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Abstract

We study a cardinality minimization problem that simultaneously minimizes an ob-
jective function and the cardinality of unsatisfied soft constraints. This paper pro-
poses two continuous approximation methods that reformulate the discrete cardi-
nality as complementarity constraints and difference-of-convex functions. We show
that, under suitable conditions, local and stationary solutions of the approxima-
tion problems recover local minimizers of the cardinality minimization problem. To
demonstrate effectiveness, we apply the proposed methods to applications where vi-
olating as few preference conditions (or soft constraints) is desired. The performance
of the new methods is compared to benchmark formulations used in practice. Our
numerical study supports the use of methods based on our new approximations for
cardinality minimization that produce comparable solutions while improving com-
putational efficiency.

1 Introduction

In this paper, we study the threshold-based cardinality minimization problems (CMP) that take
the following form:

min
x∈X

f0(x) + λ‖(max{fi(x)− τi, 0})i∈[m]‖0. (1)

Here, λ > 0 is the penalty parameter and ‖ • ‖0 is the `0-norm and [m] = {1, . . . ,m}. The
objective function f0(·) and the constraints fi(·) for all i = 1, . . . ,m, are convex functions. The
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set X ⊂ Rn is a compact convex set that captures what we will call the “hard constraints”. These
hard constraints can be attributed to the operational requirements that cannot be violated. On
the other hand, we have a set of constraints fi(x) ≤ τi for all i ∈ [m] that correspond to preference
requirements that can be violated. The vector τ = (τi)i∈[m] of these constraints captures the
preference or threshold assigned by the decision maker. In this sense, the second set of constraints
can be considered as “soft constraints”. While the soft constraints are allowed to be violated,
the desire is to minimize the number of violations given by ‖(max{fi(x)− τi, 0})i∈[m]‖0.

A form of the problem in (1) that is of particular interest in this paper is

min
x∈X

f0(x) + λ‖(max{|xi| − τi, 0})i∈[n]‖0. (2)

We refer to the above as the threshold-based or two-tailed cardinality minimization problem and
denote it as τ -CMP. We obtain the τ -CMP by setting fi(x) = |xi| for all i ∈ [m] in (1) with
m = n. This problem essentially minimizes the count of unacceptably large elements of the
vector x. It must be noted that the parameter τi can be absorbed into the function fi, and we
could state the soft constraints in (1) as fi(x) ≤ 0 for all i. While the analysis we present in
this paper is applicable to this modification, our choice to retain τi as separate parameters is to
emphasize that the decision-maker can exert a choice in selecting these parameters.

A special case of (2) studied in [17] considers the cardinality of large-valued elements of x
exceeding the prescribed threshold τ . The authors refer to the special case as the cardinality of
the upper tail minimization problem. Another notable special case of (2) is when τi = 0 for all
i ∈ [n]. The second term of (2) is often referred to as the `0-norm, denoted ‖x‖0, which counts the
number of nonzero components of x. Despite its misleading name, `0-norm does not satisfy the
properties of a norm. It is a discrete and nonconvex function, and directly minimizing a problem
involving such a function is known to be computationally intractable. A predominant approach
to solving such problems is by replacing the discontinuous function with the `1-norm given by
‖x‖1 =

∑n
j=1 |xj |. This replacement results in a convex optimization problem that can be solved

efficiently using off-the-shelf solvers. However, the solutions to the optimization problem with
`1-norm result in suboptimal solutions in general which led to another stream of approaches
that use continuous nonconvex surrogates for the `0-function. One such approximation related
to our work is the capped-`1 function [14, 15]. This function approximates the `0-function by
the `1-norm around the origin and a constant elsewhere. We apply a similar approximation for
(2) in section §2.2, where we further discuss the relationship. The nonconvex approximation
methods showed superior performance when applied to various applications, including image
reconstruction [23], signal processing [1, 4], and deep learning methods [3].

This paper is motivated by applications where generalizing the above-mentioned problems
involving discrete cardinality can be beneficial. Such generalization allows the optimization
problem to selectively enforce soft constraints while minimizing the objective function of concern.
Our methods introduce exact and approximate reformulations of the discrete problems (1) and
(2). The overarching goal of our study is to provide computationally tractable formulations and
understand how one can recover solutions to discrete problems by solving the reformulations.
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The problems (1) and (2) with nonzero τ arise in several application settings. The following
application motivates our study.

1.1 Motivating application

Radiation therapy, specifically intensity-modulated radiation therapy (IMRT), has emerged as
one of the principal treatment options for various types of cancer. IMRT is a minimally invasive
treatment option where radiation of ionized beams is projected on a region of interest surrounding
the tumor tissues. The region of interest includes other healthy tissues (organs at risk and normal
body tissues) that are invariably exposed to radiation. Although the healthy tissues can repair
themselves, limiting the exposure of organs at risk to within clinically acceptable thresholds is
desirable. One achieves precise radiation delivery by shaping the dose pattern across the region
of interest [11]. The desired dose pattern is generated using a multileaf collimator system by
determining the angle and intensity of radiation for a set of beamlets.

We refer to the problem of designing a suitable dose pattern as the fluence map optimization
problem. This problem can be formulated as a mathematical program. A clinician determines
a prescription dose for the tumor and tolerance doses for organs at risk. We design the dose
pattern for given values of prescription and tolerance doses. The angle and radiation amounts
for the set of beamlets on the collimator constitute the decision vector of the program. The
objective is to minimize the difference between radiation delivered to the tumor tissues and the
prescription dose. This objective function f0(·) is often modeled as a quadratic function. For an
organ at risk i, the dose delivered, captured by the function fi(·), must be within the tolerable
dose τi for i ∈ [m]. With this, we see that the fluence map optimization problem takes the form
of (1). We present the detailed mathematical model when we return to this problem in the
numerical experiments.

While the CMP that arises in IMRT planning motivated our research, these problems are
encountered in several application settings. The special case of two-tailed CMP with τi = 0 ∀i is
prevalent in fields such as sparsity-inducing models in machine and statistical learning [6], image
reconstruction [23], and signal processing [1, 4]. More general cases of CMP arise in classical
combinatorial optimization problems, such as minimum irreducible infeasible subsystem cover
(see, e.g., [2]), and in finance, such as portfolio selection and management [10]. An interesting
application in engineering settings arises in managing transmission lines with thermal ratings in
power system operations [22]. We refer the reader to the survey paper [21] for more examples
of cardinality optimization problems of which CMP is a particular form.

1.2 Contribution

The main contributions of this work are threefold.

1. Continuous approximations of the CMP.We present two alternative continuous approxima-
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tions of the CMP based on difference-of-convex (DC) programming. In the first approach,
we rely upon mathematical programming with complementarity constraint (MPCC) re-
formulation of the CMP. This reformulation utilizes additional variables that indicate the
occurrence and degree of violation, respectively. By relaxing the complementarity con-
straint using a penalty function that is DC-representable, we achieve a relaxed approxima-
tion of the CMP problem. We refer to this approach as the MPCC-DC. In contrast to the
MPCC-DC approach, we directly develop a DC approximation of the CMP objective func-
tion in the second approach. Consequently, we refer to this approach as Direct-DC. Both
our approximations are amenable to applying the difference-of-convex algorithm, thereby
providing a viable solution method.

2. Analysis of Solutions. We develop the relationships between solutions to models that result
from the alternative continuous approximations. First, we show the equivalence of the
MPCC and the CMP in terms of their optimal solutions. Our subsequent analysis shows
that under suitable conditions, a locally optimal solution of the MPCC-DC formulation
recovers a local solution of the CMP shown in (1). For the special case of τ -CMP in (2), we
present a Direct-DC formulation. We show that this formulation provides a lower bound
for the CMP and establish that the stationary solution of the Direct-DC form is a local
optimum of the CMP. We summarize these relationships between solutions of different
formulations in Figure 1.

