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We study multistage distributionally robust linear optimization, where the uncertainty set is a ball of distributions
defined through the nested distance (Pflug and Pichler 2012) centered at a scenario tree. This choice of uncertainty
set, as opposed to alternatives like the Wasserstein distance between stochastic processes, takes into account
information evolution, making it hedge against a plausible family of data processes. Our contributions are two-fold.
First, we develop a recursive reformulation to evaluate the worst-case risk of a given policy and related it to the
conditional risk mapping with single-period Wasserstein distance. Second, under the stagewise independence
assumption, we derive dynamic programming reformulations for finding the optimal robust policy and identify
tractable cases when the uncertainty appears in the objective or the right-hand side.
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1. Introduction

Distributionally Robust Optimization (DRO) is an emerging paradigm for data-driven decision-making,
offering robust solutions that account for data uncertainty. For static problems, much significant
progress has been made recently in terms of computation (Delage and Ye 2010, Goh and Sim 2010,
Ben-Tal et al. 2013, Wiesemann et al. 2014, Mohajerin Esfahani and Kuhn 2018), regularization (Lam
2016, Duchi and Namkoong 2019, Shafieezadeh-Abadeh et al. 2019, Gao et al. 2022), and statistical
guarantees (Lam 2019, Duchi et al. 2021, Blanchet et al. 2019, Gao 2022), etc. However, the landscape
for sequential problems remains challenging, with results being both limited and less satisfactory.

In multistage problems, data processes are often depicted using scenario trees, which are constructed
based on historical data. Approaches for constructing scenario trees include Monte Carlo sampling
techniques such as conditional sampling (Shapiro 2003a,b), which encompasses stagewise independent
sampling as a significant case, as well as scenario generation approaches (Dupačová et al. 2000,
Høyland and Wallace 2001, Dupačová et al. 2003, Rom, Henrion and Römisch 2022). The scenario trees
provide a discrete approximation of the true underlying stochastic process and are used to formulate
decision-making problems along the sample paths within the tree. However, it is crucial to recognize
that the policies developed based on these scenario trees may not be well-defined for unseen sample
paths. In many cases, heuristic policies do not come with optimality guarantees (Ben-Tal et al. 2009,
Note and Remarks 14.1). Consequently, when dealing with multistage problems, data scarcity becomes
a significant challenge (Shapiro and Nemirovski 2005), highlighting the need for a distributionally
robust formulation that can generalize to unseen scenarios. The challenges in multistage DRO stem
from both modeling and computational aspects.

1.1. Modeling Challenges

The literature has yet to establish a consensus regarding the formulation of multistage DRO problems.
Seemingly natural extensions of the single-stage formulation can result in distinct frameworks, leading
to ongoing discussions and research in this area (Pichler and Shapiro 2021, Shapiro and Pichler 2022).
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One straightforward formulation, referred to as themultistage-static formulation, is a direct extention
of the standard single-stage formulation:

inf
x∈X

sup
ℙ∈M

E/ [) ]∼ℙ

[
)∑
C=1

2C (xC , / C )
]
. (1)

Here 2C (xC , / C ) denotes the per-stage cost associated with a )-stage sample path / [) ] :=
(b1, /2, . . . , /) ) ∈ Ξ1 × · · · ×Ξ) under a policy x = (G1, x2, . . . , x) )1. The formulation hedges against an
uncertainty setM of ) -stage stochastic processes and optimizes the worst-case expected cumulative
cost over the set X of policies satisfying some feasibility and non-anticipativity constraints G1 ∈ X1,
xC ∈ XC (xC−1), C = 2, . . . ,) . Typically, the uncertainty set is constructed based on summary statistics
of the stochastic process, such as support and moment information (Bertsimas et al. 2019, Xin and
Goldberg 2022), or based on statistical distance such as relative entropy (Hansen and Sargent 2001),
Wasserstein distance (Bertsimas et al. 2022, Sturt 2023), and nested distance (Analui and Pflug 2014,
Glanzer et al. 2019).
The multistage-static formulation (1) is conceptually simple and offers a clear interpretation as a

method to mitigate uncertainty in the data process. However, the coupling of decisions and uncertainties
over time in the multistage-static objective is not explicitly adjusted for dynamics of the decision
process (Pichler and Shapiro 2021), making it challenging to use dynamic programming recursions
and potentially raising concerns about time inconsistency (Iancu et al. 2015), a concept criticized in
decision theory for its violation of rational behavior.
An alternative formulation, referred to as the multistage-dynamic formulation, has been devised to

facilitate dynamic programming recursion and is routinely employed in computational studies. In this
formulation, the cost-to-go function takes on a recursive form

&C (xC−1, / [C ]) = inf
xC ∈XC (xC−1)

{
2C (xC , / C ) + sup

ℙC+1∈MC+1

EℙC+1

[
&C+1(xC , / [C+1])

]}
, C ∈ [)], (2)

and &) +1(·, ·) ≡ 0. Here the uncertainty setMC+1 can be defined through composite distributionally
robust functionals (Shapiro 2016, Pichler and Shapiro 2021), as well as conditional distributionally robust
functionals (Shapiro and Pichler 2022) (also known as conditional risk mappings (Ruszczyński and
Shapiro 2006)) based on Average Value-at-Risk (AVaR), entropic risk measure q-divergence (Klabjan
et al. 2013, Park and Bayraksan 2020, Rahimian et al. 2021), and Wasserstein distance (Shapiro and
Pichler 2022). Of particular interest is the stagewise independent setting where these two functionals
are equivalent. Common choices of MC+1 include moment-based sets (Shapiro and Xin 2020, Xin
and Goldberg 2021, Yu and Shen 2020) and sets based on statistical distances such as j2-divergence
(Philpott et al. 2018), !∞-norm (Huang et al. 2017) and Wasserstein distance (Duque and Morton 2020,
Zhang and Sun 2020, 2022).
In comparison to the multistage-static formulation (1), the multistage-dynamic formulation (2) is

generally more computationally friendly. Nevertheless, it should be noted that if not appropriately
specified, it can be overly conservative and lack interpretability. For instance, the composition of
single-period AVaR, also known as iterated conditional tail expectation, takes tail risks of quantities
that are already tail risks. This multi-period risk measure does not offer the same straightforward
interpretation as AVaR (Shapiro 2012) and can potentially result in overly conservative risk assessments
(Iancu et al. 2015). Another example is seen in the formulation with composite distributionally robust
functionals, where the worst-case ) -stage distribution depends on historical realizations and thus can
vary among realizations at each stage. This raises concerns about the pessimism of the resulting policy.

In light of the discussion above, the following question is natural and important, yet remains largely
open:

1 We use bold font for random variables and regular font for deterministic values like constants or elements in the sample
space. In line with the convention in stochastic programming literature, we consider the first-stage data /1 as deterministic.
Therefore, we do not differentiate between G1 and x1, or between b1 and /1. We simply set Ξ1 as b1.
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Q1 : Is there a modeling choice which can be easily interpreted from the viewpoint of the multistage-
static formulation (1), while simultaneously allowing for an equivalent decomposition into the
multistage-dynamic formulation (2) with interpretable single-period uncertainty sets?

Indeed, if the multistage-static formulation (1) can be equivalently represented in a multistage-dynamic
form (2), it opens up the possibility of solving (1) through dynamic programming. This would result in
a time-consistent robust optimal policy. Conversely, if the multistage-dynamic formulation (2) can be
equivalently transformed into a multistage-static form (1) with a natural choice ofM, it would enhance
the interpretability of the composite risk measure. Additionally, this transformation could help address
the issue of conservativeness by allowing us to work with the more interpretable multistage-static
counterpart.
We will affirmatively address Question Q1 by showing that the multistage-static formulation (1) with

nested distance is indeed equivalent to the multistage-dynamic formulation (2) with single-period
Wasserstein distance. Moreover, the nested distance uncertainty set offers several appealing advantages
from a modeling standpoint: (i) It fully utilizes the entire distributional information, distinguishing
it from moment-based and risk-measure-based sets that rely only on partial data information like
moments and tails. (ii) It provides effective protection against data perturbations that extend beyond
the support of the empirical scenario tree. This distinguishes it from divergence-based sets, which
impose strict restrictions on the support of relevant distributions (Bayraksan and Love 2015). (iii)
It defines a plausible family of stochastic processes, allowing for non-anticipative perturbations of
scenario paths. This stands in contrast to the Wasserstein distance, which permits perturbations
dependent on future information. Further elaboration on this topic can be found in Section 2.2.

1.2. Computational Challenge

Multistage stochastic programming, even without distributional robustness, is known to be com-
putationally challenging due to the curse of horizon (Shapiro and Nemirovski 2005). Nevertheless,
significant progress has been made in recent years for solving linear and convex scenario-based
multistage stochastic programming problems by employing cutting-plane approximations of the
cost-to-go (value) functions derived from dynamic programming equations (Lan and Shapiro 2023),
such as Stochastic Dual Dynamic Programming (SDDP) (Birge 1985, Pereira and Pinto 1991). Since
multistage DRO with nested distance reduces to its non-robust counterpart when the radius becomes
zero, we hope to leverage these advancements to enhance the computational tractability of the robust
counterpart.
The computational challenges in solving (1) with nested distance stem from both the inner robust

risk evaluation and the outer policy optimization.
First, the inner robust risk evaluation involves an infinite dimensional optimization over probability

distributions. To make this problem more tractable, a common approach is to reformulate it into a
finite-dimensional problem using duality and conditioning. However, the nested distance uncertainty
set becomes non-convex as soon as ) ≥ 3 (Pflug and Pichler 2014, Section 7.3). The current methodology,
as detailed in Pflug and Pichler (2014, Section 7.3.3), exploits a successive programming strategy that
iteratively discretizes stochastic processes. Unfortunately, this approach encounters scalability issues,
even in stagewise independent settings.
Second, the outer policy optimization involves an infinite-dimensional optimization over policies.

Unlike its non-robust scenario approximation counterpart, which only specify policy values on a finite
number of sample paths, solving (1) entails decisions at each stage that are functions of all possible
realizations of distributions in the uncertainty set. Moreover, previous research (Hanasusanto and Kuhn
2018, Xie 2020) has shown that obtaining the first-stage deterministic decision is generally NP-hard, even
in the case of ) = 2 where (1) with nested distance reduces to a two-stage Wasserstein DRO problem.
On the other hand, there have been positive tractability results in specific scenarios of two-stage
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Wasserstein DRO. Hanasusanto and Kuhn (2018) provided co-positive program reformulations for
2-Wasserstein DRO with complete recourse and linear program reformulations for 1-Wasserstein DRO
with sufficiently expensive recourse. Xie (2020) provides sufficient conditions for ∞-Wasserstein DRO
under which the problem admits tractable convex program reformulations.
Given these advances, we would like to answer the following question:

Q2 : Can we identify conditions under which the formulation (1) with nested distance uncertainty set
become computationally tractable, at least as tractable as its non-robust counterpart?

1.3. Our Contributions

We study data-driven multistage distributionally robust linear program (1), where the uncertainty
set M consists of all stochastic processes within certain nested distance from a scenario tree. Our
contributions are as follows.
(I) We derive dynamic programming reformulations for (1), providing a positive answer to Question

Q1.
In Section 3.1, we develop dynamic programming reformulation to evaluate the worst-case

risk for a fixed policy, in spite of the non-convexity of the nested distance ball. For ∞-nested
distance, the inner maximization in (1) can be equivalently decomposed into dynamic programs
defined via single-period ∞-Wasserstein balls centered at the nominal conditional distribution. For
?-nested distance (? ∈ [1,∞)), a soft-penalty counterpart of the inner maximization in (1) can be
equivalently decomposed into dynamic programs defined via single-period ?-Wasserstein penalty
centered at the nominal conditional distribution.
Furthermore, in Section 3.2 we demonstrate that, under the stagewise independence assumption,

the multistage-static formulation (1) with nested distance is equivalent to the multistage-dynamic
formulation (2) with single-period Wasserstein distance. To the best of our knowledge, this is
the first non-degenerate uncertainty set that reconciles both static and dynamic formulations for
generic multistage linear programs.

(II) We address Question Q2 by deriving computationally tractable dynamic reformulations under
objective / right-hand side uncertainty in Section 4.
For objective uncertainty (Section 4.1), the reformulation can be interpreted as norm-regularized

scenario approximation problem. It penalizes large norms on the decision variables at every stage,
either with a hard constraint (? = 1) or a soft penalty ? ∈ (1,∞].
For right-hand side uncertainty (Section 4.2), the reformulation encourages large norms on the

dual variables at every stage. This leads to a solution that regularizes extreme perturbations of
the right-hand side when ? =∞, and a solution that coincides with the non-robust counterpart
formulation when ? = 1. These results extend the insights of static/two-stage Wasserstein DRO
(Mohajerin Esfahani and Kuhn 2018, Shafieezadeh-Abadeh et al. 2019, Gao et al. 2022, Hanasusanto
and Kuhn 2018, Xie 2020, Duque et al. 2022) to the multistage setting in a non-trivial manner.
Furthermore, the optimal robust policy is well-defined for every possible sample path of the

distributions in the uncertainty set, extending beyond those included in the nominal scenario tree
(Corollary 1). In addition, it may not be unique (Proposition 1).

(III) We apply our results to a portfolio selection problem and develop an SDDP algorithm to solve it.
The out-of-sample performance of the optimal robust policy, when compared with the non-robust
policy, demonstrates the superiority of the robust approach.

