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Abstract. We consider two-stage robust linear programs with uncer-
tain righthand side. We develop a General Polyhedral Approximation
(GPA), in which the uncertainty set U is substituted by a finite set
of polytopes derived from the vertex set of an arbitrary polytope that
dominates U . The union of the polytopes need not contain U . We anal-
yse and computationally test the performance of GPA for the frequently
used budgeted uncertainty set U (with m rows). For budgeted uncer-
tainty affine policies are known to be best possible approximations (if
coefficients in the constraints are nonnegative for the second-stage deci-
sion). In practice calculating affine policies typically requires inhibitive
running times. Therefore an approximation of U by a single simplex has
been proposed in the literature. GPA maintains the low practical run-
ning times of the simplex based approach while improving the quality
of approximation by a constant factor. The generality of our method
allows to use any polytope dominating U (including the simplex). We
provide a family of polytopes that allows for a trade-off between running
time and approximation factor. The previous simplex based approach
reaches a threshold at Γ >

√
m after which it is not better than a quasi

nominal solution. Before this threshold, GPA significantly improves the
approximation factor. After the threshold, it is the first fast method to
outperform the quasi nominal solution. Moreover, GPA allows for even
stronger results on specific problems as we exemplify for the Transporta-
tion Location Problem.

Keywords: Robust Optimization · Two-Stage Robust Optimization ·
Linear Programming · Approximation Algorithm · Transportation Loca-
tion Problem

1 Introduction

In two-stage robust optimization, first, the optimizer chooses a first-stage solu-
tion x for which, second, the malign adversary chooses a scenario from a set of
scenarios U , and third, the optimizer chooses a second-stage solution y. Feasi-
bility and cost of a solution x are determined by the worst scenario specifically
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chosen for x and with respect to a best possible second-stage decision y. When
the scenario set U is a polytope, it suffices in many (convex) settings to consider
the vertices of the polytope as scenarios.

We consider linear programs with uncertain righthand side and develop our
main result for general uncertainty sets U . We then analyse its performance
theoretically and computationally for the widely used uncertainty set introduced
in [11,12]. It is restricted in two ways: For each row the uncertain righthand side
is restricted to an interval from the nominal value to the nominal value plus
the maximal increase. In each scenario the actual increase normalized by the
maximal increase and summed over all rows is limited by a budget traditionally
denoted by Γ . This so-called budgeted uncertainty set U , see Definition 1, is
a polytope whose number of vertices grows exponentially with Γ . Considering
each vertex of U separately is therefore not an efficient approach in most cases.
Also, at least naively, the first-stage optimization and the choice of the worst-
case scenario need to consider any possible second-stage decision. However, it is
known that piecewise-affine-linear policies for the second-stage decision are best
possible [3,5]. Still, two-stage robust optimization remains challenging in general
and in many special cases. The standard textbook on robust optimization from
2009 considers "two-stage robust optimization rather wishful thinking than an
actual tool" [2].

One of the most important approaches to let this wish come true is to ap-
proximate an optimal solution by firstly replacing the scenario set U by a domi-
nating simplex, thus arriving at linearly many vertices, and secondly calculating
piecewise-affine-linear second stage policies. This has been proposed in Ben-Tal
et al. [3]. While the idea of polyhedral approximation stands to reason, a closer
examination shows that for the budget of uncertainty polytope the methods
yield results that are even more conservative than the solutions obtained when
simply computing a nominal solution to the scenario where all righthand side
values have maximal deviation, i.e., a scenario worse than all scenarios in U .
This is also the case for the instances with budget of uncertainty considered in
the original paper by Ben-Tal et al. [3].

