
Exact approaches for convex adjustable robust
optimization

Henri Lefebvre, Enrico Malaguti, and Michele Monaci

Abstract. Adjustable Robust Optimization (ARO) is a paradigm for facing
uncertainty in a decision problem, in case some recourse actions are allowed after
the actual value of all input parameters is revealed. While several approaches
have been introduced for the linear case, little is known regarding exact methods
for the convex case. In this work, we introduce a new general framework for
attacking ARO problems involving convex functions in the recourse problem.
We first recall a semi-infinite reformulation of the problem and, provided that
one can solve a non-convex separation problem, show how to solve it either by
a generalized Benders decomposition or by a column-and-constraint generation
approach. For the relevant case in which the uncertainty set has an affine
mapping to a 0-1 polytope, we show that the separation problem can be
reformulated as a convex Mixed-Integer NonLinear Problem, thus allowing us
to derive computationally sound exact methods. Finally, we apply the resulting
algorithms to two different applications, namely a nonlinear facility location
problem and a nonlinear resource allocation problem, to numerically assess
their computational performance.

1. Introduction

Adjustable Robust Optimization (ARO) is a paradigm used to face uncertainty in
case some recourse actions are allowed after the actual value of all input parameters
is revealed. An ARO problem can be formulated as

inf
x∈X

sup
ξ∈Ξ

inf
y∈Y (x,ξ)

g0(x,y), (ARO)

in which X denotes the feasible set of decisions to be taken here and now (first-stage
decisions), Ξ is the uncertainty set, and Y (x, ξ) is the set of all feasible recourse
actions (second-stage decisions) for a given x ∈ X and ξ ∈ Ξ. In this paper we
consider a broad class of ARO problems, characterised by convex objective function
g0 and second stage feasible set. For this class of problems, we devise solution
approaches based on separation of first-stage decisions via a cutting planes approach.
In the very relevant case in which Ξ can be affinely mapped to a 0-1 polytope
(see e.g., Bertsimas and Sim 2004), we show that the separation problem can be
formulated as a convex Mixed-Integer NonLinear Problem (MINLP).

Notations. Matrices and vectors are written in bold case, e.g., A ∈ Rm×n and
b ∈ Rm, while scalars are written in normal font, e.g., aij and bi. We use ≤ to
compare vectors of agreeable size, component-wise and let 0 be the zero-vector
of appropriate size (which will be clear from the context). We denote by R the
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extended real line R ∪ {−∞,∞}. For a given function f : Rn → R, f∗ denotes its
convex conjugate defined as

f∗(y) = sup
x∈dom(f)

{
y⊤x− f(x)

}
(1)

with dom (f) = {x ∈ Rn : f(x) < +∞} its domain. We let f∗ denote its
concave conjugate. Assuming that f is real-valued, its associated perspective
function h : Rn × R≥0 → R is defined as h(x, t) := tf(x/t) if t > 0, and
h(x, 0) = lim inf(v′,t′)→(v,0) t

′f(v′/t′); see Rockafellar (1996), p. 67. For ease of
exposition, we use tf(x/t) to denote the perspective function h(x, t) in the rest of
this paper. For a given convex set S, we let vert (S) denote the set of extreme points
of S, and we let relint(S) denote its relative interior. We recall that a 0-1-polytope
is a polytope whose extreme points are binary vectors.

1.1. Literature review.

1.1.1. Linear case. ARO problems are known to be intractable even in the simple
case in which only linear functions appear in the constraints defining Y (x, ξ);
see Ben-Tal et al. (2004). For this setting, several exact approaches have been
introduced in the literature. A first line of research is based on an adaptation of
Benders’ decomposition algorithm, in which the second-stage problem is dualized
and an epigraph reformulation of the remaining maximization problem is used.
Then, “Benders’ cuts” are dynamically generated in a dynamic way; see, e.g.,
Terry et al. (2009), Bertsimas et al. (2013), Jiang et al. (2014) and Gabrel et al.
(2014). An alternative approach is the column-and-constraint generation algorithm
proposed by Zeng and Zhao (2013). In this scheme, a restricted master problem
is iteratively solved and augmented by introducing second-stage variables and
constraints associated with harmful scenarios. The identification of such scenarios
requires the solution of a bilevel problem. Later, Ayoub and Poss (2016) solves
this bilevel problem by means of a MILP obtained by exploiting a description of
the uncertainty set in terms of its extreme points. Finally, the Fourier-Motzkin
elimination technique is used in Zhen et al. (2018) to remove the second-stage
decisions from the definition of (ARO) and solve the problem to optimality.

Given the complexity results for linear ARO problems, many approximation
methods have been presented in the literature for this class of problems. For
instance, Bertsimas and Caramanis (2010) introduce the finite adaptability approach
(also known as K-adaptability), in which a fixed number of second-stage decisions
must be taken in the first stage so that each of them is used to address a subset of
the uncertainty set, the union of such subsets being the whole original uncertainty
set. An MILP formulation was introduced by Hanasusanto et al. (2015) for problems
with binary second-stage decisions and objective uncertainty only. For the general
(still linear) case, a scenario-based branch-and-bound algorithm was later proposed
by Subramanyam et al. (2019). The Affine Decision Rule (ADR) approach was
introduced by Ben-Tal et al. (2004) in which second-stage decisions are replaced by
affine functions of the uncertainty. Though this restriction may seem arbitrary and
restrictive, experimental evidences show that the obtained approximation is typically
of good quality. Moreover, in Bertsimas and Goyal (2011), the authors show that
an optimal affine policy always exists when the uncertainty set is a simplex and
the uncertain parameters only appear in the right-hand-side of the second-stage
linear problem. The work in Bertsimas and Bidkhori (2014) provides, for the same
class of problems, a priori approximation bounds between the solution of (ARO)
and its ADR approximation based on geometrical properties of the uncertainty
set. In addition, the authors show that this gap is zero when the uncertainty set
is the intersection of an ℓ2-ball and the non-negative orthant. In Bertsimas and
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Ruiter (2016), the authors derive a dualized formulation of linear ARO problems
and show that its ADR approximation is typically faster to solve than its primal
ADR counterpart. They also show that an optimal primal ADR can be derived
from an optimal dual ADR.

1.1.2. Convex case. Regarding the convex case, occurring when Y (x, ξ) is defined by
convex functions of the first- and second- stage variables, the techniques introduced
for the linear case are not directly applicable; the scientific literature is much more
sparse and existing approaches focus on specific settings.

Takeda et al. (2007) considers ARO problems in which the uncertainty set is
expressed as the convex hull of a finite set of points, and report conditions under
which such problems can be reduced to a single-stage problem. In Boni and Ben-Tal
(2008), the authors consider ARO problems with ellipsoidal uncertainty set and
conic quadratic second-stage constraints. They show that an optimal ADR can be
obtained by means of a semidefinite problem. In Ruiter et al. (2022), the authors
extend the approach proposed by Bertsimas and Ruiter (2016) and derive a dualized
problem for a class of convex ARO problems. Linearity of the dualized problem with
respect to the uncertain parameters allows then to obtain a tight approximation
by using ADRs. Moreover, the authors show that a primal feasible ADR can be
derived from an optimal dual ADR. This is in contrast with the result of Bertsimas
and Ruiter (2016) in which an optimal primal ADR could be derived from the
dual. Moreover, we enlight that their approach considers a smaller class of problems
compared to that studied in this work for they require gi to be separable in x and y
for all i = 1, ...,m (i.e., there exists gXi and gYi such that gi(x,y) = gXi (x)+ gYi (y)).

1.2. Main assumptions. Let nX , nΞ, nY and m be given natural numbers, we
make the following assumptions.

Assumption 1. The first-stage feasible set X ⊂ RnX is bounded.

Assumption 2. The uncertainty set Ξ ⊂ RnΞ is a bounded polyhedron.

