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Abstract. We study mixed-integer programming (MIP) relaxation tech-
niques for the solution of non-convex mixed-integer quadratically con-
strained quadratic programs (MIQCQPs). We present MIP relaxation
methods for non-convex continuous variable products. In this paper, we
consider MIP relaxations based on separable reformulation. The main
focus is the introduction of the enhanced separable MIP relaxation for
non-convex quadratic products of the form z “ xy, called hybrid sepa-
rable (HybS). Additionally, we introduce a logarithmic MIP relaxation
for univariate quadratic terms, called sawtooth relaxation, based on [7].
We combine the latter with HybS and existing separable reformulations
to derive MIP relaxations of MIQCQPs. We provide a comprehensive
theoretical analysis of these techniques, underlining the theoretical ad-
vantages of HybS compared to its predecessors. We perform a broad
computational study to demonstrate the effectiveness of the enhanced
MIP relaxation in terms of producing tight dual bounds for MIQCQPs.
In Part II, we study MIP relaxations that extend the MIP relaxation
normalized multiparametric disaggregation technique (NMDT) [13] and
present a computational study which also includes the MIP relaxations
from this work and compares them with a state-of-the-art of MIQCQP
solvers.
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1 Introduction

In this work, we study relaxations of general mixed-integer quadratically con-
strained quadratic programs (MIQCQPs). More precisely, we consider discretiza-
tion techniques for non-convex MIQCQPs that allow for relaxations of the set
of feasible solutions based on mixed-integer programming (MIP) formulations.
To this end, we study a number of MIP formulations that form relaxations of
the quadratic equations z “ x2 and z “ xy. These MIP relaxations can then
be applied to MIQCQPs by introducing auxiliary variables and constraints for
each quadratic term to form a relaxation of the overall problem. In particular,
we consider the strength of various MIP relaxations applied directly to a given
problem, which is the simplest approach to enable the solution of MIQCQPs via
an MIP solver. Our focus here is to analyze these approaches both theoretically
and computationally with respect to the quality of the dual bound they deliver
for MIQCQPs. Dual bounds give a lower bound for the optimal value in a mini-
mization problem. The term comes from the so-called dual program, which can
also be used to determine such bounds.
Background MIQCQPs naturally arise in the solution of many real-world
optimization problems, stemming e.g. from the contexts of power supply sys-
tems ([2]), gas networks ([19,27]), water management ([23]) or pooling/mixing
([6,11,15,30,31]). See [25,37] and the references therein for more examples. For
the solution of such problems, there are a number of different approaches, which
differ in case the problems are convex or non-convex. Within this work, we fo-
cus on the most general case, i.e. non-convex MIQCQPs, and only require finite
upper and lower bounds on the variables.

In the literature, a variety of solution techniques for non-convex MIQCQPs
exists. The most prominent class among them are McCormick -based techniques,
see e.g. [12,13,14,16,35,36]. For quadratic programs, in particular, convexification
can be applied to bivariate monomials xy by introducing a new variable z “

xy and constructing the convex hull over the bounds on x and y. This yields
the so-called McCormick relaxation, which is the smallest convex set containing
the feasible set of the equation z “ xy for given finite bounds on x and y.
This relaxation is known to be a polytope described by four linear inequalities
(see [34]), and it is tighter the smaller the a priori known bounds on x and y
are. Hence, one standard solution approach is spatial branch-and-bound, where
the key idea is to split the domain recursively into two subregions. For instance,
one can choose the two subregions where x ď x̄ and x ě x̄, respectively, for
some value x̄. By branching on subregions, we can improve the convexification
of the feasible region by adding valid inequalities to the subproblems. Thus,
applying spatial branch-and-bound in conjunction with convexification (such as
McCormick Relaxations) sequentially tightens the relaxation of the problem.

Alternatively, similar effects can be achieved through some kind of binariza-
tion. This is a general term that describes the conversion of continuous or inte-
ger variables into binary variables. By branching on these new binary variables,
we also partition the space into subproblems in a way that simulates spatial
branch-and-bound. The binarization of the partition makes the resulting prob-
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lem a piecewise linear (p.w.l. ) relaxation of the original problem with binary
auxiliary variables. McCormick-based methods can differ in the way the parti-
tion and the binarization are performed. The partition can be performed purely
on one variable or on both variables, equidistantly or non-equidistantly. The
binarization can be done linearly or logarithmically in the number of partition
elements, see [40,32]. In a broader sense, (axial-)spatial branching for bilinear
terms can also be seen as a piecewise McCormick linearization approach. Here,
the partition is not performed a priori, but rather an initial partition is refined
via branching on continuous variables. An overview of spatial-branching tech-
niques can be found in [8].

Another common idea for linearizing variable products is to use quadratic
convex reformulations as in [9,26,22,21,7]. This technique transforms the non-
convex parts of the problem into univariate terms via reformulations. In [7], the
authors apply diagonal perturbation to convexify the quadratic matrices. The
resulting univariate quadratic correction terms are then linearized by introducing
new variables and constraints of the form zi “ x2

i , which are then approximated
by p.w.l. functions. The binarization of the univariate p.w.l. functions is done
logarithmically by using the so-called sawtooth function, introduced in [42]. An
advantage of this approach is that only linearly many expressions of the form
zi “ x2

i have to be linearized instead of quadratically many equations of the form
zij “ xixj , with respect to the dimension of the original quadratic matrix. This
approach yields a convex MIQCQP relaxation instead of the MIP relaxation
obtained via direct modeling using bilinear terms. See also [1] that adapts the
branch and bound approach αBB [3] to general twice differentiable objectives
by providing convex reformulations via perturbations.

A further set of approaches relies on separable reformulations of the non-
convex variable products, as done e.g. in [5]. Here, each term of the form xy
is reformulated as a sum of separable univariate terms, for example using the
equivalent reformulation xy “ 1{2px2 `y2 ´ px´yq2q “ 1{2pr`s´ tq with r “ x2,
s “ y2, and t “ px ´ yq2 as described by [4]. The univariate constraints, here
equations of the form r “ x2, s “ y2, and t “ px ´ yq2, are then relaxed. Again,
this approach can be combined with a logarithmic encoding of the univariate
linear segments, as in [22,7]. In [5], the authors analyze the following possible
reformulations:

Bin1: xy “ p1{2px ` yqq
2

´ p1{2px ´ yqq
2
,

Bin2: xy “ 1{2
`

px ` yq2 ´ x2 ´ y2
˘

,
Bin3 :xy “ 1{2

`

x2 ` y2 ´ px ´ yq2
˘

.

They prove that MIP-based approximations of each of these univariate reformu-
lations require fewer binary variables than a bivariate MIP-based approximation
that guarantees the same maximal approximation error, if this prescribed error
is small enough. However, this comes at the cost of weaker linear programming
(LP) relaxations.

Alternatively, one can also obtain an MIP relaxation of xy directly via a
bivariate p.w.l. relaxation, see e.g. [5,10,27,40]. One way to do this is to perform a
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triangulation of the domain, which defines a p.w.l. approximation of the variable
product. This p.w.l. approximation can then easily be converted into a relaxation
of the feasible set by axis-parallel shifting, which yields a p.w.l. underestimator
and overestimator. Bivariate p.w.l. approximations can also be binarized using
(logarithmically-many) binary variables, see e.g. [27,40,32].

Contribution We compare different MIP relaxation approaches, both known
ones, and a new one, in terms of the dual bound, they impose for non-convex
MIQCQPs. We extend the separable approximation approaches Bin2 and Bin3
from [5] to MIP relaxations for z “ xy. Additionally, we introduce a novel MIP
relaxation for z “ xy called hybrid separable (HybS) that is based on a sophisti-
cated combination of Bin2 and Bin3 that allows us to relax only linearly-many
univariate quadratic terms (in the dimension of the quadratic matrix). In a the-
oretical analysis, we show that HybS has theoretical advantages, such as fewer
binary variables and better LP relaxations compared to Bin2 and Bin3. We
combine HybS, Bin2, and Bin3 with an MIP relaxation, called sawtooth relax-
ation, for z “ x2 that requires only logarithmically-many binary variables with
respect to the relaxation error. Thus, we can obtain MIP relaxations for MIQC-
QPs. The sawtooth relaxation is an extension of the sawtooth approximation
from [7], which has the strong property of hereditary sharpness. The hereditary
sharpness of an MIP formulation means that the formulation is tight in the space
of the original variables, even after branching on integer variables. We can show
that the sawtooth relaxation is also hereditary sharp.

Finally, we perform an extensive numerical study where we generate MIP
relaxations of non-convex MIQCQPs. Foremost, we test the different relaxation
techniques in their ability to generate tight dual bounds for the original quadratic
problems. We will see that HybS has a clear advantage over its predecessors Bin2
and Bin3. This effect becomes even more apparent on dense instances.

We present Part II of this work in a separate paper, where we study MIP
relaxations that are distinctly different and are extensions of the normalized mul-
tiparametric disaggregation technique (NMDT) [13]. We provide further theoret-
ical and computational analyses. The NMDT uses a combination of McCormick
envelopes and selective discretization of variables; it was useful in some applica-
tions to chemical engineering. In addition, we perform a comparison of HybS
with NMDT-based methods and Gurobi as an MIQCQP solver.

Outline We proceed as follows. In Section 2, we introduce several useful con-
cepts and notations used throughout the work. In Section 3, we present core
formulations used repeatedly in our linear relaxations of quadratic terms. In
Section 4, we introduce the new MIP relaxation HybS for equations of the form
z “ xy. In Section 5, we prove various properties about the strengths of this MIP
relaxation focusing on volume, sharpness, and optimal choice of breakpoints. In
Appendix B we prove that the sawtooth relaxation is hereditarily sharp. In Sec-
tion 6, we present our computational study.
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2 MIP Formulations

In this work, we study relaxations of general mixed-integer quadratically con-
strained quadratic programs (MIQCQPs), which are defined as

min xJQ0x ` c0 ¨ x,
s.t. xJQjx ` cj ¨ x ` bj ď 0 j “ 1, . . . ,m,

xi P rx
¯i
, x̄is i “ 1, . . . , k,

xl P t0, 1u l “ k ` 1, . . . , n,

(1)

for Q0, Qj P Rnˆn, c0, cj P Rn and bj P R, j “ 1, . . .m.
Throughout this article, we use the following convenient notation: for any two

integers i ď j, we define Ji, jK :“ ti, i`1, . . . , ju, and for an integer i ě 1 we define
JiK :“ J1, iK. We will denote sets using capital letters but also use capital letters
for matrices, some functions, and the number of layers L. We typically denote
variables using lowercase letters and vectors of variables using boldface. For a
vector u “ pu1, . . . , unq and some index set I Ď JnK, we write uI :“ puiqiPI . Thus,
e.g. uJiK “ pu1, . . . , uiq. Furthermore, we introduce the following notation: for a
function F : X Ñ R and a subset B Ď X, let graBpF q, epiBpF q and hypBpF q

denote the graph, epigraph and hypograph of the function F over the set B,
respectively. That is,

graBpF q :“ tpu, zq P B ˆR : z “ F puqu,

epiBpF q :“ tpu, zq P B ˆR : z ě F puqu,

hypBpF q :“ tpu, zq P B ˆR : z ď F puqu.

In the following, we introduce the concept of MIP formulations as well as prop-
erties regarding MIP formulations which will be used later on.

We will study mixed-integer linear sets, so-called mixed-integer programming
(MIP) formulations, of the form

P IP :“ tpu,v, zq P Rd`1 ˆ r0, 1sp ˆ t0, 1uq : Apu,v, zq ď bu

for some matrix A and vector b of suitable dimensions. The linear programming
(LP) relaxation or continuous relaxation P LP of P IP is given by

P LP :“ tpu,v, zq P Rd`1 ˆ r0, 1sp ˆ r0, 1sq : Apu,v, zq ď bu.

We will often focus on the projections of these sets onto the variables u, i.e.

projupP IPq :“ tu P Rd`1 : Dpv, zq P r0, 1sp ˆ t0, 1uq s.t. pu,v, zq P P IPu. (2)

The corresponding projected linear relaxation projupP LPq onto the u-space is
defined accordingly.

In order to assess the quality of an MIP formulation, we will work with
several possible measures of formulation strength. First, we define notions of
sharpness, as in [7,29]. These relate to the tightness of the LP relaxation of an
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MIP formulation. Whereas properties such as total unimodularity guarantee an
LP relaxation to be a complete description for the mixed-integer points in the
full space, we are interested here in LP relaxations that are tight description of
the mixed-integer points in the projected space.

Definition 1 (Sharpness). We say that the MIP formulation P IP is sharp if

projupP LPq “ convpprojupP IPqq

holds. Further, we call it hereditarily sharp if, for all I Ď JqK and ẑ P t0, 1u|I|,
we have

projupP LP|zI“ẑq “ conv
`

projupP IP|zI“ẑq
˘

.

Sharpness expresses a tightness at the root node of a branch-and-bound tree.
Hereditarily sharp means that fixing any subset of binary variables to 0 or 1
preserves sharpness, and therefore this means sharpness is preserved throughout
a branch-and-bound tree.

In this article, we study certain non-polyhedral sets U Ď R
d`1 and will

develop MIP formulations P IP to form relaxations of U in the projected space,
as defined in the following.

Definition 2 (MIP relaxation). For a set U Ď R
d`1 we say that an MIP

formulation P IP is an MIP relaxation of U if

U Ď projupP IPq.

Given a function F : r0, 1sd Ñ R, we will mostly consider

U “ grar0,1sdpF q Ď Rd`1.

In particular, we will focus on either

U “ tpx, zq P r0, 1s2 : z “ x2u or U “ tpx, y, zq P r0, 1s3 : z “ xyu.

We now define several quantities to measure the error of an MIP relaxation.

Definition 3 (Error). For an MIP relaxation P IP of a set U Ď R
d`1, let

ū P projupP IPq. We then define the pointwise error of ū as

Epū, Uq :“ mint|ud`1 ´ ūd`1| : u P U,uJdK “ ūJdKu.

We next define the following two error measures for P IP w.r.t. U :

1. The maximum error of P IP w.r.t. U is defined as

EmaxpP IP, Uq :“ max
uPprojupP IPq

Epu, Uq.

2. The average error of P IP w.r.t. U is defined as

EavgpprojupP IPq, Uq :“ volpP IPzUq.
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Via integral calculus, the second, volume-based error measure can be interpreted
as the average pointwise error of all points u P projupP IPq. Note that whenever
the volume of U is zero (i.e. it is a lower-dimensional set), the average error just
reduces to the volume of P IP.

Both of the defined error quantities for an MIP relaxation P IP can also be
used to measure the tightness of the corresponding LP relaxation P LP. In Sec-
tion 5.3.2, we use these to compare formulations when P LP is not sharp.

3 Core Relaxations

In the definition of the MIP relaxations studied in this work, we repeatedly make
use of several “core” formulations for specific sets of feasible points. They are
introduced in the following.

For our relaxations of MIQCQPs, we will frequently need to consider terms
of the form z “ xy for continuous or integer variables x and y within certain
bounds Dx :“ rx

¯
, x̄s and Dy :“ ry

¯
, ȳs, respectively. To this end, we introduce

the function F : D Ñ R, F px, yq “ xy, D :“ Dx ˆ Dy, and refer to the set of
feasible solutions to the equation z “ xy via the graph of F , i.e. graDpF q “

tpx, y, zq P D ˆ R : z “ xyu. In order to simplify the exposition, we will, for
example, often write graDpxyq or refer to a relaxation of the equation z “ xy
instead of graDpF q. We will do this similarly for the epigraph and hypograph
of F as well as for the univariate function f : Dx Ñ R, fpxq “ x2 and equations
of the form z “ x2, for example.

3.1 McCormick Envelopes

The convex hull of the equation z “ xy for px, yq P D is given by a set of linear
equations known as the McCormick envelope. See [34].

Mpx, yq :“
␣

px, y, zq P rx
¯
, x̄s ˆ ry

¯
, ȳs ˆR : (4)

(

. (3)

x
¯

¨ y ` x ¨ y
¯

´ x
¯

¨ y
¯

ď z ď x̄ ¨ y ` x ¨ y
¯

´ x̄ ¨ y
¯
,

x̄ ¨ y ` x ¨ ȳ ´ x̄ ¨ ȳ ď z ď x
¯

¨ y ` x ¨ ȳ ´ x
¯

¨ ȳ.
(4)

3.2 Sawtooth-Based MIP Formulations

We next recall an MIP formulation for approximating equations of the form
z “ x2 that requires only logarithmically-many binary variables in the number
of linear segments. It makes use of an elegant p.w.l. formulation for grar0,1spx

2q

from [42] using the recursively defined sawtooth function presented in [39] to
formulate the approximation of grar0,1spx

2q, as described in [7].

Let L be an positive integer and let FL be the piecewise linear interpolation
of x2 at uniformly spaced breakpoints i

2L
for i “ 0, 1, . . . , 2L; see Figure 1. This
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function has a convenient recursive definition [42,39]. To this end, define the
“tooth” function G : r0, 1s Ñ r0, 1s, Gpxq “ mint2x, 2p1 ´ xqu. Subsequently, we
define compositions of the tooth function

Gj :“ G ˝ G ˝ . . . ˝ G
loooooooomoooooooon

j

. (5)

Under this notation, we can formally define the function FL : r0, 1s Ñ r0, 1s,

FLpxq :“ x ´

L
ÿ

j“1

2´2jGjpxq. (6)

We summarize useful information from [42,7] about the approximation FL.
These properties will be used in our analysis of the models that we propose.