1.4. Related Literature

The closest work to ours comes from the monograph Pflug and Pichler (2014, Section 7.3) (see also
Analui and Pflug (2014)). Our results differ from theirs in several major ways, which also considers
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multistage distributionally robust optimization with nested distance. First, their solution approach is
based on successive programming that are not scalable and they do not pursue a dynamic programing
equivalent reformulation; whereas we develop a general minimax nested dynamic programming
formulation and identify computationally tractable cases. Second, they assume the space of sample
paths is finite due to computational reasons; whereas we allow it to be a general space while still
maintain computational efficiency. Third, they do not discuss the time consistency of the formulation
(1); whereas our result clarifies the issue of time consistency as well as statistical consistency. Fourth,
both their work and part of our analysis entails a minimax theorem that is proved based on certain
convex relaxation whose (approximately) worst-case distribution is contained in the original nested
distance ball, however, our convex relaxation is based on relaxing the non-anticipativity constraints,
which is different from their construction of convex hull based on compounding finite trees. Below, we
review some relevant literature other than those above-mentioned works.
On nested distance. Nested distance was first introduced and studied in Pflug (2010), Pflug and

Pichler (2012) in stochastic programming literature. Since then, it has been applied to scenario
generation/reduction and approximation of multistage stochastic programming (Pflug and Pichler
2015, Maggioni and Pflug 2016, Kovacevic and Pichler 2015, Chen and Yan 2018, Horejšová et al.
2020). Its statistical properties (Pflug and Pichler 2016, Glanzer et al. 2019, Veraguas et al. 2020) and
computational properties (Cabral and da Costa 2017, Pichler and Weinhardt 2022) have also been
investigated thoroughly. The idea of imposing non-anticipativity constraints on the transport plan can
be traced back to the Yamada-Watanabe criterion for stochastic differential equations (Yamada and
Watanabe 1971)as well as the causal transportation in continuous time (Lassalle 2018) and in discrete
time (Backhoff et al. 2017). In the optimal transport and mathematical finance literature, the nested
distance is also called bi-causal transport distance or adapted Wasserstein distance (Backhoff-Veraguas
et al. 2020, Backhoff et al. 2022). Incorporating nested distance in multistage distributionally robust
optimization was first considered in Analui and Pflug (2014), Pflug and Pichler (2014) and then in
Glanzer et al. (2019) for a pricing problem. Unlike the algorithmic approach in these works, our
algorithm is more computationally friendly, and enjoy similar tractability as the SAA counterpart. A
recent paper (Yang et al. 2022) studies DRO with causal transport distance, which can be viewed as a
convex relaxation of our problem in three stages.
On time consistency. Various concepts of time consistency have been discussed in economics literature

(Strotz 1955, Hansen and Sargent 2001, Epstein and Schneider 2003, Etner et al. 2012), in mathematical
finance literature (Wang 1999, Föllmer and Schied 2002, Artzner et al. 2007, Roorda and Schumacher
2007, Cheridito and Kupper 2009) and in robust control literature (Iyengar 2005, Nilim and El Ghaoui
2005, Wiesemann et al. 2013). Our notion of time consistency is more aligned with the stochastic
programming literature (Ruszczyński and Shapiro 2006, Shapiro 2012, 2016, Shapiro and Xin 2020,
Xin and Goldberg 2021, Pichler et al. 2021). In general, the multistage-static formulation (1) does not
have a time-consistent optimal policy due to a lack of dynamic programming representation (Pichler
and Shapiro 2021). In fact, the only known examples of M that lead to a tractable dynamic nested
risk measure representation (2) are two degenerate ones (Shapiro et al. 2021, Remark 33): singleton
(corresponding to the conditional expectation or risk neutral) and entirety (corresponding to max-risk
measures, or most risky). For certain classes of problems in inventory control, it has been shown that
the multistage-static formulation (1) with some moment-based uncertainty sets has a time-consistent
optimal policy under certain conditions (Shapiro 2012, Xin and Goldberg 2021, 2022). In contrast, our
result on time consistency holds for generic multistage linear programs.
On computation of multistage DRO with transport distance based sets. There are several computational

works directly solving the multistage-dynamic formulation (2) instead of working with (1). For
formulation (2) with 1-Wasserstein set, Duque and Morton (2020) proposed a stochastic dual dynamic
programming algorithm which restricts the support of scenarios on a pre-specified finite set including
the empirical support and additional “tail” scenarios. Yet, it is not entirely clear on how to choose
these extreme scenarios a priori. This issue is mitigated in a recent work by Zhang and Sun (2022). We
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consider (1) with nested distance, aiming at tackling the its non-convexity as observed in Pflug and
Pichler (2014). We would like to emphasize that, in this paper, we are content with a reformulation that
is as tractable as multistage SAA, although the latter alone has many computational issues (Shapiro
et al. 2021, Chapter 5.8). These issues are beyond the scope of this paper.

The rest of the paper is organized as follows. In Section 2, we introduce the distributionally robust
linear multistage program, and provide a quick overview on the nested distance used for constructing
the ambiguity set. In Section 3, we first develop a general dynamic programming reformulation of
the multistage-static problem, and then discuss its implications on statistical consistency and time
consistency. In Section 4, we specialize our result to three cases that admit tractable reformulations. In
Section 5, we apply our result to the portfolio selection problem and develop a stochastic dual dynamic
programming algorithm and out-of-sample testing procedure. We conclude the paper in Section 6. All
proofs are deferred to the Appendices.

2. Multistage Distributionally Robust Optimization with Nested Distance
In this section, we discuss the nested distance via examples and present the distributionally robust
formulation.

2.1. Multistage Stochastic Programming and its Distributionally Robust Counterpart

Consider a ) -stage stochastic linear optimization problem

min
G1,x2,...,x)

Eℙ

[
2>1 G1 + c>2 x2 + · · · + c>) x)

]
,

B.C. �1G1 = 11, G1 ≥ 0,
HCxC−1 + GCxC = bC , xC ≥ 0, C = 2, . . . ,),

where / C := (GC , HC , cC , bC ) ∈ ΞC ⊂ ℝ3C , C ∈ [)] := {1, . . . ,)}, are data vectors and matrices, some or
all of which may be random. For C ∈ [)], we denote by / [C ] := (/1, . . . , / C ) ∈ Ξ[C ] := Ξ1 × · · ·ΞC the
history of the data process up to time C. Let P (Ξ[C ]) be the set of probability distributions on Ξ[C ] ,
C ∈ [)]. For any distribution ℙ ∈ P (Ξ[) ]) of a stochastic process / [) ] , we denote by ℙ[C ] the marginal
distribution of / [C ] under ℙ, and by ℙC |/ [C−1] the conditional distribution of / C given the history / [C−1] .
The minimization is performed over the set of non-anticipative policies xC = xC (/ [C ]), each of which is
measurable with respect to f(/ [C ]), the f-algebra induced by / [C ] . To ease notations, we denote the
feasible regions

X1 := {G1 ≥ 0 : �1G1 = 11},
XC (GC−1, / C ) := {GC ≥ 0 : GCGC = bC − HCGC−1}, C = 2, . . . ,) .

We will always assume X1 ≠ ∅. The multistage problem above admits a dynamic programming
formulation

&C (GC−1, / [C ]) = min
GC ∈XC (GC−1,/C )

{
2>C GC +EℙC+1|/ [C ]

[&C+1(GC , / [C+1])]
}
, C ∈ [)],

with &) +1 ≡ 0 and X1(G0, b1) ≡X1. We represent the set of non-anticipative and feasible policy as

X :=
{(
G1, x2(·), . . . , x) (·)

)
: xC ∈ XC (xC−1), C ∈ [)]

}
.

Here the shorthand notation xC ∈ XC (xC−1) is interpreted as xC (b [C ]) ∈ XC (xC−1(b [C−1]), bC ) for all
b [C ] ∈ Ξ[C ] .
Quite often in practice, the data-generating distribution of the random process / [) ] is not known

exactly. A common approach is to replace the underlying data-generating distribution with a scenario
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tree ℙ̂, which is typically constructed using conditional sampling or scenario reduction. Let us denote by
/̂ [) ] the stochastic process with a finitely-supported distribution ℙ̂ and by Ξ̂C the support of /̂ C , C ∈ [)].
To account for the distributional uncertainty, we consider the following multistage distributionally
robust optimization

inf
x∈X

sup
ℙ∈M

Eℙ

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]
, (Pstatic)

and the distributional uncertainty setM specifies a set of )-stage distributions to hedge against. In
particular, we consider the following uncertainty set

M :=
{
ℙ ∈ P (Ξ[) ]) : D? (ℙ̂,ℙ) ≤ o

}
, (3)

where o > 0 is the radius of the uncertainty set, and D? is the ?-nested distance proposed by Pflug
(2010), Pflug and Pichler (2012), which takes account of the information evolution in the multistage
problem, as will be elaborated on in Section 2.2. We will also consider a soft robust formulation when
? ∈ [1,∞):

inf
x∈X

sup
ℙ∈P (Ξ[) ] )

{
Eℙ

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]
−_D?

? (ℙ̂,ℙ)
}
. (Pstatic-soft)

2.2. Nested Distance

The nested distance calculates the minimum cost needed to transport probability mass from ℙ̂ to ℙ

among a set of non-anticipative transport plans. Similar to the Wasserstein distance, it is based on an
optimal transport problem. But in addition to the marginal constraints on the transport plan as in the
definition of Wasserstein distance, it also requires that transport plan should be non-anticipative with
respect to the filtration f(/̂ [C ]) ⊗ f(/ [C ]).

Let d(·, ·) be a metric on Ξ[) ] . For any ℙ̂,ℙ ∈ P (Ξ[) ]), we denote by Γ(ℙ̂,ℙ) the set of joint
distributions on Ξ2

[) ] with marginals ℙ̂ and ℙ. For a joint distribution W ∈ Γ(ℙ̂,ℙ), we use W/̂C | (/̂ [C−1] ,/ [C−1] )
to denote the conditional distribution of /̂ C given (/̂ [C−1] , / [C−1]) under W. Recall that ℙ̂C |/̂ [C−1]

denotes

the conditional distribution of /̂ C given /̂ [C−1] under ℙ̂.
Definition 1 (Nested Distance). Define the set of transport plans

Γ12 (ℙ̂,ℙ) =
{
W ∈ Γ(ℙ̂,ℙ) : W/̂C+1 | (/̂ [C ] ,/ [C ] ) = ℙ̂C+1 |/̂ [C ] , W/C+1 | (/̂ [C ] ,/ [C ] ) =ℙC+1 |/ [C ] , ∀C = 1, . . . ,) − 1

}
. (4)

The nested distance D? (ℙ̂,ℙ) between ℙ̂ and ℙ is defined as

D? (ℙ̂,ℙ) :=


(
inf

W∈Γ12 (ℙ̂,ℙ) E(/̂ [) ] ,/ [) ] )∼W
[
d(/̂ [) ] , / [) ]) ?

] )1/?
, ? ∈ [1,∞),

inf
W∈Γ12 (ℙ̂,ℙ) W-ess sup

(/̂ [) ] ,/ [) ] ) ∈Ξ2
d(/̂ [) ] , / [) ]), ? =∞. (5)

♦
The non-anticipativity constraints can be equivalently stated as follows. Under the joint distribution

W,

/ [C ] ⊥ /̂ C+1 | /̂ [C ] , (6a)

/̂ [C ] ⊥ / C+1 | / [C ] , (6b)

namely, / [C ] and /̂ C+1 are conditionally independent given /̂ [C ]; and /̂ [C ] and / C+1 are conditionally
independent given / [C ] . Suppose there exists a transport map T = (T1, . . . ,T) ) from ℙ̂ to ℙ, then (6a)
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implies that where /̂ [C ] is transported (i.e., / [C ] = T[C ] (/̂ [) ])) is independent of the future /̂ C+1. Thereby,
T satisfies (6a) if and only if it is of the form T (b̂ [) ]) = (T1(b̂1),T2(b̂ [2]), . . . ,T) (b̂ [) ])), ∀b̂ [) ] ∈ Ξ̂.
Similarly, the condition (6b) indicates that where / [C ] is transported should not dependent on future
information / C+1. Thereby, if TC , C = 1, . . . ,) , are invertible, then T satisfies (6b) as well (Backhoff et al.
2017). The equivalent definition (6) provides a convient way to check whether a transport plan is
causal or not.
In the literature, a transport plan from ℙ̂ to ℙ is termed causal if it satisfies the non-anticipativity

constraint (6a), and is termed bi-causal if it satisfies both non-anticipativity constraints (6). When only
the first set of constraints in (4) is imposed, the resulting distance is called causal transport distance
(Backhoff et al. 2017), denoted as C? (ℙ̂,ℙ). If we replace Γ12 by Γ, then (5) becomes the defining
expression for the Wasserstein distance. Note that Γ12 (ℙ̂,ℙ) is always a non-empty subset of Γ(ℙ̂,ℙ),
containing at least the independent transport plan, namely the product distribution with marginals ℙ̂
and ℙ.
Let us illustrate these concepts with the following examples.
Example 1. In many applications, the data process / [) ] often adheres to a causal relationship, as

represented by the following causal diagram

/1 /2 · · · / C · · · /)

This relationship can be observed in various scenarios, such as the demand process for a product or
the return rate process of financial assets. The data uncertainty of / C can arise directly from errors like
sampling or measurement inaccuracies in / C . Alternatively, it might be indirectly influenced by errors
in statistical modeling or data processing propagated from historical data / [C−1] . Consequently, it is
logical to consider data perturbations that exhibit historical dependencies. However, such perturbations
should not be dependent on future uncertainties, as these are typically unknown. This rationale
provides a justification for the non-anticipativity constraints in Definition 1. ♣

Figure 1 The ?-Wasserstein distance between ℙ̂ and ℙ is n whereas the nested distance D1 (ℙ̂,ℙ) = 1+ n .

Example 2. Consider two stochastic processes ℙ̂ and ℙ represented by the two scenario trees plotted
in Figure 1. The two processes ℙ̂ and ℙ have different evolution of information. For ℙ̂, conditional
on observing /̂2 = 0, /̂3 takes ±1 with equal probability; while for ℙ with any n > 0, conditional on
observing /2, the value of /3 is certain: ℙ/3=1 |/2=n =ℙ/̂3=−1 |/̂2=−n

= 1.

Suppose d(b̂ [3] , b [3]) = ‖b̂ [3] − b [3] ‖ ?. Then we have W? (ℙ̂,ℙ) = n for all ? ∈ [1,∞]. On the other
hand, a causal transport plan W from ℙ̂ to ℙ should satisfy ℙ/̂3 |/̂2=0 =

1
2 = W/̂3 |/̂2=0,/2

. Hence the only
feasible transport plan is the independent product distribution W(/̂ [3] , / [3]) = 1

4 for all pairs of /̂ [3] , / [3] ,
which is in fact bi-causal. Thus we have

D? (ℙ̂,ℙ) = 2−1/? (n ? + (2+ n) ?)1/? ≥ 1+ n/2.

As such, the nested-distance ball centered at ℙ̂ with radius 1 would not contain ℙ with any n > 0.
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When forming an uncertainty setM, it makes sense to consider stochastic processes that share a
similar filtration as the nominal data process. If we defineM based on a Wasserstein ball centered at ℙ̂,
then it would always contain a scenario tree whose structure is similar to ℙ but significantly different
from ℙ̂. In contrast, a nested distance ball can rule out this undesirable situation. ♣

Example 3. In Figure 2 we plot two three-stage scenario trees, with labels along the edges indicating
the conditional probabilities of realizing a scenario given their parent nodes. Specifically, define the
sample paths

b̂1
[3] = (0̂, 1̂, 3̂), b̂

2
[3] = (0̂, 1̂, 4̂), b̂

3
[3] = (0̂, 2̂, 5̂ ),

b1
[3] = (0, 1, 3), b

2
[3] = (0, 2, 4), b

3
[3] = (0, 2, 5 ),

where a sample path is represented by a triple of nodes. Then the two trees represent probability
distributions on the three sample paths

ℙ̂ =
1
6
�
b̂1
[3]
+ 1

6
�
b̂2
[3]
+ 2

3
�
b̂3
[3]
, ℙ =

1
2
�b1
[3]
+ 1

4
�b2
[3]
+ 1

4
�b3
[3]
,

where �b indicates a Dirac mass at a sample path b.

0̂

1̂

2̂

3̂

4̂

5̂

1
3

2
3

1
2

1
2

1

0

1

2

3

4

5

1
2

1
2

1

1
2

1
2

Figure 2 Two three-stage scenario trees

Consider the following three transport plans between the two trees, represented by a joint distribution
with marginals ℙ̂ and ℙ:

W =
©­«

1/6 0 0
0 1/6 0

1/3 1/12 1/4
ª®¬ , W2 =

©­«
1/24 1/8 0
1/24 1/8 0
5/12 0 1/4

ª®¬ , W12 =
©­«

1/24 1/16 1/16
1/24 1/16 1/16
5/12 1/8 1/8

ª®¬ .
In each matrix, its element in the 8-th row and the 9-th column represents the probability mass
transported from the path b̂8[3] to the path b 9[3] , 8, 9 = 1,2,3. We have the following observations.

(I) The transport plan W is not causal, as both causal constraints in (6) are violated. Indeed, /̂2 = 1̂

is transported to 1 if /̂3 = 3̂ and to 2 if /̂3 = 4̂. This means that the future value of /̂3 affects the
value of /2. On the other hand, /2 = 2 is transported to 2̂ if /3 = 5 and is split to 2̂ and 1̂ if /3 = 4.