3. Computational validation. We perform extensive computational experiments to compare
the efficacy of our approximations. For this purpose, we utilize a CMP that arises in
IMRT planning, our motivating example. In addition, we also use a portfolio optimization
problem that maximizes the mean return while ensuring that the risk from investment
is within tolerable limits. In the instances of the portfolio optimization problem, our
approximations lead to solutions that have comparable performance to globally optimal
solutions. Motivated by these results, we perform extensive experiments with the IMRT
planning instances for which alternative approaches fail to provide any solution.

In addition to the numerical results presented in this paper, this work also provides analytical
corroboration for our case study on a CMP problem arising in power systems planning and
operations [22]. In this case study, we use the Direct-DC approach to minimize an objective
function that includes counting the number of transmission lines operated outside the acceptable
thermal limits.

1.3 Notation

We define [n] = {1, . . . , n}. We use x = (xi)i∈[n] to denote a vector in Rn where xi is the
i-th component of x. Let 1n ∈ Rn denote a vector of all ones. The notation ‖x‖0 denotes the
cardinality of nonzero components of x. We denote an open neighborhood of radius r and center
x by B(x, r).
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Threshold-based
CMP (1)

MPCC-DC Approach Direct-DC Approach

Two-tailed
CMP (2)

Special case
MPCC

reformulation (4)

Penalty-based
DC program (5)

Equivalence
(Proposition 2.1)

(5) local minima
⇒ (4) local minima

(Lemma 2.4)

Equivalence of
Local minima
(Theorem 2.5)

(1) optimal
⇒ (5) local minima
(Proposition 2.3)

Direct-DC
Approximations (10), (11)

Lower bound
(Proposition 2.7)

d-stationarity implies
local minima

(Theorem 2.11)

Figure 1: Schematic of the analysis in the paper showing different models and their relationships.

1.4 Organization

We organize the rest of the paper as follows. In section §2, we present the two alternative
continuous approximations for the CMP in (1). We also develop the relationship between the
solutions of the approximate reformulations and the true problem and analyze the special case
of τ -CMP in this section. In section §3, we present the results from the numerical experiments
conducted on the IMRT planning problem. We summarize our conclusions in section §4.

2 Tractable Continuous Approximations

This section presents two alternative approaches to tackle the problem in (1). Both our ap-
proaches result in continuous approximations of the original problem that involve the DC pro-
gram of the following form

min
x∈X

f(x) = g(x)− h(x), (3)

where X is a convex closed set, and g and h are both convex. The first approach involves the
DC approximation of an MPCC. On the other hand, in the second approach, we apply a DC
approximation directly to the objective function of CMP.

2.1 MPCC-DC approach

In the first approach, we reformulate the `0-function in (1) in terms of complementarity con-
straints. This maneuver results in an MPCC. The MPCC can, in turn, be expressed as a smooth,
continuous, nonlinear program. In this section, we extend the reformulation approach developed
in [7] to problems of the form in (1).

To obtain the so-called full-complementarity reformulation of (1), we introduce two auxiliary
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vectors η ∈ Rm+ and ξ ∈ [0, 1]m that are complementary to one another, that is, they satisfy the
Hadamard constraint η ◦ ξ = 0. The variable ηi takes a positive value only if fi(x)− τi > 0 and
the complementarity requirement enforces the corresponding ξi to zero. Consequently, a penalty
of λ is incurred in the objective function. The resulting reformulation is given as

min
x∈X

f0(x) + λ1>m(1m − ξ) (4)

subject to ηi ≥ fi(x)− τi ∀i ∈ [m],

0 ≤ ξi ≤ 1, ηi ≥ 0 ∀i ∈ [m],

η ◦ ξ = 0.

We define a concatenated decision vector as z := (x, ξ,η) and the corresponding feasible region
of the above problem without the complementarity constraint by Z := {(x, ξ,η) | x ∈ X , ηi ≥
fi(x)− τi, 0 ≤ ξi ≤ 1, ηi ≥ 0, ∀i ∈ [m]}.

Based on the construction of the MPCC, it is not difficult to see that the objective function
value of (4) at any feasible solution z = (x, ξ,η) upper bounds the objective function of (1) at
x. Furthermore, the component vector x∗ of the optimal solution vector (x∗,η∗, ξ∗) of (4) is an
optimal solution to (1). We formally establish this observation regarding the equivalence of the
CMP problem in (1) and the MPCC in (4) in the following proposition.

Proposition 2.1. If x∗ is an optimal solution of (1) then there exists ξ∗ and η∗ such that
z∗ = (x∗, ξ∗,η∗) is the optimal solution of (4). Conversely, if z∗ is an optimal solution of (4)
then x∗ is an optimal solution of (1).

Proof. To show the first statement, consider two possible cases for any given i: fi(x∗) > τi and
fi(x

∗) ≤ τi. For the former case, we must have η∗i strictly positive, which yields ξ∗i = 0 to meet
the complementarity constraint of (4). For the latter, we choose η∗i = 0 and ξ∗i = 1 to achieve
optimality. With the described procedure, the two problems achieve the same objective value.
Since (1) is a lower bound for (4), the constructed z∗ is a global minimizer of (4). For the
remaining, it suffices to show its contrapositive: if x∗ is not an optimal solution of (1), then z∗

is not optimal for (4) for any ξ∗ and η∗. Since x∗ is not optimal, there exists x̃ ∈ X such that
f0(x∗) + λ‖(max{fi(x∗) − τi, 0})i∈[m]‖0 > f0(x̃) + λ‖(max{fi(x̃) − τi, 0})i∈[m]‖0. By applying
the above argument, we can show that there does not exist z∗ that is optimal for (4).

To tackle (4), we take the approach of [12] and [13] where the problems with complementarity
constraints are reformulated as DC programs. This reformulation enables the application of the
DC Algorithm [14, 20]. Specifically, we replace the complementarity constraint η ◦ ξ = 0 in (4)
by a piecewise penalty term in the objective function. This penalty term is given by

ρ(η, ξ) :=
m∑
i=1

min{ηi, ξi}.

Using the above penalty term, the full-complementarity problem in (4) can be written in the
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following form:

min
z∈Z

{
f0(x) + λ1>m(1m − ξ) + γρ(η, ξ)

}
, (5)

where γ > λ > 0 is another penalty parameter. By defining

g(z) =f0(x) + λ1>m(1m − ξ) and

h(z) =γ
m∑
i=1

max{−ηi,−ξi},

we obtain a DC decomposition of the penalized objective function in (5). We refer to the
resulting problem as MPCC-DC. It is worthwhile to note that while the objective function of
(4) provides an upper bound on the CMP objective in (1), this property no longer holds when
we relax the complementarity constraint in MPCC-DC. Given a feasible solution x of the CMP,
we can construct (x,η, ξ) such that the MPCC-DC objective value is equal to the objective
value of the CMP. However, when the solution x results in a violation of 0 < fi(x) − τi < λ/γ

for some i ∈ [m], we can construct (x,η, ξ) such that the MPCC-DC achieves a lower objective
value. We notice the significance of this interval (0, λ/γ) in all the subsequent results presented
in this section. To begin, the following proposition captures the nature of local solutions of (5).

Proposition 2.2. For any local minimizer z̄ = (x̄, ξ̄, η̄) of (5), we have one of the following
for any given i: (a) 0 ≤ η̄i < λ

γ and ξ̄i = 1; (b) η̄i > λ
γ and ξ̄i = 0; or (c) η̄i = λ

γ with ξ̄i either 0

or 1.