Assumption 3. For each i = 1, . . . ,m and j = 1, . . . , nΞ, we let fij : RnX → R
be given real-valued convex functions; for a given x ∈ RnX , we denote by F (x) the
m× nΞ matrix whose generic element is fij(x). Similarly, for each i = 1, . . . ,m,
we let gi : RnX+nY → R be a real-valued convex function; for a given x ∈ RnX and
y ∈ RnY , we denote by g(x,y) the m-dimensional vector whose generic element
is gi(x,y). For given x ∈ X and ξ ∈ Ξ, the second-stage feasible space Y (x, ξ) is
defined by

Y (x, ξ) = {y ∈ RnY : F (x)ξ + g(x,y) ≤ 0} . (2)
Moreover, we assume that the objective function g0 : RnX+nY → R is a real-valued
convex function and that relint(dom (gi)) ̸= ∅ for all i = 0, ...,m.

Assumptions 1-3 simply state that (ARO) is an ARO problem with polyhedral
uncertainty set and convex second-stage feasible space. Additionally, we make the
following technical assumption used to prove our main theorem.

Assumption 4. For any (x0,x) ∈ R×X and any ξ ∈ Ξ, the set

Z(x0,x, ξ) =

{(
β0

β

)
∈ Rm+1 : ∃y ∈ RnY ,

g0(x,y)− x0 ≤ β0

F (x)ξ + g(x,y) ≤ β

}
(3)

is closed.

We now present an example illustrating Assumption 4.
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Example 1. To ease our example, let us assume that nY = 1 and F = 0, i.e., the
set Y (x, ξ) does not depend on x and ξ. We consider a case defined by g0(x, y) =
g0(y) = 1/y and, for some l ∈ R and u ∈ R,

g(x, y) = g(y) =

(
y − u
l − y

)
. (4)

Then, Assumption 4 requires that

Z(x0,x, ξ) = Z(x0) =

(β0, β1, β2) ∈ R3 : ∃y ∈ R,
1/y − x0 ≤ β0

y − u ≤ β1

l − y ≤ β2

 (5)

is closed. We treat two cases.
Case l = −∞ and u = +∞: Then Z(x0) reduces to {β0 ∈ R : ∃y ∈ R, 1/y −

x0 ≤ β}. For x0 = 0, we have Z(0) = (0,∞) which is not closed. Thus,
Assumption 4 is not satisfied.

Case l, u ∈ R\{0}: Then, Z(x0) reduces to

{(β0, β1, β3) ∈ R3 : ∃y ∈ [l − β2, u+ β1] : 1/y − x0 ≤ β0}, (6)

which is always closed.

Finally, the next lemma, which directly derives from Geoffrion (1972), gives a
sufficient condition for Assumption 4 to hold.

Lemma 1. Assume that, for any x ∈ X and any ξ ∈ Ξ, the set Y (x, ξ) is compact
and that g0 is continuous. Then, Assumption 4 holds.

1.3. Contributions. As discussed in the literature review, few exact methods for
convex ARO have been proposed so far, mostly relying on strong assumptions. In
this work, we first recall a quite general reformulation for ARO problems, involving
an exponential number of constraints. Then we start filling the literature gap by
showing that the separation of those constraints can be performed via the solution of
a non-convex program. This result, obtained through the use of convex conjugates
and Fenchel duality, can be applied to any convex ARO, including cases in which the
second stage is an SOCP, an SDP, or a (conic) LP. We show that in a very relevant
case, arising when the uncertainty set can be affinely mapped to a 0-1 polytope,
the resulting separation problem admits a MINLP reformulation. This includes
budgeted uncertainty sets and uncertainty sets expressed as the convex hull of a
finite discrete set. In this case, the full power of modern MINLP algorithms and
machinery can be exploited for deriving effective solution approaches.

In particular, we consider a generalized Benders decomposition (GBD) algorithm
(Geoffrion 1972) and a Column-and-Constraint-Generation (CCG) method (Zeng
and Zhao 2013), for which we show finite convergence under mild hypothesis.

Finally, we give the computational evidence of the applicability of our solution
methods to two applications arising from practical fields. The first one is a nonlinear
version of the Facility Location Problem, involving both binary and continuous
decisions, while the second one is a nonlinear variant of a Resource Allocation
Problem from the literature.
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2. Theoretical development

2.1. A non-convex separation problem. Problem (ARO) can be reformulated
as (see e.g., Takeda et al. (2007))

inf
x0,x

x0 (7a)

s.t. x ∈ X,x0 ∈ R, (7b)
∀ξ ∈ Ξ,∃y ∈ Y (x, ξ), x0 ≥ g0(x,y). (7c)

Since explicitly adding all constraints (7c) to the formulation is not viable in
practice, we follow a separation approach in which, given pair (x0,x), we check
whether a violated constraint exists. Solving the separation problem asks to answer
the following question:
“Given (x0,x) ∈ R×X, can we show that for any ξ ∈ Ξ there exists a ŷ ∈ Y (x, ξ)

such that x0 ≥ g0(x, ŷ) ? If not, can we identify ξ̂ ∈ Ξ such that either Y (x, ξ̂) = ∅
or ∀y ∈ Y (x, ξ̂), x0 < g0(x,y) ?”.

In the following Lemma, we give a sufficient and necessary condition for answering
an easier question: given (x0,x) ∈ R×X and ξ ∈ Ξ, is there a feasible second-stage
decision ŷ ∈ Y (x, ξ) such that x0 ≥ g0(x, ŷ)?

Lemma 2. Let (x0,x) ∈ R×X and ξ ∈ Ξ. Then, if Assumptions 3-4 hold, there
exists ŷ ∈ Y (x, ξ) such that x0 ≥ g0(x, ŷ) if, and only if, the following condition
holds

∀(λ0,λ) ∈ RmY +1
≥0 , inf

y∈RnY

{
λ⊤(F (x)ξ + g(x,y)) + λ0(g0(x,y)− x0)

}
≤ 0. (8)

Proof. First, it is straightforward to verify that ŷ ∈ Y (x, ξ) implies (8). Assume
now that condition (8) holds, in which case we have

sup
(λ0,λ)∈RmY +1

≥0

inf
y∈RnY

{
λ⊤(F (x)ξ + g(x,y)) + λ0(g0(x,y)− x0)

}
≤ 0. (9)

Since (0, 0) is a possible choice for (λ0,λ) in (9), we have that

sup
(λ0,λ)∈RmY +1

≥0

inf
y∈RnY

{
λ⊤(F (x)ξ + g(x,y)) + λ0(g0(x,y)− x0)

}
= 0. (10)

As the left-hand side of (10) is the dual of

inf
y∈RnY

{0 : x0 ≥ g0(x,y),y ∈ Y (x, ξ)} (11)

and has finite value, by Assumption 4 and Theorem 5.1 in Geoffrion (1972), (11)
must be feasible, i.e., there indeed exists y ∈ Y (x, ξ) such that x0 ≥ g0(x,y). □

Remark 1. The condition (8) from Lemma 2 remains valid when adding the
restriction ||(λ0,λ)|| ≤ 1, where ||·|| is any norm of Rm+1. Indeed, scaling does not
impact the sign of the optimization problem in (9).

Thanks to Lemma 2, we now introduce a non-convex optimization problem which
solves the separation problem.

Theorem 1. Let (x0,x) ∈ R×X. Then, if Assumptions 3-4 hold, the following
propositions are equivalent:

(1) ∀ξ ∈ Ξ,∃ŷ ∈ Y (x, ξ), x0 ≥ g0(x, ŷ);
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(2) The following non-convex optimization problem has an optimal objective
value which is non-positive

sup
ξ,λ0,λ,u0,...,um

−
m∑
i=0

λigi|∗x

(
ui

λi

)
+ λ⊤F (x)ξ − λ0x0 (12a)

s.t.

m∑
i=0

ui = 0, (12b)

(λ0,λ) ∈ Λ, (12c)
ξ ∈ Ξ, (12d)

ui ∈ RnY i = 0, 1, . . . ,m, (12e)

with gi|x(•) = gi(x, •), and Λ = {(λ0,λ) ∈ Rm
+ × R+ : ||(λ0,λ)|| ≤ 1}.