Our Results. We show how the basic idea of polyhedral approximation can
work when pursued in a different, more general way: Instead of dominating with
the simplex, we develop a method to use an arbitrary polytope dominating any
uncertainty set U , given by its vertices, then partition the vertices and calculate
separate solutions for the polytopes spanned by the subsets of the dominating
polytope. While the union of these polytopes does not in general dominate U ,
we show a way to combine their solutions to a feasible solution for U . This so-
lution has superior approximation factors. Also, the proofs become somewhat
simpler by this more general approach. This General Polyhedral Approximation
(GPA) allows to use arbitrary polyhedra. We then analyse the performance of
GPA for the budgeted uncertainty set. We show that, in particular, using scaled
budgeted uncertainty polytopes with smaller budget to dominate the original set
U gives a constant factor improvement for the approximation factor compared
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to the literature. Also, GPA allows to calculate instance specific approximation
guarantees. Furthermore, we apply the method to the Transportation Location
Problem, arriving at an even better approximation factor depending on a pa-
rameter that catches how different the values in the input data are. Finally, we
will compare our methods numerically against other state-of-the-art approaches
and show that we can either still deliver comparatively good solutions with sig-
nificantly shorter runtimes or achieve better results with the same runtime.

Related Work. It is known, that two-stage robust optimization problems are
NP-hard [20] and not approximable within a factor better than Ω( logm

log logm ),
c.f. [17]. If the constraint matrix of the second-stage decision, also called recourse
matrix, is nonnegative, this factor can be matched by affine policies, as shown
in [15] and improved more recently in [14]. If there are no such constraints on the
first and second stage constraint matrices, El Housni and Goyal [15] show that
the gap between the optimal affine policy and the optimal adjustable solution
can be arbitrarily large. In the setting of our work, with a nonnegative first stage
constraint matrix and a general recourse matrix with possibly negative entries,
affine policies have a worst case approximation factor of 3

√
m, c.f. Bertsimas

and Goyal [7]. Furthermore, the authors show that affine policies are optimal, if
the uncertainty set is a simplex. Further details on affine policies can be found
in [1, 4, 10,21].

The approximation factor of 2
√
m with piecewise affine policies by Ben-Tal

et al. was recently improved by Grunau [19] and Thomä et al. [24] in the case of
budget of uncertainty sets. Bertsimas et al. analyze the quality of static solutions
for the robust problem [8,9] and for the stochastic variant [6].

Other approaches consider the dualization of the inner minimization prob-
lem [18], which results in a nonlinear problem or column and constraint gener-
ation to potentially reduce the size of the problem. [22, 23, 25]. If the decision
process is divided in more than two stages, there are algorithms considering
finite adaptability [5] and approximation methods [24] for the multistage prob-
lem. Special cases of the two-stage robust optimization problem are also studied
in the literature, e.g., the transportation location problem [18], which we will
later discuss. El Housni et al. [16] consider a variant of this problem with unit
demand, which they call soft-capacitated robust facility location. They prove
that static assignment policies for the second stage decision give a O( log Γ

log log Γ )-
approximation when the demand per client is binary and the distance costs are
metric.

Notation We indicate all vectors yij and matrices A in bold type. Entries
of a vector w are written in normal font wj . Sets U are shown in italics. The
nonnegative real numbers are written as R+ and the positive part of a number is
written as (h)+ = max{h, 0}. With 0 and 1, we denote vectors containing only
ones and zeros respectively and ej denotes the j-th unit vector. The convex hull
of a set T is written as conv T .
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2 General Polyhedral Approximation (GPA)

This chapter develops the main result, which is an approximation method for
two-stage robust optimization. It allows to use an arbitrary polytope to dominate
the uncertainty set. We partition the set of vertices of the dominating polytope
into subsets, each of which spans a polytope. The key insight is that calculating
solutions for each of these polytopes and combining them appropriately gives an
approximation.

We consider the following two-stage robust linear problem:

zAR(U) = min
x

cTx+max
h∈U

min
y(h)

dTy(h)

s.t. Ax+By(h) ≥ h ∀h ∈ U
Cx+Dy(h) ≥ b ∀h ∈ U
x ∈ Rn1

+ , y(h) ∈ Rn2
+

(1)

where A ∈ Rm×n1
+ , B ∈ Rm×n2 , C ∈ Rp×n1

+ , D ∈ Rp×n2 , c ∈ Rn1
+ , d ∈ Rn2

+ and
b ∈ Rp

+. With these restrictions, it is possible to model, e.g., set covering, capac-
ity planning, facility location, Steiner trees, network design and transportation
location problems. Although this model is quite general, the nonnegativity of
the right-hand side does not allow packing constraints and upper bounds on
variables.