Proof. For any local solution, the second and third terms in the objective of (5) are separable
in i. Therefore, we can assess each soft constraint independently. There are only two cases for
each component of ρ(η̄, ξ̄). For the i-th component:

λ− λξ̄i + γmin{η̄i, ξ̄i} =

λ+ (γ − λ)ξ̄i when min{η̄i, ξ̄i} = ξ̄i

λ− λξ̄i + γη̄i when min{η̄i, ξ̄i} = η̄i.

Since γ > λ and due to the local optimality of ξ̄, we must have ξ̄i = 0 and ξ̄i = 1 in the first
and second cases, respectively. Therefore, we can rewrite the above as

λ− λξ̄i + γmin{η̄i, ξ̄i} =

λ when min{η̄i, ξ̄i} = ξ̄i = 0

γη̄i when min{η̄i, ξ̄i} = η̄i ≤ 1 = ξ̄i.
(7)

Next, we show that η̄i > λ
γ only happens with ξ̄i = 0. Suppose there exists some i′ such that

η̄i′ >
λ
γ and ξ̄i′ = 1. We can reduce the value of (7) by decreasing ξ̄i′ to 0 without affecting other

components of z̄. Similarly, we can show that 0 ≤ η̄i <
λ
γ only corresponds to the case ξ̄i = 1.

When η̄i = λ
γ , we have λ− λξ̄i + γmin{η̄i, ξ̄i} = λ, the minimum value, when ξ̄i takes a value of

zero or one.

The result in (7) captures the amount of penalty applied to the local minimizers of (5). Given

7



Ahn, Gangammanavar, and Troxell Constraint Selection via Cardinality Minimization

a local minimum z̄, no penalty is applied if there is no violation of a soft constraint (η̄i = 0).
When 0 < η̄i <

λ
γ , then a scaled penalty of γη̄i, which is less than λ, is applied. For a larger

violation magnitude η̄i ≥ λ
γ , a penalty of λ is added, which is consistent with problems (1) and

(4). Furthermore, the optimal solution of (1) and the local solution of (5) share a relationship
that we identify below.

Proposition 2.3. Let x∗ be an optimal solution of (1). If either fi(x∗)−τi < 0 or fi(x∗)−τi > λ
γ

for all i ∈ [m], then there exists (η∗, ξ∗) such that (x∗,η∗, ξ∗) is a local minimizer of (5).

Proof. In the case of fi(x∗)−τi < 0, choose η∗i = 0 and ξ∗i = 1. Otherwise, choose η∗i ≥ fi(x∗)−τi
and ξ∗i = 0. By construction and the global optimality of x∗, we must have

f0(x∗) + λ1>m(1m − ξ∗) + γρ(η∗, ξ∗) = f0(x∗) + λ‖(max{fi(x∗)− τi, 0})i∈[m]‖0
≤ f0(x) + λ‖(max{fi(x)− τi, 0})i∈[m]‖0

for all x ∈ X . Now consider a sufficiently small neighborhood B(z∗, r) ⊆ Z such that fi(x)−τi <
0 whenever fi(x∗)− τi < 0 and fi(x)− τi > λ

γ whenever fi(x∗)− τi > λ
γ . For any z ∈ B(z∗, r),

we have

λ‖(max{fi(x)− τi, 0}‖0 ≤ λ(1− ξi) + γmin{ηi, ξi} ∀i ∈ [m].

This shows that (x∗,η∗, ξ∗) is a local minimizer of (5).

While the above provides the relationship between the optimal solution of our intended target
problem (1) and the local solutions of the approximate problem (5), we achieve the result only
when the optimal solution satisfies additional requirements. Unfortunately, an optimal solution
that does not satisfy the requirement may not correspond to any local solutions of (5). We
provide an example to illustrate this fact.

Example 1. Consider the following CMP with m = n = 1:

min
x≥0.75

4x2︸︷︷︸
f0(x)

+1.75‖max{(x2 − 2x+ 2)︸ ︷︷ ︸
f1(x)

−1, 0}‖0

Here, τ1 = 1 and λ = 1.75 in the above problem. Notice that the objective function reduces to
4x2 + λ if 0.75 < x < 1,

4 if x = 1 or x = 0.75,

4x2 + λ if x > 1.

The above implies that x? = 1 and x? = 0.75 are two optimal solutions to the CMP. Now
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consider the corresponding MPCC-DC problem with γ = 2

min
x≥0.75

4x2 + 1.75(1− ξ1) + 2 min{η1, ξ1}

subject to η1 ≥ x2 − 2x+ 1, 0 ≤ ξ1 ≤ 1.

Notice that for 0.75 ≤ x ≤ 1,we have 0 ≤ f1(x) − τ1 < λ/γ. Setting η1 = f1(x) − τ1 reduces
the objective function to 6x2 − 4x + 2. The objective function increases in [0.75, 1] with a
value of 2.375 at x = 0.75 and a value of 4 at x? = 1. This establishes x = 0.75 as the local
optimal solution of MPCC-DC. Therefore, we have an optimal solution (x? = 0.75) of (1) that
corresponds to a local solution to (5) and another optimal solution (x? = 1) that does not have
any corresponding local solutions.

Lemma 2.4. If z̄ = (x̄, ξ̄, η̄) is a local minimizer of (5) that satisfies η̄i = 0 or η̄i > λ
γ ∀i ∈ [m],

then it is a local minimizer of the MPCC (4).

Proof. Since z̄ is a local minimizer, there exists B(z̄, r) such that f0(x̄)+λ1>m(1m−ξ̄)+γρ(η̄, ξ̄) ≤
f0(x) + λ1>m(1m − ξ) + γρ(η, ξ) for all z ∈ B(z̄, r) ∩Z. Let z = (x, ξ,η) ∈ B(z̄, r) be a solution
feasible to the MPCC. Using the fact that η ◦ ξ = 0 we have

f0(x) + λ1>m(1m − ξ) = f0(x) + λ1>m(1m − ξ) + γ
m∑
i=1

min{ηi, ξi}

≥ f0(x̄) + λ1>m(1m − ξ̄) + γ
m∑
i=1

min{η̄i, ξ̄i}

≥ f0(x̄) + λ1>m(1m − ξ̄).

The first inequality follows from the local minimizing property of z̄ with respect to the DC
program (5). The second inequality is due to non-negativity of

∑m
i=1 min{η̄i, ξ̄i}. Finally, noting

that z̄ ∈ Z and min{η̄, ξ̄} = 0 (due to Proposition 2.2) implies η̄ ◦ ξ̄ = 0, we have that z̄ is
feasible to the MPCC. With this, we have completed the proof.

A special case arises when the local minimizer z̄ has components η̄i = λ/γ for some i ∈ [m].
In this case, Proposition 2.2 indicates that we may have ξ̄i = 0 or 1, and both result in a
contribution of λ to the objective of (5). Therefore, the result of Lemma 2.4 holds at local
minimizers where ξ̄i = 0 whenever η̄i = λ/γ. The next result establishes a means to identify a
local minimum of the CMP.

Theorem 2.5. If z̄ is a local minimum of the MPCC in (4), then x̄ is a local minimum of the
CMP (1).

Proof. Since z̄ is a local minimum of (4), there exists a sufficiently small open neighborhood
B(z̄, r) such that (i)

f0(x̄) + λ1>m(1m − ξ̄) ≤ f0(x) + λ1>m(1m − ξ)
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and (ii) ηi 6= 0 whenever η̄i 6= 0, for all z ∈ B(z̄, r) ∩ Z. Define S(η) = {i ∈ [m] : ηi 6= 0}.
Further, consider A(z̄) = {z : f0(x) ≥ f0(x̄) − ε, ∀ 0 < ε < ε̄} for some ε̄ < λ. The following
two cases arise.

