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We consider the mechanism design problem of a principal allocating a single good to one of several agents
without monetary transfers. Each agent desires the good and uses it to create value for the principal. We
designate this value as the agent’s private type. Even though the principal does not know the agents’ types,
she can verify them at a cost. The allocation of the good thus depends on the agents’ self-declared types
and the results of any verification performed, and the principal’s payoff matches her value of the allocation
minus the costs of verification. It is known that if the agents’ types are independent, then a favored-agent
mechanism maximizes her expected payoff. However, this result relies on the unrealistic assumptions that
the agents’ types follow known independent probability distributions. In contrast, we assume here that the
agents’ types are governed by an ambiguous joint probability distribution belonging to a commonly known
ambiguity set and that the principal maximizes her worst-case expected payoff. We study support-only
ambiguity sets, which contain all distributions supported on a rectangle, Markov ambiguity sets, which
contain all distributions in a support-only ambiguity set satisfying some first-order moment bounds, and
Markov ambiguity sets with independent types, which contain all distributions in a Markov ambiguity set
under which the agents’ types are mutually independent. In all cases we construct explicit favored-agent
mechanisms that are not only optimal but also Pareto-robustly optimal.
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1. Introduction Consider a principal (“she”) who allocates a good to one of several agents
without using monetary transfers. Each agent (“he”) derives strictly positive utility from owning
the good and has a private type, which reflects the value he creates for the principal if receiving
the good. The principal is unaware of the agents’ types but can verify any of them at a cost.
Any verification will perfectly reveal the corresponding agent’s type to the principal. The good is
allocated based on the agents’ self-declared types as well as the results of any verification performed.
The principal aims to design an allocation mechanism that maximizes her payoff, i.e., the value of
allocation minus any costs of verification.
This generic mechanism design problem arises in many different contexts. For example, the rector

of a university may have funding for a new faculty position and needs to allocate it to one of
the school’s departments, the ministry of health may need to decide in which town to open up a
new hospital, a venture capitalist may need to select a start-up business that should receive seed
funding, the procurement manager of a manufacturing company may need to choose one of several
suppliers, or a consulting company may need to identify a team that leads a new project. In all
of these examples, the principal wishes to put the good into use where it best contributes to her
organization or the society as a whole. Each agent desires the good and is likely to be well-informed
about the value he will generate for the principal if he receives the good. In addition, monetary
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transfers may be inappropriate in all of the described situations, but the principal can collect
information through costly investigation or audit.
Mechanism design problems of the above type are usually referred to as ‘allocation with costly

verification.’ Ben-Porath et al. [4] describe the first formal model for their analysis and introduce
the class of favored-agent mechanisms, which are attractive because of their simplicity and inter-
pretability. As in most of the literature on mechanism design, Ben-Porath et al. [4] model the
agents’ types as independent random variables governed by a commonly known probability distri-
bution, which allows them to prove that any mechanism that maximizes the principal’s expected
payoff is a randomization over favored-agent mechanisms. Any favored-agent mechanism is char-
acterized by a favored agent and a threshold value, and it assigns the good to the favored agent
without verification whenever the reported types of all other agents—adjusted for the costs of
verification—fall below the given threshold. Otherwise, it allocates the good to any agent for which
the reported type minus the cost of verification is maximal and verifies his reported type. This
mechanism is incentive compatible, that is, no agent has an incentive to misreport his true type;
see Section 2 for more details.
The vast majority of the literature on allocation with costly verification (see, e.g., [15, 16] and

the references therein) sustains the modeling assumptions of Ben-Porath et al. [4], thus assuming
that the agents’ types are independent random variables and that their distribution is common
knowledge. In reality, however, it is often difficult to justify the precise knowledge of such a dis-
tribution. This prompts us to study allocation problems with costly verification under the more
realistic assumption that the principal has only partial information about the distribution of the
agents’ types. Specifically, we assume that the distribution of the agents’ types is unknown but
belongs to a commonly known ambiguity set (i.e., a family of multiple—perhaps infinitely many—
distributions). In addition, we assume that the principal is ambiguity averse in the sense that she
wishes to maximize her worst-case expected payoff in view of all distributions in the ambiguity set.
Under these assumptions, the mechanism design problem at hand can be cast as a zero-sum game
between the principal, who chooses a mechanism to allocate the good, and some fictitious adver-
sary, who chooses the distribution of the agents’ types from the ambiguity set in order to inflict
maximum damage to the principal. Using techniques from distributionally robust optimization
(see, e.g., [9, 22]), we characterize optimal and Pareto robustly optimal mechanisms for well-known
classes of ambiguity sets: (i) support-only ambiguity sets containing all distributions supported on
a rectangle, (ii) Markov ambiguity sets containing all distributions in a support-only ambiguity set
whose mean values fall within another (smaller) rectangle, and (iii) Markov ambiguity sets with
independent types containing all distributions in a Markov ambiguity set under which the agents’
types are mutually independent. We emphasize that support-only as well as Markov ambiguity
sets contain distributions under which the agents’ types are mutually dependent. Pareto robust
optimality is an important solution concept in robust optimization [12]. In the distributionally
robust context considered here, a mechanism is called Pareto robustly optimal if there is no other
mechanism that generates a non-inferior expected payoff under every distribution in the ambiguity
set and a strictly higher expected payoff under at least one distribution in the ambiguity set. Every
Pareto robustly optimal solution is also robustly optimal, but the converse is not true. Mechanisms
that fail to be Pareto robustly optimal would not be used by any rational agent.
The three main contributions of this paper can be summarized as follows.
(i) For support-only ambiguity sets, we first show that not every robustly optimal mechanism

represents a randomization over favored-agent mechanisms. This result is unexpected in view of the
classical theory on stochastic mechanism design [4]. We then construct an explicit favored-agent
mechanism that is not only robustly optimal but also Pareto robustly optimal. This mechanism
selects the favored agent from among those whose types have the highest possible lower bound,
and it sets the threshold to this lower bound.
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(ii) For Markov ambiguity sets, we also construct an explicit favored-agent mechanism that is
both robustly optimal as well as Pareto robustly optimal. This mechanism selects the favored agent
from among those whose expected types have the highest possible lower bound, and it sets the
threshold to the highest possible actual (not expected) type of the favored agent.
(iii) For Markov ambiguity sets with independent types, we identify again a favored-agent mech-

anism that is robustly optimal as well as Pareto robustly optimal. Here, the favored agent is chosen
exactly as under an ordinary Markov ambiguity set, but the threshold is set to the the lowest
possible expected (not actual) type of the favored agent.
Our results show that favored-agent mechanisms continue to play an important role in allocation
with costly verification even if the unrealistic assumption of a commonly known type distribution
is abandoned. In addition, they suggest that robust optimality alone may not be a sufficiently
distinctive criterion to single out practically useful mechanisms under distributional ambiguity.
However, our results also show that among possibly infinitely many robustly optimal mechanisms
one can always find a simple and interpretable Pareto robustly optimal favored-agent mechanism.
Unlike in the classical theory based on the assumption of a known type distribution [4], the favored
agent as well as the threshold of our Pareto robustly optimal mechanisms are independent of the
verification costs.
Literature review. The first treatise of allocation with costly verification is due to Townsend [19],

who studies a principal-agent model with monetary transfers involving a single agent. Ben-Porath
et al. [4] extend this model to multiple agents but rule out the possibility of monetary transfers.
Their seminal work has inspired considerable follow-up research in economics. For example, Mylo-
vanov and Zapechelnyuk [16] study a variant of the problem where verification is costless but the
principal can impose only limited penalties and only partially recover the good when agents mis-
report their types. Li [15] accounts both for costly verification and for limited penalties, thereby
unifying the models in [4] and [16]. Chua et al. [8] further extend the model in [4] to multiple
homogeneous goods, assuming that each agent can receive at most one good. Bayrak et al. [3]
spearhead the study of allocation with costly verification under distributional ambiguity. However,
for reasons of computational tractability, they focus on ambiguity sets that contain only two dis-
crete distributions. In this paper, we investigate ambiguity sets that contain infinitely many (not
necessarily discrete) type distributions characterized by support and moment constraints, and we
derive robustly as well as Pareto robustly optimal mechanisms in closed form.
This paper also contributes to the growing literature on (distributionally) robust mechanism

design. Note that any mechanism design problem is inherently affected by uncertainty due to the
private information held by different agents. The vast majority of the extant mechanism design
literature models uncertainty through random variables that are governed by a commonly known
probability distribution. The robust mechanism design literature, on the other hand, explicitly
accounts for (non-stochastic) distributional uncertainty and seeks mechanisms that maximize the
worst-case payoff, minimize the worst-case regret or minimize the worst-case cost in view of all
distributions consistent with the information available. Robust mechanism design problems have
recently emerged in different contexts such as pricing (see, e.g., [2, 5, 7, 14, 17, 21]), auction
design (see, e.g., [1, 11, 13, 18]) or contracting (see, e.g., [20]). This literature is too vast to be
discussed in detail. To our best knowledge, however, we are the first to derive closed-form optimal
and Pareto robustly optimal mechanisms for the allocation problem with costly verification under
distributional ambiguity. Our paper is most closely related to the independent concurrent work by
Chen et al. [6], who also study allocation problems with costly verification under distributional
uncertainty. They assume that the agents have only access to a signal that correlates with their
(unknown) types and that the principal has only access to the signal distribution, where the signal
distribution is selected by a fictitious information designer. They identify the worst- and best-case
signal distributions for the principal and the best-case signal distributions for the agents. They
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also study a distributionally robust mechanism design problem over a (what we call a) Markov
ambiguity set, where the agents’ types have known means. However, Chen et al. [6] do not address
the multiplicity of robustly optimal mechanisms, and consequently they do not identify Pareto
robustly optimal mechanisms.
The remainder of this paper is structured as follows. Section 2 introduces our model and estab-

lishes several preliminary results. Sections 3, 4 and 5 solve the proposed mechanism design problem
for support-only ambiguity sets, Markov ambiguity sets, and Markov ambiguity sets with indepen-
dent types, respectively. All proofs are relegated to the appendix.
Notation. For any t ∈ RI , we denote by ti the ith component and by t−i the subvector of t

without ti. The indicator function of a logical expression E is defined as 1E = 1 if E is true and
as 1E = 0 otherwise. For any Borel sets S ⊆Rn and D⊆Rm, we use P0(S) and L(S,D) to denote the
family of all probability distributions on S and the set of all bounded Borel-measurable functions
from S to D, respectively. Random variables are designated by symbols with tildes (e.g., t̃), and
their realizations are denoted by the same symbols without tildes (e.g., t).

2. Problem Statement and Preliminaries A principal aims to allocate a single good to
one of I ≥ 2 agents. Each agent i∈ I = {1,2, . . . , I} derives a strictly positive deterministic benefit
from receiving the good and uses it to generate a value ti ∈ Ti = [ti, ti] for the principal, where
0 ≤ ti < ti < ∞. We henceforth refer to ti as agent i’s type, and we assume that ti is privately
known to agent i but unknown to the principal and the other agents. Thus, the principal perceives
the vector t̃= (t̃1, t̃2 . . . , t̃I) of all agents’ types as a random vector governed by some probability
distribution P0 on the type space T =

∏
i∈I Ti. However, the principal can inspect agent i’s type at

cost ci > 0, and the inspection perfectly reveals ti. In contrast to much of the existing literature on
mechanism design, we assume here that neither the principal nor the agents know P0. Instead, they
are only aware that P0 belongs to some commonly known ambiguity set P ⊆P0(T ). On this basis,
the principal aims to design a mechanism for allocating the good. A mechanism is an extensive-form
game between the principal and the agents, where the principal commits in advance to her strategy
(for a formal definition of extensive form games, see, e.g., [10]). Such a mechanism may involve
multiple stages of cheap talk statements by the agents, while the principal’s actions include the
decisions on whether to inspect certain agents and how to allocate the good. Monetary transfers
are not allowed, i.e., the agents and the principal cannot exchange money at any time.
Given any mechanism represented as an extensive form game, we denote by Hi the family of all

information sets of agent i and by A(hi) the actions available to agent i at the nodes in information
set hi ∈Hi. All agents select their actions strategically in view of their individual preferences and
the available information. In particular, agent i’s actions depend on his type ti. Thus, we model
any (mixed) strategy of agent i as a function si ∈ L(Ti,

∏
hi∈Hi

P0(A(hi))) that maps each of his
possible types to a complete contingency plan ai ∈

∏
hi∈Hi

P0(A(hi)), which represents a probability
distribution over the actions available to agent i for all information sets hi ∈Hi. In the following we
denote by probi(ai; t,a−i) the probability that agent i ∈ I receives the good under the principal’s
mechanism if the agents have types t and play the contingency plans a= (a1, a2, . . . , aI). We also
restrict attention to mechanisms that admit an ex-post Nash equilibrium.
Definition 1 (Ex-Post Nash Equilibrium). An I-tuple s= (s1, s2, . . . , sI) of mixed strate-

gies si ∈L(Ti,
∏

hi∈Hi
P0(A(hi))), i∈ I, is called an ex-post Nash equilibrium if

probi(si(ti); t,s−i(t−i))≥ probi(ai; t,s−i(t−i)) ∀i∈ I, ∀t∈ T , ∀ai ∈
∏

hi∈Hi
P0(A(hi)).

Recall that all agents assign a strictly positive deterministic value to the good, and therefore the
expected utility of agent i conditional on t̃= t is proportional to probi(ai; t,a−i). Under an ex-post
Nash equilibrium, each agent i maximizes this probability simultaneously for all type scenarios t∈
T . Hence, it is clear that insisting on the existence of an ex-post Nash equilibrium restricts the
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family of mechanisms to be considered. Note that Ben-Porath et. al. [4] study the larger class
of mechanisms that admit a Bayesian Nash equilibrium. However, these mechanisms generically
depend on the type distribution P0 and can therefore not be implemented by a principle who lacks
knowledge of P0. It is therefore natural to restrict attention to mechanisms that admit ex-post Nash
equilibria, which remain well-defined in the face of distributional ambiguity. We further assume
from now on that the principal is ambiguity averse in the sense that she wishes to maximize her
worst-case expected payoff in view of all distributions in the ambiguity set P.
The class of all mechanisms that admit an ex-post Nash equilibrium is vast. An important

subclass is the family of all truthful direct mechanisms. A direct mechanism (p,q) consists of two
I-tuples p= (p1, p2, . . . , pI) and q = (q1, q2, . . . , qI) of allocation functions pi, qi ∈ L(T , [0,1]), i ∈ I.
Any direct mechanism (p,q) is implemented as follows. First, the principal announces p and q, and
then she collects a bid t′i ∈ Ti from each agent i ∈ I. Next, the principal implements randomized
allocation and inspection decisions. Specifically, pi(t

′) represents the total probability that agent i
receives the good, while qi(t

′) represents the probability that agent i receives the good and is
inspected. If the inspection reveals that agent i has misreported his type, the principal penalizes the
agent by repossessing the good. Any direct mechanism (p,q) must satisfy the feasibility conditions

qi(t
′)≤ pi(t

′) ∀i∈ I and
∑
i∈I

pi(t
′)≤ 1 ∀t′ ∈ T . (FC)

The first inequality in (FC) holds because only agents who receive the good may undergo an
inspection. The second inequality in (FC) ensures that the principal allocates the good at most
once.
A direct mechanism (p,q) is called truthful if it is optimal for each agent i to report his true

type t′i = ti. Thus, (p,q) is truthful if and only if it satisfies the incentive compatibility constraints

pi(t)≥ pi(t
′
i, t−i)− qi(t

′
i, t−i) ∀i∈ I, ∀t′i ∈ Ti, ∀t∈ T , (IC)

which ensure that if all other agents report their true types t−i, then the probability pi(t) of
agent i receiving the good if he reports his true type ti exceeds the probability pi(t

′
i, t−i)−qi(t

′
i, t−i)

of agent i receiving the good if he misreports his type as t′i ̸= ti. By leveraging a variant of the
Revelation Principle detailed in [4], one can show that for any mechanism that admits an ex-post
Nash equilibrium there exists an equivalent truthful direct mechanism that duplicates or improves
the principal’s worst-case expected payoff; see the online appendix of [4] for details. Without loss
of generality, the principal may thus focus on truthful direct mechanisms, which greatly simplifies
the problem of finding an optimal mechanism. Consequently, the principal’s mechanism design
problem can be formalized as the following distributionally robust optimization problem.

z⋆ = sup
p,q

inf
P∈P

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
s.t. pi, qi ∈L(T , [0,1]) ∀i∈ I

(IC), (FC)

(MDP)

From now on, we will use the shorthand X to denote the set of all (p,q) feasible in (MDP). Note
that the feasible set X does not depend on the ambiguity set P.
In the remainder we will demonstrate that (MDP) often admits multiple optimal solutions.

While different optimal mechanisms generate the same expected profit in the worst case, they
may offer dramatically different expected profits under generic non-worst-case distributions. This
observation prompts us to seek mechanisms that are not only worst-case optimal but perform also
well under all type distributions in the ambiguity set P. More precisely, we hope to identify a
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worst-case optimal mechanism for which there exists no other feasible mechanism that generates a
non-inferior expected payoff under every distribution in P and a higher expected payoff under at
least one distribution in P. A mechanism with this property is called Pareto robustly optimal. This
terminology is borrowed from the theory of Pareto efficiency in classical robust optimization [12].
Definition 2 (Pareto Robust Optimality). We say that a mechanism (p′,q′) that is fea-

sible in (MDP) weakly Pareto robustly dominates another feasible mechanism (p,q) if

EP

[∑
i∈I

(p′i(t̃)t̃i − q′i(t̃)ci)

]
≥EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
∀P∈P. (1)

If the inequality (1) holds for all P∈P and is strict for at least one P∈P, we say that (p′,q′) Pareto
robustly dominates (p,q). A mechanism (p,q) that is optimal in (MDP) is called Pareto robustly
optimal if there exists no other feasible mechanism (p′,q′) that Pareto robustly dominates (p,q).

Note that any mechanism that weakly Pareto robustly dominates an optimal mechanism is also
optimal in (MDP). Moreover, a Pareto robustly optimal mechanism typically exists. However, there
may not exist any mechanism that Pareto robustly dominates all other feasible mechanisms.
We now define the notion of a favored-agent mechanism, which was first introduced in [4].
Definition 3 (Favored-Agent Mechanism). A mechanism (p,q) is a favored-agent mech-

anism if there is a favored agent i⋆ ∈ I and a threshold value ν⋆ ∈R such that the following hold.
(i) If maxi ̸=i⋆ ti − ci < ν⋆, then pi⋆(t) = 1, qi⋆(t) = 0 and pi(t) = qi(t) = 0 for all i ̸= i⋆.
(ii) If maxi ̸=i⋆ ti − ci > ν⋆, then pi′(t) = qi′(t) = 1 for some i′ ∈ argmaxi∈I(ti − ci) and pi(t) =

qi(t) = 0 for all i ̸= i′.
If maxi ̸=i⋆ ti − ci = ν⋆, then we are free to define (p(t),q(t)) either as in (i) or as in (ii).
Intuitively, if ti is smaller than the adjusted cost of inspection ci+ν⋆ for every agent i ̸= i⋆, then

we are in case (i), and the favored-agent mechanism allocates the good to the favored agent i⋆

without inspection. If there exists an agent i ̸= i⋆ whose type ti exceeds the adjusted cost of
inspection ci+ ν⋆, then we are in case (ii), and the favored-agent mechanism allocates the good to
an agent i′ with highest net payoff ti′ − ci′ , and this agent is inspected. Note that in case (ii) the
good can also be allocated to the favored agent.
A favored-agent mechanism is uniquely determined by a favored agent i⋆, a threshold value ν⋆

and two tie-breaking rules. The first tie-breaking rule determines the winning agent in case (ii) when
argmaxi∈I(ti−ci) is not a singleton. From now on we will always use the lexicographic tie-breaking
rule in this case, which sets i′ =minargmaxi∈I(ti − ci). The second tie-breaking rule determines
whether (p(t),q(t)) should be constructed as in case (i) or as in case (ii) when maxi ̸=i⋆ ti− ci = ν⋆.
From now on we say that a favored-agent mechanism is of type (i) if (p(t),q(t)) is always defined
as in (i) and that it is of type (ii) if (p(t),q(t)) is always defined as in (ii) in case of a tie. Note
that both tie-breaking rules are irrelevant in the Bayesian setting considered in [4], but they are
relevant for us because the ambiguity sets P to be studied below contain discrete distributions,
under which ties have a strictly positive probability.
All favored-agent mechanisms are feasible in (MDP), see Remark 1 in [4]. In particular, they are

incentive compatible, that is, the agents have no incentive to misreport their types. To see this,
recall that under a favored-agent mechanism the winning agent receives the good with probability
one, and the losing agents receive the good with probability zero. Thus, if an agent wins by truthful
bidding, he cannot increase his chances of receiving the good by lying about his type. If an agent
loses by truthful bidding, on the other hand, he has certainly no incentive to lower his bid ti because
the chances of receiving the good are non-decreasing in ti. Increasing his bid ti may earn him the
good provided that ti − ci attains the maximum of ti′ − ci′ over i′ ∈ I. However, in this case the
agent’s type is inspected with probability one. Hence, the lie will be detected and the good will be
repossessed. This shows that no agent benefits from lying under a favored-agent mechanism.



