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Abstract

A critical measure of model quality for a mixed-integer program (MIP) is the difference, or gap,

between its optimal objective value and that of its linear programming relaxation. In some cases,

the right-hand side is not known exactly; however, there is no consensus metric for evaluating a MIP

model when considering multiple right-hand sides. In this paper, we provide model formulations

for the expectation and extrema of absolute and relative MIP gap functions over finite discrete sets.
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1. Introduction

Given a (maximization) mixed-integer program (MIP), the gap is the difference between the

optimal objective value of its linear programming (LP) relaxation and that of the MIP. The MIP

gap is a critical measure of model quality for MIPs with fixed data. Some theoretical implications

include improving solution algorithms, such as branch and bound [22]. Practical implications

include the interpretation of the dual objective (price) function, which tells us how much extra

resources are worth [31]. In practice, the right-hand side may not be known exactly or it may vary.

Thus, evaluative metrics must be developed in order to assess a MIP model’s quality over multiple

right-hand sides. Such metrics may have applications in sensitivity analysis (e.g., [14, 31]) and

stochastic programming (e.g., [20, 26, 29]).

Value functions and superadditive duality play central roles in this paper, and have various

applications in optimization. [18] extends integer programming (IP) duality theory (see [16] for an

extensive survey on IP duality) to MIPs by examining the group problem. [28] characterize MIP

value functions and present a cutting-plane algorithm for their construction. [6] provide properties
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of the MIP value function and use superadditivity to conduct sensitivity analyses on the optimal

value. [7] bound the MIP gap as the right-hand side varies, and [5] identifies a class of computable

formulas that precisely characterize value functions of MIPs.

Although our paper is, to our knowledge, the first to study MIP gap functions using superaddi-

tivity, there is an existing body of literature on IP gap functions and superadditivity. Most relevant,

[1] optimize IP gap functions over multiple right-hand sides, whereas our paper optimizes MIP gap

functions over multiple right-hand sides. There are a number of non-trivial differences between

the optimization problems presented in [1] and our paper that make our models more complex,

including our focus on MIPs versus IPs and the subsequent inclusion of dual variables for both the

IP and LP embedded in the MIP. Thus, we present a novel framework by which to evaluate the

quality of a MIP model over multiple right-hand sides. Furthermore, this paper presents a novel

proof of strong duality for the MIP superadditive dual proposed in [21], in addition to a novel proof

of the periodicity of absolute MIP gap functions.

2. Preliminaries

Let A ∈ Zm×n
+ , G ∈ Qm×p

+ , b ∈ Rm
+ , c ∈ Rn

++, and h ∈ Rp
++. Let aj be the jth column of A

and gk the kth column of G. Consider the MIP problem:

zMIP (b) = max
x∈Zn

+, y∈Rp
+

{c⊤x+ h⊤y | Ax+Gy ≤ b}. (1)

Let zLPR(b) be the optimal objective value of the LP relaxation of (1) with right-hand side b.

In this paper, we study MIP gaps over multiple right-hand sides. Thus, define B[0,b] :=
∏m

i=0[0, bi],

i.e., the Cartesian product of the intervals [0, b1], . . . , [0, bm], and B̂[0,b] := B[0,b]∩Zm
+ . We assume

the right-hand side parameter β̂ is in B[0,b] and β ∈ B̂[0,b] is such that β ≤ β̂. We formally

define MIP gap functions as follows.

Definition 2.1. Given a set of right-hand sides, B[0,b], the absolute gap function for MIPs is

defined as: Γ : B[0,b] → R+ ∪ {∞}, Γ(β̂) := zLPR(β̂) − zMIP (β̂). Given a set of right-hand

sides, B+[0,b] := {β̂ ∈ B[0,b] | zMIP (β̂) > 0}, the relative gap function for MIPs is defined as:

γ : B+[0,b] → R+, γ(β̂) :=
zMIP (β̂)

zLPR(β̂)
.

An absolute gap that is close to zero indicates that the LP relaxation provides a high-quality

approximation for the optimal objective value of the corresponding MIP. In addition, because (1) is

a maximization optimization problem, zLPR(β̂) is an upper bound for zMIP (β̂) for all β̂ ∈ B[0,b].
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Thus, Γ(β̂) ≥ 0. A relative gap that is close to 1 indicates that the LP relaxation provides a high-

quality approximation for the optimal objective value of the corresponding MIP. The domain of γ

is restricted to B+[0,b] in order to avoid division by zero. Thus, γ(β̂) ∈ [0, 1] for all β̂ ∈ B+[0,b].

2.1. IP Value Functions and Duality

Our approach to gap functions for MIPs is very closely related to MIP value functions and MIP

duality. Thus, to study gap functions for MIPs, we first characterize superadditive duality for pure

IPs and define value functions of pure IPs and LPs. For any β̂ ∈ B[0,b] and β ∈ B̂[0, β̂], the

parametrized LP, LP(β̂ − β), with value function zLP , is defined as:

zLP (β̂ − β) := max
y∈Rp

+

{h⊤y | Gy ≤ β̂ − β}. (2)

The dual of LP(β̂ − β), LPD(β̂ − β), with value function zLPD, is defined as follows:

zLPD(β̂ − β) := min
π∈Rm

+

{π⊤(β̂ − β) | π⊤G ≥ h⊤}. (3)

Let Y := {π ∈ Rm
+ | π⊤G ≥ h⊤}. Denote Ω := {πr | r ∈ R} the set of extreme points of Y.

Because the primal (2) is feasible, (3) is always bounded. Thus, min
π∈Ω

π⊤(β̂ − β) = zLPD(β̂ − β).

Furthermore, because there exist a finite number of constraints and variables for LPD(β̂ − β), the

set of extreme points of Y is finite, i.e., |R| < +∞, as a consequence of Weyl’s Theorem [10]. We

use the variable, π
β̂−β

, to model the value of zLPD over B̂[0, β̂].

Assumption 2.1. A and G have no zero columns.