Proof. Let (x0,x) ∈ R×X. By Lemma 2, for any ξ ∈ Ξ, there exists ŷ ∈ Y (x, ξ)
such that x0 ≥ g0(x, ŷ) if, and only if, condition (8) is satisfied. Let (λ0,λ) be any
element of Λ. We start by re-arranging the terms of (8) for (λ0,λ) as follows

inf
y∈RnY

{
λ⊤g|x(y) + λ0g0|x(y)

}
+ λ⊤F (x)ξ − λ0x0 ≤ 0, (13)

in which terms which do not depend on y are moved out from the optimization
problem. Now, letting ϕ(y) = λ⊤g|x(y) + λ0g0|x(y), by definition, the inf problem
in (13) is (−ϕ)∗(0). By exploiting the fact that (−ϕ)∗(z) = −ϕ∗(−z) for any z (see
Rockafellar (1996), p. 308), we have that (13) is equivalent to

−ϕ∗(0) + λ⊤F (x)ξ − λ0x0 ≤ 0. (14)

Using standard conjugate rules (see Rockafellar (1996), p. 145), one obtains the
following expression of ϕ∗

ϕ∗(z) = inf
λ0,λ,u0,...,um

m∑
i=1

(λigi|x)
∗(ui) + (λ0g0|x)∗(u0) (15a)

m∑
i=0

ui = z, (15b)

ui ∈ RnY i = 0, 1, ...,m. (15c)

Then, we have (λigi|x)∗(ui) = λigi|∗x(ui/λi) (see Rockafellar (1996), p. 140). The
proof is achieved by requiring that (13) be enforced for all ξ ∈ Ξ. □

The result from Theorem 1 addresses generic convex functions. In the following
two examples, we apply this general result to two prominent special cases. In
particular, we show that Theorem 1 reduces to the results of Ayoub and Poss (2016)
if all involved functions are linear. In the second example, we take interest in
problems with convex functions defined using ℓp-norms.

Example 2 (Linear case). Assume that, for each i = 0, . . . ,m, it holds gi(x,y) =
tix+wiy−bi for given ti ∈ RnX ,wi ∈ RnY and bi ∈ R, and define ri(x) = tix−bi.
By observing that

gi|∗x

(
ui

λi

)
=

{
−ri(x) if ui

λi
= wi

+∞ otherwise
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we conclude that the first case must be enforced and Theorem 1 yields the following
separation problem:

max
ξ,λ0,λ

(r(x) + F (x)ξ)⊤λ+ (r0(x)− x0)λ0 (16a)

s.t. W⊤λ+w⊤
(0)λ0 = 0, (16b)

(λ0,λ) ∈ Λ, (16c)
ξ ∈ Ξ, (16d)

where r(x) denotes the vector with components ri(x) for i = 1, . . . ,m.
We enlight that the derivation requires linearity with respect to y only, and hence the
result remains valid when replacing tix with ti(x) for a generic function ti : RnX →
R. Finally, our result includes the specific case, addressed in Theorem 1 in Ayoub
and Poss (2016), in which F is affine in x, ti = 0 for all i = 1, . . . ,m and w0 = 0.

Example 3 (ℓp-norm objective and constraints). Assume that, for each i = 0,
1, ..., m, it holds gi(x,y) =

∣∣∣∣Ki
Xx+Ki

Y y + χi
∣∣∣∣
pi

+ tix + wiy − bi for given
matrices Ki

X , Ki
Y , χi, vectors ti, wi and scalar bi. Let us denote, for each

i = 0, . . . ,m, ai(x) = Ki
Xx+χi and ri(x) = tix− bi. Finally, let W be the matrix

composed by vectors wi (i = 1 . . . ,m), and r(x) be the vector with components ri(x)
(i = 1, . . . ,m). Then, the separation problem from Theorem 1 reads1

sup
ξ,λ0,λ,z0,...,zm

m∑
i=0

ai(x)⊤zi + (r(x) + F (x)ξ)
⊤
λ+ (r0(x)− x0)λ0 (17a)

s.t.

m∑
i=0

Ki⊤

Y zi +W⊤λ+w0⊤λ0 = 0, (17b)∣∣∣∣zi
∣∣∣∣
p′
i

≤ λi i = 0, 1, ...,m, (17c)

zi ∈ RnY i = 0, 1, ...,m, (17d)
(λ0,λ) ∈ Λ, (17e)
ξ ∈ Ξ. (17f)

2.2. Generalized Benders decomposition. In this section, we introduce a new
GBD algorithm able to solve (ARO) by means of successive separation of infeasible
(x0,x) points.

For notational convenience, we denote by s a generic tuple (ξ, λ0,λ,u
0, ...,um),

and by S the set of all such tuples satisfying constraints (12b)-(12e). In addition,
we introduce function σ defined for each x0 ∈ R, x ∈ X and s ∈ S as the objective
function (12a), i.e.,

σ(x0,x; s) := −
m∑
i=0

λigi|∗x

(
u

λi

)
+ λ⊤F (x)ξ − λ0x0.

In the following theorem, we use the result from Theorem 1 to introduce an
alternative projected formulation of (ARO).

Theorem 2. If Assumption 3-4 hold, Problem (ARO) is equivalently solved by the
following infinite-dimensional problem

inf
x0,x

x0 (18a)

s.t. x ∈ X,x0 ∈ R (18b)
σ(x0,x; s) ≤ 0 ∀s ∈ S. (18c)

If, moreover, X is a convex MINLP set, then this problem is a convex MINLP.

1Full details of the derivation can be found in Appendix A.
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Proof. The reformulation holds by Theorem 1. Assume that X is a convex MINLP
set. To show that the continuous relaxation of (18) is convex, we have to show that,
for any s ∈ S, function (x0,x) 7→ σ(x0,x; s) is convex. Note that since λ, ξ ≥ 0 are
fixed and, for each i = 1, . . . ,m and j = 1, . . . , nΞ, function fij is convex, we have
that x 7→ λ⊤F (x)ξ − λ0x0 is a non-negative sum of convex functions. Thus, it is
convex. We therefore focus on the remaining part and show that x 7→ gi|∗x(π) is
a concave function for any fixed π ∈ RnY . To this end, let π ∈ RnY be fixed with
i = 0, ...,m. By definition, we have

gi|∗x(π) = sup
y∈dom(gi|x)

{ π⊤y − gi|x(y)} = sup
y∈dom(gi|x)

{ π⊤y − gi(x,y)}. (19)

Let us introduce new variables z ∈ RnX such that z = x. Then, the following
holds by Lagrangian duality (note that we have relint(dom (gi)) ̸= ∅ ; see Assumption
3):

gi|∗x(π) = sup
(z,y)∈dom(gi),z=x

{ π⊤y − gi(z,y)} (20)

= inf
λ∈RnX

sup
(z,y)∈dom(gi)

{ λ⊤(z − x) + π⊤y − gi(z,y)} (21)

= inf
λ∈RnX

sup
(z,y)∈dom(gi)

{ −λ⊤x+

(
λ

π

)⊤(
z

y

)
− gi(z,y)} (22)

= inf
λ∈RnX

{−λ⊤x+ g∗i (λ,π)}. (23)

Thus, gi|∗x(π) can be expressed as the infimum of infinitely many affine functions of
x. As a result, it is concave in x. □

Algorithm 1 Generalized Benders decomposition

1: Given an instance of Problem (ARO), a tolerance ε > 0 and an initial set
S0 ⊆ S such that (MPt) is bounded with t = 0.

2: Let t← 0 be an iteration counter.
3: repeat
4: Solve

inf{x0 : (x0,x) ∈ R×X, σ(x0,x; s) ≤ 0 ∀s ∈ St} (MPt)

with a feasibility tolerance ε.
5: if (MPt) is infeasible then Problem (ARO) is infeasible, stop. end if.
6: Let (xt

0,x
t) be an optimal point of (MPt).

7: Solve the separation problem (12) for (xt
0,x

t) and let
st = (ξt, λt

0,λ
t,u0t, ...,umt) denote an optimal point.

8: Let St+1 ← St ∪ {st} and t← t+ 1.
9: until σ(xt

0,x
t; st) ≤ ε

Based on Theorem 2, we can derive a cutting-plane algorithm in which cuts (18c)
are dynamically generated. The complete procedure is reported in Algorithm 1,
with a tolerance ε > 0 used for checking violation of constraints (18c). We now
give sufficient conditions for Algorithm 1 to terminate after a finite number of
iterations. In the following theorem, we show that assuming Lipschitz continuity of
σ on variables (x0,x) is sufficient for finite termination. Later, we show that finite
termination is ensured as well in case set X is discrete.