Proposition 1 ([42,7]). The function FL satisfies the following properties:

1. The function FL is the piecewise linear interpolation of x2 at uniformly
spaced breakpoints i

2L
for i “ 0, 1, . . . , 2L; see Figure 1.

The shifted piecewise linear function FL ´ 2´2L´2 has each affine part being
the tangent to x2 at the midpoint i

2L
` 1

2L`1 ; see Figure 2.
2. It holds 0 ď FLpxq ´ x2 ď 2´2L´2 for all x P r0, 1s.

Equivalently, 0 ď x2 ´ pFLpxq ´ 2´2L´2q ď 2´2L´2 for all x P r0, 1s.
3. It holds FLpxq ´ 2´2L´2 “ x2 if and only if x “ i

2L
` 1

2L`1 with i “

0, 1, . . . , 2L ´ 1.
4. The function FL is convex on the interval r0, 1s.

0 1
8

1
4

3
8

1
2

5
8

3
4

7
8

1

0
1/8
1/4
3/8
1/2
5/8
3/4
7/8

1

G1 G2 G3

(a) The sawtooth functions Gj for
j “ 1, 2, 3.

0 1
8

1
4

3
8

1
2

5
8

3
4

7
8

1

0
1/8
1/4
3/8
1/2
5/8
3/4
7/8

1

F 0 F 1 F 2 F 3 F

(b) The successive piecewise linear approxi-
mations (interpolations) of F pxq “ x2.

Fig. 1. An illustration of the functions Gj and FL that underlie the construction of
our MIP formulations.
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0 1
8

2
8

3
8

4
8

5
8

6
8

7
8

1

0

1{8

2{8

3{8

4{8

5{8

6{8

7{8

1

F 0
´ 2´2

F 1
´ 2´4

F 2
´ 2´6

x2

Fig. 2. The successive piecewise linear approximations of x2 shifted down to be un-
derestimators. The markers indicate the places where the underestimators coincide
with x2 and in fact, show that the affine segments are tangent lines to the function.
The inequality z ě FL

pxq ´ 2´2L´2 in fact creates 2L tangent lower bounds.

Following [7], we create an MIP formulation to encode this piecewise linear
function. We create variables gj to represent the output of a “sawtooth” function
of x and binary variables α P t0, 1uL that represent decision in Gpxq that either
2x ď 2p1´xq or 2p1´xq ď 2x. In particular, we design the formulation such when
α P t0, 1uL, the relationship between gj and gj´1 is gj “ mint2gj´1, 2p1´gj´1qu

for j “ 1, . . . , L,

To this end, we define a formulation parameterized by the depth L P N:

SL :“
␣

px, g,αq P r0, 1s ˆ r0, 1sL`1 ˆ t0, 1uL : (8)
(

. (7)

g0 “ x,
2pgj´1 ´ αjq ď gj ď 2gj´1 j “ 1, . . . , L,
2pαj ´ gj´1q ď gj ď 2p1 ´ gj´1q j “ 1, . . . , L.

(8)

Using the relationships (5) and (6) between x and g, any constraint of the form
z “ x2 can be approximated via the function

fL : r0, 1s ˆ r0, 1sL`1 Ñ r0, 1s,

fLpx, gq “ x ´

L
ÿ

j“1

2´2jgj , (9)

for an integer L ě 0. We use the above definitions to give an MIP formulation
that approximates equations of the form z “ x2.
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0
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4{8
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1

SR with L “ 0

SR with L “ 1

SR with L “ 2

F 0
´ 2´2

F 1
´ 2´4

0
2x ´ 1

0 1{8 2{8 3{8 4{8 5{8 6{8 7{8 1

0

1{8

2{8

3{8

4{8

5{8

6{8

7{8

1

Fig. 3. The sawtooth relaxation from Definition 5 at depths L “ 0, 1, 2. The shaded
region is the relaxation. Some additional inequalities are plotted to help visualize the
inequalities with respect to the functions F j .

Definition 4 (Sawtooth Approximation, [7]). Given some L P N, the
depth-L sawtooth approximation for z “ x2 on the interval x P r0, 1s is given by

␣

px, zq P r0, 1s2 : Dpg,αq P r0, 1sL`1 ˆ t0, 1uL : z “ fLpx, gq, px, g,αq P SL
(

.
(10)

The set (10) is a compact approximation of grar0,1spx
2q in terms of the number

of variables and constraints.

Based on the sawtooth approximation, we can now present the sawtooth
relaxation for z “ x2 from [7], illustrated in Figure 3, which arises by shift-
ing each approximating function F j , j “ 0, . . . , L, down by its maximum er-
ror 2´2j´2 (established in Proposition 1, Item 2) and then adding additional
outer-approximation cuts to x2 at x “ 0 and x “ 1.

Definition 5 (Sawtooth Relaxation, SR [7]). Given some L P N, the
depth-L sawtooth relaxation for z “ x2 on the interval x P r0, 1s is given by
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␣

px, zq P r0, 1s ˆR : Dpg,αq P r0, 1sL`1 ˆ t0, 1uL : (12)
(

. (11)

z ď fLpx, gq,
z ě f jpx, gq ´ 2´2j´2 j “ 0, . . . , L
z ě 0, z ě 2x ´ 1,

px, g,αq P SL.

(12)

Remark 1 (Transformation to General Bounds). To this point, the sawtooth
MIP formulations were presented for x2 with x P r0, 1s. However, all sawtooth-
based MIP formulations can be extended to general intervals x P rx

¯
, x̄s by map-

ping rx
¯
, x̄s to r0, 1s via the substitution x̂ “

x´x
¯x̄´x
¯

P r0, 1s and applying the
sawtooth formulation to model the equation

ẑ “ x̂2 “

´

x´x
¯x̄´x
¯

¯2

“
x2

´2xx
¯

`x
¯
2

px̄´x
¯

q2
“

z´2xx
¯

`x
¯
2

px̄´x
¯

q2
“

z´x
¯

p2x´x
¯

q

px̄´x
¯

q2
.

Thus, for general intervals, we first apply the approximation to ẑ “ x̂2, then add
the equations

x̂ “
x´x

¯x̄´x
¯
, ẑ “

z´x
¯

p2x´x
¯

q

px̄´x
¯

q2
.

In our computational study in Section 6, these constraints are implemented as
defining expressions for x̂ and ẑ, and the MIP formulations are constructed for x̂
and ẑ then. See Appendix A for the generalized MIP formulations under this
transformation. ˛

Now, we consider the LP relaxation of SL, where each variable αj is relaxed
to the interval r0, 1s. Then, via the constraints (8), we see that the weakest lower
bounds on each gj w.r.t. gj´1 can be attained via setting αj “ gj´1, yielding a
lower bound of 0. Thus, after projecting out α, the LP relaxation of SL in terms
of just x and g can be stated as

TL “
␣

px, gq P r0, 1s ˆ r0, 1sL`1 : (13)
(

.

g0 “ x,
gj ď 2p1 ´ gj´1q j “ 1, . . . , L,
gj ď 2gj´1 j “ 1, . . . , L.

(13)

The sawtooth relaxation (11) is sharp by Theorem 1 (proved later in this
work), which follows in much the same way as the sharpness of the sawtooth
approximation (10), as established in [7, Theorem 1]. Thus, the LP relaxation
of the sawtooth relaxation (11) yields the same lower bound on z as the MIP
version due to sharpness and the convexity of FL. This allows us to define an
LP outer approximation for inequalities of the form z ě x2:
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Fig. 4. The tightened sawtooth relaxations RL,L1 from Definition 7 for the pairs
pL,L1q “ p0, 1q, p0, 2q, p1, 2q. By increasing L1 beyond L, we tighten the lower bound
by creating more inequalities. This is done by only adding linearly-many variables and
inequalities in the extended formulation to gain exponentially-many equally spaced
cuts in the projection.
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Definition 6 (Sawtooth Epigraph Relaxation, SER). Given some L P N,
the depth-L sawtooth epigraph relaxation for z ě x2 on the interval x P r0, 1s

is given by

QL :“
␣

px, zq P r0, 1s ˆR : Dg P r0, 1sL`1 : (15)
(

. (14)

z ě f jpx, gq ´ 2´2j´2 j “ 0, . . . , L,
z ě 0, z ě 2x ´ 1,

px, gq P TL.
(15)

We will prove in Proposition 2 that the maximum error for the sawtooth epigraph
relaxation is 2´2L´4.

Finally, we combine the depth-L sawtooth relaxation (11) with the depth-
L1 sawtooth epigraph relaxation (14) for some L1 ě L to obtain a sawtooth
relaxation which is stronger in the lower bound, but uses the same number of
binary variables.

Definition 7 (Tightened Sawtooth Relaxation, TSR). Given some L,L1 P

N with L1 ě L, the tightened sawtooth relaxation for z “ x2 on the interval
x P r0, 1s with upper-bounding depth L and lower-bounding depth L1 is given by

RL,L1 :“ tpx, zq P r0, 1s ˆR : Dpg,αq P r0, 1sL1`1 ˆ t0, 1uL : (17)u. (16)

z ď fLpx, gJ0,LKq, (17a)

px, gJ0,LK,αq P SL, (17b)

$

’

’

’

’

&

’

’

’

’

%

px, gq P TL1 ,

z ě f jpx, gq ´ 2´2j´2 j “ 0, . . . , L1,

z ě 0,

z ě 2x ´ 1.

(17c)

(17d)

(17e)

(17f)

We connect the last constraints with a brace since there are all defining con-
straints for QL1 . Since we define QL1 in the projection space px, zq, we cannot
simply write px, gq P QL1 since we need the same α and g to apply to the other
constraints as well.

We will prove in Theorem 1 that the tightened sawtooth relaxation is also sharp,
and in Theorem 2 that it is hereditarily sharp.

4 MIP Relaxations for Non-Convex MIQCQPs

In this section, we focus on MIP relaxations for bilinear equations of the form
z “ xy. For convenience, we define a completely dense MIQCQP as an MIQCQP
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for which all terms of the form x2
i and xixj appear in either the objective or

in some constraint. The novel formulation HybS presented herein is an exten-
sion of existing formulations Bin2 and Bin3, designed to significantly reduce the
number of binary variables required to reach the same level of relaxation accu-
racy compared to its original predecessors Bin2 and Bin3 for completely dense
MIQCQPs, which will also be introduced in the following.

4.1 Separable MIP Relaxations

We present three MIP relaxations based on separable reformulations. A separable
reformulation turns a multivariate expression into a sum of univariate functions.
To this end, we make use of the reformulation approaches Bin2 and Bin3, given
via

Bin2: xy “ 1
2 ppx ` yq2 ´ x2 ´ y2q,

Bin3: xy “ 1
2 px2 ` y2 ´ px ´ yq2q,

see e.g. [5], and combine them with the sawtooth relaxation (16) to derive MIP
relaxations for the occurring equations of the form z “ xy. While the following
MIP relaxations on Bin2 and Bin3 are natural extensions of the MIP approxima-
tions studied in [5] to MIP relaxations, we will also combine both reformulations
to a new formulation in which the MIP relaxation requires significantly less bi-
nary variables if it is used to solve problems of the form (1) As a reminder, in the
definitions below, the notation M is used to describe the McCormick envelope.

Remark 2. In [5], Bin1: xy “ p1{2px ` yqq2 ´ p1{2px ´ yqq2 is also discussed as a
possible separable reformulation. However, for completely dense MIQCQPs, Bin1
requires a number of binary variables that is by a factor of roughly 2 greater than
that required for Bin2 and Bin3. This is due to the fact that for each bivariate
product xixj , we need to discretize both p1{2pxi`xjqq2 and p1{2pxi´xjqq2 instead
of only one of the two squares for Bin2 and Bin3. Therefore, we omit Bin1 in
the following. ˛

Definition 8 (Bin2). The MIP relaxation Bin2 of z “ xy, x, y P r0, 1s2, with
a lower-bounding depth L1 P N and an upper-bounding depth L P N, is defined
as follows:

p “ x ` y
z “ 1{2pzp ´ zx ´ zyq

px, y, zq P Mpx, yq

px, zxq, py, zyq, pp, zpq P RL,L1

x, y P r0, 1s, p P r0, 2s.

(18)

Definition 9 (Bin3). The MIP relaxation Bin3 of z “ xy, x, y P r0, 1s2, with a
lower-bounding depth L1 P N and an upper-bounding depth of L P N, is defined
as follows:
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p “ x ´ y
z “ 1{2pzx ` zy ´ zpq

px, y, zq P Mpx, yq

px, zxq, py, zyq, pp, zpq P RL,L1

x, y P r0, 1s, p P r´1, 1s.

(19)

Note that we apply the tightened sawtooth relaxation RL,L1 , defined in (16),
not only to x, y P r0, 1s, but also to the variable p, where the domain is either
r0, 2s or r´1, 1s. This is done by following the transformation in Remark 1 to
map p and zp to the interval r0, 1s and then applying (16) to the transformed
variables.

We now combine Bin2 and Bin3 to derive an MIP relaxation for z “ xy based
on bounding z in the following two ways:

z ď 1{2px2 ` y2 ´ px ´ yq2q,
z ě 1{2ppx ` yq2 ´ x2 ´ y2q,

and then replacing each right-hand side with proper upper and lower bounds. We
choose this setting so that we only have to model lower bounds for the px´ yq2-
and px` yq2-terms and can thus apply the sawtooth epigraph relaxation (14) to
circumvent the use of binary variables for these terms. To this end, we introduce
the continuous auxiliary variables p1, p2, zx, zy, zp1

, zp2
and z to obtain an

equivalent relaxation for z “ xy:

p1 “ x ` y, p2 “ x ´ y, (20a)

zx ď x2, zy ď y2, (20b)

zp1 ě p21, zp2 ě p22, (20c)

z ď zx ` zy ´ zp1 , z ě zp2 ´ zx ´ zy. (20d)

Finally, we replace x2 and y2 in the non-convex constraints (20b) with a sawtooth
relaxation (17a) of depth L and p21 and p22 in the convex constraints (20c) by
a sawtooth epigraph relaxation (17f) with depth L1 to obtain a relaxation of
z “ xy in (20d). The resulting model is especially interesting as, in contrast to
Bin2 and Bin3, it does not require binary variables to model equations of the
form p21 “ px ` yq2 and p22 “ px ´ yq2, since we only need to incorporate lower
bounds as used in QL.

Definition 10 (Hybrid Separable HybS). Let x, y P r0, 1s, and let L,L1 P

N. The following MIP relaxation for z “ xy, which combines the relaxations
Bin2 and Bin3, is called the hybrid separable MIP relaxation, in short HybS,
with a lower-bounding depth of L1 and an upper-bounding depth of L:
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p1 “ x ` y, p2 “ x ´ y
px, zxq, py, zyq P RL,L1

pp1, zp1q, pp2, zp2q P QL1

1{2pzp1 ´ zx ´ zyq ď z ď 1{2pzx ` zy ´ zp2q

px, y, zq P Mpx, yq

x, y P r0, 1s, p1 P r0, 2s, p2 P r´1, 1s.

(21)

As QL1 in (21) is originally defined for variables in r0, 1s, we again use the
transformation from Remark 1 to extend it to other domains.

Note that, when some constraint of an MIQCQP has a completely dense
quadratic matrix, the number of (20c)-type constraints is quadratic in the di-
mension of x. Thus, the number of binary variables for Bin2 and Bin3 is in
Opn2Lq, while the formulation HybS requires only nL binary variables. As we
will show in Section 5, the formulation HybS also has a strictly tighter LP re-
laxation than that of either formulation Bin2 or Bin3. This implies a smaller
volume of the projected LP relaxation as well. We also note, however, that the
MIP relaxation is not strictly tighter. For example, let L “ L1 “ 1 and consider
the point px, yq “ p 1

4 ,
3
4 q. The upper bound on z “ xy produced by the MIP

relaxation Bin2 at this point is z ď 3
16 , i.e. the exact value. The MIP relaxation

HybS (as well as Bin3), however, has a weaker upper bound of z ď 1
4 at this

point.
When we apply any of the separable formulations Bin2, Bin3 and HybS to

compute dual bounds for MIQCQPs in Section 6, all original univariate quadratic
terms of the form x2

i (i.e. those not resulting from any reformulations) are mod-
eled via the tightened sawtooth relaxation (16).

Remark 3. We can alternatively obtain a convex mixed-integer quadratic re-
laxation of z “ xy by directly incorporating the convex quadratic constraints
zx ď x2, zy ď y2, zp1

ě p21 and zp2
ě p22 in (20) exactly instead of using p.w.l.

relaxations. This variation could be implemented using a convex solver instead
of a linear solver. ˛

Remark 4 (Binary Variables and Dense MIQCQPs). When modeling Problem (1)
using the MIP relaxations Bin2 and Bin3 at depth L, we have L binary vari-
ables created whenever the tightened sawtooth relaxation RL,L1 is used. For
Bin2, we need the relaxations pxi, zxiq P RL,L1 and ppij , zpij q P RL,L1 for
all pairs i ‰ j, where pij “ xi ` xj . Note that pij “ pji. Thus, we need
pn ` 1

2 pn ´ 1q2qL “ 1
2 pn2 ` 1qL binary variables.

We have the same result for Bin3, where instead we have pij “ xi ´ xj for
all pairs i ‰ j. Although this means pij ‰ pji, we still have p2ij “ p2ji. Thus, a

careful implementation also has 1
2 pn2 ` 1qL binary variables.