Assumption 2.1 implies finite optima for LP(β̂ − β); weak duality then yields finite optima for

LPD(β̂ − β). For β ∈ B̂[0, β̂], the parametrized IP, IP(β), with value function zIP , is:

zIP (β) := max
x∈Zn

+

{c⊤x | Ax ≤ β}.

Remark 2.1. For all β ∈ B̂[0, β̂], zIP (β) < +∞ and IP(β) is feasible. In addition, zIP is

superadditive, i.e., for any β1,β2 ∈ B̂[0, β̂] with β1+β2 ∈ B̂[0, β̂], zIP (β1)+zIP (β2) ≤ zIP (β1+β2).

Because we assume the data are nonnegative, Remark 2.1 is a direct result of Assumption 2.1.

Definition 2.2. [8] Chvátal functions are a recursively defined class of functions constructed using

sums, nonnegative multiples, and floors of linear functions. Gomory functions are similar, but also

include minimums of linear functions.
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There are various formulations for the dual of IP(β). We use the superadditive dual, denoted

SIP (β), as it is a strong dual to IP for all β ∈ B̂[0, β̂] [1, 17, 31]. Furthermore, it is particularly

adaptable for developing measures of model quality over multiple right-hand sides. The formulation

is as follows [1, 31]:

zSIP (β) := min ϕ(β) (4a)

s.t. ϕ(aj) ≥ cj ∀ j ∈ 1, 2, . . . , n, (4b)

ϕ nondecreasing and superadditive, (4c)

ϕ(0) = 0, (4d)

ϕ(β1) ∈ R ∀ β1 ∈ B̂[0, β̂]. (4e)

Note that we use the variable, ϕ(β), to model the value of zSIP over B̂[0, β̂]. Denote Φ(β̂) := {ϕ ∈

R|B̂[0,β̂]| | (4b)− (4e)}.

[1] use superadditive duality to model IP gap functions over multiple right-hand sides. We

provide an analogous framework for MIPs: in particular, we use superadditive duality to model

MIP gap functions over multiple (discrete) right-hand sides. For the MIP extension, we must

account for the continuous variables by using dual extreme points, which significantly complicates

the superadditive dual formulation of MIP, as discussed in the following section.

2.2. MIP Value Functions and Superadditive Duality

Let S(β̂) := {(x,y) ∈ Zn
+ × Rp

+ | Ax + Gy ≤ β̂}. We define the parametrized mixed-integer

program, MIP(β̂), with value function zMIP , as:

zMIP (β̂) := max
x,y

{c⊤x+ h⊤y | (x,y) ∈ S(β̂)}. (5)

As with IP value functions, zMIP is superadditive [6]. Duality for MIPs is more complex than

that of IPs and LPs because we must account for both the integer and continuous variables in

the MIP formulation. We do this by computing the gap function over β̂ (the right-hand side

corresponding to the MIP), while simultaneously solving for the optimal portion of β̂ to allocate to

the IP problem (with right-hand side β) versus the LP problem (with right-hand side β̂ − β)

embedded in the MIP. One possible approach is to use a formulation similar to (4), with an

additional constraint containing a directional derivative that accounts for the continuous variables.

However, having a constraint containing a directional derivative may present additional modeling

complications. For this reason, we instead formulate the superadditive dual of MIP by exploiting

the structure of the MIP value function presented in Proposition 2.1.
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Proposition 2.1. [21] For any β̂ ∈ B[0,b], zMIP (β̂) := max
β∈B̂[0,β̂]

{zIP (β) + zLP (β̂ − β)}.

Proposition 2.1 decomposes the value function, zMIP , into its integer and continuous value

functions. We exploit this property to construct a superadditive dual formulation to MIP that does

not require the use of directional derivatives. We compute the gap function over a (potentially

unknown) right-hand side parameter, β̂, while also solving for the optimal portion of β̂ to allocate

to the IP problem versus the LP problem embedded in the MIP; as such, we propose an alternative

MIP dual formulation, SDMIP(β̂):

zSDMIP (β̂) := max
β∈B̂[0,β̂]

{zSIP (β) + zLPD(β̂ − β)}.

Recall Φ(β̂) := {ϕ ∈ R|B̂[0,β̂]| | (4b)− (4e)}, i.e., the feasible region of SIP(β̂). [1] use SIP(β) to

model IP gap functions parametrized over a set of right-hand sides as LPs (albeit of exponentially

large size) with at most one SOS1 constraint. In this paper, we use the MIP superadditive dual

formulation presented in Proposition 2.2 to model MIP gap functions over multiple (discrete) right-

hand sides as (exponentially large) LPs with at most one SOS1 constraint. Proposition 2.2 extends

the dual formulation presented in [31] to MIPs.

Proposition 2.2. [21] Let A ∈ Zm×n
+ , G ∈ Qm×p

+ , and β̂ ∈ B[0,b]. SDMIP(β̂) is equivalent to:

zSDMIP (β̂) := min
ϕ,π

ϕ(β
′
) + π⊤

β̂−β′ (β̂ − β′
) (6a)

s.t. ϕ(β
′
) + π⊤

β̂−β′ (β̂ − β′
) ≥ ϕ(β) + π⊤

β̂−β
(β̂ − β) ∀ β ∈ B̂[0, β̂], (6b)

ϕ ∈ Φ(β̂), (6c)

π
β̂−β

∈ Ω ∀ β ∈ B̂[0, β̂]. (6d)

Vector ϕ is indexed by β; vector π is indexed by (β̂ − β) and dot-producted with (β̂ − β)

in (6a) and (6b). Formulation (6) avoids various modeling complications presented by the use of

directional derivatives, but at the expense of a larger LP. We present what are, to our knowledge,

novel proofs showing that SDMIP(β̂) is both a weak and strong dual to MIP(β̂) for all β̂ ∈ B[0,b].

