,

� (_) ≤ Φ(`) −Φ(_)
` −_ ≤ � (`). (EC.2)

We now combine (EC.1) with (EC.2) to show that q∗(_) ≤ � (`), � (_) ≤ q∗(`). To finish the proof
of (II), we use the monotonicity q∗(_) ≤ q∗(`), and

q∗(_) = lim
`↓_

q(`) ≥ lim
`↓_

q∗(`) ≥ � (_), q∗(`) = lim
_↑`

q(_) ≤ lim
_↑`

q∗(_) ≤ � (`).

(III) Since Φ is continuous in the interior of I, we can let _1 and _2 be close enough to _ such that

Φ(_1),Φ(_2) ≥Φ(_) −
n

2 .

Let Y < n
2 be small enough such that � Y (_1) < � (_1) + X, � Y (_2) > � (_2) − X. Pick any U ∈

ΩY (_1), V ∈ΩY (_2), then

5 ∗U (_1) ≤ � Y (_1) < � (_1) + X ≤ q∗(_) + X,
5V∗(_2) ≥ � Y (_2) > � (_2) − X ≥ q∗(_) − X.

Moreover, by the definition of ΩY (_),

�U (_1) ≥Φ(_1) − Y ≥Φ(_1) −
n

2 ≥Φ(_) − n,

�V (_2) ≥Φ(_2) − Y ≥Φ(_2) −
n

2 ≥Φ(_) − n . �

Lemma EC.4. With the same notations as the previous lemma, let Λ be an Euclidean space. Suppose for
each _ ∈ Int(I), �U (_) is upper semicontinuous in U, and | 5U (_) | →∞ as |U | →∞. Then
(I) Ω0(_) is nonempty.
(II) There exists U, V ∈Ω0(_), such that

5U∗(_) = q∗(_), 5 ∗V (_) = q∗(_), �U (_) = �V (_) =Φ(_).

(III) �0(_) = � (_) = q∗(_), and �0(_) = � (_) = q∗(_).
Proof. Let _0 ∈ Int(I). Then we can find ^ < _0 < ` all inside Int(I). For some small X, ^′ = ^ − X

and `′ = ` + X are also inside Int(I).
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(I) By Lemma EC.3 (II), q∗(_) ≤ � (_) ≤ � (_) ≤ q∗(_), and since _ is in the interior of I, Φ is locally
Lipschitz, � (_), � (_) are finite. Thus for some small Y, � Y (_) and � Y (_) are finite. This implies
that ΩY is bounded, otherwise | 5U (_) | →∞ as U→∞. Because �U is upper semicontinuous, ΩY
is also closed, so it is compact, thus

Φ(_) = sup
U∈Λ

�U (_) = sup
U∈ΩY (_)

�U (_)

is attainable, i.e.,

Ω0(_) = arg max
U∈Λ

�U (_)

is nonempty.
(II) For every _, since Ω0(_) ⊂ ΩY (_) for any Y, we know that � Y (_) ≥ �0(_), � Y (_) ≤ �0(_). Let

Y→ 0 we have � (_) ≥ �0(_), � (_) ≤ �0(_). So for every U ∈Ω0(_),

q∗(_) ≤ � (_) ≤ �0(_) ≤ 5U∗(_) ≤ 5
∗
U (_) ≤ �0(_) ≤ � (_) ≤ q∗(_). (EC.3)

Let _= ↑ _0 be an increasing sequence inside [^, `]. For each _=, Ω0(_=) is nonempty, so we can
find U= such that

�U= (_=) =Φ(_=), q∗(_=) ≤ 5U=∗(_=) ≤ 5
∗
U=
(_=) ≤ q∗(_=).

First, we claim that �U= are uniformly bounded in [^, `]. The upper bound �U= ≤Φ is clear. As
for the lower bound, we first use the convexity of Φ, for all _ ∈ [^, `],

Φ(_) ≥Φ(^) + q∗(^) (_− ^), Φ(_) ≥Φ(`) − q∗(`) (` −_).

then we use the convexity of �U= , for _ ∈ [_=, `],

�U= (_) ≥ �U= (_=) + 5 ∗U= (_=) (_−_=)
≥Φ(_=) + q∗(_=) (_−_=)
≥Φ(^) + q∗(^) (_= − ^) + q∗(^) (_−_=)
=Φ(^) + q∗(^) (_− ^).

For _ ∈ [^, _=],

�U= (_) ≥ �U= (_=) − 5U=∗(_=) (_= −_) (EC.4)
≥Φ(_=) − q∗(_=) (_= −_)
≥Φ(`) − q∗(`) (` −_=) − q∗(`) (_= −_)
=Φ(`) − q∗(`) (` −_).

Therefore, for all _ ∈ [^, `],

�U= (_) ≥min {Φ(^) + q∗(^) (_− ^),Φ(`) − q∗(`) (` −_)} .

Next, we claim that �U= are equicontinuous in [^, `]. Since

�U= (^) ≥min {Φ(^),Φ(`) − q∗(`) (` − ^)} =Φ(`) − q∗(`) (` − ^),

by convexity of �U= we have

5U=∗(^) ≥
�U= (^) − �U= (^′)

^ − ^′ ≥ Φ(`) − q∗(`) (` − ^) −Φ(^
′)

X
.



ec6

Similarly, we have

5 ∗U= (`) ≤
�U= (`′) − �U= (`)

`′− ` ≤ Φ(`
′) −Φ(^) − q∗(^) (` − ^)

X
.

5U= are increasing between ^ and `, so they are uniformly bounded, thus �U= are uniformly
Lipschitz.
Since 5U= are uniformly bounded, we know that {U=}=∈ℕ is bounded by the assumption of the

lemma. Up to a subsequence, we may assume U=→ U. Since �U= are uniformly bounded and
equicontinuous in [^, `], by Arzelà–Ascoli Lemma it admits a subsequence uniformly converging
to some �∞, and since �U is upper semicontinuous in U, we know that �U ≥ lim=→∞ �U= = �∞.
Therefore, up to a subsequence,

Φ(_0) ≥ �U (_0) ≥ �∞(_0) = lim
=→∞

�U= (_=) = lim
=→∞

Φ(_=) =Φ(_0).

Thus U ∈Ω0(_0). Moreover, by taking =→∞ in (EC.4), for any _ ∈ [^, _0) we have
Φ(_) ≥ �U (_) ≥ �∞(_) = lim

=→∞
�U= (_=) − 5U=∗(_=) (_= −_)

≥ lim
=→∞

�U= (_=) − q∗(_=) (_= −_) =Φ(_0) − q∗(_0) (_0 −_),

and they all equal at _ = _0. So the left derivative at _0

q∗(_0) ≥ 5U∗(_0) ≥ q∗(_0)

are equal. This shows that 5U∗(_0) = q∗(_0). The proof for the V part is exactly symmetric to the
U, so we omit here.