We say, a set V ⊆ Rm dominates the scenario set U ⊆ Rm iff for all h ∈ U ,
there exists ĥ ∈ V such that h ≤ ĥ component-wise. We assume that the
dominating set V is a polytope given by a finite set of points vertices vij ∈ Rm.
In this paper the vij will already be the vertices of V. Double indices indicate a
partition in N smaller sets, defining the polytopes Vi.

V = conv {vij | i ∈ [N ], j ∈ [Mi]} , Vi = conv {vij | j ∈ [Mi]} . (2)

Note that the union of all Vi does not necessary dominates U . We assume for a
scenario set U , that it is a convex, full-dimensional subset of the unit cube that
contains all unit vectors and is down-monotone: h ∈ U and 0 ≤ h′ ≤ h implies
h′ ∈ U .

It is easy to extend the proof of the following Lemma by Ben-Tal et al. [3]
to our more general formulation (1).

Lemma 1 (Ben-Tal et al. [3]). Let U be an uncertainty set and V a domi-
nating set of U with β ≥ 1 and V ⊆ β U := {βh |h ∈ U}. Let zAR(U), zAR(V) be
the optimal values for (1) corresponding to U and V, respectively. The following
inequalities hold:

zAR(U) ≤ zAR(V) ≤ β zAR(U) (3)

We use an arbitrary polytope V dominating U . We use a general dominating
polytope V instead of a simplex. We compute N sets of first-stage variables xi,
from which we construct the first stage decision x̂. To compute the xi, we need
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to solve N linear programs, that are of the same type as (1) but lesser size:

zAR(Vi) = min cTxi + w

s.t. w ≥ dTyij , j ∈ [Mi],

Axi +Byij ≥ vij , j ∈ [Mi],

Cxi +Dyij ≥ b, j ∈ [Mi],

xi ∈ Rn1
+ , yij ∈ Rn2

+ , j ∈ [Mi].

(4)

Next we choose functions αij(·) : U → [0, 1] with the following two properties:

N∑
i=1

Mi∑
j=1

αij(h)vij ≥ h, ∀h ∈ U ,
N∑
i=1

Mi∑
j=1

αij(h) ≥ 1, ∀h ∈ U . (5)

We will later discuss possibilities for choosing αij(·). Let (xi,yi), i ∈ [N ] be the
N solutions of (4). We will show, that for any choice of αij(·) respecting the
conditions (5) above, (x̂, ŷ(·)), defined as follows, is a feasible solution to (1).

x̂ =

N∑
i=1

σixi, ŷ : U → Rn2
+ , ŷ(h) =

N∑
i=1

Mi∑
j=1

αij(h)yij , (6)

The σi are defined as σi := maxh∈U
∑Mi

j=1 αij(h). We can limit the unnecessary
use of the first stage variables xi in the final mapping by computing this factor.
Note, that in the work of Ben-Tal et al. [3], they use N = 1 and σ1 = 2, whereas
in our case the σi are chosen as small as possible to guarantee feasibility for each
scenario h ∈ U . Now we show that this gives a feasible solution for the original
problem.

Lemma 2. The pair (x̂, ŷ(·)) defined in (6) is a feasible solution for (1), if∑N
i=1

∑Mi

j=1 αij(h)vij ≥ h, ∀h ∈ U and
∑N

i=1

∑Mi

j=1 αij(h) ≥ 1.

Proof. For a fixed scenario h ∈ U , feasibility follows from the following calcula-
tions.

Ax̂+Bŷ(h) = A

N∑
i=1

σixi +B

N∑
i=1

Mi∑
j=1

αij(h)yij

=

N∑
i=1

(σiAxi +

Mi∑
j=1

αij(h)Byij)

≥
N∑
i=1

Mi∑
j=1

αij(h)
(
Axi +Byij

)
≥

N∑
i=1

Mi∑
j=1

αij(h)vij ≥ h.
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Cx̂+Dŷ(h) = C

N∑
i=1

σixi +D

N∑
i=1

Mi∑
j=1

αij(h)yij

=

N∑
i=1

(σiCxi +

Mi∑
j=1

αij(h)Dyij)

≥
N∑
i=1

Mi∑
j=1

αij(h)
(
Cxi +Dyij

)
≥

N∑
i=1

Mi∑
j=1

αij(h)b ≥ b.