Bayrak et al.: Distributionally Robust Optimal Allocation with Costly Verification
7

If P = {P0} is a singleton, the agents’ types are independent under P0, and P0 has an everywhere
positive density on T , then problem (MDP) is solved by a favored-agent mechanism [4, Theorem 1].
The favored-agent mechanism with favored agent i and threshold νi generates an expected payoff of

EP0

[
t̃i1ỹi≤νi +max

{
t̃i − ci, ỹi

}
1ỹi≥νi

]
=

∫ νi

−∞
EP0

[
t̃i
]
ρi(yi)dyi +

∫ ∞

νi

EP0

[
max

{
t̃i − ci, yi

}]
ρi(yi)dyi,

where the random variable ỹi =maxj ̸=i t̃j−cj with probability density function ρi(yi) is independent
of t̃i under P0. The threshold value ν⋆

i that maximizes this expression thus solves the first-order
optimality condition

EP0

[
t̃i
]
=EP0

[
max

{
t̃i − ci, νi

}]
. (2)

Note that ν⋆
i is unique because the right hand side of (2) strictly increases in νi on the domain

of interest; see [4, Theorem 2] for additional details. One can further prove that within the finite
class of favored-agent mechanisms with optimal thresholds, the ones with the highest threshold are
optimal. More specifically, any favored-agent mechanism with favored agent i⋆ ∈ argmaxi∈I ν

⋆
i and

threshold ν⋆ =maxi∈I ν
⋆
i is optimal within the class of favored-agent mechanisms [4, Theorem 3].

Hence, any such mechanism must be optimal in (MDP). Finally, one can also show that for mutually
distinct cost coefficients ci, i∈ I, the optimal favored-agent mechanism is unique.
In the remainder of the paper we will address instances of the mechanism design problem (MDP)

where P is not a singleton, and we will prove that favored-agent mechanisms remain optimal. Under
distributional ambiguity, however, the construction of i⋆ and ν⋆ described above is no longer well-
defined because it depends on a particular choice of the probability distribution of t̃. We will show
that if P is not a singleton, then there may be infinitely many optimal favored-agent mechanisms
with different thresholds ν⋆. In this situation, it is expedient to look for Pareto robustly optimal
favored-agent mechanisms.

3. Support-Only Ambiguity Sets We now investigate the mechanism design prob-
lem (MDP) under the assumption that P =P0(T ) is the support-only ambiguity set that contains
all distributions supported on the type space T . As P contains all Dirac point distributions con-
centrating unit mass at any t ∈ T , the worst-case expected payoff over all distributions P ∈ P
simplifies to the worst-case payoff over all type profiles t ∈ T , and thus it is easy to verify that
problem (MDP) simplifies to

z⋆ = sup
p,q

inf
t∈T

∑
i∈I

(pi(t)ti − qi(t)ci)

s.t. pi, qi ∈L(T , [0,1]) ∀i∈ I
(IC), (FC).

(3)

Similarly, it is easy to verify that an optimal mechanism (p⋆,q⋆) for problem (3) is Pareto robustly
optimal if there exists no other feasible mechanism (p,q) with∑

i∈I

(pi(t)ti − qi(t)ci)≥
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci) ∀t∈ T ,

where the inequality is strict for at least one type profile t ∈ T . If the principal knew the agents’
types ex ante, she could simply allocate the good to the agent with the highest type and would
not have to spend money on inspecting anyone. One can therefore show that the optimal value z⋆

of problem (3) is upper bounded by inft∈T maxi∈I ti =maxi∈I ti. The following proposition reveals
that this upper bound is attained by an admissible mechanism.
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Proposition 1. Problem (3) is solvable, and its optimal value is given by z⋆ =maxi∈I ti.

The next theorem shows that there are infinitely many optimal favored-agent mechanisms that
attain the optimal value z⋆ =maxi∈I ti of problem (3).

Theorem 1. Any favored-agent mechanism with favored agent i⋆ ∈ argmaxi∈Iti and threshold
value ν⋆ ≥maxi∈I ti is optimal in problem (3).

Remark 1. Theorem 1 is sharp in the sense that there are problem instances for which any
favored-agent mechanism with favored agent i⋆ ∈ argmaxi∈Iti and threshold value ν⋆ <maxi∈I ti
is strictly suboptimal in (3). To see this, consider an instance with I = 2 agents, where T1 = [2,8],
T2 = [0,10] and c1 = c2 = 1. By Proposition 1, the supremum of (3) is given by maxi∈I ti = 2.
Consider now any favored agent mechanism with favored agent 1 ∈ argmaxi∈Iti and threshold
value ν < t1 = 2. This mechanism is strictly suboptimal. To see this, assume first that ν < 1.
If t= (2,2), then the mechanism allocates the good to agent 1 or agent 2 with verification and earns
t1 − c1 = t2 − c2 = 1. Thus, the worst-case payoff over all t ∈ T cannot exceed 1, which is strictly
smaller than the optimal worst-case payoff. Assume next that ν ∈ [1,2). If t = (2,2 + ν/2) ∈ T ,
then the mechanism allocates the good to agent 2 with verification and earns 1 + ν/2. Thus, the
worst-case payoff over all t ∈ T cannot exceed 1+ ν/2, which is strictly smaller than the optimal
worst-case payoff. In summary, the mechanism is strictly suboptimal for all ν < 2.

As the mechanism design problem (3) constitutes a convex program, any convex combina-
tion of optimal favored-agent mechanisms gives rise to yet another optimal mechanism. However,
problem (3) also admits optimal mechanisms that can neither be interpreted as favored-agent
mechanisms nor as convex combinations of favored-agent mechanisms. To see this, consider any
favored-agent mechanism (p,q) with favored agent i⋆ ∈ argmaxi∈Iti and threshold value ν⋆ ∈ R
satisfying ν⋆ ≥ maxi∈I ti and ν⋆ > maxi∈I ti − ci. By Theorem 1, this mechanism is optimal in
problem (3). The second condition on ν⋆ implies that this mechanism allocates the good to the
favored agent without inspection for every t ∈ T (case (i) always prevails). Next, construct t̂ ∈ T
through t̂i = ti for all i ̸= i⋆ and t̂i⋆ = ti⋆ , and note that t̂ ̸= t because ti⋆ < ti⋆ . Finally, introduce
another mechanism (p,q′), where q′ is defined through q′i(t) = qi(t) for all t∈ T and i ̸= i⋆ and

q′i⋆(t) =

{
min{1, (ti⋆ − ti⋆)/ci⋆} if t= t̂,

qi⋆(t) if t∈ T \ {t̂}.

One readily verifies that (p,q′) is feasible in (3). Indeed, as (p,q′) differs from (p,q) only in
scenario t̂, and as (p,q) is feasible, it suffices to check the feasibility of (p,q′) in scenario t̂. Indeed,
the modified allocation rule q′ is valued in [0,1]I , and (p,q′) satisfies (FC) because 0≤ q′i⋆(t̂)≤ 1 =
pi⋆(t̂), where the equality holds because the favored-agent mechanism (p,q) allocates the good to
agent i⋆ with certainty. Similarly, the modified mechanism (p,q′) satisfies (IC) because

pi⋆(ti⋆ , t̂−i⋆) = 1≥ pi⋆(t̂)− q′i⋆(t̂) ∀ti⋆ ∈ Ti⋆ .

In summary, we have thus shown that the mechanism (p,q′) is feasible in (3). To show that it is
also optimal, recall that (p,q) is optimal with worst-case payoff maxi∈I ti and that (p,q′) differs
from (p,q) only in scenario t̂. The principal’s payoff in scenario t̂ amounts to

pi⋆(t̂)t̂i⋆ − q′i⋆(t̂)ci⋆ = t̂i⋆ − q′i⋆(t̂)ci⋆ ≥ t̂i⋆ −
t̂i⋆ − ti⋆

ci⋆
ci⋆ = ti⋆ =max

i∈I
ti,

where the inequality follows from the definition of q′i⋆(t̂). Thus, the worst-case payoff of (p,q′)
amounts to maxi∈I ti, and (p,q′) is indeed optimal in (3). However, (p,q′) is not a favored-agent
mechanism for otherwise q′i⋆(t̂) would have to vanish; see Definition 3. In addition, note that
pi⋆(t̂)− q′i⋆(t̂)< 1 whereas pi⋆(ti⋆ , t̂−i⋆)− q′i⋆(ti⋆ , t̂−i⋆) = 1 for all ti⋆ ̸= t̂i⋆ . This implies via Lemma 1
below that (p,q′) is also not a convex combination of favored-agent mechanisms.
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Lemma 1. If a mechanism (p,q) is a convex combination of favored-agent mechanisms, then
the function pi(ti, t−i)− qi(ti, t−i) is constant in ti ∈ Ti for any fixed i∈ I and t−i ∈ T−i.

In summary, we have shown that the robust mechanism design problem (3) admits infinitely
many optimal solutions. Some of these solutions represent favored-agent mechanisms, while others
represent convex combinations of favored-agent mechanisms, and yet some others are different
types of mechanisms. Moreover, note that the optimal mechanism characterized above by altering
the inspection probabilities of an optimal favored-agent mechanism is Pareto robustly dominated
by the same optimal favored-agent mechanism. Thus, robust optimality alone is not a sufficient
differentiator to distinguish between desirable and undesirable mechanisms. This insight prompts
us to seek Pareto robustly optimal mechanisms for problem (3). Next theorem shows that a favored-
agent mechanism, proven to be optimal in Theorem 1, is also Pareto robustly optimal.

Theorem 2. Any favored-agent mechanism of type (i) with favored agent i⋆ ∈ argmaxi∈Iti and
threshold value ν⋆ =maxi∈I ti is Pareto robustly optimal in problem (3).

We sketch the proof idea in the special case when there are only two agents. To convey the
key ideas without tedious case distinctions, we assume that t1 > t2 so that argmaxi∈Iti = {1} is a
singleton, and we assume that t2 > c2 + t1 and t1 > c2 + t1. We will use the following partition of
the type space T .

TI = {t∈ T | t2 − c2 ≤ t1 and t2 < t1}
TII = {t∈ T | t2 − c2 ≤ t1 and t2 ≥ t1}
TIII = {t∈ T | t2 − c2 > t1 and t2 − c2 > t1}
TIV = {t∈ T | t2 − c2 > t1 and t2 − c2 ≤ t1}

The sets TI , TII , TIII and TIV are visualized in Figure 1. Note that all of them are nonempty
thanks to our standing assumptions about t1, t2 and c2. We emphasize, however, that all simplifying
assumptions as well as the restriction to two agents are relaxed in the formal proof of Theorem 2.
In the following we denote by (p⋆,q⋆) the favored-agent mechanism of type (i) with favored

agent 1 and threshold value ν⋆ = t1, and we will prove that this mechanism is Pareto robustly
optimal in problem (3). To this end, assume for the sake of contradiction that there exists another
mechanism (p,q) feasible in (3) that Pareto robustly dominates (p⋆,q⋆). Thus, we have∑

i∈I

(pi(t)ti − qi(t)ci)≥
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci) ∀t∈ T , (4)

where the inequality is strict for at least one t∈ T . The right hand side of (4) represents the prin-
cipal’s payoff in scenario t under (p⋆,q⋆). By the definition of a type (i) favored-agent mechanism,
this payoff amounts to t1 when t2 − c2 ≤ t1 (i.e., when t ∈ TI ∪ TII) and to maxi∈I ti − ci when
t2 − c2 > t1 (i.e., when t ∈ TIII ∪ TIV ). We will show that if (4) holds, then (p,q) must generate
the same payoff as (p⋆,q⋆) under every type profile t ∈ T . In other words, (p,q) cannot generate
a strictly higher payoff than (p⋆,q⋆) under any type profile, which contradicts our assumption
that (p,q) Pareto robustly dominates (p⋆,q⋆).
We now investigate the subsets TI , TII , TIII and TIV of the type space one by one. Consider

first a type profile t ∈ TI . For inequality (4) to hold in this scenario, the principal must earn at
least t1 under the mechanism (p,q). As t2 < t1, ci > 0 and (p,q) satisfies the (FC) constraints∑

i∈I pi(t) ≤ 1 and qi(t) ≥ 0, this is only possible if p1(t) = 1 and q1(t) = 0. Thus, the allocation
probabilities of the mechanisms (p,q) and (p⋆,q⋆) coincide on TI .
Consider now any t ∈ TII . For inequality (4) to hold in scenario t, the principal must earn

at least t1 under the mechanism (p,q). Incentive compatibility ensures that p1(t) ≥ p1(t1, t2) −
q1(t1, t2) = 1, where the equality holds because (t1, t2) ∈ TI thanks to the assumption t1 > c2 + t1
and because we know from before that (p,q) allocates the good to agent 1 without inspection in TI .
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Figure 1. Partition of the type space T .

Thus, the mechanism (p,q) can only earn t1 in scenario t if p1(t) = 1 and q1(t) = 0. In summary,
the allocation probabilities of (p,q) and (p⋆,q⋆) must again coincide on TII .
Next, consider any t ∈ TIII . Incentive compatibility ensures that p2(t) − q2(t) ≤ p2(t1, t2) = 0,

where the equality holds because (t1, t2) ∈ TI ∪ TII and because we know from before that (p,q)
allocates the good to agent 1 without inspection throughout TI ∪TII . As the allocation probabilities
are non-negative and satisfy the (FC) condition p2(t)≥ q2(t), we may conclude that p2(t) = q2(t).
Thus, the type of agent 2 is inspected if he wins the good in scenario t. As t2 − c2 > t1 > t1 − c1
for all t ∈ TIII , the inequality (4) implies that the principal must earn at least t2 − c2 under the
mechanism (p,q) in scenario t. This is only possible if p2(t) = q2(t) = 1. In summary, the allocation
probabilities of (p,q) and (p⋆,q⋆) must therefore also coincide in TIII .

Finally, consider any t ∈ TIV . Incentive compatibility ensures that 0 = p1(t1, t2)≥ p1(t)− q1(t),
where the equality holds because (t1, t2) ∈ TIII and because we know from before that (p,q)
allocates the good to agent 2 in TIII . Incentive compatibility also ensures that 0 = p2(t1, t2) ≥
p2(t)− q2(t), where the equality holds because (t1, t2)∈ TI ∪TII and because we know from before
that (p,q) allocates the good to agent 1 in TI ∪ TII . We may thus conclude that pi(t) = qi(t) for
all i ∈ I = {1,2}. For the inequality (4) to hold in scenario t, the principal must earn at least
maxi∈I ti− ci under the mechanism (p,q). As pi(t) = qi(t) for all i∈ I, this is only possible if (p,q)
allocates the good to an agent i′ ∈ argmaxi∈I ti − ci and inspects this agent. Thus, the principal’s
payoff under (p,q) matches her payoff under (p⋆,q⋆) in region TIV .
The above reasoning shows that the principal’s earnings coincide under (p,q) and (p⋆,q⋆)

throughout the entire type space T . Therefore, (p,q) cannot Pareto robustly dominate (p⋆,q⋆),
which in turn proves that (p⋆,q⋆) is Pareto robustly optimal in problem (3).

4. Markov Ambiguity Sets Although simple and adequate for situations where there is no
distributional information, support-only ambiguity sets may be perceived conservative in practice.
Motivated by this fact, we next investigate the mechanism design problem (MDP) under the
assumption that the ambiguity set is a Markov ambiguity set of the form

P = {P∈P0(T ) : EP[t̃i]∈ [µ
i
, µi] ∀i∈ I}, (5)

where µ
i
and µi denote lower and upper bounds on the expected type EP[t̃i] of agent i∈ I, respec-

tively. We assume without much loss of generality that ti <µ
i
<µi < ti for all i∈ I. Under Markov

ambiguity sets, the principal has information about the agent’s mean types in addition to the
support information.
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Recall that if the principal knew the agents’ types ex ante, she could simply allocate the good
to the agent with the highest type without inspection. Therefore, the optimal value z⋆ of prob-
lem (MDP) is upper bounded by the value infP∈P EP[maxi∈I t̃i]. In the next proposition, we formally
establish this upper bound and show that if P is a Markov ambiguity set of the form (5), this
upper bound amounts to maxi∈I µi

and is moreover attained by an admissible mechanism. Thus,
this upper bound coincides with z⋆.

Proposition 2. If P is a Markov ambiguity set of the form (5), then problem (MDP) is
solvable and z⋆ =maxi∈I µi

.

Proposition 2 shows that the principal can secure a worst-case expected payoff of maxi∈Iµi
under

Markov ambiguity sets. Hence, in comparison to support-only information, the additional informa-
tion about the mean types of the agents increases the principal’s optimal worst-case expected payoff
from maxi∈Iti to maxi∈Iµi

. In the next theorem, we characterize a class of favored-agent mech-
anisms that attain the optimal value z⋆ =maxi∈I µi

of problem (MDP) under Markov ambiguity
sets.

Theorem 3. If P is a Markov ambiguity set of the form (5), then any favored-agent mechanism
with favored agent i⋆ ∈ argmaxi∈Iµi

and threshold value ν⋆ ≥ ti⋆ is optimal in (MDP).

Remark 2. Theorem 3 is sharp in the sense that there are problem instances for which any
favored-agent mechanism with favored agent i⋆ ∈ argmaxi∈I µi

and threshold value ν⋆ < ti⋆ is
strictly suboptimal. To see this, consider an example with I = 2 agents, where T1 = [1,6], T2 = [0,10]
and c1 = c2 = 2. When the Markov set constrains the expected types to lie in [4,5] and [3,7] for
agents 1 and 2, respectively, the optimal value of problem (MDP) is given by maxi∈I µi

= 4 in view
of Proposition 2. Consider now any favored agent mechanism with favored agent 1∈ argmaxi∈I µi

and threshold value ν < t1 = 6. In the following we prove that this mechanism is suboptimal. To
this end, assume first that ν < 1. If t=µ= (4,3), then the mechanism allocates the good to agent
1 with verification and earns t1− c1 = 2. As the discrete distribution that assigns probability mass
of one to scenario µ is in (5), the worst-case expected payoff over all P ∈ (5) cannot exceed 2,
which is strictly smaller than the optimal worst-case expected payoff. Assume next that ν ∈ [1,6),
and let ε= 6− ν that is strictly positive by definition. Consider the discrete distribution P that
assigns a probability mass of 1/2 to scenario (6,8− ε/4) and of 1/2 to scenario (2,0). One can
verify that P belongs to the Markov ambiguity set (5). The mechanism allocates the good to agent
2 with verification in scenario (6,8− ε/4) as t2 − c2 = (8− ε/4)− 2> ν and as t2 − c2 > 4 = t1 − c1
and to agent 1 without verification in scenario (2,0). The expected payoff of the aforementioned
mechanism with respect to P thus amounts to (1/2)(6− ε/4)+ (1/2)2 = 4− ε/8. Thus, the worst-
case expected payoff over all P ∈ (5) cannot exceed 4 − ε/8, which is strictly smaller than the
optimal worst-case expected payoff. In summary, the mechanism is strictly suboptimal for all ν < 6.

