
MACHINE LEARNING FOR K-ADAPTABILITY
IN TWO-STAGE ROBUST OPTIMIZATION

Esther Julien
Delft University of Technology
e.a.t.julien@tudelft.nl

Krzysztof Postek
Deft University of Technology
k.s.postek@tudelft.nl

Ş. İlker Birbil
University of Amsterdam
s.i.birbil@uva.nl

December 12, 2022

ABSTRACT

Two-stage robust optimization problems constitute one of the hardest optimization problem classes.
One of the solution approaches to this class of problems is K-adaptability. This approach simultane-
ously seeks the best partitioning of the uncertainty set of scenarios into K subsets, and optimizes
decisions corresponding to each of these subsets. In general case, it is solved using the K-adaptability
branch-and-bound algorithm, which requires exploration of exponentially-growing solution trees. To
accelerate finding high-quality solutions in such trees, we propose a machine learning-based node
selection strategy. In particular, we construct a feature engineering scheme based on general two-stage
robust optimization insights that allows us to train our machine learning tool on a database of resolved
B&B trees, and to apply it as-is to problems of different sizes and/or types. We experimentally show
that using our learned node selection strategy outperforms a vanilla, random node selection strategy
when tested on problems of the same type as the training problems, also in case the K-value or the
problem size differs from the training ones.

Keywords node selection; clustering; two-stage robust optimization; K-adaptability; machine learning; tree search

1 Introduction

Many optimization problems are affected by data uncertainty caused by errors in the forecast, implementation, or
measurement. Robust optimization (RO) is one of the key paradigms to solve such problems, where the goal is to find
an optimal solution among the ones that remain feasible for all data realizations within an uncertainty set [Ben-Tal
et al., 2009]. This set includes all reasonable data outcomes.

A specific class of RO problems comprises two-stage robust optimization (2SRO) problems in which some decisions
are implemented before the uncertain data is known (here-and-now decisions), and other decisions are implemented
after the data is revealed (wait-and-see decisions). Such a problem can be formulated as

min
x∈X

max
z∈Z

min
y∈Y

{
c(z)⊺x+ d(z)⊺y : T (z)x+W (z)y ≤ h(z), ∀z ∈ Z

}
, (1)

where x ∈ X ⊆ RNx and y ∈ Y ⊆ RNy are the here-and-now and wait-and-see decisions, respectively, and z is
the vector of initially unknown data belonging to the uncertainty set Z ⊆ RNz . Solving problem (1) is difficult in
general, since Z might include an infinite number of scenarios, and hence different values of y might be optimal for
different realizations of z. In fact, finding optimal x is an NP-hard problem [Guslitzer, 2002]. To address this difficulty,
several approaches have been proposed. The first one is to use so-called decision rules which explicitly formulate the
second-stage decision y as a function of z, and hence the function parameters become first-stage decisions next to x;
see Ben-Tal et al. [2004]. Another approach is to partition Z into subsets and to assign a separate copy of y to each
of the subsets. The partitioning is then iteratively refined, and the decisions become increasingly customized to the
outcomes of z.

In this paper, we consider a third approach to (1) known as K-adaptability. There, at most K possible wait-and-see
decisions y1, . . . ,yK are allowed to be constructed, and the decision maker must select one of those. The values of the

Machine Learning forK -adaptability

possibley k 's become the �rst-stage variables, and the problem boils down to

min
x 2X ;y 2Y K

max
z 2Z

min
k2K

�
c(z) | x + d(z) | y k : T (z)x + W (z)y k � h (z); 8z 2 Z k

	
; (2)

whereK = f 1; : : : ; K g andYK = � K
k=1 Y. Although the solution space of(2) is �nite-dimensional, it remains an

NP-hard problem. For certain cases,(2) can be equivalently rewritten as a mixed integer linear programming (MILP)
model [Hanasusanto et al., 2015].

The above formulation requires that for givenx 2 X andz 2 Z , there is at least one decisiony k , k 2 K satisfying
T (z)x + W (z)y k � h (z), and among those one (or more) minimizing the objective. Looking at(2) from the point of
view y k , we can say that for eachy k , we can identify a subsetZ k of Z for which a giveny k is optimal. The union of
setsZ k , k 2 K is equal toZ although they need not be mutually disjoint (but a mutually disjoint partition ofZ can be
constructed). Consequently, solving(2) involves implicitly (i) clusteringZ , and (ii) optimizing the per-cluster decision
so that the objective function corresponding tothe most dif�cult clusteris minimized. Such a simultaneous clustering
and per-cluster optimization also occurs, for example in retail. A line ofK products is to be designed to attract the
largest possible group of customers. The customers are the clustered intoK groups, and the nature of the products is
guided by the cluster characteristics.

In this manuscript, we focus on the generalK -adaptability case for which the only existing solution approach is the
K -adaptability branch-and-bound (K -B&B) algorithm of Subramanyam et al. [2020]. This approach, as opposed to the
top-down partitioning ofZ of Bertsimas and Dunning [2016] or Postek and den Hertog [2016], proceeds by gradually
building up discrete subsets�Z k of scenarios. In most practical cases, a solution to(2), wherey 1; : : : ; y K are feasible
for large �Z1; : : : ; �ZK , is also feasible to the original problem. The problem, however, lies in knowing which scenarios
should be grouped together. In other words, a decision needs to be made on which scenarios ofZ should be responded
to with the same decision. How well this question is answered, determines the (sub)optimality ofy 1; : : : ; y K . In
Subramanyam et al. [2020], a search tree is used to determine the best collection (see Section 2 for details). However,
this approach suffers from exponential growth.

