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Abstract. We study network flow interdiction problems with nonlinear and
nonconvex flow models. The resulting model is a max-min bilevel optimization
problem in which the follower’s problem is nonlinear and nonconvex. In this
game, the leader attacks a limited number of arcs with the goal to maximize
the load shed and the follower aims at minimizing the load shed by solving a
transport problem in the interdicted network. We develop an exact algorithm
consisting of lower and upper bounding schemes that computes an optimal
interdiction under the assumption that the interdicted network remains weakly
connected. The main challenge consists of computing valid upper bounds for
the maximal load shed, whereas lower bounds can directly be derived from
the follower’s problem. To compute an upper bound, we propose solving a
specific bilevel problem, which is derived from restricting the flexibility of
the follower when adjusting the load flow. This bilevel problem still has a
nonlinear and nonconvex follower’s problem, for which we then prove necessary
and sufficient optimality conditions. Consequently, we obtain equivalent single-
level reformulations of the specific bilevel model to compute upper bounds.
Our numerical results show the applicability of this exact approach using the
example of gas networks.

1. Introduction

Bilevel optimization is a rapidly developing field in mathematical programming.
We consider interdiction problems that are specific max-min bilevel problems, in
which the leader takes interdiction actions to optimize the objective of the follower
in the opposite direction; see e.g., [17, 29]. A special class of interdiction games
are network interdiction problems in which the leader attacks a network and the
follower solves a network-based optimization problem such as the shortest path, the
max-flow, or the clique problem; see [29] for a recent overview.

In this paper, we study network flow interdiction problems with nonlinear and
nonconvex flow models. These problems aim to identify the worst-case attack on
a network. More precisely, the attacker, i.e., the leader, seeks to attack a limited
number of arcs of the network with the goal to maximize the load shed. Contrarily,
the defender, i.e., the follower, aims at minimizing the load shed by solving a
nonlinear transport problem in the interdicted network. Here, load shed corresponds
to the amount of load by which the original load flow is reduced so that the transport
model of the follower admits a feasible point in the interdicted network.

To model the transport problem of the follower, we focus on nonlinear and
nonconvex potential-based flows without controllable elements; see [12]. These
potential-based flows extend classic network flows that are typically considered for
network interdiction problems; see, e.g., [9, 29]. One of the main advantages of using
potential-based flows consists of the broad applicability of these flows, which allow
to model hydrogen, water, or natural gas networks while appropriately representing
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the underlying physics; see, e.g., [12]. Lossless DC power flow networks can also be
modeled by linear potential-based flows. Hence, the method we develop in this paper
can be applied directly to DC power flow interdiction problems. However, we focus
on network flow interdiction problems with nonlinear and nonconvex potential-based
flows in the following, which have not been addressed appropriately in the literature
so far.

Prior works address variants of the considered network flow interdiction problem
in lossless DC power flow networks. As one of the first, the authors of [25] introduce
a bilevel model to identify the most critical attacks in terms of load shed. In several
subsequent works, duality theory or the Karush–Kuhn–Tucker (KKT) conditions
are applied to the follower’s problem to obtain a single-level reformulation, which
is then solved directly or by Benders decomposition [2, 4, 20, 27]. The authors
of [3] empirically show that the duality-based reformulation outperforms the KKT
approach for the considered network flow interdiction problem. However, as discussed
in [16], the approaches exploiting duality theory require strong bounds on the duals
of the follower’s DC optimal power flow problem, which are not known in all cases.
The authors of [16] dismiss the constraints regarding the potentials and apply duality
theory with valid bounds for the duals to compute a lower bound for the maximal
load shed.

However, we cannot apply approaches that are based on duality or other compact
optimality certificates such as the KKT conditions to derive an equivalent single-level
reformulation since the considered follower’s problem is nonconvex. Further, we
cannot exploit most of the common intuitions for network flow interdiction problems
with capacitated linear flows in our potential-based setting due to the coupling of
potentials and flows; see Section 3, where we discuss this in detail.

To the best of our knowledge, the only prior work [1] regarding network interdiction
problems with nonlinear potential-based flows deals with interdicting gas networks.
A cutting-plane approach is developed and convex relaxations for gas transport
are exploited. However, if the potential-based flow model is not relaxed, then the
developed cutting-plane approach is only valid under additional assumptions, e.g.,
the highly restrictive assumption that interdicting a component of the network does
not increase the total load shed by more than the corresponding flow through the
interdicted component. In general, this assumption is not satisfied in potential-based
networks as noted in [26], where a generalized Benders decomposition method is
applied under this assumption in lossless DC power flow networks. Further, we
explicitly show in Section 3 that even interdicting a single arc in a potential-based
network may lead to the failure of this assumption. Note that our approach is not
based on this assumption and does not simplify the considered potential-based flow
model. We further would like to mention the related work on designing resilient
networks considering potential-based flows [21], in which a built network is protected
from certain arc failures.

Let us further remark that there is a large branch of research that deals with
solving extended or more complicated models in the context of AC power flow
networks, which then also leads to a nonlinear and nonconvex follower’s problem;
see e.g., [7, 11, 22]. However, AC power flow networks cannot be modeled by
potential-based flows and, thus, these approaches cannot be directly transferred to
the considered potential networks.

In this paper, we present an exact algorithm to solve the nonlinear network flow
interdiction problem for potential-based flows. In particular, we focus on nonlinear
and nonconvex potential-based flow models. To handle the resulting nonconvexities
in the lower-level problem in our exact solution approach, we exploit the assumption
that the interdicted network remains weakly connected. We are aware of that this
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assumption is quite significant. However, in addition to the intrinsic complexity of
the considered problem class that make certain assumptions necessary, there are
further arguments showing that this is a strong but still reasonable assumption. If
arbitrary interdiction decisions are allowed, in many cases one can disconnect the
overall supply from the overall demand. This can be achieved, e.g., by “cutting off”
all supply nodes with a relatively small interdiction budget. Consequently, no load
can be transported through the entire network anymore due to the mismatch of
supply and demand in each connected component. On the one hand, such arcs whose
interdiction leads to disconnected components are obvious targets of an attacker.
On the other hand, in reality, a defender, e.g., a network operator, will protect
these arcs so that they cannot be interdicted anymore. Thus, the connectivity
assumption can be interpreted in this light as implicitly assuming that the arcs
whose interdiction leads to a disconnected network are protected. Moreover, the
assumption is reasonable in practice as in real-world utility networks usually only a
small number of arcs has to be protected to ensure connectivity of the interdicted
network due to the meshed structure of these networks. Further, assuming that
the interdicted network is weakly connected is an important case when analyzing
the vulnerability of a network as discussed in [6, p. 60]. In a weakly connected
network, every sink is connected to every source. Thus, if the transport capacity of
the network is neglected, the overall supply can match the overall demand. The
latter is generally not possible if the interdicted network is disconnected, e.g., in case
that all sources are cut off. Thus, in a weakly connected network, a positive load
shed results from bottlenecks of the network capacity induced by the underlying
physical transport model. In particular, this positive load shed does not result from
an insufficient amount of supply in the network. Consequently, such contingencies
in weakly connected networks reveal less apparent weaknesses of the underlying
network structure and are thus important to be analyzed.

Our exact approach is an iterative upper and lower bounding scheme, which
solves the nonlinear network flow interdiction problem to global optimality. For a
fixed interdiction decision, solving the follower’s problem always leads to a valid
lower bound. Thus, the main challenge consists of providing a valid and non-trivial
upper bound. To compute such an upper bound, we restrict the flexibility of the
follower when adjusting the load flow in the interdicted network. This leads to a
specific bilevel problem that still has a nonlinear and nonconvex follower’s problem.
Using properties of potential-based flows and the special structure of the obtained
bilevel problem, we then prove necessary and sufficient optimality conditions for the
nonlinear and nonconvex follower’s problem. Exploiting these optimality conditions,
we derive equivalent single-level reformulations to compute a valid upper bound for
the maximal load shed. We finally demonstrate the applicability of our algorithm
by solving the network interdiction problem for gas networks. In the computational
experiments, our approach significantly outperforms the enumeration approach.
We highlight that in the developed approach, we do not simplify the considered
nonlinear and nonconvex potential-based flows, e.g., to obtain a convex follower’s
problem. This is important since approximating the model of the underlying physics
can lead to a wrong evaluation of an interdiction decision and of the vulnerability
of the network as discussed in the recent work [11].

This paper is organized as follows. In Section 2, we introduce the network
flow interdiction problem for potential-based flows. In Section 3, we present an
example to illustrate the main challenges of potential-based flows and important
differences compared to capacitated linear flows when considering the network flow
interdiction problem. We then derive a valid upper bound that consists of solving a
simplified but still nonlinear and nonconvex bilevel problem and provide different
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and equivalent single-level reformulations in Section 4. Afterward, in Section 5,
we present an algorithm to compute an optimal interdiction decision that exploits
the derived bounds. We then demonstrate the applicability of our approaches in a
small computational study on the example of gas networks in Section 6 and discuss
possibilities for future research in Section 7.

2. Problem Statement and Preliminary Results

We introduce the considered nonlinear potential-based flow model. Afterward,
we specify the network interdiction problem, which is a specific bilevel problem in
which the attacker at the upper level seeks to find the worst-case attack on the arcs
of a network, which is used by the follower.

In a nutshell, potential-based flows consist of classic flow variables and additional
nodal potential variables. The flow on an arc is determined by the difference of the
potentials at the incident nodes. To make this more formal, we consider a directed
graph G = (V,A) with node set V and arc set A. The set of nodes V is further
partitioned into entry nodes V+, at which flow can be injected, exit nodes V−, at
which flow can be withdrawn, and inner nodes, at which flows can neither be injected
nor withdrawn. For each arc a ∈ A, we introduce a flow variable qa and for each
node u ∈ V , we introduce a potential variable πu that has to satisfy lower and upper
bounds 0 < π−u ≤ π+

u . In addition to [12], for every arc a ∈ A, we also consider
lower and upper arc flow bounds q−a ≤ q+

a . Choosing directed graphs is a modeling
choice that allows to track the direction of flow. For an arc (u, v) ∈ A, the flow qa
is positive if it flows from u to v and otherwise, the flow is negative.

For every arc (u, v) ∈ A, the arc flow qa is determined by the difference of the
potentials at the incident nodes, i.e.,

πu − πv = Λaϕ(qa), (1)

where Λa > 0 is an arc-specific parameter and ϕ : R → R is a so-called potential
function that is continuous, strictly increasing, and odd, i.e., ϕ(−qa) = −ϕ(qa). For
a given load flow vector that determines the amount of flow that is injected and
withdrawn at the nodes, the flows additionally satisfy mass conservation. We specify
this in our network interdiction problem later on.

In the following, we make some mild assumptions on the potential and flow
bounds, which ensure that the zero load flow is feasible and that the potential level
at a node is not fixed by the given bounds.

Assumption 1. The intersection of the potential bound intervals has a nonempty
interior, i.e., ∅ 6= int

(⋂
u∈V [π−u , π

+
u ]
)

= (π, π̄) with π < π̄. For each arc a ∈ A, the
lower and upper arc flow bounds satisfy q−a < 0 < q+

a .