Theorem 2.1. Let β̂ ∈ B[0,b], and let β∗ ∈ arg max
β∈B̂[0,β̂]

zIP (β)+zLP (β̂−β). Then, for ϕ ∈ Φ(β̂)

and π
β̂−β∗ ∈ Ω, we have that ϕ(β∗) + π⊤

β̂−β∗(β̂ − β∗) ≥ zMIP (β̂).

Proof. Let β̂ ∈ B[0,b]. Choose β∗ ∈ B̂[0, β̂] such that zMIP (β̂) = zIP (β
∗) + zLP (β̂ − β∗). Let

ϕ ∈ Φ(β̂) and π
β̂−β∗ ∈ Ω be such that (ϕ,π

β̂−β∗) is feasible for SDMIP(β̂). Then, zSDMIP (β̂) ≤
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ϕ(β∗)+π⊤
β̂−β∗(β̂−β∗). By IP weak duality [1, 31], zIP (β

∗) ≤ ϕ(β∗). By LP weak duality, zLP (β̂−

β∗) ≤ π⊤
β̂−β∗(β̂ − β∗). Thus, zMIP (β̂) = zIP (β

∗) + zLP (β̂ − β∗) ≤ ϕ(β∗) + π⊤
β̂−β∗(β̂ − β∗).

Theorem 2.2. Let β̂ ∈ B[0,b]. Then, SDMIP(β̂) is a strong dual to MIP(β̂).

Proof. Let β̂ ∈ B[0,b]. Choose β∗ ∈ B̂[0, β̂] such that zMIP (β̂) = zIP (β
∗)+zLP (β̂−β∗). Let x∗ ∈

optIP (β
∗) and y∗ ∈ optLP (β̂−β∗). By IP strong duality [1], zIP (β

∗) = c⊤x∗ = ϕ∗(β∗) = zSIP (β
∗)

for some ϕ∗ ∈ Φ(β̂). Also, by LP duality, zLP (β̂−β∗) = h⊤y∗ = π∗⊤
β̂−β∗(β̂−β∗) = zLPD(β̂−β∗)

for π∗
β̂−β∗ ∈ Ω where π∗

β̂−β∗ ∈ argmin
π∈Ω

π⊤(β̂ − β∗). Now, consider the tuple (ϕ∗,π∗
β̂−β∗).

Note that this tuple is feasible for SDMIP(β̂): ϕ∗ satisfies (6c), π∗
β̂−β∗ satisfies (6d), and because

β∗ ∈ arg max
β∈B̂[0,β̂]

{zIP (β) + zLP (β̂ − β)}, ϕ∗(β∗) + π∗⊤
β̂−β∗(β̂ − β∗) ≥ ϕ∗(β) + π∗⊤

β̂−β
(β̂ − β)

for all β ∈ B̂[0, β̂], thus satisfying (6b). Furthermore: ϕ∗(β∗) + π∗⊤
β̂−β∗(β̂ − β∗) = zSIP (β

∗) +

zLPD(β̂−β∗) = zIP (β
∗) + zLP (β̂−β∗) = zMIP (β̂). By Theorem 2.1, ϕ∗(β∗) +π∗⊤

β̂−β∗(β̂−β∗) =

zMIP (β̂) ≤ ϕ(β∗) + π⊤
β̂−β∗(β̂ − β∗) for all ϕ ∈ Φ(β̂) and π

β̂−β∗ ∈ Ω. Thus, zSDMIP (β̂) =

ϕ∗(β∗) + π∗⊤
β̂−β∗(β̂ − β∗), and zMIP (β̂) = zSDMIP (β̂).

Now, consider the LP relaxation of (5): zLPR(β̂) := max
x∈Rn

+, y∈Rp
+

{c⊤x+ h⊤y | Ax+Gy ≤ β̂}.

As with IP and MIP value functions, zLPR is superadditive.

Remark 2.2. For all β̂ ∈ B[0,b], zLPR(β̂) < +∞ and LPR(β̂) is feasible.

Because we assume the data are nonnegative, Remark 2.2 follows from Assumption 2.1. Let

Q := {u ∈ Rm
+ | A⊤u ≥ c, G⊤u ≥ h}, and let {uq | q ∈ κ} be the set of extreme points of Q. The

dual of zLPR(β̂) may be formulated as follows:

zDLPR(β̂) = min
q∈κ

β̂⊤uq.

Because c and h are strictly positive, as a result of Assumption 2.1, Remark 2.2, and Weyl’s

Theorem [10], DLPR(β̂) is feasible and zDLPR(β̂) ≥ 0 for all β̂ ∈ B[0,b]. Furthermore, there are

a finite number of extreme points, i.e., |κ| < +∞.

Remark 2.3. There always exists an extreme point of Q that is an optimal solution to DLPR(β̂).

Remark 2.3 allows for one to encode the objective function of DLPR(β̂) as a function of the

extreme points of Q. We exploit this in Sections 4 and 5, where we optimize the expectation and

extrema of absolute and relative MIP gap functions over finite discrete sets.
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3. Properties of Absolute MIP Gap Functions

Absolute MIP gap functions have a number of properties that are unrelated to superadditivity,

but are interesting nonetheless - particularly because these properties may lead to algorithmic

innovations in the computation of absolute MIP gap functions. We begin by relating Gomory

functions to absolute MIP gap functions (see [1] for a proof of the IP case).

Proposition 3.1. The absolute MIP gap function defined over B[0,b] is the minimum of finitely

many Gomory functions.

The proof of Proposition 3.1 (and other results with omitted proofs) is in the E.C. The remainder

of this section presents results for absolute MIP gap function periodicity. [13] proves that the

absolute gap function for IPs is periodic with respect to the columns of the constraint matrix. [1]

use superadditivity and IP complementary slackness to reproduce this result for absolute IP gap

functions. We provide a generalization of these results that apply to absolute MIP gap functions.

Proposition 3.2. Let β̂ ∈ B[0,b] and (x∗,y∗) ∈ optMIP (β̂). Given η ∈ N, let Jη ⊆ {1, . . . , n}

denote the set of indices such that x∗j ≥ η for j ∈ Jη. Denote K := {1, . . . , p}, and let λ∗ = min
k∈K

{y∗k}.

