
A PROJECTED-SEARCH INTERIOR METHOD
FOR NONLINEAR OPTIMIZATION

PHILIP E. GILL∗ AND MINXIN ZHANG

Abstract. This paper concerns the formulation and analysis of a new interior method for general
nonlinearly constrained optimization that combines a shifted primal-dual interior method with a
projected-search method for bound-constrained optimization. The method involves the computation
of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates
shifts on both the primal and dual variables. Shifts on the dual variables allow the method to be
safely “warm started” from a good approximate solution and eliminates the ill-conditioning of the
associated linear equations that may occur when the dual variables are close to zero. The approximate
Newton direction is used in conjunction with a new projected-search line-search algorithm that
employs a flexible non-monotone quasi-Armijo line search for the minimization of each penalty-
barrier function. Numerical results show that the proposed method requires fewer iterations than a
conventional interior method, thereby reducing the number of times that a search direction must be
computed. In particular, results from a set of quadratic programming test problems indicate that the
method is particularly well-suited to solving the quadratic programming subproblem in a sequential
quadratic programming method for nonlinear optimization.

Key words. Nonlinearly constrained optimization, interior-point methods, primal-dual meth-
ods, shifted penalty and barrier methods, projected-search methods, Armijo line search, augmented
Lagrangian methods.

1. Introduction. This paper concerns the formulation and analysis of a new
primal-dual interior method for solving nonlinear optimization problems of the form

minimize
x∈Rn,s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0,(NIP)

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable. (The slack
variables s serve to convert the inequalities c(x) ≥ 0 into a mixture of equalities and
inequalities that do not require the need to know an initial point for which c is strictly
positive.)

In [13], Gill, Kungurtsev and Robinson propose an algorithm for (NIP) based on
using a shifted primal-dual penalty-barrier function as a merit function for a primal-
dual path-following method. This function involves a primal-dual shifted penalty
term (i.e., an augmented Lagrangian term) for the equality constraints c(x) − s = 0
(see, e.g., Powell [20], Hestenes [18] and Gill and Robinson [15]), and an analogous
primal-dual shifted barrier term for the inequalities s ≥ 0. It is shown that a specific
approximate Newton method for the unconstrained minimization of the merit function
generates search directions that are identical to those associated with a variant of the
conventional path-following method in which the perturbation of the complementarity
condition does not need to go to zero.

The proposed method is based on an extension of the Gill, Kungurtsev and Robin-
son method that includes shifts on the dual variables as well as the slack variables s.
(For problems with a mixture of upper and lower bounds on x and s, the method may
be regarded as shifting both the primal and dual variables, see Gill and Zhang [16].)
Shifts on the dual variables allow the method to be safely “warm started” from a
good approximate solution and eliminates the ill-conditioning of the associated linear
equations that may occur when the dual variables are close to zero.

∗Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112
(pgill@ucsd.edu, miz151@ucsd.edu)

1

The shifted primal-dual penalty-barrier function includes logarithmic barrier terms
that create a singularity at the boundary of the primal-dual shifted feasible region,
which implies that the variables are subject to implicit bound constraints during the
minimization. We consider minimizing the merit function using a projected-search
method that uses a flexible non-monotone quasi-Armijo line search. Unlike conven-
tional interior methods, which impose an upper bound on the step size to prevent
the variables from becoming infeasible, projected-search interior methods project the
underlying search direction onto a subset of the feasible region defined by perturbing
the bounds. With this approach the direction of the search path may change multiple
times along the boundary of the perturbed feasible region at the cost of computing
a single direction. Projected-search interior methods have the potential of requiring
fewer iterations than a conventional interior method, thereby reducing the number of
times that a search direction must be computed.

The projected-search method is specifically designed for the all-shifted penalty-
barrier function and generates a sequence of feasible iterates {vk}∞k=0 such that vk+1 =
projΩk

(vk+αk∆vk), where projΩk
(v) is the projection of the vector v of primal-dual

variables onto a perturbed feasible region Ωk. Under mild assumptions, it is shown
that there exists a limit point of the computed iterates that is either an infeasible
stationary point, or a complementary approximate Karush-Kuhn-Tucker point (KKT),
i.e., it satisfies reasonable stopping criteria and is a KKT point under a complementary
approximate KKT regularity condition (see Andreani, Mart́ınez and Svaiter [2]). In
particular, it is shown that the limit points of {vk}∞k=0 lie within the intersection of
all the sets Ωk, with Ωk → Ω.

The paper is organized in six sections. In Section 2 we review the method of Gill,
Kungurtsev and Robinson. Section 3 concerns the extension of this method to include
shifts on the dual variables as well as the slack variables. In Section 4 a projected-
search algorithm is proposed for minimizing the all-shifted primal-dual penalty-barrier
function for fixed penalty and barrier parameters. The convergence of this algorithm
is established under certain assumptions. Section 5 presents an algorithm for solving
problem (NIP) that builds upon the work from Section 4. Global convergence results
are also established. Some numerical results are presented in Section 6.

1.1. Notation and terminology. Given vectors x and y, the vector consisting
of x augmented by y is denoted by (x, y). The subscript i is appended to vectors to
denote the ith component of that vector, whereas the subscript k is appended to a
vector to denote its value during the kth iteration of an algorithm, e.g., xk represents
the value for x during the kth iteration, whereas [xk]i denotes the ith component of
the vector xk. Given vectors a and b with the same dimension, min(a, b) denotes a
vector with components min(ai, bi). The vector e denotes the column vector of ones,
and I denotes the identity matrix. The dimensions of e and I are defined by the
context. The vector two-norm or its induced matrix norm are denoted by ∥ · ∥. The
inertia of a real symmetric matrixA, denoted by In(A), is the integer triple (a+, a−, a0)
giving the number of positive, negative and zero eigenvalues of A. The n-vector
∇f(x) denotes gradient of f(x), and the m × n matrix J(x) denotes the constraint
Jacobian, which has ith row ∇ci(x)T. The Lagrangian function associated with (NIP)
is L(x, y) = f(x)− c(x)Ty, where y is the m-vector of dual variables. The Hessian of
the Lagrangian with respect to x is denoted by H(x, y) = ∇2f(x) −

∑m
i=1 yi∇2ci(x).

Let {αj}j≥0 be a sequence of scalars, vectors, or matrices and let {βj}j≥0 be a
sequence of positive scalars. If there exists a positive constant γ such that ∥αj∥ ≤ γβj ,
we write αj = O

(
βj
)
. If there exists a sequence {γj} → 0 such that ∥αj∥ ≤ γjβj ,

2

we say that αj = o(βj). If there exists a positive sequence {σj} → 0 and a positive
constant β such that βj > βσj , we write βj = Ω(σj).

2. Background. Given an appropriate constraint qualification, the first-order
optimality conditions for problem (NIP) are given by

(2.1)

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = 0, s ≥ 0,

s · w = 0, w ≥ 0,


where the vectors y and w constitute the Lagrange multipliers for the equality con-
straint c(x) − s = 0 and nonnegativity constraint s ≥ 0 respectively. Following
standard practice, any point satisfying the conditions (2.1) will be referred to as a
first-order KKT point.

Primal-dual path-following methods generate a sequence of iterates that approx-
imate a continuous primal-dual path that passes through a solution of (NIP). Points
on this path satisfy a system of nonlinear equations that represent the deviations
from a perturbation of the first-order optimality conditions (2.1). In a conventional
path-following approach, the perturbed optimality conditions correspond to replacing
the equality constraints and complementarity conditions of (2.1) by c(x) − s = µy
and s · w = µe, where µ is a small positive parameter such that µ→ 0. This method
is closely related to penalty-barrier methods for solving (NIP). Penalty and barrier
involve the minimization of a sequence of unconstrained functions parameterized by
a sequence of penalty-barrier parameters

{
µk

}
such that µk → 0 (see, e.g., Fiacco

and McCormick [9], Frisch [11] and Fiacco [8]). Under certain conditions on f and c
the continuous trajectory of penalty-barrier minimizers associated with a continuous
penalty-barrier parameter µ coincides with the primal-dual path.

In the neighborhood of a first-order KKT point, computing the search direction
as the solution of the Newton equations for a zero of the perturbed optimality condi-
tions provides the favorable local convergence rate associated with Newton’s method.
Given the close connection with penalty-barrier methods, solving the Newton equa-
tions provides an alternative to solving the ill-conditioned equations associated with a
conventional barrier method. In this context, the penalty-barrier function may be re-
garded as a merit function for forcing convergence of the sequence of Newton iterates
of the path-following method. For examples of this approach, see Byrd, Hribar and
Nocedal [4], Wächter and Biegler [21], Forsgren and Gill [10], and Gertz and Gill [12].

When implemented with exact second derivatives, path-following interior meth-
ods often converge in few iterations–even for very large problems. As the dimension
and zero/nonzero structure of the Jacobian matrix remains fixed, the Newton equa-
tions may be solved efficiently using advanced “off-the-shelf” linear algebra software.
On the negative side, although conventional path-following interior methods are very
effective for solving “one-off” problems, they are difficult to adapt to solving a se-
quence of related problems using so-called “warm starts”, i.e., using the solution of
one problem as an initial estimate of the solution of the next.