(III) This is the consequence of part (II) and (EC.3). �

EC.3. Proofs for Section 3.1
Proof of Theorem 1. It suffices to prove the direction E 5P ≥ E

5

D . For each G ∈ X , Î ∈Z we denote

� (I) (_; G, Î) :=Ψ( 5 (G), I) −_‖I − Î‖ ? .
It is a linearly decreasing function of _. Thus, the supremum over I

Υ(_; G, Î) := sup
I∈Z

{
� (I) (_; G, Î)

} (EC.5)

is a decreasing convex function of _. Because the expectation of decreasing convex functions are
decreasing is convex, we have for each Ĝ ∈ X ,

�(G) (_; Ĝ) := E
ℙ̂
/̂ |-̂

[
Υ(_; G, /̂) | -̂ = Ĝ

]
−_‖G − Ĝ‖ ?

is a family of decreasing convex functions of _. Their supremum
Φ(_; Ĝ) := sup

G∈X

{
�(G) (_; Ĝ)

} (EC.6)

is again convex and decreasing. Finally, the dual objective function

ℎ(_) = _d? +E
ℙ̂
-̂

[
Φ(_; -̂)

]
is also convex. By Lemma EC.2, there exists ^ ∈ [0,∞] such that ℎ is finite in (^,∞) and infinite in
[0, ^). Moreover, in the case ^ <∞, ℎ attains its global minimum at _∗ ≥ ^. Therefore we can separate
the following cases.
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Case 1: ^ =∞
This means ℎ(_) =∞ for any _ ≥ 0, therefore E 5D =∞. Now fix _ > 0, then

E
ℙ̂
-̂

[
Φ(_; -̂)

]
= E

ℙ̂
-̂

[
sup
G∈X

�(G) (_; -̂)
]
=∞.

We may assume
E
ℙ̂
[Ψ( 5 ( -̂), /̂)] <∞,

otherwise E 5P =∞ because ℙ̂ is feasible, and the strong duality holds automatically. For each -̂ we can
find an - ∈ X , denoted by - =)1( -̂), such that

E
ℙ̂
-̂

[
�(- ) (_; -̂)

]
≥ E

ℙ̂
[Ψ( 5 ( -̂), /̂)] + 2_d?,

E
ℙ̂
-̂

[
E
ℙ̂
/̂ |-̂

[
Υ(_; -, /̂) | -̂

]
−_‖- − -̂ ‖ ?

]
≥ E

ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
+ 2_d?,

2_d? +E
ℙ̂
-̂

[
_‖- − -̂ ‖ ?

]
≤ E

ℙ̂
-̂

[
E
ℙ̂
/̂ |-̂

[
Υ(_; -, /̂) −Ψ( 5 ( -̂), /̂) | -̂

] ]
= E

ℙ̂
-̂

[
E
ℙ̂
/̂ |-̂

[
sup
I∈Z

� (I) (_; G, /̂) −Ψ( 5 ( -̂), /̂) | -̂
] ]

For each ( -̂, /̂) pair, we can find / ∈Z, denoted by )2( -̂, /̂), such that
_d? +E

ℙ̂
-̂

[
_‖- − -̂ ‖ ?

]
≤ E

ℙ̂
-̂

[
E
ℙ̂
/̂ |-̂

[
� (/ ) (_; -, /̂) −Ψ( 5 ( -̂), /̂) | -̂

] ]
= E

ℙ̂

[
Ψ( 5 (-), /) −Ψ( 5 ( -̂), /̂) −_‖/ − /̂ ‖ ?

]
Denote W1 = (()1,)2) ⊗ idX×Z )♯ℙ̂, with ♯ denotes push-forward of a measure. Then ((-, /), ( -̂, /̂)) ∼ W1,
and denote the distance between ( -̂, /̂) and (-, /) by

� = EW1

[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
,

then
EW1

[
Ψ( 5 (-), /) −Ψ( 5 ( -̂), /̂)

]
≥ _d? +_�.

Let W0 = (idX×Z ⊗ idX×Z )♯ℙ̂ denote the joint distribution induced by identity transport map. Let
W\ = \W1 + (1− \)W0 be the transport plan which perturbs W0 by moving \ :=min{1, d?

�
} portion of mass

from ( -̂, /̂) to (-, /). By the convexity lemma 1, this transport plan is causal. Denote ℙ\ = (W\ ) (-,/ )
to be the marginal of W\ . Then

C? (ℙ̂,ℙ) ? ≤ EW\
[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
= \� ≤ d?,

So ℙ\ is primal feasible, and
Eℙ\ [Ψ( 5 (-), /)] −Eℙ̂

[Ψ( 5 ( -̂), /̂)] = EW\
[
Ψ( 5 (-), /) −Ψ( 5 ( -̂), /̂)

]
= \EW1

[
Ψ( 5 (G), /) −Ψ( 5 (Ĝ), /̂)

]
≥ \ (_d? +_�)
≥ _d? .

Therefore
E
5

P ≥ Eℙ\ [Ψ( 5 (-), /)] ≥ Eℙ̂
[Ψ( 5 ( -̂), /̂)] +_d?,

and since _ can be arbitrarily large, we have
E
5

P =∞ = E
5

D .
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Case 2: ^ <∞, _∗ > ^
Fix some small X > 0, Y > 0. Applying Lemma EC.3 on (EC.6), for Ĝ ∈ X we can find G, G ∈ X such

that
d

d_+ �(G) (_1; Ĝ) ≤ d
d_−Φ(_

∗; Ĝ) + X, d
d_− �(G) (_2; Ĝ) ≥ d

d_+Φ(_
∗; Ĝ) − X,

�(G) (_1, Ĝ) ≥Φ(_∗, Ĝ) − Y, �(G) (_2, Ĝ) ≥Φ(_∗, Ĝ) − Y

for ^ < _1 < _∗ < _2 and _1, _2 sufficiently close to _∗. Fix G ∈ X . Apply Lemma EC.3 on (EC.5), for
Î ∈Z we can find I, I ∈Z such that

d
d_+� (I) (_3; G, Î) ≤ d

d_−Υ(_1; G, Î) + X, d
d_−� (I) (_4; G, Î) ≥ d

d_+Υ(_2; G, Î) − X,
� (I) (_3; G, Î) ≥ Υ(_1, G, Î) − Y, � (I) (_4; G, Î) ≥ Υ(_2, G, Î) − Y

for ^ < _3 < _1 < _∗ < _2 < _4 and _3, _4 sufficiently close to _1, _2. Now suppose ℙ̂ is supported over a
finite set of {(Ĝ: , Î:8)}:8, we know that for _1, _2, _3, _4 sufficiently close to _∗ we can find G: , G: , I:8 , I:8
such that the above are satisfied simultaneously. We denote the transport map by G: = )1(Ĝ8),
I:8 =)2(Ĝ: , Î:8), and ) (Ĝ: , Î:8) = (G: , I:8). We define ) similarly, so we can construct (-, /) =) ( -̂, /̂),
(-, /) =) ( -̂, /̂). We denote the law of ((-, /), (-, /)) by W = () ⊗ idX×Z )♯ℙ̂, and the law of (-, /) is
ℙ = W (-,/ ) the marginal. Similarly we define W and ℙ. We also define Ŵ = (idX×Z ⊗ idX×Z )♯ℙ̂ to be the
identity transport plan. For convenience, denote the law of (-, -̂) to be W1 = W (-,-̂ ) , and the law of
(-, -̂) to be W1 = W (-,-̂ ) . Similarly define W2 = W (/,/̂ ) | (-,-̂ ) and W2 = W (/,/̂ ) | (-,-̂ ) to be the conditional
law of (/, /̂) and (/, /̂) given (-, -̂) and (-, -̂), respectively.
We know that ℎ(_) attains its minimum E

5

D at some _∗ ∈ I, so ℎ′(_∗+) ≥ 0 and ℎ′(_∗−) ≤ 0 (if _∗ > ^),
so

d
d_−

����
_=_∗

E
ℙ̂
-̂

[
Φ(_, -̂)

]
≤ −d? ≤ d

d_+
����
_=_∗

E
ℙ̂
-̂

[
Φ(_, -̂)

]
where

d
d_−

����
_=_∗

E
ℙ̂
-̂

[
Φ(_, -̂)

]
= E

ℙ̂
-̂

[ d
d_−

����
_=_∗

Φ(_, -̂)
]

≥ E(-,-̂ )∼W1

[
d

d_+
����
_=_1

�(- ) (_; -̂)
]
− X

= E(-,-̂ )∼W1

[
d

d_+
����
_=_1

{
E
ℙ̂
/̂ |-̂

[
Υ(_; -, /̂) | (-, -̂)

]
−_‖- − -̂ ‖ ?