Then, for any j ∈ Jη, k ∈ K, and λ ∈ [0, λ∗], zMIP (β̂ − ηaj − λgk) = zMIP (β̂)− ηcj − λhk.

Proposition 3.2 also applies to zLPR. Note that Proposition 3.2 is a complementary slackness

condition: if Jη = ∅, Proposition 3.2 implies LP complementary slackness, and ifK = ∅, Proposition

3.2 implies IP complementary slackness [25]. We use this to prove the following theorem on the

periodicity of absolute MIP gap functions.

Theorem 3.1. Let β̂ ∈ B[0,b], (x̃M , ỹM ) ∈ optMIP (β̂), and (x̃L, ỹL) ∈ optLPR(β̂). Given η ∈ N,

let Jη ⊆ {1, . . . , n} denote the set of indices such that x̃Mj , x̃Lj ≥ η for j ∈ Jη. Denote K :=

{1, . . . , p}, and let λ∗ = min{ỹM1 , . . . , ỹMp , ỹL1 , . . . , ỹ
L
p }. Then, for j ∈ Jη, k ∈ K, and λ ∈ [0, λ∗], we

have that Γ(β̂−ηaj −λgk) = Γ(β̂). If, in addition, zLPR(β̂) > ηcj +λhk, then γ(β̂−ηaj −λgk) =

zMIP (β̂)−ηcj−λhk

zLPR(β̂)−ηcj−λhk
.

Proof. Let β̂ ∈ B[0,b], (x̃M , ỹM ) ∈ optMIP (β̂), and (x̃L, ỹL) ∈ optLPR(β̂). Note that the relative

gap function result follows directly from Proposition 3.2. By definition, Γ(β̂ − ηaj − λgk) =

zLPR(β̂ − ηaj − λgk)− zMIP (β̂ − ηaj − λgk). By hypothesis, we consider a pair of indices, (j, k),

with j ∈ Jη and k ∈ K, such that x̃Mj , x̃Lj ≥ η and 0 ≤ λ∗ ≤ ỹMk , ỹLk . Then, by Proposition 3.2,

zLPR(β̂ − ηaj − λgk) = zLPR(β̂) − ηcj − λhk and zMIP (β̂ − ηaj − λgk) = zMIP (β̂) − ηcj − λhk
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for all λ ∈ [0, λ∗]. Thus, Γ(β̂ − ηaj − λgk) = zLPR(β̂) − ηcj − λhk − (zMIP (β̂) − ηcj − λhk) =

zLPR(β̂)− zMIP (β̂) = Γ(β̂).

4. Absolute Gap Functions over a Discrete Set

In this section, we present formulations for optimizing the expectation, infimum, and supremum

of the absolute gap function, Γ, over finite discrete sets. Following the notation of [1], each formu-

lation is associated with three letters: the first letter indicates the quality measure (expectation,

infimum, or supremum), the second letter designates the gap function (absolute or relative), and

the third letter, D, indicates that the gap is measured over a discrete set. For all of the absolute

and relative gap function formulations, it is important to note that as a consequence of Remark

2.3, the optimal objective value of DLPR(β̂) can be written solely in terms of the extreme points

of the feasible region Q for all β̂ ∈ B[0,b].

Note that while the formulations presented in this section bear similarities to those presented in

[1], there are a number of non-trivial differences, including the domain over which the formulations

are defined, and the inclusion of the dual variables for both the IP and LP embedded in the MIP.

Furthermore, unlike the formulations presented in [1], there are two right-hand sides for us to

consider: the right-hand side corresponding to the MIP, β̂ ∈ B[0,b], and the portion of β̂ allocated

to the IP embedded in the MIP, β ∈ B̂[0, β̂].

For each formulation in this section, let D be a finite, discrete subset of B[0,b]. The expectation

of the absolute gap function can be used to determine the expected performance of the LP relaxation

as an approximation for the MIP, with a gap close to zero indicating a high-quality approximation

for the MIP in expectation. The infimum can be used to determine the best-case performance, with

a gap of zero indicating a perfect formulation for at least one right-hand side in D. Finally, the

supremum can be used to determine the worst-case performance, with a gap close to zero indicating

a consistently high-quality approximation for the MIP.

4.1. Expectation of the Absolute Gap Function over a Discrete Set

Denote ξ a discrete random variable with event spaceD. Let P{ξ = β̂} = µ(β̂). The expectation

of the absolute gap function over D is: Eξ[Γ(ξ)] :=
∑̂
β∈D

µ(β̂)Γ(β̂). Consider the formulation:

δEAD = max
∑
β̂∈D

µ(β̂)ψ(β̂) (7a)

8



s.t. ψ(β̂) ≤ β̂⊤uq − (ϕ(β) + π⊤
β̂−β

(β̂ − β)) ∀ q ∈ κ, β ∈ B̂[0, β̂], β̂ ∈ D, (7b)

ϕ ∈ Φ(b), (7c)

π
β̂−β

∈ Ω ∀ β ∈ B̂[0, β̂], β̂ ∈ D, (7d)

ψ ∈ R|D|
+ . (7e)

Theorem 4.1. The optimal objective value of (7) is δEAD = Eξ[Γ(ξ)].

Proof. Let ψ̃(β̂) = Γ(β̂) for all β̂ ∈ D, and let β∗ ∈ arg max
β∈B̂[0,β̂]

zIP (β) + zLP (β̂ − β). For each

β̂ ∈ D, let ϕ̃(β∗) = zIP (β
∗) and π̃⊤

β̂−β∗(β̂ − β∗) = zLP (β̂ − β∗) such that π̃
β̂−β∗ ∈ Ω (note that

this is guaranteed to exist by Remark 2.1). We show that the triple (ϕ̃, π̃
β̂−β∗ , ψ̃) is feasible for (7).