We introduce a method for learning the best strategy to explore this tree. In particular, we learn which nodes to evaluate
next in depth-�rst searchdivesto obtain good solutions faster. These predictions are made using a supervised machine
learning (ML) model. Due to the supervised nature, someoracleis required to be imitated. In design of this oracle, we
are partly inspired by Monte Carlo tree search (MCTS) [Browne et al., 2012], which is often used for exploring large
trees. Namely, the training data is obtained by exploringK -B&B trees via an adaptation of MCTS (see Section 3.4).
The scores given to the nodes in the MCTS-like exploration are stored and used as labels in our training data.

In the �eld of solving MILPs, learning node selection to speed up exploring the B&B tree has been done,e.g., by He
et al. [2014]. Here, a node selection policy is designed by imitating an oracle. This oracle is constructed using the
optimal solutions of various MILP data sets. More recently, Khalil et al. [2022a] used a graph neural network to learn
node selection. For an overview on ML for learning branching policies in B&B, see Bengio et al. [2020]. There has
also been done a vast amount of research on applying MCTS directly to solving combinatorial problems. In Sabharwal
et al. [2012] a special case of MCTS called Upper Con�dence bounds for Trees (UCT), is used for designing a node
selection strategy to explore B&B trees (for MIPs). In Khalil et al. [2022b] MCTS is used to �nd the best backdoor (i.e.,
a subset of variables used for branching) for solving MIPs. Loth et al. [2013] have used MCTS for enhancing constraint
programming solvers, which naturally use a search tree for solving combinatorial problems. For an elaborate overview
on modi�cations and applications of MCTS, we refer toŚwiechowski et al. [2022].

The remainder of the paper is structured as follows. In Section 2 we describe the inner workings of theK -adaptability
branch-and-bound to set the stage for our contribution. In Section 3 we outline our ML methodology along with the
data generation procedure. Section 4 discusses the results of a numerical study, and Section 5 concludes with some
remarks on future works.

2 Preliminaries

It is instructive to conceptualize a solution to(2) as a solution to a nested clustering and optimization-for-clusters
methodology. As already mentioned in Section 1, a feasible solution to(2) can be used to construct a partition of the
uncertainty set into subsetsZ1; : : : ; ZK such that

S K
k=1 Z k = Z . Here, decisiony k is applied in the second time stage

if z 2 Z k . The decision framework associated with a given solution is illustrated in Figure 1.

2

Machine Learning forK -adaptability

Figure 1: A framework of theK -adaptability problem, where we split the uncertainty set (red box) inK = 2 parts. Here,x
represents the �rst-stage decisions, andy 1 with y 2 those of the second-stage.

For such a�xed partition the corresponding optimization problem becomes

min
x 2X ;y 2Y K

max
k2K

max
z 2Z k

�
c(z) | x + d(z) | y k

	
(3)

s.t. T (z)x + W (z)y k � h (z); 8z 2 Z k ; 8k 2 K :

The optimal solution to(2) also corresponds to an optimal partitioning ofZ , and the optimal decisions of(3) with that
partitioning. Finding an optimal partition and the corresponding decisions has been shown to be NP-hard by Bertsimas
and Caramanis [2010]. For that reason, Subramanyam et al. [2020] have proposed theK -B&B algorithm. There, the
idea is to gradually build up a collection of �nite subsets�Z1; : : : ; �ZK , such that for eachk 2 K an optimal solution to
(3) with Z k = �Z k is also an optimal solution to (2).

The algorithm follows a master-subproblem approach. The master problem solves(2) with K �nite subsets of scenarios.
The subproblem �nds the scenario for which the current master solution is not robust. The numberK of possible
assignments of this new scenario to one of the existing subsets gives rise to using a search tree. Each tree node
corresponds to a partition of all scenarios found so far intoK subsets. The goal is to �nd the node with the best partition.
An illustration of the search tree is given in Figure 2. The tree grows exponentially and thus only (very) small-scale
problems can be solved in reasonable time. The method we propose in the next section learns a good node selection
strategy with the goal of converging to the optimal solution much faster thanK -B&B.

Figure 2: Search tree forK -adaptability branch-and-bound (K = 2).

Master problem. This problem solves theK -adaptability problem(2) with respect to the currently found scenarios
grouped into�Z k � Z for all k 2 K . For a collection�Z1; : : : ; �ZK , the problem formulation is de�ned as follows:

min
� 2 R;x 2X ;y 2Y K

� (4)

s.t. c(z) | x + d(z) | y k � �; 8z 2 �Z k ; 8k 2 K ;

T (z)x + W (z)y k � h (z); 8z 2 �Z k ; 8k 2 K ;

3

Machine Learning forK -adaptability

where� is the current estimate of the objective function value. We denote the optimal solution of(4) by the triplet
(� � ; x � ; y �).

Subproblem. The subproblem aims to �nd a scenarioz for which the current master solution is infeasible. That is, a
scenario is found such that for eachk, at least one of the following is true:

• the current estimate of� � is too low,i.e., c(z) | x + d(z) | y k > � � ;

• at least one of the original constraints is violated,i.e., T (z)x � + W (z)y �
k > h(z).