}]
− X

= E(-,-̂ )∼W1

[
E
ℙ̂
/̂ |-̂

[
d

d_+
����
_=_1

Υ(_; -, /̂) | (-, -̂)
]
− ‖- − -̂ ‖ ?

]
− X

≥ E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
d

d_+
����
_=_3

� (/ ) (_; -, /̂) | (-, -̂)
]
− ‖- − -̂ ‖ ?

]
− 2X

≥ E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
−‖/ − /̂ ‖ ? | (-, -̂)

]
− ‖- − -̂ ‖ ?

]
− 2X

= −E( (-,/ ) , (-̂ ,/̂ ))∼W
[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
− 2X,
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d
d_+

����
_=_∗

E
ℙ̂
-̂

[
Φ(_, -̂)

]
= E

ℙ̂
-̂

[ d
d_+

����
_=_∗

Φ(_, -̂)
]

≤ E(-,-̂ )∼W1

[
d

d_−
����
_=_2

�(- ) (_; -̂)
]
+ X

= E(-,-̂ )∼W1

[
d

d_−
����
_=_2

{
E
ℙ̂
/̂ |-̂

[
Υ(_; -, /̂) | (-, -̂)

]
−_‖- − -̂ ‖ ?

}]
+ X

= E(-,-̂ )∼W1

[
E
ℙ̂
/̂ |-̂

[
d

d_−
����
_=_2

Υ(_; -, /̂) | (-, -̂)
]
− ‖- − -̂ ‖ ?

]
+ X

≤ E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
d

d_−
����
_=_4

� (/ ) (_; -, /̂) | (-, -̂)
]
− ‖- − -̂ ‖ ?

]
+ 2X

≤ E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
−‖/ − /̂ ‖ ? | (-, -̂)

]
− ‖- − -̂ ‖ ?

]
+ 2X

= −E( (-,/ ) , (-̂ ,/̂ ))∼W
[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
+ 2X,

Therefore,

3 := E( (-,/ ) , (-̂ ,/̂ ))∼W
[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
≤ d? + 2X,

3 := E( (-,/ ) , (-̂ ,/̂ ))∼W
[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
≥ d? − 2X.

Based on these, we construct a feasible primal solution. There exists @Y
X
∈ [0,1] depending on

_1, _2, _3, _4, such that

d? = (1− @YX)
(
3 − 2X

)
+ @YX

(
3 + 2X) ,

d? + 2(1− 2@YX)X = (1− @YX)3 + @YX3.

Let @ X := d?

d?+2(1−2@Y
X
)+ X ≤ 1. Define a transport plan WY

X
by

WYX := @ X
[
(1− @YX)W + @YXW

]
+ (1− @ X)Ŵ.

Its marginal distribution ℙY
X
= (WY

X
) (-,/ ) is given by

ℙYX = @
X
[
(1− @YX)ℙ + @YXℙ

]
+ (1− @ X)ℙ̂.

Then ℙY
X
is primal feasible because

C? (ℙYX , ℙ̂) ? ≤ E( (-,/ ) , (-̂ ,/̂ ))∼WY
X

[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
≤ @ X

[
(1− @YX)3 + @YX3

]
≤ d? .

In the mean time,

E
5

D −_
∗d? = ℎ(_∗) −_∗d?

= E
ℙ̂
-̂

[
Φ(_∗, -̂)

]
≤ E(-,-̂ )∼W1

[
�(- ) (_1; -̂)

]
+ Y



ec10

= E(-,-̂ )∼W1

[
E
ℙ̂
/̂ |-̂

[
Υ(_1; -, /̂) | -̂

]
−_1‖- − -̂ ‖ ?

]
+ Y

≤ E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
� (/ ) (_3; -, /̂) | (-, -̂)

]
−_1‖- − -̂ ‖ ?

]
+ 2Y

≤ E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
Ψ( 5 (-), /) −_3‖/ − /̂ ‖ ? | (-, -̂)

]
−_1‖- − -̂ ‖ ?

]
+ 2Y

≤ E( (-,/ ) , (-̂ ,/̂ ))∼W
[
Ψ( 5 (-), /) −_3‖/ − /̂ ‖ ? −_1‖- − -̂ ‖ ?

]
+ 2Y

≤ Eℙ

[
Ψ( 5 (-), /)

]
−_33 + 2Y.

Similarly

E
5

D −_
∗d? = E

ℙ̂
-̂

[
Φ(_∗, -̂)

]
≤ E(-,-̂ )∼W1

[
�(- ) (_2; -̂)

]
+ Y

= E(-,-̂ )∼W1

[
E
ℙ̂
/̂ |-̂

[
Υ(_2; -, /̂) | (-, -̂)

]
−_2‖- − -̂ ‖ ?

]
+ Y

≤ E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
� (/ ) (_4; -, /̂) | (-, -̂)

]
−_2‖- − -̂ ‖ ?

]
+ 2Y

≤ E( (-,/ ) , (-̂ ,/̂ ))∼W
[
Ψ( 5 (-), /) −_4‖/ − /̂ ‖ ? −_2‖- − -̂ ‖ ?

]
+ 2Y

≤ Eℙ

[
Ψ( 5 (-), /)

]
−_23 + 2Y.

Therefore,

E
5

P ≥ E(-,/ )∼ℙYX [Ψ( 5 (-), /)]

= @ X
(
(1− @YX)Eℙ

[
Ψ( 5 (-), /)

]
+ @YXEℙ

[
Ψ( 5 (-), /)

] )
+ (1− @ X)E

ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
≥ @ X

(
(1− @YX)

(
E
5

D −_
∗d? +_23 − 2Y

)
+ @YX

(
E
5

D −_
∗d? +_33 − 2Y

))
+ (1− @ X)E

ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
≥ @ X

(
E
5

D −_
∗d? +_3((1− @YX)3 + @YX3) − 2Y

)
+ (1− @ X)E

ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
≥ @ X

(
E
5

D −_
∗d? +_3(d? + 2(1− 2@YX)X) − 2Y

)
+ (1− @ X)E

ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
= @ X

(
E
5

D − (_
∗ −_3)d? + 2_3(1− 2@YX)X − 2Y

)
+ (1− @ X)E

ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
.

As X→ 0, @ X→ 1. Thus take the limit as _3→ _∗ and X→ 0, it follows that

E
5

P ≥ E
5

D − 2Y.

Since Y can be taken arbitrarily small, E 5P ≥ E
5

D .
Case 3: _∗ = ^ <∞
In this case, we can still choose G, I, and we still have

�(G) (_2, Ĝ) >Φ(_∗, Ĝ) − Y, � (I) (_4; G, Î) >Υ(_2, G, Î) − Y.

and

3 = EW

[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
≤ d? + 2X.