After proving the feasibility of the solution, we can calculate the mentioned
approximation factor.

Theorem 1. The pair (x̂, ŷ(·)) as mentioned in the previous stated Lemma 2
is a

(
β
∑N

i=1 σi

)
-approximation to the original problem (1).

Proof. The cost of (x̂, ŷ(·)) for any fixed scenario h ∈ U is

cT x̂+ dT ŷ(h) = cT

(
N∑
i=1

σixi

)
+ dT

 N∑
i=1

Mi∑
j=1

αij(h)yij


=

N∑
i=1

σic
Txi +

Mi∑
j=1

αij(h)d
Tyij

 ≤
N∑
i=1

σi

(
cTxi + max

j∈[Mi]
dTyij

)

=

N∑
i=1

σizAR(Vi) ≤

(
N∑
i=1

σi

)
zAR(V) ≤

(
β

N∑
i=1

σi

)
zAR(U).

In the last line, we used the result of Lemma 1. As this bound holds for any
scenario h ∈ U , the worst-case cost of our solution is at most a factor β

∑N
i=1 σi

of the worst-case cost of the optimal solution zAR(U), i.e., our theorem holds.

In the following subsections, we will give concrete examples of these policies
and compare the resulting approximation factors. Note that a compromise be-
tween quality and runtime must always be found for all approximation methods.
Although the results and proofs in this chapter rely on the specific two-stage
problem (1), the general idea of using multiple polytopes is applicable whenever
a domination approach can be used to get an approximation for the original
problem.

Remark 1 (A Posteriori Approximation Factor). In the proof of Theorem 1,
we in particular overestimated zAR(Vi) with zAR(V). For a given instance, we
can thus enhance the analysis using the exact values zAR(Vi) if N > 1. This a
posteriori approximation factor is given by∑N

i=1 σi zAR(Vi)

maxi∈N (zAR(Vi))
β. (7)

We will see the affect of this in chapter 7 in Figure 4.
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For the examples given in the rest of the paper, we use the following as a
scenario set U .

Definition 1. The budget of uncertainty set [11,12] for a robustness parameter
Γ > 0 is defined as

U := UΓ :=

h ∈ [0, 1]m

∣∣∣∣∣∣
m∑
j=1

hj ≤ Γ

 . (8)

3 Scaling the Budget of Uncertainty Polytope

The number of vertices of the budget of uncertainty polytope grows exponen-
tially with Γ . The idea in this section is that dominating UΓ with β UΓ/γ could
be computationally advantageous and less inaccurate than dominating with a
simplex. We now show how to choose β and γ.

Definition 2 (Scaled Budget Policy). Let UΛ be the uncertainty set for a
smaller robustness parameter Λ ≤ Γ . With N = 1,M1 =

(
m
Λ

)
, σ1 = 1, β = Γ

Λ
and

V = V1 = β UΛ = conv

{
u ∈ {0, β}m

∣∣∣∣∣
m∑
i=1

ui = Γ

}
= {v1, . . .vM1

} , (9)

we can define the scaled budget policy with the coefficients

α1j(h) =

{(
Γ
Λ

)−1
, if h ≥ vj

β ,

0, else.
(10)

With this definition, Theorem 1 yields the following corollary. We can achieve
a constant factor improvement in the approximation bound by increasing the
number of vertices of the dominating polytope.

Corollary 1. The scaled budget policy gives a β = Γ
Λ approximation.

Proof. The feasibility and the approximation factor follow directly after checking
the constraints of Lemma 2.