In a conventional path-following interior method, it is necessary to force µ → 0
to ensure that points near the path eventually satisfy the optimality conditions (2.1).
However, if an augmented Lagrangian method defined with multiplier estimate yE and
penalty parameter µP is used to minimize f(x) subject to c(x) = 0, then perturbed
conditions of the form c(x) = µP(yE − y) hold at a minimizer. It follows that µP

need not go to zero if yE is chosen converge to the optimal multipliers. Based on

3

this observation, the method of Gill, Kungurtsev and Robinson [13] is based on the
perturbed optimality conditions

(2.2)

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = µP(yE − y), s ≥ 0,

s · w = µB(wE − w), w ≥ 0,


where µP and µB are positive scalars and yE and wE denote estimates of the Lagrange
multipliers for the constraints c(x) − s = 0 and s ≥ 0, respectively. The perturbed
complementarity condition in (2.2) may be written in the form (s+µBe) · w = µBwE ,
which implies that if wE > 0 then s + µBe > 0 and w > 0. Gill, Kungurtsev and
Robinson show that an appropriate merit function for a path-following interior method
based on the conditions (2.2) is the shifted primal-dual penalty-barrier function

M(x, s, y, w ; yE , wE , µP , µB) = f(x)− (c(x)− s)TyE

+
1

2µP
∥c(x)− s∥2 + 1

2µP
∥c(x)− s+ µP(y − yE)∥2

−
m∑
i=1

µBwE

i ln
(
si + µB

)
−

m∑
i=1

µBwE

i ln
(
wi(si + µB)

)
+

m∑
i=1

wi(si + µB).

In the neighborhood of a minimizer of (NIP) satisfying certain second-order optimality
conditions, the Newton equations for a zero of the conditions (2.2) are equivalent to
the Newton equations for a minimizer of M . Under certain assumptions, a limit
point of the iterates generated by the algorithm may always be found that is either an
infeasible stationary point or a complementary approximate KKT point (see Andreani,
Mart́ınez and Svaiter [2]). The reader is referred to Gill, Kungurtsev and Robinson [13]
for details.

In the following section, the Gill, Kungurtsev and Robinson algorithm is extended
to include shifts on the dual variables w as well as the slack variables s.

3. An All-Shifted Primal-Dual Penalty-Barrier Function. In order to use
shifts for the dual variables, we consider the perturbed optimality conditions

(3.1)

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = µP(yE − y), s ≥ 0,

s · w = µB(wE − w) + µB(sE − s), w ≥ 0,


where yE ∈ Rm is an estimate of a Lagrange multiplier vector for the constraint
c(x) − s = 0, wE ∈ Rm is an estimate of a Lagrange multiplier for the constraint
s ≥ 0, sE ∈ Rm is an estimate of the optimal slacks, and µP and µB are positive
scalars. The last equation of (3.1) may be written in the form (s+µBe) · (w+µBe) =
µB(sE + wE + µBe), which implies that if sE + wE + µBe > 0 then s + µBe > 0 and
w + µBe > 0. If F (x, s, y, w; sE , yE , wE , µP , µB) denotes the function

(3.2) F (x, s, y, w ; sE , yE , wE , µP , µB) =


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)

s · w − µB(wE − w + sE − s)

 ,

then any point (x, s, y, w) such that F (x, s, y, w ; sE , yE , wE , µP , µB) = 0 must
satisfy the perturbed optimality conditions (3.1). Let F (v) denote the function at

4

a given point v = (x, s, y, w). The Newton equations for the step ∆v are given by
F ′(v)∆v = −F (v), i.e.,
(3.3)
H(x, y) 0 −J(x)T 0

0 0 Im −Im
J(x) −Im µPIm 0
0 W + µBIm 0 S + µBIm



∆x
∆s
∆y
∆w

 = −


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)

s · w − µB(wE − w + sE − s)

 .

We need to formulate a penalty-barrier functionM such that in a neighborhood of
a minimizer of M , the Newton equations for minimizing M approximate the Newton
equations (3.3). Consider the shifted primal-dual penalty-barrier function
(3.4)

M(x, s, y, w ; sE , yE , wE , µP , µB) = f(x)︸︷︷︸
(A)

−(c(x)− s)TyE︸ ︷︷ ︸
(B)

+
1

2µP
∥c(x)− s∥2︸ ︷︷ ︸

(C)

+
1

2µP
∥c(x)− s+ µP(y − yE)∥2︸ ︷︷ ︸

(D)

−2
m∑
i=1

µB(wE

i + sEi + µB) ln(si + µB)︸ ︷︷ ︸
(E)

−
m∑
i=1

µB(wE

i + sEi + µB) ln(wi + µB)︸ ︷︷ ︸
(F)

+

m∑
i=1

wi(si + µB)︸ ︷︷ ︸
(G)

+2µB

m∑
i=1

si︸ ︷︷ ︸
(H)

.


Let S and W denote diagonal matrices with diagonal entries si and wi such that
si + µB > 0 and wi + µB > 0, and let SE denote the diagonal matrix with diagonal
entries sEi . Similarly, let

SB = S + µBIm, SE

B = SE + µBIm and WB =W + µBIm.

Given the positive-definite matrices

DP = µPIm and DB = SBW
−1
B ,

and auxiliary vectors

πY (x) = yE − 1

µP
(c(x)− s) and πW (s) = µB(S + µBI)−1(wE − s+ sE),

the gradient ∇M may be written as

(3.5) ∇M =


∇f(x)− J(x)T

(
πY + (πY − y)

)
(πY − y) + (πY − πW) + (w − πW)

−DP(π
Y − y)

−DB(π
W − w)

 ,

5

and the Hessian ∇2M may be written in the form
(3.6)
H + 2J(x)TD−1

P J(x) −2J(x)TD−1
P J(x)T 0

−2D−1
P J(x) 2(D−1

P +D−1
B W−1

B ΠW + µBS−1
B) −Im Im

J(x) −Im DP 0
0 Im 0 DBW

−1
B ΠW + µBW−2

B SB

 ,

where H = H
(
x, πY + (πY − y)

)
and ΠW = diag(πW).

At the start of iteration k, given the primal-dual iterate vk = (xk, sk, yk, wk),
the search direction ∆vk = (∆xk, ∆sk, ∆yk, ∆wk) is computed by solving the linear
equations

(3.7) HM

k ∆vk = −∇M(vk),

where HM

k is a positive-definite approximation of ∇2M(xk, sk, yk, wk). For the
remainder of this section we focus on the computation of the search direction for a
single iteration and omit the subscript k. The matrix HM in the equations HM∆v =
−∇M(v) is defined by substituting y for πY , w for πW , s for sE and a symmetric

matrix Ĥ for H in (3.6). This gives

(3.8) HM =


Ĥ + 2J(x)TD−1

P J(x) −2J(x)TD−1
P J(x)T 0

−2D−1
P J(x) 2(D−1

P +D−1
B) −Im Im

J(x) −Im DP 0
0 Im 0 DB

 ,

where Ĥ is chosen such that Ĥ ≈ H(x, y) and HM is positive definite. A general-
ization of Theorem 5.1 of Gill, Kungurtsev and Robinson [13] may be used to show

that the choice Ĥ = H(x, y) is allowed in the neighborhood of a solution satisfying
certain second-order optimality conditions. The approximate Newton equations (3.7)
defined with HM from (3.8) are not solved directly because of the potential for nu-
merical instability. Instead, an equivalent transformed system is solved based on the
transformation

(3.9) UHM∆v = −U∇M(v),

where U is a nonsingular matrix defined by

(3.10) U =


Im 0 −2J(x)TD−1

P 0
0 Im 2D−1

P −2D−1
B

0 0 Im 0
0 0 0 W + µBIm

 .

Upon multiplication and application of the identity WBDB = SB , the equations (3.9)
may be rewritten as
(3.11)

Ĥ 0 −J(x)T 0
0 0 Im −Im

J(x) −Im DP 0
0 W + µBIm 0 S + µBIm



∆x
∆s
∆y
∆w

 = −


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)

s · w − µB(wE − w + sE − s)

 .

These equations are identical to the shifted path-following equations (3.3) when Ĥ =
H(x, y). The solution of (3.11) is given by

∆w = y − w +∆y and ∆s = −DB(y +∆y) + µBW−1
B (wE + sE − s),

6

where ∆x and ∆y satisfy the equations

(3.12)

(
Ĥ J(x)T

J(x) −(DP +DB)

)(
∆x
−∆y

)
= −

(
∇f(x)− J(x)Ty

DP(y − πY) +DB(y − πW)

)
.

The matrix HM in (3.8) is positive definite if Ĥ + J(x)T(DP +DB)
−1J(x) is positive

definite or, equivalently, if the (n +m) × (n +m) matrix associated with (3.12) has

inertia (n,m, 0). If this condition does not hold for Ĥ = H(x, y), a common choice of

Ĥ is the matrix H(x, y) + δIn for some positive scalar δ (see Section 6.1).

4. Minimizing the Merit Function using Projected Search. In this sec-
tion, we propose a projected-search algorithm that utilizes a non-monotone flexible
quasi-Armijo line search for minimizing the merit functionM(x, s, y, w ; sE , yE , wE , µP , µB)
of (3.4) with fixed parameters sE , yE , wE , µP and µB . The flexible quasi-Armijo
line search is a generalization of the quasi-Armijo search (see Ferry et al[7]) that
allows the acceptance of a step under a wider range of conditions. The gener-
alization uses the idea of flexible line search proposed by Curtis and Nocedal [5],
and also employs the relation between minimizing the merit function and finding a
zero of the shifted path-following function F (x, s, y, w ; sE , yE , wE , µP , µB) of (3.2). In
this case, we simplify the notation by writing M(x, s, y, w ; sE , yE , wE , zE , µP , µB) and
F (x, s, y, w ; sE , yE , wE , µP , µB) as M(v ;µP) and F (v ;µP), respectively.