(II) The transport plan W2 is causal from ℙ̂ to ℙ, but not from ℙ to ℙ̂. Indeed, regardless of the
value of /̂3, 1̂ splits 1/24 probabilty mass to 1 and 1/8 probability mass to 2, and 2̂ splits 5/12
probability mass to 1 and 1/4 probability mass to 2. On the other hand, (6b) is violated, as /2 = 2
is transported to 1̂ if /3 = 4 and to 2̂ if /3 = 5 .

(III) The transport plan W12 is bi-causal. Indeed, regardless of the value of /̂3, 1̂ splits 1/24 probabilty
mass to 1 and 1/8 probability mass to 2, and 2̂ splits 5/12 probability mass to 1 and 1/4 probability
mass to 2. Furthermore, regardless of the value of /3, 1 splits 1/12 probabilty mass to 1̂ and 5/12
probability mass to 2, and 2 splits 1/8 probability mass to 1̂ and 1/8 probability mass to 2̂. ♣
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In the rest of this paper, we will assume ΞC is a non-empty subset of some normed space, C ∈ [)],
and set

d(b̂ [) ] , b [) ]) =
{(∑

C ∈[) ] ‖b̂C − bC ‖ ?
)1/?

, ? ∈ [1,∞),
maxC ∈[) ] ‖b̂C − bC ‖, ? =∞,

∀ b̂ [) ] , b [) ] ∈ Ξ[) ] ,

where ‖·‖ is some norm defined on the corresponding spaces, and we use overloaded notations

d(b̂ [C ] , b [C ]) =
∑
B∈[C ]
‖b̂B − bB ‖, ∀ b̂ [C ] , b [C ] ∈ Ξ[C ] , C ∈ [)] .

Note that the norm in each stage can be chosen differently, but we omit such dependence for the ease
of notation.

3. Dynamic Programming Reformulations
In this section, we develop dynamic programming reformulations for (Pstatic). In Section 3.1, we focus
on the inner maximization of (Pstatic), which evaluates the worst-case risk of a fixed policy, and we
discuss the outer minimization over policies in Section 3.2.

3.1. Robust Risk Evaluation

We first consider ? =∞. The following theorem provides a dynamic programming equivalent reformu-
lation for the inner supremum in (Pstatic).

Theorem 1. Let ? =∞. Then for any continuous policy (x1, . . . , x) ), it holds that

sup
ℙ∈M

Eℙ

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]

= 2>1 G1 +Eℙ̂2

[
sup

b2∈Ξ2:‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3|/̂2

[
sup

b3∈Ξ3:‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · ·

+E
ℙ̂
) |/̂ [)−1]

[
sup

b) ∈Ξ) :‖ b) −/̂) ‖≤o
2>) x) (b [) ])

]
· · ·

}]}]
.

(7)

Theorem 1 shows that (Pstatic) admits a nested form. Note that (7) can also be written in the form of
dynamic programming. Set + /̂ [) +1]

) +1 ≡ 0 and for C ∈ [)], set

+
/̂ [C ]
C (/ [C ]) := c>C xC (/ [C ]) +E/̂C+1∼ℙ̂C+1|/̂ [C ]

[
sup

bC+1∈ΞC+1:‖ bC+1−/̂C+1 ‖≤o
+
/̂ [C+1]
C+1 (/ [C ] , bC+1)

]
. (8)

Then (7) implies that

sup
ℙ∈M

Eℙ

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]
=+

/̂1
1 (b1) =:+1.

The risk-to-go function + /̂ [C ]
C (·) is defined with respect to the nominal realization /̂ [C ] . It assesses the

current cost along with the next-stage risk relative to the nominal conditional distribution ℙ̂
C+1 |/̂ [C ]

.

More specifically, the risk + /̂ [C ]
C (/ [C ]) at stage C is broken down into two components: (i) the current-

stage cost, 2>C xC (/ [C ]); (ii) the risk-to-go, which evaluates the worst-case value of the risk function

+
/̂ [C+1]
C+1 (/ [C ] , ·) in a o-neighborhood of /̂ C+1, and then averaged over the nominal conditional distribution
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/̂ C+1 ∼ ℙ̂C |/̂ [C ] . If o = 0, then (8) reduces to the standard Bellman recursion. When ) = 2, the two-stage
DRO with ∞-nested distance becomes the two-stage DRO with ∞-Wasserstein distance, and the result
in Theorem 1 is consistent with Xie (2020, Theorem 2).

The proof idea of Theorem 1 can be summarized as follows. Due to the non-convexity of the nested
distance uncertainty set, directly dualizing the inner supremum in (Pstatic) is not a viable approach.
To overcome this challenge, we first consider a convex relaxation of (Pstatic), replacing the nested
distance uncertainty set with the causal distance uncertainty set MC := {ℙ ∈ P (Ξ) : C∞(ℙ̂,ℙ) ≤ o}.
Using induction and the tower property of conditional expectation, we are able to derive a dynamic
programming reformulation for the relaxed problem. Next, we show that this convex relaxation is, in
fact, tight. By modifying the worst-case distribution within the causal distance ball, it is shown that
there exists a distribution whose nested distance to ℙ̂ is approximately equal to the causal distance,
and moreover, it yields an objective value that is approximately equal to worst-case risk over the causal
distance ball. Thereby, the expression holds for the nested distance ball as well. A complete proof can
be found in Appendix EC.1.1.

Next, we consider ? ∈ [1,∞). We have the following result, whose proof can be found in Appendix
EC.1.2.

Theorem 2. Let ? ∈ [1,∞). Then for any continuous policy (x1, . . . , x) ), it holds that

sup
ℙ∈P (Ξ)

{
Eℙ

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]
−_D?

? (ℙ̂,ℙ)
}

= 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3|/̂2

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · ·

+E
ℙ̂
) |/̂ [)−1]

[
sup
b) ∈Ξ)

{
2>) x) (b [) ]) −_‖b) − /̂) ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]
.

(9)

Moreover, it holds that

sup
ℙ∈M

Eℙ

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]

= min
_≥0

{
_o? + 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3|/̂2

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · ·

+E
ℙ̂
) |/̂ [)−1]

[
sup
b) ∈Ξ)

{
2>) x) (b [) ]) −_‖b) − /̂) ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]}
.

Theorem 2 establishes the nested reformulations of both (1) and its soft variant. The reformulation
(9) of the soft problem is often convenient to work with. Indeed, set + /̂ [) +1]

) +1 ≡ 0 and for C ∈ [)], set

+
/̂ [C ]
C (/ [C ]) := c>C xC (/ [C ]) +E/̂C+1∼ℙ̂C+1|/̂ [C ]

[
sup

bC+1∈ΞC+1

{
+
/̂ [C+1]
C+1 (/ [C ] , bC+1) −_‖bC+1 − /̂ C+1‖

?
}]
. (10)

Then (9) implies that

sup
ℙ∈P (Ξ)

{
Eℙ

[ ∑
C ∈[) ]

xC (/ [C ])
]
−_D?

? (ℙ̂,ℙ)
}
=+

/̂1
1 (b1) =:+1.
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Remark 1 (Connection with Coherent Conditional Risk Mappings). The dynamic recursive
form (8) is conceptually related to the conditional risk mapping introduced in Ruszczyński and Shapiro
(2006). Specifically, a coherent conditional risk mapping can be represented as

dC |/ [C−1] [/ (/ [C ])] = sup
ℙC ∈MC

E/C∼ℙC
[/ (/ [C−1] , / C )],

where / is any measurable function on Ξ[C ] , and a convex conditional risk mapping can be represented
as

dC |/ [C−1] [/ (/ [C ])] = sup
ℙC ∈P (ΞC )

{
E/C∼ℙC

[/ (/ [C−1] , / C )] −_�C (ℙC )
}
,

where � is a convex functional on P (ΞC ). In our setting, let us define a conditional risk mapping d/̂ [C−1]
C |/ [C−1]

via
d
/̂ [C−1]
C |/ [C−1]

[/ /̂ [C−1] (/ [C ])]

=


sup

WC ∈Γ(ℙ̂C |/̂ [C−1]
, ·)

{
E(/̂C ,/C )∼WC

[
/ /̂ [C ] (/ [C ])

]
: WC -ess sup
(/C ,/̂C ) ∈Ξ2

C

‖/ C − /̂ C ‖ ≤ o
}
, ? =∞,

sup
WC ∈Γ(ℙ̂C |/̂ [C−1]

, ·)

{
E(/̂C ,/C )∼WC

[
/ /̂ [C ] (/ [C ])

]
−_E(/̂C ,/C )∼WC

[
‖/ C − /̂ C ‖ ?

]}
, ? ∈ [1,∞),

(11)

where Γ(ℙ̂
C |/̂ [C−1]

, ·) is the set of joint distributions on Ξ2
C whose first marginal distribution is ℙ̂

C |/̂ [C−1]
.

Note that the uncertainty set in the case of ? =∞ is equivalent to a single-period ∞-Wasserstein ball

M
/̂ [C−1]
C =

{
ℙC ∈ P (ΞC ) : W∞(ℙ̂C |/̂ [C−1]

,ℙC ) ≤ o
}
,

centered at the nominal conditional distribution ℙ̂
C+1 |/̂ [C ]

with radius o, and the penalty term in the
case of ? ∈ [1,∞) is equivalent to a single-period ?-Wasserstein distance penalty

�C (ℙC ) =W ?
? (ℙ̂C |/̂ [C−1]

,ℙC ).

With this definition, (7) and (9) can be rewritten as

+
/̂ [C ]
C (/ [C ]) = c>C xC (/ [C ]) + d

/̂ [C ]
C+1 |/ [C ]

[
+
/̂ [C+1]
C+1 (/ [C+1])

]
.

It is important to note that in the original definition of a conditional risk mapping, dC |/ [C−1] considers
only the filtration generated by / [C ] However, in our case, it extends to involve the filtration generated
by the nominal stochastic process /̂ [) ] . ♣

Remark 2 (Connection with Wasserstein DRO). Suppose ℙ̂ is a scenario fan, that is, ℙ̂
C+1 |/̂ [C ]

is a Dirac measure for all C = 1, . . . ,) − 1. Then (7) and (9) become respectively

sup
ℙ∈M

Eℙ

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]
= 2>1 G1 +Eℙ̂2

[
sup

bC ∈ΞC :‖ bC−/̂C ‖≤o
C=2,...,)

)∑
C=2

c>C xC (/ [C ])
]

and

sup
ℙ∈P (Ξ)

{
Eℙ

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]
−_D?

? (ℙ̂,ℙ)
}
= 2>1 G1 +Eℙ̂2

[
sup
bC ∈ΞC
C=2,...,)

{
)∑
C=2

c>C xC (/ [C ]) −_
)∑
C=2
‖bC − /̂ C ‖ ?

}]
.

Notably, they coincide with the dual formulation of Wasserstein DRO.
Now suppose the underlying stochastic process has a density, then ℙ̂ is a scenario fan with probability

one. As a result, the statistical consistency of the worst-case risk under nested distance follows easily
from that of Wasserstein DRO (Kuhn et al. 2019, Gao et al. 2022). This is in contrast to the statistical
inconsistency of the nested distance itself (Pflug and Pichler 2016). ♣
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3.2. Time-Consistent Policy Optimization under Stagewise Independence

In numerical studies on multistage DRO, the following problem is often considered

min
G1∈X1

2>1 G1 + min
x2∈X2 (G1)

d2

[
2>2 x2(/2) + min

x3∈X3 (x2)
d
/̂ [2]
3 |/ [2]

[
2>3 x3(/ [3]) + · · ·

+ min
x) ∈X) (x)−1)

d
/̂ [)−1]
) |/ [)−1]

[
2>) x) (/ [) ])

]
· · ·

] ]
.

(12)

In general, this is just a lower bound of the original problem

min
xC ∈XC (xC−1) ,∀C ∈[) ]

2>1 G1 + d2

[
2>2 x2(/2) + d

/̂ [2]
3 |/ [2]

[
2>3 x3(/ [3]) + · · · + d

/̂ [)−1]
) |/ [)−1]

[
2>) x) (/ [) ])

]
· · ·

] ]
(13)

as it involves exchange of minimization and expectation. Nevertheless, the two problem are equivalent
when the nominal scenario tree ℙ̂ is stagewise independent. In this case, we set dC = d

/̂ [C−1]
C |/ [C−1]

.

Assumption 1 (Stagewise independence). The nominal scenario tree ℙ̂ is stagewise independent,
namely, ℙ̂

C |/̂ [C−1]
= ℙ̂C for all C ∈ [)].

In the remainder of the paper, we make the following assumption (c.f. Shapiro et al. (2021, Definition
3.1)).

Assumption 2 (Relatively complete recourse). For every C = 2, . . . ,) and every sequence of feasible
decisions (x1, . . . , xC−1), the set XC (xC−1, bC ) is non-empty for every bC ∈ ΞC .

Without this assumption, the worst-case risk is always infinite for ? ∈ [1,∞). For ? =∞, the condition
above can be relaxed by replacing ΞC with ∪/̂C ∈supp ℙ̂C

{bC ∈ ΞC : ‖bC − /̂ C ‖ ≤ o}.
Below we establish the dynamic programming reformulations of (1). The proof is based on the

interchangeability principle and can be found in Appendix EC.2.
Define the dynamic programming formulation

Q) +1 := 0,

QC (GC−1, / [C−1]) := min
xC (/ [C ] ) ∈XC (GC−1, ·)

dC

[
c>C xC (/ [C ]) +QC+1

(
xC (/ [C ]), / [C ]

) ]
,

Q1 := min
G1∈X1

{
2>1 G1 +Q2(G1)

}
.

(Pdynamic)

Theorem 3. Suppose Assumptions 1 and 2 hold. Then the optimal value of the dynamic program
(Pdynamic) equals the optimal value of (Pstatic) when ? =∞ and the optimal value of (Pstatic-soft) when
? ∈ [1,∞). Moreover, set &) +1 ≡ 0 and

&C (GC−1, /̂ C ) :=
{

sup
bC ∈ΞC :‖ bC−/̂C ‖≤o

minGC ∈XC (GC−1, bC )
{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]}
, ? =∞,

supbC ∈ΞC minGC ∈XC (GC−1, bC )
{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]
−_‖bC − /̂ C ‖ ?

}
, ? ∈ [1,∞),

(14)
for C = 2, . . . ,) . Then it holds that E

ℙ̂C
[&C (GC−1, /̂ C )] =QC (GC−1, / [C−1]).

Theorem 3 shows that expected risk-to-go functionQC defined in (Pdynamic), which involves functional
optimization over xC (/ [C−1] , ·), can be evaluated through the expectation of the risk-to-go function
&C , which involves only a finite-dimensional problem. Note that due to the stagewise independence
Assumption 1, the risk-to-go function &C (GC−1, ·) depends only on the current-stage uncertainty and
the expected risk-to-go function QC (GC−1, ·) is a constant function. Thus, from now on we will omit the
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second argument of QC and denote it as QC (GC−1). Also note that the supremum over bC may not always
be tractable. Nevertheless, in Section 4, we will explore cases where tractable solutions are possible.
By expanding the recursion using (14), (Pdynamic) is equivalent to

min
G1∈X1

{
2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o
min

G2∈X2 (G1, b2)

{
2>2 G2 +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o
min

G3∈X3 (G2, b3)

{
2>3 G3+

· · · +E
ℙ̂)

[
sup

‖ b) −/̂) ‖≤o
min

G) ∈X) (G)−1, b) )
2>) G)

]
· · ·

}]}]}
when ? =∞, and

min
_≥0,G1∈X1

{
_o? + 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

min
G2∈X2 (G1)

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

min
G3∈X3 (G2)

{
2>3 x3(b [3])+

· · · +E
ℙ̂)

[
sup
b) ∈Ξ)

min
G) ∈X) (G)−1, b) )

2>) x) (b [) ]) −_‖b) − /̂) ‖ ?
]
· · ·

}
−_‖b3 − /̂3‖ ?