For an arc a ∈ A, the choice of the potential function being nonlinear is made
to accurately represent the underlying physics of the network flow. In [12], explicit
choices of the potential functions for stationary gas ϕG, water ϕW, or lossless DC
power networks ϕDC are derived by approximating physical laws. These potential
functions are given by

ϕG(qa) = qa |qa| , ϕW(qa) = sgn(qa) |qa| 1.852, ϕDC(qa) = qa. (2)

Let us now describe the studied network interdiction game with potential-based
flows as a bilevel problem. We start with a given and balanced load flow ` ∈ RV≥0,
i.e.,

∑
u∈V+

`u =
∑
u∈V− `u holds, that represents the injections and withdrawals at

every node of the network. The leader then interdicts a limited number of arcs with
the goal to maximize the load shed. Here, load shed equals the amount of load by
which the given load flow has to be reduced so that it can be transported through
the interdicted network. After such an attack by the leader, the follower then solves
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a transportation problem in the interdicted network with the goal to minimize the
load shed. Here, the interdicted network is the network without the arcs that have
been interdicted by the leader. We model the possibility to adjust the balanced load
flow ` ∈ RV≥0 by the follower using additional variables λ ∈ RV . These variables
model the corresponding percentage change of the load at the nodes. Formally, the
considered network interdiction problem is given

max
x

∑
u∈V−

λu`u s.t. x ∈ X ⊆ {0, 1}A, (λ, q, π) ∈ S(x), (3)

where S(x) denotes the set of optimal solutions of the x-parameterized lower-level
problem

min
λ,q,π

∑
u∈V−

λu`u (4a)

s.t.
∑

a∈δout(v)

qa −
∑

a∈δin(v)

qa =


(1− λv)`v, if v ∈ V+,

−(1− λv)`v, if v ∈ V−,
0, else,

v ∈ V, (4b)

(1− xa)q−a ≤ qa ≤ (1− xa)q+
a , a ∈ A, (4c)

xaM
−
a ≤ πu − πv − Λaϕ(qa) ≤ xaM+

a , a = (u, v) ∈ A, (4d)

π−u ≤ πu ≤ π+
u , u ∈ V, (4e)

0 ≤ λu ≤ 1, u ∈ V−, λ−u ≤ λu ≤ 1, u ∈ V+. (4f)

In the upper-level problem (3), the leader determines an interdiction deci-
sion x ∈ X ⊆ {0, 1}A that maximizes the load shed. The interdiction decision
has to satisfy additional constraints, which are modeled using the set X. For
example, these constraints can represent a limited interdiction budget or geographic
correlations between the attacks [30]. Our approach presented in Sections 4 and 5
does not depend on the choice of X and, thus, allows to address different variants
of the considered network interdiction problem.

In contrast to the attacker, the follower minimizes the load shed by solving
the transport problem (4). Constraints (4b) represent flow conservation at ev-
ery node of the network. These constraints further imply that for every feasible
point (λ, q, π) of Problem (4), the load flow vector is still balanced after the load
shed, i.e.,

∑
u∈V+

(1− λu)`u =
∑
u∈V−(1− λu)`u holds. Consequently, it is suffi-

cient to only consider the load shed of the exit nodes in the objective function (4a).
Constraints (4c) ensure that if an arc is interdicted, then the flow through this arc
is 0. Furthermore, the constraints require that if an arc is not interdicted, then the
flow through this arc satisfies specific lower and upper flow bounds. Analogously,
Constraints (4d) ensure that for every non-interdicted arc the dependency (1) be-
tween arc flow and potentials at the incident nodes is satisfied. However, if an
arc is interdicted, then the corresponding arc flow and potentials at the incident
nodes are decoupled. This is also ensured by Constraints (4d) together with a valid
choice of the big-M values M−a and M+

a , which we discuss below. Due to technical
restrictions, the potentials have to satisfy lower and upper potential bounds given
by Constraints (4e). Constraints (4f) state that we can decrease the load of exits.
For an exit node u ∈ V−, the value λu = 1 corresponds to a complete load shed of
this exit, which means that no flow is withdrawn at this node. Contrarily, λu = 0
states that the load of the corresponding exit is unchanged. For entry nodes u ∈ V+,
Constraints (4f) allow to increase as well as decrease the load of entries within
certain limits in order to minimize the load shed. This means that λu can take both
negative as well as positive values. For negative values λ−u ≤ λu ≤ 0, λu represents
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an increase of the load of an entry. Otherwise, positive values λu ∈ [0, 1] represent
a decrease of the corresponding load. We note that allowing to decrease the load
of exits and to flexibly adjust the load of entries is considered in different network
interdiction problems of the literature [1, 7, 16].

We now briefly discuss that for each arc (u, v) ∈ V the big-M values

M−a = π−u − π+
v , M+

a = π+
u − π−v , (5)

are valid for Problem (4). Here, valid means that for every interdiction x ∈ X and
a ∈ A with xa = 1, the corresponding constraint (4d) is redundant. To this end,
consider an upper-level decision x ∈ X, flows q ∈ RA that satisfy Constraints (4c),
and potentials π ∈ RV that satisfy Constraints (4e). Then, for any a ∈ A with
xa = 1, the inequalities π−u −π+

v ≤ πu−πv−ϕ(0) = πu−πv ≤ π+
u −π−v are satisfied

due to Constraints (4c) and (4e). Consequently, choosing the big-M values M−a
and M+

a according to (5) ensures that for an interdicted arc, the arc flow and the
potentials at the incident nodes are completely decoupled.

If no flow bounds are available, then
∑
V−∈V `u can be used as an upper bound

for the absolute flow through an arc since there cannot be any cyclic flow in the
considered potential networks; see e.g., [14].

Remark 1. For a linear potential function ϕ, the lower-level problem (4) is a linear
problem. Consequently, the lower level can be reformulated using the strong-duality
theorem or the KKT approach; see, e.g., [2, 3, 20, 27] for the case of network
interdiction problems for lossless DC power flow networks.

In the light of this remark, we now focus on nonlinear and nonconvex potential
constraints. Thus, we obtain a nonlinear and nonconvex lower-level problem and
approaches that are based on duality or other compact optimality certificates such
as KKT conditions cannot be used to derive a single-level reformulation of (3). The
approaches discussed in Section 4 and 5 are valid for general potential functions but
are especially useful for nonlinear and nonconvex potential functions, which have
not been addressed appropriately in the literature so far.

From Assumption 1 it follows that for every feasible leader’s decision x ∈ X, the
follower’s problem (4) is feasible since λu = 1, u ∈ V , is always feasible. In addition,
the variables q ∈ RA, λ ∈ RV , and π ∈ RV are bounded due to Constraints (4b)–(4f).
Thus, we obtain the following result by the theorem of Weierstraß.

Lemma 2. For every feasible interdiction decision x ∈ X, there is an optimal
solution (λ, q, π) of the lower-level problem (4).

Consequently, the bilevel problem (3) is solvable because there is only a finite
number of feasible interdiction decision x ∈ X ⊆ {0, 1}A.

To conclude this section, we state a uniqueness result for the considered potential-
based flows from the literature that we apply to the network interdiction problem
in the following. To this end, we dismiss flow and potential bounds. In the
early works [10, 18] together with [24], it is proven that for a given balanced load
flow `, the corresponding flows are uniquely determined by flow conservation and the
dependencies of flows and potentials in Constraints (1). Moreover, the corresponding
potential differences are unique and, thus, the potentials themselves are unique up
to a constant shift. This result can be applied to every connected component of a
network if the load flow is balanced w.r.t. every connected component. Since we
later focus on weakly connected graphs, we only present the result for this case.

We now apply the uniqueness result of the literature to the follower’s prob-
lem (4). For a leader’s interdiction decision x ∈ X, we denote the interdicted graph
by G(x) = (V,A(x)), i.e., G(x) only contains the non-interdicted arcs of graph G.
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Since we dismiss the potential and flow bounds, we further replace the big-M
values M−a and M+

a , given in (5), by

M+
a =

∑
a∈A

Λaϕ(Q) = −M−a , a ∈ A, with Q =
∑
u∈V−

`u. (6)

Lemma 3. Let a leader’s decision x ∈ X, a balanced load flow ` ∈ RV , and
Q =

∑
u∈V− `u be given. Further, let the interdicted graph G(x) be weakly connected

and for all a ∈ A, we choose M−a and M+
a according to (6). Then, there exist

potentials π ∈ RV and unique flows q ∈ RA so that the set of points that satisfy
Constraints (4d) and

∑
a∈δout(v)

qa −
∑

a∈δin(v)

qa =


`v, if v ∈ V+,

−`v, if v ∈ V−,
0, else,

v ∈ V, (7)

−(1− xa)Q ≤ qa ≤ (1− xa)Q, a ∈ A, (8)

is nonempty and given by

{(q, π̃) : π̃ = π + τ1, τ ∈ R} , (9)

where 1 = (1, . . . , 1)> ∈ RV is the vector of ones.

Proof. We apply the known uniqueness result from the literature, see, e.g., Theo-
rem 7.1 of [15], to the interdicted network G(x). Consequently, we obtain unique
flows q and a set of points given by (9) that satisfy (4d) and (7) w.r.t. the interdicted
graph G(x). Since Q =

∑
u∈V− `u is an upper bound on the absolute flow through

an arc, the obtained points also satisfy (8) for a ∈ A(x), i.e., for those arcs with
xa = 0. We now extend the set in (9) by setting qa = 0 for all a ∈ A \ A(x). The
points in the extended set directly satisfy (7) and (8) w.r.t. G = (V,A).

We now show that for a ∈ A \ A(x), Constraints (4d) are also satisfied by the
extended points of (9). To this end, we consider nodes u, v ∈ V and a path P (u, v)
from u to v, which exists since the graph G(x) is weakly connected. For an arc a ∈ A,
the function σa(P (u, v)) evaluates to 1 if arc a is a forward arc of the path P , it
evaluates to −1 if a is an backward arc of P , and otherwise, it is zero. From
Constraints (4d), which are satisfied for a ∈ A(x), and (7), it then follows that any
extended point (q, π) of (9) satisfies

|πu − πv| =

∣∣∣∣∣∣
∑

a∈P (u,v)

σa(P (u, v))Λaϕ(qa)

∣∣∣∣∣∣ ≤
∑
a∈A

Λaϕ(Q),

because the potential function ϕ is strictly increasing and |qa| ≤ Q holds. This
implies that Constraints (4d) are also satisfied by the extended points of (9) due to
the choice of M−a and M+

a according to (6). �

We note that the flow bound Q can be replaced by any other bound that does
not restrict the flow through any of the arcs.

From the uniqueness result it follows that for a feasible upper-level decision x ∈ X
and after fixing the load shedding variables λ ∈ RV such that (1−λ) ◦ ` is balanced,
the corresponding flows are already uniquely determined in the follower’s problems.
Here, a ◦ b denotes the Hadamard product of two vectors a and b. Further, the
potentials are already determined up to a constant shift, which we will later use in
our solution approach.
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u `u = 2 + επu = 3

t

`t = 1 + ε

πt = 1

w `w = 0πw = 2

v

`v = 1

πv = 2q (u
,t
)
=
ε

q
(w
,t) =

1 q (w
,v
)
=
0

q
(u
,v) =

1

q
(u

,w
)
=

1

ϕ(q) = q|q|, π+
i =∞, π−

i = −∞, i ∈ V, Λa = 1, a ∈ A \ {(u, t)}, Λ(u,t) = 2/ε2,

q−a = −1, q+a = 1, a ∈ A \ {(u, t), (w, v)}, q−(u,t) = q−(w,v) = −ε, q+(u,t) = q+(w,v) = ε.

u `u = (2 +
√
2)επu = 3

t

`t = ε

πt = 1

w `w = 0πw = 3− ε2

v

`v = (1 +
√
2)ε

πv = 3− 2ε2q (u
,t
)
=
ε

q (w
,v
)
=
ε

q
(u
,v) = √

2ε

q
(u

,w
)
=
ε

Figure 1. Example in which for fixed ε ∈ (0, 0.4], interdicting
the single arc (w, t) causes a load shed of 2− ε(1 +

√
2) > 1 that

exceeds the absolute flow capacity of 1 of the interdicted arc.