In the remainder of this section, we seek Pareto robustly optimal mechanisms for problem (MDP)
under Markov ambiguity sets. To this end, we first present a set of preliminary results. Even though
some of the following results rely on the assumption that the set argmaxi∈I µi

is a singleton, i.e.,
there is a single candidate for the optimal favored agent, the Pareto robust optimality result of
this section will not depend on this assumption.

Lemma 2. If P is a Markov ambiguity set of the form (5) and argmaxi∈I µi
= {i⋆} is a sin-

gleton, then, for any type profile t ∈ T , there exist a scenario t̂ ∈ T , where maxi ̸=i⋆ t̂i < t̂i⋆, and
a discrete distribution P ∈ P that satisfy the following properties: (i) EP[t̃i] = µ

i
∀i ∈ I, (ii) P(t̃ ∈

{t, t̂}) = 1, (iii) P(t̃= t)> 0.

The next proposition formalizes a necessary and sufficient optimality condition using Lemma 2.
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Proposition 3. If P is a Markov ambiguity set of the form (5) and argmaxi∈I µi
= {i⋆} is a

singleton, then a mechanism (p,q)∈X is optimal in (MDP) if and only if∑
i∈I

(pi(t)ti − qi(t)ci)≥ ti⋆ ∀t∈ T . (6)

Proposition 3 reveals that the type ti⋆ of agent i⋆ is an important reference point for optimality if
argmaxi∈I µi

= {i⋆} is a singleton. A mechanism is optimal in (MDP) if and only if it earns a payoff
of at least ti⋆ under any type profile t. Our next result shows that this optimality condition and
incentive compatibility constraints uniquely determine the allocation probabilities of any optimal
mechanism throughout a subset of all scenarios. In particular, an optimal mechanism in (MDP)
should allocate the good to agent i⋆ without inspection if no other agent reports a value ti − ci
that exceeds the highest possible type ti⋆ of agent i⋆.

Proposition 4. If P is a Markov ambiguity set of the form (5) and argmaxi∈I µi
= {i⋆} is a

singleton, then any optimal mechanism (p,q) in (MDP) satisfies the following property. For any
type profile t∈ T such that maxi ̸=i⋆ ti − ci < ti⋆, pi⋆(t) = 1 and qi⋆(t) = 0.

We outline the proof idea in the special case when there are only two agents and when µ
2
<µ

1

so that argmaxi∈Iµi
= {1} is a singleton. We also assume that t2 > c2 + t1 to prevent tedious case

distinctions. Our arguments make use of the following partition of the type space T .

TI = {t∈ T | t2 < t1}
TII = {t∈ T | t2 ≥ t1 and t2 < t1}
TIII = {t∈ T | t2 ≥ t1, t2 ≥ t1 and t2 − c2 < t1}
TIV = {t∈ T | t2 ≥ t1, t2 ≥ t1, t2 − c2 ≥ t1 and t2 − c2 < t1}
TV = {t∈ T | t2 ≥ t1, t2 ≥ t1, t2 − c2 ≥ t1 and t2 − c2 ≥ t1}

(7)

Note that some of the conditions in set definitions above are redundant and given for ease of
readability. Sets TI−TV are illustrated in Figure 2. One can show that all of these sets are nonempty
thanks to our standing assumptions about µ

1
, µ

2
, t1, t2 and c2. We emphasize, however, that all

simplifying assumptions as well as the restriction to two agents are relaxed in the formal proof of
Proposition 4.
In the following we use the optimality condition (6) that is given in Proposition 3, that is, any

optimal mechanism must earn at least t1 in any scenario t ∈ T . We will prove that, when agent 2
fails to report a type t2 that is at least c2 + t1, inequality (6) can be satisfied only if the good is
allocated to agent 1 without inspection. Note that we have t2 < c2+t1 under any scenario t∈ T \TV .
We now assume that a mechanism (p,q) is optimal and investigate the subsets TI , TII , TIII and

TIV of the type space one by one. Consider first a type profile t ∈ TI . As t2 < t1, c1 > 0 and (p,q)
satisfies the (FC) constraints

∑
i∈I pi(t)≤ 1 and q1(t)≥ 0, the mechanism (p,q) can earn a payoff

that is at least t1 only if p1(t) = 1 and q1(t) = 0.
Consider now any t ∈ TII . Incentive compatibility ensures that p1(t)≥ p1(t1, t2)− q1(t1, t2) = 1,

where the equality holds because (t1, t2)∈ TI and because we know from before that (p,q) allocates
the good to agent 1 without inspection in TI . Thus, the mechanism (p,q) can earn a payoff that is
at least t1 in scenario t only if q1(t) = 0. In summary, we must again have p1(t) = 1 and q1(t) = 0
so that (p,q) can satisfy (6).
Next, consider any scenario t ∈ TIII . Incentive compatibility ensures that p2(t) − q2(t) ≤

p2(t1, t2) = 0, where the equality holds because (t1, t2)∈ TI ∪TII and because we know from before
that (p,q) allocates the good to agent 1 without inspection throughout TI ∪ TII . As the alloca-
tion probabilities are non-negative and satisfy the (FC) condition p2(t)≥ q2(t), we may conclude
that p2(t) = q2(t). Thus, the report of agent 2 is inspected if he wins the good in scenario t. As
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Figure 2. Partition of the type space T .

t2−c2 < t1 for all t∈ TIII , the mechanism (p,q) can earn a payoff that is at least t1 only if p1(t) = 1
and q1(t) = 0.
Finally, consider any t∈ TIV . Incentive compatibility ensures that p1(t)≥ p1(t1, t2)− q1(t1, t2) =

1, where the equality holds because (t1, t2) ∈ TIII and because we know from before that (p,q)
allocates the good to agent 1 without inspection in TIII . Thus, the mechanism (p,q) can earn a
payoff that is at least t1 in scenario t only if q1(t) = 0. Hence, we must again have p1(t) = 1 and
q1(t) = 0 so that (p,q) can satisfy (6).

The reasoning above shows that, under the assumption argmaxi∈I µi
= {1}, any optimal mech-

anism (p,q) should give the good to agent 1 without inspection in any scenario t∈ T that satisfies
t2 − c2 < t1.
The allocation probabilities given in Proposition 4 are satisfied by the favored-agent mechanism

that assigns i⋆ as the favored agent and ti⋆ as the threshold. Furthermore, both type (i) and
type (ii) version of this favored-agent mechanism satisfy the optimality condition in Proposition 3
so that they are both optimal when argmaxi∈I µi

= {i⋆}. In our next result, we show that any other
mechanism can only weakly Pareto robustly dominate the type (ii) variant of this favored-agent
mechanism when argmaxi∈I µi

= {i⋆} is a singleton.

Proposition 5. Assume that P is a Markov ambiguity set of the form (5) and argmaxi∈I µi
=

{i⋆} is a singleton. Denote by (p⋆,q⋆) the allocation probabilities of the type (ii) favored-agent
mechanism with the favored agent i⋆ and threshold ν⋆ = ti⋆. If a mechanism (p,q) ∈ X weakly
Pareto robustly dominates (p⋆,q⋆), then it satisfies∑

i∈I

(pi(t)ti − qi(t)ci) =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci) ∀t∈ T .

Proposition 5 states that if a mechanism (p,q) weakly Pareto robustly dominates (p⋆,q⋆), then
mechanisms (p,q) and (p⋆,q⋆) earn the same payoff in all scenarios t ∈ T . This implies that no
other mechanism can (strongly) Pareto robustly dominate (p⋆,q⋆).
We sketch the proof idea for the two agents case detailed before. Recall that for this special case,

we assume that µ
2
<µ

1
so that argmaxi∈Iµi

= {1} is a singleton and that t2 > c2+ t1. We will again
use the partition TI −TV given in (7) and illustrated in Figure 2. In the following we first show that
any mechanism (p,q) that weakly Pareto robustly dominates (p⋆,q⋆) should be optimal. Hence, by
Proposition 4, mechanisms (p,q) and (p⋆,q⋆) generate the same payoff throughout T \ TV . Then,
we will prove that the two mechanisms earn the same payoff also in TV .
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To this end, fix a mechanism (p,q)∈X and assume that mechanism (p,q) weakly Pareto robustly
dominates (p⋆,q⋆), i.e.,

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
≥EP

[∑
i∈I

(p⋆i (t̃)t̃i − q⋆i (t̃)ci)

]
∀P∈P.

By Theorem 3, (p⋆,q⋆) is optimal in (MDP). As the expected payoff of mechanism (p,q) is at
least as high as that of mechanism (p⋆,q⋆) for any P ∈ P, mechanism (p,q) is also optimal. As
argmaxi∈I µi

= {1} is a singleton and as (p,q) is optimal, we know by Proposition 4 that (p,q)

allocates the good to agent 1 without inspection if t2−c2 < t1, i.e., if t∈ T \TV . Thus, the allocation
probabilities of the mechanisms (p,q) and (p⋆,q⋆) coincide on T \ TV .

Next, consider any t ∈ TV . Incentive compatibility ensures that 0 = p2(t1, t2) ≥ p2(t) − q2(t),
where the equality holds because (t1, t2) ∈ T \ TV and because we know that (p,q) allocates the
good to agent 1 without inspection in T \ TV . We may thus conclude that p2(t) = q2(t). Then, in
scenario t, the principal’s payoff under (p,q) satisfies∑

i∈I

(pi(t)ti − qi(t)ci)≤ p2(t)(t2 − c2)+ p1(t)t1 ≤ t2 − c2 =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci), (8)

where the second inequality follows from the definition of TV that implies that t2 − c2 ≥ t1. The
payoff of mechanism (p,q) therefore cannot exceed the one of (p⋆,q⋆) throughout TV .
We will finally show that mechanisms (p,q) and (p⋆,q⋆) earn the same payoff on TV , i.e.,

inequalities (8) hold as equalities. To this end, assume for the sake of contradiction that (p,q)
earns a strictly lower payoff in scenario t∈ TV , i.e.,∑

i∈I

(pi(t)ti − qi(t)ci)< t2 − c2 =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci).

By Lemma 2, there exists t̂∈ T , where maxi ̸=i⋆ t̂i < t̂i⋆ , and P∈P that satisfy: (i) EP[t̃i] = µ
i
∀i∈ I,

(ii) P(t̃ ∈ {t, t̂}) = 1, (iii) P(t̃= t)> 0. We already know from previous arguments that the payoff
of mechanism (p,q) is lower than or equal to the payoff of (p⋆,q⋆) in scenario t̂. In view of (ii)
and (iii), the expected payoff earned by (p,q) is thus strictly lower than the one of (p⋆,q⋆) under
P. As P ∈ P, this results in a contradiction with our initial assumption that (p,q) weakly Pareto
robustly dominates (p⋆,q⋆). Thus, mechanisms (p,q) and (p⋆,q⋆) earn the same payoff also on TV .
Proposition 5 shows that no other mechanism can Pareto robustly dominate the type (ii) favored-

agent mechanism with the favored agent i⋆ and threshold ν⋆ = ti⋆ and this mechanism is thus
Pareto robustly optimal given that argmaxi∈Iµi

= {i⋆} is a singleton. Next theorem proves that
this Pareto robust optimality result continues to hold even when argmaxi∈Iµi

is not a singleton.

Theorem 4. If P is equal to a Markov ambiguity set of the form (5), then any favored-agent
mechanism of type (ii) with favored agent i⋆ ∈ argmaxi∈Iµi

and threshold value ν⋆ = ti⋆ is Pareto
robustly optimal in (MDP).

In the proof of Theorem 4, given a favored-agent mechanism (p⋆,q⋆) of type (ii) with favored agent
i⋆ ∈ argmaxi∈Iµi

and threshold value ν⋆ = ti⋆ , we construct an auxiliary ambiguity set Pε ⊆P by
increasing µ

i⋆
to µ

i⋆
+ ϵ, where ϵ > 0 is sufficiently small. By construction, agent i⋆ is the unique

agent with the highest lower bound on the expected type under Pε. As Pε ⊆ P, any mechanism
(p,q) that weakly Pareto robustly dominates (p⋆,q⋆) under P should also weakly Pareto robustly
dominate (p⋆,q⋆) under Pε. We then invoke Proposition 5 for Pε to conclude that (p,q) and (p⋆,q⋆)
generate the same payoff in every scenario t∈ T .
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5. Markov Ambiguity Sets with Independent Types Markov ambiguity sets studied
in Section 4 contain distributions under which the agents’ types are dependent. Throughout this
section, we focus on a subset of the Markov ambiguity sets studied in Section 4 and assume that
the agents’ types are known to be mutually independent. In particular, we consider the Markov
ambiguity set with independent types defined as

P =

{
P∈P0(T ) :

EP[t̃i]∈ [µ
i
, µi] ∀i∈ I,

t̃1, . . . , t̃I are mutually independent under P

}
. (9)

As the Markov ambiguity set with independent types in (9) is a subset of the Markov ambiguity
set in (5), the principal’s optimal worst-case expected payoff cannot be lower than maxi∈I µi

in
view of Proposition 2. The next proposition shows that the principal cannot improve her optimal
worst-case expected payoff using the additional information of independence.

Proposition 6. If P is a Markov ambiguity set of the form (9), then problem (MDP) is
solvable and z⋆ =maxi∈I µi

.

The proof of Proposition 6 follows immediately from that of Proposition 2 because the agents’
types are independent under the Dirac distribution that concentrates unit mass at µ.

Next theorem shows that there are again infinitely many optimal favored-agent mechanisms.
The set of optimal favored-agent mechanisms characterized in Theorem 5 resembles to the one
characterized in Theorem 3. Particularly, the selection criteria of a favored agent remains the same
whereas the principal can select a lower threshold with the additional information of independence.
Recall that by Remark 2 any choice of threshold smaller than the highest possible type ti⋆ of
the favored agent is suboptimal if the agents’ types are not necessarily independent, i.e., if the
ambiguity set is given by (5).

Theorem 5. If P is a Markov ambiguity set of the form (9), then any favored-agent mechanism
with favored agent i⋆ ∈ argmaxi∈Iµi

and threshold value ν⋆ ≥maxi∈Iµi
is optimal in (MDP).

Remark 3. Theorem 5 is sharp in the sense that there are problem instances for which any
favored-agent mechanism with favored agent i⋆ ∈ argmaxi∈I µi

and threshold value ν⋆ <maxi∈I µi
is strictly suboptimal. To see this, recall the example from Remark 2 with two agents. The type sets
are T1 = [1,6], T2 = [0,10], the verification costs are c1 = c2 = 2, and the Markov set constrains the
expected types to lie in [4,5] and [3,7] for agents 1 and 2, respectively. Under independent types
assumption, the optimal value of problem (MDP) is given by maxi∈I µi

in view of Proposition 6.
Consider now any favored agent mechanism with favored agent 1 ∈ argmaxi∈I µi

and threshold
value ν <maxi∈I µi

= 4. In the following, we prove that this mechanism is suboptimal. To this end,
assume first that ν < 1. If t= µ= (4,3), then the mechanism allocates the good to agent 1 with
verification and earns a payoff of t1 − c1 = 2. As the discrete distribution that assigns probability
mass of one to scenario µ is in (9), the worst-case expected payoff over all P ∈ (9) cannot exceed
2, which is strictly less than the optimal worst-case expected payoff. Assume next that ν ∈ [1,4),
and let ε= 4− ν that is strictly positive by definition. Consider the discrete distribution P that
assigns a probability mass of 1/2 to scenario (4,6− ε/4) and of 1/2 to scenario (4,2). One can
verify that P belongs to the Markov ambiguity set (9). The mechanism allocates the good to agent
2 with verification in scenario (4,6− ε/4) as t2 − c2 = (6− ε/4)− 2> ν and as t2 − c2 > 2 = t1 − c1
and to agent 1 without verification in scenario (4,2). The expected payoff of the aforementioned
mechanism with respect to P thus amounts to (1/2)(4− ε/4)+ (1/2)4 = 4− ε/8. Thus, the worst-
case expected payoff over all P ∈ (9) cannot exceed 4 − ε/8, which is strictly smaller than the
optimal worst-case expected payoff. In summary, the mechanism is strictly suboptimal for all ν < 4.
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Similarly to previous sections, we next seek Pareto robustly optimal mechanisms for prob-
lem (MDP) under Markov ambiguity sets with independent types. To this end, we first present a
few preliminary results some of which require the assumption that the set argmaxi∈I µi

is a single-
ton, i.e., there is a single candidate for the favored agent. However, the Pareto robust optimality
result of this section will not depend on this assumption.

Lemma 3. If P is a Markov ambiguity set of the form (9) and argmaxi∈I µi
= {i⋆} is a sin-

gleton, then, for any type profile t ∈ T and any µi⋆ ∈ [µ
i⋆
, µi⋆ ], there exist a scenario t̂ ∈ T , where

maxi ̸=i⋆ t̂i <µ
i⋆
, and a discrete distribution P∈P that satisfy the following properties: (i) EP[t̃i⋆ ] =

µi⋆, (ii) P(t̃i ∈ {ti, t̂i}) = 1 for all i∈ I, (iii) P(t̃= t)> 0.

Next technical lemma establishes a payoff equivalence result and will be used to prove the main
Pareto robust optimality result of this section.

Lemma 4. Assume that P is equal to a Markov ambiguity set of the form (9), and
argmaxi∈I µi

= {i⋆} is a singleton. Consider any subset T ′ =
∏

i∈I T ′
i of T such that (i) T ′

i ⊇ {ti ∈
Ti | ti <µ

i⋆
} for all i∈ I \{i⋆} and (ii) either T ′

i⋆ ⊆ [µ
i⋆
, µi⋆ ] or T ′

i⋆ = Ti⋆. For any (p,q), (p′,q′)∈X ,
if (p,q) weakly Pareto robustly dominates (p′,q′) and∑

i∈I

(pi(t)ti − qi(t)ci)≤
∑
i∈I

(p′i(t)ti − q′i(t)ci) ∀t∈ T ′, (10)

then (10) holds with equality.

We next extend the payoff equivalence result of Lemma 4 to the entire set T of type profiles for
a specific favored-agent mechanism and show that any other mechanism can only weakly Pareto
robustly dominate the type (i) variant of this favored-agent mechanism when argmaxi∈I µi

= {i⋆}
is a singleton.

Proposition 7. Assume that P is equal to a Markov ambiguity set of the form (9), and
argmaxi∈I µi

= {i⋆} is a singleton. Denote by (p⋆,q⋆) the allocation probabilities of the type (i)
favored-agent mechanism with the favored agent i⋆ and threshold ν⋆ = µ

i⋆
. If a mechanism (p,q)∈

X weakly Pareto robustly dominates (p⋆,q⋆), then it satisfies∑
i∈I

(pi(t)ti − qi(t)ci) =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci) ∀t∈ T .

Proposition 7 states that if a mechanism (p,q) weakly Pareto robustly dominates (p⋆,q⋆), then
mechanisms (p,q) and (p⋆,q⋆) earn the same payoff in all scenarios t ∈ T . This implies that no
other mechanism can (strongly) Pareto robustly dominate (p⋆,q⋆).
We first sketch the proof idea focusing on a special case with two agents, where µ

2
< µ

1
so

that argmaxi∈I µi
= {1} is a singleton. We also assume that t2 > c2 + µ

1
to prevent tedious case

distinctions. Consider the following partition of the type space T .