]
−_‖b2 − /̂2‖ ?

}]}
when ? ∈ [1,∞). Using duality for Wasserstein DRO, they are equivalent to

min
G1∈X1

{
2>1 G1 + sup

ℙ2∈M2

Eℙ2

[
min

G2∈X2 (G1, b2)

{
2>2 G2 + sup

ℙ3∈M3

Eℙ3

[
min

G3∈X3 (G2, b3)

{
2>3 G3 + · · · +

sup
ℙ) ∈M)

Eℙ)

[
min

G) ∈X) (G)−1, b) )
2>) G)

]
· · ·

}]}]}
,

and

min
_≥0,G1∈X1

{
_o? + 2>1 G1 + sup

ℙ2∈P (Ξ2)
Eℙ2

[
min

G2∈X2 (G1)

{
2>2 x2(b2) + sup

ℙ3

Eℙ3∈P (Ξ3)

[
min

G3∈X3 (G2)

{
2>3 x3(b [3]) + · · · +

sup
ℙ)

Eℙ) ∈P (Ξ) )
[

min
G) ∈X) (G)−1, b) )

2>) x) (b [) ])
]
−_W ?

? (ℙ̂) ,ℙ) ) · · ·
}]
−_W ?

? (ℙ̂3,ℙ3)
}]
−_W ?

? (ℙ̂2,ℙ2)
}

respectively. These formulations have been considered in numerical studies (Duque and Morton 2020,
Zhang and Sun 2020, 2022). These works, however, either assume a finite sample space, or do not
render a policy with provable optimality guarantees.

4. Tractable Policy Optimization

In this section, we aim to provide tractable formulations for obtaining a policy for (Pdynamic). As a
corollary of Theorem 3, we have the following result.

Corollary 1. Recall the &-function defined in (14). An optimal policy (x★1 , . . . , x
★
)
) of (Pdynamic) is

given recursively by

x★1 ∈ arg min
G1∈X1

{
2>1 G1 +Eℙ̂2

[&2(G1)]
}
,

x★C (b [C ]) ∈ arg min
GC ∈XC (x★C−1 ( b[C−1] ) , bC )

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]}
, b [C ] ∈ Ξ[C ] , C = 2, . . . ,) .

(15)
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The optimal policy (15) is defined on the entire sample space, marking a significant difference from its
non-robust counterpart, which yields a solution defined solely on the sample paths within the nominal
scenario tree.
Below, we identify cases where the risk-to-go function &C , as defined in (14), and thus (Pdynamic),

can be computed efficiently. Note that when ) = 2, (Pdynamic) reduces to two-stage Wasserstein DRO,
for which exact tractable reformulations have been established when ? ∈ {1,∞} and the uncertainty
appears in the objective or right-hand side (Mohajerin Esfahani and Kuhn 2018, Hanasusanto and
Kuhn 2018, Xie 2020). Below, we will show that these results can be extended to multistage problems
with essentially the same assumptions.

4.1. Objective Uncertainty Only

We first consider problems with objective uncertainty only, in which case we identify / C with cC , and
the constraint set XC (GC−1, bC ) = XC (GC−1) = {GC ≥ 0 : �CGC = 1C − �CGC−1} is deterministic once GC−1 is
given. The following theorem shows an equivalent reformulation of (Pdynamic).

Corollary 2. Suppose ? =∞, ΞC = (ℝ3C , ‖·‖). Then &C , C = 2, . . . ,) , defined in (14) can be computed
as

&C (GC−1, ĉC ) =


minGC ∈XC (GC−1) , ‖GC ‖∗≤_

{
ĉ>C GC +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]}
, ? = 1,

minGC ∈XC (GC−1)

{
ĉ>C GC + (1− 1/?) ( 1

?_
)

1
?−1 ‖GC ‖

?

?−1
∗ +E

ℙ̂C+1

[
&C+1(GC , ĉC+1)

]}
, ? ∈ (1,∞),

minGC ∈XC (GC−1)
{
ĉ>C GC + o‖GC ‖∗ +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]}
, ? =∞.

Corollary 2 shows that when the uncertainty appears only in the objective, (Pdynamic) is equivalent to
a scenario approximation problem with norm regularization on each xC . The regularization is a hard
constraint when ? = 1 and a soft penalty when ? ∈ (1,∞]. The proof is based on the straightforward
application of Hölder’s and Young’s inequalities; see EC.3.1 for details.
We remark that the optimal robust policy may not be unique, as demonstrated in the following

result.

Proposition 1. Set

x̂C ( ĉ [C ]) ∈


arg minGC ∈XC ( x̂C−1 (ĉ [C−1] )) , ‖GC ‖∗≤_

{
ĉ>C GC +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]}
, ? = 1,

arg minGC ∈XC ( x̂C−1 (ĉ [C−1] ))

{
ĉ>C GC + (1− 1

?
) ( 1
?_
)

1
?−1 ‖GC ‖

?

?−1
∗ +E

ℙ̂C+1

[
&C+1(GC , ĉC+1)

]}
, ? ∈ (1,∞),

arg minGC ∈XC ( x̂C−1 (ĉ [C−1] ))

{
ĉ>C GC + o‖GC ‖∗ +Eℙ̂C+1

[&C+1(GC , ĉC+1)]
}
, ? =∞,

and set recursively ĉ21 := 21 and

ĉ2C :=


arg min
ĉC ∈supp ℙ̂C

{
ĉ>C x̂C ( ĉ

2
[C−1] , ĉC ) +Eℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C−1] , ĉC ), ĉC+1

) ]
+_‖ ĉC − 2C ‖ ?

}
, ? ∈ [1,∞),

arg min
ĉC ∈supp ℙ̂C :‖ĉC−2C ‖≤o

ĉ>C x̂C ( ĉ
2
[C−1] , ĉC ) + o‖x̂C ( ĉ

2
[C−1] , ĉC )‖∗ +Eℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C−1] , ĉC ), ĉC+1

) ]
, ? =∞.

Then the policy x̄C (2 [C ]) := x̂C ( ĉ2[C ]) is also optimal for (Pdynamic).

The policy x̄ = (x̄1, . . . , x̄) ) is defined for every sample path in Ξ[) ] when ? ∈ [1,∞) and in
{2 [) ] ∈ Ξ[) ] : ‖2 [) ] − ĉ [) ] ‖∞ ≤ o} when ? =∞. The sample path ĉ2[) ] represents the best, with regard
to the norm-regularized cost-to-go, in-sample path within a o-neighborhood of 2 [) ] when ? =∞, or
within a _-soft neighborhood of 2 [) ] when ? ∈ [1,∞). Notably, the computation of the policy x̄ requires
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knowledge of only the optimal robust policy values on sample paths from the nominal scenario tree,
contrasting with the policy x★ defined in (15) that requires the entire cost-to-go function &C (·, ĉC ). Such
computational advantage enhances the appeal of the policy x̄. Its optimality is obtained by verifying
that the worst-case risk of x̄C does not exceed the risk-to-go as defined by &C . For the detailed proof,
please refer to EC.3.1.

4.2. Right-hand Side Uncertainty Only

Next, we consider problems with right-hand side uncertainty only. To ease the presentation, we
consider either / C = bC or / C = HC . The following theorem provides an equivalent reformulation of
(Pdynamic) for ? =∞.

Corollary 3. Suppose ? =∞, / C = bC ∈ ΞC = (ℝ3C , ‖·‖) or / C = HC ∈ ΞC = (ℝ3C×<C , ‖·‖). Set kC (GC ) :=
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]
+ I{GC ≥ 0}. Then &C , C = 2, . . . ,) , defined in (14) can be computed as

&C (GC−1, b̂C ) = max
HC ∈ℝ3C

{
( b̂C − �CGC−1)>HC + o‖HC ‖∗ −k∗C (�>C HC )

}
, if / C = bC ,

&C (GC−1, ĤC ) = max
HC ∈ℝ3C

{
(1C − ĤCGC−1)>HC + o‖HCG>C−1‖∗ −k

∗
C (�>C HC )

}
, if / C = HC .

(16)

When ‖·‖ = ‖·‖1, it holds that

&C (GC−1, b̂C ) = max
9∈[3C ], X∈{1,−1}

min
GC ≥0

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , b̂C+1)

]
: �CGC = b̂C − �CGC−1 + oX4 9

}
,

where 4 9 is the 9-th unit vector. When ‖·‖ = ‖·‖op, where ‖�‖op = sup‖E ‖≤1‖�E‖1, it holds that

&C (GC−1, ĤC ) = max
9∈[3C ], X∈{1,−1}

min
GC ≥0

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , ĤC+1)

]
: �CGC = 1C − ĤCGC−1 + oX‖GC−1‖4 9

}
.

The risk-to-go function &C encourages a large norm of the dual variable HC . It also penalizes a
large norm on the primal variable GC when the uncertainty is present in HC . Note that solving (16)
involves maximizing a convex norm function, which can be hard in general (Xie 2020, Proposition 6).
Nevertheless, it becomes tractable when the dual norm entails an inf-norm, which can be represented
as component-wise maximum absolute value; see EC.3.3. The resulting reformulation of &C involves
solving 23C problems in total, each of which perturbs the constraints of the scenario approximation
problem by a unit vector with a magnitude proportional to o. When ) = 2, this is consistent with Xie
(2020, Theorem 3). We will apply this result to a dynamic portfolio selection problem in Section 5.

Corollary 4. Suppose ΞC = (ℝ3C , ‖·‖) and ? = 1. Set Y) +1 ≡ {0}, and for C ∈ [)], define recursively

SC :=
{
HC ∈ℝ3C : ∃yC+1 ∈ YC+1 B.C. �>C HC + �>C+1Eℙ̂C+1

[yC+1(/̂ C+1)] ≤ 2C
}
,

where YC is the space of functions from Ξ̂C to SC . Set &̂) +1(GC , /̂ [C+1]) ≡ 0 and

&̂C (GC−1, /̂ C ) = min
GC ∈XC (GC−1,/̂C )

{
2>C GC +Eℙ̂C+1

[
&̂C+1(GC , /̂ C+1)

]}
, C = 2, . . . ,) .

Then
&C (GC−1, b̂C ) = &̂C (GC−1, b̂C ) +∞ · 1

{
_ < max

B=C ,...,)
max
H∈SB

‖H‖∗
}
, if / C = bC ,

&C (GC−1, ĤC ) = &̂C (GC−1, ĤC ) +∞ · 1
{
_ < max

B=C ,...,)
max
H∈SB

‖GC H>‖∗
}
, if / C = HC ,
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and the optimal value of (Pdynamic) equals

min
G1∈X1

{
2>1 G1 +Eℙ̂2

[&̂2(G1, b̂2)]
}
+ o · max

C=2,...,)
max
H∈SC

‖H‖∗, if / C = bC ,

min
G1∈X1

{
2>1 G1 +Eℙ̂2

[&̂2(G1, Ĥ2)]
}
+ o · max

C=2,...,)
max
H∈SC

‖GC H>‖∗, if / C = HC .
(17)

Note that &̂C is the cost-to-go function for the (non-robust) scenario approximation problem. The
first term of (17) is the optimal value of the scenario approximation problem, while the second term
of (17) is a linear function of o, whose value is independent of the policy x. Consequently, (17) share
the same optimal policy values as the scenario approximation problem on each sample path from the
nominal scenario tree. We would like to emphasize that the optimal robust policy for (Pdynamic), as in
(15), is defined for all sample paths in Ξ[) ] , whereas the optimal policy for the scenario approximation
problem is only defined for the sample paths within the scenario tree. In this respect, the robust
formulation induces a safe way to extend the optimal solution to the scenario approximation problem
across the entire sample space, and justifies the heuristic policy in the literature (Shapiro et al. 2012,
Keutchayan et al. 2017, Zhang and Sun 2022).
Corollary 4 generalizes the results for two-stage Wasserstein DRO (Hanasusanto and Kuhn 2018,

Duque et al. 2022). Below we give an example in the context of the multi-stage newsvendor problem.
A similar observation was made in Mohajerin Esfahani and Kuhn (2018) for the static newsvendor
problem.
Example 4 (Newsvendor). Consider a multistage distributionally robust newsvendor model. Let

xC be the inventory level after having ordered in stage C but before the demand / C in that stage is
realized. Let 2C , 21C and 2ℎC be the ordering, back-order penalty and holding costs per unit in stage C,
respectively. The multistage newsvendor is given by

min
xC , C ∈[) ]

sup
ℙ∈M

Eℙ

[ ∑
C ∈[) ]

2C (xC − xC−1 + / C−1) + 2ℎC (xC−1 − / C−1)+ + 21C (/ C−1 − xC−1)+

]
B.C. xC ≥ xC−1 − / C−1,

xC ≥ 0.

With additional auxiliary variables zC , we can rewrite it as a multistage linear program with right-hand
uncertainty

min
xC ,zC , C ∈[) ]

sup
ℙ∈M

Eℙ [21x1 + z2 + · · · + z) ]

B.C. − xC + xC−1 ≤ / C−1,

2CxC − zC + (2ℎC − 2C )xC−1 ≤ (2ℎC − 2C )/ C−1,

2CxC − zC − (2C + 21C )xC−1 ≤ −(2C + 21C )/ C−1,

xC ≥ 0.

Then Corollary 4 indicates that the Wasserstein robust solution and the non-robust solution coincide
on sample paths within the nominal scenario tree. ♣

5. Application in Dynamic Portfolio Selection
5.1. Problem Formulation

We consider a portfolio selection problem of an investor who seeks to minimize the dis-utility of the
terminal wealth. Given some initial wealth ,1, she invests in = assets. The monetary value of all =
investments are represented using a vector, GC ∈ℝ=. The return rate at time period C is modeled by a
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random variable / C ∈ℝC . At each stage before the terminal, she may re-balance her wealth by taking
long-only positions across the = investments. Suppose the investor’s terminal dis-utility function is given
by * (,) ) :=max(−U0 − V0,) ,−U1 − V1,) ), where U0, U1, V0, V1 are used to encode the investor’s
preferences. We can write the robust portfolio selection problem as

min
x1,...,x)−1≥0,x)

max
ℙ∈M

Eℙ [* (x) )]

B.C. 1>x1 =,1,

1>xC = />C xC−1, C = 2, . . . ,) − 1,
x) = /

>
) x) −1.

(18)

Using Corollary 3, we obtain the following reformulation, whose proof is given in EC.4.1.

Corollary 5. Using the setup in Corollary 3, the dynamic programming reformulation of (18) is given
by

&) (G) −1, /̂ [) ]) := max
I∈{0,1}
X∈{1,−1}

max
(
−U0 − V0/̂

>
) G) −1 + o(1− I)X‖G) −1‖, −U1 − V1 /̂

>
) G) −1 + oIX‖G) −1‖

)
,

&C (GC−1, /̂ [C ]) := max
X∈{1,−1}

min
1>GC=/̂

>
C GC−1+oX ‖GC−1 ‖,
GC ≥0

E
ℙ̂
C+1|/̂ [C ]

[
&C+1(GC , /̂ [C+1])

]
, C = 2, . . . ,) − 1,

&1 := min
1>G1=,1
G1≥0

E
ℙ̂
/̂2

[
&2(G1, /̂2)

]
.

5.2. Experiment Setup

Let U0 = 0, U1 = (1− 0),1, V0 = 1, V1 = 0, which corresponds to the dis-utility

* (,) ) :=
{
−,) , ,) ≤,1,
−,1 − 0(,) −,1), ,) >,1.