4.1. The Algorithm. For the merit function M(v ;µP) to be well-defined, the
variables must satisfy the implicit bounds s > −µBe, and w > −µBe. Thus, min-
imizing the merit function M(v ;µP) is equivalent to solving the bound-constrained
problem

minimize
v

M(v ;µP) subject to v > ℓ,(IPBC)

with ℓ =
(
−∞,−µBe,−∞,−µBe

)
, where an entry of “−∞” is used to indicate that

the associated variable has no lower bound. Let projΩk
(v) be the projection of v

onto the perturbed feasible region

(4.1) Ωk =
{
v : v ≥ min{vk − σ(vk − ℓ), 0}

}
,

with σ a fixed positive scalar such that 0 < σ < 1. The quantity σ may be interpreted
as the “fraction to the boundary” parameter used in many conventional interior-point
methods. The proposed projected-search method for problem (IPBC) is given in
Algorithm 4.1. It generates a sequence of feasible iterates {vk}∞k=0 such that vk+1 =
projΩk

(vk + αk∆vk), where ∆vk is the search direction computed as in Section 3,
and αk is a step computed using a flexible quasi-Armijo search.

To perform the flexible quasi-Armijo search, we choose a line-search Armijo pa-
rameter µL such that µL ≥ µP . At an iteration k, let ψk(α ;µ) and ϕk(α ;µ) denote the
piecewise-differentiable functionsM

(
projΩk

(vk+α∆vk) ;µ
)
and

∥∥F (projΩk
(vk + α∆vk) ;µ

)∥∥.
A step αk is acceptable if all of the three conditions

ψk(αk ;µ
P) < max

{
ψk(0 ;µ

P),Mmax

}
,(4.2a)

ψk(αk ;µ
L) < max

{
ψk(0 ;µ

L),Mmax

}
, and(4.2b)

ϕk(αk ;µ
P) ≤ ηF min

{
ϕk(0 ;µ

P), η
mk
F Fmax

}
(4.2c)

are satisfied, or

ψk(αk ;µ
F

k) ≤ ψk(0 ;µ
F

k) + αkηA∇M(vk ;µ
P)T∆vk,(4.2d)

7

for some value µF

k ∈ [µP , µL] and some positive ηF < 1. In these conditions, Mmax

and Fmax are large preassigned parameters and mk is the number of iterations prior
to iteration k at which (4.2a)–(4.2c) were satisfied. Any αk satisfying the conditions
(4.2a)–(4.2c) or the condition (4.2d) is classified as a flexible quasi-Armijo step. Al-
ternatively, an αk that satisfies (4.2d) for µF

k = µP is simply known as a quasi-Armijo
step. The conditions (4.2a)–(4.2d) allow a step to be accepted if either (4.2a)–(4.2c)
holds, which implies that αk gives a sufficient decrease in the norm of the shifted path-
following function F (3.2), or (4.2d) holds, which implies that αk satisfies a flexible
variant of the quasi-Armijo condition for the minimization of M .

The convergence analysis in subsection 4.2 below establishes the convergence of
Algorithm 4.1 under typical assumptions. However, the ultimate purpose is to develop
a practical algorithm for the solution of problem (NIP) that uses Algorithm 4.1 as a
basis for minimizing the underlying merit function. The slack-variable reset in Step 16
of Algorithm 4.1 plays a crucial role in this more general algorithm for handling
(locally) infeasible problems (see Lemma 5.8). Analogous slack-variable resets are
used in Gill, Murray and Saunders [14], and Gill, Kungurtsev and Robinson [13]. As
defined in Step 15 of Algorithm 4.1, ŝk+1 is the unique minimizer, with respect to s,
of the sum of the terms (B), (C), (D), (G) and (H) in the definition of the function
M . In particular, it follows from Step 15 and Step 16 of Algorithm 4.1 that the value
of sk+1 computed in Step 16 satisfies

sk+1 ≥ ŝk+1 = c(xk+1)− µF

k

(
yE + 1

2 (wk+1 − yk+1) + µB
)
,

which implies, after rearrangement, that

(4.3) c(xk+1)− sk+1 ≤ µF

k

(
yE + 1

2 (wk+1 − yk+1) + µB
)
.

Algorithm 4.1 Minimizing M for fixed parameters sE , yE , wE , µP , µB and µL.

1: procedure merit-proj(x0, s0, y0, w0, s
E , wE , µP , µB , µL)

2: Restrictions: s0 + µBe > 0, w0 + µBe > 0, sE + wE + µBe > 0, µL ≥ µP > 0,
µB > 0;

3: Constants:
{
ηA, γA, ηF

}
∈ (0, 1);

4: Set v0 ← (x0, s0, y0, w0);
5: while ∥∇M(vk)∥ > 0 do
6: Choose HM

k ≻ 0, and then compute the search direction ∆vk from (3.7);
7: Set αk ← 1;
8: loop
9: if (4.2a)–(4.2c) hold or (4.2d) holds for µF

k = µL or µF

k = µP then
10: break;
11: end if
12: Set αk ← γAαk;
13: end loop
14: Set vk+1 ← projΩk

(vk + αk∆vk);

15: Set ŝk+1 ← c(xk+1)− µF

k

(
yE + 1

2 (wk+1 − yk+1) + µB
)
;

16: Perform a slack reset sk+1 ← max{sk+1, ŝk+1};
17: Set vk+1 ← (xk+1, sk+1, yk+1, wk+1);
18: end while
19: end procedure

8

4.2. Convergence analysis. The following assumptions are made for the con-
vergence analysis:

Assumption 4.1. The functions f and c are twice continuously differentiable.

Assumption 4.2. The sequence of matrices {HM

k }k≥0 used in (3.7) are chosen
to be uniformly positive definite and bounded in norm.

Assumption 4.3. The sequence of iterates {xk} is contained in a bounded set.

If M(v ;µF) is used to denote M(x, s, y, w, z ; sE , yE , wE , zE , µF , µB) with either
µF = µP or µF = µL, the first result shows that M(v ;µF) is monotonically decreasing
if µF is fixed.

Lemma 4.1. Suppose that µF is fixed. The sequence of iterates {vk} computed by
Algorithm 4.1 is such that

{
M(vk ;µ

F)
}
is bounded. In particular, if αk is a step that

satisfies (4.2d), then M(vk+1 ;µ
F) < M(vk ;µ

F).

Proof. As HM

k is positive definite by Assumption 4.2 and ∇M(vk ;µ
P) is as-

sumed to be nonzero for all k ≥ 0, the vector ∆vk is a descent direction for M
at vk. This property, together with equations (4.2a) and (4.2b), imply that the
line search performed in Algorithm 4.1 produces an αk such that the new point
vk+1 = projΩk

(vk + αk∆vk) satisfies M(vk+1 ;µ
F) < max{M(vk ;µ

F),Mmax}. In
particular, if (4.2d) holds, then M(vk+1 ;µ

F) < M(vk ;µ
F). If follows that the only

way the desired result can not hold is if the slack-reset procedure of Step 16 of Algo-
rithm 4.1 causes M to increase. The proof is complete if it can be shown that this
cannot happen.

The vector ŝk+1 used in the slack reset is the unique minimizer of the sum of the
terms (B), (C), (D), (G) and (H) defining the function M(v ;µF), so that the sum of
these terms can not increase. Also, (A) is independent of s, so that its value does not
change. The slack-reset procedure has the effect of possibly increasing the value of
some of its components, which means that (E) and (F) terms in the definition of M
can only decrease. In total, this implies that the slack reset can never increase the
value of M , which completes the proof.

Lemma 4.2. If µF is fixed, then the sequence of iterates {vk} = {(xk, sk, yk, wk)}
computed by Algorithm 4.1 satisfies the following properties.
(i) The sequences {sk}, {c(xk)− sk}, {yk}, and {wk} are bounded.
(ii) For every i it holds that

lim inf
k≥0

[sk + µBe]i > 0 and lim inf
k≥0

[wk + µBe]i > 0.

(iii) The sequences
{
πY (xk, sk)

}
,
{
πW (sk)

}
, and

{
∇M(vk ;µ

P)
}
are bounded.

(iv) There exists a scalar Mlow such that M(vk ;µ
F) ≥Mlow > −∞ for all k.

Proof. First, we consider the case where (4.2c) holds only finitely many times.
For a proof by contradiction, assume that {sk} is unbounded. As sk + µBe > 0 by
construction, there exists a subsequence of iterations S and component i such that

(4.4) lim
k∈S

[sk]i =∞ and [sk]i ≥ [sk]j for every j and all k ∈ S.

Next it will be shown thatM must go to infinity on S. It follows from (4.4), Assump-
tion 4.3, and the continuity of c that the term (A) in the definition of M is bounded
below for all k, that (B) cannot go to −∞ any faster than ∥sk∥ on S, and that (C)
converges to ∞ on S at the same rate as ∥sk∥2. It is also clear that (D) is bounded

9

below by zero. On the other hand, (E) goes to −∞ on S at the rate − ln
(
[sk]i+µ

B
)
.

Next, note that (H) is bounded below. Now, if (F) is bounded below on S, then
the previous argument proves that M converges to infinity on S, which contradicts
Lemma 4.1. Otherwise, if (F) goes to −∞ on S, then (G) converges to ∞ faster than
(F) converges to −∞. Thus, M converges to ∞ on S, which contradicts Lemma 4.1.
We have thus proved that {sk} is bounded, which is the first part of result (i). The
second part of (i), i.e., the uniform boundedness of {c(xk)−sk}, follows from the first
result, the continuity of c, and Assumption 4.3.