HybS uses significantly fewer binary variables as it only requires pxi, z
xiq P

RL,L1 for each i. Hence, there are only nL binary variables. Surprisingly, this
relaxation halves the error bound from Bin2 and Bin3. The strength in this
approach is gained without quadratically-many binary variables by using the
tightening set QL1 with the p1-and p2-variables. ˛
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5 Theoretical Analysis

In this section, we give a theoretical analysis of the presented MIP relaxations
for the equation z “ xy over x, y P r0, 1s as well as the equation z “ x2 over
x P r0, 1s, respectively, in order to allow for a comparison of structural properties
between them. In particular, we will analyze their maximum and average errors,
formulation strengths, i.e. (hereditary) sharpness and LP relaxation volumes, as
well as the optimal placement of breakpoints to minimize average errors. The
results we will arrive at are summarized in Table 1.

MIP relax. # Bin. variables # Constraints Max. error Avg. error

HybS nL np 1
2

p5n ´ 3q ` 2npL ` L1qq 2´2L´2 1
3
2´2L

Bin2 1
2

pn2
` 1qL np 1

2
p3n ´ 1q ` pn ` 1qpL ` L1qq 2´2L´1 1

2
2´2L

Bin3 1
2

pn2
` 1qL np 1

2
p3n ´ 1q ` pn ` 1qpL ` L1qq 2´2L´1 1

2
2´2L

Table 1. A summary of characteristics of the different MIP relaxations. Binary vari-
ables and constraints are given in the worst-case, in which every possible quadratic term
must be modeled, for example if some matrix Qi is completely dense. The average error
for HybS, Bin2 and Bin3 with respect to grar0,1s2pxyq is calculated for L1 Ñ 8 and
without the McCormick envelopes added. Finally, the average errors for Bin2 and Bin3
apply only to L ě 1; the corresponding volumes are 7

12
for L “ 0. Finite L1 leads to

slightly increased error bounds for the methods Bin2, Bin3 and HybS.

5.1 Maximum Error

We start the error analysis by discussing the maximum errors of the presented
MIP relaxations.

5.1.1 Core Formulations First, we discuss the maximum errors of the core
formulations from Section 3.1. For the sawtooth approximation (10), the maxi-
mum error is an overestimation by 2´2L´2, see [7]. The maximum error of the
sawtooth epigraph relaxation is 2´2L´4, which we prove in the following. The
tightened sawtooth relaxation stated in (16) uses the sawtooth approximation
for overestimation while the lower bound, which is incident with the sawtooth
epigraph relaxation (14), gains an extra layer of accuracy, with a maximum error
of 2´2L´4. Due to the overestimator, the (tightened) sawtooth relaxation has the
same maximum error of 2´2L´2 as the sawtooth approximation.

Proposition 2 (Error of the sawtooth epigraph relaxation). The max-
imum error of the sawtooth epigraph relaxation QL for z ě x2 with x P r0, 1s

defined in (14) is 2´2L´4.
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Fig. 5. Maximum overestimation and maximum underestimation of the MIP relaxation
Bin2 defined in (18). In the left column, we show the case L “ L1 “ 1. In the right
column, we show L “ 1 and L1 Ñ 8.

Proof. The lower-bounding inequalities on z induced by the px, zq-projection of
the sawtooth epigraph relaxation, i.e. projx,zpQLq, are exactly the supporting

valid linear inequalities to z ě x2 at the points xk :“ k
2L`1 , k “ 0, . . . , 2L;

see Proposition 1. The maximum error is attained at the intersection of two
consecutive linear segments on the boundary of the feasible region defined by
these inequalities, i.e. at px̄k, zkq :“ p

xk`xk`1

2 , xkxk`1q “ ppk ` 1
2 q2´L´1, kpk `

1q2´2L´2q. Thus, the maximum error is given by

EmaxpQL, epir0,1spx
2qq “

`

pk ` 1
2 q2´L´1

˘2
´ kpk ` 1q2´2L´2 “ 2´2L´4,

independent of the choice of k. [\

In addition to the sawtooth-based formulations, we use McCormick relaxations
as core formulations to form MIP relaxations of MIQCQPs. For the McCormick
relaxation of the equation z “ xy over the box domain rx

¯
, x̄s ˆ ry

¯
, ȳs, the

maximum under- and overestimation is 1
4 px̄ ´ x

¯
qpȳ ´ y

¯
q, attained at px, yq “

p 1
2 px
¯

` x̄q, 1
2 py
¯

` ȳqq, see e.g. [33, page 23].

5.1.2 Separable MIP Relaxations In order to generate MIP relaxations
of MIQCQPs with either the Bin2, Bin3, or the HybS approach, we need to
discretize univariate quadratic terms and products of variables.
Univariate Quadratic Terms in MICQCP’s. First, for univariate quadratic
terms, i.e., z “ x2, in MIQCQPs, we use the tightened sawtooth relaxation to
discretize in either approach. The tightened sawtooth relaxation has a maximum
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Fig. 6. Maximum overestimation and maximum underestimation of the MIP relaxation
HybS defined in (21). In the left column, we show the case L “ L1 “ 1. In the right
column, we show L “ 1 and L1 Ñ 8.

error of 2´2L´2, as shown in Proposition 1.
Bivariate Products in MICQCP’s. Second, for bivariate products, i.e., z “

xy, in MIQCQPs, we use a different separable reformulation in each approach.
In the following, we derive upper bounds, purely depending on L, and lower
bounds, depending on L and L1, on the maximum errors for variable products.
Depending on the reformulation, we have to address two different maximum
error scenarios in the bounds on z.
We start with the maximum error in the relaxations for z in which x2 and y2

are overestimated and p2 is underestimated. This applies to the upper and lower
bound on z in HybS, the lower bound on z in Bin2, and the upper bound on z in
Bin3. In each of these cases, the maximum overestimation of both zx “ x2 and
zy “ y2 with the sawtooth relaxation is 2´2L´2, occurring at the grid centers
xk “ yk “ pk ` 1

2 q2´L, k “ 0, . . . , 2L ´ 1. If we combine these points, xk and yk,
with a point on the graph of p2, i.e. zp “ p2, this point has an approximation
error 0 and we obtain a lower bound for the maximum error in the relaxation
of z “ xy. Namely, if P IP

L,L1
denotes either of the MIP relaxations Bin2, Bin3 or

HybS of grar0,1s2pxyq with depths L,L1, we have

EmaxpP IP
L,L1

, grar0,1s2pxyqqq ě 1
2 pppx2

k ` 2´2L´2q ´ x2
kq ` ppy2k ` 2´2L´2q ´ y2kq

` ppp2 ` 0q ´ p2qq

ě 1
2

`

2´2L´2 ` 2´2L´2 ` 0
˘

“ 2´2L´2,

independent of the choice of k. This yields the following proposition.
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Proposition 3. The maximum error in the MIP relaxations Bin2, Bin3 and
HybS for z “ xy with x, y P r0, 1s is at least 2´2L´2.

Furthermore, the maximum underestimation of p2 is 2´2L1´2 (twice the domain
width, which means the error quadruples). This means we have an upper bound
of

1

2
p2´2L´2 ` 2´2L´2 ` 2´2L1´2q “ 2´2L´2 ` 2´2L1´3

on the maximum error in the lower bound on z in Bin2, the upper bound on z
in Bin3 and both the upper and lower bound on z in HybS. We can use this
observation to give an upper bound on the maximum error in the MIP relaxation
HybS for z “ xy. See Figure 6 for the maximum over- and underestimation of
the HybS MIP relaxation.

Proposition 4. The maximum error in the MIP relaxation HybS for z “ xy
with x, y P r0, 1s is at most 2´2L´2 ` 2´2L1´3.

Next, we consider the upper bound on z in Bin2 and the lower bound on z in
Bin3. Here, we are interested in the overestimation of p2 and the underestima-
tion of x2 and y2. The maximum overestimation of p2 is 2´2L (again, doubling
the domain width quadruples the error). Combined with the maximum under-
estimation of the sawtooth relaxation for x2 and y2 of 2´2L1´4, this yields an
upper bound on the maximum error on z of

1

2
p2´2L ` 2´2L1´4 ` 2´2L1´4q “ 2´2L´1 ` 2´2L1´4

in terms of overestimation in Bin2 and underestimation in Bin3. Thus, we obtain
the following upper bound for the maximum error in Bin2 and Bin3. See Figure 5
for the maximum over- and underestimation of the Bin2 MIP relaxation.

Proposition 5. The maximum error in the MIP relaxations Bin2 and Bin3 for
z “ xy with x, y P r0, 1s is at most 2´2L´1 ` 2´2L1´3.

In summary, we have the same lower bound for the maximum error of 2´2L´2

in Bin2, Bin3 and HybS. However, the known upper bound 2´2L´1 ` 2´2L1´4

in HybS is slightly better than that of Bin2 and Bin3 with 2´2L´1 ` 2´2L1´3.

Remark 5. In the MIP relaxations Bin2, Bin3, and HybS, increasing L1 does not
introduce any new binary variables. Therefore, we note that in our computations
in Section 6 we choose L1 to be significantly larger than L, such that the max-
imum error depends primarily on L. As L1 increases to infinity, the maximum
errors in all three MIP relaxations converge to 2´2L´2. ˛

5.2 Average Error and Minimizing the Average Error

In this section, we will study the average error of an MIP relaxation by computing
the volume enclosed by the projected MIP relaxation as an additional measure
of its relaxation quality.
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First, we compute the volumes of all presented MIP relaxations. Then we
prove that the uniform discretizations, which are used by definition in each MIP
formulation in this article, are indeed optimal in terms of minimizing the volume
of the projected MIP relaxation if the number of discretization points is fixed
(i.e. if L and L1 are fixed).

In all separable formulations, we use the sawtooth relaxation (11) for equa-
tions of the form z “ x2. In [7, Propostion 6], the authors show that the volume
of this relaxation RL,L is 3{16 ¨ 2´2L. Furthermore, from [7, Proposition 5] it fol-
lows that for any fixed number of breakpoints a uniform discretization minimizes
the volume of the sawtooth epigraph relaxation.

Next, we consider the volumes for the MIP relaxations of z “ xy. We start
by showing that Bin2, Bin3 and HybS induce a grid structure in terms of re-
laxation error and have constant volumes over the resulting grid pieces. While
the grid structure for HybS is obvious, we have yet to show it for Bin2 and
Bin3. From [5, Table 4], we further know that for L,L1 Ñ 8 the z-values
in the projected LP relaxation of Bin2 (18) are bounded from below by the
convex function CL

2 : rx
¯
, x̄s ˆ ry

¯
, ȳs Ñ R and from above by the concave func-

tion CU
2 : rx

¯
, x̄s ˆ ry

¯
, ȳs Ñ R,

CL
2 px, yq “

1

2
ppx ` yq2 ´ px̄ ` x

¯
qx ` x̄x

¯
´ pȳ ` y

¯
qy ` ȳy

¯
q, (22)

CU
2 px, yq “

1

2
ppx
¯

` x̄ ` y
¯

` ȳqpx ` yq ´ px
¯

` y
¯

qpx̄ ` ȳq ´ x2 ´ y2q. (23)

The same holds for Bin3 (19) and the convex and concave functions CL
3 : rx

¯
, x̄sˆ

ry
¯
, ȳs Ñ R and CU

3 : rx
¯
, x̄s ˆ ry

¯
, ȳs Ñ R,

CL
3 px, yq “

1

2
px2 ` y2 ´ px̄ ` x

¯
´ ȳ ´ y

¯
qpx ´ yq ` px̄ ´ ȳqpx̄ ´ y

¯
qq, (24)

CU
3 px, yq “

1

2
ppx
¯

` x̄qx ´ x
¯
x̄ ` py

¯
` ȳqy ´ y

¯
ȳ ´ px ´ yq2q. (25)

As the upper bound on the z-value in HybS is the same as that for Bin2 and
the lower bound is the same as that for Bin3, the respective projected LP relax-
ations P LP

L,L1
in the limit for Bin2, Bin3 and HybS are

[Bin2]: lim
L,L1Ñ8

pprojx,y,zpP LP
L,L1

qq “ tpx, y, zq P r0, 1s2 ˆR :

CL
2 px, yq ď z ď CU

2 px, yqu,
(26)

[Bin3]: lim
L,L1Ñ8

pprojx,y,zpP LP
L,L1

qq “ tpx, y, zq P r0, 1s2 ˆR :

CL
3 px, yq ď z ď CU

3 px, yqu,
(27)

[HybS]: lim
L,L1Ñ8

pprojx,y,zpP LP
L,L1

qq “ tpx, y, zq P r0, 1s2 ˆR :

CL
3 px, yq ď z ď CU

2 px, yqu.
(28)
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In the following discussion, we will let L1 Ñ 8 in all three formulations. This
simplifies the proofs considerably and is relevant in so far as in our computations
we use a relatively high value of L1 “ 10, which has a resulting maximum error
below the standard accuracy of state-of-the-art MIP solvers (10´6) and yet has
no influence on the number of binary variables and uses only OpL1q constraints.
Although for different values of L1 the volumes are different, the hierarchy of
MIP relaxations that we establish is independent of this choice. We start with
the volume of the MIP relaxation HybS.

Proposition 6. Let P IP
pLx,Lyq,L1

be the MIP relaxation HybS from (21) without

the McCormick inequalities, where we now allow for independent discretization
depths Lx and Ly to overestimate x2 and y2, respectively (i.e. with px, zxq P

RLx,L1 and py, zyq P RLy,L1),i.e.

p1 “ x ` y, p2 “ x ´ y
px, zxq P RLx,L1 , py, zyq P RLy,L1

pp1, zp1
q, pp2, zp2

q P QL1

1{2pzp1
´ zx ´ zyq ď z ď 1{2pzx ` zy ´ zp2

q

x, y P r0, 1s, p1 P r0, 2s, p2 P r´1, 1s.

Then the volume of P IP
pLx,Lyq,L1

converges to the same value over each grid

piece of the form rkx2
´Lx , pkx ` 1q2´Lxs ˆ rky2

´Ly , pky ` 1q2´Ly s, where kx P

J0, 2LxK and ky P J0, 2LyK for L1 Ñ 8. Furthermore, for the total volume of
P IP

pLx,Lyq,L1
, we have

lim
L1Ñ8

vol
´

projx,y,zpP IP
pLx,Lyq,L1

q

¯

“ 1
6 p2´2Lx ` 2´2Ly q.

Proof. Since FL1 Ñ x2 uniformly over r0, 1s as L1 Ñ 8, we have

lim
L1Ñ8

tpp, zpq P r0, 1s ˆR : pp, zpq P QL1u

“ tpp, zpq P r0, 1s ˆR : pp, zpq P epir0,1spp
2qu

under Hausdorff distance. In HybS, we have pp1, zp1
q, pp2, zp2

q P QL1 (via the
transformation in Remark 1) as well as p1 “ x ` y and p2 “ x ´ y. Thus, we
have in the limit, as L1 Ñ 8:

zp1
ě px ` yq2 and zp2

ě px ´ yq2.

Furthermore, since FLpxq ě x2 for all x P r0, 1s, L P tLx, Lyu, and px, zxq P

RLx,L1 , py, zyq P RLy,L1 , we obtain

zx ď FLxpxq and zy ď FLy pyq.

Therefore, the inequality

1{2pzp1
´ zx ´ zyq ď z ď 1{2pzx ` zy ´ zp2

q
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from (21) implies the following in the limit:

1{2ppx ` yq2 ´ FLxpxq ´ FLy pyqq ď z ď 1{2pFLxpxq ` FLy pyq ´ px ´ yq2q.

Now we apply these inequalities to grid pieces of the form rx
¯
, x̄s ˆ ry

¯
, ȳs. Let

x
¯

:“ kx2
´Lx , x̄ :“ pkx ` 1q2´Lx , y

¯
:“ ky2

´Ly and ȳ :“ pky ` 1q2´Ly , and

define wx :“ x̄ ´ x
¯

“ 2´Lx as well as wy :“ ȳ ´ y
¯

“ 2´Ly . Then, as FLxpxq “

´px̄ ` x
¯

qx ` x̄x
¯
for x P rx

¯
, x̄s and FLxpyq “ ´pȳ ` y

¯
qy ` ȳy

¯
for y P ry

¯
, ȳs, the

above bounds on z are exactly the envelopes CL
2 px, yq for the lower bound and

CU
3 px, yq for the upper bound, respectively. Thus, by Proposition 11, which is

proved later, the volume of projx,y,zpP IP
pLx,Lyq,L1

q over the grid piece is

1
6 pwxw

3
y ` wyw

3
xq “ 1

62
´pLx`Lyqp2´2Lx ` 2´2Ly q

in the limit. Note that this does not depend on the choice of kx and ky (and
thus the choice of grid piece).

Since we have 2LxLy grid pieces overall, the total volume in the limit is then
given by

lim
L1Ñ8

volpprojx,y,zpP IP
pLx,Lyq,L1

qq “ 2LxLy2´pLx`Lyqp2´2Lx ` 2´2Ly q

“ 1
6 p2´2Lx ` 2´2Ly q.

which finishes the proof. [\

The following proposition establishes the volumes of the MIP relaxations and
grid structure for the MIP relaxations Bin2 and Bin3. As this derivation is
extensive, we prove it in Appendix C.