3. Why Potential-Based Flows are Difficult

We now briefly discuss that going from capacitated linear to potential-based flows
leads to additional challenges when considering network interdiction problems, since
most of the common intuitions for the capacitated linear case cannot be transferred
to the potential-based setting.

One of the core challenges of potential-based flows consists of their “global” nature,
which means that changing the load at specific nodes generally affects the potentials
at every node and the arc flow of every arc of the network. For network interdiction
problems with potential flows, this global nature implies that interdicting a single
arc a ∈ A with load qa can cause a load shed, i.e.,

∑
u∈V− λu`u, that significantly

exceeds the value qa or even exceeds the maximum flow capacity, i.e., max{|q−a |, q+
a },

of the interdicted arc. This is in contrast to network interdiction problems with
capacitated linear flows, where the total capacity of an arc represents a valid upper
bound for the total load shed that is necessary if the arc is interdicted.

We now consider the potential function ϕ(q) = ϕG = q|q|; see (2). For ε ∈ (0, 0.4],
we give an example in Figure 1 in which interdicting the arc (w, t) with a flow
capacity of 1 leads to a total load shed of 2− ε(1 +

√
2) > 1. Hence, the load shed

exceeds the total capacity of the interdicted arc.
More precisely, after interdicting arc (w, t), we can observe two different effects.

First, we have to reduce the load of node t from 1 + ε to ε since this exit node can
only be supplied through the arc (u, t) with arc capacity ε. We note that considering
capacitated linear instead of potential-based flows leads to the same reduction of the
load `t. However, the next observation only applies to potential networks. From the
coupling of flow and potentials by Constraints (4d) and mass flow conservation (4b),
it follows that

πu − πv = q(u,v)

∣∣q(u,v)

∣∣ = q(u,w)

∣∣q(u,w)

∣∣+ q(w,v)

∣∣q(w,v)

∣∣ , q(u,w) = q(w,v), (10)

has to be satisfied for the interdicted network. Consequently, these equations and
flow conservation at node w enforce that for any positive load `v > 0, we now have
positive flow through arc (w, v) in the interdicted network. Since the arc (w, v)
has a small flow capacity, it is necessary to reduce the load of node v from 1
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to (1 +
√

2)ε < 1. We note that the latter reduction of load `v is not necessary
if a capacitated linear flow model is considered since then there is no coupling of
potentials and arc flows according to (10) and we can set q(u,v) = 1.

Let us remark that we can adjust the lower and upper potential bounds in the
example of Figure 1 so that we can neglect the flow bounds but we still observe the
effect that interdicting a single arc can cause a load shed that exceeds the absolute
flow on this arc; see Appendix A. Thus, the observed effect does not necessarily
depend on the flow bounds but is driven by the coupling of potentials and flows.

As a further modification, we can remove the arc (u, t) in both graphs of the
example in Figure 1 and adjust `t to `t = 1. Then, we still observe that interdicting an
arc leads to load shed larger than the corresponding flow capacity. This demonstrates
that even for interdicted arcs that are not part of a cycle, the intuition of network
interdiction problems with capacitated linear flows is wrong for the case of potential
networks.

To conclude this section, we highlight the consequences of the presented example
if applying specific cutting-plane approaches or a generalized Benders decomposition
to network interdiction problems in potential networks; see, e.g., [1, 26]. Typically,
these approaches exploit linear cuts, which for a given interdiction decision bound
from above the total possible load shed. For a given interdiction decision x̃ ∈ X,
the linear cuts are typically of the form ψ(x) ≤ ψ(x̃) +

∑
a∈A δa(x̃)xa, where the

function ψ represents the optimal objective function of (3) w.r.t. the considered
interdiction decision. For potential networks, the example of Figure 1 now implies
that this cut is not valid in general if the coefficients δa(x̃) equal the absolute
flow capacity of the corresponding arc, i.e., δa(x̃) = max{|q−a |, q+

a } for every a ∈ A.
Consequently, the latter cut is only valid under additional assumptions or relaxations
of the potential-based flow model, e.g., if it is assumed that interdicting an arc with
flow qa only causes a maximum load shed of qa as stated in [26]. However, this
assumption is not satisfied in general potential-based networks as demonstrated in
the example above and we do not exploit this assumption in the following.

4. A Bilevel Approach for Computing Valid Upper Bounds

In general, the bilevel problem (3) is very challenging because the lower level is
a nonlinear and nonconvex problem. In the following, we develop a bilevel model
that computes a valid upper bound for (3). Although the obtained bilevel model
preserves the nonlinear and nonconvex structure of the follower, it has a special
structure that can be exploited to derive a single-level reformulation. For this, the
uniqueness result of Lemma 3 plays an important role. We then develop an approach
that exploits the derived upper bounds to compute the optimal solution of (3) in
Section 5.

The main idea consists of restricting the follower so that he can only evenly reduce
the given load flow `, i.e., we replace the |V |-many load shed variables λ ∈ RV
by a single variable. Moreover, we make the mild assumption that the potential
function ϕ is positively homogeneous of order r > 0.

Assumption 2. The potential function ϕ : R→ R is positive homogeneous of order
r > 0, i.e., ϕ(λqa) = λrϕ(qa) for all λ > 0.

As stated in [12], homogeneity is motivated by physical laws and the restriction
to r > 0 still allows to model hydrogen, natural gas, water, or lossless DC power
flow networks; see, e.g., (2). Moreover, the positive homogeneity implies that ϕ
is given by ϕ(qa) = α sgn(qa)|qa|r with α = ϕ(1) > 0; see [12]. The positive
homogeneity allows to transfer Observation 3.1 of [12] to network interdiction games
with nonlinear potential-based flows, which leads to the result that we can scale
feasible points of our transport problem as follows.
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Lemma 4. Let a feasible decision x ∈ X of the leader, a balanced load flow ` ∈ RV ,
and a point (q, π) that satisfies the Constraints (4d), (7), and (8) w.r.t. the
load ` ∈ RV be given. Further, let the interdicted graph G(x) be weakly connected
and for all a ∈ A, we choose M−a and M+

a according to (6). Then, for any λ ≥ 0
the point (λq, λrπ) satisfies the Constraints (4d), (7), and (8) w.r.t. the load λ`.

We now algorithmically exploit this structural property to derive an upper bound
of the original interdiction problem (3). To this end, we assume that the follower is
only allowed to evenly reduce the given balanced load flow ` ∈ RV , i.e., for every
pair of nodes (u, v) ∈ V 2 the load shed variables are the same, i.e., λu = λv = λ.
Consequently, we only consider a scalar λ ∈ [0, 1] instead of a vector λ ∈ RV in our
modified interdiction problem that is then given by

max
x∈X

min
λ,q,π

∑
u∈V−

λ`u (11a)

s.t.
∑

a∈δout(v)

qa −
∑

a∈δin(v)

qa =


(1− λ)`v, if v ∈ V+,

−(1− λ)`v, if v ∈ V−,
0, else,

v ∈ V, (11b)

(4c)–(4e), 0 ≤ λ ≤ 1. (11c)

We choose the big-M values M−a and M+
a according to (5). For every feasible

upper-level decision x ∈ X, the follower’s problem of (11) is still feasible since
λ = 1 leads to the zero load flow that is feasible for every interdicted network.
Consequently, from Lemma 2 it follows that solving Problem (11) leads to an upper
bound for the objective value of the original interdiction problem.

Lemma 5. Let (x, λ, q, π) be an optimal solution of the bilevel problem (11). Then,∑
u∈V− λ`u ≥

∑
u∈V− λ̃u

˜̀
u holds for every bilevel feasible point (x̃, λ̃, q̃, π̃) of the

original interdiction problem (3).

This lemma shows that restricting the flexibility of the follower leads to an upper
bound for the original network interdiction problem (3). However, the simplifications
made in the lower-level problem still maintain the nonconvex and nonlinear structure
of the follower’s problem and do not simplify the considered potential-based flow
model. Thus, Problem (11) is still a challenging bilevel problem.

Fortunately, Problem (11) now provides some additional structure, which consists
of the uniqueness result of Lemma 3 and the positive homogeneity of the potential-
based flows of Lemma 4. More precisely, after the interdiction decision x ∈ X is
made by the leader, the unique flows q ∈ RA corresponding to the original load
flow ` ∈ RV as well as the potentials π ∈ RV , which are unique up to a constant shift,
are directly determined by Constraints (7), (8), and (4d) due to Lemma 3. Moreover,
after determining the flows q and potentials π, every feasible point of the follower’s
problem is of the form (λ, (1−λ)q, (1−λ)rπ+1τ) for a given constant τ ∈ R, which
follows from Lemma 3 and 4. Consequently, the structural properties of the bilevel
problem (11) allow us to characterize the feasible points of the follower depending
on the flows q and potentials π that correspond to the original load flow `.

We now exploit these structural properties to move the nonlinear and nonconvex
computations of the flows and potentials from the lower to the upper level. This is
possible since for a given and balanced load flow the computation of the flows is
unique. Afterward, the follower exploits the positive homogeneity of the potential-
based flows to scale the corresponding flows and potentials such that the flow and
potential bounds are satisfied. This leads to the following bilevel problem with a
nonconvex and nonlinear follower problem that only contains (1−λ)r as a nonlinear
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term:

max
x,q,π

∑
u∈V−

λ`u (12a)

s.t.
∑

a∈δout(v)

qa −
∑

a∈δin(v)

qa =


`v, if v ∈ V+,

−`v, if v ∈ V−,
0, else,

v ∈ V, (12b)

xaM
−
a ≤ πu − πv − Λaϕ(qa) ≤ xaM+

a , a = (u, v) ∈ A, (12c)
− (1− xa)Q ≤ qa ≤ (1− xa)Q, a ∈ A, (12d)
x ∈ X, (λ, τ) ∈ S(x, q, π). (12e)

Here, Q =
∑
u∈V− `u is an upper bound on the absolute flow through an arc and we

choose M−a as well as M+
a according to (6). Further, the set S(x, q, π) consists of

all optimal solutions of the x-parameterized problem

min
λ,τ

∑
u∈V−

λ`u (13a)

s.t. π−u ≤ (1− λ)rπu + τ ≤ π+
u , u ∈ V, (13b)

(1− xa)q−a ≤ (1− λ)qa ≤ (1− xa)q+
a , a ∈ A, (13c)

0 ≤ λ ≤ 1, τ ∈ R. (13d)

In the upper-level problem, the leader now chooses a feasible interdiction deci-
sion x ∈ X. For the original load flow ` ∈ RV , the leader then computes the unique
flows q and potentials π. This computation of flows and potentials is determined by
Constraints (12b)–(12d). In doing so, the leader dismisses flow and potential bounds
and the computed flows and potentials do not necessarily satisfy these bounds.
Thus, the follower now exploits the positive homogeneity and uniqueness of the flows
as well as the uniqueness of the potentials up to a constant shift. More precisely,
the follower scales the flows as well as potentials down and shifts the potentials, if
necessary, so that the corresponding bounds are satisfied. In doing so, the follower
minimizes the load shed variable λ ∈ [0, 1], i.e., the follower scales the flows and
potentials down as little as necessary to satisfy the bounds.