TI = {t∈ T | t1 ∈ (µ
1
, µ1] and t2 ≤ µ

1
}

TII = {t∈ T | t1 ∈ (µ
1
, µ1], t2 >µ

1
and t2 − c2 ≤ µ

1
}

TII′ = {t∈ T | t1 ∈ (µ
1
, µ1], t2 >µ

1
and t2 − c2 >µ

1
}

TIII = {t∈ T | t1 /∈ (µ
1
, µ1] and t2 − c2 ≤ µ

1
}

TIII′ = {t∈ T | t1 /∈ (µ
1
, µ1] and t2 − c2 >µ

1
}

Note that the condition t2 >µ
1
in TII′ is redundant and given for ease of readability. We next show

that we can replace the sets TII′ and TIII′ with

TIV = {t∈ T | t1 = µ
1
and t2 − c2 >µ

1
}

TV = {t∈ T | t1 ̸= µ
1
and t2 − c2 >µ

1
}
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Figure 3. Partition of the type space T .

and obtain a different partition of T . To this end, first note that the intersection of TIV and TV is
empty. Moreover, their union is given by {t∈ T | t2− c2 >µ

1
} that is the same as the union of TII′

and TIII′ . Thus, TI ,TII ,TIII ,TIV ,TV is a partition of the type space T . We focus on this partition
to simplify the arguments below. Sets TI , TII , TIII , TIV and TV are illustrated in Figure 3. Thanks
to our standing assumptions, one can verify that all of these sets are nonempty. We emphasize that
all simplifying assumptions will be relaxed in the formal proof of Proposition 7.
In the following, we show that any mechanism (p,q) that weakly Pareto robustly dominates

(p⋆,q⋆) generates the same payoff as (p⋆,q⋆) in all scenarios t ∈ T . We will prove this claim
separately for each partition set and make use of Lemma 4. To this end, fix a mechanism (p,q)∈X
and assume that mechanism (p,q) weakly Pareto robustly dominates (p⋆,q⋆).
We first consider TI and note that it can be written as TI = TI1 × TI2 = (µ

1
, µ1]× [t2, µ1

]. The
principal’s payoff under (p,q) in any t ∈ TI is given by

∑
i∈I(pi(t)ti − qi(t)ci)≤

∑
i∈I pi(t)ti ≤ t1,

where the first inequality holds because qi(t) and ci are non-negative, and the second inequality
follows from (FC) and that t1 > t2 by definition of TI . As (p⋆,q⋆) generates a payoff of t1 in any
t∈ TI by definition, the payoff of (p⋆,q⋆) is larger than or equal to the payoff of (p,q) in every t∈ TI .
We assumed that (p,q) weakly Pareto robustly dominates (p⋆,q⋆), and we showed that the payoff
of (p⋆,q⋆) cannot be lower than that of (p,q) in every t∈ TI . As TI = TI1 ×TI2 = (µ

1
, µ1]× [t2, µ1

]
satisfies the assumptions (i) and (ii) in Lemma 4, we can thus conclude that the payoffs of (p,q)
and (p⋆,q⋆) coincide throughout TI by Lemma 4. Moreover, note that, for any t ∈ TI , we have
t2 < t1, qi(t)≥ 0, ci > 0 and

∑
i∈I pi(t)≤ 1. This implies that the payoff

∑
i∈I(pi(t)ti − qi(t)ci) of

(p,q) can be t1 only if p1(t) = 1 and q1(t) = 0.
Consider now any t∈ TII . Incentive compatibility ensures that p2(t)−q2(t)≤ p2(t1, t2) = 0, where

the equality holds because (t1, t2) ∈ TI and because we know from before that (p,q) allocates the
good to agent 1 without inspection throughout TI . As the allocation probabilities are non-negative
and satisfy the (FC) condition p2(t) ≥ q2(t), we thus have p2(t) = q2(t). This implies that the
principal’s payoff in t satisfies

∑
i∈I(pi(t)ti − qi(t)ci)≤ p1(t)t1 + p2(t)(t2 − c2)≤ t1, where the first

inequality holds because q1(t) and c1 are non-negative and p2(t) = q2(t), and the second inequality
follows from (FC) and t2 − c2 ≤ µ

1
< t1. As (p⋆,q⋆) generates a payoff of t1 in any t ∈ TII by

definition, the payoff of (p⋆,q⋆) cannot be lower than that of (p,q) throughout TII . We next
show that we can use Lemma 4 to conclude that the payoffs of two mechanisms should coincide
throughout TII under our initial assumption, that is, (p,q) weakly Pareto robustly dominates
(p⋆,q⋆). To this end, note that T ′ = TI ∪TII can be written as T ′ = T ′

1 ×T ′
2 = (µ

1
, µ1]× [t2, c2+µ

1
],

and T ′ satisfies the assumptions (i) and (ii) in Lemma 4. We showed that the payoff of (p⋆,q⋆) is
at least as high as the payoff of (p,q) in T ′ = TI ∪ TII . Thus, by Lemma 4, the payoff generated
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by (p,q) and (p⋆,q⋆) must coincide throughout t ∈ T ′ = TI ∪ TII . Moreover, note that, for any
t ∈ TII , we have t2 − c2 ≤ µ

1
< t1, qi(t)≥ 0, ci > 0 and

∑
i∈I pi(t)≤ 1. This implies that the payoff∑

i∈I(pi(t)ti − qi(t)ci) of (p,q) can be t1 only if p1(t) = 1 and q1(t) = 0.
Next, consider any t ∈ TIII . Incentive compatibility ensures that p1(t)≥ p1(µ1, t2)− q1(µ1, t2) =

1, where the equality holds because (µ1, t2) ∈ TI ∪ TII and because we know from before that
(p,q) allocates the good to agent 1 without inspection throughout TI ∪ TII . Thus, the principal’s
payoff satisfies

∑
i∈I(pi(t)ti−qi(t)ci)≤ p1(t)t1−q1(t)c1 ≤ t1, where the first inequality follows from

p1(t) = 1, (FC) and non-negativity of q, and the second inequality holds because q1(t) and c1 are
non-negative. As (p⋆,q⋆) earns a payoff of t1 in any t ∈ TIII by definition, the payoff of (p⋆,q⋆)
thus cannot be lower than that of (p,q) throughout TIII . Similarly to before, we next use Lemma 4
to show that the payoffs of the two mechanism should coincide throughout TIII . To this end, note
that T ′′ = TI ∪ TII ∪ TIII can be written as T ′′ = T ′′

1 ×T ′′
2 = T1 × [t2, c2 + µ

1
], and T ′′ satisfies the

assumptions (i) and (ii) in Lemma 4. We showed that the payoff of (p⋆,q⋆) is at least as high
as the payoff of (p,q) in T ′′ = TI ∪ TII ∪ TIII . By Lemma 4, the payoffs of the two mechanisms
must therefore coincide throughout T ′′ = TI ∪TII ∪TIII . Moreover, for any t∈ TIII , as p1(t) = 1 by
incentive compatibility, p1(t)≥ q1(t)≥ 0, c1 > 0 and

∑
i∈I pi(t)≤ 1, mechanism (p,q) can generate

a payoff of t1 only if p1(t) = 1 and q1(t) = 0.
It remains to show that (p⋆,q⋆) and (p,q) generate the same payoff in TIV and TV . To this end,

we first show that agent 2, if allocated the good, should be inspected in any t∈ TIV ∪TV . For any
such t, the incentive compatibility ensures that p2(t)− q2(t) ≤ p2(t1, t2) = 0, where the equality
holds because (t1, t2) ∈ TI ∪ TII ∪ TIII and because (p,q) allocates the good to agent 1 without
inspection throughout TI ∪ TII ∪ TIII . As the allocation probabilities are non-negative and satisfy
the (FC) condition p2(t)≥ q2(t), we have p2(t) = q2(t).
Consider now any t∈ TIV . As p2(t) = q2(t), we have

∑
i∈I(pi(t)ti− qi(t)ci)≤ p1(t)t1+ p2(t)(t2−

c2)≤ t2−c2, where the first inequality holds because q1(t) and c1 are non-negative and p2(t) = q2(t),
and the second inequality follows from (FC) and t1 = µ

1
< t2− c2. As the payoff of (p⋆,q⋆) is given

by t2−c2 in any t∈ TIV by definition, the payoff of (p,q) cannot exceed that of (p⋆,q⋆) throughout
TIV . Consider the set T ′′′ = {t ∈ TIII | t1 = µ

1
} ∪ TIV , which can be expressed as T ′′′ = {µ

1
} × T2,

and note that T ′′′ ⊆TIII ∪TIV . Set T ′′′ satisfies the assumptions (i) and (ii) in Lemma 4, and the
payoff of (p⋆,q⋆) is at least as high as the one of (p,q) in T ′′′. This implies, by Lemma 4, that
the payoffs of the two mechanisms coincide throughout T ′′′ and therefore TIV . For any t∈ TIV , as
t1 = µ

1
< t2 − c2 and p2(t) = q2(t), (p,q) can generate a payoff of t2 − c2 only if p2(t) = q2(t) = 1.

Finally, consider any scenario t ∈ TV . Incentive compatibility ensures that p1(t) − q1(t) ≤
p1(µ1

, t2) = 0, where the equality holds because (µ
1
, t2) ∈ TIV and because (p,q) allocates the

good to agent 2 and inspects his report in TIV . As the allocation probabilities are non-negative
and satisfy the (FC) condition p1(t) ≥ q1(t), we may conclude that p1(t) = q1(t). Since we also
have p2(t) = q2(t), we obtain

∑
i∈I(pi(t)ti− qi(t)ci)≤

∑
i∈I pi(t)(ti− ci)≤maxi∈I ti− ci, where the

last inequality follows from the (FC) constraint
∑

i∈I pi(t) ≤ 1. As (p⋆,q⋆) generates a payoff of
maxi∈I ti − ci in any t ∈ TV by definition, the payoff of (p,q) cannot exceed the payoff of (p⋆,q⋆)
throughout TV . Thus, (p,q) cannot generate a higher payoff than that of (p⋆,q⋆) in T =

∏
i∈I Ti,

which trivially satisfies the assumptions (i) and (ii) in Lemma 4. This implies, by Lemma 4, that
the payoffs of the two mechanism must coincide throughout T .

Next theorem proves that the Pareto robust optimality result of Proposition 7 continues to hold
even when argmaxi∈Iµi

is not a singleton.

Theorem 6. If P is equal to a Markov ambiguity set of the form (9), then any favored-agent
mechanism of type (i) with favored agent i⋆ ∈ argmaxi∈Iµi

and threshold value ν⋆ =maxi∈I µi
is

Pareto robustly optimal in (MDP).
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The proof of Theorem 6 is omitted because the arguments widely parallel those used in the proof
of Theorem 4. Next remark indicates that there are problem instances for which Pareto robustly
optimal mechanism characterized in Theorem 4 under Markov ambiguity sets (5) is not Pareto
robustly optimal under Markov ambiguity sets (9) with independent types.
Remark 4. There are problem instances for which any favored-agent mechanism with favored

agent i⋆ ∈ argmaxi∈I µi
and threshold value ν⋆ = ti⋆ is not Pareto robustly optimal under Markov

ambiguity sets (9) with independent types. To see this, consider an example with I = 2 agents,
where µ

1
>µ

2
and t2− c2 ≥ t1 >µ1. Consider the favored-agent mechanism of type (i) with favored

agent 1 ∈ argmaxi∈I µi
and threshold value t1 (One can make similar arguments for the type (ii)

variant.) In the following we prove that this mechanism is Pareto robustly dominated by another
feasible mechanism. To this end, consider an arbitrary P in (9) that satisfies P(t̃2 − c2 ≤ t1) > 0,
P(t̃2 − c2 > t1) > 0, and P

(
t̃2 − c2 ∈ (µ1, t1]

)
> 0 (These assumptions ensure that the conditional

expectations below are well-defined and can easily be relaxed by removing the respective terms in
the equations.) The expected payoff of the mechanism with respect to P is given by

P
(
t̃2 − c2 ≤ t1

)
EP[t̃1 | t̃2 − c2 ≤ t1] +P

(
t̃2 − c2 > t1

)
EP[maxi∈{1,2} t̃i − ci | t̃2 − c2 > t1].

As the agents’ types are independently distributed, this payoff can be equivalently written as
follows.

P
(
t̃2 − c2 ≤ µ1

)
EP[t̃1] +P

(
t̃2 − c2 ∈ (µ1, t1]

)
EP[t̃1]

+P
(
t̃2 − c2 > t1

)
EP[maxi∈{1,2} t̃i − ci | t̃2 − c2 > t1]

(11)

By switching to the favored-agent mechanism of type (i) with favored agent 1 and threshold value
µ1, the principal receives an expected payoff of

P
(
t̃2 − c2 ≤ µ1

)
EP[t̃1] +P

(
t̃2 − c2 ∈ (µ1, t1]

)
EP[maxi∈{1,2} t̃i − ci | t̃2 − c2 ∈ (µ1, t1]]

+P
(
t̃2 − c2 > t1

)
EP[maxi∈{1,2} t̃i − ci | t̃2 − c2 > t1].

(12)

If P
(
t̃2 − c2 ∈ (µ1, t1]

)
> 0, the expected payoff (12) of the principal under the latter favored-agent

mechanism is higher than her expected payoff (11) under the first favored-agent mechanism because
maxi∈{1,2} ti − ci ≥ t2 − c2 > µ1 ≥ EP[t̃1] if t2 − c2 ∈ (µ1, t1]. If P

(
t̃2 − c2 ∈ (µ1, t1]

)
= 0, on the other

hand, then the expected payoffs of the two mechanisms coincide. This implies that the latter
favored-agent mechanism Pareto robustly dominates the first favored-agent mechanism if there
exists a P in (9) such that P(t̃2−c2 ∈ (µ1, t1])> 0. Such P exists under the assumption that t2−c2 ≥
t1 >µ1. The discrete distribution that assigns a probability mass of α= (µ

2
− t2)/(t1 + c2 − t2) to

scenario (µ
1
, t1 + c2) and of 1−α to scenario (µ

1
, t2) in fact belongs to the ambiguity set (9).

Appendix. Proofs

Proof of Proposition 1. Relaxing the incentive compatibility constraints and the first inequality
in (FC) yields

z⋆ ≤ sup
p,q

inf
t∈T

∑
i∈I

(pi(t)ti − qi(t)ci)

s.t. pi, qi ∈L(T , [0,1]) ∀i∈ I∑
i∈I

pi(t)≤ 1 ∀t∈ T

= sup
p

inf
t∈T

∑
i∈I

pi(t)ti

s.t. pi ∈L(T , [0,1]) ∀i∈ I,
∑
i∈I

pi(t)≤ 1 ∀t∈ T ,

where the equality holds because in the relaxed problem it is optimal to set qi(t) = 0 for all i∈ I and
t∈ T . As the resulting maximization problem over p is separable with respect to t∈ T , it is optimal
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to allocate the good in each scenario t∈ T —with probability one—to an agent with maximal type.
Therefore, z⋆ is bounded above by inft∈T maxi∈I ti =maxi∈I ti. However, this bound is attained by
a mechanism that allocates the good to an agent i′ ∈ argmaxi∈I ti irrespective of t ∈ T and never
inspects anyone’s type. Since this mechanism is feasible, the claim follows. □
Proof of Theorem 1. Select an arbitrary favored-agent mechanism with i⋆ ∈ argmaxi∈Iti and

ν⋆ ≥ maxi∈I ti. Recall first that this mechanism is feasible in (3). Next, we will show that this
mechanism attains a worst-case payoff that is at least as large as maxi∈I ti, which implies via
Proposition 1 that it is in fact optimal in (3). To this end, fix an arbitrary type profile t ∈ T .
If maxi̸=i⋆ ti− ci < ν⋆, then condition (i) in Definition 3 implies that the principal’s payoff amounts
to ti⋆ ≥maxi∈I ti, where the inequality follows from the selection of i⋆. If maxi ̸=i⋆ ti− ci > ν⋆, then
condition (ii) in Definition 3 implies that the principal’s payoff amounts to maxi∈I ti − ci > ν⋆ ≥
maxi∈I ti, where the second inequality follows from the selection of ν⋆. If maxi ̸=i⋆ ti− ci = ν⋆, then
the allocation functions are defined either as in condition (i) or as in condition (ii) of Definition 3.
Thus, the principal’s payoff amounts either to ti⋆ or to maxi∈I ti − ci ≥ ν⋆, respectively, and is
therefore again non-inferior to maxi∈I ti. In summary, we have shown that the principal’s payoff
is non-inferior to z⋆ =maxi∈I ti in all three cases. As scenario t ∈ T was chosen arbitrarily, this
reasoning implies that the principal’s worst-case payoff is also non-inferior to z⋆. The favored-agent
mechanism at hand is therefore optimal in (3) by virtue of Proposition 1. □
Proof of Lemma 1. Assume first that (p,q) is a favored-agent mechanism with favored agent

i⋆ ∈ I and threshold value ν⋆ ∈R. Next, fix any agent i∈ I and any type profile t−i ∈ T−i. If i ̸= i⋆,
then we have either pi(ti, t−i) = qi(ti, t−i) = 1 or pi(ti, t−i) = qi(ti, t−i) = 0 for all ti ∈ Ti. This implies
that pi(ti, t−i)−qi(ti, t−i) = 0 is constant in ti ∈ Ti. If i= i⋆, then the fixed type profile t−i⋆ uniquely
determines whether the allocations are constructed as in case (i) or as in case (ii) of Definition 3.
In case (i) we have pi⋆(ti⋆ , t−i⋆) = 1 and qi⋆(ti⋆ , t−i⋆) = 0 for all ti⋆ ∈ Ti⋆ , and thus pi⋆(ti⋆ , t−i⋆)−
qi⋆(ti⋆ , t−i⋆) = 1 is constant in ti⋆ ∈ Ti⋆ . In case (ii) we have either pi⋆(ti⋆ , t−i⋆) = 1 and qi⋆(ti⋆ , t−i⋆) =
1 or pi⋆(ti⋆ , t−i⋆) = 0 and qi⋆(ti⋆ , t−i⋆) = 0, and thus pi⋆(ti⋆ , t−i⋆)−qi⋆(ti⋆ , t−i⋆) = 0 is again constant
in ti⋆ ∈ Ti⋆ . This establishes the claim for any favored-agent mechanism (p,q). Assume now that
(p,q) =

∑
k∈K πk(p

k,qk) is a convex combination of favored-agent mechanisms (pk,qk), k ∈ K =
{1, . . . ,K}. Next, fix any i ∈ I and t−i ∈ T−i. From the first part of the proof we know that
pki (ti, t−i)− qki (ti, t−i) is constant in ti ∈ Ti for each k ∈ K, and therefore pi(ti, t−i)− qi(ti, t−i) is
also constant in ti ∈ Ti. Similar arguments apply when (p,q) represents a convex combination of
infinitely many favored-agent mechanisms. □

Proof of Theorem 2. Throughout the proof we use the following partition of the type space T .