If no such scenario exists, we de�ne the solution(� � ; x � ; y �) as a robust solution. When such a scenarioz � does exist,
the solution is not robust and the newly-found scenario is assigned to one of the sets�Z1; : : : ; �ZK .

De�nition 2.1. A solution(� � ; x � ; y �
1; : : : ; y �

K) to (4) is robust if

8z 2 Z ; 9k 2 K : T (z)x � + W (z)y �
k � h (z); c(z) | x � + d(z) | y �

k � � � :

Example 2.1. Consider the following master problem

min
�; x ;y

�

s.t. � 2 R; x 2 f 0; 1g2; y 2 f 0; 1g2;

z | x + [3z1; 2z2]y k � �; 8z 2 �Z k ; 8k 2 K ;

y k � 1 � z; 8z 2 �Z k ; 8k 2 K ;
x + y k � 1; 8k 2 K ;

wherez 2 f� 1; 0; 1g2 andK = f 1; 2g. We look at three solutions for different groupings ofz1 = [0 ; 0]| , z2 = [1 ; 1]| ,
and z3 = [1 ; 0]| . One of them is not robust, and the other ones are but have a different objective value due to
the partition. The �rst partition we consider is�Z1 = f z1g; �Z2 = f z2g. The corresponding solution is� � = 2 ,
x � = [1 ; 1]| , y �

1 = [1 ; 1]| , andy �
2 = [0 ; 0]| . This solution is not robust, since forz3 = [1 ; 0]| the following constraint

is violated for allk 2 K :

y 1 � 1 � z3 ()
�
1
1

�
�

�
1
1

�
�

�
1
0

�
; y 2 � 1 � z3 ()

�
0
0

�
�

�
1
1

�
�

�
1
0

�
:

Next, consider�Z1 = f z1; z3g; �Z2 = f z2g, with solution� � = 4 , x � = [0 ; 1]| , y �
1 = [1 ; 1]| , y �

2 = [1 ; 0]| . There is no
z that violates this solution, which makes it robust. The third partition is�Z1 = f z1g; �Z2 = f z2; z3g, with solution
� � = 3 , x � = [1 ; 0]| , y �

1 = [1 ; 1]| , andy �
2 = [0 ; 1]| . This solution is also robust. Their objective values are 3 and 4,

which shows that different partitions can signi�cantly in�uence solution quality.

Mathematically, we formulate the subproblem using the big-M reformulation:

max
�; z ;

� (5)

s.t. � 2 R; z 2 Z ;
 kl 2 f 0; 1g; (k; l) 2 K � L ;
X

l 2L

 kl = 1 ; 8k 2 K ;

� + M (
 k0 � 1) � c(z) | x � + d(z) | y �
k � � � ; 8k 2 K ;

� + M (
 kl � 1) � t l (z) | x � + w l (z) | y �
k � hl (z); 8l 2 L ; 8k 2 K ;

whereM is some big scalar andL is the index set of constraints. When� � 0, we have not found any violating scenario,
and the master solution is robust. Otherwise, the foundz � is added to one of�Z1; : : : ; �ZK . Then, the master problem is
re-solved, so that a new solution (� � , x � , y �), which is guaranteed to be feasible forz � as well, is found.

Throughout the process, the key issue is to which of�Z1; : : : ; �ZK to assignz � . As this cannot be determined in
advance, all options have to be considered. Figure 2 illustrates that from each tree node we createK child nodes, each
corresponding to addingz � to thek-th subset:

� k = f �Z1; : : : ; �Z k [f z � g; : : : ; �ZK g; 8k 2 K ;

where� k is the partition corresponding to thek-th child node of node� . If a node is found such that� � is greater than
or equal to the value of another robust solution, then this branch can be pruned as the objective value of the master
problem cannot improve if more scenarios are added.

4

Machine Learning forK -adaptability

The pseudocode ofK -B&B is given in Algorithm 2 in the Appendix. The tree becomes very deep for 2SRO problems
where many scenarios are needed for a robust solution. Moreover, the tree becomes wider whenK increases. Due
to these issues, solving the problem to optimality becomes computationally intractable in general. Our goal is to
investigate if ML can be used to make informed decisions regarding the assignment of newly foundz � to the discrete
subsets, so that a smaller search tree has to be explored in a shorter time before a high-quality robust solution is found.

3 ML methodology

We propose a method that enhances the node selection strategy of theK -B&B algorithm. It relies on four steps:

1. Decision on what and how we want to predict:Section 3.1.

2. Feature engineering:Section 3.2.

3. Label construction:Section 3.3.

4. Using partialK -B&B trees for training data generation:Section 3.4.

All these steps are combined into theK -B&B-N ODESELECTION algorithm (Section 3.5).

3.1 Learning setup

As there is no clearly well-performing node selection strategy forK -B&B, we cannot simply try to imitate one. Instead,
we investigate what choices a good strategy would make. We will focus on learning how to make informed decisions
about the order of inspecting the children of a given node. The scope of our approach is illustrated with rounded-square
boxes in Figure 3.

Figure 3: The scope of node selection

To rank the child nodes in the order they ideally be explored, one of the ways is to have a certain form of child node
information whether selecting this node isgoodor bad. In other words, how likely is a node to guide us towards a
high-quality robust solution fast. Indeed, this shall be exactly the quantity that we predict with our model. To train such
a model, we will construct a dataset consisting of the following input-output pairs:

• Input: feature vectorF of the decision to insert a scenario to a subset (Section 3.2)

• Output: [0; 1] label that informs how good a given insertion was, based on an ex-post constructed strategy;
`what would have been the best node selection strategy, had we known the entire tree?' (Section 3.3).