This polytope has at most mΛ vertices and we will test it in practice for Λ = 1

with m vertices and Λ = 2 with m(m−1)
2 vertices. For this policy, there is a

trade-off between quality of the solution and effort to find it: With more vertices
and therefore larger run time to compute the solution of (4), we can get a better
approximation factor of the policy. We will later see the effects of this in Figure
1 and Figure 5.
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4 The Power of Combining Polytopes

GPA allows to substitute a set V dominating U by several sets Vi, of which
the union in general does not dominate U . Theorem 1 shows that this gives
feasible solutions with an a priori approximation factor. In this section we give
a simple example that this split improves the a posteriori approximation factor
from Remark 1. We use the original dominating set by Ben-Tal et al. [3], the
simplex, but split the vertices into two sets; one of which only contains the vertex
of the average case. With this small modification, we achieve an improvement in
the approximation bound by up to a factor of 2.

Definition 3 (Combination policy). Let w = Γ
m1 be the average scenario

with an uniformly distributed budget. Then we define the combination policy
with N = 2,M1 = m,M2 = 1 as follows:

V1 = β conv{e1, . . . , em}, V2 = {βw}, (11)

α1j(h) =
1

β
(hj − βwj)

+, α21(h) = 1, (12)

σ1 =
mΓ − βΓ 2

βm
≤ 1, σ2 = 1. (13)

With this definition, again, Theorem 1 yields the following corollary.

Corollary 2. The combination policy gives a
(
1− Γ 2

m

)
β + Γ approximation.

Proof. For a budgeted uncertainty set with w = Γ
m1, we know that

σ1 = max
h∈U

M1∑
j=1

α1j(h) =
Γ

β

(
1− β

Γ

m

)
=

mΓ − βΓ 2

βm
. (14)

Inserting this into the approximation factor from Theorem 1, we get

(σ1 + σ2)β =

(
mΓ − βΓ 2

βm
+ 1

)
β =

(
1− Γ 2

m

)
β + Γ. (15)

The following Lemma gives an optimal choice for beta.

Lemma 3. The optimal scaling factor βopt dependent on the budget of uncer-
tainty Γ for the combination policy is given by:

βopt =

β∗ = max

(
1,

mΓ

Γ 2 +m

)
, if Γ ≤

√
m,

β′ =
m

Γ
, else.

(16)

Proof. The approximation factor of Corollary 2 is an affine linear function in β,
so the minimum is dependent on the sign of the gradient. In other words, we
need to find the minimal feasible β, if

(
1− Γ 2

m

)
is positive and the maximal
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feasible β if the term is negative. If the gradient is zero, every feasible β with
βw ≤ 1 is optimal. For a positive gradient with Γ <

√
m, Ben-Tal et al. [3]

already showed that the optimal scaling factor is β∗ = max

(
1,

mΓ

Γ 2 +m

)
, under

the condition that σ1 ≡ 1. If the gradient is negative in the range of Γ >
√
m,

we have to choose β as large as possible but feasible. So βw = 1 directly gives
β′ = m

Γ with σ1 ≡ 0.

In the next chapter in Figure 1 the effect of this choice of β will be demon-
strated. In a nutshell, for small Γ this factor is strictly better while for larger
Γ the effect vanishes as a nominal solution for all righthand values at maxi-
mum deviation becomes the best known robust solution anyway. For a similar
observation concerning β∗ see [19,24].

5 Choosing The Best Method

The different approximation factors of methods discussed in this paper all depend
on Γ , i.e., the number of rows with maximally increased righthand side and m the
total number of rows. The order of magnitude of the approximation factors for
all presented methods is either m

Γ , Γ or a combination of both. The differences
of the presented methods are due to some constant factors and are not often
discussed in the literature. Nonetheless even constant factor improvements give
better lower bounds and in our case better solutions, which is indeed relevant for
a practical application of these methods. Here we plot the approximation factors
for comparison with m = 100.
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Simplex by [3]
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Scaled Budget, Λ = 1

Scaled Budget, Λ = 2

Fig. 1. Approximation factors for m = 100

In Figure 1 we consider the following methods:
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– Quasi-nominal (mΓ ): Solving for the single scenario, in which all righthand
side values are set to maximum, trivially dominates U and is computationally
equivalent to a nominal problem. The approximation factor of this simplest,
quasi-nominal approach is shown as the black line.