TI = {t∈ T | max
i ̸=i⋆

ti − ci ≤ ti⋆ and max
i ̸=i⋆

ti < ti⋆}
TII = {t∈ T | max

i ̸=i⋆
ti − ci ≤ ti⋆ and max

i ̸=i⋆
ti ≥ ti⋆}

TIII = {t∈ T | max
i ̸=i⋆

ti − ci > ti⋆ and ti − ci /∈ (ti⋆ , ti⋆ ] ∀i ̸= i⋆}
TIV = {t∈ T | max

i ̸=i⋆
ti − ci > ti⋆ and ∃i ̸= i⋆ such that ti − ci ∈ (ti⋆ , ti⋆ ]}

Note that the set TI is nonempty and contains at least (ti⋆ , t−i⋆) since maxi∈Iti = ti⋆ < ti⋆ . However,
the sets TII ,TIII and TIV can be empty if ti⋆ or ci, i ̸= i⋆, are sufficiently large.
In the following, we denote by (p⋆,q⋆) the favored-agent mechanism of type (i) with favored

agent i⋆ ∈ argmaxi∈Iti and threshold value ν⋆ =maxi∈I ti. By construction, we thus have ν⋆ = ti⋆ .
Assume now for the sake of contradiction that there exists another mechanism (p,q) ∈ X that
Pareto robustly dominates (p⋆,q⋆). Thus, the inequality (4) holds for all t∈ T and is strict for at
least one t∈ T . Note that the right-hand side of (4) represents the principal’s payoff in scenario t
under (p⋆,q⋆). By the definition of a type (i) favored-agent mechanism, this payoff amounts to ti⋆
when maxi ̸=i⋆ ti − ci ≤ ti⋆ (i.e., when t ∈ TI ∪ TII) and to maxi∈I ti − ci when maxi ̸=i⋆ ti − ci > ti⋆
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(i.e., when t∈ TIII ∪TIV ). We will show that if (4) holds, then (p,q) must generate the same payoff
as (p⋆,q⋆) under every type profile t ∈ T . In other words, (p,q) cannot generate a strictly higher
payoff than (p⋆,q⋆) under any type profile, which contradicts our assumption that (p,q) Pareto
robustly dominates (p⋆,q⋆). The remainder of the proof is divided into four steps, each of which
investigates one of the subsets TI , TII , TIII and TIV .
Step 1 (TI). Consider any type profile t ∈ TI . For inequality (4) to hold in this scenario, the

principal must earn at least ti⋆ under mechanism (p,q). We next show that this is only possible if
pi⋆(t) = 1 and qi⋆(t) = 0. To this end, assume for the sake of contradiction that either pi⋆(t)< 1 or
pi⋆(t) = 1 and qi⋆(t)> 0. If pi⋆(t)< 1, then the principal’s payoff under (p,q) satisfies∑

i∈I

(pi(t)ti − qi(t)ci)≤
∑
i∈I

pi(t)ti < ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the strict inequality holds because t ∈ TI , which implies that ti < ti⋆ for all i ̸= i⋆. Thus,
inequality (4) is violated in scenario t. If pi⋆(t) = 1 and qi⋆(t)> 0, on the other hand, we have∑

i∈I

(pi(t)ti − qi(t)ci) = pi⋆(t)ti⋆ − qi⋆(t)ci⋆ < ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the strict inequality holds because qi⋆(t) and ci⋆ are positive. Thus, inequality (4) is again
violated in scenario t. For inequality (4) to hold, we must therefore have pi⋆(t) = 1 and qi⋆(t) = 0.
Thus, the allocation probabilities of the mechanisms (p,q) and (p⋆,q⋆) coincide on TI .
Step 2 (TII). For inequality (4) to hold in any scenario t ∈ TII , the principal must earn at

least ti⋆ under mechanism (p,q). As in Step 1, we can show that this is only possible if pi⋆(t) = 1
and qi⋆(t) = 0. To this end, we partition TII into the following subsets.

TII1 = {t∈ TII | max
i̸=i⋆

ti < ti⋆}
TII2 = {t∈ TII | max

i ̸=i⋆
ti ≥ ti⋆ and ti⋆ = ti⋆}

TII3 = {t∈ TII | max
i ̸=i⋆

ti ≥ ti⋆ and ti⋆ < ti⋆}

Note that if maxi̸=i⋆ ti < ti⋆ , then TII as well as its subsets TII1 , TII2 and TII3 are all empty.
If maxi ̸=i⋆ ti ≥ ti⋆ , on the other hand, then TII and its subset TII1 are nonempty. Indeed, TII1

contains the type profile t defined through ti =min{ti⋆ , ti} for all i∈ I. To see this, note that t∈ T
by the construction of i⋆. In addition, we have t ∈ TII1 thanks to the assumption maxi ̸=i⋆ ti ≥ ti⋆ ,
which implies that maxi ̸=i⋆ ti = ti⋆ . We now investigate the sets TII1 , TII2 and TII3 one by one.
Fix first any type profile t ∈ TII1 . Incentive compatibility ensures that pi⋆(t) ≥ pi⋆(ti⋆ , t−i⋆)−

qi⋆(ti⋆ , t−i⋆) = 1, where the equality holds because (ti⋆ , t−i⋆)∈ TI and because we know from Step 1
that (p,q) allocates the good to agent i⋆ without inspection in TI . Consequently, the mecha-
nism (p,q) can only earn ti⋆ in scenario t if qi⋆(t) = 0. As t ∈ TII1 was chosen arbitrarily, the
allocation probabilities (p,q) and (p⋆,q⋆) must therefore coincide throughout TII1 .
Next, we study the subset TII2 . To this end, define the set-valued function I(t) = {i∈ I | ti ≥ ti⋆}

for t ∈ TII2 . Note that |I(t)| ≥ 2 for all t ∈ TII2 thanks to the definition of TII2 , which implies
that i⋆ ∈ I(t) and argmaxi̸=i⋆ ti ⊆ I(t). We now prove by induction that the allocation probabili-
ties (p,q) and (p⋆,q⋆) must coincide on T n

II2
= {t∈ TII2 | |I(t)|= n} for all n≥ 2.

As for the base step, set n= 2 and fix any type profile t ∈ T 2
II2

. Thus, there exists exactly one
agent i◦ ̸= i⋆ with type ti◦ ≥ ti⋆ . Incentive compatibility dictates that pi◦(t)−qi◦(t)≤ pi◦(ti◦ , t−i◦) =
0, where the equality holds because (ti◦ , t−i◦) ∈ TI and because we know from Step 1 that (p,q)
allocates the good to agent i⋆ without inspection in TI . We thus have pi◦(t) = qi◦(t). Inequality (4)
further requires the mechanism (p,q) to earn at least ti⋆ in scenario t ∈ T 2

II2
. All of this is only

possible if pi⋆(t) = 1 and qi⋆(t) = 0 because ti◦ − ci◦ ≤ ti⋆ < ti⋆ and ti < ti⋆ for all i∈ I \ {i◦, i⋆}.
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As for the induction step, assume that pi⋆(t) = 1 and qi⋆(t) = 0 for all t ∈ T n
II2

and for some
n ≥ 2, and fix an arbitrary type profile t ∈ T n+1

II2
. Thus, there exist exactly n agents i ̸= i⋆ with

types ti ≥ ti⋆ . For any such agent i, incentive compatibility dictates that pi(t)−qi(t)≤ pi(ti, t−i) = 0,
where the equality follows from the induction hypothesis and the observation that (ti, t−i) ∈ T n

II2
.

We thus have pi(t) = qi(t) for all i ∈ I(t) \ {i⋆}. Inequality (4) further requires the mechanism
(p,q) to earn at least ti⋆ in scenario t ∈ T n+1

II2
. In analogy to the base step, all of this is only

possible if pi⋆(t) = 1 and qi⋆(t) = 0 because ti − ci ≤ ti⋆ < ti⋆ for all i ∈ I(t) \ {i⋆} and ti < ti⋆
for all i ∈ I \ I(t). This observation completes the induction step. In summary, the allocation
probabilities (p,q) and (p⋆,q⋆) must therefore coincide throughout ∪n≥2T n

II2
= TII2 .

Finally, fix any type profile t∈ TII3 . Incentive compatibility ensures that pi⋆(t)≥ pi⋆(ti⋆ , t−i⋆)−
qi⋆(ti⋆ , t−i⋆) = 1, where the equality holds because (ti⋆ , t−i⋆) ∈ TII2 and because we know from the
above induction argument that (p,q) allocates the good to agent i⋆ without inspection in TII2 .
Hence, the mechanism (p,q) can only earn ti⋆ in scenario t if qi⋆(t) = 0. As t ∈ TII3 was chosen
arbitrarily, the allocation probabilities (p,q) and (p⋆,q⋆) must therefore coincide throughout TII3 .
Step 3 (TIII). In this part of the proof we will demonstrate that∑

i∈argmaxi′∈Iti′−ci′

pi(t) = 1 and pi(t) = qi(t) ∀i∈ argmaxi′∈Iti′ − ci′ , (13)

for every fixed t∈ TIII . To prove (13), define the set-valued function I(t) = {i∈ I | ti > ti⋆} for t∈
TIII . Note that |I(t)| ≥ 1 for all t ∈ TIII thanks to the definition of TIII , which ensures that there
exists at least one agent i∈ I with ti− ci > ti⋆ . We will now use induction to prove that (13) holds
for all type profiles in T n

III = {t∈ TIII | |I(t)|= n} for all n≥ 1.
As for the base step, set n= 1 and fix any type profile t ∈ T 1

III . Thus, there exists exactly one
agent i◦ ̸= i⋆ with ti◦ > ti⋆ . Incentive compatibility ensures that pi◦(t)− qi◦(t)≤ pi◦(ti◦ , t−i◦) = 0,
where the equality holds because (ti◦ , t−i◦)∈ TI∪TII . We thus have pi◦(t) = qi◦(t). If pi◦(t)< 1, then∑

i∈I

(pi(t)ti − qi(t)ci)≤ pi◦(t)(ti◦ − ci◦)+
∑
i ̸=i◦

pi(t)ti <max
i∈I

ti − ci,

where the first inequality holds because pi◦(t) = qi◦(t) and ci > 0 for all i ̸= i◦. The second inequality
follows from the assumption that pi◦(t) < 1 as well as the definition of TIII and the construc-
tion of i◦, which imply that ti◦ − ci◦ = maxi∈I ti − ci > ti⋆ and ti⋆ ≥ ti for all i ̸= i◦. This shows
that (p,q) earns strictly less than (p⋆,q⋆) in scenario t, which contradicts inequality (4). Hence,
our assumption must have been wrong, and pi◦(t) must equal 1. We have thus established (13) in
scenario t.
As for the induction step, assume that (13) holds throughout T n

III for some n≥ 1, and fix any
type profile t ∈ T n+1

III . Thus, there exist exactly n+ 1 agents i ̸= i⋆ with types ti > ti⋆ . For any
agent i∈ I(t) incentive compatibility dictates that pi(t)− qi(t)≤ pi(ti, t−i) = 0, where the equality
holds because (ti, t−i)∈ TI ∪TII ∪T n

III . Indeed, if (ti, t−i)∈ TI ∪TII , then the equality follows from
the results of Steps 1 and 2, and if (ti, t−i) ∈ T n

III , then the equality follows from the induction
hypothesis. We thus have pi(t) = qi(t) for all i ∈ I(t) and, by the definition of TIII , in particular
for all i∈ argmaxj∈I tj − cj. In addition, if the summation of pi(t) over all i∈ argmaxi′∈Iti′ − ci′ is
strictly smaller than 1, then∑

i∈I

(pi(t)ti − qi(t)ci)≤
∑
i∈I(t)

pi(t)(ti − ci)+
∑
i/∈I(t)

pi(t)ti <max
i∈I

ti − ci

where the first inequality holds because pi(t) = qi(t) for all i∈ I(t) and ci > 0 for all i /∈ I(t). The
strict inequality holds because

∑
i∈I pi(t) ≤ 1 and maxj∈I tj − cj > ti⋆ ≥ ti for all i /∈ I(t) by the

definition of TIII and because we assumed that the summation of pi(t) over i∈ argmaxi′∈Iti′ −ci′ is



Bayrak et al.: Distributionally Robust Optimal Allocation with Costly Verification
23

strictly smaller than 1. This reasoning shows that (p,q) earns strictly less than (p⋆,q⋆) in scenario t,

which contradicts inequality (4). Hence, our assumption must be false and the summation of pi(t)

over i ∈ argmaxi′∈Iti′ − ci′ equals 1. We have thus established (13) in scenario t. As t ∈ T n+1
III was

chosen arbitrarily, we may conclude that (13) holds throughout T n+1
III . This observation completes

the induction step. In summary, the revenues generated by the mechanisms (p,q) and (p⋆,q⋆) must

therefore coincide throughout ∪n≥1T n
III = TIII .

Step 4 (TIV ). In analogy to Step 3, we will show that (13) holds for every fixed t ∈ TIV . This

immediately implies that (p,q) generates the same payoff as (p⋆,q⋆) throughout TIV . To prove (13),

define the set-valued function I(t) = {i∈ I | ti > ti⋆} for t∈ TIV . Note that |I(t)| ≥ 2 for all t∈ TIV

thanks to the definition of TIV , which implies that i⋆ ∈ I(t) and argmaxi̸=i⋆ ti − ci ⊆ I(t). To see

that i⋆ ∈ I(t), note that if i⋆ ̸∈ I(t) for some t∈ TIV , then ti⋆ = ti⋆ , and there can be no i ̸= i⋆ with

ti − ci ∈ (ti⋆ , ti⋆ ] = ∅, which contradicts the assumption that t∈ TIV . We will now use induction to

prove that (13) holds for all type profiles in T n
IV = {t∈ TIV | |I(t)|= n} for all n≥ 2.

As for the base step, set n= 2 and fix an arbitrary type profile t∈ T 2
IV . Thus, there exists exactly

one agent i◦ ̸= i⋆ with ti◦ > ti⋆ . Incentive compatibility for agent i⋆ ensures that pi⋆(t)− qi⋆(t)≤
pi⋆(ti⋆ , t−i⋆) = 0, where the equality follows from (13) and the observation that (ti⋆ , t−i⋆) ∈ TIII .

Thus, we have pi⋆(t) = qi⋆(t). Incentive compatibility for agent i◦ further dictates that pi◦(t)−
qi◦(t)≤ pi◦(ti◦ , t−i◦) = 0, where the equality holds because (ti◦ , t−i◦) ∈ TI ∪TII . Indeed, recall that

the allocation probabilities of (p,q) and (p⋆,q⋆) match and that the good is allocated to agent i⋆

on TI ∪ TII . Thus, we have pi◦(t) = qi◦(t). This reasoning shows that pi(t) = qi(t) for all i ∈ I(t).
Assume now that the summation of pi(t) over all i ∈ argmaxi′∈Iti′ − ci′ is strictly smaller than 1.

Then, we have

∑
i∈I

(pi(t)ti − qi(t)ci)≤
∑
i∈I(t)

pi(t)(ti − ci)+
∑
i/∈I(t)

pi(t)ti <max
i∈I

ti − ci,

where the first inequality holds because pi(t) = qi(t) for all i ∈ I(t) and ci > 0 for all i /∈ I(t).
The strict inequality holds because

∑
i∈I pi(t)≤ 1, maxj∈I tj − cj > ti⋆ ≥ ti for all i ̸∈ I(t) by the

definition of TIV and because we assumed that the summation of pi(t) over i∈ argmaxi′∈Iti′ −ci′ is

strictly smaller than 1. Hence, (p,q) earns strictly less than (p⋆,q⋆) in scenario t, which contradicts

inequality (4). This implies that our assumption was false and that the summation of pi(t) over all

i ∈ argmaxi′∈Iti′ − ci′ must be equal to 1. We have thus established (13) in scenario t. As t ∈ T 2
IV

was chosen arbitrarily, (13) holds throughout T 2
IV .

As for the induction step, assume that (13) holds throughout T n
IV for some n ≥ 2, and fix an

arbitrary type profile t∈ T n+1
IV . Thus, there exist exactly n agents i ̸= i⋆ with types ti > ti⋆ . Using

the exact same reasoning as in the base step, we can prove that pi⋆(t) = qi⋆(t). In addition, for any

agent i ∈ I(t) \ {i⋆} incentive compatibility dictates that pi(t)− qi(t) ≤ pi(ti, t−i) = 0, where the

equality holds because (ti, t−i) ∈ TI ∪TII ∪TIII ∪T n
IV . Indeed, if (ti, t−i) ∈ TI ∪TII ∪TIII , then the

equality follows from the results of Steps 1, 2 and 3, and if (ti, t−i)∈ T n
IV , then the equality follows

from the induction hypothesis. In summary, we have thus shown that pi(t) = qi(t) for all i∈ I(t).
The first statement in (13) can be proved by repeating the corresponding arguments from the base

step almost verbatim. Details are omitted for brevity. We have thus established (13) in an arbitrary

scenario t ∈ T n+1
IV . By induction, the revenues generated by the mechanisms (p,q) and (p⋆,q⋆)

must therefore coincide throughout ∪n≥2T n
IV = TIV . This observation completes the proof. □
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Proof of Proposition 2. Relaxing the incentive compatibility constraints and the first inequality
in (FC) yields

z⋆ ≤ sup
p,q

inf
P∈P

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
s.t. pi : T → [0,1] and qi : T → [0,1] ∀i∈ I∑

i∈I

pi(t)≤ 1 ∀t∈ T

= sup
p

inf
P∈P

EP

[∑
i∈I

pi(t̃)t̃i

]
s.t. pi : T → [0,1] ∀i∈ I,

∑
i∈I

pi(t)≤ 1 ∀t∈ T ,

where the equality holds because it is optimal to set qi(t) = 0 for all i∈ I and t∈ T in the relaxed
problem. As pi ≥ 0 and

∑
i∈I pi(t)≤ 1 for all t∈ T , we moreover have∑

i∈I

pi(t)ti ≤max
i∈I

ti ∀t∈ T ,

which imply that z⋆ is bounded above by infP∈P EP
[
maxi∈I t̃i

]
. Now, select an arbitrary i⋆ ∈

argmaxi∈I µi
and denote by δµ the Dirac point mass at µ. We have

Eδµ

[
max
i∈I

t̃i

]
≥ inf

P∈P
EP

[
max
i∈I

t̃i

]
≥ inf

P∈P
EP

[
t̃i⋆

]
=max

i∈I
µ
i
,

where the first inequality holds because δµ ∈P, the second inequality holds because maxi∈I ti ≥ ti⋆
for any t ∈ T , and the equality follows from the selection of i⋆ and the definition of the Markov
ambiguity set P. As δµ is the Dirac point mass at µ, we also have Eδµ

[
maxi∈I t̃i

]
= maxi∈I µi

that implies infP∈P EP
[
maxi∈I t̃i

]
=maxi∈I µi

. Therefore, the optimal value z⋆ is bounded above
by maxi∈I µi

. However, this bound is attained by a mechanism that allocates the good to an agent
i⋆ ∈ argmaxi∈I µi

irrespective of t ∈ T and never inspects anyone’s type. Since this mechanism is
feasible, the claim follows. □
Proof of Theorem 3. Select an arbitrary favored-agent mechanism with i⋆ ∈ argmaxi∈Iµi

and

ν⋆ ≥ ti⋆ . Recall first that this mechanism is feasible in (MDP). Next, we will show that this
mechanism attains a worst-case payoff that is at least as large as maxi∈I µi

, which implies via
Proposition 2 that this mechanism is optimal in (MDP). To this end, fix an arbitrary type pro-
file t ∈ T . If maxi∈I ti − ci < ν⋆, then condition (i) in Definition 3 implies that the principal’s
payoff amounts to ti⋆ . If maxi∈I ti − ci > ν⋆, then condition (ii) in Definition 3 implies that the
principal’s payoff amounts to maxi∈I ti − ci > ν⋆ ≥ ti⋆ , where the second inequality follows from
the selection of ν⋆. If maxi̸=i⋆ ti − ci = ν⋆, then the allocation functions are defined either as in
condition (i) or as in condition (ii) of Definition 3. Thus, the principal’s payoff amounts either
to ti⋆ or to maxi∈I ti − ci ≥ ν⋆ ≥ ti⋆ , respectively. In summary, we have shown that the principal’s
payoff is bigger than or equal to ti⋆ in all three cases. As the type profile t was chosen arbitrarily,
this implies that the principal’s expected payoff under any distribution P∈P is bounded below by
EP

[
t̃i⋆

]
. By the definition of the Markov ambiguity set P, the expectation EP

[
t̃i⋆

]
cannot be lower

than z⋆ = maxi∈I µi
for any P ∈ P. Therefore, the principal’s worst-case expected payoff under

the favored-agent mechanism is bounded below by z⋆. The favored-agent mechanism at hand is
therefore optimal in (3) by virtue of Proposition 2. □
Proof of Lemma 2. For any t ∈ T , we will show that there exists a scenario t̂ ∈ T that satisfies

maxi ̸=i⋆ t̂i < t̂i⋆ and αt+(1−α)t̂=µ for some α∈ (0,1]. This implies that the discrete distribution
P= αδt + (1− α)δt̂ belongs to the Markov ambiguity set P and moreover satisfies the properties
(i)–(iii).
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To this end, consider any t ∈ T . If t= µ, set t̂= t= µ. As argmaxi∈I µi
= {i⋆} is a singleton,

scenario t̂ satisfies maxi̸=i⋆ t̂i < t̂i⋆ . Moreover, note that αt+(1−α)t̂=µ for any α∈ (0,1]. Similarly,
for any α ∈ (0,1], P= αδt + (1−α)δt̂ = δµ is the Dirac point mass at µ and trivially satisfies the
desired properties (i)–(iii).
If t ̸=µ, define function t̂(α) through

t̂(α) =
1

1−α
(µ− t)+ t.