Note that by IP strong duality [1], ϕ̃ satisfies (6c). Furthermore, by strong duality, zLP (β̂−β∗) =

zLPD(β̂ − β∗). So, zLPD(β̂ − β∗) = π̃⊤
β̂−β∗(β̂ − β∗) where π̃

β̂−β∗ ∈ Ω. Thus, π̃
β̂−β

satisfies (6d).

In addition, by construction, ϕ̃(β∗) + π̃⊤
β̂−β∗(β̂ − β∗) ≥ ϕ̃(β) + π̃⊤

β̂−β
(β̂ − β) ∀β ∈ B̂[0, β̂], thus,

satisfying (6b). By strong duality, zLPR(β̂) = zDLPR(β̂) for all β̂ ∈ D. Thus,

ψ̃(β̂) = Γ(β̂) = zLPR(β̂)− zMIP (β̂) = min
q∈κ

β̂⊤uq − (ϕ̃(β∗) + π̃⊤
β̂−β∗(β̂ − β∗))

≤ β̂⊤uq − (ϕ̃(β∗) + π̃⊤
β̂−β∗(β̂ − β∗)), ∀ q ∈ κ, β̂ ∈ D.

Therefore, the triple (ϕ̃, π̃
β̂−β∗ , ψ̃) is feasible for (7).

Suppose (ϕ∗,π∗
β̂−β

,ψ∗) is feasible for (7). By Theorem 2.1, ϕ∗(β∗)+π∗⊤
β̂−β∗(β̂−β∗) ≥ zMIP (β̂)

for all β̂ ∈ D. By feasibility, ψ∗(β̂) ≤ β̂⊤uq − (ϕ∗(β) + π∗⊤
β̂−β

(β̂ − β)) for all q ∈ κ, β ∈ B̂[0, β̂],

and β̂ ∈ D. It follows that ψ∗(β̂) ≤ zLPR(β̂) − zMIP (β̂) = ψ̃(β̂). Hence,
∑̂
β∈D

µ(β̂)ψ∗(β̂) ≤∑̂
β∈D

µ(β̂)ψ̃(β̂) = Eξ[Γ(ξ)], i.e., the optimal objective value of (7) is Eξ[Γ(ξ)].

4.2. Infimum of the Absolute Gap Function over a Discrete Set

Because, trivially, Γ(0) = 0 = min
β̂∈B[0,b]

Γ(β̂), we exclude {0} from consideration. Denote D+ =

D\{0}. The infimum of the absolute gap function over D+ is: ∆IAD := inf
β̂∈D+

Γ(β̂) = min
β̂∈D+

Γ(β̂).

Consider the formulation:

δIAD = max ψ (8a)

s.t. ψ ≤ β̂⊤uq − (ϕ(β) + π⊤
β̂−β

(β̂ − β)) ∀ q ∈ κ, β ∈ B̂[0, β̂] \ {0}, β̂ ∈ D+, (8b)

ϕ ∈ Φ(b), (8c)

π
β̂−β

∈ Ω ∀ β ∈ B̂[0, β̂] \ {0}, β̂ ∈ D+, (8d)
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ψ ∈ R+. (8e)

Theorem 4.2. The optimal objective value of (8) is ∆IAD. That is, δIAD = ∆IAD.

4.3. Supremum of the Absolute Gap Function over a Discrete Set

Let SOS1({w(β̂)}
β̂∈D) denote a Special Ordered Set constraint of Type 1 on the decision

variable w ∈ R|D|
+ , so that |{β̂ ∈ D | w(β̂) > 0}| ≤ 1 [3]. The supremum of the absolute gap

function over D is: ∆SAD := sup
β̂∈D

Γ(β̂) = max
β̂∈D

Γ(β̂). Consider the formulation:

δSAD = max
∑
β̂∈D

ψ(β̂) (9a)

s.t. ψ(β̂) ≤ β̂⊤uq − (ϕ(β) + π⊤
β̂−β

(β̂ − β)) ∀ q ∈ κ, β ∈ B̂[0, β̂], β̂ ∈ D, (9b)

SOS1({ψ(β̂)}
β̂∈D), (9c)

ϕ ∈ Φ(b), (9d)

π
β̂−β

∈ Ω ∀ β ∈ B̂[0, β̂], β̂ ∈ D, (9e)

ψ ∈ R|D|
+ . (9f)

Theorem 4.3. The optimal objective value of (9) is ∆SAD. That is, δSAD = ∆SAD.

5. Relative Gap Functions over a Discrete Set

In this section, we optimize the expectation, infimum, and supremum of the relative gap func-

tion, γ, over finite discrete sets. As with Section 4, the formulations presented in this section bear

similarities to those presented in [1]. However, there are a number of non-trivial differences, includ-

ing: the domain over which the formulations are defined, the inclusion of the dual variables for both

the IP and LP embedded in the MIP, and the consideration of the right-hand side corresponding

to the MIP, β̂ ∈ B[0,b], as well as the portion of β̂ allocated to the IP embedded in the MIP,

β ∈ B̂[0, β̂].

Recall B+[0,b] = {β̂ ∈ B[0,b] | zMIP (β̂) > 0}. We maintain the same notation from Section 4,

along with the following sets: let S+ be a finite subset of B+[0,b], and let B̂+[0,b] = B+[0,b]∩Zm
+ .

The expectation of the relative gap function can be used to determine the expected performance of

the LP relaxation as an approximation for the MIP, with a gap close to 1 indicating a high-quality

approximation for the MIP in expectation. The infimum can be used to determine the worst-case

performance, with a gap close to 1 indicating a consistently high-quality approximation for the MIP.
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The supremum can be used to determine the best-case performance, with a gap of 1 indicating a

perfect formulation for at least one right-hand side in S+.