Theorem 3 (Finite termination - Lipschitz). Let Assumptions 1-4 hold and assume
that (x0,x) 7→ σ(x0,x, ŝ) is Lipschitz continuous for any ŝ ∈ S. Then, Algorithm 1
finitely terminates.
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Proof. Assume that the algorithm does not finitely terminate. It must be that
(MPt) is feasible for all t ≥ 0, otherwise the algorithm would have stopped at Line
5. Moreover, we must have

σ(xt
0,x

t; st) > ε ∀t > 0, (24)

since, otherwise, the algorithm would have stopped at Line 9. Now, consider any
iteration k ∈ N: it must be that

σ(xt
0,x

t; sk) ≤ 0 ∀t > k, (25)

since constraints “σ(x0,x; s
k) ≤ 0” is then part of (MPt) for t > k. Combining (24)

and (25), we have

ε < σ(xk
0 ,x

k; sk)− σ(xt
0,x

t; sk) ∀t > k. (26)

By Lipschitz continuity of σ, there exists K > 0 such that

ε < K∥(xk
0 ,x

k)− (xt
0,x

t)∥ ∀t > k. (27)

Thus, at each iteration t, a ball Bt of center (xt
0,x

t) with radius ε/K is prevented
from being reached in any future iteration. However, by Assumption 1, X is bounded
and, thus, the total volume of all the balls that are cut must be bounded, which
contradicts that t→∞ and that the algorithm does not terminate. □

We now show two cases in which the Lipschitz continuity assumption is verified.

Example 4 (Separable functions). Let us assume that, for each i = 0, . . . ,m,
there exists functions gXi and gYi such that gi(x,y) = gXi (x) + gYi (y) and that
gXi are Lipschitz continuous functions and that fij is Lipschitz continuous for any
i = 1, . . . ,m and j = 1, . . . , nΞ. Then, (x0,x) 7→ σ(x0,x, ŝ) is Lipschitz continuous
for all ŝ ∈ S.

Proof. We first show that −gi|∗x is Lipschitz continuous in x. Let π ∈ RnY be fixed.
By definition, it holds

−gi|∗x(π) = − sup
y∈dom(−gi|∗x)

{π⊤y − gi(x,y)} (28)

= − sup
y∈dom(−gi|∗x)

{π⊤y − gXi (x)− gYi (y)} (29)

= gXi (x)− gYi
∗
(π). (30)

Thus, x 7→ −gi|∗x(π) is Lipschitz continuous for any π. The rest follows by nonneg-
ative sums of Lipschitz continuous functions and scaling. □

Example 5 (ℓp-norms objective and constraints). Consider the setting of Example
3 in which all constraints as well as the objective function are defined using ℓp-norms.
In this case, σ is given by

σ(x0,x, s) =

m∑
i=0

ai(x)⊤zi + (r(x) + F (x)ξ)
⊤
λ+ (r0(x)− x0)λ0, (31)

which is Lipschitz continuous in (x0,x) if F have all its components Lipschitz
continuous.

In the next theorem we show that, when X is a finite discrete set, finite termination
is obtained without further assumptions on function σ.

Theorem 4 (Finite termination - discrete). Let Assumptions 1-4 hold and assume
that X is a discrete set. Then, Algorithm 1 finitely terminates.
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Proof. Assume that the algorithm does not terminate. Then (MPt) must be feasible
for all t ≥ 0 and (24) must hold; see proof of Theorem 3. Because X is finite, there
must exist a point (x̂0, x̂) that is repeated during the algorithm, i.e., there exist
natural numbers i and j with i < j such that (x̂0, x̂) = (xi

0,x
i) = (xj

0,x
j). However,

we show that this is impossible. By Equation (24), the following holds

σ(xi
0,x

i, si) = σ(x̂0, x̂, s
i) > ε. (32)

Yet, by Equation (25) and since i < j, we have

σ(xj
0,x

j , si) = σ(x̂0, x̂, s
i) ≤ 0. (33)

We therefore get a contradiction showing that the algorithm must terminate after a
finite number of iterations. □

The previous results show that Algorithm 1 terminates in a finite number of
iterations. We now discuss the approximation of the solution returned by the
algorithm with respect to the tolerance ε. For the sake of generality, we consider
the case in which the separation problem is solved by means of an oracle having
accuracy δ ≥ 0, i.e., a procedure which, for a given pair (x0,x), returns an s ∈ S
such that

sup
s∈S

σ(x0,x; s)− σ(x0,x, s) ≤ δ. (34)

In addition, for a given α ≥ 0, we introduce the set-valued map Y α(x, ξ) which,
for any x ∈ X and any ξ ∈ Ξ, is a super-set of Y (x, ξ) in which all constraints are
relaxed by a term α, i.e.,

Y α(x, ξ) = {y ∈ RnY : F (x)ξ + g(x,y) ≤ αe} . (35)

Theorem 5 (Correctness). Let Assumptions 1-4 hold and assume that the separation
problem is solved by means of an oracle having accuracy δ ≥ 0. If Algorithm (1)
terminates, it correctly identifies Problem ARO as infeasible, or returns a solution
(x0,x) ∈ R×X such that ∀ξ ∈ Ξ,∃y ∈ Y ε+δ(x, ξ), x0 ≥ g0(x,y)− ε− δ.

Proof. Assume that the algorithm terminates in Line 9, i.e., at some iteration T ,
the separation problem returns a solution sT such that σ(xT

0 ,x
T ; sT ) ≤ ε. Since

the separation problem is solved with a precision up to δ, it holds

sup
s∈S

σ(xT
0 ,x

T ; s)− σ(xT
0 ,x

T , sT ) ≤ δ. (36)

Thus, it must be that sups∈S σ(xT
0 ,x

T ; s) ≤ ε+ δ. In turn, this implies

sup
s∈S

σ(xT
0 ,x

T ; s) (37)

= sup
ξ∈Ξ,(λ0,λ)∈Λ

inf
y∈RnY

{
λ⊤(F (xT )ξ + g(xT ,y)) + λ0(g0(x

T ,y)− xT
0 )

}
(38)

= sup
ξ∈Ξ

inf
y∈RnY

sup
(λ0,λ)∈Λ

{
λ⊤(F (xT )ξ + g(xT ,y)) + λ0(g0(x

T ,y)− xT
0 )

}
(39)

= sup
ξ∈Ξ

inf
y∈RnY

max

{
max

i=1,...,m

{
f(i)(x

T )ξ + gi(x
T ,y)

}
; g0(x

T ,y)− xT
0 ; 0

}
(40)

≤ ε+ δ. (41)

Here, the minimax theorem from Perchet and Vigeral (2015) was used to swap
the sup and inf operators. This shows that (xT

0 ,x
T ) is such that ∀ξ ∈ Ξ,∃y ∈

Y ε+δ(x, ξ), x0 ≥ g0(x,y)− ε− δ.
Otherwise, assume that the algorithm stops at Line 5, i.e., at some iteration

Problem (MPt) is infeasible. As Problem (MPt) is a relaxation of (18), this implies
infeasibility of (ARO). □
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2.3. Column-and-constraint generation. As a second solution approach, we
propose a CCG algorithm for our convex setting. We refer to Zeng and Zhao (2013)
for an introduction to this class of algorithms in the linear case.