Note that, for any α∈ [0,1), t̂(α) satisfies

αt+(1−α)t̂(α) = αt+(1−α)

(
1

1−α
(µ− t)+ t

)
=µ.

Thus, for any α ∈ [0,1), t̂= t̂(α) satisfies αt+ (1− α)t̂= µ. We will next show that there exists

an α ∈ (0,1) for which t̂= t̂(α) also satisfies maxi ̸=i⋆ t̂i < t̂i⋆ . To this end, first note that t̂(α) is a
continuous function of α∈ [0,1) and t̂(0) =µ. Thus, for any ε > 0, there exists α∈ (0,1) such that

t̂(α)∈
∏

i∈I [µi
− ε,µ

i
+ ε]. We next show that any ε > 0 that belongs to the set

L= (0,min
i∈I

µ
i
− ti)∩ (0,min

i∈I
ti −µ

i
)∩

(
0, (µ

i⋆
−max

i ̸=i⋆
µ
i
)/2

)
ensures that

∏
i∈I [µi

− ε,µ
i
+ ε]⊆ {t ∈ T | maxi̸=i⋆ ti < ti⋆}. Note that set L is non-empty because

ti < µ
i
< µi < ti for all i ∈ I and argmaxi∈I µi

= {i⋆} is a singleton. Consider any ε ∈ L. As
ε <mini∈I µi

− ti, any t∈
∏

i∈I [µi
− ε,µ

i
+ ε] satisfies

ti ≥ µ
i
− ε > µ

i
− (min

j∈I
µ
j
− tj)≥ µ

i
− (µ

i
− ti) = ti ∀i∈ I.

Similarly, as ε <mini∈I ti −µ
i
, any t∈

∏
i∈I [µi

− ε,µ
i
+ ε] satisfies

ti ≤ µ
i
+ ε < µ

i
+(min

j∈I
tj −µ

j
)≤ µ

i
+ ti −µ

i
= ti ∀i∈ I.

Therefore, we have shown that
∏

i∈I [µi
−ε,µ

i
+ε]⊆T . Finally, any t∈

∏
i∈I [µi

−ε,µ
i
+ε] satisfies

ti⋆ ≥ µ
i⋆
− ε > µ

i⋆
− (µ

i⋆
−max

j ̸=i⋆
µ
j
)/2 = (µ

i⋆
+max

j ̸=i⋆
µ
j
)/2

=max
j ̸=i⋆

µ
j
+(µ

i⋆
−max

j ̸=i⋆
µ
j
)/2>max

j ̸=i⋆
µ
j
+ ε≥ µ

i
+ ε≥ ti ∀i ̸= i⋆,

where the second and third inequalities follow from ε < (µ
i⋆
−maxi̸=i⋆ µi

)/2. Thus, we have shown
that

∏
i∈I [µi

− ε,µ
i
+ ε] ⊆ {t ∈ T | maxi ̸=i⋆ ti < ti⋆} for any ε ∈ L. As for any ε ∈ L there exists

α∈ (0,1) such that t̂(α)∈
∏

i∈I [µi
− ε,µ

i
+ ε], the claim follows. □

Proof of Proposition 3. Consider an arbitrary mechanism (p,q) ∈X . If (p,q) satisfies (6), then
the principal’s expected payoff EP

[∑
i∈I(pi(t̃)t̃i − qi(t̃)ci)

]
under any distribution P∈P is at least

EP
[
t̃i⋆

]
≥maxi∈I µi

, where the inequality follows from the definition of the Markov ambiguity set
P. By virtue of Proposition 2, this mechanism is therefore optimal (MDP). We thus have shown
that if (p,q) satisfies (6), then it is optimal in (MDP).
We next show that if (p,q) is optimal in (MDP), then it must satisfy (6). To this end, assume

for the sake of contradiction that (p,q) is optimal and
∑

i∈I(pi(t)ti − qi(t)ci)< ti⋆ for some t∈ T .
Consider an arbitrary t ∈ T for which inequality (6) fails. By Lemma 2, we know that there exist
a scenario t̂∈ T , where maxi ̸=i⋆ t̂i < t̂i⋆ , and a discrete distribution P∈P that satisfy the following
properties: (i) EP[t̃i] = µ

i
∀i ∈ I, (ii) P(t̃ ∈ {t, t̂}) = 1, (iii) P(t̃ = t) > 0. The principal’s payoff∑

i∈I(pi(t̂)t̂i − qi(t̂)ci) in scenario t̂ is bounded above by
∑

i∈I pi(t̂)t̂i ≤ t̂i⋆ , where the inequality
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holds because
∑

i∈I pi(t̂) ≤ 1 and t̂i ≤ t̂i⋆ for all i ∈ I. The principal’s expected payoff under P
therefore satisfies

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
= P(t̃= t)

∑
i∈I

(pi(t)ti − qi(t)ci)+P(t̃= t̂)
∑
i∈I

(pi(t̂)t̂i − qi(t̂)ci)

< P(t̃= t)ti⋆ +P(t̃= t̂)t̂i⋆ = µ
i⋆
,

where the first equality follows from property (ii), the inequality holds because of property (iii) and
because we have assumed that

∑
i∈I(pi(t)ti− qi(t)ci)< ti⋆ and we have shown that

∑
i∈I(pi(t̂)t̂i−

qi(t̂)ci)≤ t̂i⋆ , and the last equality follows from properties (i) and (ii). As the principal’s expected
payoff under P is strictly smaller than z⋆ = µ

i⋆
, mechanism (p,q) cannot be optimal. The claim

thus follows. □
Proof of Proposition 4. Throughout the proof we use the following partition of the type space T .

TI = {t∈ T | max
i ̸=i⋆

ti < ti⋆}
TII = {t∈ T | max

i ̸=i⋆
ti ≥ ti⋆ and max

i̸=i⋆
ti < ti⋆}

TIII = {t∈ T | max
i ̸=i⋆

ti ≥ ti⋆ , max
i ̸=i⋆

ti ≥ ti⋆ and max
i̸=i⋆

ti − ci < ti⋆}
TIV = {t∈ T | max

i ̸=i⋆
ti ≥ ti⋆ , max

i ̸=i⋆
ti ≥ ti⋆ , max

i̸=i⋆
ti − ci ≥ ti⋆ and max

i ̸=i⋆
ti − ci < ti⋆}

TV = {t∈ T | max
i ̸=i⋆

ti ≥ ti⋆ , max
i ̸=i⋆

ti ≥ ti⋆ , max
i̸=i⋆

ti − ci ≥ ti⋆ and max
i ̸=i⋆

ti − ci ≥ ti⋆}

(14)

Note again that some of the conditions in the definitions above are redundant and introduced for
ease of readability. Note also that the set TI is nonempty and contains at least µ = (µ1, . . . , µI)
because argmaxi∈Iµi

= {i⋆} is a singleton. However, the sets TII ,TIII ,TIV and TV can be empty if
ti⋆ or ci, i ̸= i⋆, are sufficiently large.

In the following, we will use Proposition 3 that shows that any optimal mechanism should
satisfy (6). In other words, any optimal mechanism should earn a payoff that is at least ti⋆ in
any scenario t ∈ T . To prove the claim, we will show that if a feasible mechanism (p,q) violates
pi⋆(t) = 1 and qi⋆(t) = 0 for some t ∈ T such that maxi ̸=i⋆ ti − ci < ti⋆ , then it cannot satisfy (6).
Consequently, mechanism (p,q) cannot be optimal. The remainder of the proof is divided into four
steps, each of which investigates one of the subsets TI , TII , TIII and TIV . We have maxi ̸=i⋆ ti−ci ≥ ti⋆
for any t∈ TV , and for this reason we do not need to investigate this set.

Step 1 (TI). Assume for the sake of contradiction that a mechanism (p,q) is optimal in (MDP)
and satisfy pi⋆(t) < 1 or pi⋆(t) = 1 and qi⋆(t) > 0 in some scenario t ∈ TI . If pi⋆(t) < 1, then the
principal’s payoff can be written as∑

i∈I

(pi(t)ti − qi(t)ci)≤
∑
i∈I

pi(t)ti < ti⋆ ,

where the strict inequality holds because
∑

i∈I pi(t)≤ 1 and t ∈ TI , which implies that ti < ti⋆ for
all i ̸= i⋆. Thus, inequality (6) is violated in scenario t. If pi⋆(t) = 1 and qi⋆(t)> 0, on the other
hand, we have ∑

i∈I

(pi(t)ti − qi(t)ci) = pi⋆(t)ti⋆ − qi⋆(t)ci⋆ < ti⋆ ,

where the strict inequality holds because qi⋆(t) and ci⋆ are positive. Thus, inequality (6) is again
violated in scenario t. For inequality (6) to hold, we must therefore have pi⋆(t) = 1 and qi⋆(t) = 0
for any t∈ TI .
Step 2 (TII). Consider any type profile t ∈ TII . Incentive compatibility ensures that pi⋆(t) ≥

pi⋆(ti⋆ , t−i⋆) − qi⋆(ti⋆ , t−i⋆) = 1, where the equality holds because (ti⋆ , t−i⋆) ∈ TI and because we
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know from Step 1 that (p,q) allocates the good to agent i⋆ without inspection in TI . Consequently,
a feasible mechanism (p,q) can earn at least ti⋆ in scenario t only if qi⋆(t) = 0. As t∈ TII was chosen
arbitrarily, any optimal mechanism (p,q) should satisfy pi⋆(t) = 1 and qi⋆(t) = 0 throughout TII .

Step 3 (TIII). Define the set-valued function I(t) = {i ∈ I | ti ≥ ti⋆} for t ∈ TIII . Note that
|I(t)| ≥ 2 for all t∈ TIII because i

⋆ ∈ I(t) and because the definition of TIII ensures that maxi ̸=i⋆ ti ≥
ti⋆ . We now prove by induction that pi⋆(t) = 1 and qi⋆(t) = 0 for all type profiles in T n

III = {t ∈
TIII | |I(t)|= n} for all n≥ 2.

As for the base step, set n= 2 and fix any t ∈ T 2
III . Thus, there exists exactly one agent i◦ ̸= i⋆

with ti◦ ≥ ti⋆ . Incentive compatibility ensures that pi◦(t) − qi◦(t) ≤ pi◦(ti◦ , t−i◦) = 0, where the
equality holds because (ti◦ , t−i◦) ∈ TI ∪ TII and because we know from Step 1 and 2 that (p,q)
allocates the good to agent i⋆ without inspection in TI ∪ TII . We thus have pi◦(t) = qi◦(t). As
ti◦ − ci◦ < ti⋆ and tj < ti⋆ for all j ∈ I \I(t), the mechanism (p,q) can satisfy the inequality (6) for
t∈ T 2

III only if pi⋆(t) = 1 and qi⋆(t) = 0.
As for the induction step, assume that pi⋆(t) = 1 and qi⋆(t) = 0 for all t∈ T n

III and for some n≥ 2,
and fix an arbitrary type profile t∈ T n+1

III . Thus, there exist exactly n agents i ̸= i⋆ with types ti ≥
ti⋆ . For any such agent i, incentive compatibility dictates that pi(t)− qi(t)≤ pi(ti, t−i) = 0, where
the equality holds because (ti, t−i)∈ TI ∪TII ∪T n

III . Indeed, if (ti, t−i)∈ TI ∪TII , then the equality
follows from the results of Steps 1 and 2, and if (ti, t−i) ∈ T n

III , then the equality follows from the
induction hypothesis. We thus have pi(t) = qi(t) for all i∈ I(t)\{i⋆}. In analogy to the base step, a
feasible mechanism (p,q) can satisfy the inequality (6) for t∈ T n+1

III only if pi⋆(t) = 1 and qi⋆(t) = 0
because ti−ci < ti⋆ for all i∈ I(t)\{i⋆}, and tj < ti⋆ for j ∈ I \I(t). This observation completes the
induction step. In summary, the allocation probabilities of any optimal mechanism (p,q) should
satisfy pi⋆(t) = 1 and qi⋆(t) = 0 throughout ∪n≥2T n

III = TIII .
Step 4 (TIV ). Fix now any arbitrary type profile t ∈ TIV . Incentive compatibility ensures that

pi⋆(t) ≥ pi⋆(ti⋆ , t−i⋆) − qi⋆(ti⋆ , t−i⋆) = 1, where the equality holds because (ti⋆ , t−i⋆) ∈ TIII and
because we know from Step 3 that any optimal mechanism (p,q) allocates the good to agent i⋆

without inspection in TIII . Consequently, a feasible mechanism (p,q) can earn at least ti⋆ in sce-
nario t only if qi⋆(t) = 0. As t ∈ TIV was chosen arbitrarily, any optimal mechanism (p,q) should
satisfy pi⋆(t) = 1 and qi⋆(t) = 0 throughout TIV . This observation completes the proof. □
Proof of Proposition 5. We will again use the partition TI − TV given in (14). Similarly to the

sketch of the proof idea, we first show that (p,q) and (p⋆,q⋆) generate the same payoff throughout
T \ TV . Then, we will prove that the two mechanisms generate the same payoff also in TV .
To this end, fix a mechanism (p,q)∈X and assume that (p,q) weakly Pareto robustly dominates

(p⋆,q⋆). Mechanism (p,q) thus earns at least as high expected payoff as (p⋆,q⋆) under every P∈P,
i.e., condition (1) holds. As (p⋆,q⋆) is optimal by Theorem 3, this implies that (p,q) is also optimal
in (MDP). As argmaxi∈I µi

= {i⋆} is a singleton, we thus know from Proposition 4 that (p,q)

allocates the good to the favored agent i⋆ without inspection if maxi ̸=i⋆ ti−ci < ti⋆ , i.e., if t∈ T \TV .
Thus, the allocation probabilities of the mechanisms (p,q) and (p⋆,q⋆) coincide on T \ TV , and
they earn the same payoff throughout T \ TV .

In the following we show that (p,q) can weakly Pareto robustly dominate (p⋆,q⋆) only if∑
i∈argmaxi′∈I ti′−ci′

pi(t) = 1 and pi(t) = qi(t) ∀i∈ argmaxi′∈Iti′ − ci′ (15)

for all t∈ TV . Note that (15) immediately implies that (p,q) and (p⋆,q⋆) generate the same payoff
maxi∈I ti − ci throughout TV .
Define now the set-valued function I(t) = {i∈ I | ti ≥ ti⋆} for t∈ TV . Note that |I(t)| ≥ 1 for all

t∈ TV thanks to the definition of TV , which ensures that there exists at least one agent i ̸= i⋆ with
ti − ci ≥ ti⋆ and argmaxi̸=i⋆ ti − ci ⊆ I(t). We now prove by induction that (15) holds for all type
profiles in T n

V = {t∈ TV | |I(t)|= n} for all n≥ 1.
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As for the base step, set n= 1 and fix any t ∈ T 1
V . Thus, there exists exactly one agent i◦ ̸= i⋆

such that ti◦ ≥ ti⋆ . Incentive compatibility ensures that pi◦(t)− qi◦(t)≤ pi◦(ti◦ , t−i◦) = 0, where the

equality holds because (ti◦ , t−i◦)∈ T \TV and because (p,q) allocates the good to agent i⋆ without

inspection on T \ TV . We thus have pi◦(t) = qi◦(t). If pi◦(t)< 1, then∑
i∈I

(pi(t)ti − qi(t)ci)≤ pi◦(t)(ti◦ − ci◦)+
∑
i ̸=i◦

pi(t)ti <max
i∈I

ti − ci, (16)

where the first inequality holds because pi◦(t) = qi◦(t) and ci > 0 for all i ̸= i◦. The second inequality

follows from the assumption that pi◦(t)< 1 as well as the definition of T 1
V and the construction of

i◦, which imply that ti◦ − ci◦ =maxi∈I ti − ci ≥ ti⋆ and ti⋆ > ti for all i ̸= i◦. This shows that (p,q)

earns strictly less than (p⋆,q⋆) in scenario t. We next show that this fact contradicts inequality (1).

Due to Lemma 2, there exists t̂ ∈ T , where maxi ̸=i⋆ t̂i < t̂i⋆ , and P ∈ P that satisfy: (i) EP[t̃i] = µ
i

∀i∈ I, (ii) P(t̃∈ {t, t̂}) = 1, (iii) P(t̃= t)> 0. As t̂∈ T \ TV by definition, we have

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
= α

∑
i∈I

(pi(t)ti − qi(t)ci)+ (1−α)
∑
i∈I

(pi(t̂)t̂i − qi(t̂)ci)

<α(ti◦ − ci◦)+ (1−α)t̂i⋆ =EP

[∑
i∈I

(p⋆i (t̃)t̃i − q⋆i (t̃)ci)

]
,

where α∈ (0,1] indicates the probability of t̃= t, and the inequality follows from (16) and the fact

that the payoff at scenario t̂ is smaller than t̂i⋆ because maxi ̸=i⋆ t̂i < t̂i⋆ and because (p,q) satisfies

(FC) and ci > 0 for all i∈ I. The strict inequality above implies that (p⋆,q⋆) earns a strictly higher

expected payoff than (p,q) under P∈P. It thus contradicts inequality (1) and our assumption that

(p,q) weakly Pareto robustly dominates (p⋆,q⋆). Hence, we have established (15) in scenario t.

As for the induction step, assume that (15) holds throughout T n
V for some n ≥ 1, and fix an

arbitrary type profile t∈ T n+1
V . Thus, there exist exactly n+1 agents i with types ti ≥ ti⋆ . For any

agent i ∈ I(t) \ {i⋆} incentive compatibility dictates that pi(t)− qi(t) ≤ pi(ti, t−i) = 0, where the

equality follows from Proposition 4 and the induction hypothesis because (ti, t−i)∈ T n
V ∪ (T \ TV ).

If i⋆ ∈ I(t), then we can make a similar argument for i⋆. In fact, incentive compatibility dictates

that pi⋆(t) − qi⋆(t) ≤ pi⋆(ti⋆ , t−i⋆) = 0, where the equality follows from the induction hypothesis

because (ti⋆ , t−i⋆) ∈ T n
V . In summary, we have thus shown that pi(t) = qi(t) for all i ∈ I(t). The

first condition in (15) can be proved by repeating the corresponding arguments from the base step

almost verbatim. Details are omitted for brevity. We have thus established (15) in an arbitrary

scenario t ∈ T n+1
V . By induction, the revenues generated by the mechanisms (p,q) and (p⋆,q⋆)

must therefore coincide throughout ∪n≥1T n
V = TV . This observation completes the proof. □

Proof of Theorem 4. Let (p⋆,q⋆) denote the allocation probabilities of the favored-agent mech-

anism described in Theorem 4. We know that (p⋆,q⋆) is optimal from Theorem 3. To show that it

is also Pareto robustly optimal, fix a mechanism (p,q)∈X and suppose that (p,q) weakly Pareto

robustly dominates (p⋆,q⋆), i.e., condition (1) holds. We will show that (p,q) cannot (strictly)

Pareto robustly dominate (p⋆,q⋆).

If argmaxi∈Iµi
= {i⋆} is a singleton, we know from Proposition 5 that (p,q) cannot generate

strictly higher expected payoff under any P ∈ P, and (p⋆,q⋆) is thus Pareto robustly optimal.