The next step is to establish the third bound in part (i), i.e., that {yk} is bounded.
For a proof by contradiction, assume that there exists some subsequence S and com-
ponent i such that

lim
k∈S

∣∣[yk]i∣∣ =∞ and
∣∣[yk]i∣∣ ≥ ∣∣[yk]j∣∣ for every j and all k ∈ S.

Using arguments similar to those of the preceding paragraph, together with the result
established above that {sk} is bounded, it follows that (A), (B) and (C) are bounded
below over all k, and that (D) converges to ∞ on S at the rate of [yk]

2
i because {sk}

is bounded, as has been shown above. Using the uniform boundedness of
{
sk

}
and

the assumption that sE +wE +µB > 0, it may be deduced that (E) is bounded below.
If (F) is bounded below on S, then (G) is also bounded, and as (H) is bounded below
by zero we would conclude, in totality, that limk∈S M(vk) = ∞, which contradicts
Lemma 4.1. Thus, (F) must converge to −∞, which implies that (G) converges to
∞ faster than (F) converges to −∞, so that limk∈S M(vk ;µ

F) = ∞ on S, which
contradicts Lemma 4.1. Thus,

{
yk

}
is bounded.

We now prove the final bound in part (i), i.e., that
{
wk

}
is bounded. Using the

boundedness of
{
xk

}
,
{
sk

}
and

{
yk

}
, we know that (A), (B), (C), (D) and (H) are

bounded, (E) is bounded below. For a proof by contradiction, assume that the set is
unbounded, which implies the existence of a subsequence S and a component i such
that

lim
k∈S

[wk]i =∞.

Then (F) converges to −∞, while (G) converges to ∞ faster than (F) converges to
−∞, so that limk∈S1

M(vk ;µ
F) = ∞ on S, which contradicts Lemma 4.1. It follows

that
{
wk

}
is bounded.

Part (ii) is also proved by contradiction. Suppose that
{
[sk + µBe]i

}
→ 0 on

some subsequence S and for some component i. As before, (A), (B), (C), (D), (G)
and (H) are all bounded from below over all k. We may also use wE + sE + µB > 0
and the fact that

{
sk

}
and

{
wk

}
were proved to be bounded in part (i) to conclude

that (E) and (F) converge to ∞ on S. It follows that limk∈S M(vk ;µ
F) = ∞, which

contradicts Lemma 4.1, and therefore establishes that lim inf [sk+µ
Be]i > 0 for every

1 ≤ i ≤ m. A similar argument may be used to prove that lim inf [wk +µ
Be]i > 0 for

every 1 ≤ i ≤ m, which completes the proof.
Part (iii) and Part (iv) can be proved similarly as in the proof of Lemma 3.2(iii)

and (iv) in [13].

Certain results hold when the gradient of M(v ;µP) is bounded away from zero.

Lemma 4.3. If there exists a positive scalar ϵ and a subsequence of iterates S
satisfying

∥∇M(vk ;µ
P)∥ ≥ ϵ for all k ∈ S,

then the following results must hold.

10

(i) The set
{
∥∆vk∥

}
k∈S is bounded above and bounded away from zero.

(ii) There exists a positive scalar δ such that ∇M(vk ;µ
P)T∆vk ≤ −δ for all k ∈ S.

(iii) There exist a positive scalar αmin such that, for all k ∈ S, the condition (4.2d)
is satisfied with αk ≥ αmin.

Proof. See the proof of Lemma 3.3 in [13].

Next we establish the main convergence result for Algorithm 4.1.

Theorem 4.4 (Flexible quasi-Armijo search). Under Assumptions 4.1–4.3, there
exists an iteration subsequence S such that

lim
k∈S
∇M(vk ;µ

P) = 0.

Proof. First, consider the case where there exists an infinite subsequence of iter-
ates S such that the line-search conditions (4.2a)–(4.2c) hold for all k ∈ S. Then
the line-search condition (4.2c) implies that limk∈S ∥F (vk ;µP)∥ = 0. By (3.9),
F (vk ;µ

P) = Uk∇M(vk ;µ
P), where Uk is a matrix of the form (3.10). Lemma 4.2(ii)

implies that
{
∥Uk∥

}
is uniformly bounded away from zero, which ensures that

limk∈S ∇M(vk ;µ
P) = 0.

Now assume the complementary case where the subsequence of iterates S such
that the line-search conditions (4.2a)–(4.2c) hold is finite. This implies that for
all k sufficiently large, the line-search condition (4.2d) must hold. The proof that
limk∈S ∇M(vk ;µ

P) = 0 is by contradiction. Suppose there exists a constant ϵ > 0
and a subsequence S such that ∥∇M(vk ;µ

P)∥ ≥ ϵ for all k ∈ S. It follows from
Lemma 4.1 and Lemma 4.2(iv) that limk→∞M(vk ;µ

F) = Mmin > −∞. Using this
result and the fact that the line-search condition (4.2d) is satisfied for all k sufficiently
large, it must follow that

lim
k→∞

αk∇M(vk ;µ
P)T∆vk = 0,

which contradicts Lemma 4.3(ii) and Lemma 4.3(iii).

5. Solving the Nonlinear Optimization Problem. In this section, a projected-
search interior method for solving the nonlinear optimization problem (NIP) is for-
mulated and analyzed. The method incorporates the projected-search algorithm pre-
sented in Section 4 with strategies for adjusting the parameters in the definition of
the merit function, which were fixed in Algorithm 4.1.

5.1. The algorithm. The proposed method is given in Algorithm 5.1. The
method uses the distinction among O-iterations, M-iterations and F-iterations, which
are described below.

The definition of an O-iteration is based on the optimality conditions for problem
(NIP). Progress towards optimality of the iterate vk+1 = (xk+1, sk+1, yk+1, wk+1) is
defined in terms of the following feasibility, stationarity, and complementarity mea-
sures:

χfeas(vk+1) = ∥c(xk+1)− sk+1∥,
χstny(vk+1) = max

(
∥∇f(xk+1)− J(xk+1)

Tyk+1∥, ∥yk+1 − wk+1∥
)
, and

χcomp(vk+1, µ
B

k) =
∥∥min

(
q1(vk+1), q2(vk+1, µ

B

k)
)∥∥ ,

where

q1(vk+1) = max
(
|min(sk+1, wk+1, 0)|, |sk+1 · wk+1|

)
, and

q2(vk+1, µ
B

k) = max
(
µB

ke, |min(sk+1 + µB

ke, wk+1 + µB

ke, 0)|, |(sk+1 + µB

ke) · (wk+1 + µB

ke)|)
)
.

11

A first-order KKT point vk+1 for problem (NIP) satisfies χ(vk+1, µ
B

k) = 0, where

(5.1) χ(v, µ) = χfeas(v) + χstny(v) + χcomp(v, µ).

Given these definitions, the kth iteration is designated as an O-iteration if χ(vk+1, µ
B

k) ≤
χmax
k , where

{
χmax
k

}
is a monotonically decreasing positive sequence. At an O-

iteration the parameters are updated as yE

k+1 = yk+1, w
E

k+1 = wk+1 and χmax
k+1 =

1
2χ

max
k (see Step 11 of Algorithm 5.1). These updates ensure that

{
χmax
k

}
converges

to zero if infinitely many O-iterations occur. The point vk+1 is called an O-iterate.
If the condition for an O-iteration does not hold, a test is made to determine if

vk+1 = (xk+1, sk+1, yk+1, wk+1) is an approximate first-order solution of the problem

(5.2) minimize
v=(x,s,y,w)

M(v ; sEk, y
E

k , w
E

k , µ
P

k, µ
B

k).

In particular, the kth iteration is called an M-iteration if vk+1 satisfies

∥∇xM(vk+1 ; s
E

k, y
E

k , w
E

k , µ
P

k, µ
B

k)∥∞ ≤ τk,(5.3a)

∥∇sM(vk+1 ; s
E

k, y
E

k , w
E

k , µ
P

k, µ
B

k)∥∞ ≤ τk,(5.3b)

∥∇yM(vk+1 ; s
E

k, y
E

k , w
E

k , µ
P

k, µ
B

k)∥∞ ≤ τk∥DP

k+1∥∞, and(5.3c)

∥∇wM(vk+1 ; s
E

k, y
E

k , w
E

k , µ
P

k, µ
B

k)∥∞ ≤ τk∥DB

k+1∥∞,(5.3d)

where τk is a positive tolerance, DP

k+1 = µP

kI, and DB

k+1 = (Sk+1 + µB

kI)(Wk+1 +
µB

kI)
−1. In this case vk+1 is called an M-iterate because it is an approximate first-order

solution of (5.2). The estimates sEk+1, y
E

k+1 and wE

k+1 are defined by the safeguarded
values

(5.4)

sEk+1 = min
(
max(0, sk+1), smaxe

)
,

yE

k+1 = max
(
− ymaxe,min(yk+1, ymaxe)

)
,

wE

k+1 = min
(
wk+1, wmaxe

)


for some large positive constants smax, ymax and wmax. Next, Step 15 checks if the
condition

(5.5) χfeas(vk+1) ≤ τk

holds. If the condition holds, then µP

k+1 ← µP

k; otherwise, µ
P

k+1 ← 1
2µ

P

k to place more
emphasis on satisfying the constraint c(x)− s = 0 in subsequent iterations. Similarly,
Step 16 checks the inequalities

(5.6) χcomp(vk+1, µ
B

k) ≤ τk, sk+1 ≥ −τke, and wk+1 ≥ −τke.