Lemma 3. Problem (ARO) is equivalently solved by the following finite-dimensional
problem

inf
x0,x,yξ

x0 (42a)

s.t. x ∈ X, (42b)
x0 ≥ g0(x,yξ) ∀ξ ∈ vert (Ξ) , (42c)
yξ ∈ Y (x, ξ) ∀ξ ∈ vert (Ξ) . (42d)

Proof. Consider the inf-sup-inf formulation of (ARO) and let, for a fixed x̄ ∈ X,
ζx̄ be defined as ζx̄(ξ) = infy∈Y (x̄,ξ) g0(x̄,y). From Fiacco and Kyparisis (1986), it
holds that ζx̄ is a convex function. Thus, we have that

∀x̄ ∈ X, sup
ξ∈Ξ

ζx̄(ξ) = sup
ξ∈vert(Ξ)

ζx̄(ξ) (43)

The rest follows; see e.g. Takeda et al. (2007). □

The core idea of CCG (see, Zhen et al. (2018)) is to solve model (42) initially with
a (nonempty) subset of scenarios Ξ̂ ⊆ vert (Ξ) in Constraints (42c)-(42d). Then,
given an optimal solution (x∗

0,x
∗) to this relaxed problem, the separation problem is

solved to check the feasibility of (x∗
0,x

∗). If it is feasible, then it is also optimal for
(ARO). Otherwise, there exists a value for the uncertain parameters, say ξ̂, which
disproves the feasibility of (x∗

0,x
∗). Thus, constraints of type (42c)-(42d) are added

to the relaxation, introducing new variables yξ̂. This step is repeated until no such
ξ̂ can be identified by solving the separation problem. A complete description of
the algorithm is given in Algorithm 2.

Algorithm 2 Column-and-Constraint Generation

1: Given an instance of (ARO) and an initial set Ξ0 ⊆ Ξ such that (M̃Pt) is
bounded with t = 0.

2: Let t← 0 be an iteration counter.
3: repeat
4: Solve

inf{x0 : (x0,x) ∈ R×X, yξ̂ ∈ Y (x, ξ̂) ∧ x0 ≥ g0(x,yξ̂) ∀ξ̂ ∈ Ξt}. (M̃Pt)

5: if (M̃Pt) is infeasible then Problem (ARO) is infeasible, stop. end if.
6: Let (xt

0,x
t) be an optimal point of (M̃Pt).

7: Solve the separation problem (12) for (xt
0,x

t) and let
st = (ξt, λt

0,λ
t,u0t, ...,umt) denote an optimal point.

8: Let Ξt+1 ← Ξt ∪ {ξt} and t← t+ 1.
9: until σ(xt

0,x
t; st) ≤ ε

We now show, without introducing further assumptions, finite convergence of
Algorithm 2.

Theorem 6 (Finite termination). Algorithm 2 terminates after a finite number of
iterations.

Proof. To prove the result it is enough to observe that the number of constraints
(42c)– (42d) is bounded by the number of vertices of Ξ, and that one different vertex
is identified at each iteration. □
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We conclude this section by comparing the cuts generated by the two algorithms.
Let ξ̂ be a given scenario and consider the case in which Algorithm 2 imposes
feasibility of a given first-stage solution, say (x0,x) ∈ R×X, with respect to that
scenario. To this aim, Algorithm 2 would add a pair of constraints (42c)– (42d)
which ensure that ∃y ∈ Y (x, ξ̂) so that x0 ≥ g0(x,y). According to Theorem 1,
this is true if and only if

sup
(ξ̂,λ0,λ,u0,...,um)∈S

σ(x0,x; (ξ̂, λ0,λ,u
0, . . . ,um)) ≤ 0 (44)

Let us consider any point s = (ξ, λ0,λ,u
0, . . . ,um) ∈ S. Thus, (44) implies that

σ(x0,x; s) ≤ 0 ∀s = (ξ, λ0,λ,u
0, . . . ,um) such that ξ = ξ̂,

i.e., a whole family of constraints that would be generated by Algorithm 1.

2.4. Uncertainty sets with an affine mapping to a 0-1-polytope. Algorithms
1 and 2 give general schemes for solving problem (ARO). However, their practical
use depends on the possibility to solve the separation problem. In this section, we
present a convex MINLP formulation of the latter in the relevant case in which Ξ
has an affine mapping of a 0-1 polytope. Note that, given any polytope, there always
exists an affine mapping to a 0-1 polytope. To see this, one can always express Ξ
as the set of convex combinations of its extreme points. In the following, we will
denote by Ω ⊆ RnΩ the 0-1 polytope associated with Ξ, and assume its dimension
nΩ be manageable. Clearly, if we assume that Ξ is given by

Ξ = {ξ ∈ [0, 1]nΞ : Uξ ≤ d} (45)

in which U is a totally unimodular matrix and d is integral, the identity mapping
can be used and nΩ = nΞ. This is notably the case for the budgeted uncertainty set
(Bertsimas and Sim 2004) with an integer parameter. For the case with fractional
budget parameter, Ayoub and Poss (2016) shows that an affine mapping with a 0-1
polytope of size 2nΞ exists. We now state our theorem.

Theorem 7. Let Ω ⊆ RnΩ be a given 0-1 polytope and let ρ0,ρ1, ...,ρnΩ ∈ RnΞ

be some vectors. Assume that Ξ = ρ̃(Ω) where ρ̃ : ω 7→ ρ0 +
∑nΩ

k=1 ρ
kωk. Then,

given a pair (x0,x) ∈ R×X, the separation model introduced in Theorem 1 can be
reformulated as the following convex MINLP.

sup
ω,λ0,λ,u0,...,um,

θ1,...,θnΩ

−
m∑
i=0

λigi|∗x

(
u

λi

)
+ λ⊤F (x)ρ0 +

nΩ∑
k=1

θk⊤F (x)ρk − λ0x0 (46a)

s.t.

m∑
i=0

ui = 0, (46b)

(λ0,λ) ∈ Λ, (46c)

θk ≤ λ k = 1, ..., nΩ, (46d)

θk ≤ ωke k = 1, ..., nΩ, (46e)

θk ≥ λ+ ωke− e k = 1, ..., nΩ, (46f)

θk ∈ Rm
≥0 k = 1, ..., nΩ, (46g)

ω ∈ Ω ∩ {0, 1}nΩ , (46h)

ui ∈ RnY i = 0, 1, ...,m. (46i)
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Proof. By replacing each ξ ∈ Ξ by an ω ∈ Ω such that ξ = ρ0 +
∑nΩ

k=1 ρ
kωk,

objective function (12a) can be rewritten as

−
m∑
i=0

λigi|∗x

(
ui

λi

)
+ λ⊤F (x)ρ0 +

nΩ∑
k=1

λ⊤F (x)ρkwk − λ0x0 (47)

Noting that this function includes bilinear terms between ξ and ω and that these
variables are not linked in the feasible space, we can restrict our attention to
ω ∈ vert (Ω) ⊆ {0, 1}nΩ . By introducing variables θki = λiωk (i = 1, ...,m and
k = 1, ..., nΩ), the bilinear term can be linearized as follows

nΩ∑
k=1

λ⊤F (x)ρkwk =

nΩ∑
k=1

m∑
i=1

nΞ∑
j=1

fij(x)ρ
k
j λiωk︸︷︷︸

=θk
i

=

nΩ∑
k=1

θk⊤F (x)ρk. (48)

The result follows as (46d)–(46f) are linearization constraints and 0 ≤ λi ≤ 1 by
assumption. □

3. Applications

We tested our methods on variants of two relevant problems arising from logistic
and planning applications, namely the Facility Location Problem (FLP) and a
Resource Allocation Problem (RAP). In both cases, robustness with respect to
uncertain input parameters is taken into account.

Our algorithms are implemented in C++17 using Mosek 10.0 to solve the
underlying optimization sub-problems and the open-source library idol, see
Lefebvre (2023). All experiments were executed on an Intel Xeon Gold
6126 at 2.6 GHz, with a time limit equal to 7,200 CPU seconds per run.
Code and instances are freely available at https://github.com/hlefebvr/
AD-convex-adjustable-robust-optimization.

3.1. Facility location problem.

3.1.1. Problem description. In the standard capacitated FLP, we are given a set V1

of potential facilities that can be opened and a set V2 of customers to be served.
Each facility i ∈ V1 has a capacity qi and an opening cost fi, while each customer
j ∈ V2 is associated with a demand dj . In addition, for each facility i ∈ V1 and
customer j ∈ V2, a unitary transportation cost tij > 0 is given. The problem asks to
decide which facilities to open so as to serve all customers while minimizing the sum
of opening and transportation costs. We assume that the demand of a customer
can be split among multiple facilities.

In the congested version of the problem, introduced by Desrochers et al. (1995),
the amount of good, say vi, leaving a facility i ∈ V1 determines congestion at the
facility, which is reflected by an additional cost defined as

Fa,b(vi) = avi + bv2i , (49)

in which a and b are given parameters. The same congestion effect was also considered
by Fischetti et al. 2016.