We gather this data by creating a proxy for an oracle (see Section 3.4). Once the predictive model is trained, we can
apply it to the search tree where in each iteration we predict for allK child nodes a score� , in the interval[0; 1]. The
child node with the highest score is explored �rst (see Figure 4).

5

Machine Learning forK -adaptability

Figure 4: Node selection with ML predictions. Node selections are decided by the prediction of the function� with input features
F k

n , wheren is the node from which a selection is made andk relates to itsk-th child node.

Formally, the working order of the trained method shall be as follows:

1. Process node.Solve master and subproblem in current noden. If prune conditions hold, then select a new
node. Otherwise, continue to Step 2.

2. Compute features. For each one of theK child nodes, generate a vector of featuresF 1
n ; : : : ; F K

n (see Section
3.2 for details).

3. Predict. For each child nodek, predict the goodness score� (F k
n).

4. Node selection. Select the child node with the highest score.

It is desirable for an ML tool to be applicable to data that is different from the one which it is trained on. In the context
of an ML model constructed to solve optimization problems, this means the potential to use a given trained method on
various optimization problems of various sizes, with different values ofK . Indeed, we shall demonstrate the generality
of our method. First, we note that each parent-child node pair corresponds to one data point, and hence, training on a
problem with a certainK does not prevent us from using it for differentK . Next, we construct our training dataset so
that the model becomes independent of (i) the instance size, and (ii) the type of objective function and constraints. This
will be explained in Section 3.2.

3.2 Feature engineering

If we take a look at a single rounded box in Figure 3, the ML model we are about to train is going to give a goodness
score which will depend on the parent node and the scenario. Therefore, we need to design features which we group
into (i) state features that describe the master problem and the subproblem solved in the parent node, (ii) scenario
features that describe the assignment of a newly-found scenarios to one of the subsets�Z k . In what follows, we present
the feature list:

1. State features.This input describes the parent noden, i.e., the current state of the algorithm. Different states
might bene�t from different strategies. Hence, information on the current node might increase the prediction
performance. This also means that all the child nodes have the same state features:sk

n = sn for all k 2 K . To
scale the features, we always initialize a tree search with a so-calledinitial run. This is a dive with random
child-node selections, where we stop until robustness is reached. The following values are taken from this
initial run:

• � 0: objective of the robust solution found in the initial run.
• � 0: the violation of the root node.
• � 0: depth reached in the initial run.

In the experiments, multiple initial runs are done. The averages of� 0, � 0, and� 0 over the dives are then used
for scaling.

2. Scenario features.Intuitively, scenarios contained in the same group should have similar characteristics.
Therefore, the features for each node are constructed in the following way: each newly found scenarioz � is

6

Machine Learning forK -adaptability

assigned a set of characteristics, or attributes. Based on the attributes of the new scenario, and the attributes
of the scenarios already grouped into theK subsets, we formulate the input of one data point. Some of the
scenario attributes can be directly determined from the master problem. Others are extracted from easily
solvable optimization problem: thedeterministic problemand thestatic problem. The deterministic problem is
a version of the problem wherez � the only scenario. For the static problem, we �rst solve for a singley (no
adaptability) for allz 2 Z . Then, for the obtainedx � and for a givenz � , we solve for the besty .

As our goal is to use the model also on different problems, we engineer the features to keep them independent from
the problem size or type. In Tables 1-2, we give an outline of the two feature types that we construct. For a detailed
description of how they are computed, we refer the reader to Appendix A.

Table 1: State features.� 0 , � 0 , and� 0 are as de�ned above.� p is the objective value of the parent node,� p is the violation of the
parent node, and� is the depth of the current node.

Num. State feature name Description Calculation
1 Objective Relative objective values of this node to the �rst

robust solution
�=� 0

2 Objective difference Difference of objectivew.r.t. the parent node �=� p

3 Violation Relative violation with respect to the �rst viola-
tion found

�=� 0

4 Violation difference Difference of violationw.r.t. the parent node �=� p

5 Depth Relative depth of this node to the depth of the
�st robust solution

�=� 0

Table 2: Attributes assigned to scenarioz � .
Num. Attribute name Description
1 Scenario values Vector of scenario valuesz �

Master
problem

2 Constraint distance A measure for the change of the feasibility re-
gion whenz� is added to a subset. We look at
the distance between the constraints already in
the master problem, and the one to be added.

3 Scenario distance With this attribute we measure how far awayz �

is fromnot being a violating scenario, for each
of thek subsets. This is done by looking at the
constraints in the space ofZ , given the current
solutionsx andy k .