• Case 1: Consider z ∈ A(z̄) ∩ B(z̄, r) such that S(η) = S(η̄). Feasibility of z̄ to MPCC (4)
implies η̄ ◦ ξ̄ = 0. Since S(η) = S(η̄), we have η ◦ ξ̄ = 0. Therefore, (x,η, ξ̄) ∈ A(z̄)∩B(z̄, r)

and feasible to MPCC. From the local minimum property of z̄ to MPCC, we have

f0(x̄) + λ1>m(1m − ξ̄) ≤ f0(x) + λ1>m(1m − ξ̄).

Notice that for (x,η, ξ̄) we can identify z′ ∈ Z such that x′ = x and ξ′ = ξ̄. Furthermore,
η′i = ηi for all i ∈ [m], except when fi(x) ≤ τi, in which case, η′i = 0. Therefore, for all
(x,η, ξ̄) ∈ A(z̄) ∩ B(z̄, r), we have

f0(x̄) + λ‖(max{fi(x̄)− τi, 0})i∈S(η̄)‖0 = f0(x̄) + λ‖η̄‖0
= f0(x̄) + λ1>m(1m − ξ̄)

≤ f0(x) + λ1>m(1m − ξ̄)

= f0(x′) + λ1>m(1m − ξ′)

= f0(x′) + λ‖η′‖0
= f0(x′) + λ‖(max{fi(x′)− τi, 0})i∈S(η′)‖0.

Therefore, x̄ is a local minimum of the CMP in (1).

• Case 2: Consider z ∈ A(z̄) ∩ B(z̄, r) such that S(η) ⊃ S(η̄). For such a z, we have ‖η‖0 ≥
‖η̄‖0 + 1 and consequently

f0(x̄) + λ‖η̄‖0 ≤ f0(x̄) + λ‖η̄‖0 + λ− ε ≤ f0(x̄)− ε+ λ(‖η̄‖0 + 1) ≤ f0(x) + λ‖η‖0 (8)

The last inequality follows from (λ − ε) > 0. Following the same arguments in Case 1, we
conclude that x̄ is a local minimum of the CMP.

By combining the results in Lemma 2.4 and Theorem 2.5, we have the following result.

Theorem 2.6. If z̄ = (x̄, ξ̄, η̄) is a local minimizer of (5) that satisfies η̄i = 0 or η̄i > λ
γ ∀i ∈ [m],

then it is a local minimizer of the CMP (1).

2.2 Direct-DC approach for the special case of two-tailed CMP

Before we discuss the Direct-DC approximation, we present the concepts of stationarity that are
relevant to our purpose in this section. Consider the DC problem (3) where g and h are not
necessarily differentiable. We first introduce the definition of a critical point.
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Definition 2.1. A vector x∗ is a critical point of (3) if

0 ∈ ∂g(x∗)− ∂h(x∗) +NX (x∗),

where NX (x∗) is the normal cone of X at the point x∗, i.e., NX (x∗) = {v ∈ Rn |vT (x− x∗) ≤
0 ∀x ∈ X}. The sets ∂g(x∗) and ∂h(x∗) are the subdifferentials of g and h at the point x∗,
respectively.

Another kind of stationary solution that plays a central role in our analysis is a directional
stationary solution. We provide the formal definition below.

Definition 2.2. A vector x∗ is a d(irectional)-stationary solution of (3) if the directional deriva-
tive of f(x) at x∗ is nonnegative for all feasible directions; i.e.,

f ′(x∗;x− x∗) = lim
τ↓0

f(x∗ + τ(x− x∗))− f(x∗)

τ
≥ 0 for all x ∈ X .

From the definitions, we can verify the relationship between the two types of stationary
solutions. For the problem (3), d-stationarity always implies criticality but a critical point x∗ of
(3) is a d-stationary solution only when h is differentiable at x∗; we refer to [18] for discussion
of the stationary solutions.

Next, we propose an alternative approach to attain a continuous approximation of the CMP
in (1) that directly uses a DC representation of the objective function. For each condition
‖max{fi(x) − τi, 0}‖0 in (1), we approximate the discrete term by gi(x) − hi(x) where gi and
hi are defined as

gi(x) = max

{
1

ε

(
fi(x)− τi

)
, 0

}
,

hi(x) = max

{
1

ε

(
fi(x)− τi

)
− 1, 0

}
.

Here, ε > 0 is an approximation parameter. The proposed DC program is then defined as

min
x∈X

f0(x) + λ
m∑
i=1

[ gi(x)− hi(x) ] . (10)

Observe that the approximation returns the same output as the discrete function when fi(x) ≤ τ
or fi(x) ≥ τ + ε. In the remaining case, the approximation returns a value between 0 and 1.
This property immediately provides the following result.

Proposition 2.7. For any ε > 0, the optimal objective value of the approximate DC program
in (10) provides a lower bound to the optimal objective value of (1).

The τ -CMP problem (2) is defined for a special case of (1) where fi(x) = |xi| for i ∈ [n] =

[m]. When x ≥ 0, the term ‖(max{|xi| − τi, 0})i=1,...,m‖0 reduces to the cardinality upper
tail introduced in [17]. Several interesting applications motivate the study of this particular
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x

1

τ−τ x

1

τ

τ + ε x

g h

τ

τ + ε

Figure 2: Let x ∈ R. (Left) graph of ‖max(|x| − τ, 0)‖0; (Center) graph of the approximation
function g(x)−h(x) where g(x) = max{1

ε (|x|−τ), 0} and h(x) = max{1
ε (|x|−τ)−1, 0}; (Right)

the DC components of the approximation: g(x) is shown with solid line and h(x) is shown with
dashed line.

cardinality condition. One example is the security-constrained economic dispatch problem in
power systems studied in [22], and another is the IMRT planning problem which we formally
introduce in Section §3.

Consider vectors `,u ∈ Rn such that `i ≤ −τi and τi ≤ ui for all i ∈ [n]. Define a box
constraint C , {x | ` ≤ x ≤ u}. For the current section, we consider a special case of (2) where
(i) X is a box constraint X = C, and (ii) the objective function f0 is differentiable. Applying
the DC approximation presented in (10) to the problem (2) yields the DC program

min
x∈X

f0(x) + λ
n∑
i=1

[
max

{1

ε
(|xi| − τi) , 0

}
−max

{1

ε
(|xi| − τi)− 1, 0

}]
. (11)

Figure 2 illustrates one-dimensional two-tailed cardinality function ‖max{|x| − τ, 0}‖0 for a
scalar x and the DC approximation function. When τ = 0, the former is referred to as the
`0-function, and the latter reduces to the capped-`1 penalty [16]. Motivated by a recent work
that studies the capped-`1 function for group structured sparsity problems [15], we establish the
recovery of local solutions of (2) through the stationary solutions of (11). Let us assume that

(A3) There exists κ ≥ 0 such that sup
x∈X
‖∇f0(x)‖∞ ≤ κ.

Proposition 2.8. Under Assumption (A3), let εκ < λ hold. If x∗ is a critical point of (11)
then either |x∗i | ≤ τi or |x∗i | ≥ τi + ε for all i ∈ [n].

Proof. Suppose there exists j such that τj < |x∗j | < τj + ε. By definition of the critical point,
we have

0 = [∇f0(x∗)]j + λ

(
1

ε
sign(x∗j )

)
+ vj for some v ∈ NX (x∗),

where [∇f0(x∗)]j is the j-th component of ∇f0(x∗). Since
n∑
i=1

vi(xi − x∗i ) ≤ 0 for all xi ∈ [`i, ui]

we must have vi = 0 for all i. The condition εκ < λ yields contradiction.