We note that a similar approach is applied in [23] to a bilevel model of the
European entry-exit gas market system. In [23], moving the nonlinearities of the
potential-based flows from the lower to the upper level leads to a linear lower-level
problem. In contrast to this, we obtain a lower level that is still nonlinear but
contains less challenging nonlinear constraints than the original formulation. The
lower level now consists of the task to determine scalars λ ∈ [0, 1] and τ ∈ R such
that (λ, (1 − λ)q, (1 − λ)rπ + 1τ) satisfies the potential and flow bounds in the
follower’s problem of (11) while minimizing the load shed variable λ ∈ [0, 1].

We now prove that the reformulated bilevel problem (12) and the bilevel prob-
lem (11) admit the same optimal value. In addition, the set of optimal interdiction
decisions is the same, i.e., for each interdiction decision that is part of a bilevel
optimal solution of (12), there is also a bilevel optimal solution of (11) with the
same interdiction decision and vice versa. To this end, we have to assume that the
interdicted network G(x) is weakly connected.

Assumption 3. For every interdiction decision x ∈ X, the interdicted graph G(x)
is weakly connected.

As discussed in [6, p. 60], this assumption does not simplify the problem. Further,
it guarantees that for each x ∈ X, Constraints (12b) can always be satisfied, which
is not necessarily the case if an interdiction decomposes the interdicted graph into
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multiple disconnected components. For what follows, we need the following technical
lemma.

Lemma 6. Let Assumptions 1–3 be satisfied and x ∈ X. Further, let the point
(λ, q, π) satisfy (4d) with M−a and M+

a chosen according to (5) or (6), (11b), and
for each arc a ∈ A with xa = 1, qa = 0 holds. Then, for every a = (u, v) ∈ A
with xa = 1, the inequalities

− (1− λ)rϕ

∑
u∈V−

`u

 ≤ πu − πv ≤ (1− λ)rϕ

∑
u∈V−

`u

 (14)

are satisfied.

Proof. For a′ = (u, v) ∈ A with xa′ = 1, there exists a path P (u, v) between u and v
in the interdicted network G(x) due to Assumption 3. Thus, each arc a ∈ P (u, v)
is not interdicted, i.e., xa = 0 holds. For an arc a ∈ A, the function σa(P (u, v))
evaluates to 1 if arc a is a forward arc of the path P , it evaluates to −1 if a is an
backward arc of P , and otherwise, it is zero. Consequently, from Constraints (4d) it
then follows

|πu − πv| =

∣∣∣∣∣∣
∑

a∈P (u,v)

σa(P (u, v))Λaϕ (qa)

∣∣∣∣∣∣ ≤
∑
a∈A

Λaϕ

∑
u∈V−

(1− λ)`u


= (1− λ)r

∑
a∈A

ϕ

∑
u∈V−

`u

 ,

since the potential function ϕ is positive homogeneous and strictly increasing.
Further, |qa| ≤ (1− λ)

∑
u∈V− `u holds since (λ, q) satisfy Constraints (11b) and

there cannot be any cyclic flow in the considered potential network. �

Theorem 7. Let Assumptions 1–3 be satisfied. Then, Problem (11) and (12) admit
the same optimal value and the same sets of optimal interdiction decisions.

Proof. We start by proving that the optimal objective value of (12) is an upper
bound for the optimal objective value of (11). Let (x, q, π, λ, τ) be a bilevel feasible
point of (12). For fixed interdiction x, we now prove that (λ, (1− λ)q, (1− λ)rπ + τ)
is a feasible point of the lower-level problem of (11). The feasibility of the Con-
straints (11b) and (4c) directly follows from (12b) and (13c). Further, the feasi-
bility of Constraints (4e) and λ ∈ [0, 1] follows from (13b) and (13d). For a ∈ A
with xa = 0, Constraints (4d) are directly satisfied due to (12c). However, for a ∈ A
with xa = 1, we have to take into account that M−a and M+

a are defined by (5)
in (11) and not by (6) as in (12). For a ∈ A with xa = 1, we obtain qa = 0 due
to (13c). In this case, Constraints (4d) reduce to

π−u − π+
v ≤ (1− λ)r(πu − πv) = (1− λ)r(πu − πv) + τ − τ ≤ π+

u − π−v ,
which is satisfied due to Constraints (13b). Consequently, (λ, (1−λ)q, (1−λ)rπ+ τ)
is feasible for the lower-level problem of Problem (11) and note further that all lower-
level variables are bounded. Thus, there exists a bilevel feasible point (x, λ′, q′, π′)
with the same interdiction decision x for Problem (11) and each of these points
satisfies

∑
u∈V− λ`u ≥

∑
u∈V− λ

′`u. Thus, the optimal objective of (12) is an upper
bound for the optimal objective value of (11) since for every x ∈ X, there exists a
corresponding bilevel feasible point of (12) due to Lemma 3.

Next, we prove that the optimal objective value of (12) is a lower bound for the
optimal objective value of (11). Let (x, λ, q, π) be a bilevel feasible point of Prob-
lem (11). If λ = 1 holds, then the complete load is shed, which is an upper bound for
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the objective value of (12). We now show that for λ ∈ [0, 1) and fixed interdiction x,
the point (x, (1/(1− λ))q, ((1/(1− λ))rπ)) satisfies the constraints of the upper-
level problem (12). The feasibility of Constraints (12b) directly follows from (11b).
For a ∈ A with xa = 0, Constraints (12c) are satisfied due to (4d). If xa = 1 holds,
Constraints (4c) imply that qa = 0. In this case, the feasibility of Constraints (12c)
follows from applying Lemma 6 and dividing Constraints (14) by (1− λ)r. Finally,
|qa| ≤ (1− λ)

∑
u∈V− `u holds since (λ, q) satisfies Constraints (11b) and because

there cannot be any cyclic flow in the considered potential network. From this
and Constraints (4c), it follows that Constraints (12d) are valid. Consequently,
the point (x, 1/(1− λ)q, (1/(1− λ))rπ) satisfies the constraints of the upper-level
problem (12). Moreover, the point (λ, 1/(1− λ)q, (1− λ)rπ, 0) is a feasible point of
the lower-level problem (13) due to (4c) and (4e). Further, all lower-level variables
that affect the objective function are bounded. Consequently, there exists a bilevel
feasible point (x, q′, π′, λ′, τ ′) of (12) with the same interdiction x and each of these
points satisfies

∑
u∈V− λ`u ≥

∑
u∈V− λ

′`u. Thus, the optimal objective of (12) is
a lower bound for the optimal objective value of (11) since for every x ∈ X, there
exists a corresponding bilevel feasible point of (11).

From the previous cases, it follows that the optimal objective values of (12)
and (11) are the same. Further, for an optimal solution of one of the considered
bilevel problems, there is always an bilevel optimal solution of the other bilevel
problem with the same interdiction. Thus, the set of optimal interdiction decisions
are the same. �

The follower’s problem (13) is still nonconvex and nonlinear. Thus, a single-level
reformulation cannot be obtained by applying strong duality or the KKT conditions.
However, Problem (13) contains a special structure that can be exploited to provide
necessary and sufficient optimality conditions.

In a nutshell, these conditions mainly express that in an optimal solution of
Problem (13) at least one lower as well as one upper potential bound is tight or
at least one arc flow bound is tight. The intuition behind these conditions is that
if for a feasible upper-level point (x, q, π) and a corresponding feasible lower-level
point (λ, τ) neither potential nor flow bounds are tight in (13), then we can decrease
the load shed variable λ ∈ [0, 1] and if necessary adjust τ ∈ R to obtain a feasible
point of the follower with a smaller objective value.

Theorem 8. Let Assumptions 1–3 be satisfied. For any feasible upper-level deci-
sion (x, q, π) of Problem (12), the point (λ, τ) is an optimal solution of the follower’s
problem (13) if and only if (λ, τ) is feasible for the follower’s problem (13) and the
point (x, q, π, λ, τ) satisfies at least one of the following conditions:

(i) There are nodes u, v ∈ V such that the corresponding lower and upper
potential bound are tight, i.e.,

(1− λ)rπu + τ = π+
u , (1− λ)rπv + τ = π−v . (15)

(ii) There is an arc a ∈ A such that the lower or upper flow bound is tight, i.e.,

(1− λ)qa = q−a or (1− λ)qa = q+
a . (16)

(iii) There is no load shed, i.e.,

λ = 0. (17)

Proof. We first prove that every optimal solution of the follower’s problem (13)
satisfies at least one of the Conditions (15)–(17). To this end, we now contrarily
assume that the bilevel feasible point (x, q, π, λ, τ) of (12) does not satisfy any of the
Conditions (15)–(17). Consequently, we can replace τ by τ̃ such that (x, q, π, λ, τ̃)
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is a point that satisfies all constraints of the bilevel problem (12) and for every
node u ∈ V and every arc a ∈ A, we have the strict inequalities

π−u < (1− λ)rπu + τ̃ < π+
u , q−a < (1− λ)q < q+

a , λ > 0.

Consequently, none of the flow and potential bounds is tight and we have a positive
load shed for the considered bilevel feasible point. Our modification of τ does not
affect the objective value and only affects the lower-level constraints. Consequently,
(x, q, π, λ, τ̃) is still a bilevel feasible point of (12). However, now none of the lower-
level constraints is tight, i.e., we only have strict inequalities, and, thus, we can
decrease λ > 0, which also decreases the objective value of the follower. Consequently,
(λ, τ) is not the optimal response of the follower for the given interdiction decision x
with flows q and potentials π. This is a contradiction to the bilevel feasibility of the
considered point (x, q, π, λ, τ).

Next, we prove that for any feasible upper-level decision (x, q, π) of Problem (12),
any feasible point (λ, τ) of the follower’s problem (13) that satisfies at least one of
the Conditions (15)–(17) is optimal. To this end, we consider the three following
cases. First, if Condition (17) is satisfied by the point (λ, τ), then λ = 0 holds.
Consequently, there is no load shed and the objective value equals zero, which is
optimal. Second, we assume that for at least a single arc a ∈ A, Condition (16)
is satisfied. If λ = 0 holds, we apply the first case. Otherwise, it follows from
Condition (16) that we cannot decrease λ > 0 without violating a lower q−a or an
upper flow bound q+

a since q−a < 0 < q+
a holds. This is independent from the choice

of τ . Third, we assume that there are nodes u, v ∈ V so that Conditions (15) are
satisfied by (λ, τ). If λ = 0 holds, we apply the first case. Otherwise, every feasible
point (λ̃, τ̃) of the follower’s problem (13) satisfies the inequality

(1− λ̃)r(πu − πv) = (1− λ̃)rπu + τ̃ − (1− λ̃)rπv − τ̃ ≤ π+
u − π−v (18)

due to Constraints (13b). The inequality is independent of τ̃ and π+
u − π−v > 0

holds due to Assumption 1. Moreover, from Condition (15) it follows that the
point (λ, τ) satisfies the inequality in (18) with equality. Consequently, (λ̃, τ̃) with
0 ≤ λ̃ < λ cannot be a feasible solution of the follower’s problem (13) w.r.t. (x, q, π)
since it violates Inequality (18). Thus, (λ, τ) is an optimal solution of the follower’s
problem (13). �

Corollary 1. Let Assumptions 1–3 be satisfied. For any feasible upper-level de-
cision (x, q, π) of Problem (12), every optimal solution (λ, τ) of the lower-level
problem (13) satisfies λ ∈ [0, 1).