By introducing, for each facility i ∈ V1, a decision variable xi taking value one
if and only if facility i is activated and, for each connection (i, j) ∈ V1 × V2, a
non-negative variable yij representing the amount of good transported from i to j,

https://github.com/hlefebvr/AD-convex-adjustable-robust-optimization
https://github.com/hlefebvr/AD-convex-adjustable-robust-optimization
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the deterministic version of the problem can be formulated as follows.

min
∑
i∈V1

fixi + Fa,b(vi) +
∑
j∈V2

tijyij

 (50)

s.t.
∑
j∈V2

yij = vi ∀i ∈ V1 (51)

∑
i∈V1

yij = dj ∀j ∈ V2 (52)

vi ≤ qixi ∀i ∈ V1 (53)
yij ≥ 0 ∀(i, j) ∈ V1 × V2 (54)
xi ∈ {0, 1} ∀i ∈ V1 (55)
vi ≥ 0 ∀i ∈ V1 (56)

The objective function (50) minimizes the sum of opening, congestion and trans-
portation costs. Constraints (51) define the amount of good leaving each facility,
whereas constraints (52) ensure that every demand is satisfied. Finally, constraints
(53) enforce capacity constraints of each facility.

We consider here a robust version of this problem in which demands are uncertain:
while opening decisions are taken here and now, transportation decisions are taken
in a second stage, when the uncertain demands can be observed. More formally, we
assume that, for each customer j, the actual demand is dj = d̄j + d̃jξj , where d̄j
and d̃j denote the minimum demand and maximum demand increase, respectively.
Vector ξ modelling the overall uncertainty of the problem belongs to the following
budgeted uncertainty set (see Bertsimas and Sim (2004))

Ξ =

ξ ∈ [0, 1]|V2| :
∑
j∈V2

ξj ≤ Γ

 . (57)

Here, Γ > 0 is a parameter used to control the conservatism of the obtained solution.
Thus, in this application, the set X is defined as X = {0, 1}|V1| while, for given

x ∈ X and ξ ∈ Ξ, set Y (x, ξ) includes all pairs (y,v), such that y ∈ R|V1|×|V2|
≥0 ,

v ∈ R|V1|
≥0 , and fulfilling constraints (52)-(56) with dj = d̄j + d̃jξj . Thus, our model

reads

min
x∈X

∑
i∈V1

fixi +max
ξ∈Ξ

min
(y,v)∈Y (x,ξ)

∑
i∈V1

Fa,b(vi) +
∑
j∈V2

tijyij

 . (58)

3.1.2. Instance generation. We consider a benchmark of instances that are randomly
generated according to Cornuejols et al. (1991). First, potential facilities and
customers are randomly placed in a unit square and transportation cost between a
facility i and a customer j is defined as their Euclidean distance multiplied by 10.
The capacity of each facility i ∈ V1 is qi = U(10, 160), while its activation cost is
fi = U(0, 90) + U(100, 110)

√
qi, with U(a, b) a uniformly generated random number

between a and b. Minimum demands of customers are randomly generated in the
interval [0, 1] and scaled so that

∑
i∈V1

qi/
∑

j∈V2
d̄j = µ, with µ > 1 a parameter.

Finally, coefficients a and b are fixed to 0.75, as in Fischetti et al. (2016).
The test set includes instances obtained by varying sizes and parameters. In

particular, (|V1|, |V2|) takes values (10, 15), (10, 20), (15, 30); µ takes values 1.5, 2.0
and 5.0; As to uncertainty, the ratio d̃j/d̄j between maximum demand increase
and minimum demand is set to 0.25 and 0.50. The budget uncertainty Γ is set to
⌊p|V2|⌋ with p ∈ {0.10, 0.20, 0.30}, i.e., up to a fraction p of the customers maximally
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change their demands. For each combination of these parameters, 10 instances are
generated, thus producing a total of 540 instances.

3.1.3. Results. Table 1 reports the outcome of our experiments for algorithms
implementing generalized Benders decomposition (GBD) and column-and-constraint
generation (CCG) on FLP instances. For each algorithm we report the number of
instances solved to optimality (out of 30) and the average values of the computing
time (tTOT ), which is then split in the time spent for solving the master and the
separation problems (tM and tS , respectively). In addition, we report the average
number of iterations before convergence. All figures refer to instances that are solved
to proven optimality only.

Algorithm GBD Algorithm CCG

|V1| |V2| p d̃/d̄ # opt tTOT tM tS # Iter # opt tTOT tM tS # Iter
10 15 0.10 0.25 30 15.80 3.34 12.36 64.27 30 1.20 0.66 0.50 2.53
10 15 0.10 0.50 30 13.92 2.57 11.26 58.30 30 1.17 0.58 0.51 2.53
10 15 0.20 0.25 30 115.05 2.15 112.80 53.83 30 8.09 0.61 7.43 2.53
10 15 0.20 0.50 30 106.38 1.55 104.75 47.03 30 8.08 0.57 7.45 2.53
10 15 0.30 0.25 30 291.95 2.35 289.52 56.43 30 22.85 0.60 22.20 2.47
10 15 0.30 0.50 30 238.38 1.37 236.95 43.80 30 23.27 0.58 22.64 2.50

10 20 0.10 0.25 30 78.50 2.17 76.22 57.67 30 4.35 0.61 3.68 2.53
10 20 0.10 0.50 30 75.19 1.90 73.21 55.03 30 4.21 0.57 3.58 2.50
10 20 0.20 0.25 30 1031.98 1.86 1030.03 53.40 30 87.36 0.66 86.63 2.67
10 20 0.20 0.50 30 1003.10 1.60 1001.41 49.97 30 88.24 0.65 87.52 2.67
10 20 0.30 0.25 24 3205.64 1.17 3204.37 41.33 30 803.40 0.67 802.66 2.70
10 20 0.30 0.50 27 3521.86 0.73 3521.06 35.48 30 812.86 0.66 812.13 2.73

15 30 0.10 0.25 20 1816.64 1.24 1815.25 50.55 30 130.35 2.39 127.84 2.80
15 30 0.10 0.50 20 1654.60 0.83 1653.66 45.10 30 126.98 2.14 124.71 2.77
15 30 0.20 0.25 0 - - - - 0 - - - -
15 30 0.20 0.50 0 - - - - 0 - - - -
15 30 0.30 0.25 0 - - - - 0 - - - -
15 30 0.30 0.50 0 - - - - 0 - - - -

Table 1. Results on FLP instances

The results show that instances with (|V1|, |V2|) equal to (10, 15) can be consis-
tently solved to optimality by both methods. Among instances with (|V1|, |V2|) equal
to (10, 20), GBD fails in 9 cases for p = 0.3, while CCG still solves all instances in
less than 15 minutes, on average. Finally, instances with (|V1|, |V2|) equal to (15, 30)
turned out to be very challenging. GBD solves only 40 instances, all with p = 0.10,
while it fails for all instances with larger values of p. Algorithm CCG solves all the
60 instances with p = 0.10 and fails as well on the remaining ones. Overall, the
results indicate that CCG outperforms GBD in terms of number of instances solved
(420 vs 391). Concerning the number of iterations, for those rows in which both
methods solve all the instances, the figure for CCG is always one order of magnitude
smaller than the one for GBD. This confirms that the theoretical observation that
a single iteration of the former method yields a set of variables and constraints
that is equivalent to a whole family of cuts generated by a number of iterations by
GBD (see Section 2.3). As the computational effort for generating a single cut is
comparable in the two methods, CCG turns out to be one order of magnitude faster
than GBD in solving those instances and results in the best solution approach for
this application.