4 Constraint slacks The slack values of the uncertain constraint per
subset decisions.

Deterministic
problem

5 Objective function value The objective function value of the deterministic
problem

6 First-stage decisions First-stage decisions of deterministic problem
7 Second-stage decisions Second-stage decisions of deterministic problem

Static
problem

8 Objective function value The objective function value of the static prob-
lem

9 second-stage decisions Second-stage decisions of static problem

The state features in Table 1 are readily problem-independent. However, this is not the case for the scenario attributes in
Table 2. They are, for example, dependent on the instance size. Moreover, in node selection, we place the new scenario
to a group of other scenarios. Therefore, additional features are constructed to describe the relation of the new scenario
to the current scenarios, computed as theattribute distance:

� k
f =

kak; z �

f � 1
j �Z k j

P
z 2 �Z k

ak; z
f k2

jak; z �

f j
; 8k 2 K ; 8f 2 f 1; : : : ; 9g; (6)

where� k
f is the attribute distance of the new scenarioz � to subset �Z k andak; z

f is the data vector related to the
f -th attribute (of Table 2) for thek-th child node. Then, thescenario featurevector of thek-th child node is

7

Machine Learning forK -adaptability

de�ned asdk
n = [� k

1 ; : : : ; � k
9]| . The dimension ofak; z

f depends onf . For instance, for attribute 1 (scenario values),
dim(a1

z) = dim(z). For attribute 4 (constraint slacks), the dimension depends on the number of uncertain constraints
in the problem. By using(6), the features per data point are independent of the instance size and the problem-speci�c
properties. Then, the input of the ML model for thek-th child of noden is given byF k

n = [sn dk
n]| .

In Figure 5 we outline the feature generation procedure. Steps 2 and 5 indicate how new attributes need to be generated
for every child node. In practice many attributes are the same for all subsets, and the attributes that do differ are the
master problem-based ones, which are easily computed.

Figure 5: Example of a feature generation procedure for noden and its two child nodes.

3.3 Label construction

To learn how to assign a new scenario to one of the subsets�Z k , we need another piece of the input-output pairs in our
database – labels that would indicate how good, ex post, it was to perform a given assignment,i.e., how likely a given
assignment is to lead the search strategy towards agood solution. We shall assume that given aK -B&B tree, a good
solution is a robust solution with objective that belongs to the best� % of the found robust solutions. We will now
introduce a notion of scenario-to-set assignments and illustrate a method of constructing labelsq.

We de�ne p� – the probability of node� leading to a good robust solution. If this node is selected, one of a �nite,
possibly large, number ofleaves(i.e., terminal nodes) is reached with depth-�rst search. Then, takingg� to be the
number of good solutions andM � as the number of leaves under node� , we de�nep� = g� =M � as the fraction of
leaves with a good robust solution. We de�ne a node� as good if the probabilityp� of it leading to a good robust
solution is higher than some threshold� . This is computed by the quality valueq� = 1f p� � � g.

Example 3.1. Consider the tree in Figure 6. For three nodes in the search tree, its subtree (consisting of all its
successors) and leaves (coloured nodes) are shown. Red coloured nodes represent bad and green nodes represent good
robust solutions. Then, if we pick� = 1

5 as threshold, the corresponding success probabilitiesp� and the quality values
of the three nodes are:

p1 =
1
4

; p2 = 0 ; p3 =
2
5

; q1 = 1f p1 � 1
5 g = 1 ; q2 = 1f p2 � 1

5 g = 0 ; q3 = 1f p3 � 1
5 g = 1 :

The �rst and third the nodes would have been good node selections, whereas the second selection would have been a
bad one.

In practice, we do not know for a node� how many underlying leaves are good and bad. This is the reason that in this
method we will predictq� with a model� . We will also call this model the strategy model (or function) since it guides
us in making node selections.

3.4 Training data generation

Our goal is to learn a supervised ML model� (F�) = q̂� , where� is the strategy function,F� the input features, and̂q�
the prediction of the quality of moving to node� . To train this model, we �rst need to generate training data. Given a
single tree, the dif�culty of generating data does not lie in the input, but in the output: an expert is needed to determine
the correct values of̂q� for its nodes. Consider the following; if nodes of the entire tree areprocessed(i.e., solving the
master problem and the subproblem), we could easily �nd the paths from the root to good solutions. Then, all the nodes

8

Machine Learning forK -adaptability

Figure 6: Example of a tree where three nodes are considered. The coloured nodes are leaves; green and red nodes are good and bad
robust solutions, respectively.

in these paths would get the valuesq̂� = 1 , and all otherŝq� = 0 . Or equivalently, the success probabilities would be
set top� > � . Since the trees grow exponentially, this approach is not practical.

As already mentioned in the introduction, a popular method for exploring intractable decision trees is Monte Carlo tree
search (MCTS) [Browne et al., 2012]. By randomly running deep in the tree, we can gather information on the search
space. In our method, we use the idea of random runs to mimic an expert, and hence, label the data points. Generating
training data is done as follows (see Figure 7):

1. Get instance. Generate an instance of a 2SRO problem.

2. Initial run. One (or multiple) dives are executed to gather feature information.

3. Initialize search tree. Process all nodes up to a predetermined levelL of the tree. Generate features for each
of the explored nodes.

4. Downward pass. Per node� 2 f 1; : : : ; NL g of theL-th layer (N l is the number of nodes of thel-th layer),
perform dives for a total ofR times.

5. Probability of bottom nodes. Set probabilitypL;� of each node� 2 f 1; : : : ; NL g in layerL aspL;� = g�
R

whereg� 2 f 0; : : : ; Rg is the number of good solutions from the samples of the� -th node in layerL .