If these conditions hold, then µB

k+1 ← µB

k ; otherwise, µB

k+1 ← 1
2µ

B

k to place more
emphasis on achieving complementarity in subsequent iterations.

An iteration that is not an O- or M-iteration is called an F-iteration. In an F-
iteration none of the parameters in the merit function are changed, so that progress
is measured solely in terms of the reduction in the merit function.

Reducing the barrier parameter µB in Step 19 of Algorithm 5.1 may cause a
slack variable si or a dual variable wi to become infeasible with respect to its shifted
bounds. In Step 20, if a multiplier wi becomes infeasible after µB is reduced, it is
reinitialized as max

{
yi,

1
2wi

}
. To remedy the infeasibility of a slack variable si,

12

Algorithm 5.1 An all-shifted projected-search interior method.

1: procedure pdProj(x0, s0, y0, w0)
2: Restrictions: s0 > 0 and w0 > 0;
3: Constants:

{
ηA, γA

}
⊂ (0, 1) and

{
ymax, wmax, smax

}
⊂ (0,∞);

4: Choose wE
0 and sE0 such that wE

0 + sE0 + µBe > 0;
5: Choose yE

0 ; χmax
0 > 0;

{
µP
0 , µ

B
0

}
⊂ (0,∞); and µL

0 ≥ µP
0 ;

6: Set v0 = (x0, s0, y0, w0); k ← 0;
7: while ∥∇M(vk)∥ > 0 do
8: (sE , yE , wE , µP , µB)← (sEk, y

E

k , w
E

k , µ
P

k, µ
B

k);
9: Compute vk+1 in Steps 6–17 of Algorithm 4.1;

10: if χ(vk+1, µ
B

k) ≤ χmax
k then [O-iterate]

11: (χmax
k+1, y

E

k+1, w
E

k+1, µ
P

k+1, µ
B

k+1, τk+1)← (12χ
max
k , yk+1, wk+1, µ

P

k, µ
B

k , τk);

12: sEk+1 ← max
{
0, sk+1

}
;

13: else if vk+1 satisfies (5.3a)–(5.3d) then [M-iterate]
14: Set (χmax

k+1, τk+1) = (χmax
k , 12τk); Set sEk+1, y

E

k+1 and wE

k+1 using (5.4);

15: if χfeas(vk+1) ≤ τk then µP

k+1 ← µP

k else µP

k+1 ← 1
2µ

P

k end if
16: if χcomp(vk+1, µ

B

k) ≤ τk, sk+1 ≥ −τke and wk+1 ≥ −τke then
17: µB

k+1 ← µB

k ;
18: else
19: µB

k+1 ← 1
2µ

B

k ;
20: Reset sk+1 and wk+1 so that sk+1+µ

B

k+1e > 0 and wk+1+µ
B

k+1e > 0;
21: end if
22: else [F-iterate]
23: (χmax

k+1, s
E

k+1, y
E

k+1, w
E

k+1, µ
P

k+1, µ
B

k+1, τk+1) ←
(χmax

k , sEk, y
E

k , w
E

k , µ
P

k, µ
B

k , τk);
24: end if
25: Update µL

k+1 as in (5.7);
26: end while
27: end procedure

suppose µB and µ̄B denote a shift before and after it is reduced, with si + µB > 0 and
si+µ̄

B ≤ 0, a strategy is proposed in Section 5.4 of [13], which temporarily imposes an
equality constraint si = 0. This constraint is enforced by the primal-dual augmented
Lagrangian term until the nonlinear constraint value ci(x) becomes larger than µ̄B , at
which point si is assigned the value si = ci(x) and allowed to move. On being freed,
the corresponding Lagrange multiplier wi is reinitialized as max

{
yi, ϵ

}
, where ϵ is a

small positive constant.
Given an initial value µL

0 ≥ µP
0 , in Step 25 of Algorithm 5.1, the line-search

parameter µL

k is updated as
(5.7)

µL

k+1 =

{
µL

k if ψk(αk ;µ
L

k) ≤ ψk(0 ;µ
L

k) + αkηAδk and µP

k+1 = µP

k;

max
{

1
2µ

L

k, µ
P

k+1

}
otherwise.

This updating rule guarantees that µL

k ≥ µP

k for all k.

5.2. Convergence Analysis. Convergence analysis for Algorithm 5.1 follows a
similar procedure as in Section 4.2 of [13], which uses the properties of the comple-
mentary approximate KKT (CAKKT) condition proposed by Andreani, Mart́ınez and

13

Svaiter [2], as described below.

Definition 5.1 (CAKKT condition). A feasible point (x∗, s∗) (i.e., a point such
that s∗ ≥ 0 and c(x∗)− s∗ = 0) is said to satisfy the CAKKT condition if there exists
a sequence

{
(xj , sj , uj , zj)

}
with

{
xj

}
→ x∗ and

{
sj

}
→ s∗ such that{

∇f(xj)− J(xj)Tuj
}
→ 0,(5.8) {

uj − zj
}
→ 0,(5.9) {

zj
}
≥ 0, and(5.10) {

zj · sj
}
→ 0.(5.11)

Any (x∗, s∗) satisfying these conditions is called a CAKKT point.

Theorem 5.2 (Andreani et al. [1, Theorem 4.3]). If (x∗, s∗) is a CAKKT point
that satisfies CAKKT-regularity, then (x∗, s∗) is a first-order KKT point for (NIP).

The first part of the analysis concerns the conditions under which limit points of
the sequence

{
(xk, sk)

}
are CAKKT points. As the results are tied to the different

iteration types, to facilitate referencing of the iterations during the analysis we define

O =
{
k : iteration k is an O-iteration

}
,

M =
{
k : iteration k is an M-iteration

}
, and

F =
{
k : iteration k is an F-iteration

}
.

Lemma 5.3. If |O| =∞ there exists at least one limit point (x∗, s∗) of the infinite
sequence

{
(xk+1, sk+1)

}
k∈O and any such limit point is a CAKKT point.

Proof. Assumption 4.3 implies that there must exist at least one limit point of{
xk+1

}
k∈O. If x∗ is such a limit point, Assumption 4.1 implies the existence of

K ⊆ O such that
{
xk+1

}
k∈K → x∗ and

{
c(xk+1)

}
k∈K → c(x∗). As |O| = ∞, the

updating strategy of Algorithm 5.1 gives
{
χmax
k

}
→ 0. Furthermore, as χ(vk+1, µ

B

k) ≤
χmax
k for all k ∈ K ⊆ O, and χfeas(vk+1) ≤ χ(vk+1, µ

B

k) for all k, it follows that{
χfeas(vk+1)

}
k∈K → 0, i.e.,

{
c(xk+1) − sk+1

}
k∈K → 0. With the definition s∗ =

c(x∗), it follows that
{
sk+1

}
k∈K → limk∈K c(xk+1) = c(x∗) = s∗, which implies that

(x∗, s∗) is feasible for the general constraints because c(x∗)− s∗ = 0. The remaining
feasibility condition s∗ ≥ 0 is proved componentwise. For any 1 ≤ i ≤ m, define

Q1 =
{
k : [q1(vk+1)]i ≤ [q2(vk+1, µ

B

k)]i
}

and Q2 =
{
k : [q2(vk+1, µ

B

k)]i < [q1(vk+1)]i
}
,

where q1 and q2 are used in the definition of χcomp. If the set K ∩ Q1 is infinite,
then it follows from the inequalities

{
χcomp(vk+1, µ

B

k)
}
k∈K ≤

{
χ(vk+1, µ

B

k)
}
k∈K ≤{

χmax
k

}
k∈K → 0 that s∗i = limK∩Q1

[sk+1]i ≥ 0. Using a similar argument, if the set
K ∩Q2 is infinite, then s∗i = limK∩Q2 [sk+1]i = limK∩Q2 [sk+1 + µB

ke]i ≥ 0, where the

second equality uses the limit
{
µB

k

}
k∈K∩Q2

→ 0 that follows from the definition of
Q2. Combining these two cases implies that s∗i ≥ 0, as claimed. It follows that the
limit point (x∗, s∗) is feasible.

It remains to show that (x∗, s∗) is a CAKKT point. Let

[s̄k+1]i =

{
[sk+1]i if k ∈ Q1;

[sk+1 + µB

ke]i if k ∈ Q2,

14

and

[w̄k+1]i =

{
max

{
[wk+1]i, 0

}
if k ∈ Q1;

[wk+1 + µB

ke]i if k ∈ Q2,

for every 1 ≤ i ≤ m, and consider the sequence (xk+1, s̄k+1, yk+1, w̄k+1)k∈K as a
candidate for the sequence used in Definition 5.1 to verify that (x∗, s∗) is a CAKKT

point. If O ∩ Q2 is finite, then it follows from the definition of s̄k+1 and the limit{
sk+1

}
k∈K → s∗ that

{
[s̄k+1]i

}
k∈K → s∗i ; also,

{
χcomp(vk+1, µ

B

k)
}
k∈K → 0 implies

that lim infk∈K[wk+1]0 ≥ 0, therefore
{
[w̄k+1−wk+1]i

}
k∈K → 0. On the other hand,

if O∩Q2 is infinite, then the definitions of Q2 and χcomp(vk+1, µ
B

k), together with the

limit
{
χcomp(vk+1, µ

B

k)
}
k∈K → 0 imply that

{
µB

k

}
→ 0, giving

{
[s̄k+1]i

}
k∈K → s∗i

and
{
[w̄k+1 − wk+1]i

}
k∈K → 0. As the choice of i was arbitrary, these cases taken

together imply that
{
s̄k+1

}
k∈K → s∗ and

{
w̄k+1 − wk+1

}
k∈K → 0.