The above result immediately indicates that, under certain conditions, a critical point of
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(11) obtains the same objective value for the approximation (11) and the CMP (2). Due to the
relationship between a critical point and a d-stationary solution, Proposition 2.8 also applies to
any d-stationary point of (11). Before proceeding, let us define a problem for a given arbitrary
x̄ ∈ X :

min
x

f0(x) (12)

subject to x ∈ X̂ (x̄) , {x ∈ X | |xi| ≤ τi whenever |x̄i| ≤ τi ∀i ∈ [n] }.

The above is a convex program where the constraint set is a subset of X . The next two results
connect the solutions of problems (11) and (2) through an optimal solution of (12).

Lemma 2.9. Let Assumption (A3) hold. If x∗ is a d-stationary solution of (11) computed with
λ > εκ, then x∗ is the global minimizer of (12) with feasible set X̂ (x∗).

Proof. Denote gi(xi) = max{1
ε (|xi| − τi) , 0} and hi(xi) = max{1

ε (|xi| − τi) − 1, 0}. By Propo-
sition 2.8, we either have |x∗i | ≤ τi or |x∗i | ≥ τi + ε for any i. When |x∗i | < τi or |x∗i | > τ + ε, the
derivatives of gi and hi are equal. The only points of interest are then |x∗i | = τi and |x∗i | = τi+ ε

where one of gi or hi is nondifferentiable. Therefore, by d-stationarity, x∗ satisfies

0 ≤ ∇f0(x∗)T (x− x∗) + λ
∑

i: |x∗i |=τi

g′i(x
∗
i ;xi − x∗i )

+ λ
∑

i: |x∗i |=τi+ε

[
1

ε
sign(x∗i )(xi − x∗i )− h′i(x∗i ;xi − x∗i )

]
∀x ∈ X .

Convexity of hi yields h′i(x
∗
i ;xi−x∗i ) = max

a∈∂hi(x∗i )
aT (xi−x∗i ). Moreover, observing ∂hi(x∗i ) =

[
0, 1

ε

]
at x∗i = τi+ ε and ∂hi(x∗i ) =

[
−1
ε , 0
]
at x∗i = −(τi+ ε), we verify that the last term in the above

is nonpositive. Hence x∗ satisfies,

0 ≤ ∇f0(x∗)T (x− x∗) + λ
∑

i: |x∗i |=τi

g′i(x
∗
i ;xi − x∗i )

≤ ∇f0(x∗)T (x− x∗) + λ
∑

i: |x∗i |=τi

[
gi(xi)− gi(x∗i )

]
∀x ∈ X ,

where the last inequality follows from the convexity of gi. Noting that for any i such that
|x∗i | = τi, we have g(xi) = g(x∗i ) ∀ x ∈ X̂ (x∗) and combining with convexity of f0, we deduce
that x∗ is the global minimizer of f0 on the set X̂ (x∗).

The next result interprets the local minimizer of (2) in terms of the problem (12). This
result is motivated by [15][Proposition 2.6].

Lemma 2.10. x∗ is a local minimizer of (2) if and only if x∗ is the global minimizer of (12)
with feasible set X̂ (x∗).

Proof. Consider a sufficiently small neighborhood B(x∗, r̄) centered at the local minimizer of
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(2), x∗, such that

∥∥(max{|x∗i | − τi, 0})i∈[n]

∥∥
0

=
∥∥(max{|xi| − τi, 0})i∈[n]

∥∥
0

(13)

for all x ∈ B(x∗, r̄)∩ X̂ (x∗). On the other hand, by local minimality of x∗, there exists r ∈ (0, r̄]

such that

f0(x∗) + λ
∥∥(max{|x∗i | − τi, 0})i∈[n]

∥∥
0
≤ f0(x) + λ

∥∥(max{|xi| − τi, 0})i∈[n]

∥∥
0

(14)

for all x ∈ B(x∗, r)∩X . Since x∗ ∈ X̂ (x∗) ⊆ X , (14) applies to any x ∈ B(x∗, r)∩ X̂ (x∗) which
must be a nonempty set. Combining (13) and (14), we show that x∗ is a local minimizer of (12),
which is also a global minimizer due to convexity of the problem.

To show the other direction, consider x∗, which is a global minimizer of (12). For any x

contained in X̂ (x∗) ∩ B(x∗, r̄), a sufficiently small neighborhood of x∗, we have (14) and x∗

achieves local optimality. If x∗ satisfies |x∗i | > τi for all i, then X̂ (x∗) = X and we complete the
proof. Otherwise, consider the case of x ∈ X \ X̂ (x∗) 6= ∅, that is, this corresponds to the case
where there is at least one i such that |xi| > τi and |x∗i | ≤ τi. There exists r′ ∈ (0, r̄) and B(x∗, r′)

such that the following conditions hold: (i) for any x ∈ B(x∗, r′), we have f0(x∗) ≤ f0(x) + λ

due to continuity of f0; and (ii)

∥∥(max{|x∗i | − τi, 0})i∈[n]

∥∥
0

+ 1 ≤
∥∥(max{|xi| − τi, 0})i∈[n]

∥∥
0

(15)

for all x ∈ B(x∗, r′) ∩ (X \ X̂ (x∗)). Hence for any x ∈ B(x∗, r′) ∩ (X \ X̂ (x∗)), we have

f0(x∗) + λ
∥∥(max{|x∗i | − τi, 0})i∈[n]

∥∥
0
≤ f0(x) + λ

(∥∥(max{|x∗i | − τi, 0})i∈[n]

∥∥
0

+ 1
)

≤ f0(x) + λ
∥∥(max{|xi| − τi, 0})i∈[n]

∥∥
0
.

This shows that x∗ is the local minimizer of (2).

Based on Lemma 2.9 and Lemma 2.10, we show that a d-stationary solution of the DC
approximation problem (11) achieves local minimality of (2).

Theorem 2.11. Let Assumption (A3) hold. If x∗ is a d-stationary solution of (11) computed
with λ > εκ, then x∗ is a local minimizer of (2).

Remark 2.1. We provide two continuous approximations of CMP in (1), viz., MPCC-DC in (5)
and Direct-DC in (10), that have DC expressions. We provide a relationship of local solutions
between (1) and (5), utilizing the fact that we have a piecewise linear DC component. For a
special case, we also show the relationship between the local solutions of (2) and d-stationary
solutions of (11). The classical DC algorithm can be employed to solve the continuous approx-
imations (as we do in our experiments reported in the next section); however, the sequence of
solutions generated by this algorithm converges only to a critical point and not necessarily to
a d-stationary solution. While the state-of-the-art solution methods for DC optimization, for
instance, Algorithm 1 in [18], provide means to compute the d-stationary solutions for DC pro-
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grams considered in this paper, they are associated with a high computational cost. We leave
the algorithmic development to address this issue as future work.

3 Computational Study

In this section, we report the results of the numerical experiments illustrating the benefits of
continuous approximations. For this purpose, we use the IMRT planning problem presented
in §1.1 as our motivating example and a portfolio optimization problem. To showcase the
performance of the continuous approximations, we consider two alternative formulations of the
CMP. These include a mixed-integer programming (MIP) model where we use a binary variable
to encode when we violate a constraint. The second formulation is the extension of the MPCC
in [7] that we introduced in the context of our MPCC-DC approach. For both problems, we
provide the detailed formulations in Appendix A. Unfortunately, we could not solve the MIP
and MPCC model instances of the IMRT planning problem due to their large-scale nature.
Therefore, we use only the portfolio optimization problem to facilitate a comparison of different
modeling approaches.