– Simplex (2 min(Γ, m
Γ )): Dominating with the simplex as proposed in [3] is

shown in red.
– Combination policy ((1− Γ 2

m )β + Γ ): Lemma 3 uses the two approximation
factor β′ and β∗. It is easy to show that after intersection of these factors β′

is equal to the quasi-nominal solution shown in black.
– Scaled budget policy (ΓΛ ): We depict the factor of the scaled budget policies

for two budgets Λ. The factors are linear and can be truncated when they are
worse than the factor of the quasi-nominal solution, because the intersection
can be calculated a priori.

For large Γ the quasi-nominal solution performs best. For small Γ the scaled
budget policy is best. The threshold between small and large Γ is at

√
m for

all policies except for more complex scaled budget polytopes, i.e., Λ ≥ 2. In-
creasing Λ in turn exponentially increases the size of the linear programs to
be solved. Therefore, the choice of the best method depends on m, Γ , and the
computational resources.

6 Transportation Location Problem and an Input
Dependent A Priori Approximation Factor

The original approximation method by Ben-Tal et al. [3] uses a single first-stage
solution for all vertices, while GPA calculates and combines different solutions for
sets of vertices. As first-stage solutions suitable e.g. for the average case vertex of
the simplex in many cases differ strongly from those for the other simplex vertices
there is room for improvement of the a priori approximation factor under mild
conditions, which are fulfilled naturally in many problem classes.

We show in this chapter for the Transportation Location Problem (TLP) a
stronger approximation factor that depends on a term capturing the difference in
magnitude for the cost and demand coefficients. The analysis draws in particular
from the sparsity of the matrices of the TLP.

In the TLP we are given a complete bipartite graph and have to store re-
sources on the left vertices f ∈ [n] to meet an uncertain demand on the right at
minimal storage and worst-case transportation cost. In contrast to El Housni et
al. [16], we will not require that the demand per client is binary and that the
transportation costs are metric. We assume that each client k ∈ [m] has a maxi-
mum demand Hk and that not more than Γ clients will request their demand or
- leading to equivalent solutions - the normalized demand h ∈ [0, 1]m lies inside
the budget of uncertainty set U . Formally, this can be expressed by the following
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optimization problem:

zTLP (U) = min
x

cTx+max
h∈U

min
y

dTy

s.t.
n∑

f=1

yfk ≥ hkHk, k ∈ [m], xf −
m∑

k=1

yfk ≥ 0, f ∈ [n], x,y ≥ 0.
(17)

Here xf corresponds to the amount of commodities stored in facility f and yfk

is the quantity that gets transported from facility f to client k. The storage
costs are contained in the vector c, dfk is the cost of transporting one unit of
the commodity from facility f to client k, hk is the demand of client k and h
is a vector from the budget of uncertainty set U from (8). Both variables, x
and y, are continuous. To meet the notation of the previous chapters, one can
reformulate problem (17) to:

zTLP (U) = min
x

cTx+max
h∈U

min
y(h)

dTy(h)

s.t. By(h) ≥ h,∀h ∈ U , Cx+Dy(h) ≥ 0, ∀h ∈ U , x,y ≥ 0.
(TLP)

The first constraint assures demands getting satisfied and the second one pre-
vents us from transporting a larger amount of the commodity from each facility
than we have stored there. C is the n × n identity matrix and the matrices
B ∈ Rm×(n·m)

+ and D ∈ Rn×(n·m) are defined by

B =


1
H1

. . . 1
H1

0 . . . . . . . . . . . . . . . 0

0 . . . 0 1
H2

. . . 1
H2

0 . . . . . . 0
...

. . .
...

0 . . . . . . . . . . . . . . . 0 1
Hm

. . . 1
Hm

 , D =
(
−I −I . . . −I

)
. (18)

D consists of the negative of m n× n identity matrices. B has n and D has m
non-zero entries per row and both have only one non-zero entry per column.

Theorem 2. The combination policy from Definition 3 gives an approximation
factor of

maxf∈[n],k∈[m] cf + dfk

minf∈[n],k∈[m] cf + dfk

σ1Hmax + ΓH

max
(
Hmax, ΓH

)β (19)

for the transportation location problem (TLP). Here Hmax := maxk∈[m] Hk is
the maximum and H := 1

m

∑m
k=1 Hk the mean of the maximum demands Hk.