We separate the cases ^ = 0 and ^ > 0.
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Case 3.1: _∗ = ^ = 0
Let @ X := d?

d?+2X ≤ 1. Define WY
X

:= @ XW + (1− @ X)Ŵ, then its marginal is a distribution ℙY
X
given by

ℙYX := @ Xℙ + (1− @ X)ℙ̂.
Then it is primal feasible because

C? (ℙYX , ℙ̂) ? ≤ EWYX
[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
≤ @ X3 ≤ d?,

thus
E
5

P ≥ E(-,/ )∼ℙYX [Ψ( 5 (-), /)]

= @ XE(-,/ )∼ℙ

[
Ψ( 5 (-), /)

]
+ (1− @ X)E

ℙ̂
[Ψ( 5 ( -̂), /̂)]

≥ @ X
(
E
5

D −_
∗d? +_23 − 2Y

)
+ (1− @ X)E

ℙ̂
[Ψ( 5 ( -̂), /̂)]

≥ @ X
(
E
5

D − 2Y
)
+ (1− @ X)E

ℙ̂
[Ψ( 5 ( -̂), /̂)]

using _∗ = 0. Let X→ 0, @ X→ 1, we have E 5P ≥ E
5

D − 2Y, and by taking Y→ 0 we have E 5P ≥ E
5

D .
Case 3.2: _∗ = ^ > 0
Fix any 0 < ^′ < ^. We have

E
ℙ̂
-̂

[
Φ(^′; -̂) −Φ(^; -̂)

]
= ℎ(^′) − ℎ(^) =∞. (EC.7)

We denote
X ∗(_; Ĝ) :=

{
G ∈ X : �(G) (_; Ĝ) ≥ �( Ĝ) (_; Ĝ)

}
.

Then X ∗(_; Ĝ) is nonempty because Ĝ ∈ X ∗(_; Ĝ). Since
Φ(^′; Ĝ) = sup

G∈X
�(G) (^′; Ĝ) = sup

G∈X ∗ (^′;Ĝ)
�(G) (^′; Ĝ),

we can rewrite (EC.7) as

E
ℙ̂
-̂

[
sup

G∈X ∗ (^′;-̂ )
�(G) (^′; -̂) −Φ(^; -̂)

]
=∞.

Thus for any fixed ' > 0, we can pick - =)1( -̂) ∈ X ∗(^′; -̂), which induces W1, such that

' < E(-,-̂ )∼W1

[
�(- ) (^′; -̂) −Φ(^; -̂)

]
≤ E(-,-̂ )∼W1

[
�(- ) (^′; -̂) − �(- ) (^; -̂)

]
= E(-,-̂ )∼W1

[
E
ℙ̂
/̂ |-̂

[
Υ(^′; -, /̂) −Υ(^; -, /̂) | (-, -̂)

]
+ (^ − ^′)‖- − -̂ ‖ ?

]
. (EC.8)

Moreover, because - ∈ X ∗(^′; -̂), we have

�(-̂ ) (^
′; -̂) ≤ �(- ) (^′; -̂),

^′‖- − -̂ ‖ ? ≤ E
ℙ̂
/̂ |-̂

[
Υ(^′; -, /̂) −Υ(^′; -̂, /̂) | -̂

]
,

E(-,-̂ )∼W1

[
^′‖- − -̂ ‖ ?

]
≤ E(-,-̂ )∼W1

[
E
ℙ̂
/̂ |-̂

[
Υ(^′; -, /̂) −Υ(^′; -̂, /̂) | (-, -̂)

] ]
. (EC.9)
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We denote
Z∗(_; G, Î) :=

{
I ∈Z : � (I) (_; G, Î) ≥ � ( Î) (_; G, Î)

}
.

Then Z∗(_; G, Î) is nonempty because Î ∈Z∗(_; G, Î). Since
Υ(^′; G, Î) = sup

I∈Z
� (I) (^′; G, Î) = sup

I∈Z∗ (^′;G,Î)
� (I) (^′; G, Î),

we can rewrite (EC.8) and (EC.9) as

' < E(-,-̂ )∼W1

[
E
ℙ̂
/̂ |-̂

[
sup

I∈Z∗ (^′;-,/̂ )
� (I) (^′; -, /̂) −Υ(^; -, /̂) | (-, -̂)

]
+ (^ − ^′)‖- − -̂ ‖ ?

]
,

E(-,-̂ )∼W1

[
^′‖- − -̂ ‖ ?

]
≤ E(-,-̂ )∼W1

[
E
ℙ̂
/̂ |-̂

[
sup

I∈Z∗ (^′;-,/̂ )
� (I) (^′; -, /̂) −Υ(^′; -̂, /̂) | (-, -̂)

] ]
.

Thus we can pick / =)2( -̂, /̂) ∈Z∗(^′; -, /̂), which induces W2, such that

' − Y < E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
� (/ ) (^′; -, /̂) −Υ(^; -, /̂) | (-, -̂)

]
+ (^ − ^′)‖- − -̂ ‖ ?

]
≤ E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
� (/ ) (^′; -, /̂) −� (/ ) (^; -, /̂) | (-, -̂)

]
+ (^ − ^′)‖- − -̂ ‖ ?

]
= E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
(^ − ^′)‖/ − /̂ ‖ ? | (-, -̂)

]
+ (^ − ^′)‖- − -̂ ‖ ?

]
= (^ − ^′)3,

and simultaneously ensure

E(-,-̂ )∼W1

[
^′‖- − -̂ ‖ ?

]
− X ≤ E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
� (/ ) (^′; -, /̂) −Υ(^′; -̂, /̂) | (-, -̂)

] ]
≤ E(-,-̂ )∼W1

[
E(/,/̂ )∼W2

[
� (/ ) (^′; -, /̂) −� (/̂ ) (^′; -̂, /̂) | (-, -̂)

] ]
= E( (-,/ ) , (-̂ ,/̂ ))∼W

[
Ψ( 5 (-), /) − ^′‖/ − /̂ ‖ ? −Ψ( 5 ( -̂), /̂)

]
,

^′3 ≤ E( (-,/ ) , (-̂ ,/̂ ))∼W
[
Ψ( 5 (-), /) −Ψ( 5 ( -̂), /̂)

]
≤ Eℙ

[
Ψ( 5 (-), /)

]
−E

ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
.

In conclusion, we have

' − Y
^ − ^′ < 3 ≤

Eℙ

[
Ψ( 5 (-), /)

]
−E

ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
^′

.

We can choose ' = Y + (^ − ^′)#d? for some # >> 1 to be specified later. Because

3 − 2X ≤ d? ≤ 3

#
≤ 3 + 2X,

there exists @Y
X
∈ [0,1] depending on _2, _4, ^′, such that

d? = (1− @YX)
[
3 − 2X

]
+ @YX

[
3 + 2X

]
,

= (1− @YX)3 + @YX3 − 2(1− 2@YX)X,
d? + 2(1− 2@YX)X = (1− @YX)3 + @YX3.
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Let @ X := d?

d?+2(1−2@Y
X
)+ X ≤ 1. Define a distribution ℙY

X
by

ℙYX := @ X
[
(1− @YX)ℙ + @YXℙ

]
+

(
1− @ X

)
ℙ̂.