3.1 Problem description

We first provide the mathematical programming formulation of the two problems and then show
the numerical results.

3.1.1 Portfolio optimization problem

We consider the problem of selecting a portfolio of n assets categorized into m sectors. The
objective of the optimization problem is to maximize the expected return while maintaining the
sector-specific risk within tolerable limits (treated as soft constraints). We adopt the variance of
returns, denoted by Σi for i ∈ [m], as the risk model. The decision vector x whose element, say
xj represents the percentage of total wealth we invest in asset j ∈ [n]. We model the expected
return for assets as a vector a ∈ Rn, i.e., we expect a return of aj if we invest the entire budget
in asset j ∈ [n]. Finally, we also impose that a minimum amount, denoted by bi, be invested in
every sector i ∈ [m]. We model this problem as follows.

min
x
− a>x + λ

∑
i∈[m]

‖max(x>i Σixi − τi, 0)‖0 (16)

subject to 1>nx = 1,1>ni
xi ≥ bi ∀i ∈ [m], x ≥ 0.

In the above, we use xi ∈ Rni to denote the subvector of x corresponding to assets within sector
i ∈ [m] with

∑
i∈[m] ni = n. Using the earlier notation, we have f0(x) = −a>x, fi(x) = x>i Σixi,

and X = {x | 1>nx = 1,1>ni
xi ≥ bi ∀i ∈ [m],x ≥ 0}.
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In our numerical experiments, we use the largest “Industry Portfolios" problem instance from
[8]. The data consists of n = 49 unique economic assets and over 5000 returns from each asset
with years spanning from 1926 to 2023. We use the returns data to estimate the mean and the
variance of each economic asset. We combine the 49 different assets into m = 13 “groups" or
“sectors" of similar assets.

3.1.2 Intensity-modulated radiation therapy for cancer treatment

At the beginning of radiation therapy, a computed tomography (CT) scan provides information
regarding the current state of the cancer patient. The CT scan reveals the volume of the tumor
and its position in the region of interest relative to other organs at risk (OARs). The information
in a CT scan is represented in terms of three-dimensional volume elements called voxels (akin
to pixels in two-dimensional images). We will use V := T ∪ H to denote the set of all voxels
which can be decomposed into voxels corresponding to the tumor denoted by T and healthy
tissues denoted by H. We assume the region of interest comprises m different organ types, some
of which are designated OARs. Therefore, we can obtain a further decomposition of healthy
tissues asH = ∪mi=1Hi, whereHi capture voxels for organ i = 1, . . . ,m. A treatment prescription
includes a target amount of radiation for the tumor and upper limits on the amount of radiation
considered acceptable for all OARs. We denote the former by µ and the latter by τi for i ∈ [m]

(measured in the unit of radiation known as Grays (Gy)).

A multileaf collimator is used to conform radiation delivery to the tumor structure precisely.
Radiation is delivered by aligning the collimator beam, comprising a set of beamlets, at different
gantry angles. We denote by B the set of beamlets. We can control the gantry angle and
the intensity of beamlets to obtain the desired dose pattern. Therefore, these constitute our
primary decision variables. The amount of radiation delivered to a voxel v ∈ V is a nonlinear
function of gantry angle and radiation amount. For a given gantry angle, say θ, we compute
a dose deposition matrix D(θ). The dose deposition matrix has a dimension of |V| × |B| with
individual elements given by dvb. We denote the intensity of a beamlet by y := (yb)b∈B. Several
alternative optimization models that differ in the objective and constraints imposed are used in
practice for radiation therapy planning (see [5]). For our purpose here, we consider a model that
explicitly aims to achieve a precise dosage for tumor voxels while keeping the number of healthy
voxels receiving more than the prescribed dosage to a minimum. We state such an optimization
problem as follows:

min
x,y

∑
v∈T

(xv − µ)2 + λ
m∑
i=1

∥∥(max{|xv| − τi, 0})v∈Hi

∥∥
0

(17)

subject to xv =
∑
b∈B

dvbyb ∀v ∈ V,

y ≤ yb ≤ ȳ ∀b ∈ B.

The first set of constraints captures the amount of radiation delivered to a voxel v ∈ V. The
bounds on beamlet intensity are intended to capture the physical limitations of the collimator.
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Through the first term in the objective, the program aims to achieve precision toward tumor
voxels. Mathematically, we state this term as minimizing the deviation in the amount of radiation
delivered to the tumor from the prescribed dose µ. In the second term of the objective function,
the individual summands represent the count of voxels of an OAR i that exceeds the prescription
τi.

For our numerical experiments, we use the head-and-neck cancer dataset provided in [19].
The dataset includes five instances of head-and-neck cancer, each with a CT scan and a dose
deposition matrix. In addition to the tumor, the CT scan of the region of interest includes four
OARs (spinal cord, brainstem, left and right parotids) and unspecified normal body tissue. The
prescription tumor dose is 70 Gy, and the radiation threshold for the OARs are 45, 50, and 28

Gy, respectively. Each of the five datasets has varying numbers of healthy and tumor voxels, as
detailed in Table 1. We experiment with the same set of hyperparameters for all the models.

Dataset Healthy Voxels (%) Tumor Voxels (%) Beamlets
1 67386 (71.0) 27576 (29.0) 3910
2 67270 (67.8) 31930 (32.2) 3888
3 76160 (67.7) 36320 (32.3) 4128
4 53176 (70.4) 22372 (29.6) 3003
5 64713 (69.3) 28638 (30.7) 3256

Table 1: Attributes for each of the five head-and-neck cancer datasets located in [19].

3.2 Experiment setup

The experiments were conducted on a computer using a 3.2 GHz 8-Core Intel processor with
32GB of RAM, running Mac OS Big Sur version 11.6. To solve the DC approximations of the
CMP problem, we use the DC algorithm (DCA) [14, 20]. For completion, here we describe this
algorithm using a general convex-constrained DC program (3), min

x∈X
g(x)− h(x):

1. Set k = 0. Initialize x0 ∈ X .

2. Iteratively update

xk+1 ∈ arg min
x∈X

g(x)− h(xk)− (vk)T (x− xk)

where vk ∈ ∂h(xk).

3. Stop if prescribed termination criteria are satisfied.

We implemented the DCA on MATLAB and use a randomly generated initial solution vector
x0. For both the IMRT and portfolio optimization problem instances, we use Gurobi version
9.11 to solve the MIP formulations and all subproblems in the DCA. We use the MATLAB
“fmincon" nonlinear optimization function for the MPCC formulation in portfolio optimization.
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For both the Direct-DC and MPCC-DC formulations that use the DCA, we use the relative
change in solution and relative change in the objective function value as the termination criteria.
Specifically, we terminate the DCA when the relative change in solution is less than 5%, and
the relative change in function values is less than 1% across iterations. The “fmincon” function
in MATLAB uses similar stopping criteria. For the MIP, we use Gurobi’s default termination
criteria.

3.3 Numerical results

We present the numerical results for the two problems described earlier in this section.

3.3.1 Comparison of alternative approaches on portfolio optimization problem

In this section, we describe the numerical results from four alternative models of the portfolio
optimization problem in (16). While the first two, a mixed-integer program and an MPCC, are
exact reformulations, the last two are the continuous approximations developed in this paper. We
report the mathematical formulations of these models and hyperparameters in Appendix A.1.
Figures 3a and 3b show box-and-whisker plots of the mean return and number of violations,
respectively.