Here 0 < 0 < 1 encodes the investor’s preference for gains, which is set to be 0.5 in our experiments.
Suppose the investor starts with an initial wealth of,1 = 10000 units, and can invest the wealth across
the following 5 assets, iShares MSCI Emerging Markets ETF (EEM), iShares 20+ Year Treasury Bond
ETF (TLT), Schwab US TIPS ETF (SCHP), SPDR S&P Oil & Gas Equipment & Services ETF (XES), and
ProShares UltraShort Financials ETF (SKF). We simulate the monthly asset returns using a log-normal
distribution with mean and covariance estimated using adjusted closing prices from January 1, 2018 to
June 30, 2021; see Appendix EC.4.2 for estimation results. We assume stage-wise independence, for the
convenience of out-of-sample test.
We describe our out-of-sample testing procedure as follows. The training dataset is a ) -stage scenario

tree, where at stage C = 2, . . . ,) there are #̂C independent scenarios. The testing dataset is another
)-stage scenario tree, independent from the training tree, where at stage C = 2, . . . ,) there are #C
independent scenarios. The reformulated problem in Corollary 5 can be viewed as a regularized SAA
problem, so we solve it using a modified SDDP algorithm; see Algorithm 1 in Appendix EC.4.3 for
details. Since the SDDP algorithm does not provide a policy but only the first-stage decision, we need
to resolve the remaining subproblems to obtain subsequent robust decisions.
To describe our out-of-sample testing procedure, consider a 3-stage problem as an example, illustrated

in Figure 3. First, we use the entire training tree {(/̂1
C , . . . , /̂

#C

C )}C=2,...,) to obtain a first-stage robust
decision Grob

1 and evaluate the first-stage cost. Next, at stage 2, we observe a sample b822 from the
second-stage scenarios in the testing tree (b1

2 , . . . , b
#2
2 ), and use all scenarios in the remaining stages
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Figure 3 Illustration of the out-of-sample testing procedure for a 3-stage problem. In the last tree, the second-stage
decision is computed using the training scenarios in the third stage after observing a testing scenario in the second stage.

(i.e., stage 3 in this setting) from the training tree (/̂1
3, . . . , /̂

#̂3
3 ) to solve for the second-stage robust

decision Grob
2 and evaluate its second-stage cost. At stage 3, we draw a sample b833 from the third-stage

scenarios in the testing tree (b1
3 , . . . , b

#3
2 ), and use all scenarios in the remaining stages from the

training tree (i.e., none in this setting) to solve for the third-stage robust decision Grob
3 and evaluate its

third-stage cost. After going through all stages, we sum up the per-stage costs in all stages, which
gives a realization of the out-of-sample cost associate with the testing sample path (b822 , b

83
3 ). To get an

estimate of the expected out-of-sample cost, we following the procedure above to sample " testing
paths and average over them. We refer to Algorithm 2 in Appendix EC.4.3 for a pseudocode for general
) -stage problems.

5.3. Numerical Results

In our experiments, we set ) ∈ {3,4,5}, #̂2 = · · · = #̂) ∈ {2,5,10}, #2 = · · · = #) = 30, " = 25. We are
interested in how the out-of-sample performance depend on different parameter values by varying
o ∈ {0.1,0.3,0.5}. The benchmark is chosen as the sample average approximation counterpart of our
robust formulation. We repeat the above out-of-sample testing procedure 30 times, each of which has
an independent instance, and we report the resulting boxplots in Figure 4.
The left column of Figure 4 shows the out-of-sample expected utility of the optimal SAA solution

and the optimal robust solution for different choices of ) and #̂C . We have the following observations:
(I) As #̂C increases, both the SAA solution and robust solutions achieve a higher out-of-sample

expected utility. This makes sense because a larger sample size yields a more faithful representation
of the underlying stochastic process.

(II) The average out-of-sample performance (as indicated by the circles) of the robust solution
is consistently better than that of the SAA solution, and the variability of the out-of-sample
performance (as indicated by the box length) of the robust solutions is consistently smaller than
that of the SAA solution. This shows the practical importance of having a robust formulation to
achieve better out-of-sample performance.

(III) When #̂C = 2,5, a large radius o = 0.5 has the best out-of-sample performance; whereas when
#̂C = 10, a large radius does not have clear advantage anymore.

These observations are consistent with our intuition and hold for all choices of ) .
To further investigate the impact of the sample size and the radius on the out-of-sample performance,

on the right column of Figure 4, we plot the instance-wise difference between SAA and robust solutions.
A positive value means the robust solution performs better than the SAA solution out-of-sample for a
particular instance. We have the following observations:
(I) The performance of the robust solution has a clear advantage over the SAA solution when the

sample size #̂C is small, and the advantage diminishes as the sample size becomes larger.
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Figure 4 Out-of-sample expected optimal utility yielding from robust and SAA formulations (left column) and their
differences (right column)

(II) The best radius decreases as the sample size #̂C increases and increases as ) increases. This makes
sense because the distributionally uncertainty reduces when more sample paths are observed and
amplifies when there are more stages.

These observations are also consistent with our intuition and validate the robust approach. In summary,
the numerical results demonstrate the clear advantage of our robust formulation as compared to the
sample average approximation.

6. Concluding Remarks
In this paper, we develop reformulations for distributionally robust optimization with nested distance.
These reformulations unveil equivalence between static and dynamic formulations of multistage
distributionally robust problem and can be viewed as sample average approximation with norm
regularization. For the future work, it is interesting to study multistage problems with general convex
objective and constraints, as well as the finite-sample performance guarantees of the robust solution.
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Supplementary Material

EC.1. Proofs for Section 3.1

We consider a relaxation

sup
ℙ∈MC

Eℙ

[
/ c (/ [) ])

]
, (EC.1)

where the nested distance uncertainty set (3) is relaxed to the causal transport distance uncertainty
set

MC =
{
ℙ ∈ P (Ξ) : C? (ℙ̂,ℙ) ≤ o

}
.

EC.1.1. Proof of Theorem 1

We have the following result for the relaxed problem (EC.1).

Proposition EC.1. Let ? =∞. Then for any feasible policy (x1, . . . , x) ), it holds that

sup
ℙ∈MC

Eℙ

[ ∑
B∈[) ]

c>B xB (/ [B])
]

= sup
W[C ] ∈ΓC

[C ]

EW[C ]

[ ∑
B∈[C ]

c>B xB (/ [B]) +Eℙ̂
C+1|/̂ [C ]

[
sup

bC+1∈ΞC+1:‖ bC+1−/̂C+1 ‖≤o
+
C+1 |/̂ [C+1]

(/ [C ] , bC+1)
] ]
.

Proof of Proposition EC.1. We prove by induction. By definition, the case of C = ) holds trivially.
Suppose we have proved for the case of C, where C = 2, . . . ,) , now we prove the result also holds
for C − 1. Denote by ΓC

[C ] the set of all causal couplings on Ξ[C ] between ℙ̂[C ] and the distributions in
MC
[C ] := {ℙ[C ] ∈ P (Ξ[C ]) : C∞(ℙ̂[C ] ,ℙ[C ]) ≤ o}. According to the induction hypothesis, we have that

+ := sup
ℙ∈MC

Eℙ

[ ∑
B∈[) ]

c>B xB (/ [B])
]

= sup
W[C ] ∈ΓC

[C ]

EW[C ]

[ ∑
B∈[C ]

c>B xB (/ [B]) +Eℙ̂
C+1|/̂ [C ]

[
sup

bC+1∈ΞC+1:‖ bC+1−/̂C+1 ‖≤o
+
C+1 |/̂ [C+1]

(/ [C ] , bC+1)
] ]

=: sup
W[C ] ∈ΓC

[C ]

EW[C ]

[ ∑
B∈[C ]

c>B xB (/ [B]) + +̄C+1 |/̂ [C ] (/ [C ])
]
.
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For any causal transport plan W [C ] between ℙ̂[C ] and ℙ[C ] , by the tower property of conditional
expectation, it holds that

EW[C ]

[ ∑
B∈[C ]

c>B xB (/ [B]) + +̄C+1 |/̂ [C ] (/ [C ])
]

= EW[C−1]

[ ∑
B∈[C−1]

c>B xB (/ [B])
]
+EW[C ]

[
c>C xC (/ [C ]) + +̄C+1 |/̂ [C ] (/ [C ])

]
= EW[C−1]

[ ∑
B∈[C−1]

c>B xB (/ [B])
]
+EW[C−1]

[
EW

/̂C | (/̂ [C−1] ,/ [C−1] )

[
EW

/C | (/̂ [C ] ,/ [C−1] )

[
c>C xC (/ [C ]) + +̄C+1 |/̂ [C ] (/ [C ])

] ] ]
= EW[C−1]

[ ∑
B∈[C−1]

c>B xB (/ [B])
]
+EW[C−1]

[
E
ℙ̂
C |/̂ [C−1]

[
EW

/C | (/̂ [C ] ,/ [C−1] )

[
c>C xC (/ [C ]) + +̄C+1 |/̂ [C ] (/ [C ])

] ] ] ]
,

(EC.2)
where, in the last equations above, we have used the property of the causal transport plan
W/̂C | (/̂ [C−1] ,/ [C−1] )

= ℙ̂/̂C |/̂ [C−1]
. Note that given the distribution ℙ̂[C ] , the causal transport plan W [C ] is

determined completely by W [C−1] and W/C | (/̂ [C ] ,/ [C−1] )
, and that by definition, the constraint

W [C ]-ess sup
/̂ [C ] ,/ [C ] ∈Ξ[C ]

max
B∈[C ]
‖/̂B − /B ‖ ≤ o

is equivalent to
W [C−1]-ess sup

/̂ [C−1] ,/ [C−1] ∈Ξ[C−1]

max
B∈[C−1]

‖/̂B − /B ‖ ≤ o

and
W/C | (/̂ [C ] ,/ [C−1] )

-ess sup
/C ∈ΞC

‖/̂ C − / C ‖ ≤ o, ∀/̂ [C ] ∈ supp ℙ̂[C ] , / [C−1] ∈ suppℙ[C ] .

Thereby maximizing over W [C ] ∈ ΓC
[C ] is equivalent to maximizing over W [C−1] ∈ ΓC

[C−1] and W/C | (/̂ [C ] ,/ [C−1] )
∈

{ℙC ∈ P (ΞC ) : ℙC -ess sup
bC ∈ΞC

‖bC − /̂ C ‖ ≤ o} =:MC . Observe that

sup
W
/C | (/̂ [C ] ,/ [C−1] )

∈MC

EW
/C | (/̂ [C ] ,/ [C−1] )

[
c>C xC (/ [C ]) + +̄C+1 |/̂ [C ] (/ [C ])

]
= sup
bC ∈ΞC :‖ bC−/̂C ‖≤o

{
2>C xC (/ [C−1] , bC ) + +̄C+1 |/̂ [C ] (/ [C−1] , bC )

}
= sup
bC ∈ΞC :‖ bC−/̂C ‖≤o

+
C |/̂ [C ]
(/ [C−1] , bC ).

Hence, together with (EC.2), it follows that

+ = sup
W[C−1] ∈ΓC

[C−1]

EW[C−1]

[ ∑
B∈[C−1]

c>B xB (/ [B]) +Eℙ̂
C |/̂ [C−1]

[
sup

bC ∈ΞC :‖ bC−/̂C ‖≤o
+
C |/̂ [C ]
(/ [C−1] , bC )

] ]
,

which completes the induction. �

Proof of Theorem 1. We prove the theorem by showing that for every policy (x1(/1), · · · , x) (/ [) ])) ∈
Π, it holds that

sup
ℙ∈M

Eℙ

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]
= sup

ℙ∈MC
Eℙ

[ ∑
C ∈[) ]

c>B xC (/ [C ])
]
.
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SinceM ⊂MC, the left-hand side is less than or equal to the right-hand side. It remains to prove the
other direction. Applying Proposition EC.1 to a special case where XC (GC−1, / C ) = xC (/ C ), the right-hand
side above equals

E
ℙ̂
/̂2

[
sup

b2∈Ξ2:‖ b̂2−b2 ‖≤o

{
2>2 G2(b2) +Eℙ̂

/̂3 |/̂2

[
sup

b3∈Ξ3:‖ b̂3−b3 ‖≤o

{
2>3 G3(b3) + · · · +

E
ℙ̂
/̂) |/̂ [)−1]

[
sup

b) ∈Ξ) :‖ b̂) −b) ‖≤o
2>) G) (b) )

]}]
.

It follows that there exists a worst-case distribution ℙ̃ of the form

ℙ̃ = T#ℙ̂, where T (b̂ [) ]) = (T1(b̂1),T2(b̂ [2]), . . . ,T) (b̂ [) ])), ∀b̂ [) ] ∈ Ξ[) ] ,

where
TC (b̂ [C ]) ∈ arg max

bC ∈ΞC :‖ b̂C−bC ‖≤o

{
2>C GC (bC ) +Eℙ̂

C+1|/̂ [C ]
[&C+1(GC (bC ) | /̂ [C+1])]

}
.

Since ℙ̃ is finitely supported, for every n > 0, we can define a perturbed transport map T n = (T n1 , . . . ,T
n
)
),

where T nC : Ξ[C ]→ ΞC , such that T nC is bijective and ‖T nC − TC ‖∞ ≤ n , C ∈ [)]. For example, if TC (b [C ]) =
TC (b ′[C ]) for b [C ] ≠ b

′
[C ] , we can slightly perturb the value of TC (b ′[C ]) to make them different. This makes

T n a bi-causal transport map as (T n )−1 := ((T n1 )
−1, . . . , (T n

)
)−1) is causal. Define

ℙn := (1− n
o+n )T

n
#ℙ̂ +

n
o+n ℙ̂.

It follows that
D∞(ℙ̂,ℙn ) ≤ (1− n

o+n ) sup
b̂[) ] ∈supp ℙ̂

‖b̂ [) ] − T n (b̂ [) ])‖

≤ (1− n
o+n ) sup

b̂[) ] ∈supp ℙ̂
(‖b̂ [) ] − T (b̂ [) ])‖ + n)

≤ (1− n
o+n ) (C∞(ℙ̂, ℙ̃) + n)

≤ o.
Hence ℙn is a feasible distribution. Define a compact set

Ξ̂o :=
⋃

b̂ ∈supp ℙ̂

cl{b ∈ Ξ : ‖b − b̂‖ ≤ o},

where cl(·) denotes the closure of a set. Then by definition ofM and ∞-Wasserstein distance, we have
suppℙ ⊂ Ξ̂o for every ℙ ∈M. It follows that

sup
ℙ∈M

Eℙ

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]

≥ Eℙn

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]

= (1− n
o+n )Eℙ̂

[ ∑
C ∈[) ]

c>C xC (T n (/̂ [C ]))
]
+ n
o+n Eℙ̂

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]

≥ Eℙ̃

[ ∑
C ∈[) ]

c>C xC (/ [C ])
]
, as n→ 0,

where the last step holds because x is continuous. �
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EC.1.2. Proof of Theorem 2
Proposition EC.2. Let ? ∈ [1,∞). Then for any feasible policy (x1, . . . , x) ), it holds that

sup
ℙ∈MC

Eℙ

[ ∑
B∈[) ]

c>B xB (/ [B])
]

= sup
W[C ] ∈ΓC

[C ]

EW[C ]

[ ∑
B∈[C ]

c>B xB (/ [B]) +Eℙ̂
C+1|/̂ [C ]

[
sup

bC+1∈ΞC+1

{
+
C+1 |/̂ [C+1]

(/ [C ] , bC+1) −_‖bC+1 − /̂ C+1‖
}] ]

.