6. Upward pass. Propagate the probabilitiespl;� upwards through the tree, for all nodes� 2 f 1; : : : ; N l g, for
all levelsl 2 f L � 1; : : : ; 2g, as follows:

pl;� = P(at least one child node is successful)
= 1 � P(no successful child nodes)

= 1 �
Y

k2K

(1 � pk
l;�);

wherepk
l;� is thek-th child of node� of layer l (while this child node is in the (l + 1)-th level). Note that

pk
l;� = pl +1 ;� 0 for some� 2 f 1; : : : ; N l g and� 0 2 f 1; : : : ; N l +1 g.

7. Label nodes: Determine the label̂ql;� for nodes� 2 f 1; : : : ; N l g for levelsl 2 f 2; : : : ; Lg.

The advantage of this structure is that both bad and good decisions are well represented in the dataset. However, it only
consists of input-output pairs of the topL levels. This is not necessarily a disadvantage as good decisions at start can be
expected to be more important. The above generation method is applied per instance, thus it can be parallelized, like
Step 4.

9

Machine Learning forK -adaptability

Figure 7: Downward and upward pass for generating training data. The blue layer represents theL -th layer in the tree from which
random runs are made.

3.5 Complete node selection algorithm

We now combine all the steps above into one algorithm which is, essentially, a variant ofK -B&B enhanced with: (i) node
selection, (ii) feature engineering, and (iii) training data generation (see Algorithm 1). OurK -B&B-N ODESELECTION
algorithm has two preprocessing steps:

1. STRATEGYMODEL (Procedure 3 in the Appendix): Generate the data applying 1-4, and train the ML model.

2. INITIAL RUN (Procedure 4 in the Appendix): Start with a random dive through the tree to obtain� 0; � 0, and
� 0 used to scale the features (see Table 1).

4 Experiments

We now investigate ifit is possible to learn a node selection strategy that generalizes (i) to other problem sizes, (ii)
to different values ofK , and (iii) to various problems.We answer this question by a detailed study of two problems:
capital budgeting (with loans) and shortest path [Subramanyam et al., 2020], whose formulations are given in Appendix
C. This section is set up as follows: First, the effectiveness of the originalK -B&B is tested on the problems. Then, we
compareK -B&B to K -B&B-N ODESELECTION. We shall observe that the results obtained with our approach are very
promising.

For solving the MILPs, Gurobi 9.1.1 [Gurobi Optimization, 2020] is used. All computations of generating training data,
K -B&B, andK -B&B-N ODESELECTION are performed on an Intel Xeon Gold 6130 CPU @ 2.1 GHz with 96 GB
RAM. Training of the ML model is executed on an Intel Core i7-10610U CPU @ 1.8 GHz with 16 GB RAM. Our
implementation along with the scripts to reproduce our results are availabel online1

4.1 Performance ofK -B&B

In our experiments, we investigate the potential of improving the node selection strategy with ML. For that reason, it is
important to identify problems on which such an improvement matters,i.e., where different partitions give varying
outcomes and are nontrivial. To identify such problems, we runK -B&B on several problems. Compared to the
algorithm in Subramanyam et al. [2020], we made some minor changes inK -B&B:

• Instead of breadth-�rst search, depth-�rst dives are performed with random node selection.

• In the starting node selection step (Step 2, Algorithm 2), a random node is taken fromN instead of the �rst
one.

The quantity we are interested in is the relative change in the objective function value (OFV) – the OFV of the �rst
robust solution divided by the best one after 30 minutes. The higher the value, the more potential for a smart node
selection strategy.

1The Python code can be found athttps://github.com/estherjulien/KAdaptNS .

10

Machine Learning forK -adaptability

Algorithm 1: K -B&B-N ODESELECTION

Input : Test instanceP test (N test), train instancesP train
1 (N train); : : : ; P train

I (N train)
number of partitions for trainingK train testingK test , level for trainingL train and testing
L test , quality threshold� , number of random dives per nodeR

Output : Objective value� , �rst-stage decisionsx , second-stage decisionsy = f y 1 ; : : : ; y K g,
subsets with scenarios�Z k for all k 2 f 1; : : : ; K g

Initialization : Incumbent partition:� i := f �Z 1 ; : : : ; �Z K g, where �Z k = ; for all k 2 K ,
set containing all node partitions yet to explore:N := f � i g,
initial incumbent solution:(� i ; x i ; y i) := (1 ; ; ; ;)

// Preprocessing
1 model STRATEGYMODEL(P train

1 (N train); : : : ; P train
I (N train); K train ; L train ; �; R) // using Procedure 3

2 scaling info INITIAL RUN(P test (N test); K test) // using Procedure 4
// Tree search

3 while N not emptydo
4 if no solution yet or previous node prunedthen
5 Select a random node with partition� = f �Z 1 ; : : : ; �Z K g from N , thenN N n f � g
6 else
7 � := f �Z 1 ; : : : ; �Z k � [f z � g; : : : ; �Z K g
8 end
9 (� � ; x � ; y �) master problem(�)

10 if � � > � i then
11 Prune tree since current objective is worse than best solution found, continue to line 4.
12 end
13 (z � ; � �) subproblem(� � ; x � ; y �)
14 if � � > 0 then
15 Solution not robust. CreateK new branches.
16 if current level is more thanL test then
17 k � random uniform sample([1; K])
18 else
19 Create feature vectors forK child nodes.
20 (D 1 ; : : : ; D K) generate features(scaling info; �; �) // using steps of Section 3.2
21 k � predict node qualities(D 1 ; : : : ; D K ; model)
22 end
23 MakeK new branches, of which thek � -th is selected.
24 for k 2 f 1; : : : ; K g n f k � g do
25 � k := f �Z 1 ; : : : ; �Z k [f z � g; : : : ; �Z K g
26 N N [f � k g
27 end
28 else
29 Current solution robust, prune tree.
30 (� i ; x i ; y i ; � i) (� � ; x � ; y � ; �)
31 end
32 end
33 return (� i ; x i ; y i ; � i)