Then ℙY
X
is primal feasible, because

C? (ℙYX , ℙ̂) ? ≤ @ X (1− @YX)Eℙ̂
-̂

[
E
ℙ̂
/̂ |-̂

[
‖/ − /̂ ‖ ? | -̂

]
+ ‖- − -̂ ‖ ?

]
+ @ X@YXEℙ̂

-̂

[
E
ℙ̂
/̂ |-̂

[
‖/ − /̂ ‖ ? | -̂

]
+ ‖- − -̂ ‖ ?

]
≤ @ X

[
(1− @YX)3 + @YX3

]
≤ d? .

Therefore

E
5

P ≥ E(-,/ )∼ℙYX [Ψ( 5 (-), /)]

= Eℙ

[
@ X (1− @YX)Ψ( 5 (-), /)

]
+Eℙ

[
@ X@YXΨ( 5 (-), /)

]
+E

ℙ̂

[
(1− @ X)Ψ( 5 ( -̂), /̂)

]
≥ @ X (1− @YX)

(
E
5

D − ^d
? +_23 − 2Y

)
+ @ X@YX^′3

+
(
1− @ X + @ X@YX

)
E
ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
≥ @ X^′

(
(1− @YX)3 + @YX3

)
+ @ X (1− @YX) (E 5D − ^d? − 2Y)

+
(
1− @ X + @ X@YX

)
E
ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
≥ @ X^′(d? + 2(1− 2@YX)X) + @ X (1− @YX) (E 5D − ^d? − 2Y) +

(
1− @ X + @ X@YX

)
E
ℙ̂

[
Ψ( 5 ( -̂), /̂)

]
.

As X→ 0, we have @ X→ 1. Moreover, because

d? + 2X ≥ (1− @YX)3 + @YX3 ≥ @YX3 ≥ @YX#d?,

we know that @Y
X
≤ 1+2Xd−?

#
→ 0 as #→∞ and X→ 0. Therefore, by taking these limits, we have

E
5

P ≥ ^
′d? + E 5D − ^d

? − 2Y = E 5D − 2Y − (^ − ^′)d? .

Since this is true for any ^′ < ^ and Y > 0, we may take ^′→ ^ and Y→ 0 so E 5P ≥ E
5

D . �

Proof of Theorem 2. Since Ψ( 5 (·), ·) is upper semicontinuous, we know that for each fixed G ∈ X ,
Î ∈Z, _ > ^, � (I) (_; G, Î) =Ψ( 5 (G), I) −_‖I − Î‖ ? is upper semicontinuous in I. Moreover,

d
d_� (I) (_; G, Î) = −‖I − Î‖ ?→−∞ as |I | →∞,

By Lemma EC.4 (II), we can find I, I such that

d
d_+Υ(_; G, Î) = −‖I − Î‖ ?, d

d_−Υ(_; G, Î) = −‖I − Î‖ ?, Υ(_; G, Î) =� (I) (_; G, Î) =� (I) (_; G, Î).

Now we claim that for each fixed Î ∈Z, _ > ^, Υ(_; G, Î) is upper semicontinuous in G. We prove it
by contradiction. Assume otherwise, then we can find G:→ G, such that

Υ(_; G: , Î) >Υ(_; G, Î) + Y
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for all :. We can find I
:
such that

Υ(_; G: , Î) =� (I
:
) (_; G: , Î),

d
d_−Υ(_; G, Î) = −‖I

:
− Î‖ ? .

If I
:
is bounded, then up to a subsequence it converges to I∞, and since � is upper semicontinuous,

lim sup
:→∞

Υ(_; G: , Î) = lim sup
:→∞

� (I
:
) (_; G: , Î) ≤ � (I∞) (_; G, Î) ≤ Υ(_; G, Î)

which is a contradiction. If I
:
is unbounded, then up to a subsequence, for _′ ∈ (^, _),

Υ(_′; G: , Î) ≥ Υ(_; G: , Î) − (_−_′)
d

d_−Υ(_; G: , Î)
≥ Υ(_; G, Î) + Y + (_−_′)‖I

:
− Î‖ ?→∞

as :→∞. Therefore

lim
:→∞

�(G: ) (_′, Ĝ) = lim
:→∞

E
ℙ̂
/̂ |-̂

[
Υ(_; G: , /̂) | -̂ = Ĝ

]
−_′‖G: − Ĝ‖ ?

= E
ℙ̂
/̂ |-̂

[
lim
:→∞

Υ(_; G: , /̂) | -̂ = Ĝ
]
−_′‖G − Ĝ‖ ? =∞.

This contradicts with Φ(_′, Ĝ) <∞.
We can thus construct /, / which depends on _, /̂ and G. Now we have

�(G) (_; Ĝ) = E
ℙ̂
/̂ |-̂

[
Υ(_; G, /̂) | -̂ = Ĝ

]
−_‖G − Ĝ‖ ? .

It is upper semicontinuous in G because each Υ(_; G, Î) is upper semicontinuous in G, and the finite
sum of upper semicontinuous functions is upper semicontinuous. Moreover,

d
d_+ �(G) (_; Ĝ) = E

ℙ̂
/̂ |-̂

[ d
d_+Υ(_; G, /̂) | -̂ = Ĝ

]
− ‖G − Ĝ‖ ? = −E

ℙ̂
/̂ |-̂

[
‖/ − /̂ ‖ ? | -̂ = Ĝ

]
− ‖G − Ĝ‖ ?→−∞

as G→∞. By Lemma EC.4 (II) we can find G and G such that
d

d_+Φ(_; Ĝ) = −E
ℙ̂
/̂ |-̂

[
‖/ − /̂ ‖ ? | -̂ = Ĝ

]
− ‖G − Ĝ‖ ?, d

d_−Φ(_; Ĝ) = −E
ℙ̂
/̂ |-̂

[
‖/ − /̂ ‖ ? | -̂ = Ĝ

]
− ‖G − Ĝ‖ ?,

Φ(_; Ĝ) = �(G) (_; Ĝ) = �(G) (_; Ĝ).

By constructing these for every Ĝ in the support of ℙ̂
-̂
, we have -, -, / , / such that ((-, /), ( -̂, /̂)) ∼ W,

((-, /), ( -̂, /̂)) ∼ W, where

W =
 ∑
:=1

=:∑
8=1

?̂:8X ( (G: ,I:8) , ( Ĝ: , Î:8)) , W =
 ∑
:=1

=:∑
8=1

?̂:8X ( (G: ,I:8) , ( Ĝ: , Î:8)) .

We use notations W1, W1, W2, W2 similar as in the proof of Theorem 1.
Now we have both

ℎ(_) = _d? +E
ℙ̂
-̂

[
Φ(_; -̂)

]
= _d? +EW1

[
�(- ) (_; -̂)

]
= _d? +EW1

[
EW2

[
Υ(_; -, /̂) | (-, -̂)

]
−_‖- − -̂ ‖ ?

]
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= _d? +EW1

[
EW2

[
� (/ ) (_; -, /̂) | (-, -̂)

]
−_‖- − -̂ ‖ ?

]
= _d? +EW1

[
EW2

[
Ψ( 5 (-), /) −_‖/ − /̂ ‖ ? | (-, -̂)

]
−_‖- − -̂ ‖ ?