Proof of Proposition EC.2. We prove by induction. By definition, the case of C = ) holds trivially.
Suppose we have proved for the case of C, where C = 2, . . . ,) , now we prove the result also holds for
C −1. Denote by ΓC

[C ] the set of all causal coupling on Ξ[C ] between ℙ̂[C ] and any distribution on P (Ξ[C ]).
According to the induction hypothesis, we have that

+ := sup
ℙ∈MC

Eℙ

[ ∑
B∈[) ]

c>B xB (/ [B])
]

= sup
W[C ] ∈ΓC

[C ]

EW[C ]

[ ∑
B∈[C ]

c>B xB (/ [B]) −_
∑
B∈[C ]
‖/B − /̂B ‖ ? +Eℙ̂

C+1|/̂ [C ]

[
sup

bC+1∈ΞC+1

{
+
C+1 |/̂ [C+1]

(/ [C ] , bC+1) −_‖bC+1 − /̂ C+1‖ ?
}]]

=: sup
W[C ] ∈ΓC

[C ]

EW[C ]

[ ∑
B∈[C ]

c>B xB (/ [B]) −_
∑
B∈[C ]
‖/B − /̂B ‖ ? + +̄C+1 |/̂ [C ] (/ [C ])

]

For any causal transport plan W [C ] between ℙ̂[C+1] and ℙ[C+1] , by the tower property of conditional
expectation, it holds that

EW[C ]

[ ∑
B∈[C ]

c>B xB (/ [B]) −_
∑
B∈[C ]
‖/B − /̂B ‖ ? + +̄C+1 |/̂ [C ] (/ [C ])

]
= EW[C−1]

[ ∑
B∈[C−1]

c>B xB (/ [B]) −_
∑

B∈[C−1]
‖/B − /̂B ‖ ?

]
+EW[C ]

[
c>C xC (/ [C ]) −_‖/ C − /̂ C ‖ ? + +̄C+1 |/̂ [C ] (/ [C ])

]
= EW[C−1]

[ ∑
B∈[C−1]

c>B xB (/ [B]) −_
∑

B∈[C−1]
‖/B − /̂B ‖ ?

]
+EW[C−1]

[
EW

/̂C | (/̂ [C−1] ,/ [C−1] )

[
EW

/C | (/̂ [C ] ,/ [C−1] )

[
c>C xC (/ [C ]) −_‖/ C − /̂ C ‖ ? + +̄C+1 |/̂ [C ] (/ [C ])

] ] ]
= EW[C−1]

[ ∑
B∈[C−1]

c>B xB (/ [B]) −_
∑

B∈[C−1]
‖/B − /̂B ‖ ?

]
+EW[C−1]

[
E
ℙ̂
C |/̂ [C−1]

[
EW

/C | (/̂ [C ] ,/ [C−1] )

[
c>C xC (/ [C ]) −_‖/ C − /̂ C ‖ ? + +̄C+1 |/̂ [C ] (/ [C ])

] ] ] ]
,

(EC.3)
where, in the last equations above, we have used the property of the causal transport plan
W/̂C | (/̂ [C−1] ,/ [C−1] )

= ℙ̂/̂C |/̂ [C−1]
. Note that given the distribution ℙ̂[C ] , the joint distribution W [C ] is determined

completely by W [C−1] and W/C | (/̂ [C ] ,/ [C−1] )
. Thereby maximizing over W [C ] ∈ ΓC

[C ] is equivalent to maximizing
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over W [C−1] ∈ ΓC
[C−1] and W/C | (/̂ [C ] ,/ [C−1] )

∈ P (ΞC ). Observe that

sup
W
/C | (/̂ [C ] ,/ [C−1] )

∈P (ΞC )
EW

/C | (/̂ [C ] ,/ [C−1] )

[
c>C xC (/ [C ]) −_‖/ C − /̂ C ‖ ? + +̄C+1 |/̂ [C ] (/ [C ])

]
= sup
bC ∈ΞC

{
2>C xC (/ [C−1] , bC ) + +̄C+1 |/̂ [C ] (/ [C−1] , bC ) −_‖bC − /̂ C ‖ ?

}
= sup
bC ∈ΞC

{
+
C |/̂ [C ]
(/ [C−1] , bC ) −_‖bC − /̂ C ‖ ?

}
.

Hence, together with (EC.2), it follows that

+ = sup
W[C−1] ∈ΓC

[C−1]

EW[C−1]

[ ∑
B∈[C−1]

c>B xB (/ [B]) +Eℙ̂
C |/̂ [C−1]

[
sup
bC ∈ΞC

{
+
C |/̂ [C ]
(/ [C−1] , bC ) −_‖bC − /̂ C ‖ ?

}] ]
,

which completes the induction. �

Proof of Theorem 2. We prove the theorem by showing that for every (x1(/1), · · · , x) (/ [) ])), it
holds that

sup
ℙ∈M

Eℙ

[ ∑
B∈[) ]

c>B xB (/ [B])
]
= sup

ℙ∈MC
Eℙ

[ ∑
B∈[) ]

c>B xB (/ [B])
]
.

SinceM ⊂MC, the left-hand side is less than or equal to the right-hand side. It remains to prove the
other direction. Using the characterization of the extreme points of the set of causal transport plans
from ℙ̂ (Veraguas et al. 2020), there exists a worst-case distribution of the form

ℙ̃ = (1− @)T#ℙ̂ + @T#ℙ̂,

where @ ∈ [0,1] and T and T are causal transport maps. Since ℙ̃ is finitely supported, for every n > 0,
we can define perturbed transport maps T

n
and T n such that both T

n
and T n are bijective and their

images has no overlap. It follows that both T
n
and T n are bi-causal transport maps. Moreover, their

mixture ℙn = (1− @)T n#ℙ̂ + @T n#ℙ̂ is a bi-causal transport plan, since by construction, there is a causal
transport map from ℙn to ℙ̂, defined as

T†(b) :=
{(
(T n1 )−1(b1), . . . , (T

n

) )−1(b [) ])
)
, if b ∈ suppT

n

#ℙ̂,(
(T n1 )

−1(b1), . . . , (T n) )−1(b [) ])
)
, if b ∈ suppT n#ℙ̂.

Let
ℙ̃n := (1− n

o+n )ℙ
n + n

o+n ℙ̂.

It follows that
D? (ℙ̂, ℙ̃n ) ≤ (1− n

o+n )D? (ℙ̂,ℙn ) ≤ (1− n
o+n ) (D? (ℙ̂, ℙ̃) + n) ≤ o.

Hence ℙn is a feasible distribution. Moreover,

sup
ℙ∈M

Eℙ

[ ∑
B∈[) ]

c>B xB (/ [B])
]

≥ Eℙ̃n

[ ∑
B∈[) ]

c>B xB (/ [B])
]

= (1− n
o+n )Eℙn

[ ∑
B∈[) ]

c>B xB (/ [B])
]
+ n
o+n Eℙ̂

[ ∑
B∈[) ]

c>B xB (/ [B])
]

= (1− n
o+n ) sup

ℙ∈MC
Eℙ

[ ∑
B∈[) ]

c>B xB (/ [B])
]
+ n
o+n Eℙ̂

[ ∑
B∈[) ]

c>B xB (/ [B])
]
.

Letting n→ 0 yields the desired result. �
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EC.2. Proof of Theorem 3
EC.2.1. ? =∞
Using Theorem 1, problem (1) is equivalent to

min
xC ∈XC (xC−1) ,∀C ∈[) ]

{
2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3|/̂2

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3])+

· · · +E
ℙ̂
) |/̂ [)−1]

[
sup

‖ b) −/̂) ‖≤o
2>) x) (b [) ])

]
· · ·

}]}]}
.

Using Assumption 1, this becomes

min
xC ∈XC (xC−1) ,∀C ∈[) ]

{
2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3])+

· · · +E
ℙ̂)

[
sup

‖ b) −/̂) ‖≤o
2>) x) (b [) ])

]
· · ·

}]}]}
.

Let us show recursively that for fixed x [C−1] ,

+C (x [C−1]) := inf
xB ∈XB (xB−1) ,B=C ,...)

{
2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3])+

· · · +E
ℙ̂)

[
sup

‖ b) −/̂) ‖≤o
2>) x) (b [) ])

]
· · ·

}]}]}
= 2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C−1

[
sup

‖ bC−1−/̂C−1 ‖≤o

{
2>C−1xC−1(b [C−1]) +QC (xC−1(b [C−1]), b [C−1])

}]
· · ·

}]}]
= 2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C−1

[
sup

‖ bC−1−/̂C−1 ‖≤o

{
2>C−1xC−1(b [C−1]) +Eℙ̂C

[
&C (xC−1(b [C−1]), /̂ C )

]}]
· · ·

}]}]
.

(EC.4)
The case of C =) + 1 holds trivially. Suppose (EC.4) holds for some C + 1, C = 2, . . . ,) , now we prove for
C. Using the induction hypothesis, it holds that

+C (x [C−1]) = inf
xC ∈XC (xC−1)

{
2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C

[
sup

‖ bC−/̂C ‖≤o

{
2>C xC (b [C ]) +QC+1(xC (b [C ]), b [C ])

}]
· · ·

}]}]}
= inf

xC ∈XC (xC−1)

{
2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C

[
sup

‖ bC−/̂C ‖≤o

{
2>C xC (b [C ]) +Eℙ̂C+1

[
&C+1(xC (b [C ]), /̂ C+1)

]}]
· · ·

}]}]}
.
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Exchanging infxC and E
ℙ̂B
[supbB ], B = 2, . . . , C − 1, it follows that

+C (x [C−1])

≥ 2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +

inf
xC ∈XC (xC−1)

E
ℙ̂C

[
sup

‖ bC−/̂C ‖≤o

{
2>C xC (b [C ]) +QC+1(xC (b [C ]), b [C ])

}]
· · ·

}]}]
≥ 2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +

inf
xC ∈XC (xC−1)

sup
ℙC ∈P (ΞC ):W∞ (ℙ̂C ,ℙC ) ≤o

EℙC

[
c>C xC (/ [C ]) +QC+1(xC (/ [C ]), / [C ])

]
· · ·

}]}]
= 2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +QC (xC−1(/ [C−1]), / [C−1]) · · ·

}]}]
.

(EC.5)

Define 6C (GC , b [C ]) : ℝ3GC ×Ξ[C ]→ℝ∪ {+∞} as

6C (GC , b [C ]) :=
{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]
, if GC ∈ XC (xC−1(b [C−1]), bC ),

+∞, otherwise.

Then 6 is random lower semi-continuous. Define R[C ] : Z[C ]→ℝ∪ {∞} as

R[C ] (a) := 2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3])+

· · · +E
ℙ̂C

[
sup

‖ bC−/̂C ‖≤o
a(b [C ])

]
· · ·

}]}]
.
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By definition, R[C ] is monotone and continuous with respect to the !∞-norm. Let XC be the space of
measurable functions from Ξ[C ] to -C . It follows that

inf
jC ∈XC

R[C ] (6C (jC (·), ·))

= inf
jC ∈XC

{
2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C

[
sup

‖ bC−/̂C ‖≤o
6C (jC (b [C ]), b [C ])

]
· · ·

}]}]}
= inf
jC ( b[C ] ) ∈XC (xC−1 ( b[C−1] ) , bC )

∀b[C ]

{
2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C

[
sup

‖ bC−/̂C ‖≤o

{
2>C jC (b [C ]) +Eℙ̂C+1

[
&C+1(jC (b [C ]), /̂ C+1)

] ]
· · ·

}]}]}
= inf

xC ∈XC (xC−1)

{
2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C

[
sup

‖ bC−/̂C ‖≤o

{
2>C xC (b [C ]) +Eℙ̂C+1

[
&C+1(xC (b [C ]), /̂ C+1)

]}]
· · ·

}]}]}
=+C (x [C−1]).

Define a ∈Z[C ] as
aC (b [C ]) := inf

GC ∈XC (xC−1 ( b[C−1] ) , bC )
6C (GC , b [C ]), b [C ] ∈ Ξ[C ] .

By (Shapiro et al. 2021, Theorem 9.110), we have that

+C (x [C−1])
= inf
jC ∈XC

R(6C (jC (·), ·))

=R(aC )

= 2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3])+

· · · +E
ℙ̂C

[
sup

‖ bC−/̂C ‖≤o
inf

GC ∈XC (xC−1 ( b[C−1] ) , bC )

{
2>C xC (b [C ]) +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]}]
· · ·

}]}]
= 2>1 G1 +Eℙ̂2

[
sup

‖ b2−/̂2 ‖≤o

{
2>2 x2(b2) +Eℙ̂3

[
sup

‖ b3−/̂3 ‖≤o

{
2>3 x3(b [3]) + · · · +Eℙ̂C

[
&C (xC−1, /̂ C )

]
· · ·

}]}]
.

This completes the induction. Therefore, using (EC.4) we have shown that the optimal value of (1) is

min
G1∈X1

{
2>1 G1 +Eℙ̂2

[&2(G1, /̂2)]
}
.

In addition, comparing with (EC.5), this shows that

E
ℙ̂C

[
&C (GC−1, /̂ C )

]
≥QC (GC−1, b [C−1]).
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Next, we prove by induction that

E
ℙ̂C

[
&C (GC−1, /̂ C )

]
=QC (GC−1, b [C−1]).

The base case C =) + 1 trivially holds. Suppose we have shown the case for some C + 1, C = 2, . . . ,) . It
suffices to prove E

ℙ̂C

[
&C (GC−1, /̂ C )

]
≤QC (GC−1, bC−1). By definition of &C , we have that

E
ℙ̂C

[
&C (GC−1, /̂ C )

]
= E

ℙ̂C

[
sup

‖ bC−/̂C ‖≤o
min

GC ∈XC (GC−1, bC )

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]}]
= sup

ℙC ∈P (ΞC ):W∞ (ℙ̂C ,ℙC ) ≤o
EℙC

[
min

GC ∈XC (GC−1, bC )

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]}]
= sup

ℙC ∈P (ΞC ):W∞ (ℙ̂C ,ℙC ) ≤o
min

xC ( b[C−1] , ·) ∈XC (GC−1, ·)
EℙC

[
2>C xC (b [C−1] , / C ) +Eℙ̂C+1

[
&C+1

(
xC (b [C−1] , / C ), /̂ C+1

) ] ]
≤ min

xC ( b[C−1] , ·) ∈XC (GC−1, ·)
sup

ℙC ∈P (ΞC ):W∞ (ℙ̂C ,ℙC ) ≤o
EℙC

[
2>C xC (b [C−1] , / C ) +Eℙ̂C+1

[
&C+1

(
xC (b [C−1] , / C ), /̂ C+1

) ] ]
=QC (GC−1, b [C−1]).

where the second equality follows from the Wasserstein DRO reformulation, and the third equality
follows from the interchangeability principle (Shapiro et al. 2021, Theorem 9.108). This completes the
induction. In addition, observe that

sup
‖ bC−/̂C ‖≤o

{
2>C x

★
C (b [C ]) +Eℙ̂C+1

[
&C+1(x★C (b [C ]), /̂ C+1)

]}
= sup
‖ bC−/̂C ‖≤o

min
GC ∈XC (x★C−1 ( b[C−1] ) , bC )

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]}
=&C (x★C−1(b [C−1]), /̂ C ).