3.2. Resource allocation problem.
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3.2.1. Problem description. We now consider a resource allocation problem intro-
duced by Luedtke (2010). In this problem, we are given a set I of resources that
can be acquired to serve a set J of customers. Each resource i ∈ I is associated
to a unitary cost ci, and each customer j ∈ J has a demand dj . We denote by µij

the service rate of resource i for customer j, i.e., how many units of the customer’s
demand can be served by the resource. The problem is to determine the amount of
each resource to be acquired, and how to allocate resources to customers, so as to
satisfy all demands at minimum cost. The deterministic version of this problem is
as follows,

min
∑
i∈I

cixi (59)

s.t.
∑
j∈J

yij ≤ xi ∀i ∈ I (60)

∑
i∈I

µijyij ≥ dj ∀j ∈ J (61)

xi ≥ 0 ∀i ∈ I (62)
yij ≥ 0 ∀(i, j) ∈ I × J (63)

in which each variable xi (i ∈ I) represents the acquired amount of resource i
while yij ((i, j) ∈ I × J) denotes the amount of resource i allocated to customer j.
Constraints (60) impose that allocated resources do not exceed the acquired amount,
whereas Constraints (61) enforce that all demands are met.

A more realistic variant of this problem is obtained by considering that congestion
affects the efficiency of resources. This may happen for example in the case of server
allocation, where an increased allocation of customer demands to one server may
induce delays; thus, in order to ensure that the same amount of the resource can
be allocated to each customer, a larger amount of resource has to be acquired with
respect to the uncongested setting.

We model congestion by means of equation (49), with vi =
∑

j∈J yij the total
amount of resource allocated to the customers. We assume that a = 1, i.e., we
implicitly scale all coefficients accordingly. Thus, the i-th constraint (60) can be
replaced by ∑

j∈J

yij + bi
(∑
j∈J

yij
)2 ≤ xi. (64)

We observe that when bi = 0 the problem reduces to its uncongested version. A
very similar expression for congestion in resource allocation has been considered in
Lodi et al. (2022) in the context of chance-constraint optimization.

In an uncertain setting, the demands of the customers are not known in advance.
In particular, we model uncertainty by introducing a vector ξ of random parameters
such that each customer j ∈ J has demand dj = d̄j + ξj d̃j . As in the previous
application, we assume vector ξ to belong to a budgeted uncertainty set defined by
(57).

While decisions related to the amount of resources to be acquired have to be
taken here and now, the assignment of these resources to customers can be defined
later in time, after the actual demands materialize. Accordingly, this application
can be modelled as an ARO problem, with X = R|I|

≥0 and, for each (x, ξ) ∈ X × Ξ,
Y (x, ξ) is defined as the set of all vectors y ∈ R|I|×|J|

≥0 fulfilling constraints (61) and
(64) with dj = d̄j + d̃jξj .

3.2.2. Instance generation. We evaluate the performances of our algorithms on
a large benchmark of random instances. The service rate values are uniformly
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generated in the interval [0, 1]. For each resource i ∈ I, the unitary cost ci is set
to U(8, 10)

∑
j∈J µij/|J | and the congestion coefficient bi is randomly generated

between 0 and 1. Finally, for each customer j ∈ J , the demand dj is uniformly
drawn between 1 and 50.

We generate 10 instances for each pair (|I|, |J |) equal to (10, 20), (10, 30), (15, 30),
(15, 40), (20, 40) and (20, 50). As in the previous application, uncertainty on demands
is modelled by defining the ratio d̃j/d̄j equal to 0.25 and 0.50, and by considering
different values of the budget uncertainty Γ, which is set to ⌊p |J |⌋ with p ∈
{0.10, 0.20, 0.30}. Overall, we thus have a benchmark composed by 360 instances.

3.2.3. Results. Table 2 has the same structure as Table 1, and every row refers to a
subset of 10 instances with the same features.

Algorithm GBD Algorithm CCG

|I| |J | p d̃/d̄ # opt tTOT tM tS # Iter # opt tTOT tM tS # Iter
10 20 0.10 0.25 10 208.39 0.62 207.54 194.10 10 3.21 0.12 3.03 2.80
10 20 0.10 0.50 10 218.04 0.63 217.17 205.30 10 3.31 0.10 3.14 3.00
10 20 0.20 0.25 10 1541.07 0.59 1540.22 193.10 10 22.72 0.16 22.49 2.90
10 20 0.20 0.50 10 1580.57 0.66 1579.64 200.70 10 21.38 0.10 21.21 2.80
10 20 0.30 0.25 9 4720.62 0.64 4719.68 204.67 10 72.05 0.08 71.90 3.00
10 20 0.30 0.50 7 4168.99 0.68 4167.97 211.71 9 80.03 0.12 79.84 3.22

10 30 0.10 0.25 10 4079.36 0.73 4078.26 218.70 8 45.50 0.06 45.36 2.62
10 30 0.10 0.50 10 4127.34 0.77 4126.20 222.00 10 54.33 0.10 54.15 3.00
10 30 0.20 0.25 - - - - - 6 1764.69 0.15 1764.45 2.83
10 30 0.20 0.50 - - - - - 8 1921.74 0.17 1921.48 3.38
10 30 0.30 0.25 - - - - - 4 3683.68 0.05 3683.55 2.50
10 30 0.30 0.50 - - - - - 5 3931.56 0.11 3931.38 2.40

15 20 0.10 0.25 10 517.66 1.58 515.57 375.00 10 4.00 0.12 3.81 2.70
15 20 0.10 0.50 10 552.79 1.75 550.51 386.70 10 3.99 0.18 3.73 2.60
15 20 0.20 0.25 9 4334.03 1.73 4331.67 385.33 10 36.13 0.20 35.85 2.80
15 20 0.20 0.50 9 4434.38 1.76 4432.00 393.44 10 32.31 0.08 32.15 2.70
15 20 0.30 0.25 1 4197.12 1.61 4194.91 392.00 10 143.92 0.09 143.75 3.00
15 20 0.30 0.50 1 4478.98 1.69 4476.66 389.00 10 133.22 0.18 132.95 2.80

15 30 0.10 0.25 2 5132.34 1.68 5129.85 380.50 9 54.34 0.16 54.07 2.89
15 30 0.10 0.50 2 5465.35 1.96 5462.65 397.00 10 65.39 0.14 65.08 3.10
15 30 0.20 0.25 - - - - - 10 2243.79 0.17 2243.49 3.50
15 30 0.20 0.50 - - - - - 10 2109.74 0.14 2109.48 3.40
15 30 0.30 0.25 - - - - - 6 4361.71 0.13 4361.46 2.83
15 30 0.30 0.50 - - - - - 6 4045.70 0.15 4045.44 3.00

20 20 0.10 0.25 10 990.15 3.97 985.22 579.10 10 4.70 0.10 4.50 2.80
20 20 0.10 0.50 10 968.40 3.94 963.50 571.90 10 4.56 0.09 4.37 2.70
20 20 0.20 0.25 4 4817.30 3.57 4812.77 536.00 10 38.68 0.12 38.46 2.80
20 20 0.20 0.50 4 4548.84 3.22 4544.66 505.50 10 44.88 0.18 44.59 3.20
20 20 0.30 0.25 - - - - - 10 120.76 0.14 120.52 2.80
20 20 0.30 0.50 - - - - - 10 121.90 0.13 121.66 2.90

20 30 0.10 0.25 - - - - - 10 76.22 0.24 75.85 2.70
20 30 0.10 0.50 - - - - - 10 76.55 0.16 76.25 2.70
20 30 0.20 0.25 - - - - - 10 2446.86 0.13 2446.59 2.70
20 30 0.20 0.50 - - - - - 10 2497.04 0.15 2496.75 2.80
20 30 0.30 0.25 - - - - - 4 5915.26 0.13 5914.99 3.00
20 30 0.30 0.50 - - - - - 3 5249.05 0.12 5248.78 3.00

Table 2. Results on RAP instances

The results show that, in this application as well, algorithm CCG outperforms
GBD. Overall, the former solves 318 instances, whereas the latter solves only 120
instances. We observe that uncertainty plays a crucial role in determining the
hardness of the instances, the larger |J | and p, the most challenging the instance.
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Solved instances Unsolved instances

|I| |J | p d̃/d Count Total Master Sepatation # Iter Count # Iter # Errors
10 20 0.10 0.25 10 3.21 0.12 3.03 2.80 - - -
10 20 0.10 0.50 10 3.31 0.10 3.14 3.00 - - -
10 20 0.20 0.25 10 22.72 0.16 22.49 2.90 - - -
10 20 0.20 0.50 10 21.38 0.10 21.21 2.80 - - -
10 20 0.30 0.25 10 72.05 0.08 71.90 3.00 - - -
10 20 0.30 0.50 9 80.03 0.12 79.84 3.22 1 2.00 1