Proposition 7. Let P IP
L,L1

be either the MIP relaxation Bin2 from (18) or Bin3
from (19). Then the volume of P IP

L,L1
converges to the same value over each grid

piece of the form rk2´pL´1q, pk ` 1q2´pL´1qs ˆ rk2´pL´1q, pk ` 1q2´pL´1qs, where
k P J0, 2LK. Furthermore, for the total volume we have

lim
L1Ñ8

vol
`

projx,y,zpP IP
L,L1

q
˘

“ 1
22

´2L.

Now that we have calculated the average error, i.e. the volume of the MIP
relaxations, for uniform breakpoints, we show that among all possible break-
point choices, uniform placement of breakpoints minimizes the average error.
For z “ x2 and the sawtooth functions, this has already been shown in [7]; for
equations z “ xy it still has to be shown. We prove average error minimization
for uniform breakpoint placement in HybS and do not consider the formula-
tions Bin2 and Bin3 here, as they are hard to analyze in this respect, which
is also mentioned in [5] for approximations. In Proposition 6, we have shown
that HybS has a grid structure where on each grid piece, the average error is
1
6 pwxw

3
y ` wyw

3
xq, where wx and wy are the widths of the grid piece in x- and

y-direction respectively. In the following, we consider a piecewise relaxation de-
fined via these grid pieces and show that the total average error is minimized by
a uniform breakpoint placement, as is the result of HybS.
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Proposition 8. Let 0 “ x0 ă x1 ă . . . ă xn “ 1 and 0 “ y0 ă y1 ă . . . ă ym “

1 be sets of breakpoints. For each grid piece rxi´1, xis ˆ ryj´1, yjs, consider a
relaxation of grar0,1s2pxyq with average error 1

6 pwxiw
3
yj

` wyjw
3
xi

q, where wxi
:“

xi ´ xi´1 and wyj
:“ yj ´ yj´1 are the widths of the grid piece with i P JnK

and j P JmK. Then a uniform spacing of these breakpoints minimizes the average
error overall piecewise relaxations of this form.

Proof. The problem of minimizing the average error of a piecewise relaxation of
this form can be formulated as

min 1
6

řn
i“1

řm
j“1pwxiw

3
yj

` wyjw
3
xi

q

s.t.
řn

i“1 wxi
“ 1

řm
j“1 wyj

“ 1

wxi ě 0 i “ 1, . . . , n
wyj ě 0 j “ 1, . . . ,m.

(29)

The objective function in (29) sums the average errors over the single grid pieces
while the constraints ensure that all single grid lengths sum up to 1 and are
greater than or equal to 0. The objective function can be rewritten to

1
6

n
ÿ

i“1

m
ÿ

j“1

pwxiw
3
yj

` wyjw
3
xi

q “ 1
6

˜

n
ÿ

i“1

m
ÿ

j“1

pwxiw
3
yj

q `

n
ÿ

i“1

m
ÿ

j“1

pwyjw
3
xi

q

¸

“ 1
6

˜

n
ÿ

i“1

wxi

m
ÿ

j“1

w3
yj

`

m
ÿ

j“1

wyj

n
ÿ

i“1

w3
xi

¸

“ 1
6

˜

1 ¨

m
ÿ

j“1

w3
yj

` 1 ¨

n
ÿ

i“1

w3
xi

¸

“ 1
6

m
ÿ

j“1

w3
yj

` 1
6

n
ÿ

i“1

w3
xi
.

Thus, (29) decomposes into two independent problems where the respective op-
timal solutions x˚ and y˚, can be composed to create px˚,y˚q, which is optimal
for the original problem (29). The subproblems are

min
řn

i“1 w
3
xi

s.t.
řn

i“1 wxi “ 1
wxi

ě 0 i “ 1, . . . , n
(30)

and
min

řm
j“1 w

3
yj

s.t.
řm

j“1 wyj
“ 1

wyj ě 0 j “ 1, . . . ,m.

(31)

These are exactly the sawtooth-area optimization problems from [7, Proposition
5], such that a uniform placement of the breakpoints where each wxi

“ 1
n is

optimal for (30), and wyj
“ 1

m is optimal for (31). Consequently, a uniform
placement of grid points is optimal for (29) and the total volume is 1

6 p 1
m2 ` 1

n2 q.
[\
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Remark 6. Let P IP
L,L be a depth-LHybSMIP relaxation of grar0,1s2pxyq from (21),

with L “ L1. Since P IP
L,L satisfies the uniform spacing of breakpoints discussed

in Proposition 8, we see that P IP
L,L is an optimal piecewise relaxation in the sense

of minimizing the average error, attaining the average error of
EavgpP IP

L,L, grar0,1s2pxyqq “ 1
32

´2L. ˛

5.3 Formulation Strength

In the previous section, we discussed the maximum and average errors incurred
from using certain discretizations. We will now consider the strength of the re-
sulting MIP relaxations by analyzing their LP relaxation. First, we will check
for sharpness and later compare them via the volume of the projected LP relax-
ation. Sharpness means that the projected LP relaxation equals the convex hull
of the set to be formulated. If we now consider the volume of a projected LP
relaxation, it can minimally be the volume of the convex hull, which precisely
holds if the formulation is sharp. If a formulation is not sharp, the volume of
the projected LP relaxation measures how much a formulation deviates from
sharpness. The volume of LP relaxation as a measure of formulation strength
was previously used in [5].

5.3.1 Sharpness We start with the core formulations from Section 3. It is
well known that the McCormick relaxation yields the convex hull of the feasible
set of z “ xy over box domains. Therefore, it is obviously sharp. In [7], it is
shown that the sawtooth approximation for z “ x2 is sharp. We use this result
to prove that sharpness also holds for the tightened sawtooth relaxation (16).
See Figure 4 for examples of this relaxation under different parameter choices.

Theorem 1 (Sharpness of the tightened sawtooth relaxation). Con-
sider the tightened sawtooth relaxation P IP

L,L1
described in (16) in the space of

px, z, g,αq for L,L1 P N with L ď L1. The MIP relaxation P IP
L,L1

is sharp.

Proof sketch. In P IP
L,L1

, the upper bounds on z are always strictly greater than x2

while the lower bounds are always strictly smaller. Thus, we can consider sharp-
ness with respect to upper and lower bounds independently. More formally, define

P IP`
L,L1

:“ tpx, z, g,αq P r0, 1s ˆRˆ r0, 1sL1`1 ˆ t0, 1uL : (17b, 17c, 17a),

P IP´
L,L1

:“ tpx, z, g,αq P r0, 1s ˆRˆ r0, 1sL1`1 ˆ t0, 1uL : (17b, 17c, 17d, 17f)u.

Then P IP
L,L1

is sharp if and only if both P IP`
L,L1

and P IP´
L,L1

are sharp. This simplifi-

cation holds since P IP
L,L1

“ P IP`
L,L1

XP IP´
L,L1

and since the upper bound P IP`
L,L1

strictly

overestimates x2, while the lower bound, P IP´
L,L1

strictly underestimates x2, such
that sharpness of the two can be considered separately.

Now, the sharpness of P IP`
L,L1

follows directly from the sharpness of the saw-
tooth approximation (10), which holds by [7, Theorem 1]. For the sharpness
of P IP´

L,L1
, the proof closely follows the proof of sharpness in [7, Theorem 1], ex-

cept that, after choosing some fixed x P r0, 1s, we frame the contradiction as
follows:
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1. Choose g˚ as in [7, Theorem 1], and choose the minimum possible value
of z˚ given g˚, such that z˚ attains one of its lower bounds.

2. Observe that the chosen solution admits a feasible solution in P IP
L,L1

, such
that if it is minimal in the LP, then we are done.

3. Suppose for a contradiction that there exists a better z-minimal solution
pẑ, ĝq than the proposed solution pz˚, g˚q, such that some incident lower
bound must have been improved.

4. Observe that the improved incident lower bound must be of the form z ě

f jpx, g˚q ´ 2´2L´2 for some j ě 0, as the lower bounds 0 and 2x ´ 1 do not
change with the choice of g˚. Thus, f jpx, g˚q ´ 2´2L´2 ě f jpx, ĝq ´ 2´2L´2

5. Show that f jpx, ĝq ´ f jpx, g˚q ă 0, a contradiction on the choice of pŷ, ĝq.
Thus, the solution (z˚, g˚) was optimal to begin with, and therefore sharp-
ness must hold.

The proof that f jpx, g˚q ´ f jpx, g˚q ă 0 follows in exactly the same manner as
[7, Theorem 1] and is thus omitted here. [\

In [7], besides sharpness, it is further shown that the sawtooth approximation
is also hereditarily sharp. The following theorem states that the same is true for
the tightened sawtooth relaxation (16) and z “ x2.

Theorem 2. The tightened sawtooth relaxation for z “ x2 is hereditarily sharp.

As the proof of Theorem 2 takes up a significant amount of space, we moved it
to Appendix B.

Next, we show that neither of the MIP relaxations Bin2, Bin3 nor HybS for
z “ xy are sharp. That is, their projected LP relaxation does not equal Mpx, yq

for any L,L1 P N. Note that we have included the McCormick inequalities in
the definitions of Bin2, Bin3 and HybS to make the formulations stronger. The
following proofs, however, refer to the fact that if one omits the McCormick
inequalities in these formulations, then they are not sharp. Together with the
McCormick inequalities, of course, they are sharp trivially.

Proposition 9. Let P IP
L,L1

be the MIP relaxation HybS for z “ xy stated in (21).
Then, without the inequalities from the McCormick envelope Mpx, yq, P IP

L,L1
is

not sharp for any L,L1 P N.

Proof. Without the McCormick envelope, the HybS MIP relaxation P IP
L,L1

, and
its LP-relaxation P LP

L,L1
, become strictly tighter as either L or L1 increases. Thus,

we have
projx,y,zpP LP

L,L1
q Ě lim

L,L1Ñ8
projx,y,zpP LP

L,L1
q

and

convpprojx,y,zpP IP
1,1qq Ě convpprojx,y,zpP IP

L,L1
qq for any L,L1 P N.

We now show
`

limL,L1Ñ8 projx,y,zpP LP
L,L1

q
˘

z convpprojx,y,zpP IP
1,1qq ‰ H, which

implies projx,y,zpP LP
L,L1

qz convpprojx,y,zpP IP
L,L1

qq ‰ H, such that P IP
L,L1

is not



Enhancements of Discretization Approaches for Non-Convex MIQCQPs 27

sharp for any L,L1 P N. The argument works in the following manner:

projx,y,zpP LP
L,L1

qz convpprojx,y,zpP IP
L,L1

qq

Ě

ˆ

lim
L,L1Ñ8

projx,y,zpP LP
L,L1

q

˙

z convpprojx,y,zpP IP
1,1qq ‰ H

ñprojx,y,zpP LP
L,L1

qz convpprojx,y,zpP IP
L,L1

qq ‰ H

ñprojx,y,zpP LP
L,L1

q ‰ convpprojx,y,zpP IP
L,L1

qq.

To this end, we show that there exist points px, y, zq P limL,L1Ñ8 projx,y,zpP LP
L,L1

q

with px, y, zq R projx,y,zpP IP
1,1q. Observe that, for any L, the point px, xq is feasible

within the LP relaxation of the tightened sawtooth relaxation (16) for x2, with
αi “ gi´1, gi “ 0. Thus, for all L,L1 ě 0 and for all x̂, ŷ P r0, 1s2, we have
that P LP

L,L1
, and thus also its limit limL,L1Ñ8 projx,y,zpP LP

L,L1
q, admits the values

zx “ x̂, zy “ ŷ and zp1
“ px̂ ` ŷq2. Therefore, for px, yq “ p0, 1

4 q, we obtain

z “ 1
2 ppx ` yq2 ´ x ´ yq “ ´ 3

16 ,

such that p0, 1
4 ,´ 3

16 q P P LP
8,8.

Next, in order to prove p0, 1
4 ,´ 3

16 q R convpprojx,y,zpP IP
1,1qq, we show mintz :

py, zq P projy,zpP IP
1,1|x“0qu “ ´ 1

8 . If this holds, then we have mintz : py, zq P

convpprojy,zpP IP
1,1|x“0qqu “ ´ 1

8 , such that p0, 1
4 ,´ 3

16 q R convpprojx,y,zpP IP
1,1qq. We

derive a representation of projy,zpP IP
1,1|x“0q that becomes an LP after branching

spatially at y “ 1
2 to resolve the upper bound on zy. We then minimize z over

both branches via solving an MIP.
Let x “ 0. Then the bounds on z, zx, zy, zp1

within projx,y,zpP IP
1,1q are

zx ď 0, zy ď y ´ 1
4 mint2y, 2p1 ´ yqu “ maxt

y
2 ,

3y´1
2 u

zp1
ě 4

`

y
2 ´ 1

4 mint2y
2 , 2p1 ´

y
2 q ´ 1

16u
˘

“ maxty ´ 1
4 , 3y ´ 9

4u

zp1 ě 4p
y
2 ´ 1

4 q “ 2y ´ 1

zp1 ě 0

zp1 ě 4p2y
2 ´ 1q “ 4py ´ 1q

z ě zp1 ´ zx ´ zy

y P r0, 1s.

Note that the two pieces of the upper bound on zy meet at y “ 1
2 . Using this

to separately minimize z over the above set, once over y P r0, 1
2 s and once over

y P r 12 , 1s, e.g. using an MIQCQP solver, we obtain two globally minimizing
solutions with z “ ´ 1

8 , namely at y “ 1
4 and at y “ 3

4 . Thus, we conclude
that p0, 1

4 ,´ 3
16 q R convpprojx,y,zpP IP

1,1qq, such that P IP
L,L1

is not sharp for any
1 ď L ď L1. [\

Proposition 10. Let P IP
L,L1

be either of the two MIP relaxations Bin2 (18) or
Bin3 (19). Then, without the inequalities from the McCormick envelope Mpx, yq,
P IP
L,L1

is not sharp for any L,L1 P N.
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Proof. Since Bin2 (18) has the same lower-bounding constraints as HybS, the
proof follows directly from Proposition 9. Moreover, for Bin3 (19), the proof
follows in exactly the same way as the proof of Proposition 9, except for the
upper-bounding version of the same point, px, y, zq “ p0, 1

4 ,
3
8 q, and acting on the

upper-bounding constraints from (21) and maximizing z instead. As the proof
is very similar, with the corresponding upper bound z “ 1

8 on projy,zpP IP
1,1|x“0q,

we omit it here. [\

5.3.2 LP Relaxation Volume Having proved that none of the separable
MIP relaxations is sharp, which implies that they are also not hereditarily sharp,
we now turn to consider the volume of projected LP relaxations.

For L “ L1, the volume for the tightened sawtooth formulation (7) is 3
162

´2L,
which has been shown in [7]. For general L1, by integrating over the overapprox-
imation and underapproximation errors separately with the same analysis as in
[7], we can derive a general volume of 1

62
´2L ` 1

482
´2L1 . We omit the precise

calculation here.

In our analysis of the separable MIP relaxations, we only consider the limits
for L,L1 Ñ 8. This allows us to evaluate the volumes independently of the un-
derlying discretizations. For the additional volumes resulting from discretization
errors, we refer to [7, Appendix], where the volume over the error function of
the sawtooth approximation is given. We start with HybS.

Proposition 11. Let P LP
L,L1

be the LP relaxation of the MIP relaxation HybS
stated in (21) over the general domain rx

¯
, x̄s ˆ ry

¯
, ȳs. Without the McCormick

envelope constraints, the volume of the limit of the projected LP relaxation
limL,L1Ñ8 projx,y,zpP LP

L,L1
q is 1

6 pwxw
3
y`wyw

3
xq, where wx “ x̄´x

¯
and wy “ ȳ´y

¯
.

Proof. The z-values in the projected LP relaxation of (21) are bounded by the
convex function CL

2 and the concave function CU
3 , which are stated above in (22)

and (25), respectively. The volume of the projected LP relaxation (21) is then
calculated via integration:

ż x̄

x
¯

ż ȳ

y
¯

pCU
3 px, yq ´ CL

2 px, yqqdydx “ 1
6 pwxw

3
y ` wyw

3
xq.

[\

Proposition 12. Let P LP
L,L1

be the LP relaxation of either the MIP relaxation
Bin2 or Bin3 stated in (18) and (19) over the domain rx

¯
, x̄s ˆ ry

¯
, ȳs. Without

the McCormick envelope constraints, the volume of the limit of the projected LP
relaxation is

lim
L,L1Ñ8

volpprojx,y,zpP LP
L,L1

qq “
1

12
wxwyp2w2

x ` 3wxwy ` 2w2
yq,

where wx “ x̄ ´ x
¯

and wy “ ȳ ´ y
¯
.
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Proof. The z-values in the projected LP relaxation of (18) and (19) are bounded
by the convex function CL

2 and the concave function CU
3 , which are stated above

in (22) and (25), respectively. The volume calculation is then done via integra-
tion:

ż x̄

x
¯

ż ȳ

y
¯

pCU
3 px, yq ´ CL

3 px, yqqdydx “

ż x̄

x
¯

ż ȳ

y
¯

pCU
2 px, yq ´ CL

2 px, yqqdydx

“
1

12
wxwyp2w2

x ` 3wxwy ` 2w2
yq.

[\

We use Proposition 11 and Proposition 12 to prove that HybS yields strictly
tighter LP relaxations than Bin2 and Bin3.

Proposition 13. Without the McCormick envelope constraints, the LP relax-
ation of the MIP relaxation HybS in the limit as L,L1 Ñ 8 is strictly tighter
than that of Bin2 or Bin3. Moreover, the volume of the projected LP relaxation
of formulation HybS in the limit as L,L1 Ñ 8 is smaller by 1

4w
2
xw

2
y.