The next step is to show that
{
(xk+1, s̄k+1, yk+1, w̄k+1)

}
k∈K satisfies the condi-

tions required by Definition 5.1. It follows from the limit
{
χ(vk+1, µ

B

k)
}
k∈K → 0 es-

tablished above that
{
χstny(vk+1) +χcomp(vk+1, µ

B

k)
}
k∈K ≤

{
χ(vk+1, µ

B

k)
}
k∈K → 0.

This, together with the limit
{
w̄k+1 − wk+1

}
k∈K → 0, implies that

{
∇f(xk+1) −

J(xk+1)
Tyk+1

}
k∈K → 0 and

{
yk+1 − wk+1

}
k∈K → 0, which establishes that con-

ditions (5.8) and (5.9) hold. The nonnegativity of w̄k+1 for all k is obvious from

its definition, which implies that (5.10) is satisfied for
{
wk

}
k∈K. Finally, it must

be shown that (5.11) holds, i.e., that
{
w̄k+1 · s̄k+1

}
k∈K → 0. Consider the ith

components of s̄k and w̄k. If the set K ∩ Q1 is infinite, the definitions of s̄k+1,
q1(vk+1) and χcomp(vk+1, µ

B

k), together with the limit
{
χcomp(vk+1, µ

B

k)
}
k∈K → 0

imply that
{
[w̄k+1 · s̄k+1]i

}
K∩Q1

→ 0. Similarly, if the set K ∩ Q2 is infinite, then
the definitions of s̄k+1, q2(vk+1, µ

B

k) and χcomp(vk+1, µ
B

k), together with the limits{
χcomp(vk+1, µ

B

k)
}
k∈K → 0 and

{
w̄k+1−wk+1

}
k∈K → 0 imply that

{
[w̄k+1 · s̄k+1]i

}
k∈K∩Q2

→
0. These two cases lead to the conclusion that

{
w̄k+1 · s̄k+1

}
k∈K → 0, which implies

that condition (5.11) is satisfied. This concludes the proof that (x∗, s∗) is a CAKKT

point.

In the complementary case where |O| < ∞, it will be shown that every limit
point of the iteration subsequence

{
(xk+1, sk+1)

}
k∈M is infeasible with respect to

the constraint c(x)− s = 0 but solves the least-infeasibility problem

(5.12) minimize
x,s

1
2∥c(x)− s∥

2
2 subject to s ≥ 0.

The first-order KKT conditions for problem (5.12) are

J(x∗)T
(
c(x∗)− s∗

)
= 0, s∗ ≥ 0,(5.13a)

s∗ ·
(
c(x∗)− s∗

)
= 0, c(x∗)− s∗ ≤ 0.(5.13b)

These conditions define an infeasible stationary point.

Definition 5.4 (Infeasible stationary point). The pair (x∗, s∗) is an infeasible
stationary point if c(x∗)−s∗ ̸= 0 and (x∗, s∗) satisfies the optimality conditions (5.13).

Lemma 5.5. If |O| <∞, then |M| =∞.

Proof. The proof is by contradiction. Suppose that |M| < ∞, in which case
|O ∪M| < ∞. It follows from the definition of Algorithm 5.1 that k ∈ F for all k
sufficiently large, i.e., there must exist an iteration index kF such that

(5.14) k ∈ F , yE

k = yE , and (τk, w
E

k , µ
P

k, µ
B

k , µ
L

k) = (τ, wE , µP , µB , µL) > 0

15

for all k ≥ kF . The updating rule for
{
µL

k

}
implies that µF

k is fixed at the value

max
{
µL, µP

}
. It follows from Theorem 4.4 that there exists a subsequence of iterates

S such that
lim
k→S
∥∇M(vk)∥ = 0.

Then Lemma 4.2(i) and Lemma 4.2(ii) can be applied to show that (5.3) is satisfied
for all k ∈ S. This would mean, in view of Step 13 of Algorithm 5.1, that S ∈ M
with |S| =∞, which contradicts (5.14) because F ∩M = ∅.

Lemma 5.6. If |M| =∞ then

lim
k∈M

∥πY

k+1 − yk+1∥ = 0.

Moreover, if there exists a subsequence of iterates K ⊂ M such that limk∈K sk =
s∗ ≥ 0, then

lim
k∈K

∥πW

k+1 − wk+1∥ = lim
k∈K

∥πY

k+1 − πW

k+1∥ = lim
k∈K

∥yk+1 − wk+1∥ = 0.

Proof. It follows from (3.5) and (5.3c) that

(5.15) ∥πY

k+1 − yk+1∥ ≤ τk.

As ∥M∥ =∞ by assumption, Step 14 of Algorithm 5.1 implies that limk→∞ τk = 0.
Combining this with (5.15) establishes the first limit in the result.

Furthermore, if there exists a subsequence K ⊂M such that limk∈K sk = s∗ ≥ 0,
then the updating rule of Algorithm 5.1 for sEk implies that limk∈K (sEk−sk) = 0. The
limit limk→∞ τk = 0 may then be combined with (3.5), (5.3b) and (5.3c) to show
that

(5.16) lim
k∈K

∥πW

k+1 − wk+1∥ = 0 and lim
k∈K

|πY

k+1 − πW

k+1| = 0.

Finally, as limk→∞ τk = 0, it follows the bound (5.15) and limits (5.16) that

lim
k∈K

∥yk+1 − wk+1∥ = lim
k∈K

∥(yk+1 − πY

k+1) + (πY

k+1 − πW

k+1) + (πW

k+1 − wk+1)∥ = 0.

This establishes the last of the four limits.

Lemma 5.7. If |O| <∞, then every limit point (x∗, s∗) of the subsequence
{
(xk+1, sk+1)

}
k∈M

satisfies c(x∗)− s∗ ̸= 0.

Proof. The proof is similar to the proof of Lemma 4.7 in [13] but with some
modified technical details.

Let (x∗, s∗) be a limit point of (the necessarily infinite) sequence M, i.e., there
exists a subsequence K ⊆ M such that limk∈K (xk+1, sk+1) = (x∗, s∗). For a proof
by contradiction, assume that c(x∗)− s∗ = 0, which implies that

(5.17) lim
k∈K

∥c(xk+1)− sk+1∥ = 0.

First, we show that s∗ ≥ 0, which will imply that (x∗, s∗) is feasible because of the
assumption that c(x∗)−s∗ = 0. The line search in Algorithm 4.1 gives sk+1+µ

B

ke > 0
for all k. If limk→∞ µB

k = 0, then s∗ = limk∈K sk+1 ≥ − limk∈K µ
B

ke = 0. On the
other hand, if limk→∞ µB

k ̸= 0, then Step 19 of Algorithm 5.1 is executed a finite

16

number of times, µB

k = µB > 0 and (5.6) holds for all k ∈M sufficiently large. Taking
limits over k ∈M in (5.6) and using limk→∞ τk = 0 gives s∗ ≥ 0.

A combination of the assumption that |O| < ∞, the result of Lemma 5.5, and
the updates of Algorithm 5.1, establishes that limk→∞ τk = 0 and

(5.18) χmax
k = χmax > 0 for all sufficiently large k ∈ K.

Using |O| < ∞ together with Lemma 5.6, the fact that limk∈K sk = s∗ ≥ 0, and
Step 14 of the line search of Algorithm 4.1 gives

(5.19) lim
k∈K

∥yk+1 − wk+1∥ = 0, and wk+1 + µB

k+1 > 0 for all k ≥ 0.

Next, it can be observed from the definitions of πY

k+1 and ∇xM that

∇f(xk+1)− J(xk+1)
Tyk+1 = ∇f(xk+1)− J(xk+1)

T(2πY

k+1 + yk+1 − 2πY

k+1)

= ∇f(xk+1)− J(xk+1)
T
(
2πY

k+1 − yk+1

)
− 2J(xk+1)

T(yk+1 − πY

k+1)

= ∇xM(vk+1 ; y
E

k , w
E

k , µ
P

k, µ
B

k)− 2J(xk+1)
T(yk+1 − πY

k+1),

which combined with
{
xk+1

}
k∈K → x∗, limk→∞ τk = 0, (5.3a), and Lemma 5.6 gives

(5.20) lim
k∈K

{
∇f(xk+1)− J(xk+1)

Tyk+1

}
= 0.

The proof that limk∈K χcomp(vk+1, µ
B

k) = 0 involves two cases.

Case 1: limk→∞ µB

k ̸= 0. In this case µB

k = µB > 0 for all sufficiently large k.
Combining this with the limit |M| = ∞ and the update to τk in Step 19 of Al-
gorithm 5.1, it must be that (5.6) holds for all sufficiently large k ∈ K, i.e., that
χcomp(vk+1, µ

B

k) ≤ τk for all sufficiently large k ∈ K. As limk→∞ τk = 0, it must hold
that limk∈K χcomp(vk+1, µ

B

k) = 0.

Case 2: limk→∞ µB

k = 0. Lemma 5.6 implies that limk∈K (πW

k+1 − wk+1) = 0. The

sequence
{
Sk+1 + µB

kI
}
k∈K is bounded because

{
µB

k

}
is positive and monotonically

decreasing and limk∈K sk+1 = s∗, which means by the definition of πW

k+1 that

(5.21) 0 = lim
k∈K

(Sk+1 + µB

kI)(π
W

k+1 − wk+1) = lim
k∈K

(
µB

kw
E

k − (Sk+1 + µB

kI)wk+1

)
.