Suppose now that argmaxi∈Iµi
is not a singleton. Select any ε ∈ (0, µi⋆ −µ

i⋆
) that exists because

µ
i⋆
<µi⋆ , and define

Pε = {P∈P : EP[t̃i⋆ ]∈ [µ
i⋆
+ ε,µi⋆ ]}.
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Set Pε represents another Markov ambiguity set where the lowest mean value µ
i⋆

of bidder i⋆ is
shifted to µ

i⋆
+ ε. Note that agent i⋆ becomes the unique agent with the maximum lowest mean

value under Pε. As Pε ⊂P by construction, we have

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
≥EP

[∑
i∈I

(p⋆i (t̃)t̃i − q⋆i (t̃)ci)

]
∀P∈Pε.

Thus, (p,q) also weakly Pareto robustly dominates (p⋆,q⋆) under the Markov ambiguity set Pε.
By Proposition 5, we can now conclude that (p,q) and (p⋆,q⋆) generate the same payoff for the
principal in any scenario t ∈ T . This implies that the expected payoff of (p,q) cannot exceed the
one of (p⋆,q⋆) under any distribution P supported on T . Thus, none of the inequalities in (1) can
be strict, and (p,q) cannot Pareto robustly dominate (p⋆,q⋆). The claim thus follows. □
Proof of Theorem 5. Select any favored-agent mechanism with i⋆ ∈ argmaxi∈Iµi

and ν⋆ ≥
maxi∈Iµi

, denote by (p,q) its allocation probabilities. Recall first that this mechanism is feasible
in (MDP). We will prove that (p,q) attains a worst-case expected payoff that is at least as large
as maxi∈I µi

, which implies via Proposition 6 that it is optimal in (MDP).
To this end, fix an arbitrary distribution P ∈ P and suppose for ease of exposition that

P
(
maxi ̸=i⋆ t̃i − ci < ν⋆

)
, P

(
maxi ̸=i⋆ t̃i − ci = ν⋆

)
and P

(
maxi ̸=i⋆ t̃i − ci > ν⋆

)
are all strictly positive.

We can write the principal’s expected payoff from (p,q) under P as

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
=P

(
max
i̸=i⋆

t̃i − ci < ν⋆

)
EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci < ν⋆

]
(17)

+P
(
max
i̸=i⋆

t̃i − ci = ν⋆

)
EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci = ν⋆

]

+P
(
max
i̸=i⋆

t̃i − ci > ν⋆

)
EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci > ν⋆

]
.

If one or more of P
(
maxi ̸=i⋆ t̃i − ci < ν⋆

)
, P

(
maxi ̸=i⋆ t̃i − ci = ν⋆

)
and P

(
maxi ̸=i⋆ t̃i − ci > ν⋆

)
are

zero, the right-hand side of equation (17) can be adjusted by removing the respective terms, and
the proof proceeds similarly.
In the following we will show that all of the conditional expectations above and, therefore, the

principal’s expected payoff under P are greater than or equal to z⋆ =maxi∈I µi
. If maxi̸=i⋆ ti− ci <

ν⋆, condition (i) in Definition 3 implies that the principal’s payoff amounts to ti⋆ . This implies that

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i̸=i⋆

t̃i − ci < ν⋆

]
=EP

[
t̃i⋆

∣∣∣∣ max
i̸=i⋆

t̃i − ci < ν⋆

]
=EP

[
t̃i⋆

]
= µi⋆ =max

i∈I
µ
i
,

where the second equality holds because the agents’ types are independent. If maxi ̸=i⋆ ti − ci > ν⋆,
then condition (ii) in Definition 3 implies that the principal’s payoff amounts to maxi∈I ti− ci. We
thus have

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci > ν⋆

]
=EP

[
max
i∈I

t̃i − ci

∣∣∣∣ max
i ̸=i⋆

t̃i − ci > ν⋆

]
> ν⋆ ≥max

i∈I
µ
i
.

If maxi ̸=i⋆ ti − ci = ν⋆, then the allocation functions are defined either as in condition (i) or as in
condition (ii) of Definition 3. If the allocation functions are defined as in condition (i), we have

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i̸=i⋆

t̃i − ci = ν⋆

]
=EP

[
t̃i⋆

∣∣∣∣ max
i ̸=i⋆

t̃i − ci = ν⋆

]
=EP

[
t̃i⋆

]
= µi⋆ =max

i∈I
µ
i
,
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where the second equality again holds because the agents’ types are independent. If the allocation
functions are defined as in condition (ii), on the other hand, then

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

∣∣∣∣ max
i ̸=i⋆

t̃i − ci = ν⋆

]
=EP

[
max
i∈I

t̃i − ci

∣∣∣∣ max
i ̸=i⋆

t̃i − ci = ν⋆

]
≥ ν⋆ ≥max

i∈I
µ
i
.

In summary, we have shown that all of the conditional expectations in (17) and, therefore, the
principal’s expected payoff under P is non-inferior to z⋆ =maxi∈I µi

. As P∈P was chosen arbitrar-
ily, this reasoning implies that the principal’s worst-case expected payoff is also non-inferior to z⋆.
The favored-agent mechanism at hand is therefore optimal in (MDP) by virtue of Proposition 6.
□
Proof of Lemma 3. Consider arbitrary t ∈ T and µi⋆ ∈ [µ

i⋆
, µi⋆ ]. We will construct a scenario

t̂∈ T , where maxi ̸=i⋆ t̂i <µ
i⋆
, and a discrete distribution P∈P that satisfies (i)–(iii). To this end,

we define t̂i through

t̂i =


ti if ti = µ

i

ti if ti >µ
i

µ
i
+ ε if ti <µ

i

∀i∈ I \ {i⋆} and t̂i⋆ =


ti⋆ if ti⋆ = µi⋆

ti⋆ if ti⋆ >µi⋆

µi⋆ + ε if ti⋆ <µi⋆ ,

where ε ∈ (0,mini∈I ti − µi)∩
(
0, (µ

i⋆
−maxi ̸=i⋆ µi

)/2
)
is a fixed positive number. Note that there

exists such ε > 0 because µ
i
<µi < ti for all i ∈ I and argmaxi∈I µi

= {i⋆} is a singleton. We next

show that t̂i ∈ Ti for all i∈ I (i.e., t̂∈ T ) and maxi ̸=i⋆ t̂i <µ
i⋆
. For any i∈ I, we have

t̂i ≤ µi + ε≤ µi +min
j∈I

(tj −µj)≤ µi + ti −µi = ti,

where the first inequality follows from the definition of t̂i, and the second inequality holds because
ε <minj∈I tj −µj. The definition of t̂i implies that we also have t̂i ≥ ti. We thus showed that t̂∈ T .
For all i ̸= i⋆, we moreover have

t̂i ≤ µ
i
+ ε≤ µ

i
+(µ

i⋆
−max

j ̸=i⋆
µ
j
)/2≤ µ

i
+(µ

i⋆
−µ

i
)/2<µ

i⋆
,

where the first inequality again follows from the definition of t̂i, the second inequality holds because
ε < (µ

i⋆
−maxi̸=i⋆ µi

)/2, and the fourth inequality holds because argmaxi∈I µi
= {i⋆} is a singleton.

We thus showed that maxi̸=i⋆ t̂i <µ
i⋆
.

Next, we will construct a discrete distribution P through the marginal distributions Pi = αiδti +
(1−αi)δt̂i of t̃i’s, where αi ∈ (0,1] for all i ∈ I. We will then show that P belongs to the Markov
ambiguity set P and moreover satisfies the properties (i)–(iii). To this end, we define αi through

αi =

{
1 if ti = t̂i,

(µ
i
− t̂i)/(ti − t̂i) if ti ̸= t̂i,

∀i∈ I \ {i⋆}

and

αi⋆ =

{
1 if ti⋆ = t̂i⋆ ,

(µi⋆ − t̂i⋆)/(ti⋆ − t̂i⋆) if ti⋆ ̸= t̂i⋆ .

We first show that αi ∈ (0,1] for all i∈ I. For any i∈ I, it is sufficient to show that the claim holds
if ti ̸= t̂i. For any i ̸= i⋆, if ti ̸= t̂i and ti >µ

i
, we have

αi = (µ
i
− t̂i)/(ti − t̂i) = (µ

i
− ti)/(ti − ti)∈ (0,1),
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where the second equality follows from the definition of t̂i, and the inclusion holds because ti >
µ
i
> ti. If ti ̸= t̂i and ti < µ

i
, on the other hand, we have αi =−ε/(ti − µ

i
− ε) ∈ (0,1), where the

equality again follows from the definition of t̂i, and the inclusion holds because ti < µ
i
< µ

i
+ ε.

Note that if ti = µ
i
, then t̂i = ti by definition, and αi = 1. One can similarly show that αi⋆ ∈ (0,1]

by replacing µ
i⋆

with µi⋆ in the above arguments. Thus, αi ∈ (0,1] for all i ∈ I. We now define P
through the marginal distributions Pi = αiδti +(1−αi)δt̂i , i∈ I, as follows.

P(t̃= t) =
∏
i∈I

Pi(t̃i = ti) ∀t∈ T

By construction, t̃i’s are mutually independent under P. Hence, the expected type of each i ∈ I
amounts to EP[t̃i] = αiti +(1−αi)t̂i.
We next show that EP[t̃i]∈ [µ

i
, µi] for all i∈ I, which implies that P∈P. For any i ̸= i⋆, if ti = t̂i,

then we have ti = t̂i = µ
i
by definition of t̂i. The expected type therefore amounts to µ

i
. If ti ̸= t̂i,

on the other hand, we have

EP[t̃i] = αiti +(1−αi)t̂i = αi(ti − t̂i)+ t̂i =
µ
i
− t̂i

ti − t̂i
(ti − t̂i)+ t̂i = µ

i
,

where the third equality follows from the definition of αi. One can verify that EP[t̃i⋆ ] = µi⋆ using
similar arguments. We thus showed that EP[t̃i]∈ [µ

i
, µi] for all i∈ I and, therefore, P∈P.

It remains to show that P satisfies (i)–(iii). As we have EP[t̃i⋆ ] = µi⋆ , property (i) holds. The
definition of P implies that (ii) and (iii) also hold. □
Proof of Lemma 4. Consider any subset T ′ =

∏
i∈I T ′

i of T such that (i) and (ii) holds. Also,
consider any (p,q), (p′,q′)∈X such that (p,q) weakly Pareto robustly dominates (p′,q′) and (10)
holds. Suppose for the sake of contradiction that (10) is strict for some t∈ T ′.

We will characterize a discrete distribution P∈P under which the expected payoff of mechanism
(p,q) is strictly lower than that of (p′,q′), which contradicts that (p,q) weakly Pareto robustly
dominates (p′,q′). By Lemma 3, for scenario t and for any µi⋆ ∈ [µ

i⋆
, µi⋆ ], there exist a scenario

t̂∈ T , where maxi̸=i⋆ t̂i <µ
i⋆
, and a discrete distribution P∈P that satisfy the following properties:

(i) EP[t̃i⋆ ] = µi⋆ , (ii) P(t̃i ∈ {ti, t̂i}) = 1 for all i ∈ I, (iii) P(t̃= t)> 0. We next show that there is
always a µi⋆ ∈ [µ

i⋆
, µi⋆ ] such that distribution P also satisfies P(t̃∈ T ′) = 1. Note that if P satisfies

P(t̃i ∈ T ′
i ) = 1 for all i ∈ I, then it also satisfies P(t̃ ∈ T ′) = 1 as T ′ =

∏
i∈I T ′

i . First, suppose
that T ′

i⋆ ⊆ [µ
i⋆
, µi⋆ ]. For µi⋆ = ti⋆ ∈ [µ

i⋆
, µi⋆ ], properties (i)–(iii) on P imply that if t̂i⋆ ̸= ti⋆ , then

P(t̃i⋆ = t̂i⋆) = 0. We thus have P(t̃i⋆ = ti⋆) = 1, which implies that P(t̃i⋆ ∈ T ′
i⋆) = 1 as ti⋆ ∈ T ′

i⋆ . For
any i ∈ I \ {i⋆}, as t̂i < µ

i⋆
, we have t̂i ∈ T ′

i ⊇ {ti ∈ Ti | ti < µ
i⋆
} irrespective of the value of µi⋆ .

Condition (ii) on P thus implies that P(t̃i ∈ T ′
i ) = 1. Suppose now that T ′

i⋆ = Ti⋆ . Condition (ii) on
P implies that P(t̃i⋆ ∈ T ′

i⋆) = 1 as ti⋆ , t̂i⋆ ∈ Ti⋆ = T ′
i⋆ . We already showed that P(t̃i ∈ T ′

i ) = 1 for every
other i ∈ I \ {i⋆} irrespective of the value of µi⋆ . We can thus conclude that there always exists a
µi⋆ ∈ [µ

i⋆
, µi⋆ ] such that distribution P from Lemma 3 also satisfies P(t̃∈ T ′) = 1.

Now, keeping in mind that P is a discrete distribution with properties P(t̃ ∈ T ′) = 1 and P(t̃=
t)> 0, we can bound the principal’s expected payoff from (p,q) under P as follows:

EP

[∑
i∈I

(pi(t̃)t̃i − qi(t̃)ci)

]
<EP

[∑
i∈I

(p′i(t̃)t̃i − q′i(t̃)ci)

]
,

where the strict inequality follows from (10) and the assumption that (10) is strict for t ∈ T ′.
Therefore, we conclude that (p,q) cannot weakly Pareto robustly dominate (p′,q′) unless the
inequalities in (10) hold with equality. □
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Proof of Proposition 7. Consider the following partition of the set T .

TI = {t∈ T | ti⋆ ∈ (µ
i⋆
, µi⋆ ] and max

i ̸=i⋆
ti ≤ µ

i⋆
}

TII = {t∈ T | ti⋆ ∈ (µ
i⋆
, µi⋆ ] and max

i ̸=i⋆
ti >µ

i⋆
and max

i ̸=i⋆
ti − ci ≤ µ

i⋆
}

TII′ = {t∈ T | ti⋆ ∈ (µ
i⋆
, µi⋆ ] and max

i ̸=i⋆
ti >µ

i⋆
and max

i ̸=i⋆
ti − ci >µ

i⋆
}

TIII = {t∈ T | ti⋆ /∈ (µ
i⋆
, µi⋆ ] and max

i ̸=i⋆
ti − ci ≤ µ

i⋆
}

TIII′ = {t∈ T | ti⋆ /∈ (µ
i⋆
, µi⋆ ] and max

i ̸=i⋆
ti − ci >µ

i⋆
}

We can replace TII′ and TIII′ with the following two sets to obtain a different partition of T .

TIV = {t∈ T | ti⋆ = µ
i⋆
and max

i ̸=i⋆
ti − ci >µ

i⋆
}

TV = {t∈ T | ti⋆ ̸= µ
i⋆
and max

i ̸=i⋆
ti − ci >µ

i⋆
}

This is because TIV and TV are disjoint sets that have the same union as the union of TII′ and
TIII′ . Throughout the proof we consider the partition TI ,TII ,TIII ,TIV ,TV . Note that TI and TIII

are nonempty as argmaxi∈Iµi
= {i⋆} and [µ

i
, µi]∈ (ti, ti) for all i∈ I, but sets TII , TIV and TV can

be empty if µ
i⋆

or ci for all i ̸= i⋆ are sufficiently large.
The remainder of the proof is divided into four steps, each of which proves the claim for one of

the subsets TI , TII , TIII , TIV and TV .
Step 1 (TI). For any t∈ TI , the principal’s payoff under (p,q) satisfies∑

i∈I

(pi(t)ti − qi(t)ci)≤
∑
i∈I

pi(t)ti ≤ ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality holds because qi(t) and ci are non-negative, the second inequality follows
from (FC) and that maxi ̸=i⋆ ti ≤ µ

i⋆
< ti⋆ , and the equality follows from the definition of (p⋆,q⋆).

The payoff of (p⋆,q⋆) is thus larger than or equal to the payoff of (p,q) in every t∈ TI . Moreover,
note that TI can be written as

∏
i∈I TI i where TI i⋆ = (µ

i⋆
, µi⋆ ] and TI i = [ti, µi⋆

]∩ Ti for all i ̸= i⋆.
The set TI thus satisfies the assumptions (i) and (ii) in Lemma 4. By Lemma 4, we can thus
conclude that the payoffs of (p,q) and (p⋆,q⋆) coincide in TI . In addition, note that, for any t∈ TI ,
we have maxi ̸=i⋆ ti < ti⋆ , qi(t)≥ 0, ci > 0 and

∑
i∈I pi(t)≤ 1. This implies that the payoff of (p,q)

can match the payoff ti⋆ of (p⋆,q⋆) only if pi⋆(t) = 1 and qi⋆(t) = 0.
Step 2 (TII). We will prove that if mechanism (p,q) weakly Pareto robustly dominates (p⋆,q⋆)

then it must satisfy pi⋆(t) = 1 and qi⋆(t) = 0 for any t ∈ TII , which implies that the payoff of
(p,q) matches that of (p⋆,q⋆) throughout TII . To this end, define the set-valued function I(t) =
{i ∈ I | ti > µ

i⋆
} for t ∈ TII . Note that |I(t)| ≥ 2 for all t ∈ TII by the definition of TII , which

ensures that maxi ̸=i⋆ ti > µ
i⋆

and ti⋆ ∈ (µ
i⋆
, µi⋆ ]. We now prove by induction that the claim holds

in T n
II = {t∈ TII | |I(t)|= n} for all n≥ 2.