Proof. In [5, Appendix, Proposition 2] it has been shown that CL
2 is a tighter

convex underestimator than CL
3 and that CU

3 is a tighter concave overestimator
than CU

2 for z “ xy. Thus, since the HybS approach converges to CL
2 as an

underestimator and CL
3 as an overestimator, it is strictly tighter than either of

Bin2 or Bin3. The volume calculation can again be done via integration:

ż x̄

x
¯

ż ȳ

y
¯

pCU
2 px, yq ´ CL

2 px, yqqdydx ´

ż x̄

x
¯

ż ȳ

y
¯

pCU
3 px, yq ´ CL

2 px, yqqdydx

“

ż x̄

x
¯

ż ȳ

y
¯

pCU
3 px, yq ´ CL

3 px, yqqdydx ´

ż x̄

x
¯

ż ȳ

y
¯

pCU
3 px, yq ´ CL

2 px, yqqdydx

“
1

4
w2

xw
2
y ą 0.

[\

6 Computational Results

In the previous sections, we have shown the theoretical advantages of HybS
compared to Bin2 and Bin3, most importantly that it requires fewer binary
variables to model MIP relaxations of variable products with the same accuracy.
As the density of quadratic matrices in MIQCQPs increases, this advantage
becomes larger, leading to a maximum of Opnq binary variables for HybS and
Opn2q binary variables for Bin2 and Bin3; see Table 1. In general, the number
of binary variables of an MIP relaxation is crucial for its solution time. Hence,
the theoretical results suggest that the HybS formulation yields MIP relaxations
that are faster to solve than the Bin2 and Bin3 relaxations. Consequently, shorter
run times or better primal and dual bounds after certain run time limits can be
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expected. To analyze these MIP relaxations for z “ xy, it is preferable to use
a model for the x2 terms that requires as few binaries as possible. Otherwise,
the impact of fewer binaries for HybS might not be that noticeable, since the
difficulty of the various MIP models might then be more determined by the MIP
formulations of the x2 terms. The sawtooth relaxation does exactly that with its
logarithmic number of binary variables. Furthermore, we proved that it is also
a hereditary sharp formulation. In the computational study, we first compare
both run times and dual bounds of the MIP relaxations. MIP relaxations are
primarily used to deliver dual bounds for the MIQCQPs. The best dual bound
of an MIP relaxation is then a valid dual bound for the MIQCQP. However,
with increasing accuracy of the relaxations, the solution times also increase.
Therefore, both the run time (for coarser relaxations) and the best dual bounds
(for finer relaxations) are important measures if we want to compare different
MIP relaxations with the same accuracy.

Complementary to this, in a second part of the study we investigate to what
extent the MIP solutions can serve as a starting point to find feasible solutions
to the MIQCQP. A common heuristic approach is to fix any integer variables
from the original problem according to the MIP solution and solve the resulting
QCQP to local optimality. The starting points of the continuous variables of the
original problem again correspond to the values of the MIP solution. As before,
our theoretical results imply that the HybS relaxations are generally more likely
to find MIP solutions after certain run time limits due to the smaller number of
binary variables. Presumably, this translates to a higher probability of finding
feasible solutions to the MIQCQP using the heuristic approach. In detail, we
solve MIP relaxations using either HybS, Bin2, or Bin3 in combination with the
sawtooth relaxation using Gurobi [28] and a callback function that uses the non-
linear programming (NLP) solver IPOPT [41] to find local optimal solutions for
the QCQP.

All instances were solved in Python 3.8.3, via Gurobi 9.5.1 and IPOPT 3.12.13
on the ‘Woody’ cluster, using the “Kaby Lake” nodes with two Xeon E3-1240 v6
chips (4 cores, HT disabled), running at 3.7 GHZ with 32 GB of RAM. For more
information, see the Woody Cluster Website of Friedrich-Alexander-Universität
Erlangen-Nürnberg. The global relative optimality tolerance in Gurobi was set
to the default value of 0.01%, for all MIPs and MIQCQPs.

6.1 Study Design

In the following, we explain the design of our study and go into detail regarding
the instance set as well as the various parameter configurations.

Instances. We consider a three-part benchmark set of 60 instances: 20 non-
convex boxQP instances from [22,7,17] and earlier works, 20 AC optimal power
flow (ACOPF) instances from the NESTA benchmark set (v0.7.0) (see [18]),
previously used in [2], and 20 MIQCQP instances from the QPLIB [24]. In Ap-
pendix D links that contain download options and detailed descriptions of the
instances can be found. For an overview of the IDs of all instances, see Table 8.

https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/woody-cluster/
https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/woody-cluster/
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The benchmark set is equally divided into 30 sparse and 30 dense instances.
We call an instance dense if either the objective function and/or at least one
quadratic function in the constraint set is of the form xJQx, where x P Rn are
all variables of the problem and Q P Rn,n is a matrix with at least 25% of its
entries being nonzero.

Parameters. For each instance, we solve the resulting MIP relaxation of each
method from Section 4 using various approximation depths of L P t1, 2, 4, 6u and
a time limit of 8 hours. In Section 6.1 , we have listed the maximum errors associ-
ated with each L, which are derived from the values in Table 1. All sawtooth and
separable MIP relaxations are solved once with L1 “ L and once with a tightened
underestimator version for univariate quadratic terms where L1 “ maxt2, 1.5Lu.
This tightening is done as described in Definition 7 by adding linear cuts and
without introducing further binary variables. In the separable methods HybS,
Bin2, and Bin3 this leads to a tightening of the relaxation of z “ xy terms as
well as of z “ x2 terms in the original MIQCQP. We refer to the tightened MIP
relaxations as T-HybS, T-Bin2, and T-Bin3. Table 2 gives an overview of the
different parameters in our study. In total, we have 24 parameter configurations
for 60 original problems, which means that we solve 1440 MIP instances.

Table 2. In the study, we consider the parameters cuts, depth, and formulation on 60
MIQCQP instances and thus solve p2 ¨ 4q ¨ 3 ¨ 60 “ 1440 MIP relaxations.

Depth
L “ 1, 2, 4, 6
L1 “ L
Tightened:
L “ 1, 2, 4, 6
L1 “ maxt2, 1.5Lu

Formulation
Bin2
Bin3
HybS

Instances
boxQP (20 instances)
ACOPF (20 instances)
QPLIB (20 instances)

HybS Bin2/Bin3

L = 1 2e-02 3e-02
L = 2 5e-03 8e-03
L = 4 3e-04 5e-04
L = 6 2e-05 3e-05

Table 3. Maximum error for different values of L

Callback function. Solving all MIP relaxations, we use a callback function with
the local NLP solver IPOPT that works as follows: given any MIP-feasible solu-
tion, the callback function fixes any integer variables from the original problem
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(before applying any of the discretization techniques from this work) according
to this solution and then solves the resulting QCCP, the original MIQCQP with
fixed binaries, locally via IPOPT in an attempt to find a feasible solution for
the original MIQCQP problem.

6.2 Number of Binaries

In advance of the results of the study, we provide another table that shows, how
many binary variables can be saved relatively with HybS compared to Bin2 and
Bin3. In Table 4 we specify how many variables occur on average with each
method in the MIP relaxation models. Apart from a few original variables of the
MIQCQPs, the main part of the binary variables comes from the MIP relaxations
of quadratic terms. Since Bin2 and Bin3 require exactly the same number of
binary variables for each univariate or bivariate MIP relaxation, only Bin2 is
listed in Table 4. The table shows that HybS requires close to two-thirds of the
binary variables on the sparse instances. The difference is much greater on the
dense instances, where HybS requires only nearly 6% of the binary variables of
Bin2 and Bin3. Both numbers are in line with our theoretical findings. Assuming,
we had an MIQCQP instance with only one variable product xixj and we would
set L “ 1, then there would be three binary variables each for Bin2 and Bin3,
while we would need only two for HybS. The fact that this effect is significantly
stronger for dense instances stems from the quadratic increase of binary variables
in dense matrices for Bin2 and Bin3 compared to the linear increase for HybS.

Table 4. Average number of binary variables per instance and the relative percentage
of binary variables in HybS models compared to those of Bin2 and Bin3.

sparse dense

Bin2/Bin3 HybS rel. Bin2/Bin3 HybS rel.

L=1 318 231 72.8% 987 61 6.2%
L=2 579 406 70.2% 1972 119 6.1%
L=4 1102 756 68.6% 3942 236 6.0%
L=6 1625 1106 68.0% 5912 352 6.0%

6.3 Results

In the following, we present the results of our study at a detailed level. In partic-
ular, we aim to answer the following questions regarding run times, dual bounds,
and the ability to find feasible solutions for the MIQCQPs:

– Is our enhanced method HybS computationally superior to its predecessors
Bin2 or Bin3?
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– Is it beneficial to use tightened versions of the MIP relaxations HybS, Bin2,
and Bin3, i.e., to choose L1 ą L?

We point out that in Part II of this work, we also present a more detailed
comparison with different MIP relaxation methods and the state-of-art MIQCQP
solver Gurobi.

6.3.1 Run Times We start with a discussion on the run times for the different
methods. Here, we use the shifted geometric mean, which is a common measure
for comparing two different MIP-based solution approaches. The shifted geomet-

ric mean of n numbers t1, . . . , tn with shift s is defined as
`
śn

i“1pti ` sq
˘1{n

´ s.
It has the advantage that it is neither affected by very large outliers (in contrast
to the arithmetic mean) nor by very small outliers (in contrast to the geometric
mean). We use a typical shift s “ 10. Moreover, we only include those instances
in the computation of the shifted geometric mean, where at least one solution
method delivered an optimal solution within the run time limit of 8 hours.

In Table 5, the shifted geometric mean values of the run times for solving
the separable MIP relaxations on all instances are given. Here, HybS clearly
outperforms all other methods, including its tightened variant T-HybS. HybS is
at least a factor of two faster than (T-)Bin2 and (T-)Bin3. Tightening HybS,
Bin2, and Bin3 results in comparable but slightly higher run times for Bin2 and
Bin3 and partially in notably higher run times for HybS, e.g. by a factor of more
than two in case of L “ 4.

For sparse instances, the same picture emerges, although the benefit of HybS
is not as great as before, see the second block in Table 5. Conversely, the advan-
tage of HybS increases dramatically for dense instances. Here, HybS is at least
a factor of five faster than (T-)Bin2 and (T-)Bin3, see the third block Table 5.
Tightening the three methods again leads to mostly slightly higher run times for
Bin2 and Bin3 and to considerably higher run times for HybS.

6.3.2 Dual Bounds As mentioned before, MIP relaxations are primarily
used to deliver (tight) dual bounds for MIQCQPs. Thus, we now compare the
tightness of the dual bounds provided by the various methods. To this end,
we compute relative optimality gaps gp,s :“ |dp,s ´ bp|{|bp| for all methods s
(with a certain L value) and instances p of the benchmark set, where dp,s is
the corresponding best dual bound found by method s and bp is the best-known
primal bound for instance p.

Table 6 shows the arithmetic and geometric means of the relative optimality
gaps for all 60 instances. Please note that we rounded each gap below 0.0001 to
avoid multiplications by 0 for the geometric mean. First, the arithmetic mean
decreases with higher L values but then starts to increase again. This pattern
indicates the presence of more outliers with higher L values, leading to inconsis-
tencies in the arithmetic mean. On the other hand, the geometric mean shows a
tendency that with higher L values, we can expect tighter dual bounds for the
considered instances. This trend is more consistent and reflects a more balanced
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Table 5. Shifted geometric mean for run times on all instances.

Bin2 T-Bin2 Bin3 T-Bin3 HybS T-HybS

all

L=1 74.62 95.53 74.67 96.69 31.00 44.55
L=2 174.87 265.15 271.16 265.70 67.62 77.07
L=4 940.70 895.52 754.62 895.13 172.59 395.29
L=6 1301.88 1485.40 1104.60 1484.55 455.38 859.92

sparse

L=1 40.47 42.10 39.59 42.91 33.66 48.78
L=2 63.64 81.66 93.12 81.88 62.65 66.49
L=4 362.13 367.90 297.24 367.98 154.53 253.81
L=6 499.46 602.40 487.41 601.63 380.29 441.66

dense

L=1 236.27 443.88 245.83 444.68 26.01 36.77
L=2 1020.66 2131.53 1818.35 2134.26 77.82 100.90
L=4 3872.15 3348.79 2991.87 3344.09 203.47 761.74
L=6 4850.41 5137.58 3396.35 5139.58 583.77 2145.94

view of overall performance. HybS often achieves the lowest geometric mean val-
ues, which indicates its superior performance. In summary, the geometric means
in Table 6 emphasize the effectiveness of higher L values for tighter dual bounds,
with HybS standing out as a particularly strong method based on the consid-
ered data. Comparing the tightened versions (T-Bin2, T-Bin3, and T-HybS)
with their non-tightened counterparts, the results are mixed. The tightened ver-
sions yield similar optimality gaps, with some showing slightly better and others
slightly worse performance depending on different L values. However, there is
no clear trend, suggesting that there is generally no advantage to tightening the
methods.

Dividing the benchmark set into sparse and dense instances, gives a similar
picture for dense instances as on the full benchmark set, see the third block
in Table 6. However, a different trend can be seen for sparse instances in Table 6.
Here, for higher L values, both the arithmetic and geometric means consistently
decrease, while HybS again outperforms Bin2 and Bin3. In contrast to the full
benchmark set, the tightening is now slightly beneficial for all three methods.

Additionally, we provide performance profile plots as proposed by Dolan and
More [20] to illustrate the scaling of the dual bounds, see Figure 7 – Figure 9.
The intention here is to obtain a more sophisticated picture of how the various
methods perform if we allow the dual bounds to lie within a given factor of the
best overall dual bound. The performance profiles work as follows: Let dp,s again
be the best dual bound obtained by MIP relaxation s for instance p after a certain
time limit. With the performance ratio rp,s :“ dp,s{mins dp,s, the performance
profile function value P pτq is the percentage of problems solved by approach s



Enhancements of Discretization Approaches for Non-Convex MIQCQPs 35

Table 6. Arithmetic (left) and geometric (right) mean of relative optimality gaps
(in %) on all instances for separable MIP relaxations.

BIN2 T-BIN2 BIN3 T-BIN3 HybS T-HybS

all

L “ 1 65.04/8.39 47.32/8.84 46.35/8.35 47.33/8.84 46.13/7.94 46.04/7.57
L “ 2 45.99/7.92 37.35/7.32 36.65/6.67 37.36/7.32 33.07/4.96 32.33/4.50
L “ 4 45.07/4.36 40.86/4.04 35.53/4.24 51.89/4.08 24.84/1.81 31.42/1.90
L “ 6 48.42/2.53 45.53/2.80 41.84/2.75 57.68/2.81 32.97/1.05 53.75/1.83

sparse

L “ 1 24.30/14.34 23.30/13.5023.73/13.88 23.30/13.50 23.85/14.01 23.53/13.70
L “ 2 21.11/11.39 20.33/10.44 20.78/10.87 20.33/10.4321.21/11.52 20.39/10.36
L “ 4 15.18/3.06 14.90/2.08 14.92/2.45 14.87/2.08 14.93/2.19 15.04/2.13
L “ 6 11.23/0.93 12.09/0.84 12.41/0.89 12.07/0.83 10.91/0.72 11.65/0.74

dense

L “ 1 105.77/4.90 71.34/5.78 68.98/5.03 71.37/5.79 68.40/4.50 68.56/4.19
L “ 2 70.88/5.50 54.36/5.13 52.52/4.09 54.40/5.13 44.94/2.14 44.28/1.96
L “ 4 74.97/6.22 66.82/7.84 56.14/7.36 88.92/8.02 34.76/1.49 47.80/1.69
L “ 6 85.61/6.89 78.97/9.34 71.27/8.54 103.28/9.51 55.04/1.52 95.86/4.56

such that the ratios rp,s are within a factor τ P R of the best possible ratios. All
performance profiles are generated with the help of Perprof-py by Siqueira et al.
[38]. In addition to the performance profiles across all instances, we also show
performance profiles for the dense and sparse subsets of the instance set. Please
note that in minimization problems, the higher the value of a dual bound, the
better it is. Since lower values are considered better in performance profiles, we
simply take the inverse of the dual bound as the value to be compared.

In Figure 7 the performance profiles of the separable MIP relaxations with
regard to dual bounds using all instances can be seen. Starting with L “ 2, the
newly introduced methods HybS and T-HybS deliver significantly better dual
bounds. Except for L “ 2, where T-HybS dominates HybS, we do not obtain
better dual bounds by tightening the separable MIP relaxations. With L “ 4
and L “ 6, HybS yields dual bounds that are within a factor 1.05 of the overall
best bounds among separable MIP relaxations for nearly all instances. The other
methods require a corresponding factor of at least 1.2. In Figure 8 and Figure 9,
we divide the benchmark set into sparse and dense instances again to obtain a
more in-depth look at the benefits of HybS. For sparse instances, using HybS
and T-HybS has no clear advantage, as Figure 8 shows. However, with L “ 1
and L “ 2, the tightened variants deliver notably better dual bounds. For L “ 1,
the dual bounds computed with T-Bin2 and T-Bin3 are in almost all cases the
overall best-found bounds. Their counterparts Bin2 and Bin3 are only able to
provide the overall best bounds for about 50% of the instances. For L “ 2, we
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Fig. 7. Performance profiles to dual bounds of separable MIP relaxations on all in-
stances.

see a similar picture. T-Bin2 and T-Bin3 deliver the best bounds for roughly
80% of the instances, while Bin2 and Bin3 achieve this only in 40% of the cases.