Moreover, as |O| <∞ and wk > 0 for all k by construction, the updating strategy for
wE

k in Algorithm 5.1 guarantees that
{
wE

k

}
is bounded over all k (see (5.4)). It then

follows from (5.21), the uniform boundedness of
{
wE

k

}
, and limk→∞ µB

k = 0 that

(5.22) 0 = lim
k∈K

(
[sk+1]i + µB

k

)
[wk+1]i = lim

k∈K

(
[sk+1]i + µB

k

)
([wk+1]i + µB

k).

There are two subcases.

Subcase 2a: s∗i > 0 for some i. As limk∈K[sk+1]i = s∗i > 0 and limk→∞ µB

k = 0,
it follows from (5.22) that limk∈K[wk+1]i = 0. Combining these limits allows us to
conclude that limk∈K[q1(vk+1)]i = 0, which is the desired result for this case.

Subcase 2b: s∗i = 0 for some i. In this case, it follows from the limits limk→∞ µB

k = 0
and (5.22), wk+1+µ

B

k > 0 and the limit limk∈K[sk+1]i = s∗i = 0 that limk∈K[q2(vk+1, µ
B

k)]i =
0, which is the desired result for this case.

As one of the two subcases above must occur for each component i, it follows that

lim
k∈K

χcomp(vk+1, µ
B

k) = 0,

17

which completes the proof for Case 2.

Under the assumption c(x∗) − s∗ = 0 it has been shown that (5.17), (5.19),
(5.20), and the limit limk∈K χcomp(vk+1, µ

B

k) = 0 hold. Collectively, these results
imply that limk∈K χ(vk+1, µ

B

k) = 0. This limit, together with the inequality (5.18)
and the condition checked in Step 10 of Algorithm 5.1, gives k ∈ O for all k ∈ K ⊆M
sufficiently large. This is a contradiction because O ∩M = ∅, which establishes the
desired result that c(x∗)− s∗ ̸= 0.

Lemma 5.8. If |O| < ∞, then there exists at least one limit point (x∗, s∗) of
the infinite sequence

{
(xk+1, sk+1)

}
k∈M, and any such limit point is an infeasible

stationary point as given by Definition 5.4.

Proof. The proof is similar to the proof of Lemma 4.8 in [13] but with some
modified technical details.

If |O| < ∞ then Lemma 5.5 implies that |M| = ∞. Moreover, the updating
strategy of Algorithm 5.1 forces

{
yE

k

}
and

{
wE

k

}
to be bounded (see (5.4)). The

next step is to show that
{
sk+1

}
k∈M is bounded.

For a proof by contradiction, suppose that
{
sk+1

}
k∈M is unbounded. It follows

that there must be a component i and a subsequenceK ⊆M for which
{
[sk+1]i

}
k∈K →

∞. When Assumption 4.3 and Assumption 4.1 hold,
{
c(xk+1)

}
k∈K,

{
∇f(xk+1)

}
k∈K

and
{
J(xk+1)

}
k∈K must be bounded. This implies that

{
[πY

k+1]i
}
k∈K is unbounded.

On the other hand, by (3.5), (5.3a), together with the limit limk→∞ τk = 0 and
Lemma 5.6,

0 = lim
k∈M

∥∇xM(vk+1 ; y
E

k , w
E

k , µ
P

k, µ
B

k)∥

= lim
k∈M

∥∇f(xk+1)− J(xk+1)
TπY

k+1 − J(xk+1)
T(πY

k+1 − yk+1)∥

= lim
k∈M

∥∇f(xk+1)− J(xk+1)
TπY

k+1∥ = 0,

which contradicts the unboundedness of
{
[πY

k+1]i
}
k∈K . Thus, it must be the case

that
{
sk+1

}
k∈M is bounded.

The next part of the proof is to establish that s∗ ≥ 0, which is the inequality
condition of (5.13a). The test in Step 16 of Algorithm 5.1 (i.e., testing whether
(5.6) holds) is checked infinitely often because |M| = ∞. If (5.6) is satisfied finitely
many times, then the update µB

k+1 = 1
2µ

B

k forces
{
µB

k+1

}
→ 0. Combining this with

sk+1 + µB

ke > 0 shows that s∗ ≥ 0, as claimed. On the other hand, if (5.6) is satisfied
for all sufficiently large k ∈ M, then µB

k+1 = µB > 0 for all sufficiently large k and

limk∈K χcomp(vk+1, µ
B

k) = 0 because
{
τk

}
→ 0. It follows from these two facts that

s∗ ≥ 0, as claimed.
The boundedness of

{
sk+1

}
k∈M and Assumption 4.3 ensure the existence of at

least one limit point of
{
(xk+1, sk+1)

}
k∈M. If (x∗, s∗) is any such limit point, there

must be a subsequence K ⊆ M such that
{
(xk+1, sk+1)

}
k∈K → (x∗, s∗). It remains

to show that (x∗, s∗) is an infeasible stationary point (i.e., that (x∗, s∗) satisfies the
optimality conditions (5.13a)–(5.13b)).

As |O| <∞, it follows from Lemma 5.7 that c(x∗)− s∗ ̸= 0. Combining this with{
τk

}
→ 0, which holds because K ⊆ M is infinite (on such iterations τk+1 ← 1

2τk),
it follows that the condition (5.5) of Step 15 of Algorithm 5.1 will not hold for all
sufficiently large k ∈ K ⊆ M. The subsequent updates ensure that

{
µP

k

}
→ 0,

hence
{
µF

k

}
→ 0 by the updating rule for

{
µL

k

}
, which, combined with (4.3), the

18

boundedness of
{
yE

k

}
, and Lemma 5.6, gives

{c(xk+1)− sk+1}k∈K ≤
{
µF

k

(
yE

k + 1
2 (wk+1 − yk+1)

)}
k∈K → 0.

This implies that c(x∗)− s∗ ≤ 0 and the second condition in (5.13b) holds.
The rest of the proof is the same as in the proof of Lemma 4.8 in [13]

Theorem 5.9. Under Assumptions 4.1–4.3, one of the following occurs:
(i) |O| = ∞, limit points of

{
(xk+1, sk+1)

}
k∈O exist, and every such limit point

(x∗, s∗) is a CAKKT point for problem (NIP). If, in addition, CAKKT-regularity
holds at (x∗, s∗), then (x∗, s∗) is a KKT point for problem (NIP).

(ii) |O| < ∞, |M| = ∞, limit points of
{
(xk+1, sk+1)

}
k∈M exist, and every such

limit point (x∗, s∗) is an infeasible stationary point.

Proof. Part (i) follows from Lemma 5.3 and Theorem 5.2. Part (ii) follows from
Lemma 5.8. Also, the exclusive conditions on |O| imply that only one of these two
cases must occur.

6. Numerical Experiments.

6.1. Implementation Details. Numerical results were obtained for Matlab
implementations of three variants of the shifted interior-point method. Algorithm
pdb is an implementation of the shifted primal-dual method of Gill, Kungurtsev and
Robinson [13]; pdbAll is the primal-dual method with shifts on both the primal
and dual variables; and pdProj is the projected-search interior method proposed in
Sections 3 and 4. Algorithms pdb and pdbAll are implemented with a flexible Armijo
line search in which the step length is chosen to satisfy the conditions (4.2a)–(4.2d)
with ψk(α ;µ) and ϕk(α ;µ) given byM

(
vk+α∆vk ;µ

)
and ∥F

(
vk+α∆vk ;µ

)
∥. Exact

second derivatives were used for all the runs.
The iterates were terminated at the first point that satisfied the conditions eP (x, s) <

τP and eD(x, s, y, w) < τD, where eP and eD are the primal and dual infeasibilities

eP (x, s) =

∥∥∥∥(min{ 0, s }
∥c(x)− s∥∞/max{ 1, ∥s∥∞ }

)∥∥∥∥
∞
,(6.1a)

and

eD(x, s, y, w) =

∥∥∥∥∥∥
∥∇f(x)− J(x)Ty∥∞/σ∥w − y∥∞

w · min{ 1, s }

∥∥∥∥∥∥
∞

,(6.1b)

with σ = max{ 1, ∥∇f(x)∥, max{ 1, ∥y∥}∥J(x)∥∞ }. Similarly, the iterates were ter-
minated at an infeasible stationary point (x, s) if eP (x, s) > τP , min{ 0, s } ≤ τP and
eI(x, s) ≤ τinf , where

(6.2) eI(x, s) =
∥∥J(x)T(c(x)− s) · min{ 1, s }

∥∥
∞ /σ.

6.2. Numerical results. The results were obtained for problems from the CUTEst
test collection (see Bongartz et al. [3] and Gould, Orban and Toint [17]). The runs
were done using Matlab version R2020a on an iMac with a 3.0 GHz Intel Zeon W
processor and 128 GB of 800 MHz DDR4 RAM running macOS, version 10.14.6 (64
bit). Results were obtained for five subsets of problems from the CUTEst test collec-
tion. The subsets consisted of 135 problems with a general nonlinear objective and

19

upper and lower bounds on the variables (problems BC); 212 problems with a general
nonlinear objective, general linear constraints and bounds on the variables (problems
LC); 124 problems formulated by Hock and Schittkowski ([19]) (problems HS); 372
problems with a general nonlinear objective, general linear and nonlinear constraints
and bounds on the variables (problems NC); and 117 problems with a quadratic objec-
tive, general linear constraints and bounds on the variables (problems QP). The BC,
LC, NC and QP subsets were selected based on the number of variables and general
constraints. In particular, a problem was chosen if the associated KKT system was of
the order of 1000 or less. The same criterion was used to set the dimension of those
problems for which the problem size can be specified. The nonsmooth problem hs87

was excluded from the Hock-Schittkowski problems. Exact second derivatives were
used for all the runs.