5.1. Expectation of the Relative Gap Function over a Discrete Set

Denote ξ a discrete random variable with event space S+. Note that P{ξ = β̂} = µ(β̂). The

expectation of the relative gap function over S+ is: Eξ[γ(ξ)] :=
∑

β̂∈S+

µ(β̂)γ(β̂). Consider the

formulation:

δERD = min
∑
β̂∈S+

µ(β̂)ψ(β̂) (10a)

s.t. ψ(β̂)β̂⊤uq ≥ ϕ(β) + π⊤
β̂−β

(β̂ − β) ∀ q ∈ κ, β ∈ B̂+[0, β̂], β̂ ∈ S+, (10b)

ϕ ∈ Φ(b), (10c)

π
β̂−β

∈ Ω ∀ β ∈ B̂+[0, β̂], β̂ ∈ S+, (10d)

ψ ∈ R|S+|
+ . (10e)

Theorem 5.1. The optimal objective value of (10) is δERD = Eξ[γ(ξ)].

Proof. Let ψ̃(β̂) = γ(β̂) for all β̂ ∈ S+, and let β∗ ∈ arg max
β∈B̂[0,β̂]

zIP (β) + zLP (β̂ − β). For each

β̂ ∈ S+, let ϕ̃(β∗) = zIP (β
∗) and π̃⊤

β̂−β∗(β̂ − β∗) = zLP (β̂ − β∗) such that π̃
β̂−β∗ ∈ Ω. By

arguments similar to those in the proof of Theorem 4.1, the triple satisfies (6b)-(6d).

By strong duality, zLPR(β̂) = zDLPR(β̂) = min
q∈κ

β̂⊤uq. In addition, zLPR(β̂) > 0 for all β̂ ∈ S+.

Thus, for all q ∈ κ, β̂ ∈ S+, and β ∈ B̂+[0, β̂]:

ψ̃(β̂)β̂⊤uq = γ(β̂)β̂⊤uq ≥ γ(β̂)zLPR(β̂) = zMIP (β̂) = zIP (β
∗) + zLP (β̂ − β∗)

= ϕ̃(β∗) + π̃⊤
β̂−β∗(β̂ − β∗) ≥ ϕ̃(β) + π̃⊤

β̂−β
(β̂ − β).

Hence, the triple (ϕ̃, π̃
β̂−β∗ , ψ̃) is feasible for (10).

Suppose (ϕ∗,π∗
β̂−β

,ψ∗) is feasible for (10). By Theorem 2.1, ϕ∗(β∗) + π∗⊤
β̂−β∗(β̂ − β∗) ≥

zMIP (β̂) for all β̂ ∈ S+. By feasibility, ψ∗(β̂) ≥
ϕ∗(β)+π∗⊤

β̂−β
(β̂−β)

β̂⊤uq
∀q ∈ κ, β ∈ B̂+[0, β̂], and

β̂ ∈ S+. Hence, ψ∗(β̂) ≥
ϕ∗(β∗)+π∗⊤

β̂−β∗ (β̂−β∗)

zLPR(β̂)
≥ zMIP (β̂)

zLPR(β̂)
= γ(β̂) = ψ̃(β̂). Thus, Eξ[Γ(ξ)] =∑

β̂∈S+

µ(β̂)γ(β̂) =
∑

β̂∈S+

µ(β̂)ψ̃(β̂) ≤
∑

β̂∈S+

µ(β̂)ψ∗(β̂), i.e., δERD = Eξ[Γ(ξ)].
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5.2. Infimum of the Relative Gap Function over a Discrete Set

The infimum of the relative gap function over S+ is: ∆IRD := min
β̂∈S+

γ(β̂). Consider the

formulation:

δIRD = max
∑
β̂∈S+

ψ(β̂) (11a)

s.t. (1−ψ(β̂))β̂⊤uq ≥ ϕ(β) + π⊤
β̂−β

(β̂ − β) ∀ q ∈ κ, β ∈ B̂+[0, β̂], β̂ ∈ S+, (11b)

SOS1({ψ(β̂)}
β̂∈S+), (11c)

ϕ ∈ Φ(b), (11d)

π
β̂−β

∈ Ω ∀ β ∈ B̂+[0, β̂], β̂ ∈ S+, (11e)

ψ ∈ R|S+|
+ . (11f)

Theorem 5.2. The optimal objective value of (11) is 1−∆IRD. That is, δIRD = 1−∆IRD.

5.3. Supremum of the Relative Gap Function over a Discrete Set

The supremum of the relative gap function over S+ is: ∆SRD := max
β̂∈S+

γ(β̂). Consider the

formulation:

δSRD = min ψ (12a)

s.t. ψ · β̂⊤uq ≥ ϕ(β) + π⊤
β̂−β

(β̂ − β) ∀ q ∈ κ, β ∈ B̂+[0, β̂], β̂ ∈ S+, (12b)

ϕ ∈ Φ(b), (12c)

π
β̂−β

∈ Ω ∀ β ∈ B̂+[0, β̂], β̂ ∈ S+, (12d)

ψ ∈ R+. (12e)

Theorem 5.3. The optimal objective value of of (12) is ∆SRD. That is, δSRD = ∆SRD.

Acknowledgments

The authors thank the review team, as well as Seth Brown and Dr. Mustafa Can Camur of

Rice University, for their helpful comments. This research was supported by National Science

Foundation grant CMMI-1933373.

12



References

[1] T. Ajayi, C. Thomas, and A. J. Schaefer. The gap function: Evaluating integer programming

models over multiple right-hand sides. Oper. Res., 70(2):1259–1270, 2022.

[2] M. Baes, T. Oertel, and R. Weismantel. Duality for mixed-integer convex minimization. Math.

Program., 158(1):547–564, 2016.

[3] E. M. L. Beale and J. A. Tomlin. Special facilities in a general mathematical programming

system for non-convex problems using ordered sets of variables. Proc. Fifth Int. Conf. Oper.

Res. (J. Laurence, Ed.) Tavistock Publications, London, pages 447–454, 1970.

[4] C. E. Blair. Extensions of subadditive functions used in cutting-plane theory. Technical report,

MSRR, No. 360, Carnegie Mellon University, Pittsburgh, PA, 1974.