For dense instances, the picture is much clearer. Here, HybS and T-HybS are
considerably better than Bin2, Bin3, and their tightened variants, particularly
from L “ 2 to L “ 6; see Figure 9. With L “ 2, HybS and T-HybS are able to
compute dual bounds that are within a factor 1.05 of the overall best bounds for
nearly all instances. All other methods require a corresponding factor of more
than 1.2. For L “ 4 and L “ 6, we obtain by HybS the best overall bounds
for roughly 90% of all instances, while all other approaches provide the best
bounds for less than 50% of the instances. With the exception of L “ 2, where
tightening HybS results in slightly better dual bounds, the tightened versions
of the separable MIP relaxations attain significantly weaker dual bounds than
their corresponding counterparts.

6.3.3 Feasible Solutions Finally, we highlight some important results on
primal bounds. Table 7 gives the number of feasible solutions that the separable
MIP methods were able to find in combination with IPOPT as the local QCQP
solver. The quality of the corresponding solutions is computed in terms of relative
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Fig. 8. Performance profiles to dual bounds of separable MIP relaxations on sparse
instances.
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Fig. 9. Performance profiles to dual bounds of separable MIP relaxations on dense
instances.
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optimality gaps, where we used the best-known dual bounds from the literature
or computed them elsewhere using Gurobi and our methods. Regarding the
ability to find feasible solutions, all separable methods perform quite similarly
and find more feasible solutions with higher L values. With L “ 6, HybS in
combination with IPOPT is able to compute feasible solutions to the original
MIQCQP for 51 out of 60 benchmark instances, 43 of which have a relative
optimality gap below 1% and 40 of which are even globally optimal, i.e., which
have a gap below 0.01%. All in all, HybS offers a slight advantage in terms of
finding feasible solutions when coupled with IPOPT.

Table 7. Number of feasible solutions found with different relative optimality gaps.
The first number corresponds to a gap of less than 0.01%, the second to a gap of less
than 1% and the third number indicates the number of feasible solutions.

Bin2 T-Bin2 Bin3 T-Bin3 HybS T-HybS

L=1 23/29/39 24/31/38 29/33/40 24/31/38 31/33/40 30/33/43
L=2 28/32/39 33/33/38 32/35/43 33/33/38 32/37/44 32/36/42
L=4 39/42/51 35/40/48 38/41/49 35/40/48 41/44/50 38/44/49
L=6 40/43/46 37/42/45 39/42/47 37/42/46 40/43/51 38/43/50

6.4 Discussion

All in all, the clear winner among the separable methods is HybS. For large
L values, HybS provides the best bounds, the shortest run times, and finds in
combination with IPOPT the most and best feasible solutions for the original
MIQCQP instances. This advantage is especially noticeable on dense instances
and consistent with the theoretical findings from Section 5. While in HybS the
number of binary variables increases linearly in the number of variable prod-
ucts, it increases quadratically in Bin2 and Bin3. On the one hand, this results
in short run times for the HybS models or better bounds after certain run time
limits. On the other hand, with significantly fewer binaries we are more likely
to find feasible solutions for the MIP relaxations. As the accuracy increases,
the MIP relaxations lead to solutions with smaller and smaller MIQCQP fea-
sibility violations. Therefore, at higher L values, we are more likely to find an
MIQCQP feasible solution using the heuristic IPOPT approach, which coincides
with Table 7. Furthermore, based on the computational results, a tightening of
the separable methods is not advisable, except for sparse instances with small
L values. This is most likely due to the large number of additional constraints
that are needed to underestimate p21 and p22; see Table 1.

In Part II of this work, we revisit the idea of tightening MIP relaxations for
the normalized multiparametric disaggregation technique (NMDT) introduced
in [13]. In addition, we perform a comparison of HybS with NMDT-based meth-
ods and Gurobi as an MIQCQP solver. To this end, we reuse the results of HybS
from Part I.
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7 Conclusion

We introduced an enhanced MIP relaxation for non-convex quadratic products
of the form z “ xy, called hybrid separable (HybS). We showed that HybS has
clear theoretical advantages over its predecessors Bin2 and Bin3, all based on
separable reformulation of xy to univariate quadratic terms. Most importantly,
HybS requires a significantly lower number of binary variables and has a tighter
linear programming relaxation. In addition to this enhanced MIP relaxation for
z “ xy, we introduced a hereditary sharp MIP relaxation called sawtooth re-
laxation for z “ x2 terms, which requires only a logarithmic number of binary
variables with respect to the relaxation error. We combined the sawtooth relax-
ation and HybS to obtain MIP relaxations for MIQCQPs.

In a broad computational study, we compared HybS against its predeces-
sors from the literature, which we again combined with the sawtooth relaxation
for univariate quadratic terms. We showed that HybS determines far better dual
bounds, while also exhibiting shorter run times. Finally, HybS is also able to find
high-quality solutions to the original quadratic problems when used in conjunc-
tion with a primal solution callback function and a local non-linear programming
solver.
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A MIP Relaxations on General Intervals

In this section, we generalize the MIP relaxations for grar0,1s2pxyq and gra2
r0,1s

px2q

discussed in this article to general box domains px, yq P rx
¯
, x̄sˆ P ry

¯
, ȳs and
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x P rx
¯
, x̄s, where x

¯
ă x̄, y

¯
ă ȳ and x

¯
, x̄, y

¯
, ȳ P R. by giving explicit formulations

for general bounds on x and y.

A.1 MIP Relaxations for Bivariate Quadratic Equations

First, we consider MIP relaxations for z “ xy and give an explicit model of
HybS for general box domains. We omit the formulation of Bin2 and Bin3 here,
as these work analogously to HybS.

In the HybS MIP relaxation, in addition to the variables x and y, we must also
transform the variables p1 “ x`y and p2 “ x´y and their respective bounds. In
the following, the sawtooth modeling px, zxq P RL,L1 , py, zyq P RL,L1 , pp1, zp1

q P

QL1 , pp2, zp2
q P QL1 is performed according to Remark 1. HybS (21) for general

box domains then reads as follows:

p1 “ x ` y
p2 “ x ´ y

px, zxq P RL,L1

py, zyq P RL,L1

pp1, zp1q P QL1

pp2, zp2
q P QL1

zp1
ě pwx ` wyq2f jp

p1´x
¯

´y
¯wx`wy
, gp1q ` px

¯
` y

¯
qp2p2 ´ x

¯
´ y

¯
q j P 0, . . . , L1

zp2 ě pwx ` wyq2f jp
p2´x

¯
`ȳ

wx`wy
, gp2q ` px

¯
´ ȳqp2p2 ´ x

¯
` ȳq j P 0, . . . , L1

zx ď w2
xf

Lp
x´x

¯wx
, gxq ` x

¯
p2x ´ x

¯
q

zy ď w2
yf

Lp
y´y

¯wy
, gyq ` y

¯
p2y ´ y

¯
q

z ě 1
2 pzp1

´ zx ´ zyq

z ď 1
2 pzx ` zy ´ zp2

q

px, y, zq P Mpx, yq

x P rx
¯
, x̄s

y P ry
¯
, ȳs

p1 P rx
¯

` y
¯
, x̄ ` ȳs

p2 P rx
¯

´ ȳ, x̄ ´ y
¯

s.
(32)

A.2 MIP Relaxations for Univariate Quadratic Equations

In order to MIP relaxations for z “ x2 where x P rx
¯
, x̄s with x

¯
ă x̄ and x

¯
, x̄ P

R, we introduce the auxiliary variable x̂ P r0, 1s and apply each original MIP
relaxation to model ẑ “ x̂2. In addition, we map x̂ and ẑ back to r0, 1s, yielding

x̂ “
x´x

¯wx
, ẑ “

y´x
¯

p2x´x
¯

q

w2
x

, with x P rx
¯
, x̄s,

cf. Remark 1. With this transformation, we are able to formulate the tightened
sawtooth relaxation for x P rx

¯
, x̄s. The tightened sawtooth relaxation (16) for

general box domains then reads

tpx, zq P rx
¯
, x̄s ˆR : Dpx̂, ẑ, g,αq P r0, 1s ˆRˆ r0, 1sL1`1 ˆ t0, 1uL : (34)u, (33)
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where the constraints are

x̂ “
x´x

¯wx

ẑ “
y´x

¯
p2x´x

¯
q

w2
x

px̂, gJ0,LK,αq P SLpx̂q

px̂, gq P TL1px̂q

ẑ ď fLpx̂, gJ0,LKq

ẑ ě f jpx̂, gq ´ 2´2j´2 j P 0, . . . , L1

ẑ ě 0
ẑ ě 2x̂ ´ 1.

(34)

We note that generalizing the sawtooth epigraph relaxation (14) works analo-
gously.

B Proof of Theorem 2: Hereditary Sharpness of the
Tightened Sawtooth Relaxation

This section is devoted to proving Theorem 2 which states that the tightened
sawtooth relaxation (16) for z “ x2 is hereditarily sharp. This is a similar, albeit,
more difficult result than the related one in [7] regarding the original sawtooth
approximation. It is not clear how to obtain the former as a corollary of the latter.
Furthermore, we use the result of [7] to shorten the work needed here. Before we
begin the proof, we first introduce some required notation and restate several
helpful results from [7]. For integers L1 ě L ě 0, let P IP

L,L1
be the tightened

sawtooth relaxation from (16) in the space of px, z, g,αq and let P LP
L,L1

be its LP
relaxation, where in the latter all α-variables are relaxed to the interval r0, 1s.
For convenience, and to avoid the variable redundancy g0 “ x throughout this
section, we will omit the use of g0 and use the abbreviated notation g “ gJ1,L1K.
To further simplify the notation, we omit the subscript L,L1 when the context
is clear and simply write P IP and P LP instead of P IP

L,L1
and P LP

L,L1
.

Now let I Ď JLK be the index set of the binary variables α which are fixed
to given values α

¯
P t0, 1uI . This can be thought of as considering the branch

in a branch-and-bound tree where α “ α
¯
holds. Then we wish to show that at

this node in the tree, sharpness also holds. More precisely, the goal is to show
that P IP is sharp under the restriction αI “ α

¯
, where αI “ rαi1 , . . . , αi|I|

sJ and
I “ ti1, . . . , i|I|u. Hereditary sharpness of P IP then means

convpprojx,zpP IP|αI“α
¯

qq “ projx,zpP LP|αI“α
¯

q.

In order to show this result, we cover P IP|αI“α
¯
using the following two sets,

which encapsulate the upper and lower bounds w.r.t. z, respectively:

P̂ IP,α
¯ :“ tpx, z, g,αq P r0, 1s2 ˆ r0, 1sL1 ˆ t0, 1uL : αI “ α

¯
, (17b, 17c, 17a)u,

P̌ IP,α
¯ :“ tpx, z, g,αq P r0, 1s2 ˆ r0, 1sL1 ˆ t0, 1uL : αI “ α

¯
, (17b, 17c, 17d, 17f)u.

(35)
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Observation 1 It holds P IP|αI“α
¯

“ P̂ IP,α
¯ X P̌ IP,α

¯ , and the formulation P IP is

hereditarily sharp if and only if both P̂ IP,α
¯ and P̌ IP,α

¯ are sharp.

Sharpness of P̂ IP,α
¯ . This follows directly from [7, Theorem 3]: the theorem

establishes hereditary sharpness of the sawtooth approximation (10), which has
the same upper-bounding constraints on z as (16). Thus, it remains for us to
show that P̌ IP,α

¯ is sharp.
Sharpness of P̌ IP,α

¯ . Before beginning the proof, we set up some helpful nota-
tion. First, we define the projections onto px, g,αq:

P̌ IP,α
¯

px,g,αq
:“ projx,g,αpP̌ IP,α

¯ q,

P̌ LP,α
¯

px,g,αq
:“ projx,g,αpP̌ LP,α

¯ q.
(36)

In particular, these variables must satisfy (17b) and (17c). We also define the
corresponding projections onto x, namely

X̌IP :“ projxpP̌ IP,α
¯ q and X̌LP :“ projxpP̌ LP,α

¯ q.

Next, we define the lower-bounding functions f̌ j : r0, 1s ˆ r0, 1sL1`1 Ñ r0, 1s,

f̌ jpx, gq “ f jpx, gq ´ 2´2j´2 j “ 0, . . . , L1,

f̌´1px, gq “ 2x ´ 1,

f̌´2px, gq “ 0.

(37)

Note that f̌´1 and f̌´2 do not actually depend on g. Further, note that there
is a slight abuse of the notation above, since technically f j has the domain
r0, 1s ˆ r0, 1sj`1; however, we assume the reader will interpret the functional
expressions as f jpx, gJjKq instead. We also define the lower-bounding functions

F̌ j : r0, 1s Ñ r0, 1s,

F̌ jpxq “ F jpxq ´ 2´2j´2 j “ 0, . . . , L1,
F̌´1pxq “ 2x ´ 1,
F̌´2pxq “ 0

(38)

in terms of only x, based on the functions FL from (6), as the j-th p.w.l. under-
estimator to z “ x2 in the construction of the sawtooth relaxation, as defined in
Section 3.2. Further, define f̌ : r0, 1s ˆ r0, 1sL Ñ r0, 1s and F̌ : r0, 1s Ñ r0, 1s with

f̌px, gq “ max
jPJ´2,LK

f̌ jpx, gq and F̌ pxq “ max
jPJ´2,LK

F̌ jpxq.

Observation 2 The function F̌ is convex as it is the maximum of a finite set
of convex functions.

Finally, we define the following sets with respect to j:

P̌ IP,α
¯j :“ tpx, z, g,αq : px, g,αq P P̌ IP,α

¯
px,g,αq

, z ě f̌ jpx, gqu, j “ ´2, . . . , L1,

P̌ LP,α
¯j :“ tpx, z, g,αq : px, g,αq P P̌ LP,α

¯
px,g,αq

, z ě f̌ jpx, gqu, j “ ´2, . . . , L1,

(39)
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and have P̌ IP,α
¯ “

ŞL1

j“´2 P̌
IP,α

¯j or, equivalently,

P̌ IP,α
¯ “ tpx, z, g,αq : px, g,αq P P̌ IP,α

¯
px,g,αq

, z ě max
jP´2,...,L1

f̌ jpx, gqu.

This applies analogously to P̌ LP,α
¯ .

We now state some important results from [7] that establish bounds on each
variable gi within P̌ LP,α

¯
px,g,αq

and a closed-form optimal solution for g when mini-

mizing z within P̌ IP,α
¯ or any P̌ IP,α

¯j .

Lemma 1 (Bounds in Projection, Lemma 3 from [7]). For all i P J0, LK,
we have projgipP̌

LP,α
¯

px,g,αq
q “ convpprojgipP̌

IP,α
¯

px,g,αq
qq “: rai, bis ‰ H. Furthermore,

it holds that raL, bLs “ r0, 1s, and rai´1, bi´1s can be computed from rai, bis as

rai´1, bi´1s “

$

’

&

’

%

r 12ai,
1
2bis, if i P I and ᾱi “ 0 ,

r1 ´ 1
2bi, 1 ´ 1

2ais, if i P I and ᾱi “ 1,

r 12ai, 1 ´ 1
2ais, if i R I.

(40)

Note that in the last case, ai´1 ď 1
2 and bi´1 ě 1

2 hold.

Note that Lemma 1 with i “ 0 and g0 “ x yields X̌LP “ convpX̌IPq, via

X̌LP “ projxpP̌ LP,α
¯ q “ convpprojxpP̌ IP,α

¯ qq “ convpX̌IPq, (41)

which has also been used in [7].
Next, we adapt Lemma 5 from [7], which establishes that, when minimizing

or maximizing z within P LP
L,L|αI“α

¯
given a fixed value for x̊, each gi can directly

be computed from gi´1 and the bounds established in Lemma 1. In particular,
for the sawtooth relaxation (i.e. I “ H), when minimizing z over the MIP-
feasible points with a fixed x, we find that gi “ mint2gi´1, 1 ´ 2gi´1u. That is,
the g-variables take one of the two upper bounds that restrict them. However,
in this section, we have fixed several of the α-variables and have thus changed
the feasible domain for each g-variable. Now, it could be that bi becomes an
additional upper bound.

Lemma 2 (Adapted from Lemma 5 from [7]). Let ai and bi be defined as
in Lemma 1 for all i P JL1K and let x̊ P ra0, b0s. Further, define g˚ as

g˚
0 :“ x̊

g˚
i :“ mintbi, 2gi´1, 1 ´ 2gi´1u i P JL1KzI

g˚
i :“ Gipgi´1q i P I,

where, for i P I, it holds Gipgi´1q “ 2gi´1 if αi “ 0, and Gipgi“1q “ 2p1 ´ gi´1q

otherwise. Then we have

g˚ P argmintz : pz, gq P projz,gpP̌ LP,α
¯ |x“x̊qu, (42a)

g˚ P argmintz : pz, gq P projz,gpP̌ LP,α
¯j |x“x̊qu @j P J´2, L1K. (42b)



46 B. Beach, R. Burlacu, A. Bärmann, L. Hager, R. Hildebrand

That is, each gi with unfixed αi can take on one of its upper bounds w.r.t. gi´1

when minimizing z within P̌ LP,α
¯ |x“x̊ and P̌ LP,α

¯j |x“x̊. Furthermore, this choice
is unique for all i ď j, i.e.

|argmintz : pz, gJjKq P projz,gJjK
pP̌ LP,α

¯j q|x“x̊qu| “ 1.