Proof. If λ = 1 holds, then none of the Conditions (15)–(17) can be satisfied due to
π−u < π+

u for all nodes u ∈ V and q−a < 0 < q+
a for all arcs a ∈ A; see Assumption 1.

Consequently, from Theorem 8, it follows that every optimal solution (λ, τ) of
Problem (13) satisfies λ ∈ [0, 1). �

We now exploit the necessary and sufficient optimality conditions for the follower’s
problem of Theorem 8 to derive a single-level reformulation. To this end, we represent
the necessary and sufficient optimality conditions (15)–(17) using additional binary
variables and linear constraints. We further exploit that for a balanced load flow
` ∈ RV , the corresponding flows are unique and the potentials are unique up to a
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constant shift. This leads to the single-level reformulation

max
x,λ,q,π,ε̃+,ε̃−,ε+,

ε−,ȳ,y,ỹ,y′

∑
u∈V−

λ`u (19a)

s.t. (12b)–(12d), λ ∈ [0, 1], (19b)

(1− λ)rπu + ε̃+
u = π+

u , u ∈ V, (19c)

(1− λ)rπu − ε̃−u = π−u , u ∈ V, (19d)

(1− λ)qa + ε+
a = q+

a , a ∈ A, (19e)

(1− λ)qa − ε−a = q−a , a ∈ A, (19f)

ε̃+, ε̃−, ε+, ε− ≥ 0, (19g)

min
u∈V
{ε̃+
u } ≤ M̃ȳ, min

u∈V
{ε̃−u } ≤ M̃y, (19h)

min
a∈A
{ε+
a } ≤ Q̃ỹ, min

a∈A
{ε−a } ≤ Q̃y′, (19i)

(ȳ + y)ỹy′λ = 0, (19j)

ȳ, y, ỹ, y′ ∈ {0, 1}. (19k)

Constraints (12b)–(12d) are the upper-level constraints of Problem (12), which
determine the flows q and potentials π corresponding to the load flow ` in the
interdicted network. Constraints (19c)–(19g) and λ ∈ [0, 1] represent the lower-
level constraints of Problem (13). In comparison to Problem (13), we additionally
introduce nonnegative slack variables ε̃+, ε̃− ∈ RV and ε+, ε− ∈ RA to reformulate
the inequalities regarding the flow and potential bounds as equalities. These slack
variables enable us to model the necessary and sufficient optimality conditions of
Theorem 8 by Constraints (19h)–(19k). Note that

M̃ := max
u∈V
{π+

u − π−u }, Q̃ := max
a∈A
{q+
a − q−a } (20)

are valid upper bounds for the slack variables ε̃+, ε̃−, ε+, and ε− due to Con-
straints (19c)–(19g). Additionally, for a ∈ A, we choose M−a and M+

a according
to (6). Constraints (19c), (19d), (19g), and (19h) ensure that the binary variables ȳ
and y can be set to zero if and only if Condition (15) is satisfied. Analogously,
Constraints (19e)–(19g) and (19i) ensure that at least one of the binary variables ỹ
or y′ can be set to zero if and only if Condition (16) holds. Further, Constraint (19j)
models that at least one of the necessary and sufficient optimality conditions of
Theorem 8 is satisfied. We note that we can linearize the minima in Constraints (19h)
and (19i) as well as the left-hand side of Constraint (19j) using additional binary
variables since the corresponding variables are bounded. We explicitly discuss these
reformulations at the end of this section.

We now formally prove that the single-level reformulation (19) and the bilevel
Problem (12) admit the same optimal objective values. Furthermore, the set of
optimal interdiction decisions is the same, i.e., for each interdiction decision belonging
to an optimal solution of (19), there is a bilevel optimal solution of (12) with the
same interdiction decision and vice versa. We now abbreviate a feasible point of the
single-level problem (19) by

s := (x, λ, q, π, ε̃+, ε̃−, ε+, ε−, ȳ, y, ỹ, y′)

to obtain a more compact representation of the results.

Theorem 9. Let Assumptions 1–3 be satisfied. The single-level problem (19) and
the bilevel problem (12) admit the same optimal objective value and the set of optimal
interdiction decisions is the same as well.
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Proof. Let (x̃, q̃, π̃, λ̃, τ) be a bilevel feasible point of (12). From Corollary 1 it
follows that λ̃ < 1 holds. We now consider the point z := (x̃, λ̃, q̃, π̃ + 1τ/(1 −
λ̃)r, ε̃+, ε̃−, ε+, ε−, ȳ, y, ỹ, y′), in which the slack variables ε̃+, ε̃−, ε+, ε− are uniquely
determined by the Constraints (19c)–(19g). Moreover, we choose the binary
variables ȳ, y, ỹ, y′ as small as possible. The constructed point z satisfies Con-
straints (19b)–(19i) and (19k) since (x̃, λ̃, q̃, π̃, τ) is a bilevel feasible point of (12).
If λ̃ = 0 holds, then it directly follows that Constraint (19j) is satisfied by z. If
λ̃ > 0 holds, then the bilevel feasible point (x̃, q̃, π̃, λ̃, τ) satisfies Conditions (15)
or (16) due to Theorem 8. Consequently, it follows that (ȳ+ y) = 0 or ỹy′ = 0 holds
and, thus, Constraint (19j) is satisfied by the point z. In total, z is a feasible point
of Problem (19) with the same interdiction decision x ∈ X and load shed λ ∈ [0, 1).

We now consider an optimal solution s of the single-level problem (19) and prove
that the point z := (x, q, π, λ, 0) is a bilevel feasible point of Problem (12). Since the
point s is feasible for Problem (19), it follows that z is feasible for the upper-level
constraints (12b)–(12d) and also satisfies the lower-level constraints (13b)–(13d).
Further, from Constraint (19j), it follows that ȳ = y = 0 or at least one of the
variables ỹ, y′, λ is equal to zero. However, this directly implies that the point z
satisfies at least one of the Conditions (15)–(17) due to the following three cases.
First, if λ = 0 holds, then the point z satisfies Condition (17). Second, if ỹ = 0 or
y′ = 0 holds, then the point z satisfies Condition (16). Third and finally, if ȳ = 0
and y = 0 is satisfied, then the point z satisfies Condition (15). Consequently, from
Theorem 8, it follows that for the upper-level decisions (x, q, π), the point (λ, 0) is an
optimal solution of the follower’s problem. Thus, z is a bilevel feasible point with the
same interdiction decision and load shed as the single-level optimal solution s. �

Remark 10. Let Assumptions 1–3 be satisfied. Every interdiction decision x ∈ X
can be extended to a feasible solution of Problem (19) as it is done in the proof
of Theorem 9. However, we can reduce the set of feasible solutions by replacing
Constraint (19j) with

(ȳ + y)ỹy′ = 0. (21)
Consequently, all solutions that only satisfy Condition (17), i.e., λ = 0, but do
neither satisfy Condition (15) nor (16), are not feasible anymore. However, the set
of optimal solution stays the same as long as there is an interdiction decision x ∈ X
that causes any load shed. We further note that this adaption of Problem (19) turns
out to be beneficial in our computational study.

We further note that we can model the min-operators involved in the single-level
reformulation (19) by applying following standard linearization technique.

Remark 11 (Linearization of min-operators). To model the min-operators involved
in Problem (19), we apply the following classic technique. For a finite set of
indices I, we model mini∈I{fi} by using additional binary variables ti, i ∈ I, and
the continuous variable g. Let further L,U ∈ R be chosen so that the inequalities
L ≤ fi ≤ U hold for every i ∈ I. Then, g = mini∈I{fi} holds if and only if

fi − (U − L)(1− ti) ≤ g ≤ fi, i ∈ I,
∑
i∈I

ti = 1, ti ∈ {0, 1}, i ∈ I. (22)

We can further linearize Constraint (19j) using additional binary variables and
additional linear constraints with the help of McCormick inequalities [19].

By applying the previously discussed linearization techniques, we can reformulate
the single-level reformulation (19) as a mixed-integer nonlinear optimization problem
(MINLP) consisting of finitely many variables and constraints. This problem then
can be solved using state-of-the-art MINLP solvers to compute optimal interdiction
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decisions. However, the single-level reformulation (19) contains many nonlinear
terms in Constraints (12c) as well as in Constraints (19c)–(19f), which makes it
very challenging to solve. Hence, in the next two sections, we present two equivalent
reformulations of Problem (19) that significantly reduce the number of nonlinear
terms within constraints (19c)–(19f).

4.1. First Reduced Single-Level Reformulation. In (19), we compute the flows
regarding the given load flow ` ∈ RV . Afterward, we then scale the potentials and
flows down to satisfy the flow and potential bounds in Constraints (19c)–(19g),
which leads to a large number of nonlinear terms.

We now propose to compute the flows directly for the scaled load flow (1− λ)` in
Constraint (R1.2) below. Since the considered potential-based flows are positively
homogeneous and the flows are unique for a given nomination, we then do not have
to scale the corresponding flows and potentials down anymore, which eliminates all
the nonlinearities in the Constraints (19c)–(19g). The obtained model reads as

max
s

∑
u∈V−

λ`u (R1.1)

s.t.
∑

a∈δout(v)

qa −
∑

a∈δin(v)

qa =


(1− λ)`v, if v ∈ V+,

−(1− λ)`v, if v ∈ V−,
0, else,

v ∈ V, (R1.2)

(12c)(12d), λ ∈ [0, 1], (R1.3)

πu + ε̃+
u = π+

u , πu − ε̃−u = π−u , u ∈ V, (R1.4)

qa + ε+
a = q+

a , qa − ε−a = q−a , a ∈ A, (R1.5)

ε̃+, ε̃−, ε+, ε− ≥ 0, (19h)–(19k). (R1.6)

We now prove that there is a 1-to-1 correspondence between the optimal points
of (19) and (R1) so that the set of feasible interdictions and load sheds is the same.

Lemma 12. Let Assumptions 1–3 be satisfied. A point s := (x, λ, q, π, ε̃+, ε̃−, ε+, ε−,
ȳ, y, ỹ, y′) is optimal for Problem (19) if and only if the point z := (x, λ, (1−λ)q, (1−
λ)rπ, ε̃+, ε̃−, ε+, ε−, ȳ, y, ỹ, y′) is optimal for Problem (R1).