First, we consider the capital budgeting and the shortest path problems, only mentioned now and formally described
later, for which the results are in Figure 8. We observed that the objective function values of the capital budgeting
instances are changing more than those of shortest path (in which nodes of a graph are located on a 2D plane). This is
why we implemented another instance type for shortest path: graph with nodes located on a 3D sphere (See Appendix
C.2). The OFV differences for these instances are still smaller than those of capital budgeting, but more than for the
`normal' type. Therefore, further experiments on shortest path were conducted with the sphere instances alone.

Another problem on which we ranK -B&B was the knapsack problem parameterized by the combination of the capacity
(c), the number of items (Nks), and the maximum deviation of the pro�t of items (i.e., the uncertainty parameter
).
For this problem, we considered instances of a similar size as the earlier problems, �xingK = 4 andNks = 100, and
testedK -B&B on 16 instances for all combinations ofc 2 f 0:05; 0:15; 0:35; 0:5g and
 2 f 0:05; 0:15; 0:35; 0:5g. The
OFV differences (in percentages) are given in Table 3, where it is visible that different partitions barely play a role. Any
random robust solution seems to be performing well. Thus, node selection will most likely not enhanceK -B&B for
knapsack and will therefore not be tested.

11

Machine Learning forK -adaptability

(a) Capital budgeting (b) Shortest path (normal) (c) Shortest path (sphere)

Figure 8: Objective function value (OFV) difference (in%) for capital budgeting and shortest path with `normal' and `sphere'
instances, within 30 minutes usingK -B&B. For each problem type, experiments were done for 100 instances perK 2 f 2; : : : ; 6g
and instance size. The75%con�dence interval (CI) is also given as shaded strips along the curves.

Table 3: The OFV difference (in%) of the knapsack problem, within 30 minutes, for different values of the capacity (c) and
uncertainty (
) parameters.K = 4 andN = 100 are �xed.

c

0.05 0.15 0.35 0.5

0.05 0.002 0.086 0.000 0.000
0.15 0.002 0.011 0.040 0.000
0.35 0.001 0.001 0.019 0.038
0.5 0.001 0.003 0.012 0.027

Solving problem instances withK -B&B takes a long time, where we have to think in the range of multiple hours until
optimality is proven. This also holds for small size instances. After having studied the convergence over runtime, we
have �xed the time limit to 30 minutes for all the problem instances. For capital budgeting with(N; K) = (10 ; 2) all
instances could be solved within 30 minutes. For the same instance size andK = 3 , 25out of 100are solved, only one
for K = 4 , and none for largerK . For the 3D shortest path problem with the smallest instance size andK = 2 , only
six instances are solved.

4.2 Experimental setupK -B&B-N ODESELECTION

In our experiments, we also investigate what would be a good node selection strategy inK -B&B that would perform
well after it is trained on a selection of problems and then applied to other problems. Naturally, we are interested in
generalization of trained tools to different instance sizes,K , and problem types. To this end, we have performed an
ablation-study described in Table 4, where each row informs about the similarity of the testing problem instances,
compared to the training ones.

Table 4: Different types of experiments (EXP), where the instance sizeN , K , and the problem itself can be different for training and
testing.

Type Instance sizeN K Problem
EXP1 Same Same Same
EXP2 Same Different Same
EXP3 Different Same Same
EXP4 Different Different Same
EXP5 Different Same Different
EXP6 Different Different Different

The problems we study are the capital budgeting problem with loans (See C.1) and the shortest path problem on a
sphere (See C.2). We now describe the design choices we made regarding the ML model and data generation. As our
focus lies in how ML is used for optimization and not in differences between ML models, we select a frequently-used
model: random forest ofscikit-learn [Pedregosa et al., 2011] with default settings. We note that the training times
do not exceed a couple of minutes for different data sets.

As for the data generation process, it is governed bySTRATEGYMODEL (Procedure 3), driven by the following
parameters:I (number of training instances),L train (depth level used in training data), andR (number of dives per
node). In these experiments, we instead made them depend onT – the total duration in hours, and� – the time per
training instance in minutes. First, we setI = 60T=�. Selection of the rightL train value is more challenging since for

12

Machine Learning forK -adaptability

some problem instances the master problem takes a lot more time or deep trees are needed. Therefore, to get suf�ciently
many random dives for each node inL train within the time limit � , we makeL train depend negatively on the total
duration of the initial run (INITIAL RUN, Procedure 4). This means that if a random dive takes a long time, the number
of starting nodes should be lower, and therefore, the value ofL train should also decrease. Finally, the number of dives
per node (R) depends on how many nodes we have in levelL train and the time we have for the instance (�).

First, the experiments of EXP1-EXP4 are run on the capital budgeting and shortest path problem. Then, the experiments
where the training and testing problems are mixed, are conducted (EXP5 and EXP6). We only discuss a representative
selection of the results in the main body, referring the reader to the Appendix for a complete overview. Finally, we
discuss the feature importance scores we obtained with our random forests.