Finally, there exists some j P J´2, L1K for which

f̌ j p̊x, g˚q “ mintz : pz, gq P projz,gpP̌ LP,α
¯ q|x“x̊qu. (43)

Proof. The proofs of the optimality results (42a) and (42b) on g˚ for j ě 1
closely follow the structure of the proof of Theorem 1, with the same underlying
reasoning as in the proof of [7, Lemma 5]. In fact, the uniqueness of the optimizer
also follows from the proof. Thus, the details are omitted here. To establish the
optimality results for j ď 0, we observe that in this case f̌ j is purely a function
of x, such that the choice of g has no effect on f̌ j , and g˚ is thus still optimal.

Finally, to fulfil (43), let jmax P J´2, L1K be chosen such that

max
jPJ´2,L1K

f̌ j p̊x, g˚q “ f̌ jmax p̊x, g˚q.

Then we have

mintz : pz, gq P projz,gpP̌ LP,α
¯ q|x“x̊qu “ max

jPJ´2,L1K
f̌ j p̊x, g˚q “ f̌ jmax p̊x, g˚q

“mintz : pz, gq P projz,gpP̌ LP,α
¯jmax

q|x“x̊qu ď mintz : pz, gq P projz,gpP̌ LP,α
¯ q|x“x̊qu,

as required. [\

The next auxiliary result we need is a lemma concerning reflections over
x “ 1

2 in P̌ IP,α
¯

px,g,αq
and P̌ LP,α

¯
px,g,αq

for the case where α1 is not fixed.

Lemma 3. Let L ě 0, let x̊ P X̌IP and assume 1 R I, so that α1 is not fixed.
Then

projg,αJ2,LK
pP̌ IP,α

¯
px,g,αq

|x“x̊q “ projg,αJ2,LK
pP̌ IP,α

¯
px,g,αq

|x“1´x̊q. (44)

Furthermore,

x̊2 ´ f̌ j p̊x, g˚q “ p1 ´ x̊q2 ´ f̌ jp1 ´ x̊, g˚q for all j P J0, L1K. (45)

That is, the maximum errors from the lower bounds coincide. Similarly,

x̊2 ´ f̌´2p̊x, g˚q “ p1 ´ x̊q2 ´ f̌´1p1 ´ x̊, g˚q, (46)

x̊2 ´ f̌´1p̊x, g˚q “ p1 ´ x̊q2 ´ f̌´2p1 ´ x̊, g˚q, (47)

where g˚ is defined on Lemma 2. Lastly,

x̊2 ´ f̌ p̊x, g˚q “ p1 ´ x̊q2 ´ f̌p1 ´ x̊, g˚q. (48)
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Proof. Recall that P̌ IP,α
¯

px,g,αq
is formed from the constraints in SL and TL1 , along

with fixing binary variables αI “ α
¯
. It is easy to check that p̊x, g,αq P P̌ IP,α

¯
px,g,αq

if an only if p1´ x̊, g, ᾱq P P̌ IP,α
¯

px,g,αq
, where ᾱ1 :“ 1´α1 and ᾱi :“ αi for i P Izt1u.

Thus, (44) holds due to this correspondence.
For j P J0, L1K, we have

x̊2 ´ f̌ j p̊x, g˚q “ x̊2 ´

˜

x̊ ´

j
ÿ

i“1

2´2ig˚
i ´ 2´2j´2

¸

“ p1 ´ 2x̊q ` x̊2 ´

˜

p1 ´ 2x̊q ` x̊ ´

j
ÿ

i“1

2´2ig˚
i ´ 2´2j´2

¸

“ p1 ´ x̊q
2

´

˜

1 ´ x̊ ´

j
ÿ

i“1

2´2ig˚
i ´ 2´2j´2

¸

“ p1 ´ x̊q2 ´ f̌ jp1 ´ x̊, g˚q.

Thus (48) holds. Similarly, (47) holds as

x̊2 ´ f̌´1p̊x, g˚q “ x̊2 ´ p2x̊ ´ 1q

“ p1 ´ x̊q
2

“ p1 ´ x̊q2 ´ f̌´2p1 ´ x̊, g˚q.

Lastly, (46) holds by considering the substitution x̊ Ð 1 ´ x̊ from (47).
The same secondary result holds if f̌ jpx, gq is replaced with f̌px, gq. This

follows since each constituting function (for the pair j “ ´1, j “ ´2) is sym-
metric about x “ 1

2 w.r.t. the maximum error; the pointwise maximum over the
functions retains the same symmetry. Similarly, the same result holds if I “ H,
such that X̌ “ r0, 1s. [\

The following lemma formalizes the convex hull of convex functions whose
domain is a finite union of closed and bounded intervals. By gaps, we refer to the
open intervals in the convex hull of the domain but do not intersect the domain.

Lemma 4. Let X Ď R be a finite union of compact intervals, and let F : convpXq Ñ

R be a convex function. For any x̄ P convpXqzX, define

x̄´ :“ maxtx P X : x ă x̄u and x̄` :“ mintx P X : x ą x̄u.

Now define FX : convpXq Ñ R,

FXpxq “

$

’

&

’

%

F pxq, if x P X,

λF px´q ` p1 ´ λqF px`q,
if x R X, for x “ λx´ ` p1 ´ λqx`,

with λ P p0, 1q.

(49)
Then we have

convpepiXpF qq “ epiconvpXqpFXq.
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This lemma is proved in Appendix C. We are now ready to prove Theorem 2.
We denote the boundary of the set X by BX.
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Fig. 10. The projected MIP convex hull for L “ 2, L1 “ 3 where we fix α2 “ 0.
In particular, note that at the boundary points BX̌IP

“ t0, 2
8
, 6
8
, 1u, the tight lower-

bounding inequalities are z ě 0, z ě 2x´ 1 and z ě F 1
´ 2´4. Thus, on the gap p 2

8
, 6
8

q

the functions F̌ 2, F̌ 3 are not needed to describe the convex hull of the MIP.

Proof (of Theorem 2).
As discussed before, we only need to show that P̌ IP,α

¯L,L1
is sharp to conclude

that P IP
L,L1

is hereditarily sharp. In particular, we need to show that

convpprojx,zpP̌ IP,α
¯L,L1

qq “ projx,zpP̌ LP,α
¯L,L1

q.

Reduction to L1 “ L: Recall that L1 ě L holds by definition.

Claim. We claim that it suffices to reduce L1 to L to conclude hereditary sharp-
ness of P IP

L,L1
.

Claim proof: Assume that L1 ą L holds. To construct P̌ IP,α
¯L,L1
from P̌ IP,α

¯L,L1´1, we
simply maintain the same fixing αI “ α

¯
, then add a new variable gL1

ě 0,
together with the new constraints

gL1 ď 2gL1´1, gL1 ď 2p1 ´ gL1´1q, (from (17c) via (13))

z ě x ´

L1
ÿ

i“1

2´2igi ´ 2´2L1´2. (from (17d))

We then note the following:
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1. It holds P̌ IP,α
¯L,L1

Ď P̌ IP,α
¯L,L1´1, since L1 ą L1 ´ 1, and thus there are more

inequalities used to define P̌ IP,α
¯L,L1
.

2. We have P̌ IP,α
¯L,L1

|xPBX̌IP “ P̌ IP,α
¯L,L1´1|xPBX̌IP . To see this, first notice that BX̌IP Ď

t i
2L

: i P J2LKu, since I Ď JLK. Thus, for L1 ą L, the inequality z ě

x ´
řL1

i“1 2
´2igi ´ 2´2L1´2 is not tight at any of these points in BX̌IP; see

Proposition 1, Item 3.
3. It follows from the previous equation that for any x̄ P BX̌IP, we have

projx,zpP̌ IP,α
¯L,L1´1|x“x̄q “ projx,zpP̌ IP,α

¯L,L1
|x“x̄q “ tpx, zq : z ě F̌ pxq, x “ x̄u.

4. When we restrict to the domain convpX̌IPqzX̌IP and consider the convex
hulls, we have equality as we reduce L1, i.e.

convpprojx,zpP̌ IP,α
¯L,L1´1q|xPconvpX̌IPqzX̌IPq “ convpprojx,zpP̌ IP,α

¯L,L1
q|xPconvpX̌IPqzX̌IPq.

This is due to Item 2, the convexity of F̌ and Lemma 4.

Thus, the convex hull remains unchanged across the gaps in X̌IP, and since the
LP relaxation does not weaken, sharpness in lower bound is maintained; see
Figure 10. This implies that P̌ IP,α

¯L,L1
is sharp if P̌ IP,α

¯L,L1´1 is sharp. The claim then
holds by induction. ˛

We now proceed to prove sharpness of P̌ IP,α
¯L,L by induction on L.

Base case: If L “ 0, then there are no binary variables and, hence, nothing to
branch on; therefore, the result holds trivially.
Induction on L: For the inductive step, we assume that P̌ IP,α̃

¯L´1,L´1 is hereditar-

ily sharp for all possible fixings of α-variables, and show that P̌ IP,α
¯L,L is hereditarily

sharp.
We begin by observing that

projx,z

´

P̌ IP,α
¯L,L

¯

“ epiX̌IPpF̌ q.

By Lemma 4, it follows that

convpepiX̌IPpF̌ qq “ epiconvpX̌IPq

`

F̌X̌IP

˘

,

where F̌X̌IP is defined as in Lemma 4. Thus, proving Theorem 2 is equivalent to
proving that

projx,zpP̌ LP,α
¯L,L q “ epiconvpX̌IPqpF̌X̌IPq.

In particular, it suffices to show that for any x̊ P convpX̌IPq, we have

F̌X̌IP p̊xq “ min
gPP̌LP,α

¯L,L |x“x̊

f̌ p̊x, gq (51)

which we do in the following.
Case I: x̊ P X̌IP. By Theorem 1, P IP

L,L is sharp (i.e. when I “ H). Thus, the
LP lower bounds on z coincide with the MIP lower bounds for MIP-feasible
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points x P X̌IP, such that we have projx,zpP̌ LP,α
¯L,L q|xPX̌IP “ epiX̌IPpF̌ q|xPX̌IP .

This implies (51).
Case II: x̊ P convpX̌IPqzX̌IP. Let x̊´, x̊` P X̌IP as defined in Lemma 4. Since

x̊ R X̌IP, it follows that x̊´, x̊` P BX̌IP.
Case II.A: 1 R I. Assume 1 R I.

Case II.A.1: r̊x´, x̊`s Ď BX̌IP X r0, 1{2s. We make use of the induction hypothe-
sis here. To this end, we will work with L ´ 1 layers. We will decorate variables
and parameters from the smaller set using “˜”.

Define α̃
¯
:“ α

¯
and Ĩ :“ ti´ 1 : i P Iu, i.e. the same variables αi are fixed but

with indices decremented by 1. Now, define the linear map

Φ : r0, 1s ˆ r0, 1s ˆ r0, 1sL´1 ˆ r0, 1sL´1 Ñ r0, 1s ˆ r0, 1s ˆ r0, 1sL ˆ r0, 1sL

such that px̃, z̃, g̃, α̃q ÞÑ px, z, g,αq is defined via

x “ x̃
2 , z “ z̃

4 ,
g1 “ x̃, gJ2,LK “ g̃,
α1 “ x̃, αJ2,LK “ α̃.

(52)

For convenience, under the definitions above, we write x “ Φxpx̃q, z “ Φzpz̃q,
g “ Φgpg̃q, and α “ Φαpα̃q, and note that g0 “ x and g̃0 “ x̃.

Claim. Φ
´

P̌ IP,α̃
¯L´1,L´1

¯

“ P̌ IP,α
¯L,L

ˇ

ˇ

ˇ

xPconvpX̌IPXr0,1{2sq
.

Claim proof: Let px̃, z̃, g̃, α̃q P P̌ LP,α̃
¯L´1,L´1 such that z̃ is minimal, and let px, z, g,αq “

Φpx̃, z̃, g̃, α̃q. We will show that px, z, g,αq P P̌ IP,α
¯L,L

ˇ

ˇ

ˇ

xPconvpX̌IPXr0,1{2sq
. To do so,

we reference the formula (35), and show that Constraints (17b), (17c), (17d)
and (17f) hold for px, z, g,αq.

Since z̃ is minimal, we have z̃ “
˜̌f jpx̃, g̃q for some j. We claim that z “

f̌ j1

px, gq for some j1.
If j ě 0, then, noting that 1

4 x̃ “ 1
2 x̃ ´ 1

4 x̃ “ x ´ 1
4g1, we have

z “ Φzpz̃q

“ 1
4 pf̌ jpx̃, g̃qq

“ 1
4 px̃ ´

řj
i“1 2

´2ig̃i ´ 2´2j´2q

“ x ´ 1
4g1 ´ 1

4 p
řj

i“1 2
´2ig̃i ´ 2´2j´2q

“ x ´
řj`1

i“1 2
´2igi ´ 2´2pj`1q´2 “ f̌ j`1px, gq.

If j “ ´1, we have

z “ Φzpz̃q “ 1
4 pf̌´1px̃, g̃qq “ 1

4 p2x̃ ´ 1q “ x ´ 1
4 “ f̌0px, gq.

Finally, if j “ ´2, then

z “ Φzpz̃q “ 1
4 pf̌´1px̃, g̃qq “ 0 “ f̌´2px, gq.
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Thus, we have that Φzpz̃q ě f̌ jpΦxpx̃q, Φgpg̃qq for all j ‰ 1, where the absence
of f̌´1px, gq is due to the fact that f̌´1px, gq ď 0 for x P r0, 1

2 s, such that that

the corresponding bound is inactive on Φxp
˜̌XLPq.

Note that the above calculations also imply that, for all j̃ P J´2, L ´ 1K and

for all px̃, g̃q P projx,gpP̃ LP
px,g,αq

q, we have for some j P J´2, LK that Φzp
˜̌f j̃px̃, g̃qq “

f̌ jpΦxpx̃q, Φgpgqq. Further, since each j̃ maps to a unique j (with only the inactive

j “ ´1 skipped), this implies that Φzp
˜̌fpx̃, g̃qq “ f̌pΦxpx̃q, Φgpgqq. Thus, we can

conclude that (17d) and (17f) hold.

Next, we argue that px, g,αq P projx,g,αJ2,LK
pP̌ LP,α

¯
px,g,αq

q. This implies in par-

ticular that (17b) as well as (17c) hold and that we have αI “ α
¯ I .

Since g1 “ x̃ “ 2x, we observe that P̌ LP,α
¯

px,g,αq
can be written as the set of

points px, g,αq P r0, 1s ˆ r0, 1sL ˆ r0, 1sL such that

g0 “ x
gi “ 2gi´1 i “ 1 or i P I, α

¯i “ 0
gi “ 2p1 ´ gi´1q i P I, α

¯i “ 1
|gi´1 ´ αi| ď gi ď minp2gi´1, 2p1 ´ gi´1qq i P JLKzI, i ě 2

αI “ α
¯ I

x, gi, αi P r0, 1s i P JLK.

In this form, it is straightforward to confirm px, g,αq P P̌ LP,α
¯

px,g,αq
from the corre-

sponding form for P̃ LP
px,g,αq

: since the indices for both the map on g and on the

shift from Ĩ to I are shifted by 1 in the same direction, with the same choice
of α

¯
, all equality constraints on gi, i P Ĩ, are preserved through the mapping.

Further, the relationship between each gi and gi´1 is likewise preserved, as the
corresponding αi is the same, and finally the choice of g1 is feasible given x.
Thus, all constraints are satisfied, such that px, g,αq P P̌ LP,α

¯
px,g,αq

, yielding for the

choice of z above that px, z, g,αq P P̌ LP,α
¯L,L |xPconvpX̌IPXr0,1{2sq.

Further, from the form for P̌ LP,α
¯

px,g,αq
above, we observe that Φxp

˜̌XIPq “ X̌IP X

r0, 1
2 s and Φxp

˜̌XLPq “ convpX̌IP Xr0, 1
2 sq. To show the first part, we have already

shown that Φxp
˜̌XIPq Ď X̌IP X r0, 1

2 s. To prove the other direction, we simply

reverse the map for any px, g,αq P P̌ IP,α
¯

px,g,αq
|xPr0,1{2s, ignoring α1: letting x̃ “ g1 “

x
2 , g̃ “ gJ2,LK and α̃ “ αJ2,LK, it is easy to confirm px̃, g̃, α̃q P P̃px,g,αq.

To show that projx

´

ΦpP̌ LP,α̃
¯L´1,L´1q

¯

“ convpX̌IP X r0, 1
2 sq, we observe that

convpX̌IPq|xPr0,1{2s is a closed interval with boundary points in X̌IP X r0, 1
2 s “

Φxp
˜̌XIPq, such that convpX̌IP X r0, 1

2 sq “ convpΦxp
˜̌XIPqq “ Φxpconvp

˜̌XIPqq “

Φxp
˜̌XLPq, since Φ is linear in x. ˛

We now show two facts:
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Claim 1. Let x̊ P
˜̌XLP and z̃˚ P argmintz̃ : pz̃, g̃q P projz̃,g̃pP̌ LP,α̃

¯L´1,L´1|x̃“x̊qu

with the corresponding solution g̃˚ defined in Lemma 2. Then

p 1
4 z̃

˚, Φgpg̃˚qq P argmintz : pz, gq P projz,gpP̌ LP,α
¯L,L |x“Φxpx̃qqu.