]
= _

(
d? − 3

)
+Eℙ

[
Ψ( 5 (-), /)

]
,

ℎ(_) = _
(
d? − 3

)
+Eℙ

[
Ψ( 5 (-), /)

]
,

and
d

d_+ ℎ(_) = d
? +E

ℙ̂
-̂

[ d
d_+Φ(_; -̂)

]
= d? +EW1

[
−EW2

[
‖/ − /̂ ‖ ? | (-, -̂)

]
− ‖- − -̂ ‖ ?

]
= d? − 3,

d
d_− ℎ(_) = d

? − 3.

At _ = _∗, ℎ is minimized, so d
d_− ℎ(_

∗) ≤ 0 ≤ d
d_+ ℎ(_

∗). Therefore there exists @∗ ∈ [0,1], such that

@∗
(
d? − 3

)
+ (1− @∗) (d? − 3) = 0.

Then if we denote W∗ = @∗W + (1− @∗)W, then

E( (-,/ ) , (-̂ ,/̂ ))∼W∗
[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
= @∗3 + (1− @∗)3 = d? .

Therefore, ℙ∗ = W∗(-,/ ) = @∗ℙ + (1− @∗)ℙ is feasible, and

Eℙ∗ [Ψ( 5 (-), /)] = @∗Eℙ [Ψ( 5 (-), /)] + (1− @∗)Eℙ [Ψ( 5 (-), /)] = ℎ(_
∗) = E 5D = E

5

P

it is optimal.
Note that this optimal solution is

ℙ∗ =
 ∑
:=1

=:∑
8=1

?̂:8

(
@∗X (G: ,I:8) + (1− @∗)X (G: ,I:8)

)
.

Now we first consider the following linear optimization problem,
sup

{@: }: ⊂[0,1]
E(-,/ )∼ℙ [Ψ( 5 (-), /)]

where ℙ =
 ∑
:=1

=:∑
8=1

?̂:8

(
@:X (G: ,I:8) + (1− @:)X (G: ,I:8)

)
,

s.t. E( (-,/ ) , (-̂ ,/̂ ))∼W

[
‖- − -̂ ‖ ? + ‖/ − /̂ ‖ ?

]
≤ d?

where W =
 ∑
:=1

=:∑
8=1

?̂:8

(
@:X ( (G: ,I:8) , ( Ĝ: , Î:8)) + (1− @:)X ( (G: ,I:8) , ( Ĝ: , Î:8))

)
.

The feasible domain is not empty because @: = @∗ gives a feasible solution ℙ∗. The constraints and the
target function are all linear functions of @: , so the inf can be attained at the vertices of the feasible
domain, and thus we can find :0 such that @: = 1 or 0 whenever : ≠ :0. So, we have found another
optimal solution

ℙ =
∑
:≠:0

=:∑
8=1

?̂:8X (G∗
:
,I∗
:8
) +

=:0∑
8=1

?̂80 9

(
@X (G:0 ,I:08) + (1− @)X (G:0 ,I:08

)
)
.

where (G∗
:
, I∗
:8
) = (G: , I:8) or (G: , I:8) depending only on :. Note that the marginal ℙ- is supported

over at most � + 1 points. �
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EC.4. Proofs for Section 4
Proof of Corollary 1. Since Ψ(·, I) is affine for each I, Ψ can be written as

Ψ(F, I) = ℓI (F), ℓI (F) = VI>F + 1I .

Here ℓI is an affine function with gradient VI ∈D∗ and intercept 1I ∈ℝ. Then

E
ℙ̂
/̂ |-̂

[
Ψ(F, /̂) | -̂ = Ĝ:

]
=

1∑=:
8=1 ?̂:8

=:∑
8=1

?̂:8Ψ(F, Î:8) =
1
?̂:

=:∑
8=1

?̂:8ℓ
Î:8 (F)

Denote

V: := 1
?̂:

=:∑
8=1

?̂:8V
Î:8 , 1: := 1

?̂:

=:∑
8=1

?̂:81
Î:8 ,

and

ℓ: (F) :=
1
?̂:

=:∑
8=1

?̂:8ℓ
Î:8 (F) = V>:F + 1: , (EC.10)

which is an affine function of F. Therefore, E
ℙ̂
/̂ |-̂

[
Ψ(F, /̂) | -̂ = Ĝ:

]
= ℓ: (F) is affine. We have

sup
G∈X

{
E
ℙ̂
/̂ |-̂

[
Ψ( 5 (G), /̂) | -̂ = Ĝ:

]
−_‖G − Ĝ: ‖ ?

}
= sup
G∈X
{ℓ: ( 5 (G)) −_‖G − Ĝ: ‖ ?} .

Suppose 5 : X →D is an affine decision rule, then 5 (G) = �>G + X, and
ℓ: ( 5 (G)) − ℓ: ( 5 (Ĝ:)) = V>: ( 5 (G) − 5 (Ĝ:)) = V

>
: �
>(G − Ĝ:).

Thus, the supremum over G can be computed explicitly as
sup
G∈X
{ℓ: ( 5 (G)) −_‖G − Ĝ: ‖ ?} = ℓ: ( 5 (Ĝ:)) + sup

G∈X

{
(�V:)>(G − Ĝ:) −_‖G − Ĝ: ‖ ?

}
= ℓ: ( 5 (Ĝ:)) + sup

C≥0
{‖�V: ‖∗C −_C ?} .

Define a convex function '? : ℝ2
+→ℝ∪ {+∞} by

'? (_, `) := sup
C≥0
{`C −_C ?} =

{∞1{_ < `}, ? = 1,
_(? − 1)

(
`

_?

) ?

?−1
, ? > 1.

Then
sup
G∈X
{ℓ: ( 5 (G)) −_‖G − Ĝ: ‖ ?} = ℓ: ( 5 (Ĝ:)) + '? (_, |�V: |) ,

E
ℙ̂
-̂

[
sup
G∈X

{
E
ℙ̂
/̂ |-̂

[
Ψ( 5 (G), /̂) | -̂

]
−_‖G − -̂ ‖ ?

}]
=

 ∑
:=1

(
=:∑
8=1

?̂:8

) [
ℓ: ( 5 (Ĝ:)) + '? (_, ‖�V: ‖∗)

]
.

Note that '? is a convex function in _ and �, ℓ: ( 5 (Ĝ:)) = ℓ: (�>Ĝ: + X) is affine in � and X, so the
right-hand side of the last expression is convex in _ and � as well. Hence (5) is a convex program:

inf
_≥0, (�,X) ∈Θ

{
_d? +

 ∑
:=1

?̂:
[
ℓ: (�>Ĝ: + X)) + '? (_, ‖�V: ‖∗)

]}
,

where ℓ: is an affine function defined by (EC.10). �
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Proof of Corollary 2. We start with sup over I:

sup
I∈Z

{
Ψ(F, I) −_‖I − Î:8 ‖2

}
=Ψ(F, Î:8) + sup

I∈Z

{
(�>F +U)>(I − Î:8) −_‖I − Î:8 ‖2

}
=Ψ(F, Î:8) + sup

Ĩ∈Z

{
(�>F +U)> Ĩ −_‖ Ĩ‖2

}
.