Proof. To prove this theorem we first give lower and upper bounds for the costs of
the variables in (4). To get these bounds we consider the maximum and minimum
demand possible together with the highest as well as the lowest transportation
and storage cost per unit of the commodity.

βHmax

(
min

f∈[n],k∈[m]
cf + dfk

)
≤ zTLP (V1) ≤ βHmax

(
max

f∈[n],k∈[m]
cf + dfk

)
ΓβH

(
min

f∈[n],k∈[m]
cf + dfk

)
≤ zTLP (V2) ≤ ΓβH

(
max

f∈[n],k∈[m]
cf + dfk

)
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We use the maximum demand in the first line on the left hand side, since the
demand of each client must be satisfied by the corresponding y1j = y(βej).
We have to use the average demand in the second line, otherwise we would
overestimate the total demand. The approximation factor follows almost directly
from these bounds:

σ1zTLP (V1) + zTLP (V2)

zTLP (V)
≤ σ1zTLP (V1) + zTLP (V2)

max (zTLP (V1), zTLP (V2))

≤
(
maxf∈[n],k∈[m] cf + dfk

) (
σ1Hmax + ΓH

)
β(

minf∈[n],k∈[m] cf + dfk
)
max

(
Hmax, ΓH

)
β

=
maxf∈[n],k∈[m] cf + dfk

minf∈[n],k∈[m] cf + dfk

σ1Hmax + ΓH

max
(
Hmax, ΓH

)
Using this equation in the last line in the proof of Theorem 1 yields the desired
approximation factor.

Remark 2. In the extreme uniform case, where c ≡ cf , d ≡ dfk, H ≡ Hk, ∀f ∈
[n], ∀k ∈ [m], the instance specific approximation factor (19) is

(
1− Γ

m

)
β + 1.

For the choice of β′ this again results in the general approximation factor of Γ
m ,

but for β∗ this yields an instance specific approximation factor of (Γ+1)m
Γ 2+m , which

is both almost a factor 2 improvement compared to the general factor of 2Γm
Γ 2+m

and strictly better than the approximation factor of the quasi-nominal solution.

7 Numerical Study
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Fig. 2. Objective for TLP instances with n = 20,m = 40
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Fig. 3. Objective for TLP instances with n = 30,m = 60
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Fig. 4. Posterior bounds for TLP instances with n = 20,m = 40

This chapter reports on a numerical study for the TLP. The numerical behav-
ior here with random generated data is very close the theoretical approximation
factors shown before. We compare the methods presented in this paper against
the simplex domination approach by Ben-Tal et al. [3] and the affine policies by
El Housni and Goyal [15]. However, the second method does not provide a valid
approximation factor in the case of the TLP, as the matrices B and D in (18)
contain negative entries and therefore do not fulfill the necessary requirements.
Nevertheless, we can use the method as a heuristic to calculate a feasible solu-
tion. All experiments were conducted on an AMD EPYC 7742 processor with
a single core on 2480.438 MHz. We implemented all methods using SCIP 8.0.3
with the SoPlex 6.0.3 LP-solver [13].
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Fig. 5. Running time for TLP instances with Γ = m

Table 1. Running time for TLP instances with n = 20, m = 40 in seconds

Γ Quasi- Simplex Combi- Combi- Scaled Bud- Scaled Bud- Affine
nominal nation β′ nation β∗ get Λ = 1 get Λ = 2 policy

1 0.02 0.35 0.31 0.30 0.28 – 23.25
2 0.02 0.34 0.31 0.30 0.28 12.77 62.63
3 0.02 0.35 0.31 0.29 0.28 19.01 75.15
4 0.02 0.35 0.30 0.30 0.27 19.11 74.99
5 0.02 0.35 0.31 0.30 0.28 19.13 85.91
6 0.02 0.35 0.31 0.29 0.28 19.14 83.54
7 0.02 0.34 0.30 0.29 0.27 19.10 88.71