Moreover, the optimal value of the inner minimization problem is continuous in b [C ] . Hence the
worst-case risk over the nested distance ball equals that over the causal transport distance ball. This
verifies the optimality of (x★1 , . . . , x

★
)
). �

EC.2.2. ? ∈ [1,∞)
Using Theorem 2, the soft penalty version of problem (1) is equivalent to

min
xC ∈XC (xC−1) ,∀C ∈[) ]

{
_o? + 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3|/̂2

[
sup
b3∈Ξ3

{
2>3 x3(b [3])+

· · · +E
ℙ̂
) |/̂ [)−1]

[
sup
b) ∈Ξ)

{
2>) x) (b [) ]) −_‖b) − /̂) ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]}
.

Using Assumption 1, this becomes

min
xC ∈XC (xC−1) ,∀C ∈[) ]

{
_o? + 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3])+

· · · +E
ℙ̂)

[
sup
b) ∈Ξ)

{
2>) x) (b [) ]) −_‖b) − /̂) ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]}
.
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Let us show recursively that for fixed _ and x [C−1] ,

+C (x [C−1])

:= inf
xB ∈XB (xB−1) ,B=C ,...)

{
2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3])+

· · · +E
ℙ̂)

[
sup
b) ∈Ξ)

{
2>) x) (b [) ]) −_‖b) − /̂) ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]}
= 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +Eℙ̂C−1

[
sup

bC−1∈ΞC−1

{
2>C−1xC−1(b [C−1])+

QC (xC−1(b [C−1]), b [C−1]) −_‖bC−1 − /̂ C−1‖ ?
}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]
.

= 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +Eℙ̂C−1

[
sup

bC−1∈ΞC−1

{
2>C−1xC−1(b [C−1])+

E
ℙ̂C

[
&C (xC−1(b [C−1]), /̂ C )

]
−_‖bC−1 − /̂ C−1‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]
.

(EC.6)

The case of C =) + 1 holds trivially. Suppose (EC.6) holds for some C + 1, C = 2, . . . ,) , now we prove for

C. Using the induction hypothesis, it holds that

+C (x [C−1])

= inf
xC ∈XC (xC−1)

{
2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C

[
sup
bC ∈ΞC

{
2>C xC (b [C ]) +QC+1(xC (b [C ]), b [C ]) −_‖bC − /̂ C ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]}
= inf

xC ∈XC (xC−1)

{
2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C

[
sup
bC ∈ΞC

{
2>C xC (b [C ]) +Eℙ̂C+1

[
&C+1(xC (b [C ]), /̂ C+1)

]
−_‖bC − /̂ C ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]}
.
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Exchanging infxC and E
ℙ̂B
[supbB ], B = 2, . . . , C − 1, we obtain that

+C (x [C−1])

≥ 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · + inf

xC ∈XC (xC−1)

E
ℙ̂C

[
sup
bC ∈ΞC

{
2>C xC (b [C ]) +QC+1(xC (b [C ]), b [C ]) −_‖bC − /̂ C ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]
= 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · + inf

xC ∈XC (xC−1)
sup

ℙC ∈P (ΞC )

{
EℙC

[
c>C xC (b [C−1] , / C )

+QC+1
(
xC (b [C−1] , / C ), (b [C−1] , / C )

) ]
−_W ?

? (ℙ̂C ,ℙC )
}
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]
.

= 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +QC (xC−1(b [C−1]), bC−1)

· · · −_‖b3 − /̂3‖ ?
}]
−_‖b2 − /̂2‖ ?

}]
.

(EC.7)

Define 6C (GC , b [C ]) : ℝ3GC ×Ξ[C ]→ℝ∪ {+∞} as

6C (GC , b [C ]) :=
{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]
−_‖bC − /̂ C ‖ ?, if GC ∈ XC (xC−1(b [C−1]), bC ),

+∞, otherwise.

Then 6 is random lower semi-continuous. Define R[C ] : Z[C ]→ℝ∪ {∞} as

R[C ] (a) := 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C

[
sup
bC ∈ΞC

{
a(b [C ]) −_‖bC − /̂ C ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]
.
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By definition, R[C ] is monotone and continuous with respect to the !∞-norm. Let XC be the space of
measurable functions from Ξ[C ] to -C . It follows that

inf
jC ∈XC

R[C ] (6C (jC (·), ·))

= inf
jC ∈XC

{
2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +

E
ℙ̂C

[
sup
bC ∈ΞC

{
6C (jC (b [C ]), b [C ]) −_‖bC − /̂ C ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]}
= inf
jC ( b[C ] ) ∈XC (xC−1 ( b[C−1] ) , bC )

∀b[C ]

{
2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +Eℙ̂C

[
sup
bC ∈ΞC

{
2>C jC (b [C ]) +Eℙ̂C+1

[
&C+1(jC (b [C ]), /̂ C+1)

]
−_‖bC − /̂ C ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]}
= inf

xC ∈XC (xC−1)

{
2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +Eℙ̂C

[
sup
bC ∈ΞC

{
2>C xC (b [C ]) +Eℙ̂C+1

[
&C+1(xC (b [C ]), /̂ C+1)

]
−_‖bC − /̂ C ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]}
=+C (x [C−1]).

Define a ∈Z[C ] as
aC (b [C ]) := inf

GC ∈XC (xC−1 ( b[C−1] ) , bC )
6C (GC , b [C ]), b [C ] ∈ Ξ[C ] .

By (Shapiro et al. 2021, Theorem 9.110), we have that

+C (x [C−1])
= inf
jC ∈XC

R[C ] (6C (jC (·), ·))

=R[C ] (aC )

= 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +Eℙ̂C

[
sup
bC ∈ΞC

inf
GC ∈XC (xC−1 ( b[C−1] ) , bC )

{
2>C xC (b [C ]) +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]
−_‖bC − /̂ C ‖ ?

}]
· · · −_‖b3 − /̂3‖ ?

}]
−_‖b2 − /̂2‖ ?

}]
= 2>1 G1 +Eℙ̂2

[
sup
b2∈Ξ2

{
2>2 x2(b2) +Eℙ̂3

[
sup
b3∈Ξ3

{
2>3 x3(b [3]) + · · · +Eℙ̂C

[
&C (xC−1, /̂ C )

]
· · ·

−_‖b3 − /̂3‖ ?
}]
−_‖b2 − /̂2‖ ?

}]
.

This completes the induction. Therefore, using (EC.4) we have shown that the optimal value of (1) is

min
G1∈X1

{
_o? + 2>1 G1 +Eℙ̂2

[&2(G1, /̂2)]
}
.

In addition, comparing with (EC.7), this shows that

E
ℙ̂C

[
&C (GC−1, /̂ C )

]
≥QC (GC−1, b [C−1]).
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Next, we prove by induction that the above inequality holds as equality. The base case C = ) + 1
trivially holds. Suppose we have shown the case for some C + 1, C = 2, . . . ,) . It suffices to prove
E
ℙ̂C

[
&C (GC−1, /̂ C )

]
≤QC (GC−1, bC−1). By definition of &C , we have that

E
ℙ̂C

[
&C (GC−1, /̂ C )

]
= E

ℙ̂C

[
sup
bC ∈ΞC

min
GC ∈XC (GC−1, bC )

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]
−_‖bC − /̂ C ‖ ?

}]
= sup

ℙC ∈P (ΞC )

{
EℙC

[
min

GC ∈XC (GC−1, bC )

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]}]
−_W ?

? (ℙ̂C ,ℙC )
}

= sup
ℙC ∈P (ΞC )

min
xC ( b[C−1] , ·) ∈XC (GC−1, ·)

{
EℙC

[
2>C xC (b [C−1] , / C ) +Eℙ̂C+1

[
&C+1

(
xC (b [C−1] , / C ), /̂ C+1

) ] ]
−_W ?

? (ℙ̂C ,ℙC )
}
,

where the second equality follows from the Wasserstein DRO reformulation (Zhang et al. 2022), and
the third equality follows from the interchangeability principle (Shapiro et al. 2021, Theorem 9.108).
Exchanging sup and min, we obtain

E
ℙ̂C

[
&C (GC−1, /̂ C )

]
≤ min

xC ( b[C−1] , ·) ∈XC (GC−1, ·)
sup

ℙC ∈P (ΞC )

{
EℙC

[
2>C xC (b [C−1] , / C ) +Eℙ̂C+1

[
&C+1

(
xC (b [C−1] , / C ), /̂ C+1

) ] ]
−_W ?

? (ℙ̂C ,ℙC )
}

=QC (GC−1, b [C−1]).

This completes the induction. In addition, observe that

sup
bC ∈ΞC

{
2>C x

★
C (b [C ]) +Eℙ̂C+1

[
&C+1(x★C (b [C ]), /̂ C+1)

]
−_‖bC − /̂ C ‖ ?

}
= sup
bC ∈ΞC

min
GC ∈XC (x★C−1 ( b[C−1] ) , bC )

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , /̂ C+1)

]
−_‖bC − /̂ C ‖ ?

}
=&C (x★C−1(b [C−1]), /̂ C ).

Moreover, the optimal value of the inner minimization problem is continuous in b [C ] . Hence the
worst-case risk with respect to the nested distance equals that with respect to the causal transport
distance. This verifies the optimality of (x★1 , . . . , x

★
)
). �

EC.3. Proofs for Section 4
EC.3.1. Proof of Corollary 2
Applying Theorem 3, we have that for ? =∞,

&C (GC−1, ĉC ) = sup
‖2C−ĉC ‖≤o

min
GC ∈XC (GC−1)

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]}
= min
GC ∈XC (GC−1)

sup
‖2C−ĉC ‖≤o

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]}
= min
GC ∈XC (GC−1)

{
ĉ>C GC + o‖GC ‖∗ +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]}
.

For ? = 1,
&C (GC−1, ĉC ) := sup

2C ∈ΞC
min

GC ∈XC (GC−1)

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]
−_‖2C − ĉC ‖

}
= min
GC ∈XC (GC−1)

sup
2C ∈ΞC

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]
−_‖2C − ĉC ‖

}
= min
GC ∈XC (GC−1) , ‖GC ‖∗≤_

{
ĉ>C GC +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]}
.
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For ? ∈ (1,∞),

&C (GC−1, ĉC ) := sup
2C ∈ΞC

min
GC ∈XC (GC−1)

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]
−_‖2C − ĉC ‖ ?

}
= min
GC ∈XC (GC−1)

sup
2C ∈ΞC

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , ĉC+1)

]
−_‖2C − ĉC ‖ ?

}
= min
GC ∈XC (GC−1)

{
ĉ>C GC + (1− 1/?) ( 1

?_
)

1
?−1 ‖GC ‖

?

?−1
∗ +E

ℙ̂C+1

[
&C+1(GC , ĉC+1)

]}
.

�

EC.3.2. Proof of Proposition 1
We first prove for the case of ? =∞. Consider

sup
‖2C−ĉC ‖≤o

{
2>C x̄C (2 [C ]) +Eℙ̂C+1

[
&C+1(x̄C (2 [C ]), ĉC+1)

]}
.

By definition of x̄C , we have

2>C x̄C (2 [C ]) +Eℙ̂C+1

[
&C+1

(
x̄C (2 [C ]), ĉ [C ]

) ]
= 2>C x̂C

(̂
c2[C ]

)
+E

ℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C ]), ĉC+1

) ]
.

Decompose the right-hand side as

2>C x̂C
(̂
c2[C ]

)
+E

ℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C ]), ĉC+1

) ]
= ( ĉ2C )>x̂C ( ĉ

2
[C ]) + (2C − ĉ

2
C )>x̂C ( ĉ

2
[C ]) +Eℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C ]), ĉC+1

) ]
≤ ( ĉ2C )>x̂C ( ĉ

2
[C ]) + o‖x̂C ( ĉ

2
[C ])‖∗ +Eℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C ]), ĉC+1

) ]
.

By definition of ĉ2[C ] , the last expression is upper bounded by

ĉ>C x̂C ( ĉ
2
[C−1] , ĉC ) + o‖x̂C ( ĉ

2
[C−1] , ĉC )‖∗ +Eℙ̂C+1

[
&C+1(x̂C ( ĉ2[C−1] , ĉC ), ĉC+1)

]
=&C (x̂C−1( ĉ2[C−1]), ĉC ).

Therefore, we have shown that

sup
‖2C−ĉC ‖≤o

{
2>C x̄C (2 [C ]) +Eℙ̂C+1

[
&C+1(x̄C (2 [C ]), ĉC+1)

]}
≤&C (x̄C−1(2 [C−1]), ĉC ).

Taking the expectation over ĉC ∼ ℙ̂C and using Theorem 3, we obtain that

E
ℙ̂C

[
sup

‖2C−ĉC ‖≤o

{
2>C x̄C (2 [C ]) +Eℙ̂C+1

[
&C+1(x̄C (2 [C ]), ĉC+1)

]}]
≤QC (x̄C−1(2 [C−1])).

Hence we have

x̄C (2 [C−1] , ·) ∈ arg min
xC (2[C−1] , ·) ∈XC ( x̄C−1 (2[C−1] ) , ·)

dC
[
c>C xC (2 [C−1] , cC ) +QC+1

(
xC (2 [C−1] , cC )

) ]
,

which shows the optimality of the policy (x̄1, . . . , x̄) ).
Next, we prove for the case of ? ∈ [1,∞). Consider

sup
2C ∈ΞC

{
2>C x̄C (2 [C ]) +Eℙ̂C+1

[
&C+1(x̄C (2 [C ]), ĉC+1)

]
−_‖2C − ĉC ‖ ?

}
.

Using the expression for x̄C , we obtain

2>C x̄C (2 [C ]) +Eℙ̂C+1

[
&C+1

(
x̄C (2 [C ]), ĉ [C ]

) ]
= 2>C x̂C

(̂
c2[C ]

)
+E

ℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C ]), ĉC+1

) ]
.



ec15

Decompose the right-hand side as

2>C x̂C
(̂
c2C

)
+E

ℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C ]), ĉC+1

) ]
= ( ĉ2[C ])>x̂C ( ĉ

2
[C ]) + (2C − ĉ

2
C )>x̂C ( ĉ

2
[C ]) +Eℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C ]), ĉC+1

) ]
≤ ( ĉ2C )>x̂C ( ĉ

2
[C ]) +

1
?

(
(?_)1/? ‖2C − ĉ2C ‖

) ? + (1− 1
?
)
(
(?_)−1/? ‖x̂C ( ĉ2[C ])‖∗

) ?

?−1 +E
ℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C ]), ĉC+1

) ]
,

where the last inequality follows from the Young’s inequality. By definition of ĉ2[C ] , the last expression
is upper bounded by

ĉ>C x̂C ( ĉ
2
[C−1] , ĉC ) +_‖2C − ĉC ‖ ? + (1−

1
?
)
(
(?_)−1/? ‖x̂C ( ĉ2[C−1] , ĉC )‖∗

) ?

?−1 +E
ℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C−1] , ĉC ), ĉC+1

) ]
.

Thereby we have

sup
2C ∈ΞC

{
2>C x̄C (2 [C ]) +Eℙ̂C+1

[
&̂C+1(x̄C (2 [C ]), ĉC+1)

]
−_‖2C − ĉC ‖ ?

}
≤ ĉ>C x̂C ( ĉ

2
[C−1] , ĉC ) + (1−

1
?
)
(
(?_)−1/? ‖x̂C ( ĉ2[C−1] , ĉC )‖∗

) ?

?−1 +E
ℙ̂C+1

[
&C+1

(
x̂C ( ĉ2[C−1] , ĉC ), ĉC+1

) ]
.