4.3 Capital budgeting

The capital budgeting problem is a 2SRO problem where investments in a total ofNcb projects can be made in two
time periods. In the �rst period, the cost and revenue of these projects are uncertain. In the second period, these values
are known but an extra penalty needs to be paid for postponement. The MILP formulation of capital budgeting has
uncertain objective function, �xed number of uncertain constraint, and the dimension ofZ is �xed to 4 for all instance
sizes. For the full description, see Section C.1. Recall thatK -B&B-N ODESELECTION takes more parameters than the
ones being tested in the ablation study:L test (level up to where node selection is performed),� (node quality threshold),
andT and� for generating training data. These parameters will be tuned in the �rst part of the experiments.

Parameter tuning (with EXP1). For this type of experiments, we use the sameK andN for testing and training,
applied to the smallest instance size:Ncb = 10, but for allK 2 f 2; 3; 4; 5; 6g. For different values ofK , we noticed
that different hyperparameters for generating training data were performing well. In Appendix D.1, we tuned the
parameter� (minutes spend per training instance) based on the number of data points obtained in total, together with
some other information. The testing accuracy scores for different data sets we trained on, range between 0.92-0.99 (see
Table 6 in the Appendix).

We next tune the values ofL test (level up to which node selection is performed) and� (quality threshold) using the
setsL test 2 f 5; 10; 20; 30; 40; 50g and� 2 f 0:05; 0:1; 0:2; 0:3; 0:4g. Since there are 30 combinations perK value, we
only consideredK = 6 . The results are shown in Figure 9, where using a low value for� and highL test gives the
best results for both values ofK . In fact, when a noden has success probabilitypn larger than zero, this is already
considered a good quality node. For further experiments of capital budgeting, we �x� = 0 :05. Since high values of
L test outperform lower ones, we also consider the possibility of applying the strategy always (L test = 1), with �xed
� = 0 :05. This option is analyzed in Appendix D.1. We noticed that choosingL test = 1 performs well forK = 6 but
for lower values ofK , choosingL test = 40 gives even better solutions. Therefore, we continue withL test = 40.

Figure 9: Results ofK -B&B with random dives andK -B&B-N ODESELECTION with combinations ofK , L test and� . The plots
show the average relative objective value over runtime of 100 instances for the capital budgeting problem, forN = 10 .

Another important parameter is the number of hours spend on generating training data (T). In Figure 10, results are
shown forT 2 f 1; 2; 5; 10g andK 2 f 3; 4; 5; 6g. Note that only forK = 3 higher values ofT result in a better
performance ofK -B&B-N ODESELECTION. For the other values ofK the performance is similar, or even worse, for
higher values ofT compared to lower ones. For further experiments, we shall useT = 2 .

13

Machine Learning forK -adaptability

Figure 10: Results ofK -B&B with random dives andK -B&B-N ODESELECTION with combinations ofK andT . The plots show
the average objective over runtime of 100 instances for the capital budgeting problem, forN = 10 .

EXP1 and EXP2 results. For EXP1, the results forK train = K test 2 f 3; 4; 5g are shown in Figure 11 in the
Appendix. As in Figure 8, the shaded strips around the solid curves show the con�dence interval. We can see that
K -B&B-N ODESELECTION outperformsK -B&B for all K . Moreover, the convergence is steeper: good solutions
are found earlier. ForK 2 f 4; 5g the �nal solution is also better when node selection is guided by ML predictions.
Then for EXP2, where we also apply ML models that are trained withK train 6= K test , we see the performance of
K -B&B-N ODESELECTION improving whenK train increases. This indicates that data obtained with higher values
of K train are more informative than those with lower values. See Figure 12 for an illustration withK test = 5 and
K train 2 f 4; 5; 6g.

Figure 11: EXP1 results forK train = K test 2 f 3; 4; 5g

Figure 12: EXP2 results forK test = 5 andK train 2 f 4; 5; 6g.

EXP3 and EXP4 results.In Figure 13, we depict the results for experiments with sameK but different instance sizes.
There,K -B&B-N ODESELECTION performs better, but the con�dence interval ofN test = 30 is larger than that of
N test = 10. This suggests that testing on higher values ofN gives rise to a higher risk. Testing on higher instance
sizes for different values ofK (Figure 14) has a similar effect as before: higher values ofK train result in a better
performance, although marginally for some parameter combinations.

4.4 Shortest path on a sphere

The shortest path problem can be described as a 2SRO problem where we make the planning of a route from source to
target, for which the lengths of theNsp arcs are uncertain. This problem only has second-stage decisions and uncertain
objective. The dimension of the uncertainty set grows with the number of arcs in the graph. For the full description, see
Section C.2. Since there is only a second-stage, some attributes disappear for this problem: `Deterministic �rst-stage'

14

	Introduction
	Preliminaries
	ML methodology
	Learning setup
	Feature engineering
	Label construction
	Training data generation
	Complete node selection algorithm

	Experiments
	Performance of K-B&B
	Experimental setup K-B&B-NodeSelection
	Capital budgeting
	Shortest path on a sphere
	Training and testing on different problems
	Feature importances

	Conclusion and future work
	Attribute descriptions
	Omitted pseudocodes
	Problem formulations
	Capital budgeting with loans
	Shortest path
	Knapsack

	Parameter tuning
	Capital Budgeting
	Shortest path on a sphere

	Results
	Capital budgeting with loans
	Shortest path
	Mixed problems