Proof. Let s be an optimal point of Problem (19). Corollary 1 and Theorem 9 imply
that λ ∈ [0, 1) holds. We now prove that the point z is feasible for (R1). Multiplying
Constraints (12b) by (1−`) ∈ [0, 1) shows the feasibility of (R1.2). The feasibility of
Constraints (12c) w.r.t. (1−λ)rπ follows from their feasibility w.r.t. π as well as from
(1− λ) ∈ [0, 1) and the positive homogeneity of the potential function. Analogously,
Constraints (12d) are satisfied for (1− λ)q. Constraints (R1.4) and (R1.5) are valid
for z due to the feasibility of Constraints (19c)–(19g) w.r.t. s. Thus, the point z is
feasible for Problem (R1).

Let now z be an optimal solution of Problem (R1). Further, λ ∈ [0, 1) holds
since, otherwise, for each arc a ∈ A, qa = 0 is satisfied and Constraint (19j)
cannot be valid due to Assumption 1. The feasibility of Constraints (12b) follows
from Constraints (R1.2). Further, Constraints (19c)–(19k) are valid for s since
Constraints (R1.3)–(R1.6) are satisfied by z. For an arc a ∈ A with xa = 0,
the feasibility of Constraints (12c) w.r.t. q and π follows from their feasibility
for (1−λ)q and (1−λ)rπ. For arc a ∈ A with xa = 1, we obtain qa = 0 due to (12d).
Thus, the feasibility of Constraints (12c) w.r.t. q and π follows from Lemma 6
and dividing Constraints (14) by (1− λ)r. Finally, (1− λ)|qa| ≤ (1− λ)

∑
u∈V− `u

holds since (λ, (1− λ)q) satisfies Constraints (R1.2) and there cannot be any cyclic
flow. Consequently, Constraints (12d) are valid for s. Thus, point s is feasible for
Problem (19). �
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Model (R1) does not contain nonlinear terms in (R1.4) and (R1.5) to decide
if flow or potential bounds are tight, which is in contrast to Model (19) and
Constraints (19c)–(19f). In addition, we do not add any additional nonlinearities in
Model (R1).

4.2. Second Reduced Single-Level Reformulation. We now derive a different
reformulation of the single-level problem (19) that again contains less nonlinear
terms. To this end, we exploit that λ ∈ [0, 1) holds due to Corollary 1, which enables
us to apply a specific variable transformation. More precisely, we derive the second
reduced single-level reformulation by multiplying the Constraints (19c) and (19d)
with (1/(1− λ))r. Further, we multiply Constraints (19e) and (19f) by (1/(1− λ)).
In addition, we can consider ε̃+ instead of 1/(1− λ)r ε̃+ since 1/(1− λ)r > 0 and
ε̃+ ≥ 0 hold. Analogously, we proceed with ε̃−, ε+, and ε−. We then apply the
variable substitution λ∗ = 1/(1 − λ) for which λ∗ ≥ 1 holds. After applying the
variable transformation, we can additionally reformulate the objective function
max (1 − 1/λ∗)

∑
u∈V− `u as the linear objective function max λ∗

∑
u∈V− `u and

still obtain the same optimal solutions after reversing the variable substitution. The
second single-level reformulation is thus given by

max
x,λ∗,q,π,ε̃+,ε̃−,ε+,

ε−,ȳ,y,ỹ,y′

λ∗
∑
u∈V−

`u (R2.1)

s.t. (12b)–(12d), (R2.2)

πu + ε̃+
u = (λ∗)rπ+

u , πu − ε̃−u = (λ∗)rπ−u , u ∈ V, (R2.3)

qa + ε+
u = λ∗q+

a , qa − ε−u = λ∗q−a , a ∈ A, (R2.4)

ε̃+, ε̃−, ε+, ε− ≥ 0, (19h)–(19k), 1 ≤ λ∗. (R2.5)

Since we only applied a variable transformation to Problem (19) to derive the
second reduced problem (R2), it directly follows that the set of optimal interdiction
decisions of both problems is the same.

Let us remark that after applying the variable transformation, the big-
M values M̃ and Q̃ of (20), which are necessary to linearize the min-
operators in Constraints (19h)–(19k), now depend on the variable λ∗, i.e.,
M̃ = (λ∗)r maxu∈V {π+

u − π−u } and Q̃ = λ∗maxa∈A{q+
a − q−a }.

For fixed λ∗, these big-M values are valid since the potentials π satisfy Con-
straints (R2.3) and the flows q satisfy Constraints (R2.4). Consequently, it is
necessary to prove a finite upper bound for λ∗ = (1/(1− λ)) to provide valid big-M
values M̃ and Q̃.

We now prove that under Assumptions 1–3, there is a finite upper bound of λ∗.
This means that, for every interdiction, the follower can still transport a very
small amount of flow through the network. This is in line with realistic attacks on
electricity, gas, or water networks, for which it is unlikely that an interdiction can
shed the entire load in the network.

Lemma 13. Let Assumptions 1–3 be satisfied, the potential function be given
by ϕ(qa) = sgn(qa)|qa|r, and Q =

∑
u∈V− `u. Then, for every upper-level feasible

point (x, q, π) of Problem (12), there is a feasible point (λ, τ) of the lower level (13)
with

λ = max

{
0, 1− mina∈A {|q−a |, q+

a }
Q

, 1−
(

π̄ − π∑
a∈A Λaϕ(Q)

)1/r
}

=: λ+ < 1. (25)

Proof. Let the point (x, q, π) be feasible for the upper-level constraints of (12). For
each arc a ∈ A, the absolute flow |qa| is bounded by Q since there is no cyclic
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flow. If the flow bounds satisfy q−a ≤ −Q ≤ Q ≤ q+
a , then these flow bounds

never cause load shedding and can be neglected. Thus, we focus on the case that
at least one arc a ∈ A satisfies q−a > −Q or q+

a < Q. Consequently, choosing
λ ∈ [1−mina∈A{|q−a |, q+

a }/Q, 1) implies that (1− λ)q satisfies (13c) since for a ∈ A
with xa = 1, Constraints (12d) imply qa = 0 and otherwise, we obtain

q−a ≤ (1− λ)(−Q) ≤ (1− λ)qa ≤ (1− λ)Q ≤ q+
a .

From Assumption 1, it follows ∅ 6= int
(⋂

u∈V [π−u , π
+
u ]
)

= (π, π̄), i.e., π < π̄.
Additionally, for the point (0, q, π), we can apply Lemma 6 and, thus, for u, v ∈ V ,
we obtain |πu − πv| ≤

∑
a∈A Λaϕ(Q). If π̄ − π ≥

∑
a∈A Λaϕ(Q), then the potential

bounds never cause load shedding and can be neglected. Thus, we focus on the case
π̄ − π <

∑
a∈A Λaϕ(Q). We now choose λ ∈ [1 − ((π̄ − π)/

∑
a∈A Λaϕ(Q))1/r, 1).

Due to Lemma 3, we can further choose η such that for each u ∈ V , the inequal-
ity (1− λ)rπu + η ≥ 0 holds and such that there exists at least one node w that
satisfies (1− λ)rπw + η = 0. For each node u ∈ V , we obtain

π−u ≤ π ≤ (1− λ)rπu + η + π ≤ (1− λ)r(πu − πw) + η − η + π ≤ π̄ ≤ π+
u .

Thus, the point (λ, η + π) with λ < 1 satisfying Condition (25) is a feasible point of
the lower level (13). �

This lemma implies that every feasible point of the bilevel problem (12) sat-
isfies 0 ≤ λ < 1. The same also holds for every feasible point of (19), (R1),
and (R2) due to Theorem 9 and Lemma 12. Thus, we can bound the variable λ∗ by
1 ≤ λ∗ = 1/(1− λ) ≤ 1/(1− λ+).

Let us finally remark that for each arc a ∈ A we can also choose the big-M
values M−a and M+

a in Models (19) and (R1) according to (5) instead of (6). This
is based on the fact that in (19) and (R1), we do not dismiss any potential bounds
and it follows in analogy to the given explanation after (5) in Section 2. Again, for
Model (R2) these big-M values are given by

M−a = (λ∗)r(π−u − π+
v ), M+

a = (λ∗)r(π+
u − π−v ), (26)

in which we again bound λ∗ by 1 ≤ λ∗ = 1/(1− λ) ≤ 1/(1− λ+).

5. An Exact Method for Potential-Based Flow Interdiction

We now present an exact algorithm that computes an optimal interdiction decision
by exploiting the derived single-level reformulation (R1), respectively (R2), which
compute upper bounds for the interdiction problem (3).

The algorithm works as follows. We set the lower bound φLB = 0 and the upper
bound φUB =∞ for the total load shed, i.e., for the objective value of the interdiction
Problem (3). Additionally, we initialize the load vector `∗ = ` to the original load
vector ` ∈ RV . We then solve one of the reduced-single level reformulations, i.e.,
(R1) or (R2), w.r.t. `∗ to obtain an upper bound φL

UB (where L stands for “leader”),
on the load shed and a corresponding interdiction decision x ∈ X. If the obtained
upper bound φL

UB is smaller than the best current upper bound φUB, we update
the incumbent. We then solve the follower’s problem w.r.t. `∗ and the interdiction
decision x to obtain a lower bound φF

LB (where F stands for “follower”), on the load
shed. We denote the corresponding solution by (λ, q, π). If the lower bound φF

LB is
larger than the best current lower bound φLB, then we update the latter. In addition,
we update the load flow to the best response of the follower, i.e., `∗ = (1−λ)◦ `, and
store the computed interdiction x, which now represents the best known interdiction
decision. Afterward, we add the no-good cut∑

a∈A:xa=1

(1− x) +
∑

a∈A:xa=0

x ≥ 1 (27)
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to the considered reduced single-level reformulation (R1) or (R2) to cut off the
previously computed interdiction. Then, the procedure is repeated. We terminate
either if we satisfy a relative tolerance w.r.t. the gap given by the lower and upper
bound or if there is no feasible interdiction decision left.

The method is given in Algorithm 1. For given tolerance ε ≥ 0, we use the
termination condition (φUB − φLB)/(φLB + 10−10) ≥ ε as it is used in, e.g., CPLEX1.

Algorithm 1: Solving potential-based network flow interdiction problems
Input: load flow ` ∈ RV and optimality tolerance ε ≥ 0.

1 Initialize φLB ← 0, φUB ←∞, `∗ ← `, and x∗ ← 0.
2 while (φUB − φLB)/(φLB + 10−10) ≥ ε do
3 Solve Problem (R1) or (R2) w.r.t. `∗ and obtain the interdiction

decision x ∈ X and the objective value φL
UB.

4 if Problem (R1) or (R2) w.r.t. `∗ is infeasible then
5 Update φUB ← φLB and return interdiction x∗ ∈ X.

6 if φUB > φL
UB + φLB then

7 Update φUB ← φL
UB + φLB.

8 Solve the lower-level problem (4) w.r.t. x as well as ` and obtain the
solution (λ, q, π) with objective value φF

LB.
9 if φF

LB > φLB then
10 Update φLB ← φF

LB, `
∗ ← (1− λ) ◦ `, and set x∗ = x.