=&C (x̂C−1( ĉ2[C−1]), ĉC )
=&C (x̄C−1(2 [C−1]), ĉC ),

which shows the optimality of the policy (x̄1, . . . , x̄) ). �

EC.3.3. Proof of Corollary 3
We first compute

&C (GC−1, b̂C ) := sup
‖1C−b̂C ‖≤o

min
GC ∈XC (GC−1,1C )

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , b̂C+1)

]}
,

Thanks to (Shapiro et al. 2021, Section 3.2.1), the objective 2>C GC +Eℙ̂C+1

[
&C+1(GC , b̂C+1)

]
is convex in GC .

Using convex programming duality we obtain that

min
GC ∈XC (GC−1,1C )

{
2>C GC +Eℙ̂C+1

[
&C+1

(
GC , b̂C+1

) ]}
= max
HC ∈ℝ3C

{
H>C (1C − �CGC−1) +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&C+1

(
GC , b̂C+1

) ] }}
.

It follows that

&C (GC−1, b̂C )

= sup
‖1C−b̂C ‖≤o

max
HC ∈ℝ3C

{
H>C (1C − �CGC−1) +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&C+1

(
GC , b̂C+1

) ] }}
= max
HC ∈ℝ3C

sup
‖1C−b̂C ‖≤o

{
H>C (1C − �CGC−1) +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&C+1

(
GC , b̂C+1

) ] }}
= max
HC ∈ℝ3C

{
H>C ( b̂C − �CGC−1) + o‖HC ‖∗ +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&C+1

(
GC , b̂C+1

) ] }}
= max
HC ∈ℝ3C

{
( b̂C − �CGC−1)>HC + o‖HC ‖∗ −k∗C (�>C HC )

}
.
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The case of uncertainty in HC can be dealt in a similar way. We first compute

&C (GC−1, ĤC ) := sup
‖�C−ĤC ‖≤o

min
GC ∈XC (GC−1,�C )

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , ĤC+1)

]}
,

Thanks to (Shapiro et al. 2021, Section 3.2.1), the objective 2>C GC +Eℙ̂C+1

[
&C+1(GC , b̂C+1)

]
is convex in GC .

Using convex programming duality we obtain that

min
GC ∈XC (GC−1,�C )

{
2>C GC +Eℙ̂C+1

[
&C+1

(
GC , ĤC+1

) ]}
= max
HC ∈ℝ3C

{
H>C (1C − �CGC−1) +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&C+1

(
GC , ĤC+1

) ] }}
.

It follows that

&C (GC−1, Ĥ [C ])

= sup
‖�C−ĤC ‖≤o

max
HC ∈ℝ3C

{
H>C (1C − �CGC−1) +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&C+1

(
GC , ĤC+1

) ] }}
= max
HC ∈ℝ3C

sup
‖�C−ĤC ‖≤o

{
H>C (1C − �CGC−1) +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&C+1

(
GC , ĤC+1

) ] }}
= max
HC ∈ℝ3C

{
H>C (1C − ĤCGC−1) + o‖GC−1H

>
C ‖∗ +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&̂C+1

(
GC , b̂C+1

) ] }}
= max
HC ∈ℝ3C

{
(1C − ĤCGC−1)>HC + o‖GC−1H

>
C ‖∗ −k∗C (�>C HC )

}
.

When ‖·‖ = ‖·‖op, it holds that

max
‖Δ‖op≤o

H>C ΔGC−1 = o‖HC ‖∞‖GC−1‖ = max
9∈[<C ], X∈{1,−1}

oXH>C 4 9 ‖GC−1‖.

Indeed, using Hölder’s inequality and the definition of the operator norm, it holds that

H>ΔG ≤ ‖H‖∞‖ΔG‖1 ≤ ‖H‖∞‖Δ‖op‖G‖.

Moreover, the inequality holds as equality at Δ̃ = oH̃G̃>, where G̃, H̃ are such that G̃>G = ‖G‖, ‖G̃‖∗ = 1
and H̃>H = ‖H‖∞, ‖ H̃‖1 = 1. In fact, we verify that

‖Δ̃‖op = sup
‖E ‖≤1

‖oH̃G̃>E‖1 = o sup
‖E ‖≤1

‖ H̃‖1 |G̃>E | = o,

and
H>Δ̃G = oH> H̃G̃>G = o‖H‖∞‖G‖.

�

EC.3.4. Proof of Corollary 4
Define a function ℓC : ΞC→ℝ as

ℓC (1C ) := max
HC ∈ℝ3C

{
H>C (1C − �CGC−1) − k̂∗C (�>C HC )

}
.

We prove by induction that

&C (GC−1, b̂C ) = min
GC ∈XC (GC−1,1C )

{
2>C GC +Eℙ̂C+1

[
&̂C+1(GC , b̂C+1)

]}
+∞ · 1

{
_ < max

B=C ,...,)
‖ℓC ‖Lip

}
.
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Thanks to (Shapiro et al. 2021, Section 3.2.1), the objective 2>C GC +Eℙ̂C+1

[
&̂C+1(GC , ĉC+1)

]
is convex in GC .

Using convex programming duality we obtain that

min
GC ∈XC (GC−1,1C )

{
2>C GC +Eℙ̂C+1

[
&̂C+1

(
GC , b̂C+1

) ]}
= max
HC ∈ℝ3C

{
H>C (1C − �CGC−1) +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&̂C+1

(
GC , b̂C+1

) ] }}
.

It follows that

&C (GC−1, b̂C )

= sup
1C ∈ΞC

{
min

GC ∈XC (GC−1,1C )

{
2>C GC +Eℙ̂C+1

[
&C+1(GC , b̂C+1)

]}
−_‖1C − b̂C ‖

}
+∞ · 1

{
_ < max

B=C+1,...,)
‖ℓB ‖Lip

}
= sup
1C ∈ΞC

max
HC ∈ℝ3C

{
H>C (1C − �CGC−1) +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&̂C+1

(
GC , b̂C+1

) ] }
−_‖1C − b̂C ‖

}
+∞ · 1

{
_ < max

B=C+1,...,)
‖ℓB ‖Lip

}
= max
HC ∈ℝ3C

sup
1C ∈ΞC

{
H>C (1C − �CGC−1) +min

GC ≥0

{
(2C − �>C HC )>GC +Eℙ̂C+1

[
&̂C+1

(
GC , b̂C+1

) ] }
−_‖1C − b̂C ‖

}
+∞ · 1

{
_ < max

B=C+1,...,)
‖ℓB ‖Lip

}
= max
HC ∈ℝ3C

sup
1C ∈ΞC

{
H>C (1C − �CGC−1) − k̂∗C (�>C HC ) −_‖1C − b̂C ‖

}
+∞ · 1

{
_ < max

B=C+1,...,)
‖ℓB ‖Lip

}
.

Observe that the function ℓC is convex and Lipschitz. It follows that

sup
1C ∈ΞC

{
H>C (1C − �CGC−1) − k̂∗C (�>C HC ) −_‖1C − b̂C ‖

}
=

{
sup1C ∈ΞC

{
H>C (1C − �CGC−1) − k̂∗C (�>C HC ) −_‖1C − b̂C ‖

}
, if _ ≥ ‖ℓC ‖Lip,

∞, otherwise.

Hence

&C (GC−1, b̂C ) = max
HC ∈ℝ3C

{
( b̂C − �CGC−1)>HC − k̂∗C (�>C HC )

}
+∞ · 1

{
_ < max

B=C ,...,)
‖ℓB ‖Lip

}
= min
GC ∈XC (GC−1,b̂C )

{
2>C GC +Eℙ̂C+1

[
&̂C+1(GC , b̂C+1)

]}
+∞ · 1

{
_ < max

B=C ,...,)
‖ℓB ‖Lip

}
.

Furthermore, we have _★ =maxB=2,...,) ‖ℓB ‖Lip.
It remains to compute

‖ℓC ‖Lip = sup
H∈dom k̂∗C (�>C ·)

‖H‖∗. (EC.8)

When C =) , we have

k̂∗) (�>) H) ) =max
G≥0

{
H>) �) G − 2>) G

}
,
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which is zero when �>
)
H) ≤ 2) and infinite otherwise. Thus dom k̂∗

)
(�>
)
·) = {H ∈ ℝ3) : �>

)
H ≤ 2) }

and dom k̂∗
)
(�>
)
·) = S) . Now suppose (EC.8) holds for some C + 1, let us prove the case of C, where

C ∈ [) − 1]. By definition of k̂∗C and the induction hypothesis, we have

k̂∗C (�>C HC )

=max
GC ≥0

{
H>C �CGC − 2>C GC −Eℙ̂C+1

[
max

HC+1∈ℝ3C+1

{
( b̂C+1 − �C+1GC )>HC+1 − k̂∗C+1(�

>
C+1HC+1)

}]}
=max
GC ≥0

{
H>C �CGC − 2>C GC − max

yC+1∈YC+1
E
ℙ̂C+1

[
( b̂C+1 − �C+1GC )>yC+1( b̂C+1) − k̂∗C+1(�

>
C+1yC+1( b̂C+1))

]}
=max
GC ≥0

min
yC+1∈YC+1

{
H>C �CGC − 2>C GC −Eℙ̂C+1

[
( b̂C+1 − �C+1GC )>yC+1( b̂C+1) − k̂∗C+1(�

>
C+1yC+1( b̂C+1))

]}
= min

yC+1∈YC+1

{
max
GC ≥0

{
H>C �CGC − 2>C GC −Eℙ̂C+1

[
( b̂C+1 − �C+1GC )>yC+1( b̂C+1)

]}
+E

ℙ̂C+1

[
k̂∗C+1(�

>
C+1yC+1( b̂C+1))

]}
,

where the third equality follows from the strong duality of the polyhedral problem (Shapiro et al. 2021,
Chapter 3.2). Observe that

max
GC ≥0

{
H>C �CGC − 2>C GC −Eℙ̂C+1

[
( b̂C+1 − �C+1GC )>yC+1( b̂C+1)

]}
= −E

ℙ̂C+1

[
b̂
>
C+1yC+1( b̂C+1)

]
+max
GC ≥0

{
(�>C HC − 2C )>GC −Eℙ̂C+1

[
−G>C �>C+1yC+1( b̂C+1)

]}
=

{
−E

ℙ̂C+1

[
b̂
>
C+1yC+1( b̂C+1)

]
, if �>C HC + �>C+1Eℙ̂C+1

[yC+1( b̂C+1)] ≤ 2C ,
∞, otherwise.

Hence, k̂∗C (�>C HC ) is finite if there exists yC+1 ∈ YC+1 such that �>C HC + �>C+1Eℙ̂C+1
[yC+1( b̂C+1)] ≤ 2C . Thus

we have shown that

dom k̂∗C (�>C HC ) =
{
HC ∈ℝ3C : ∃yC+1 ∈ YC+1 B.C. �>C HC + �>C+1Eℙ̂C+1

[yC+1( b̂ [C+1])] ≤ 2C
}
.

which completes the induction for (EC.8). �

EC.4. Additional Details for Section 5
EC.4.1. Proof of Corollary 5
Introducing variables x±

)
, B1, B2 ≥ 0 we rewrite the problem as

min
x1,...,x)−1≥0,x±

)
,,)

max
ℙ∈M

E[x+) − x−) ]

B.C. 1>x1 =,1,

1>xC−1 = /
>
C−1xC−2, C = 2, . . . ,),

,) = /
>
) x) −1,

x+) − x−) − B1 = −U0 − V0/
>
) G) −1,

x+) − x−) − B2 = −U1 − V1/
>
) G) −1.

Then the result follows from substituting the following parameter values in Corollary 3:

�1 = 1>, �1 = 0, 11 =,1, 21 = 0,
�C = 1>, �C = −/>C , 1C = 0, 2C = 0,

�) =

(
1 −1 −1 0
1 −1 0 −1

)
, �) = (V0/

>
) , V1/

>
) )>, 1) = (−U0,−U1)>, 2) = (1,−1,0,0)>.

�
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EC.4.2. Data
The estimated mean vector and covariance matrix are as the following.

̂̀= EEM TLT SCHP XES SKF[ ]
0.005142 0.006166 0.004729 −0.005437 −0.026391

Σ̂ =

EEM TLT SCHP XES SKF


0.002862 −0.000634 0.000211 0.007217 −0.003882 EEM
−0.000634 0.001495 0.000231 −0.002881 0.001658 TLT

0.000211 0.000231 0.000111 0.000426 −0.000244 SCHP
0.007217 −0.002881 0.000426 0.030046 −0.013416 XES
−0.003882 0.001658 −0.000244 −0.013416 0.010840 SKF

EC.4.3. Algorithms

Algorithm 1 SDDP Algorithm for Robust Reformulation with Uncertainty in HC

Initialize: {QC }C ∈[) ] (initial lower approximation), Ḡ:0 = 0
1: while not converge do
2: Sample  scenario paths {Ĥ:[) ]} :=1
3: for C = 1, . . . ,) − 1 do ⊲ Forward pass
4: for : = 1, . . . ,  do
5: for (X, 9) ∈ {1,−1} × [<C ] do
6: (G X 9

C:
, E
X 9

C:
) ←min

GC ≥0

{
2CGC +QC+1(GC ) : �CGC + Ĥ

:

C Ḡ
:
C−1 = 1C + oX‖Ḡ

:
C−1‖4 9

}
⊲ Optimal solution and optimal value

7: end for
8: (X∗, 9∗) ← arg max(X, 9) E

X 9

C:
; Ḡ:C ← G

X∗ 9∗

C :
9: end for
10: end for
11: for C =), . . . ,2 do ⊲ Backward pass
12: for : = 1, . . . ,  do
13: for 8 = 1, . . . , #̂C do
14: for (X, 9) ∈ {1,−1} × [<C ] do
15: (E X 9

C8
(Ḡ:C−1); H

X 9

C:8
) ←min

GC ≥0

{
2CGC +QC+1(GC ) : �CGC + Ĥ

8

C Ḡ
:
C−1 = 1C + oX‖Ḡ

:
C−1‖4 9

}
⊲ Optimal value and optimal dual solution

16: end for
17: (X★, 9★) ← arg max(X, 9) E

X 9

C8
; &̃C8 (Ḡ:C−1) ← E

X★ 9★

C8
; c:

C8
← H

X★ 9★

C8:
18: end for
19: Q̃C (Ḡ:C−1) ←

1
#C

∑#C

8=1 &̃C8 (Ḡ
:
C−1); 6̃:C ← 1

#C

∑#C

8=1 oX
★c:

C8

>
4 9★∇‖Ḡ:C−1‖ − (Ĥ

8

C )>c:C8
20: QC (·) ←max

(
QC (·), Q̃C (Ḡ:C−1) + 6̃

:
C

>(· − Ḡ:
C−1)

)
21: end for
22: end for
23: end while
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Algorithm 2 Out-of-sample Test

Input: A training tree (/̂1, {/̂
82
2 }

#̂2
82=1, . . . , {/̂

8)

1 }
#̂)

8) =1), a testing tree (/1, {/
82
2 }

#1
82=1, . . . , {/

8)
1 }

#)

8) =1),
number of testing paths "
Output: Average out-of-sample value +Avg

1: for < = 1 : " do
2: +<← 0
3: Sample a path (/1, /

82
2 , . . . , /

8)
)
) from the testing tree

4: for C = 1 :) do
5: Solve for the optimal decision xC using xC−1 and the training sub-tree ({/̂

8C

C }
#̂C

8C=1, . . . , {/̂
8)

1 }
#̂)

8) =1)
6: Observe a testing scenario /8CC
7: Evaluate the per-stage out-of-sample cost �C at stage C using xC and /8CC
8: +<←+< +�C
9: end for
10: end for
11: +Avg← 1

"

∑"
<=1+<
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