10 30 0.10 0.25 8 45.50 0.06 45.36 2.62 2 2.50 2
10 30 0.10 0.50 10 54.33 0.10 54.15 3.00 - - -
10 30 0.20 0.25 6 1764.69 0.15 1764.45 2.83 4 2.25 4
10 30 0.20 0.50 8 1921.74 0.17 1921.48 3.38 2 1.50 2
10 30 0.30 0.25 4 3683.68 0.05 3683.55 2.50 6 1.67 2
10 30 0.30 0.50 5 3931.56 0.11 3931.38 2.40 5 1.60 1

15 20 0.10 0.25 10 4.00 0.12 3.81 2.70 - - -
15 20 0.10 0.50 10 3.99 0.18 3.73 2.60 - - -
15 20 0.20 0.25 10 36.13 0.20 35.85 2.80 - - -
15 20 0.20 0.50 10 32.31 0.08 32.15 2.70 - - -
15 20 0.30 0.25 10 143.92 0.09 143.75 3.00 - - -
15 20 0.30 0.50 10 133.22 0.18 132.95 2.80 - - -

15 30 0.10 0.25 9 54.34 0.16 54.07 2.89 1 1.00 1
15 30 0.10 0.50 10 65.39 0.14 65.08 3.10 - - -
15 30 0.20 0.25 10 2243.79 0.17 2243.49 3.50 - - -
15 30 0.20 0.50 10 2109.74 0.14 2109.48 3.40 - - -
15 30 0.30 0.25 6 4361.71 0.13 4361.46 2.83 4 1.75 -
15 30 0.30 0.50 6 4045.70 0.15 4045.44 3.00 4 1.75 -

20 20 0.10 0.25 10 4.70 0.10 4.50 2.80 - - -
20 20 0.10 0.50 10 4.56 0.09 4.37 2.70 - - -
20 20 0.20 0.25 10 38.68 0.12 38.46 2.80 - - -
20 20 0.20 0.50 10 44.88 0.18 44.59 3.20 - - -
20 20 0.30 0.25 10 120.76 0.14 120.52 2.80 - - -
20 20 0.30 0.50 10 121.90 0.13 121.66 2.90 - - -

20 30 0.10 0.25 10 76.22 0.24 75.85 2.70 - - -
20 30 0.10 0.50 10 76.55 0.16 76.25 2.70 - - -
20 30 0.20 0.25 10 2446.86 0.13 2446.59 2.70 - - -
20 30 0.20 0.50 10 2497.04 0.15 2496.75 2.80 - - -
20 30 0.30 0.25 4 5915.26 0.13 5914.99 3.00 6 1.33 -
20 30 0.30 0.50 3 5249.05 0.12 5248.78 3.00 7 1.71 -

Table 3. Results on RAP with CCG

Indeed, among the 120 instances with |J | = 30 and p ≥ 0.20, GBD always fails
whereas CCG proves optimality in 82 cases. As in the previous application, the
average number of iterations required by CCG is consistently smaller than that
of GBD, typically by two orders of magnitude, the average computing time per
iteration being comparable. As may be expected, both algorithms spend most of the
computing time in performing separation, requiring up to a few thousands seconds
for the most challenging instances.

4. Conclusion

In this paper, we studied general Adjustable Robust Optimization problems in
which the second-stage feasible set is defined by means of convex constraints. These
problems can be recast into a formulation with infinitely many constraints, to be
handled via a separation approach. By means of Fenchel duality, we are able to
express the separation problem as a non-convex problem, allowing the derivation
of solution schemes based on either generalized Benders decomposition or column-
and-constraint generation. Finally, we show that, for the relevant case in which the
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uncertainty set can be mapped into a 0-1 polytope, the separation problem can be
expressed as a convex MINLP formulation, allowing us to embed state-of-the-art
MINLPs algorithms into an effective solution approach. Computational experiments
on two different applications compare the alternative solution schemes, and provide
insights on their relative performances when solving this class of problems.
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Appendix A. Additional Proofs

In this appendix, we give additional proofs of results used throughout this paper.
We refer to Ben-Tal et al. (2014) for useful convex conjugate calculus rules.

A.1. Proof of Example 3. As stated in the example, assume that each function
gi (i = 0, . . . ,m) be generically defined by means of ℓp-norms, i.e., we have

gi(x,y) =
∣∣∣∣Ki

Xx+Ki
Y y + χi

∣∣∣∣
pi

+ tix+wiy + bi. (65)

A.1.1. Computing convex conjugates. Before applying Theorem 1, we first compute
the convex conjugate of a generic functions gi for some fixed i ∈ {0, . . . ,m}. To this
end, let us rewrite gi|x as

gi|x(y) = h1(y) + tix+wiy − bi, (66)

with h1(y) =
∣∣∣∣Ki

Xx+Ki
Y y + χi

∣∣∣∣
pi

. By addition to an affine function, it holds

gi|∗x(π) = h∗
1(π −wi)− tix+ bi. (67)

https://hlefebvr.github.io/idol/
http://www.optimization-online.org/DB_FILE/2021/07/8514.pdf
http://www.optimization-online.org/DB_FILE/2021/07/8514.pdf
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Now, we may write h1 as
h1(y) = h2(K

i
Y y) (68)

with h2(y) =
∣∣∣∣y +Ki

Xx+ χi
∣∣∣∣
pi

. By composition with a linear mapping and since
dom (h2) = RnY , we have

h∗
1(π) = inf

α
{h∗

2(α) : Ki
Y

T
α = π}. (69)

In turn, together with (67), we have

gi|∗x(π) = inf
α
{h∗

2(α) : Ki
Y

T
α = π −wi} − tix+ bi. (70)

Then, let us rewrite h2 as

h2(y) = h3(y +Ki
Xx+ χi) (71)

with h3(y) = ||y||pi
. Thus, by translation of argument, we have

h∗
2(π) = h∗

3(π)− (Ki
Xx+ χi)Tπ. (72)

Now, h3 being a norm, its convex conjugate is the indicator of the unit ball for the
dual norm, i.e.,

h∗
3(π) = δ(π|Bp′

i
(0, 1)) (73)

with 1/pi + 1/p′i = 1. Together with (70) and (72), we have

gi|∗x(π) = inf
α

{
δ(α|Bp′

i
(0, 1))−(Ki

Xx+χi)Tα : Ki
Y

T
α = π−wi

}
−tix+bi. (74)

By optimality in (74), we get

gi|∗x(π) = inf
α
{−(Ki

Xx+ χi)Tα− tix+ bi} (75a)

s.t. Ki
Y

T
α = π −wi (75b)

||α||p′
i
≤ 1 (75c)

α ∈ RnY . (75d)

A.1.2. Applying Theorem 1. We now rewrite (75) and replace π with ui/λi and α
with αi. By scalar multiplication with λi, we get

λigi|∗x(ui/λi) = inf
αi

λi

(
−(Ki

Xx+ χi)Tαi − tix+ bi
)

(76a)

s.t. Ki
Y

T
αi = ui/λi −wi (76b)

||α||p′
i
≤ 1 (76c)

αi ∈ RnY . (76d)

Then, by introducing zi = λiα
i, we have

λigi|∗x(ui/λi) = inf
zi
{−(Ki

Xx+ χi)Tzi + λi(bi − tix)} (77a)

s.t. Ki
Y

T
zi = ui − λiw

i (77b)∣∣∣∣zi
∣∣∣∣
p′
i

≤ λi (77c)

zi ∈ RnY . (77d)
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By substitution into Theorem 1, we obtain the following model:

sup

m∑
i=0

(
(Ki

Xx+ χi)Tzi + λi(t
ix− bi)

)
+ λTF (x)ξ − λ0x0 (78a)

s.t.

m∑
i=0

(
Ki

Y

T
zi + λiw

i
)
= 0 (78b)∣∣∣∣zi

∣∣∣∣
p′
i

≤ λi i = 0, 1, ...,m (78c)

zi ∈ RnY i = 0, 1, ...,m (78d)
(λ0,λ) ∈ Λ (78e)
ξ ∈ Ξ. (78f)
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