11 Add the no-good cut (27) to X to cut off the current interdiction x.

12 return interdiction x∗ ∈ X

In Line 3, we solve the single-level reformulation w.r.t. the load flow `∗. In the first
iteration, this load flow `∗ equals the original load flow `. Afterward, the load flow `∗

represents the best response of the follower w.r.t. the best known interdiction x∗,
i.e., `∗ is obtained by applying the smallest load shed to the original load flow ` so
that `∗ can be transported in the interdicted network G(x∗). Thus, in each iteration
of Algorithm 1, we seek to find an interdiction that violates the best response `∗
of the follower w.r.t. the current most effective interdiction x∗. We note that `∗ is
not necessarily equal to the original load flow ` due to the update in Line 10. If
`∗ 6= ` holds, then the current best interdiction x∗ causes some load shed w.r.t. the
original load and `∗ is obtained by reducing the original load as minimal as possible
so that the adjusted load flow can be transported through the interdicted network;
see Line 10. The corresponding load shed is denoted by φLB and has to be taken
into account when computing the upper bound in the next iteration. Consequently,
this update of the upper bound in Line 7 consists of φLB, which represents the load
shed necessary to obtain the best response `∗, plus φL

UB, which represents the load
shed caused by the interdiction x regarding `∗ in the current iteration. We note that
if no interdiction can cause a load shed w.r.t. the best response `∗, i.e., φL

UB = 0
holds in Line 3, then the upper bound will be set to the lower bound in Line 6 and
the algorithm terminates in this iteration.

In general, finite termination of Algorithm 1 directly follows from the fact
that the set X only contains a finite number of feasible interdiction decisions
and, in each iteration, we cut off an interdiction decision in Line 11. We further
note that Algorithm 1 always returns at least an ε-optimal interdiction decision.
However, if φUB ≤ φLB holds, the computed interdiction is optimal since there is no

1https://www.ibm.com/docs/en/icos/22.1.1?topic=parameters-relative-mip-gap-tolerance
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further interdiction decision that can cause more load shed then the current best
interdiction x∗. We can explicitly enforce this by setting ε = 0.

Theorem 14. Let Assumptions 1–3 be satisfied. For a balanced load flow ` ∈ RV
and an optimality tolerance ε ≥ 0, Algorithm 1 terminates after a finite number of
iterations. Let further (x∗, λ, q, π) be the bilevel feasible point that we obtain by solving
the follower’s problem (4) w.r.t. x∗ and let φ be the corresponding objective value. The
value φopt denotes the optimal objective value of the original interdiction problem (3).
Then, one of the two cases occurs. If φLB > 0, then 0 ≤ (φopt − φ)/φopt ≤ ε holds.
Otherwise, if φLB = 0, then 0 ≤ φopt − φ ≤ ε holds. In addition, if φUB ≤ φLB, then
φ = φopt is satisfied and (x∗, λ, q, π) is an optimal solution of the original bilevel
problem (3).

Proof. Let (x, `′, q′, π′) be an optimal solution of the original interdiction problem (3).
From the construction of Algorithm 1, it directly follows φopt ≥ ϕ = φLB. Further, it
holds φLB ≤ φUB. We now prove φopt ≤ φUB. To this end, we consider a distinction
of different cases.

If x is cut off by (27) in any iteration, then it directly follows φopt ≤ φLB. Thus,
we now consider that x is not cut off during the solution process. If algorithm
terminates in Line 4, then again φopt ≤ φLB = φUB holds since the interdiction x
cannot cause any load shed for `∗ and φLB equals the load shed necessary to
obtain `∗. Thus, we now consider the case that the algorithm terminates due to the
termination condition in Line 2. Let `′ be the load flow for which Problem (R1),
respectively (R2), is solved in the algorithm to obtain the final upper bound φUB.
This upper bound is computed in Line 7 and is the sum of two values. The first
value φLB represents the load shed necessary to obtain `′ from the original load
flow `; see Lines 8–10. The second value φL

UB is the maximal load shed necessary to
make `′ feasible by scaling down for any feasible interdiction that has not been cut
off in Problem (R1), respectively (R2); see Line 3. Consequently, for the optimal
interdiction x, we can always scale down `′ to a feasible point of the follower’s
problem (4) with a load shed of φUB. Thus, φUB ≥ φopt ≥ ϕ = φLB ≥ 0 holds and
the claim follows from the termination condition in Line 2. �

As explained in Remark 10, we can consider Constraint (21) instead of (19j) in the
reduced single-level reformulation (R1) or (R2), which can significantly reduce the
set of feasible points. This modification leads to the result that if there is no feasible
interdiction that can cause any positive load shed w.r.t. `∗, then Problem (R1)
and (R2) becomes infeasible.

Remark 15 (Adaption of Algorithm 1). The motivation for the following variant of
Algorithm 1 is that we only have to solve the single-level reformulations to optimality
a few times to obtain the best response of the follower `∗ w.r.t. the best known
interdiction x∗. In the remaining iterations, we are mainly interested in cutting off
interdiction decisions that have a positive load shed regarding the best response `∗.

We now assume that the single-level reformulations are modeled according to
Remark 10. We then solve the single-level reformulations to optimality only at the
first and in every i-th iteration of Algorithm 1. In the remaining iterations, we only
compute a feasible point for the single-level reformulation (R1) or (R2). In every
iteration in which we obtain a feasible but not optimal point for (R1) or (R2), we
skip the update of the upper bound in Line 7. As observed in our computational
study, the proposed variant of Algorithm 1 significantly increases the performance of
the algorithm.

Since the single-level reformulation is modeled according to Remark 10, almost
every feasible point leads to an interdiction that causes a positive load shed w.r.t. the
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considered load flow. Here, “almost” means that there can be feasible points with
load shed zero that at the same time satisfy Conditions (15)–(17), which is rather
rare in practice. We further highlight that the adapted algorithm is only meaningful
if Remark 10 is applied. Otherwise, every interdiction x ∈ X leads to a feasible
solution for the single-level models and, consequently, the adapted algorithm would
only enumerate all interdiction decisions.

Finally note that Theorem 14 is still valid for the presented modification since we
cut off a feasible interdiction in every iteration and only update the upper bound if
(R1) or (R2) are solved to optimality.

6. Numerical Results

We now present a computational comparison of Algorithm 1 w.r.t. the single-
level reformulations (R1) and (R2). To this end, we focus on gas networks, i.e.,
ϕ(q) = q|q|. Since there are no other approaches to deal with the considered network
interdiction games with nonlinear and nonconvex potential-based flows, we compare
our results with a simple enumeration approach.

We discuss our computational setup, the considered instances, and the implemen-
tation of our models in Sections 6.1 and 6.2. Afterward, we present our numerical
results regarding the running times and number of iterations in Section 6.3. Fi-
nally, we compare the convergence of the lower and upper bounds of the considered
approaches in Section 6.4.

6.1. Implementation Details. We briefly specify some modeling aspects of
the single-level reformulations and the enumeration approach. For all models,
the set of feasible interdictions X ⊆ {0, 1}A contains a so-called budget con-
straint

∑
a∈A xa ≤ K, which restricts the number of interdicted arcs by a given

value K ∈ N. We model Assumption 3, i.e., the weak-connectivity of the interdicted
network, by adding additional constraints and variables to the single-level reformu-
lations (R1) and (R2) or to the enumeration approach in form of a standard flow
problem that sends from an arbitrary but fixed node a single unit of artificial flow
to each other node in the interdicted network. This ensures that only interdiction
decisions, for which the interdicted network is weakly connected, can be chosen.
Otherwise, the added flow problem is infeasible. As a consequence of our preliminary
computational tests, we implemented the single-level reformulations (R1) and (R2)
according to Remark 10 and use the big-M values given in (5), respectively (26).
Further, we set the optimality tolerance of Algorithm 1 to ε = 10−4.

In pipe-only gas networks, there are typically no flow bounds since the flow
through an arc is implicitly bounded by the potential bounds at the incident nodes.
Thus, the given flow bounds of the tested instances are redundantly large, i.e., the
flow bounds are so large such that for a given load flow, Condition (16) is never
satisfied. Consequently, we remove these flow bounds, i.e., Constraint (R1.5), respec-
tively (R2.4), and Conditions (16) modeled by (19i). Due to this and Remark 10,
Constraint (19j) simplifies to ȳ + y = 0. Further, in Model (R2) we can replace λ∗

by λ∗r in the objective function and then apply a variable substitution λ′ = λ∗r to
reduce the number of nonlinear terms.

In pipe-only potential networks, the highest potential level is always attained
at a source node, i.e., maxu∈V πu = maxu∈V+ πu. In the considered gas networks,
all upper potential bounds are equal, i.e., π+

u = π+
v holds for all u, v ∈ V . Due to

this and Lemma 3, there always exists an optimal solution in which the maximum
potential level is attained at a source node and that it equals the upper bound. We
exploit this relation by adding a corresponding valid inequality to our single-level
reformulations.
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If we solve the considered single-level reformulation to optimality and if the
corresponding interdiction decision does not lead to an improved lower bound, we
solve the single-level reformulation including the additional no-good cut (27) in
the next iteration. In this case, we use the optimal objective value of the previous
iteration as an upper bound for the objective function of the single-level reformulation
in the next iteration.

We finally discuss our implementation of the enumeration approach. In this
iterative approach, we first compute a feasible interdiction x ∈ X that satisfies
Assumption 3 using a mixed-integer linear problem. Afterward, we then solve the
follower’s problem for fixed interdiction x and store the interdiction decision if it
leads to a larger load shed then the best interdiction known so far. Then, we add the
no-good cut (27) to the set X and repeat the procedure until no feasible interdiction
remains.

6.2. Computational Setup and Instances. The models are implemented in
Python 3.7 using Pyomo 6.4.2.dev0; see [8]. We solve the models using SCIP 8.0.0 [5]
with Gurobi 9.0.3 [13] as LP solver and Ipopt 3.14.4 [31] as NLP solver. Additionally,
we disabled PAPILO in SCIP. We note that we also tested different state-of-the-art
solvers using GAMS such as BARON and ANTIGONE. However, SCIP generally
performed better on the considered types of problems. The computations are carried
out on a single core of a single node of a server2 with XEON_SP_6126 CPUs.
Further, we set a limit for the RAM of 16 GB and a total time limit of 24 h.

For the computations, we consider two different sets of SCIP parameters. We
call the first set SCIP-default-options, which consists of the default SCIP parameters
and we additionally set the time limit to 500 s as well as the relative optimality gap
to 10−4. The second set of parameters is called SCIP-feasibility-options and adds the
predefined set of parameters given by SCIP settings “set emphasize feasibility” to
the first set SCIP-default-options.

Based on preliminary tests, we use SCIP-feasibility-options for the single-level
reformulation (R1) and SCIP-default-options for (R2). If we find a feasible point
within the time limit of 500 s but do not prove its optimality, then we proceed as in
the adapted algorithm, see Remark 15, i.e., we proceed without updating the upper
bound. If no feasible solution can be found within the time limit, then we solve the
problem with the other set of SCIP options. If this still does not lead to a feasible
solution, we double the time limit and repeat the procedure. In practice, restarting
the solution process with a different set of SCIP parameters has been more efficient
than directly increasing the time limit. This is based on the observation that the
solver can get stuck at specific steps in the solution process, which in some cases can
be circumvented by considering different SCIP parameters. If we use the adapted
algorithm 1 described in Remark 15, then we set the time limit of each iteration
that we solve to optimality directly to 1000 s.

For solving the original follower’s problem (4), we use SCIP-default-options and
set the time limit to the remaining time of the total time limit of 24 h.

In case that we only search for a feasible point in our approaches, we stop the
solution process after obtaining the first feasible point and always start the above
described procedure using SCIP-feasibility-options.