Claim 2. We have z̃ “
˜̌FX̌IPpx̃q if and only if Φzpz̃q “ F̌X̌IPpΦxpx̃qq, such that

F̌X̌IPpΦxpx̃qq “ 4 ˜̌FX̌IPpx̃q.

By the sharpness of P̌ IP,α̃
¯L´1,L´1, these facts then imply that

F̌X̌IPpΦxpx̃qq “ 4 ˜̌FX̌IPpx̃q “ 4 min
gPP̌LP,α̃

¯L´1,L´1|x“x̃

pf̌ p̊x, gqq “ min
gPP̌LP,α

¯L,L |x“Φxpx̃q

pf̌ p̊x, gqq,

such that (51) holds.

Proof of Claim 1. Let x̃ P
˜̌XLP and z̃˚ :“ mintz : pz, gq P projz,gpP̌ LP,α̃

¯L´1,L´1|x“x̃qu,
and let g̃˚ be the optimizing solution from Lemma 2. For convenience, let
x̊ :“ Φxpx̃q and g˚ :“ Φgpg̃˚q. Then g˚ takes on the optimal form from Lemma 2,

with z̃˚ “
˜̌fpx̃, g̃˚q, yielding

z˚ :“ Φzpz̃˚q “ Φzp
˜̌fpx̃, g̃˚qq “ f̌ p̊x, g˚q “ mintz : pz, gq P projz,gpP̌ LP,α

¯L,L |x“x̊qu,

such that p 1
4 z̃

˚, Φgpg̃˚qq P argmintz : pz, gq P projz,gpP̌ LP,α
¯L,L |x“x̂qu, as required.

As a corollary, observing that ˜̌fpx̃q “ mintz : pz, gq P projz,gpP LP
´ |x“x̊qu, and

likewise for f̌ p̊xq, we have that Φzp
˜̌fpx̃qq “ 1

4
˜̌fpx̃q “ f̌ p̊xq.

Proof of Claim 2. In order to show z̃ “
˜̌FX̌IPpx̃q if and only if Φzpỹq “ F̌X̌IPpΦxpx̃qq,

we observe that, for any x̃ P X̃, we have Φxpx̃q P X, and therefore

Φxp
˜̌FX̌IPpx̃qq “ Φxp

˜̌fpx̃qq “ f̌pΦxpx̃qq “ F̌X̌IPpΦxpx̃qq.

Consequently, Φzp
˜̌FX̌IPpx̃qq “ F̌X̌IPpΦxpx̃qq holds on X̃. Now, by Lemma 4,

across any gap x̃´, x̃` P X̃ for which px̃´, x̃`q X X̃ “ H and x̃ P rx̃´, x̃`s, we

have that ˜̌FX̌IPpx̃q is on the line between the points px̃´,
˜̌fpx̃´qq and px̃`,

˜̌fpx̃`qq.
Thus, since x̊ :“ Φxpx̃q, and since Φ is linear in x and z, f̌ p̊xq lies on the line

between the points pΦxpx̃´q, ˜̌fpx̃´qqq and Φxppx̃`q, ˜̌fpx̃`qq.

Now, observe that, since Φxp
˜̌Xq “ X X r0, 1

2 s, we have that px´, x`q :“
pΦxpx̃´q, Φxpx̃`qq is a gap in X, with x´, x` P X and px´, x`q X X “ H.

Furthermore, as x`, x´ P X, we have that F̌X̌IPpx̂q “ Φxp
˜̌FX̌IPpx̃´qq, and simi-

larly for x`. Then, by Lemma 4, we have for x P px`, x´q that F̌X̌IPpΦxpx̃qq “

F̌X̌IPpxq “ ΦxpF̌X̌IPpx̃qq, as required.
Case II.A.2: r̊x´, x̊`s Ď convpX̌IP X r1{2, 1sq. Applying Lemma 3 to P̌ IP,α

¯ , we

immediately recover sharpness on 1 ´ Φxp
˜̌XLPq “ convpX̌IP X r 12 , 1sq. To see
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this, let x P Φxp
˜̌XLPq. Then, via Lemma 3, we obtain exactly the same feasible

regions for g,α with x “ 1 ´ x̊ as with x “ x̊, i.e. projg,αJ2,LK
pP̌ IP,α

¯
px,g,αq

|x“x̊q “

projg,αJ2,LK
pP̌ IP,α

¯
px,g,αq

|x“1´x̊q, and moreover, similar to Lemma 3, it is not hard to

show that we have x̊2 ´ F̌ px̂q “ p1 ´ x̊q2 ´ F̌ p1 ´ x̊q. Thus, we have that both
F̌ p1 ´ x̊q and min

gPP̌LP,α
¯L,L |x“x̊

pf̌p1 ´ x̊, gqq maintain the same distance below

p1 ´ x̊q2 as F̌X̌IP p̊xq and min
gPP̌LP,α

¯L,L |x“x̊
pf̌ p̊x, gqq, respectively. Since the second

pair coincides, so must the first pair, such that

F̌X̌IPp1 ´ x̊q “ min
gPP̌LP,α

¯ |x“x̊

pf̌p1 ´ x̊, gqq,

and therefore sharpness holds on 1 ´ Φxp
˜̌XLPq.

Case II.A.3: 1
2 P r̊x´, x̊`s.

Since we showed sharpness on both convpX̌IPXr0, 1
2 sq and convpX̌IPXr 12 , 1sq,

we only have to show sharpness on the gap p̊x´, x̊`q in X̌IP. Note, in this case,
1
2 R X̌IP. We wish to show that mingPP̌LP,α

¯ |x“x̊
pf̌ p̊x, gqq coincides with the line

between p̊x´, f̌ p̊x´qq and p̊x`, f̌ p̊x`qq.
To show this, we first note that both endpoints coincide with f̌ jmaxpx, g˚q

for some jmax, and by Lemma 3, both this value of j and the corresponding
solution g˚ must be the same for both gap endpoints. Further, since x̊´, x̊`

are the endpoints of a gap, we have that f̌ p̊x´q “ x̊2
´ and f̌ p̊x`q “ x̊2

`. This

can be seen as follows: first, by [7, Lemma 6], we have that each f̌ j , j ě 0,
is incident with x2 exactly at the points x “ k

2j ` 1
2j`1 , k “ 0, . . . , 2j ´ 1.

Furthermore, the points at which the α-vector changes, and thus the possible
gaps in X̌IP, are exactly the points x̊ “ k2´L, which must take the form above
for some j P J0, L ´ 1K, so that F̌ j´1pxq “ x2 for x P tx̊´, x̊`u. Since each other
f̌ jpxq ď x2 at these points, this yields f̌pxq “ x2 for x P tx̊´, x̊`u.

Now, let ra1, b1s be the bounds on g1 from Lemma 1. Then we have g˚
1 “ b1:

through the mapping Φ, we have g˚
1 “ x̃ “ b̃0 at both x̊´ and x̊`, where b̃0 is

defined in the manner of Lemma 1. Thus, since g1 is subject to every constraint

in P̌ IP,α
¯

px,g,αq
that x̃ is in ˜̌P IP,α

¯
px,g,αq

, we have that b1 ď b̃0 “ g˚
1 ď b1, such that

g˚
1 “ b1.

Furthermore, by the convexity of projx,g

´

P̌ LP,α
¯

px,g,αq

¯

, since p̊x´, g˚q, p̊x`, g˚q P

projx,g

´

P̌ LP,α
¯

px,g,αq

¯

, we have that p̊x, g˚q P projx,g

´

P̌ LP,α
¯

px,g,αq

¯

for all x̂ P p̊x´, x̊`q.

Thus, we have for any such x̊ that

g˚
1 “ b1 ě minp2x̊, 2p1 ´ x̊q, b1q ě g˚

1 ,

yielding by Lemma 2 that g˚ P argmintz : pz, gq P projz,gpP̌ LP,α
¯L,L q|x“x̊u. Thus,

we have
f̌ p̊x, g˚q “ min

gPP̌LP,α
¯L,L |x“x̊

pf̌ p̊x, gqq “ f̌ p̊xq

is linear in x̊ across the gap r̊x´, x̊`s and coincides with f̌ p̊xq at the endpoints,
as required. Therefore, we have that P̌ LP,α

¯L,L is sharp across the gap. We have now
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established sharpness of P̌ LP,α
¯L,L over all of convpPpx,g,αqq, and thus the proof is

complete for 1 R I.
Case II.B: 1 P I. Finally, to recover sharpness if 1 P I, we only have to observe
that inserting 1 into I, thereby restricting α1 “ 1 or α1 “ 0, simply restricts
P̌ IP,α

¯L,L to either x P ΦxpX̌IPq or x P 1´ΦxpX̌IPq, on which sharpness holds exactly
as the sharpness result on the image of Φ (or its reflection) with 1 P I, with one
difference: we define Φ so that α1 “ α̂1. However, this difference has no effect
on the z-minimal solutions for g˚

1 within X̌LP, and thus no effect on sharpness.
[\

C Auxiliary Results and Proofs

In this section of the appendix, we give the proofs of Lemma 4 and Proposition 7
which we have moved here for better readability.

C.1 Epigraphs Over Non-Contiguous Domains

Here we present the proof of Lemma 4.

Proof (Lemma 4). We first note that we have FXpxq ě F pxq for all x P convpXq:
for all x P convpXq, we have that either FXpxq “ F pxq or that FXpxq is the line
between two points on the graph of f , which must lie above the graph of f by the
convexity of f . Further, we have that FX is convex, as it is a maximum between
the convex function F and some of its secant lines, which are also convex.

Now, trivially, by the convexity of FX , we have

convpepiXpF qq “ convpepiXpFXqq Ď convpepiconvpXqpFXqq “ epiconvpXqpFXq

To show that epiconvpXqpFXq Ď convpepiXpF qq, let px, yq P epiconvpXqpFXq. Then
if x P X, y ě FXpxq “ F pxq, such that px, yq P epiXpF q Ď convpepiXpF qq.
On the other hand, if x P convpXqzX, then by definition of FX we have that
there exist some λ P r0, 1s and x1, x2 P X such that x “ λx1 ` p1 ´ λqx2 and
FXpxq “ λF px1q`p1´λqF px2q. Then we have that px, yq is a convex combination
of the points px1, fpx1q ` py ´FXpxqqq and px2, F px2q ` py ´FXpxqqq, which are
in epiXpF q (since y ´ FXpxq ě 0), yielding px, yq P convpepiXpF qq as required.

[\

C.2 Volume Proof for Bin2 and Bin3

Now we prove Proposition 7.

Proof (Proposition 7). Let P IP
L,L1

be the MIP relaxation Bin2, where FL is the

sawtooth approximation of zx “ x2 and zy “ y2 that consists of secant lines
to x2 between consecutive breakpoints xk “ k2´L and yk “ k2´L for k P J0, 2LK.
Further, for L1 Ñ 8 we have

lim
L1Ñ8

tpp, zpq P r0, 1sˆR : pp, zpq P QL1u “ tpp, zpq P r0, 1sˆR : pp, zpq P epir0,1spp
2qu
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under Hausdorff distance. As a result, we obtain

lim
L,L1Ñ8

pprojx,y,zpP IP
L,L1

qq “ tpx, y, zq P r0, 1s2 ˆR :

1
2

`

px ` yq2 ´ FLpxq ´ FLpyq
˘

ď z ď 1
2

`

4FL
`

x`y
2

˘

´ x2 ´ y2
˘

u.

Now let and wx “ wy “ 2´pL´1q be the distance between any two consecu-
tive breakpoints xk, xk´1 and yk, yk´1, respectively, and consider the volume of
projx,y,zpP IP

L,L1
q over the grid piece rxk´1, xks ˆ ryk´1, yks:

lim
L,L1Ñ8

volpprojx,y,zpP IP
L,L1

qq

“ 1
2

ż xk

xk´1

ż yk

yk´1

`

4FL
`

x`y
2

˘

´ x2 ´ y2 ´
`

px ` yq2 ´ FLpxq ´ FLpyq
˘˘

dydx

“ 1
2

ż xk

xk´1

ż yk

yk´1

``

4FL
`

x`y
2

˘

´ px ` yq2
˘

` pFLpxq ´ x2q ` pFLpyq ´ y2q
˘

dydx

“
wy

2

ż xk

xk´1

pFLpxq ´ x2q dx ` wx

2

ż yk

yk´1

pFLpyq ´ y2q dy

` 2

ż xk

xk´1

ż yk

yk´1

`

FL
`

x`y
2

˘

´ p
x`y
2 q2

˘

dydx.

The first two integrals are each the overapproximation volumes for the sawtooth
approximation over two consecutive univariate domain segments, each of which
has an area of 1

62
´3L, see [7, Appendix A]. Thus, since wx “ wy “ 2 ˚ 2´L, we

have that the first two integrals add up to 2
32

´4L.
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To process the third integral, we apply the two substitutions u “
px´xk´1q`py´yk´1q

2

and v “
px´xk´1q´py´yk´1q

2 . The integral then becomes

2

ż xk

xk´1

ż yk

yk´1

`

FL
`

x`y
2

˘

´ p
x`y
2 q2

˘

dydx

“ 2

ż 2´L

0

pFL
´

u `
xk´1`yk´1

2

¯

´ pu `
xk´1`yk´1

2 q2q

ż u

´u

1 dvdu

` 2

ż 2¨2´L

2´L

pFL
´

u `
xk´1`yk´1

2

¯

´ pu `
xk´1`yk´1

2 q2q

ż 2¨2´L
´u

´p2¨2´L´uq

1 dvdu

“ 4

ż 2´L

0

upFL
´

u `
xk´1`yk´1

2

¯

´ pu `
xk´1`yk´1

2 q2q du

` 4

ż 2¨2´L

2´L

p2 ¨ 2´L ´ uqpFL
´

u `
xk´1`yk´1

2

¯

´ pu `
xk´1`yk´1

2 q2q du

“ 8

ż 2´L

0

upFL
´

u `
xk´1`yk´1

2

¯

´ pu `
xk´1`yk´1

2 q2q du (J1)

“ 8

ż 2´L

0

upup2´L ´ uqq du pJ2q

“ 8

ż 2´L

0

p2´Lu2 ´ u3q du

“ 8p 1
32

´4L ´ 1
42

´4Lq “ 2
32

´4L.

The steps J1 and J2 rely on the observation that FL is the secant line to x2 across
the intervals r

xk´1`yk´1

2 ,
xk´1`yk´1

2 `2´2Ls and r
xk´1`yk´1

2 `2´2L,
xk´1`yk´1

2 `2¨

2´2Ls, due to the positions of xk´1 and yk´1. In addition, for some x̊ P rxk´1, xks,
the error between and x2 and the secant line to x2 at points xk´1 and xk is
given by px ´ xk´1qpxk ´ xq - the product of distances to each endpoint. Thus,
for u P r0, 2´Ls, we have

FL
´

u `
xk´1`yk´1

2

¯

´ pu `
xk´1`yk´1

2 q2 “ up2L ´ uq,

yielding the validity of step J2. On the other hand, to show that step J1 is valid,
we observe for u P r0, 2´Ls that

FL
´

u `
xk´1`yk´1

2

¯

´ pu `
xk´1`yk´1

2 q2 “ pu ´ 2Lqp2´2L ´ uq

holds, such that the second integral becomes the first integral under the substi-
tution ũ “ 2´L ´u, since the secant-error portion of the integrand is symmetric
about u “ 2´L. Thus, the volume related to the second integral is 4

32
´4L. The

volume of P IP
L,L1

over each grid piece converges to 2¨2´4L, yielding a total volume
convergence of

lim
L1Ñ8

volpprojx,y,zpP IP
L,L1

qq “ 22pL´1qp2 ¨ 2´4Lq “ 1
22

´2L.

The proof for Bin3 is similar and therefore omitted here.



Enhancements of Discretization Approaches for Non-Convex MIQCQPs 57

D Instance set

In Table 8 we show a listing of all instances of the computational study from
Section 6. The boxQP instances are publicly available at https://github.com
/joehuchette/quadratic-relaxation-experiments. The ACOPF instances are also
publicly available at https://github.com/robburlacu/acopflib. The QPLIB in-
stances are available at https://qplib.zib.de/. In total, we have 60 instances, of
which 30 are dense and 30 are sparse.

Table 8. IDs of all 60 instances used in the computational study. In bold are the IDs
of the instances that are dense.

boxQP instances: spar

020-100-1 020-100-2 030-060-1 030-060-3 040-030-1
040-030-2 050-030-1 050-030-2 060-020-1 060-020-2
070-025-2 070-050-1 080-025-1 080-050-2 090-025-1

090-050-2 100-025-1 100-050-2 125-025-1 125-050-1

ACOPF instances: miqcqp ac opf nesta case

3 lmbd api 4 gs api 4 gs sad 5 pjm api 5 pjm sad
6 c api 6 c sad 6 ww sad 6 ww 9 wscc api

9 wscc sad 14 ieee api 14 ieee sad 24 ieee rts api 24 ieee rts sad
29 edin api 29 edin sad 30 fsr api 30 ieee sad 9 epri api

QPLIB instances: QPLIB

0031 0032 0343 0681 0682
0684 0698 0911 0975 1055
1143 1157 1423 1922 2882
2894 2935 2958 3358 3814

https://github.com/joehuchette/quadratic-relaxation-experiments
https://github.com/joehuchette/quadratic-relaxation-experiments
https://github.com/robburlacu/acopflib
https://qplib.zib.de/
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