By the linearity of Ψ in I,

E
ℙ̂
/̂ |-̂

[
sup
I∈Z

{
Ψ(F, I) −_‖I − /̂ ‖2

}
| -̂ = Ĝ:

]
=Ψ(F,E

ℙ̂
/̂ |-̂
[/̂ | -̂ = Ĝ:]) + sup

Ĩ∈Z

{
(�>F +U)> Ĩ −_‖ Ĩ‖2

}
=Ψ(F, Ī:) + sup

Ĩ∈Z

{
(�>F +U)> Ĩ −_‖ Ĩ‖2

}
= sup
Ĩ∈Z

{
Ψ(F, Ī: + Ĩ) −_‖ Ĩ‖2

}
= sup
I∈Z

{
Ψ(F, I) −_‖I − Ī: ‖2

}
.

where we define Ī: = Eℙ̂
/̂ |-̂
[/̂ | -̂ = Ĝ:]. Next, we take supremum in G with decision F = 5 (G) = �>G + X.

Note that

Ψ(F, I) =
(
F> 1) (

� V

U> 1

) (
I

1
)

F =
(
�> X

) (
G

1
)

=⇒ Ψ( 5 (G), I) =
(
G> 1) (

� 0
X> 1

) (
� V

U> 1

) (
I

1
)
.

We thus express supremum in G by

H: := sup
G∈X ,I∈Z

Ψ(F, I) −_‖I − Ī: ‖2 −_‖G − Ĝ: ‖2

= sup
G∈X ,I∈Z

(
G> I> 1) ©­«

� 0
$ 0
X> 1

ª®¬
(
$ � V

0> U> 1

) ©­«
G

I

1
ª®¬−_

(
G> I> 1) ©­«

� $ −Ĝ:
$ � −Ī:
−Ĝ>

:
−Ī>

:
‖Ĝ: ‖2 + ‖ Ī: ‖2

ª®¬ ©­«
G

I

1
ª®¬ .

We have transformed (D) into

inf
(�,X) ∈Θ

_≥0, {H: }: ⊂ℝ

_d2 +
 ∑
:=1

?̂: H:

s.t. -: �$

where

-: := _ ©­«
� $ −Ĝ:
$ � −Ī:
−Ĝ>

:
−Ī>

:
‖ Ī: ‖2 + ‖Ĝ: ‖2

ª®¬+ H: ©­«
$ $ 0
$ $ 0
0> 0> 1

ª®¬− 1
2

©­«
� 0
$ 0
X> 1

ª®¬
(
$ � V

0> U> 1

)
+ ©­«

$ 0
�> U
V> 1

ª®¬
(
�> $ X

0> 0> 1
)

=
©­«

_� −1
2�� −1

2�V−_Ĝ:
−1

2 (��)
> _� −1

2 (�
>X +U) −_Ī:

−1
2 (�V)

> −_Ĝ>
:
−1

2 (�
>X +U)> −_Ī>

:
H: − V>X − 1 +_‖ Ī: ‖2 +_‖Ĝ: ‖2

ª®¬ �$. (EC.11)

Since -: is affine in _, H: , �, X, this is a semidefinite program. �

Proof of Theorem 3. First, we show that ∩: �: (G) is nonempty. To begin with, each �: (G) is nonempty,
because the definition of q: implies

i: (F:) ≤ q: ≤ _∗‖G − G: ‖ + q: ,
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so F: ∈ �: (G). Note that each �: (G) is an interval since it is the sub-level set of a convex function i: .
To prove they have a nonempty intersection, it suffices to show they pairwise intersect. For instance,
we show here that �1(G) and �2(G) intersect by contradiction. Suppose �1 and �2 are disjoint. Since
F1 ∈ �1(G), F2 ∈ �2(G), we know that �1 and �2 are disjoint if and only if we can find F3 in between F1
and F2 outside both intervals. This implies that

i1(F3) > _∗‖G − G3‖ + q1 ≥ _∗‖G − G1‖ + i1(F1),
i1(F3) > _∗‖G − G3‖ + q1 ≥ _∗‖G − G1‖ + i1(F2) −_∗‖G1 − G2‖,
i2(F3) > _∗‖G − G3‖ + q2 ≥ _∗‖G − G2‖ + i2(F2),
i2(F3) > _∗‖G − G3‖ + q2 ≥ _∗‖G − G2‖ + i2(F1) −_∗‖G1 − G2‖.

Since F3 is between F1 and F2, we can find U, V ∈ [0,1] with U + V = 1 and F3 = UF1 + VF2. By
multiplying the first/fourth inequality with U and the second/third inequality with V then taking the
sum, we have

(i1 + i2) (F3) > _∗(‖G − G1‖ + ‖G − G2‖) +U(i1 + i2) (F1) + V(i1 + i2) (F2) −_∗‖G1 − G2‖
≥ U(i1 + i2) (F1) + V(i1 + i2) (F2),

using the triangle inequality. However, this contradicts with the convexity of i1 + i2.
Next, we prove that any decision rule in the intersection ∩: �: is optimal. For every 5 ∈ F , let

5̂ = 5 |X̂ ∈ F̂ be the restriction of 5 on the set -̂, then

inf
_≥0

{
_d +E

ℙ̂
-̂

[
sup
G∈X

{
i( 5 (G);_, -̂) −_‖G − -̂ ‖

}]}
≥ inf
_≥0

{
_d +E

ℙ̂
-̂

[
max
G∈X̂

{
i( 5 (G);_, -̂) −_‖G − -̂ ‖

}]}
= inf
_≥0

{
_d +E

ℙ̂
-̂

[
max

1≤:≤ 

{
i( 5̂ (G:);_, -̂) −_‖G: − -̂ ‖

}]}
≥ ED̂. (EC.12)

By taking the infimum over 5 ∈F , we would have ED ≥ ED̂. On the other hand, for the minimizer _∗
and 5̂ ∗ ∈ F̂ of (10), let 5 ∈F be an extension in ∩: �: (G), then for every G we have

i: ( 5 (G)) −_∗‖G − Ĝ‖ ≤ max
1≤:≤ 

{
i( 5̂ (Ĝ:);_∗, Ĝ) −_∗‖G: − Ĝ‖

}
.

Therefore,

_∗d +E
ℙ̂
-̂

[
max

1≤:≤ 

{
i( 5̂ (G:);_∗, -̂) −_∗‖G: − -̂ ‖

}]
≥ _∗d +E

ℙ̂
-̂

[
sup
G∈X

{
i( 5 (G);_∗, -̂) −_∗‖G − -̂ ‖

}]
≥ ED.

Thus ED = ED̂.Finally, we show the necessity of the interval condition. Suppose 5 ∗ ∈F is an optimal policy to the
problem (8) with optimal dual value _∗. By (EC.12), _∗ and the restriction 5̂ ∗ = 5 |X̂ ∈ F̂ are also an
optimal dual value and an optimal policy to the problem (10). To show that 5 ∗(G) ∈ ∩: �: (G), we prove
by contradiction. Suppose for some G ∈ X and some : ∈ [ ], 5 ∗(G) ∉ �: (G). This means

i( 5 ∗(G);_∗, Ĝ:) = i: ( 5 ∗(G)) > _∗‖G − Ĝ: ‖ + q: = _∗‖G − Ĝ: ‖ +max
9

{
i: (F 9) −_∗‖Ĝ: − Ĝ 9 ‖

}
.