For our computational study, we consider the GasLib-40 network [28]. The
GasLib-40 consists of 40 nodes, out of which 3 are sources and 29 are sinks. Moreover,
the network contains 39 pipes and we bypass the 6 compressors in the network since
we consider potential-based flows without controllable elements. We further consider
two different load flows ` ∈ RV that represent the injections and withdrawals in the

2https://elwe.rhrk.uni-kl.de/elwetritsch/hardware.shtml

https://elwe.rhrk.uni-kl.de/elwetritsch/hardware.shtml
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non-interdicted network at a single point in time. First, we consider the load flow,
given in [28], and slightly scale each of the injections and withdrawals by 0.9991. The
latter scaling is necessary to obtain a feasible load flow in the non-interdicted network
since we bypass the compressors. We call this instance GasLib-40-scaled. As the
second load flow, we perturb the scaled load flow by randomly sampling the demand
of the sinks. For every sink, we sample an integer demand in [0, 200]× 1000 m3 h−1

using a fixed seed of zero. Further, the demand of the sources stays unchanged. To
guarantee that the load flow is balanced, we scale each of these demands of the exits
by the total amount of injections divided by the total amount of the sampled exits.
We call this instance GasLib-40-scaled-randomExits.

6.3. Running Times and Number of Iterations. We now compare Algorithm 1
w.r.t. both single-level reformulations (R1) and (R2) and the enumeration approach.
Afterward, we analyze the adaption of Algorithm 1 given in Remark 15, which
significantly improves the running times.

In Table 1, we summarize the running times and number of iterations for both
considered instances and different interdiction budgets K ∈ {1, . . . , 5}. To this
end, we solve in each iteration the corresponding single-level reformulation (R1),
respectively (R2), to optimality. From the results, it follows that for all instances
Algorithm 1 needs significantly less iterations compared the enumeration approach.
However, in each of these iterations, we have to solve an MINLP within Algorithm 1,
whereas the enumeration approach solves an NLP in each iteration. We note that
current state-of-the-art solvers are really challenged by solving the MINLPs (R1)
and (R2) to global optimality and often struggle to prove optimality in reasonable
time. This is the reason why for some of the instances the approaches based on
Algorithm 1 are outperformed regarding the running times by the enumeration
approach despite the significantly less number of iterations.

However, as stated in Remark 15, it is not necessary to always solve the single-level
reformulations (R1), respectively (R2), to optimality in each iteration of Algorithm 1
to obtain an optimal interdiction decision. Thus, we also applied Algorithm 1 with
the adaption that we only solve the corresponding MINLP to optimality in the
first and in each 50th iteration. In the remaining iterations, we only compute a
feasible point. This adaption drastically improves the performance of Algorithm 1
as the running times in Table 2 show. Regarding the running times, the adapted
Algorithm 1 clearly outperforms the enumeration approach except for the smallest
interdiction budget K = 1. Further, for K = 5, the approaches based on the
adapted Algorithm 1 solve all instances in the time limit, which is not the case for
the enumeration approach.

As discussed previously, the number of iterations is again significantly lower for
the adapted algorithm compared to the enumeration approach. We note that the
difference of the number of iterations between the Algorithm 1 and its adapted
version can generally be traced back to the fact that if we do not solve the MINLPs
to optimality, we obtain different interdiction decisions. Consequently, we may
update the best response of the follower, i.e., `∗ in Algorithm 1, at a different
iteration, which affects the feasible region of the considered MINLPs. In general, it
is theoretically not guaranteed that solving the MINLPs to optimality always leads
to a smaller number of iterations. However, we observe this effect in practice.

We finally note that using the single-level reformulation (R2) tends to be faster
over all instances compared to using (R1) except for two instances. However, we
also observe that solving the MINLP (R2) is more prone to numerical difficulties.
This leads to the result that in some iterations of Algorithm 1, we cannot compute
a feasible point and, thus, we reach the time limit; see, e.g., Table 1 for K = 4 and
instance GasLib-40-scaled-randomExits. These numerical difficulties also explain the
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Table 1. Running times (in seconds) and number of iterations of
Algorithm 1 w.r.t. (R1), respectively (R2), and the enumeration
approach. The single-level reformulation (R1), respectively (R2),
is solved to optimality in each iteration of Algorithm 1.

K = 1 K = 2 K = 3 K = 4 K = 5

time #iter time #iter time #iter time #iter time #iter

enum. 33.2 26 268.1 270 1760.1 1619 14 237.1 5893 — —
(R1) 57.0 2 172.9 3 1167.8 11 18 202.0 152 — —
(R2) 31.2 2 107.1 3 701.8 11 17 583.6 155 72 505.0 725

GasLib-40-scaled-randomExits

enum. 16.4 26 195.2 270 1673.8 1619 13 883.7 5893 86 125.6 13 221
(R1) 87.6 3 86.7 2 3013.0 24 24 299.6 185 — —
(R2) 46.6 3 108.9 2 1375.3 24 — — — —

Table 2. Running times (in seconds) and number of iterations
of the adapted Algorithm 1 w.r.t. (R1), respectively (R2), and
the enumeration approach. The single-level reformulation (R1),
respectively (R2) is solved to optimality in the first and in each
50th iteration of Algorithm 1.

K = 1 K = 2 K = 3 K = 4 K = 5

time #iter time #iter time #iter time #iter time #iter

enum. 33.2 26 268.1 270 1760.1 1619 14 237.1 5893 — —
(R1) 53.5 2 122.4 3 533.2 11 4938.1 162 36 468.7 784
(R2) 37.8 2 89.4 3 365.3 12 3976.1 161 21 256.1 912

GasLib-40-scaled-randomExits

enum. 16.4 26 195.2 270 1673.8 1619 13 883.7 5893 86 125.6 13 221
(R1) 76.3 3 96.3 2 946.5 24 7922.4 194 46 487.9 855
(R2) 42.6 3 79.3 2 760.7 24 5703.4 194 37 273.9 876

small difference in the number of iterations for (R1) and (R2) in Table 1 with K = 4
and instance GasLib-40-scaled. The numerical difficulties most likely arise since the
used variable substitution in Model (R2) significantly increases specific big-M values
as discussed in Section 4.2. In general, the single-level reformulation (R1) seems to
be numerically more stable, but the solver needs more time to find a feasible point
or an optimal solution.

6.4. Convergence of Lower and Upper Bounds. We now compare the conver-
gence of the lower and upper bound for the load shed if applying the approaches
based on Algorithm 1. In addition, we consider the development of the corresponding
lower bound of the enumeration approach. However, we stress that the convergence
of this lower bound of the enumeration approach can be subject to strong fluctua-
tions since there is no criterion on how to choose the next feasible interdiction. We
further do not obtain an upper bound for the load shed if applying the enumeration
approach.

In Figure 2, we compare the lower and upper bounds for the load shed of
the instance GasLib-40-scaled with interdiction budget K = 5. We observe that
both variants of Algorithm 1 compute a nearly optimal interdiction already in the
first iteration. The optimal interdiction decision is found in later iterations, but
the difference regarding the load shed compared to the first iteration is smaller
than 0.1 kg s−1. Both approaches tighten the upper bound to a relative small gap
in a small number of iterations. As expected, the upper bound obtained by the
adapted algorithm decreases much slower compared to the original version of the
algorithm. This is based on the fact that in each iteration, in which we only compute
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Figure 2. GasLib-40-scaled for budget K = 5. Left: Single-level
reformulations solved to optimality in each iteration. Right: Prob-
lems solved to optimality in the first and in each 50th iteration.

a feasible point, we do not obtain a valid upper bound and, thus, cannot update the
best known upper bound for the load shed. However, the adapted algorithm is still
superior in terms of total running times. Optimality for the considered instance can
only be formally proven in the approaches based on the adapted algorithm and in
Algorithm 1 w.r.t. (R2). The enumeration approach fails to prove the optimality in
this case. For the remaining instance, we can observe a similar development of the
lower and upper bounds as in Figure 2.

Over all considered instances, we observe that applying Algorithm 1 yields to a
convergence of the lower and upper bound for the load shed within a relatively small
number of iterations. Moreover, the load shed corresponding to the best interdiction
decision of the very first iterations is almost always close to the optimal one.

Beside the faster running times and smaller number of iterations, two major
benefits of our approaches based on Algorithm 1 are the following. First, these
approaches provide a lower and upper bound for the maximum load shed in each
iteration. Consequently, we obtain an optimality gap, which is not the case for
the enumeration approach. Second, we can control the trade-off between fast total
running times and obtaining tight upper bounds within a small number of iterations
in the adapted algorithm by choosing which iterations should be solved to optimality.
This makes Algorithm 1 especially useful to compute a good, but not necessarily
optimal, interdiction decision within a small time limit.

7. Conclusion

We studied a network flow interdiction problem with nonlinear and nonconvex
potential-based flows. We developed an exact algorithm that exploits upper and
lower bounding schemes to compute optimal interdictions. Finally, the applicability
of the developed approach is demonstrated using the example of gas networks.

This paper paves the way for different directions of future research. First,
extending the considered potential-based flow model to include controllable elements,
e.g., compressors in gas networks or pumps in water networks, can be a next step for
future research. However, introducing these controllable elements adds challenging
integer variables yielding MINLPs in the lower level. Second, it is of interest to
develop approaches that can also handle the case that the interdicted network is not
connected. We believe that it is possible to extend the presented approach to this
case at the cost of further binary variables in the upper level to model the connected
components after the interdiction. Third and finally, moving forward to trilevel
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defender-attacker-defender games subject to potential-based flows is a challenging,
but very interesting, topic for future research.
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Appendix A. Why Potential-Based Flows are Difficult—Even
without Flow Bounds

We now modify the example of Section 3 by dismissing arc flow bounds. Again,
we demonstrate that interdicting an arc can cause a load shed that exceeds the
absolute flow through this arc in the non-interdicted network.

The example in Figure 3 illustrates that interdicting arc (w, t) with absolute
flow of 1 leads to a total load shed of 2 −

√
2−
√

2 > 1. Consequently, the load
shed exceeds the absolute flow trough the interdicted arc in the non-interdicted
network. More precisely, after interdicting arc (w, t), from flow conservation (4b)
and Constraints (4d), we obtain

q(u,w) = q(w,v), q2
(u,w) + q2

(w,v) = q2
(u,v), q(u,v) = `v − q(u,w).
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Figure 3. An example where interdicting the single arc (w, t)
causes a load shed larger than the original absolute flow through
arc (w, t).

From these equations and `v ∈ [0, 1], it follows that for q(u,w) =
√

2− 1 = q(w,v),
q(u,v) = 2−

√
2, and πu = 2+(

√
2−1)2, it is possible to avoid any load shed at node v,

i.e., `v = 1. We note that the requirement πw ≤ 2 and Constraints (4d) imply
that πu = 2 + (

√
2− 1)2 is the maximal potential level at node u. However, then

it is necessary to shed load at node t to satisfy πu − 2q2
(u,t) ≥ 1 = π−t , which leads

to q(u,t) ≤
√

2−
√

2 = `t. Let us further remark, that any other solution that causes
a load shed at node v, i.e., `v < 1, also decreases the pressure level πu = 2+(

√
2−1)2,

which then leads to an even larger load shed at node t. Thus, the presented solution
is optimal, i.e., the load shed is minimal.
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