[5] C. E. Blair. A closed-form representation of mixed-integer program value functions. Math.

Program., 71(2):127–136, 1995.

[6] C. E. Blair and R. G. Jeroslow. The value function of a mixed integer program: I. Discrete

Math., 19(2):121–138, 1977.

[7] C. E. Blair and R. G. Jeroslow. The value function of a mixed integer program: II. Discrete

Math., 25(1):7–19, 1979.

[8] C. E. Blair and R. G. Jeroslow. The value function of an integer program. Math. Program.,

23(1):237–273, 1982.

[9] C. E. Blair and R. G. Jeroslow. Constructive characterizations of the value-function of a

mixed-integer program I. Discret. Appl. Math., 9(3):217–233, 1984.

[10] A. Charnes and W. W. Cooper. The strong Minkowski-Farkas-Weyl theorem for vector spaces

over ordered fields. PNAS, 44(9):914–916, 1958.

[11] W. Cook, A. M. H. Gerards, A. Schrijver, and É. Tardos. Sensitivity theorems in integer linear
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E.C. Electronic Companion

E.C.1. Section 3 Results

Proposition 3.1. The absolute MIP gap function defined over B[0,b] is the minimum of finitely

many Gomory functions.

Proof. Let β̂ ∈ B[0,b]. Consider the negative of the value function:

−zMIP (β̂) = min
x∈Zn

+, y∈Rp
+

{−c⊤x− h⊤y | Ax+Gy ≤ β̂}.

[9] prove that for any β̂ such that MIP(β̂) is feasible, which includes B[0,b], −zMIP is the min-

imum of finitely many Gomory functions. So, let −zMIP (β̂) = min{G1(β̂), . . . , GL(β̂)}, where

{Gi(β̂) | i = 1, . . . , L} are Gomory functions. Recall that zDLPR(β̂) = min
q∈κ

β̂⊤uq. By strong

duality, zLPR(β̂) = zDLPR(β̂). Thus, zLPR(β̂) = min
q∈κ

β̂⊤uq, where |κ| < +∞. Let q(β̂)∗ ∈ κ

be such that q(β̂)∗ ∈ argmin
q∈κ

β̂⊤uq. Recall that as a consequence of Assumption 2.1, Remark 2.2,

Weyl’s Theorem [10], and the assumption that c,h > 0, β̂⊤uq(β̂)∗ = zDLPR(β̂) ≥ 0. Thus, for

β̂ ∈ B[0,b]: Γ(β̂) = zLPR(β̂)− zMIP (β̂) = β̂
⊤uq(β̂)∗ + min

i=1,...,L
Gi(β̂) = min

i=1,...,L
(β̂⊤uq(β̂)∗ +Gi(β̂)).

Notice for each i, β̂⊤uq(β̂)∗ +Gi(β̂) is a Gomory function, as it is the sum of two Gomory functions.

Thus, Γ(β̂) is the minimum of finitely many Gomory functions for all β̂ ∈ B[0,b].

Proposition 3.2. Let β̂ ∈ B[0,b] and (x∗,y∗) ∈ optMIP (β̂). Given η ∈ N, let Jη ⊆ {1, . . . , n}

denote the set of indices such that x∗j ≥ η for j ∈ Jη. Denote K := {1, . . . , p}, and let λ∗ = min
k∈K

{y∗k}.

Then, for any j ∈ Jη, k ∈ K, and λ ∈ [0, λ∗], zMIP (β̂ − ηaj − λgk) = zMIP (β̂)− ηcj − λhk.

Proof. Denote ej the jth unit vector in Rn
+ and ϵk the kth unit vector in Rp

+. Let (x∗,y∗) ∈

optMIP (β̂), so zMIP (β̂) = c⊤x∗ + h⊤y∗. Let λ ∈ [0, λ∗] where λ∗ = min
k∈K

{y∗k}. Suppose Jη ̸= Ø,

and choose η ∈ N is such that x∗j ≥ η for all j ∈ Jη. Note that A(x∗ − ηej) + G(y∗ − λϵk) =

Ax∗ +Gy∗ − ηaj − λgk ≤ β̂− ηaj − λgk ≤ β̂, with x∗ − ηej ∈ Zn
+ and y∗ − λϵk ∈ Rp

+. Therefore,

(x∗ − ηej ,y
∗ − λϵk) is feasible for MIP(β̂ − ηaj − λgk) and MIP(β̂).

Now, suppose for the sake of contradiction that (x∗ − ηej ,y
∗ − λϵk) ̸∈ optMIP (β̂− ηaj − λgk).

Note that optMIP (β̂ − ηaj − λgk) ̸= Ø due to Assumption 2.1 and the data being nonnegative.

Thus, let (x̃, ỹ) ∈ optMIP (β̂ − ηaj − λgk). Then, Ax̃ +Gỹ ≤ β̂ − ηaj − λgk ≤ β̂, with x̃ ∈ Zn
+

and ỹ ∈ Rp
+, so (x̃, ỹ) is feasible for MIP(β̂). Also, c⊤x̃ + h⊤ỹ > c⊤(x∗ − ηej) + h⊤(y∗ − λϵk).

Now, let x̂ = x̃+ ηej and ŷ = ỹ+ λϵk. Note that Ax̂+Gŷ = Ax̃+Gỹ+ ηaj + λgk ≤ β̂ − ηaj −

λgk + ηaj + λgk = β̂, with x̂ ∈ Zn
+ and ŷ ∈ Rp

+. Thus, (x̂, ŷ) is feasible for MIP(β̂). Moreover,
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c⊤x̂+h⊤ŷ = c⊤x̃+h⊤ỹ+ηcj+λhk > c⊤(x∗−ηej)+h⊤(y∗−λϵk)+ηcj+λhk = c⊤x∗+h⊤y∗, which

contradicts the fact that (x∗,y∗) ∈ optMIP (β̂). Thus, (x
∗−ηej ,y

∗−λϵk) ∈ optMIP (β̂−ηaj−λgk).