That is, there exists : ∈ [ ] such that for all 9 ∈ [ ],
i( 5 ∗(G);_∗, Ĝ:) −_∗‖G − Ĝ: ‖ > i( 5 ∗(Ĝ 9);_∗, Ĝ:) −_∗‖Ĝ: − Ĝ 9 ‖.
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Then

ED = _
∗d +E

ℙ̂
-̂

[
sup
G∈X

{
i( 5 ∗(G);_∗, -̂) −_∗‖G − -̂ ‖

}]
> _∗d +E

ℙ̂
-̂

[
max
9∈[ ]

{
i( 5 ∗(Ĝ 9);_∗, -̂) −_∗‖Ĝ 9 − -̂ ‖

}]
≥ ED̂,

which contradicts with ED = ED̂. Therefore, we must have 5 ∗(G) ∈ ∩: �: (G) for all G ∈ X , which completes
the proof of the theorem. �

EC.5. Proofs for Examples in Section 4
Proof of Example 5. Since 5 is real-valued and Ψ is convex in F, we use Theorem 3, so it has the

following reformulation

inf
5̂ :X̂→ℝ
_≥0

{
_d +E

ℙ̂
-̂

[
max

1≤:≤ 

{
i( 5̂ (Ĝ:);_, -̂) −_‖Ĝ: − -̂ ‖

}]}
with

i(F;_; Ĝ) = E
ℙ̂
/̂ |-̂

[
sup
I∈Z

{
|F − I | −_‖I − /̂ ‖

}
| -̂ = Ĝ

]
.

For any _ < 1, the supremum over I is infinite, hence i(F;_, Ĝ) =∞. For _ ≥ 1, the supremum is
attained at I = /̂ , so

i(F;_; Ĝ) = E
ℙ̂
/̂ |-̂

[
|F − /̂ |

�� -̂ = Ĝ] +∞1{_ < 1}.

Thus, we reach the following reformulation,

inf
5̂ :X̂→ℝ
_≥1

{
_d +E

ℙ̂
-̂

[
max

1≤:≤ 

{
E
ℙ̂
/̂ |-̂

[
| 5̂ (Ĝ:) − /̂ |

�� -̂ = Ĝ] −_‖Ĝ: − -̂ ‖}]}
This can be transformed into a linear programming problem

inf
{F: }: , {H: }: ⊂ℝ
{2: 98 }: 98⊂ℝ,_≥1

_d +
 ∑
:=1

H:

s.t. H 9 ≥
= 9∑
8=1

?̂:8 (2: 98 −_‖Ĝ: − Ĝ 9 ‖) ∀ 9 , : ∈ [ ],

2: 98 ≥ F: − Î 98 ∀:, 9 ∈ [ ], 8 ∈ [= 9],
2: 98 ≥ Î 98 −F: ∀:, 9 ∈ [ ], 8 ∈ [= 9] . �

Proof of Example 6. Recall that the problem could be reformulated as

inf
5̂ :X̂→ℝ
_≥0

{
_d +E

ℙ̂
-̂

[
max

1≤:≤ 

{
i( 5̂ (Ĝ:);_, -̂) −_‖Ĝ: − -̂ ‖

}]}
.

where
i(F;_; Ĝ) = E

ℙ̂
/̂ |-̂

[
sup
I∈Z

{
−FI>

(
F

1
)
−_‖I − /̂ ‖

}
| -̂ = Ĝ

]
.
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When Z is equipped with the usual ℓ? norm ‖·‖Z , the supremum over I in the definition of i is infinite
if ‖F (

F 1)
‖∗ > _, where ‖·‖∗ is the dual norm of ‖·‖Z , otherwise the supremum is achieved at I = /̂.

Therefore

i(F;_; Ĝ:) = −
(
F2 F

)
Ī: +∞1{‖

(
F2 F

)
‖∗ > _}.

Hence we obtain the reformulation (11). Recall that the first component of I represents the price
sensitivity coefficient, which is negative.
When ? = 1, this can be written as the following quadratic constraint program:

inf
{F: }: ,_≥0

_d +
∑
9∈[ ]

?̂ 92 9

s.t. 2 9 +
(
F2
:
F:

)
Ī: +_‖Ĝ: − Ĝ 9 ‖ ≥ 0 ∀ 9 , : ∈ [ ],

F: ≤ _ ∀: ∈ [ ],
F2
: ≤ _ ∀: ∈ [ ] .

When ? =∞, this can also be written as a quadratic constraint program:

inf
{F: }: ,_≥0

_d +
∑
9∈[ ]

?̂ 92 9

s.t. 2 9 +
(
F2
:
F:

)
Ī: +_‖Ĝ: − Ĝ 9 ‖ ≥ 0 ∀ 9 , : ∈ [ ],

F2
: +F: ≤ _ ∀: ∈ [ ] .

When ? = 2, this is written as

inf
{F: }: ,_≥0

_d +
∑
9∈[ ]

?̂ 92 9

s.t. 2 9 +
(
F2
:
F:

)
Ī: +_‖Ĝ: − Ĝ 9 ‖ ≥ 0 ∀ 9 , : ∈ [ ],

F4
:
+F2

: ≤ _
2 ∀: ∈ [ ] .

By introducing auxiliary variable H: = F2
:
, this can be represented as a second order conic programming:

inf
{F: }: , {H: }: ,_≥0

_d +
∑
9∈[ ]

?̂ 92 9

s.t. 2 9 +
(
F2
:
F:

)
Ī: +_‖Ĝ: − Ĝ 9 ‖ ≥ 0 ∀ 9 , : ∈ [ ],

H: ≥ F2
: ∀: ∈ [ ],

H2
: +F

2
: ≤ _

2 ∀: ∈ [ ] . �

Proof of Example 7. (D) and (4) are reduced to

inf
(�,X) ∈Θ

_≥0, {H: }: ⊂ℝ

_d2 +
 ∑
:=1

?̂: H:

s.t. (
G> I> 1)

-:
©­«
G

I

1
ª®¬ ≥ 0, ∀: ∈ [ ], G ∈ X , I ∈Z

(
�>
ℓ
�> �>

ℓ
X − 2ℓ

) (
G

1
)
≤ 0, ∀ℓ ∈ [!], G ∈ X .
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where -: is a symmetric matrix defined in (EC.11) with � = �, U = V = 0, and 1 = 0:

-: =
©­«
_� −1

2� −_Ĝ:
−1

2�
> _� −1

2X −_Ī:
−_Ĝ>

:
−1

2X
> −_Ī>

:
H: +_‖ Ī: ‖2 +_‖Ĝ: ‖2

ª®¬ .
By the S-lemma [87, 88, 69], two set of constraints are equivalent to

inf
�∈ℝ3×<, X∈ℝ
_≥0, {H: }: ⊂ℝ
{`: }: , {aℓ }ℓ ⊂ℝ+

_d2 +
 ∑
:=1

?̂: H:

s.t. (
G> I> 1)

-:
©­«
G

I

1
ª®¬+ `: ((G − G0)>Σ(G − G0) − ') ≥ 0, ∀: ∈ [ ], G ∈ℝ3 , I ∈Z

−
(
�>
ℓ
�> �>

ℓ
X − 2ℓ

) (
G

1
)
+ aℓ ((G − G0)>Σ(G − G0) − ') ≥ 0, ∀ℓ ∈ [!], G ∈ℝ3 .

Constraints can be written as the semidefinite form:

-: + `:
©­«
Σ $ −ΣG0
$ $ 0
−G>0Σ 0> G>0ΣG0 − '

ª®¬ �$,
(

$ 1
2��ℓ1

2�
>
ℓ
�> �>

ℓ
X − 2ℓ

)
+ aℓ

(
Σ −ΣG0
−G>0Σ G

>
0ΣG0 − '

)
�$.

We thus completed the proof of this example. �
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