Each CUTEst problem may be written in the form

(6.3) minimize
x

f(x) subject to

(
ℓX

ℓS

)
≤

(
x
c(x)

)
≤

(
uX

uS

)
,

where c : Rn 7→ Rm, f : Rn 7→ R, and (ℓX , ℓS) and (uX , uS) are constant vectors of
lower and upper bounds. In this format, a fixed variable or an equality constraint has
the same value for its upper and lower bounds. A variable or constraint with no upper
or lower limit is indicated by a bound of ±1020. The approximate Newton equations
for problem (6.3) are derived by Gill and Zhang [16]. As is the case for problem (NIP)
the principal work at each iteration is the solution of a reduced (n +m) × (n +m)
KKT system analogous to (3.12). Each KKT matrix was factored using the Matlab
built-in command LDL, which uses the routine MA57 [6]. If this matrix was singular or
had more than m negative eigenvalues, the Hessian of the Lagrangian H was modified
using the method of Wächter and Biegler [22, Algorithm IC, p. 36], which factors the
KKT matrix with δIn added to H. At any given iteration the δ is increased from zero
if necessary until the inertia of the KKT matrix is correct.

All three Matlab implementations were initialized with identical parameter val-
ues that were chosen based on the empirical performance on the entire collection of
problems. A summary of the values is given in Table 1. The initial primal-dual esti-
mate (x0, y0) was based on the default initial values supplied by CUTEst. If necessary,
x0 was projected onto the set

{
x : ℓX ≤ x ≤ uX

}
to ensure feasibility with respect

to the bounds on x. The iterates were terminated at the first point that satisfied the
conditions (6.1a)–(6.1b) and (6.2) defined in terms of the constraints associated with
problem (6.3).

Figures 1–5 give the performance profiles. The results show the benefits of shifting
both primal and dual variables, as well as using a projected-search method based on
the primal-dual search direction.

20

Table 1
Control parameters for Algorithms pdb, pdbAll and pdProj.

Parameter Description Value

smax, ymax, wmax Maximum allowed yE , wE , sE 1.0e+6

µP
0 Initial penalty parameter for Algorithm 5.1 1.0e-4

µL
0 Initial flexible line-search penalty parameter for Algorithm 5.1 1.0

µB
0 Initial barrier parameter for Algorithm 5.1 1.0e-4

τ0 Initial termination tolerance for specifying an M-iterate 0.5

τP Primal feasibility tolerance (6.1a) 1.0e-4

τD Dual feasibility tolerance (6.1b) 1.0e-4

τinf Infeasible stationary point tolerance (6.2) 1.0e-4

χmax
0 Initial target for an O-iteration 1.0e+3

ηA Line-search Armijo sufficient reduction 1.0e-2

ηF Line-search sufficient reduction for ∥F∥ 1.0e-2

γA Line-search factor for reducing an Armijo step 1.0e-3

funb Unbounded objective 1.0e-9

Mmax Constants in line-search tolerance (4.2a) and (4.2b) 1.0e+12

Fmax Constant in the line-search tolerance (4.2c) 1.0e+8

σ Bound perturbation in the definition of Ωk (4.1) 0.8

kmax Iteration limit for Algorithm 5.1 500

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluation performance profiles for
135 BC problems from the CUTEst test set

pdb
pdbAll
pdProj

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration performance profiles for
135 BC problems from the CUTEst test set

pdb
pdbAll
pdProj

Fig. 1. Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj

applied to 135 bound-constrained (BC) problems from the CUTEst test set. The left figure gives the
profiles for the number of function evaluations. The right figure gives the profiles for the number of
iterations.

REFERENCES

[1] Andreani, R., Mart́ınez, J.M., Ramos, A., Silva, P.J.S.: Strict constraint qualifications and
sequential optimality conditions for constrained optimization. Math. Oper. Res. 43(3),
693–717 (2018)

[2] Andreani, R., Mart́ınez, J.M., Svaiter, B.F.: A new sequential optimality condition for con-
strained optimization and algorithmic consequences. SIAM J. Optim. 20(6), 3533–3554
(2010). DOI 10.1137/090777189

[3] Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L.: CUTE: Constrained and unconstrained
testing environment. ACM Trans. Math. Software 21(1), 123–160 (1995)

[4] Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-scale nonlinear

21

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluation performance profiles for
212 LC problems from the CUTEst test set

pdb
pdbAll
pdProj

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration performance profiles for
212 LC problems from the CUTEst test set

pdb
pdbAll
pdProj

Fig. 2. Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj

applied to 212 linearly constrained (LC) problems from the CUTEst test set. The left figure gives
the profiles for the number of function evaluations. The right figure gives the profiles for the number
of iterations.

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluation performance profiles for
124 HS problems from the CUTEst test set

pdb
pdbAll
pdProj

0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration performance profiles for
124 HS problems from the CUTEst test set

pdb
pdbAll
pdProj

Fig. 3. Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj

applied to 124 Hock-Schittkowski (HS) problems from the CUTEst test set. The left figure gives the
profiles for the number of function evaluations. The right figure gives the profiles for the number of
iterations.

programming. SIAM J. Optim. 9(4), 877–900 (1999)
[5] Curtis, F.E., Nocedal, J.: Flexible penalty functions for nonlinear constrained optimization.

IMA J. Numer. Anal. 28(4), 749–769 (2008). DOI 10.1093/imanum/drn003
[6] Duff, I.S.: MA57—a code for the solution of sparse symmetric definite and indefinite systems.

ACM Trans. Math. Software 30(2), 118–144 (2004). DOI 10.1145/992200.992202
[7] Ferry, M.W., Gill, P.E., Wong, E., Zhang, M.: A class of projected-search methods for bound-

constrained optimization. Center for Computational Mathematics Report CCoM 20-07,

22

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluation performance profiles for
372 NC problems from the CUTEst test set

pdb
pdbAll
pdProj

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

372 NC problems from the CUTEst test set
Iteration performance profiles for

pdb
pdbAll
pdProj

Fig. 4. Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj

applied to 372 nonlinearly constrained (NC) problems from the CUTEst test set. The left figure
gives the profiles for the number of function evaluations. The right figure gives the profiles for the
number of iterations.

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluation performance profiles for
117 QP problems from the CUTEst test set

pdb
pdbAll
pdProj

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration performance profiles for
117 QP problems from the CUTEst test set

pdb
pdbAll
pdProj

Fig. 5. Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj

applied to 117 quadratic programming (QP) problems from the CUTEst test set. The left figure
gives the profiles for the number of function evaluations. The right figure gives the profiles for the
number of iterations.

Center for Computational Mathematics, University of California, San Diego, La Jolla, CA
(2020)

[8] Fiacco, A.V.: Barrier methods for nonlinear programming. In: A. Holzman (ed.) Operations
Research Support Methodology, pp. 377–440. Marcel Dekker, New York (1979)

[9] Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimiza-
tion Techniques. John Wiley and Sons, Inc., New York (1968)

[10] Forsgren, A., Gill, P.E.: Primal-dual interior methods for nonconvex nonlinear programming.

23

SIAM J. Optim. 8, 1132–1152 (1998)
[11] Frisch, K.R.: The logarithmic potential method of convex programming. Memorandum of May

13, University Institute of Economics, Oslo, Norway (1955)
[12] Gertz, E.M., Gill, P.E.: A primal-dual trust-region algorithm for nonlinear programming. Math.

Program., Ser. B 100, 49–94 (2004)
[13] Gill, P.E., Kungurtsev, V., Robinson, D.P.: A shifted primal-dual penalty-barrier method

for nonlinear optimization. SIAM J. Optim. 30(2), 1067–1093 (2020). DOI 10.1137/
19M1247425. URL https://doi.org/10.1137/19M1247425

[14] Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

[15] Gill, P.E., Robinson, D.P.: A primal-dual augmented Lagrangian. Comput. Optim. Appl. 51,
1–25 (2012). URL http://dx.doi.org/10.1007/s10589-010-9339-1

[16] Gill, P.E., Zhang, M.: Equations for a projected-search path-following method for nonlinear
optimization. Center for Computational Mathematics Report CCoM 22-02, Center for
Computational Mathematics, University of California, San Diego, La Jolla, CA (2022)

[17] Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr and SifDec: A constrained and unconstrained
testing environment, revisited. ACM Trans. Math. Software 29(4), 373–394 (2003)

[18] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)
[19] Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes

in Econom. Math. Syst. 187. Springer-Verlag, Berlin (1981)
[20] Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: R. Fletcher

(ed.) Optimization, pp. 283–298. Academic Press, London and New York (1969)
[21] Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation

and global convergence. SIAM J. Optim. 16(1), 1–31 (electronic) (2005). DOI 10.1137/
S1052623403426556

[22] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search al-
gorithm for large-scale nonlinear programming. Math. Program. 106(1, Ser. A), 25–57
(2006)

24

https://doi.org/10.1137/19M1247425
http://dx.doi.org/10.1007/s10589-010-9339-1

	Introduction
	Notation and terminology

	Background
	An All-Shifted Primal-Dual Penalty-Barrier Function
	Minimizing the Merit Function using Projected Search
	The Algorithm
	Convergence analysis

	Solving the Nonlinear Optimization Problem
	The algorithm
	Convergence Analysis

	Numerical Experiments
	Implementation Details
	Numerical results

	References