Therefore, zMIP (β̂ − ηaj − λgk) = c⊤(x∗ − ηej) + h⊤(y∗ − λϵk) = c⊤x∗ + h⊤y∗ − ηcj − λhk =

zMIP (β̂)− ηcj − λhk.

E.C.2. Section 4 Results

Theorem 4.2. The optimal objective value of (8) is ∆IAD. That is, δIAD = ∆IAD.

Proof. Let ψ̃ = ∆IAD, and let β∗ ∈ arg max
β∈B̂[0,β̂]

zIP (β) + zLP (β̂ − β). For each β̂ ∈ D+, let

ϕ̃(β∗) = zIP (β
∗) and π̃⊤

β̂−β∗(β̂ − β∗) = zLP (β̂ − β∗) such that π̃
β̂−β∗ ∈ Ω (note that this is

guaranteed to exist by Remark 2.1). We show that the triple (ϕ̃, π̃
β̂−β∗ , ψ̃) is feasible for (8).

By arguments similar to those in the proof of Theorem 4.1, the triple satisfies (6b)-(6d), and

ψ̃ = ∆IAD = min
β̂∈D+

Γ(β̂) ≤ zLPR(β̂) − zMIP (β̂) ≤ β̂⊤uq − (ϕ̃(β∗) + π̃⊤
β̂−β∗(β̂ − β∗)) for all q ∈ κ

and β̂ ∈ D+. Hence, the triple (ϕ̃, π̃
β̂−β∗ , ψ̃) is feasible for (8).

Now, suppose (ϕ∗,π∗
β̂−β

,ψ∗) is feasible for (8). By Theorem 2.1, ϕ∗(β∗) + π∗⊤
β̂−β∗(β̂ − β∗) ≥

zMIP (β̂) for all β̂ ∈ D+. Furthermore, by feasibility, ψ∗ ≤ β̂⊤uq − (ϕ∗(β) + π∗⊤
β̂−β

(β̂ − β)), for

all q ∈ κ, β ∈ B̂[0, β̂] \ {0}, and β̂ ∈ D+. It follows that ψ∗ ≤ ∆IAD = ψ̃. Thus, ψ̃ = δIAD, and

the optimal objective value of (8) is ∆IAD.

Theorem 4.3. The optimal objective value of (9) is ∆SAD. That is, δSAD = ∆SAD.

Proof. Let β̂max ∈ argmax
β̂∈D

{Γ(β̂)}. Let ψ̃(β̂max) = Γ(β̂max) and ψ̃(β̂) = 0 for all β̂ ∈ D \ β̂max.

Note that by construction, ψ̃ satisfies (9c). Let ψ̃(β̂) = Γ(β̂) for all β̂ ∈ D, and let β∗ ∈

arg max
β∈B̂[0,β̂]

zIP (β) + zLP (β̂ − β). For each β̂ ∈ D, let ϕ̃(β∗) = zIP (β
∗) and π̃⊤

β̂−β∗(β̂ − β∗) =

zLP (β̂ − β∗) such that π̃
β̂−β∗ ∈ Ω (note that this is guaranteed to exist by Remark 2.1). By

arguments similar to those in the proof of Theorem 4.1, the triple satisfies (6b)-(6d).

Now, note that ψ̃(β̂) = 0 ≤ Γ(β̂) for all β̂ ∈ D \ β̂max. Therefore for β̂ ∈ D \ β̂max,

ψ̃(β̂) ≤ Γ(β̂) = zLPR(β̂)− zMIP (β̂) ≤ β̂⊤uq − (ϕ̃(β∗) + π̃⊤
β̂−β∗(β̂ − β∗)), ∀ q ∈ κ, β̂ ∈ D+.

Recall that by strong duality, zLPR(β̂max) = zDLPR(β̂max). Thus, for β̂ = β̂max,

ψ̃(β̂max) = Γ(β̂max) = zLPR(β̂max)− zMIP (β̂max)

= min
q∈κ

β̂⊤
maxu

q − (ϕ̃(β∗) + π̃⊤
β̂max−β∗(β̂max − β∗))
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≤ β̂⊤
maxu

q − (ϕ̃(β∗) + π̃⊤
β̂max−β∗(β̂max − β∗)), ∀ q ∈ κ.

Hence, the triple (ϕ̃, π̃
β̂−β∗ , ψ̃) is feasible for (9).

Now, let (ϕ∗,π∗
β̂−β

,ψ∗) be feasible for (9) such that there exists some β̂∗ ∈ D for which

ψ∗(β̂) = 0 for all β̂ ∈ D \ β̂∗. By Theorem 2.1, ϕ∗(β∗) + π∗⊤
β̂−β∗(β̂ − β∗) ≥ zMIP (β̂) for all

β̂ ∈ D. Furthermore, by feasibility, ψ∗(β̂) ≤ β̂⊤uq − (ϕ∗(β) + π∗⊤
β̂−β

(β̂ − β)) for all q ∈ κ,

β ∈ B̂[0, β̂], and β̂ ∈ D. It follows that ψ∗(β̂∗) ≤ zLPR(β̂
∗) − zMIP (β̂

∗) = Γ(β̂∗). Now, recall

that β̂max ∈ argmax
β̂∈D

{Γ(β̂)}. Then, ψ∗(β̂∗) ≤ Γ(β̂∗) ≤ Γ(β̂max) = ψ̃(β̂max). Thus,
∑̂
β∈D

ψ∗(β̂) ≤∑̂
β∈D

ψ̃(β̂) = ∆SAD, i.e., the optimal objective value of (9) is ∆SAD.

E.C.3. Section 5 Results

Theorem 5.2. The optimal objective value of (11) is ∆IRD. That is, δIRD = ∆IRD.

Proof. The proof follows similarly from Theorem 4.3 and is therefore omitted.

Theorem 5.3. The optimal objective value of (12) is ∆SRD. That is, δSRD = ∆SRD.

Proof. The proof follows similarly from Theorem 4.2 and is therefore omitted.
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