With the MIP model, we obtain the global optimal solution. On the other hand, the solution
approaches adopted for the MPCC, MPCC-DC, and Direct-DC models utilize initial solutions
that we generate randomly. We replicate the experiment 30 times to get a robust sense of
results that can be obtained across different initial solutions. Figure 3 displays the metrics of
interest (mean return and number of violations) across all models and all trials. In terms of
mean return (see Figure 3a), the median for MPCC is more than 30% lower than the global
optimal MIP solution. The median return for MPCC-DC and Direct-DC are comparable and
are around 20% lower than the global optimal. In Figure 3b, we see that all four models provide

(a) Mean return (b) Number of violations

Figure 3: Results for all four portfolio optimization problem models.
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comparable performance, in terms of the median number of violations, across the 30 trials. It
is also noticeable that the MPCC and the MPCC-DC models are very sensitive, indicated by
wider box plots for mean return and number of violations, to the choice of the initial solution.
On the other hand, the Direct-DC approach shows more robust performance in our experiments.
While our models only aim to minimize the number of violations, it is worthwhile to compare the
magnitude of violations. Among the violated soft constraints, the MPCC method has the highest
average violation magnitude, while the MPCC-DC method has the lowest violation magnitude
on average. Most noticeably, the MPCC method results in a risk for i = 13 that is 2000% higher,
on average, than the tolerable limit.

3.3.2 IMRT: Performance of Direct-DC and MPCC-DC approaches

In our previous experiment, we saw that the Direct-DC and MPCC-DC continuous approxi-
mation approaches provide solutions comparable to some non-continuous methods. Therefore,
we employ both approaches for our experiments with the large-scale problem of IMRT plan-
ning. We investigate the performance of our continuous approximation models relative to the
quadratic programming-based benchmark formulations prevalent in radiation therapy planning.
The detailed formulation of these benchmarks, as well as the Direct-DC and MPCC-DC approx-
imations, are provided in Appendix A.2.

We evaluate the performance in terms of the dosage received by tumorous and healthy voxels.
Two primary questions guide this investigation.

• How many healthy voxels receive an amount of radiation exceeding their prescribed thresh-
old, and what are the magnitudes of these violations?

• How many tumorous voxels do not receive as much radiation as prescribed, and how closely
do these dosage patterns align with the prescribed amount?

Since the primary goal of IMRT is to keep healthy voxels free of exposure while administering
sufficient radiation to tumorous voxels, we gain a complete view of each model’s efficacy by
investigating these two questions.

The only input parameter for the Direct-DC approach is the value of ε, so we begin by
studying the effect of ε on the radiation pattern. We chose ε = {10−6, 10−4, 0.01, 1, 10} for this
experiment. For each value, we use the decision vector obtained when the DCA is terminated
to compute the dosage received by the OAR and voxels. We present these results in the dose-
volume histogram in Figure 4. A dose-volume histogram depicts the percentage of voxels that
receive at least as much radiation as shown in the horizontal axis. In Figure 4a, we clearly see
that with smaller ε values, we ensure no healthy voxels in the left parotid organ receive radiation
beyond its prescribed threshold of 28 Gy. Conversely, however, we see in the rightward plot that
the solutions with the same ε values deviate more from the prescribed threshold for tumorous
voxels. This trade-off between healthy and tumor voxel radiation amounts persists for larger ε
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(a) OAR: Left parotid gland (τi = 28 Gy) (b) Tumor (µ = 70 Gy)

Figure 4: Dosage volume histograms for varying ε in the Direct-DC method for Dataset 1.

values. When ε ≥ 1, the program ensures tumorous voxels receive radiation dosages very close
to the prescribed threshold of 70, yet many healthy voxels receive excess radiation. A similar
observation was made in other OARs and datasets. For the remainder of experiments with
the Direct-DC approach, we use ε = 1 as it demonstrated a reasonable compromise between
radiation precision for tumors and overdosing of the healthy tissues.

In the MPCC-DC model, we observe the same trade-off between adherence to radiation
prescriptions for tumorous voxels and the resistance to expose OARs to excess radiation. We
choose a hyperpameter grid of λ = {.01, .1, 1, 10, 100} and γ = {.5, 1, 10, 50, 250}, only testing
combinations where γ > λ (as assumed in the model). Based on our experiments, we use λ = .01

and γ = 10 that provide a degree of compromise comparable to that observed with the Direct-
DC approach. We note that the MIP and MPCC methods failed to converge to any solutions
within the user-defined time limit of one hour. Therefore, we use quadratic-penalty (QP) and
one-sided quadratic-penalty (1-QP) models as viable benchmarks for comparison. These models
are well-accepted in the radiation therapy literature (see [9]) and are also presented in Appendix
A.2. Based on hyperparameter selection procedures, we identified α = 1 − 10−6 for QP and
λ̄ = 0.01 for the 1-QP.

First, we investigate the number of healthy voxel violations and the degree of these violations
for all methods. We summarize these results in Figure 5. While the percent total of healthy
voxels that receive excess radiation is less than 3.5% for all datasets for the Direct-DC and
MPCC-DC methods, it reaches as high as 16.8% for the QP. Furthermore, the Direct-DC and
MPCC-DC methods have equal or lesser percentages of healthy voxels receiving excess radiation
than both non-DC benchmark methods in all 5 datasets. In addition to the number of healthy
violations, we can also view the severity of each violation.

For each method, the line plot in Figure 5 shows the average amount of violations as a
percentage of their respective prescribed threshold (computed across all the OAR). The figure
shows that the average magnitude of violations is greater for the DC when compared to 1-QP for
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Figure 5: Percent of total healthy voxels receiving excess radiation (bar plot) and corresponding
average violation magnitude as a percentage above the prescribed threshold (line plot).

all five datasets. This behavior is expected as the penalty term for the DC methods penalizes
the number while the 1-QP penalizes the degree of violations. The QP model, on the other
hand, equally penalizes deviation on both sides of the prescribed dosage. Therefore, we do not
notice any specific pattern in terms of overdosing the healthy voxels. Our results show that
in many cases where healthy voxels receive excess radiation, the radiation amount is 0% − 5%

above the prescribed threshold. For some healthy voxels, we observe radiation levels as high as
150% greater than the prescribed threshold. However, excessive overdosing is far less ubiquitous
in the DC and 1-QP methods than the the QP method. Therefore, we see that not only do the
DC methods consistently lead to fewer healthy voxels over-radiation, but they drastically reduce
occurrences of severe burning as well. IMRT not only aims to protect healthy tissue, but it also
must apply the correct amount of radiation to tumor cells. We also investigate the performance
of our models on radiation to tumor voxels to answer our second question. Since all four models
use the quadratic penalty to enforce precision for tumor tissue, we notice that about 50% of
the tumor voxels are underdosed. Furthermore, the amount by which these tumor voxels are
underdosed is also comparable across the methods.

Overall, a clear trade-off exists between adherence to dose prescriptions for healthy tumor-
ous voxels as hyperparameter values change for the Direct-DC and MPCC-DC methods. These
methods result in fewer healthy voxels that receive excess radiation beyond the prescribed thresh-
old. While the Direct-DC and MPCC-DC violations are typically more severe on average, the
number of severely overdosed voxels are fewer when compared to the QP method. Furthermore,
all methods perform similarly in regards to radiation precision to tumor voxels. Noting too that
the MIP formulation failed to provide a solution to any dataset within the set timeframe, our
experiments suggest that the Direct-DC and MPCC-DC methods are effective approaches for
IMRT planning problems involving cardinality minimization.
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4 Conclusions

In this paper, we study an optimization problem that emphasizes on minimizing the cardinality
of unsatisfied constraints. The problem is motivated by an application that aims to deliver as
many soft constraints as possible in addition to minimizing the objective function subject to
hard constraints. To provide computationally viable solution methods, we introduce continuous
reformulations that approximate the discrete cardinality. Our analysis shows that local solu-
tions to the cardinality minimization problem are obtainable by computing local and stationary
solutions to the proposed reformulations. We study the effectiveness of the new methods by
comparing their computational performance to alternative formulations. The numerical results
indicate that the proposed methods produce comparable solutions. Specifically, our study on the
IMRT dataset demonstrates that our methods can compute solutions with a minimal number
of unsatisfied soft conditions as desired.