As for the base step, set n= 2 and fix any t ∈ T 2
II . Thus, there exists exactly one agent i◦ ̸= i⋆

that satisfies ti◦ >µ
i⋆
. Incentive compatibility ensures that pi◦(t)− qi◦(t)≤ pi◦(ti◦ , t−i◦) = 0, where

the equality holds because (ti◦ , t−i◦) ∈ TI and because we know from Step 1 that (p,q) allocates
the good to agent i⋆ without inspection in TI . We thus have pi◦(t) = qi◦(t). Then, we have∑

j∈I

(pj(t)tj − qj(t)cj)≤
∑
j ̸=i◦

pj(t)tj + pi◦(t)(ti◦ − ci◦)

≤ ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality holds because qj(t) and cj are non-negative and pi◦(t) = qi◦(t), the second
inequality from (FC) and that ti◦ −ci◦ ≤ µ

i⋆
< ti⋆ and tj ≤ µ

i⋆
for all j ∈ I \{i◦, i⋆}, and the equality
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follows from the definition of (p⋆,q⋆). As scenario t is chosen arbitrarily, the payoff of (p,q) thus
cannot exceed that of (p⋆,q⋆) throughout T 2

II . Recalling the conclusion from Step 1, we now know
that this relation between the payoffs is true for the set TI ∪T 2

II .
For any i◦ ∈ I \ {i⋆}, define T 2

II(i
◦) as the subset of T 2

II where i◦ is the only agent with type
ti◦ > µ

i⋆
and note that T 2

II = ∪i◦∈I\{i⋆}T 2
II(i

◦). Consider an arbitrary i◦ ∈ I \ {i⋆} and the set
TI ∪ T 2

II(i
◦), which can be written as TI ∪ T 2

II(i
◦) =

∏
i∈I(TI ∪ T 2

II(i
◦))i, where (TI ∪ T 2

II(i
◦))i⋆ =

(µ
i⋆
, µi⋆ ], (TI ∪T 2

II(i
◦))i◦ = [ti◦ , ci◦ +µ

i⋆
]∩Ti◦ and (TI ∪T 2

II(i
◦))i = [ti, µi⋆

]∩Ti for all i /∈ {i⋆, i◦}. The
set TI ∪ T 2

II(i
◦) satisfies the assumptions (i) and (ii) in Lemma 4. Mechanisms (p,q) and (p⋆,q⋆)

thus generate the same payoff throughout TI ∪ T 2
II(i

◦) by Lemma 4. By definition, the payoff of
(p⋆,q⋆) amounts to ti⋆ in TI ∪T 2

II(i
◦). For any t∈ T 2

II(i
◦), as ti◦ − ci◦ < ti⋆ , ti < ti⋆ for all i /∈ {i⋆, i◦}

and pi◦(t) = qi◦(t), (p,q) can generate a payoff of ti⋆ only if pi⋆(t) = 1 and qi⋆(t) = 0. As i◦ is chosen
arbitrarily, we have pi⋆(t) = 1 and qi⋆(t) = 0 throughout T 2

II .
As for the induction step, assume that pi⋆(t) = 1 and qi⋆(t) = 0 for all t∈ T n

II and for some n≥ 2,
and fix a scenario t∈ T n+1

II . Thus, there exists exactly n+1 agents i that satisfy ti >µ
i⋆
. For any

agent i ∈ I(t) \ {i⋆}, incentive compatibility dictates that pi(t)− qi(t)≤ pi(ti, t−i) = 0, where the
equality follows from (ti, t−i)∈ T n

II and the induction hypothesis. We thus have pi(t) = qi(t) for all
i∈ I(t) \ {i⋆}. Then,∑

i∈I

(pi(t)ti − qi(t)ci)≤
∑

i/∈I(t)\{i⋆}

pi(t)ti +
∑

i∈I(t)\{i⋆}

pi(t)(ti − ci)≤ ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality holds because qi(t) and ci are non-negative and pi(t) = qi(t) for all
i ∈ I(t) \ {i⋆}, the second inequality follows from (FC) and that ti − ci ≤ µ

i⋆
for all i ∈ I(t) \ {i⋆}

and ti ≤ µ
i⋆
< ti⋆ for i∈ I \I(t), and the equality follows from the definition of (p⋆,q⋆). As scenario

t is chosen arbitrarily, the payoff from (p,q) is thus less than or equal to that of (p⋆,q⋆) throughout
T n+1
II . By Step 1, this relationship between the payoffs holds true for the set TI ∪T n+1

II .
For any subset I ′ ∋ i⋆ of agents with |I ′| = n+ 1, define T n+1

II (I ′) as the subset of TII where
ti ≤ µ

i⋆
for all i /∈ I ′. Note that T n+1

II (I ′) ⊆ ∪n+1
k=2T k

II , and the union of T n+1
II (I ′) over all I ′ ⊆ I

with |I ′| = n + 1 and i⋆ ∈ I ′ gives us the set ∪n+1
k=2T k

II . Consider now an arbitrary I ′ ∋ i⋆ with
|I ′|= n+1 and the set TI ∪T n+1

II (I ′), which can be written as TI ∪T n+1
II (I ′) =

∏
i∈I(TI ∪T n+1

II (I ′))i,
where (TI ∪ T n+1

II (I ′))i⋆ = (µ
i⋆
, µi⋆ ], (TI ∪ T n+1

II (I ′))i = [ti, ci + µ
i⋆
] ∩ Ti for i ∈ I ′ \ {i⋆} and (TI ∪

T n+1
II (I ′))i = [ti, µi⋆

]∩ Ti for all i ∈ I \ I ′. The set TI ∪ T n+1
II (I ′) satisfies the assumptions (i) and

(ii) in Lemma 4. The payoffs of (p,q) and (p⋆,q⋆) thus coincide in TI ∪T n+1
II (I ′) by Lemma 4. By

definition, the payoff of (p⋆,q⋆) amounts to ti⋆ throughout TI ∪ T n+1
II (I ′). For any t ∈ T n+1

II (I ′),
as ti − ci < ti⋆ and pi(t) = qi(t) for all i ∈ I ′ \ {i⋆} and ti < ti⋆ for all i ∈ I \ I ′, mechanism (p,q)
can generate a payoff of ti⋆ only if pi⋆(t) = 1 and qi⋆(t) = 0. As I ′ is chosen arbitrarily, we have
pi⋆(t) = 1 and qi⋆(t) = 0 throughout T n+1

II . This thus completes the induction step.
In summary, the allocation probabilities of any mechanism (p,q) that weakly Pareto robustly

dominates (p⋆,q⋆) should satisfy pi⋆(t) = 1 and qi⋆(t) = 0 throughout TII .
Step 3 (TIII). Next, fix any type profile t ∈ TIII . Incentive compatibility ensures that pi⋆(t)≥

pi⋆(µi⋆ , t−i⋆)− qi⋆(µi⋆ , t−i⋆) = 1, where the equality holds because (µi⋆ , t−i⋆)∈ TI ∪TII and because
we know from Step 1 and 2 that (p,q) allocates the good to agent i⋆ without inspection in TI ∪TII .
We thus have pi⋆(t) = 1 and∑

i∈I

(pi(t)ti − qi(t)ci)≤ pi⋆(t)ti⋆ + qi⋆(t)ci⋆ ≤ ti⋆ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality follows from (FC) and non-negativity of qi(t), the second inequality holds
because qi⋆(t)≥ 0 and ci⋆ > 0, and the equality follows from the definition of (p⋆,q⋆). As scenario
t is chosen arbitrarily, (p,q) cannot generate a payoff higher than (p⋆,q⋆) throughout TIII . By
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Steps 1 and 2, this relation between the payoffs holds for the set TI ∪TII ∪TIII . Note that the set
TI ∪TII ∪TIII can be written as TI ∪TII ∪TIII =

∏
i∈I(TI ∪TII ∪TIII)i, where (TI ∪TII ∪TIII)i⋆ = Ti⋆

and (TI ∪TII ∪TIII)i = [ti, ci +µ
i⋆
]∩Ti for all i ∈ I \ {i⋆}. The set TI ∪TII ∪TIII thus satisfies the

assumptions (i) and (ii) in Lemma 4. The payoffs of (p,q) and (p⋆,q⋆) thus coincide throughout
TI ∪ TII ∪ TIII by Lemma 4. As qi⋆(t)≥ 0, ci⋆ > 0 and (p,q) satisfies the (FC), mechanism (p,q)
can generate a payoff of ti⋆ in a scenario t∈ TIII only if pi⋆(t) = 1 and qi⋆(t) = 0.
Step 4 (TIV ). In this step, we will show that any mechanism (p,q) that weakly Pareto robustly

dominates (p⋆,q⋆) must satisfy∑
i∈argmaxi′∈I ti′−ci′

pi(t) = 1 and pi(t) = qi(t) ∀i∈ argmaxi′∈Iti′ − ci′ (18)

for all t∈ TIV . This immediately implies that (p,q) generates the same payoff as (p⋆,q⋆) throughout
TIV . To this end, define the set-valued function I(t) = {i∈ I | ti >µ

i⋆
} for t∈ TIV . Note that |I(t)| ≥

1 and i⋆ /∈ I(t) for all t∈ TIV thanks to the definition of TIV , which ensures that maxi ̸=i⋆ ti−ci >µ
i⋆

and ti⋆ = µ
i⋆
. We will prove by induction that (18) holds in T n

IV = {t ∈ TIV | |I(t)| = n} for all
I − 1≥ n≥ 1.
As for the base step, set n = 1 and fix a scenario t ∈ T 1

IV . Thus, exactly one agent i◦ satisfies
ti◦ >µ

i⋆
. Incentive compatibility ensures that pi◦(t)− qi◦(t)≤ pi◦(ti◦ , t−i◦) = 0, where the equality

follows from that (ti◦ , t−i◦)∈ TIII and Step 3. We thus have pi◦(t) = qi◦(t). Then,∑
i∈I

(pi(t)ti − qi(t)ci)≤
∑
i ̸=i◦

pi(t)ti + pi◦(t)(ti◦ − ci◦)≤ ti◦ − ci◦ =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality holds because qi(t) and ci are non-negative and pi◦(t) = qi◦(t), the second
inequality follows from (FC) and that ti◦ −ci◦ >µ

i⋆
and ti ≤ µ

i⋆
for all i∈ I \{i◦}, and the equality

follows from the definition of (p⋆,q⋆). As scenario t is chosen arbitrarily, (p,q) generates a payoff
less than or equal to that of from (p⋆,q⋆) throughout T 1

IV .
For an arbitrary i◦ ∈ I \{i⋆}, we now define the set T ′(i◦) =

∏
i∈I T ′

i , where T ′
i⋆ = {µ

i⋆
}, T ′

i◦ = Ti◦

and T ′
i = [ti, µi⋆

] for all i ∈ I \ {i⋆, i◦}. Note that T ′(i◦)⊆ TIII ∪ T 1
IV . By Step 3 and the findings

of Step 4 thus far, the payoff of (p,q) cannot be higher than that of (p⋆,q⋆) throughout T ′(i◦).
Denote by T 1

IV (i
◦) the subset of T 1

IV where i◦ is the only agent whose type ti◦ >µ
i⋆
, and note that

∪i◦∈I\{i⋆}T 1
IV (i

◦) = T 1
IV . We have T 1

IV (i
◦)⊆ T ′(i◦), and T ′(i◦) satisfies the assumptions (i) and (ii)

in Lemma 4. The payoffs of (p,q) and (p⋆,q⋆) thus coincide throughout T 1
IV (i

◦) by Lemma 4. As
we have ti◦ − ci◦ > ti⋆ = µ

i⋆
≥ ti for all i ∈ I \ {i◦, i⋆} and pi◦(t) = qi◦(t) for any t ∈ T 1

IV (i
◦), the

payoff of (p,q) can match the payoff maxi∈I ti − ci = ti◦ − ci◦ of (p⋆,q⋆) only if pi◦(t) = qi◦(t) = 1.
We thus established (18) in T 1

IV (i
◦). As agent i◦ is chosen arbitrarily, the claim holds throughout

T 1
IV .
As for the induction step, assume that (18) holds throughout T n

IV for some n ≥ 1, and fix a
scenario t ∈ T n+1

IV . Thus, there exists exactly n + 1 agents i ̸= i⋆ that satisfy ti > µ
i⋆
. For any

agent i∈ I(t), incentive compatibility dictates that pi(t)−qi(t)≤ pi(ti, t−i) = 0, where the equality
follows from (ti, t−i) ∈ TIII ∪ T n

IV . Indeed, if (ti, t−i) ∈ TIII , then agent i⋆ /∈ I(t) receives the good
so that and pi(ti, t−i) = 0, and if (ti, t−i)∈ T n

IV , the equality follows from the induction hypothesis.
We thus have pi(t) = qi(t) for all i ∈ I(t) and, by the definition of TIV , in particular for all i ∈
argmaxj∈I tj − cj. Then,∑

i∈I

(pi(t)ti − qi(t)ci)≤
∑
i/∈I(t)

pi(t)ti +
∑
i∈I(t)

pi(t)(ti − ci)≤max
i∈I

ti − ci =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality holds because pi(t) = qi(t) for all i ∈ I(t) and qi(t) and ci are non-
negative, the second inequality follows from (FC) and that maxj∈I tj − cj > µ

i⋆
= ti⋆ ≥ ti for all
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i /∈ I(t), and the equality follows from the definition of (p⋆,q⋆). Thus, the payoff of (p,q) is less
than or equal to the payoff of (p⋆,q⋆) in T n+1

IV .
For an arbitrary I ′ ⊆I \{i⋆} with |I ′|= n+1, we now define T ′(I ′) =

∏
i∈I T ′

i , where T ′
i⋆ = {µ

i⋆
},

T ′
i = Ti for all i∈ I ′, and T ′

i = [ti, µi⋆
] for all i∈ I \ (I ′ ∪{i⋆}). Note that T ′(I ′)⊆TIII ∪

⋃n+1

k=1 T k
IV .

By Step 3 and the findings of this step thus far, the payoff of (p,q) cannot be higher than that
of (p⋆,q⋆) throughout T ′(I ′). Denote by T n+1

IV (I ′) the subset of TIV where ti ≤ µ
i⋆

for all i /∈ I ′.

Note that the union of T n+1
IV (I ′) over all I ′ ⊆ I \ {i⋆} with |I ′|= n+ 1 gives us the set ∪n+1

k=1T k
IV ,

and T n+1
IV (I ′)⊆ T ′(I ′). As the set T ′(I ′) satisfies the assumptions (i) and (ii) in Lemma 4, (p,q)

and (p⋆,q⋆) generate the same payoff throughout T n+1
IV (I ′). As we have maxj∈I tj − cj > µ

i⋆
≥ ti

for all i /∈ I ′ and pi(t) = qi(t) for all i ∈ I ′ for any t ∈ T n+1
IV (I ′), mechanism (p,q) can match the

payoff maxi∈I ti−ci of (p
⋆,q⋆) only if (18) holds in T n+1

IV (I ′). As I ′ is chosen arbitrarily, (18) holds
throughout T n+1

IV . This observation completes the induction step.
Step 5 (TV ). In analogy to Step 4, we will show that (18) holds for every t∈ TV . This immediately

implies that (p,q) generates the same payoff as (p⋆,q⋆) in TV and, consequently, throughout T . To
this end, define the set-valued function I(t) = {i ∈ I | ti > µ

i⋆
} for t ∈ TV . Note that |I(t)| ≥ 1 for

any t∈ TV thanks to the definition of TV , which implies that maxi ̸=i⋆ ti− ci >µ
i⋆
. We will prove by

induction that (18) holds for all type profiles in T n
V = {t∈ TV | |I(t)\{i⋆}|= n} for all I−1≥ n≥ 1.

Note that in any t∈ T n
V there are n agents, each of which is different from i⋆, whose types exceed

µ
i⋆
. Agent i⋆’s type may or may not take a value above µ

i⋆
.

As for the base step, set n= 1 and fix any scenario t∈ T 1
V . Thus, there is exactly one agent i◦ ̸= i⋆

that satisfy ti◦ >µ
i⋆
. Incentive compatibility ensures that pi◦(t)− qi◦(t)≤ pi◦(ti◦ , t−i◦) = 0, where

the equality follows from that (ti◦ , t−i◦) ∈ TI ∪ TII ∪ TIII and from Steps 1, 2 and 3. Similarly for
agent i⋆, we have pi⋆(t)−qi⋆(t)≤ pi⋆(µi⋆

, t−i⋆) = 0, where the equality follows from that (µ
i⋆
, t−i⋆)∈

TIV and Step 4. We thus have pi(t) = qi(t) for all i∈ I(t) and i⋆, which may or may not be in I(t).
Then, we have∑

i∈I

(pi(t)ti − qi(t)ci)≤
∑

i∈I\I(t)∪{i⋆}

pi(t)ti +
∑

i∈I(t)\{i⋆}

pi(t)(ti − ci)+ pi⋆(t)(ti⋆ − ci⋆)

≤max
i∈I

ti − ci =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first equality holds because pi(t) = qi(t) for all i ∈ I(t)∪ {i⋆} and qi(t) and ci are non-
negative, the second inequality from (FC) and that maxj∈I tj − cj =maxj∈I(t)∪{i⋆} tj − cj >µ

i⋆
≥ ti

for all i∈ I \I(t)∪{i⋆}, and the equality follows from the definition of (p⋆,q⋆). Thus, (p,q) cannot
generate a payoff higher than that of (p⋆,q⋆) throughout T 1

V . Recalling the findings in Steps 1–4,
this relation between the payoffs holds true for TI ∪TII ∪TIII ∪TIV ∪T 1

V .
For an arbitrary i◦ ∈ I \{i⋆}, we define the set T ′(i◦) =

∏
i∈I T ′

i , where T ′
i = Ti for all i∈ {i⋆, i◦},

and T ′
i = [ti, µi⋆

] for all i∈ I \{i⋆, i◦}. Note that T ′(i◦)⊆TI ∪TII ∪TIII ∪T 1
IV ∪T 1

V , an therefore the
payoff of (p,q) cannot be higher than that of (p⋆,q⋆) throughout T ′(i◦). Denote by T 1

V (i
◦) the subset

of T 1
V where i◦ is the only agent among I \{i⋆} with type ti◦ >µ

i⋆
. Note that ∪i◦∈I\{i⋆}T 1

V (i
◦) = T 1

V ,
and T 1

V (i
◦) ⊆ T ′(i◦). As the payoff of (p,q) cannot be higher than that of (p⋆,q⋆) throughout

T ′(i◦), and the set T ′ satisfies the assumptions (i) and (ii) from Lemma 4, the payoffs of (p,q)
and (p⋆,q⋆) must coincide throughout T 1

V (i
◦). As we know that maxi∈{i◦,i⋆} ti − ci > µ

i⋆
≥ tj for

all j /∈ {i◦, i⋆} and pi(t) = qi(t) for all i ∈ {i◦, i⋆} in any t ∈ T 1
V (i

◦), mechanism (p,q) can match
the payoff maxi∈{i◦,i⋆} ti − ci of (p

⋆,q⋆) only if (18) holds. As agent i◦ was chosen arbitrarily, we
conclude that (18) holds throughout T 1

V .
As for the induction step, assume that (18) holds throughout T n

V for some n ≥ 1 and fix any
scenario t∈ T n+1

V . For any agent i∈ I(t) \ {i⋆}, incentive compatibility implies that pi(t)− qi(t)≤
pi(ti, t−i) = 0, where the equality holds because (ti, t−i) ∈ TI ∪TII ∪TIII ∪T n

V . Indeed, if (ti, t−i) ∈
TI ∪ TII ∪ TIII , then pi(ti, t−i) = 0 follows from Steps 1, 2 and 3, and if (ti, t−i) ∈ T n

V , then the
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equality follows from the induction hypothesis. If i⋆ ∈ I(t), then incentive compatibility implies
pi⋆(t)− qi⋆(t)≤ pi⋆(µi⋆

, t−i⋆) = 0, where the equality follows from that (µ
i⋆
, t−i⋆) ∈ TIV and Step

4. We thus have pi(t) = qi(t) for all i ∈ I(t), and by the definition of TV , in particular for all
i∈ argmaxj∈I tj − cj. Then, the principal’s payoff in t can be written as:∑

i∈I

(pi(t)ti − qi(t)ci)≤
∑
i/∈I(t)

pi(t)ti +
∑
i∈I(t)

pi(t)(ti − ci)≤max
i∈I

ti − ci =
∑
i∈I

(p⋆i (t)ti − q⋆i (t)ci),

where the first inequality follows because pi(t) = qi(t) for all i∈ I(t) and ci > 0 for all i /∈ I(t). The
second inequality holds because the two sums represent a weighted average of ti − ci for i ∈ I(t)
and ti for i /∈ I(t). All this terms are smaller or equal to maxi∈I ti− ci. In particular, the definition
of TV ensures that maxj∈I tj − cj > µ

i⋆
≥ ti for all i /∈ I(t). This reasoning shows that the payoff

from (p,q) cannot be higher than (p⋆,q⋆) in T n+1
V .

For an arbitrary I ′ ⊆ I with I ′ ∋ i⋆ and |I ′ \ {i⋆}|= n+ 1, we define the set T ′(I ′) =
∏

i∈I T ′
i ,

where T ′
i = Ti for all i ∈ I ′ and T ′

i = [ti, µi⋆
] for all i ∈ I \ I ′. Note that T ′(I ′)⊆ TI ∪ TII ∪ TIII ∪

T n+1
IV ∪T n+1

V , and therefore the payoff of (p,q) cannot be higher than that of (p⋆,q⋆) throughout
T ′(I ′). Denote by T n+1

V (I ′) the subset of TV where ti ≤ µ
i⋆

for all i /∈ I ′. Note that the union

of T n+1
V (I ′) over all I ′ ⊆ I with I ′ ∋ i⋆ and |I ′ \ {i⋆}| = n + 1 gives us the set ∪n+1

k=1T k
V , and

T n+1
V (I ′)⊆T ′(I ′). The set T ′(I ′) satisfies the assumptions (i) and (ii) in Lemma 4, which implies

that the payoffs from (p,q) and (p⋆,q⋆) must coincide throughout T n+1
V (I ′). As we know that

maxi∈I ti− ci >µ
i⋆
≥ tj for all j /∈ I ′ and pi(t) = qi(t) for all i∈ I ′ for any t∈ T n+1

V (I ′), mechanism

(p,q) can match the payoff maxi∈I ti−ci only if (18) holds in T n+1
V (I ′). As I ′ was chosen arbitrarily,

(18) holds throughout T n+1
V . This observation completes the induction step.

The above reasoning shows that the principal’s payoff from (p,q) and (p⋆,q⋆) coincide through-
out the entire type space T . □
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