Appendices

Appendix A Benchmark and Approximate Formulations

In this section, we present all the formulations of the two problems used in our numerical
experiments.

A.1 Portfolio optimization problem

To benchmark the developed continuous approximation, we use the MPCC andMIP formulations
of the portfolio optimization problem in §3.1.1. The MIP formulation is given as

min
x,z

− a>x + λ
∑
i∈[m]

zi

subject to x>i Σixi − τi ≤Mzi ∀i ∈ [m],

1>ni
xi ≥ bi ∀i ∈ [m],

1>nx = 1, x ≥ 0, z ∈ {0, 1}m

where M > 0 is a large scalar. The equivalent MPCC formulation is given as

min
x,η,ξ

− a>x + λ1>(1− ξ)

subject to ηi ≥ x>i Σixi − τi ∀i ∈ [m],

1>x = 1,η ◦ ξ = 0,x ≥ 0,

1>ni
xi ≥ bi, 0 ≤ ξi ≤ 1, ηi ≥ 0 ∀i ∈ [m].
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In the MPCC-DC formulation, the complementarity constraint (η ◦ ξ = 0) is removed from the
above model, and the objective is updated as

min
x,η,ξ

− a>x + λ1>(1− ξ) + γ
m∑
i=1

min{ηi, ξi}.

Finally, the Direct-DC formulation is given as

min
x
−a>x + λ

∑
i∈[m]

[
max

{
1

ε

(
x>i Σixi − τi

)
, 0

}
−max

{
1

ε

(
x>i Σixi − τi

)
− 1, 0

}]

subject to 1>x = 1,x ≥ 0,1>ni
xi ≥ bi ∀i ∈ [m].

In our numerical experiment, we use λ = 100 in the MIP, MPCC, MPCC-DC, and Direct-DC
formulations. Additionally, we set M = 106 in the MIP model, γ = 110 in MPCC-DC, and
ε = 1500 in Direct-DC. For each of the 13 sectors, we set the threshold of violation to the square
root of the maximum diagonal element of the covariance matrix of the corresponding sector.

A.2 Intensity-modulated radiation therapy planning problem

For the IMRT problem in (17), we introduce two models to serve as a benchmark for our
approach. The first model is prevalent in radiation therapy planning literature focusing only on
radiation precision. In this model, we penalize deviation from the prescribed dosage for healthy
organs and tumors. This model formulation is stated as:

min
x,y

α
∑
v∈T

(xv − µ)2 + (1− α)
∑
v∈H

(xv − τ)2

subject to xv =
∑
b∈B

dvbyb ∀v ∈ V,

y ≤ yb ≤ ȳ ∀b ∈ B.

The hyperparameter α ∈ [0, 1] used in the objective function allows us to control the emphasis
between the tumor and healthy organs. We refer to the above as the “quadratic penalty” (QP)
model.

The CMP model for IMRT planning in (17) minimizes the number of healthy voxels receiving
excess dosage. Alternatively, we can minimize the extent of over-dosage (beyond the prescribed
dosage) for healthy voxels. The following model formulation, the “One-sided Quadratic Penalty”

23



Ahn, Gangammanavar, and Troxell Constraint Selection via Cardinality Minimization

(1-QP), utilizes such an objective. We state it as:

min
x,y,z

∑
v∈T

(xv − µ)2 + λ̄
∑
v∈H

z2
v

subject to: xv =
∑
b∈B

dvbyb ∀v ∈ V,

zv ≥ xv − τ ∀v ∈ H,

zv ≥ 0 ∀v ∈ H,

y ≤ yb ≤ ȳ ∀b ∈ B.

Like the CMP model (17), and unlike the QP model, the above program does not penalize any
deviation from prescriptions for healthy voxels if the amount of radiation received by such voxels
is less than the corresponding prescribed threshold. Note that the parameter λ̄ plays a similar
role as λ in the CMP.

For completion, we also present the approximate models. First, the model obtained by
employing the MPCC-DC approach in §2.1 is given as

min
x,y,η,ξ

∑
v∈T

(xv − µ)2 +
∑
v∈H

(
λ(1− ξv) + γmin{ηv, ξv}

)
subject to xv =

∑
b∈B

dvbyb ∀v ∈ V,

y ≤ yb ≤ y ∀b ∈ B,

ηv ≥ xv − τ ∀v ∈ H,

0 ≤ ξv ≤ 1, ηv ≥ 0 ∀v ∈ H.

The formulation resulting from the Direct-DC approach, presented in §2.2, is as follows.

min
x,y

∑
v∈T

(xv − µ)2 + λ
∑
v∈H

[
max

{
1

ε

(
xv − τ

)
, 0

}
−max

{
1

ε

(
xv − τ

)
− 1, 0

}]
subject to xv =

∑
b∈B

dvbyb ∀v ∈ V,

y ≤ yb ≤ y ∀b ∈ B.

As with the portfolio optimization problem, the IMRT problem (17) also admits a mixed-binary
program as an equivalent formulation. Unfortunately, we could not obtain solutions from this
formulation for any dataset using the default integer programming solvers in Gurobi. Therefore,
we did not consider the mixed-binary programs in our numerical experiments.

A.3 Benchmark methods and hyperparameters

In this section, we discuss hyperparameter selection for the benchmark models for the IMRT
problem detailed in section A.2. First, the QP method experiences a clear trade-off between
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(a) Number of violations, QP. (b) Percentage of all healthy vox-
els receiving radiation amounts
over 10% greater than the pre-
scribed threshold, QP.

(c) Number of violations, 1-QP.

Figure 6: Number of violations for healthy voxels and for tumorous voxels as hyperparameter
value changes for the QP methods for Dataset 1.

adherence to healthy voxels’ prescriptions and tumorous voxels’ prescriptions as hyperparameter
values change (see Figure 6a). We see more healthy voxel violations with hyperparameter values
near 1 even though these hyperparameter values indicate more emphasis on the objective term
relating to healthy voxels. This counterintuitive nature is attributed to the relative increase
in average violation magnitude; for hyperparameter values near 1, each violation magnitude
is relatively small. Conversely, for hyperparameter values near 0, the quadratic nature of the
penalty decays and instead “sacrifices" some voxels so that large quantities of other voxels may
meet requirements. We also note that the QP method tends to result in large quantities of
healthy voxels receiving radiation levels over 10% greater than the prescribed threshold (see
Figure 6b). Any IMRT treatment with this quality is unacceptable. Therefore, in §3.3 we use
α = 1 − 10−6 as this value typically results in approximately 3% − 5% of total healthy voxels
receiving over 10% of the prescribed threshold. While this 3%− 5% value is chosen arbitrarily,
it nevertheless provides a more practical solution to use in a real IMRT settings.

Next, the 1-QP method also experiences a trade-off as hyperparameter values change. How-
ever, this method results in less extreme exposure to radiation of healthy voxels as compared to
the QP method. Also, the trade-off is less counterintuitive than in the QP method. Here, as less
weight is placed on the terms relating to healthy voxels, fewer tumorous voxels receive insufficient
radiation, and more healthy voxels receive excess radiation. Figure 6c details how the adherence
to these two objectives changes as hyperparameter values change. We note that λ̄ = .01 results
in similar radiation dosage patterns for tumorous voxels to the DC method results. Therefore,
we choose this hyperparameter value for comparisons enumerated in §3.3.
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