11 0.02 0.34 0.30 0.29 0.28 20.65 91.24
15 0.02 0.34 0.30 0.29 0.28 12.79 106.51
19 0.02 0.34 0.30 0.29 0.28 12.77 118.99
23 0.02 0.34 0.30 0.29 0.28 12.71 143.20
27 0.02 0.34 0.30 0.30 0.28 12.97 181.12
31 0.02 0.34 0.30 0.30 0.28 13.11 220.85
35 0.02 0.33 0.30 0.29 0.28 12.79 307.73
39 0.02 0.34 0.31 0.30 0.28 28.23 452.62
40 0.02 0.34 0.30 0.29 0.27 19.24 343.60

We generate instances with different amounts of customers n and facilities
m uniformly over a 5× 5 square. The transportation costs d between every pair
of customer and facility equals their euclidean distances. The demands H of
the customers are uniformly chosen from the interval [20, 100]. For the storage
costs c, we uniformly generated values in [0.05, 1]. The average results over five
randomly generated instances for the different scenarios are presented for n = 20
and m = 40 in Figure 2 and for n = 30 and m = 60 in Figure 3.
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Table 2. Running time for TLP instances with n = 30, m = 60 in seconds

Γ Quasi- Simplex Combi- Combi- Scaled Bud- Scaled Bud- Affine
nominal nation β′ nation β∗ get Λ = 1 get Λ = 2 policy

1 0.04 1.44 1.40 1.33 1.31 – 396.58
2 0.04 1.43 1.41 1.31 1.32 52.54 1551.04
3 0.04 1.40 1.38 1.28 1.29 52.73 1591.21
4 0.04 1.47 1.38 1.33 1.32 52.73 1628.88
5 0.04 1.45 1.38 1.31 1.31 52.85 1720.89
6 0.04 1.42 1.39 1.29 1.30 51.90 1597.51
7 0.04 1.45 1.40 1.32 1.32 53.41 1595.79
8 0.04 1.43 1.39 1.29 1.30 51.59 1641.66

14 0.04 1.41 1.37 1.31 1.31 51.71 1582.05
20 0.04 1.40 1.38 1.29 1.29 51.56 1781.78
26 0.04 1.41 1.39 1.30 1.30 51.99 1963.27
32 0.04 1.38 1.37 1.30 1.28 51.49 2232.49
38 0.04 1.31 1.31 1.22 1.22 48.82 2525.22
44 0.04 1.37 1.37 1.28 1.28 51.89 2969.12
50 0.04 1.37 1.37 1.27 1.28 51.72 4843.60
56 0.03 1.21 1.23 1.15 1.14 46.71 5067.21
60 0.03 1.21 1.23 1.15 1.14 46.94 4571.53

The Figures 2 and 3 of the objective function show that the performance of
the methods is largely independent of the dimension of the problem and instead
depend on the budget of uncertainty Γ . Besides the extreme cases of a very small
or very large budget, the affine policy gives the best objective function values.
Apart from this method, the scaled budget policies provide the next best results
for small to moderate budgets before they are beaten by the quasi-nominal
solution for all remaining larger budgets. The simplex approach is outperformed
by our combination policies in every single instance.

Overall, Figures 2 and 3 are obviously similar to Figure 1 of the approxima-
tion factors, even though they describe different relations. In fact, the calculation
of the quotients of the respective values shows a linear correlation in Figure 4.
This gives us a lower bound on the optimal objective function value. The a pos-
terior considerations from Remark 1 have already been used for the combination
policies to get a better estimate. This gives us on average the best lower bounds
with the combination policy.

In Figure 5 we can see that in each case the runtime of the calculations in-
creases exponentially with the number of customers. The quasi-nominal solution
is calculated fastest and the better approximation factors of the scaled budget
policy with more vertices cost significantly more time, as predicted. All other
policies based on domination can be calculated in about the same time, since
they have almost the same number of vertices.

As expected, the affine policy has by far the worst runtimes. Interestingly,
however, these times depend not only on the scale of the problem, but also on the
budget of uncertainty Γ , as can be seen in Tables 1 and 2. For higher budgets,
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a multiple of the runtime of the smaller budgets is required. This phenomenon
does not occur with any of the other methods.

8 Conclusion

Two-stage robust linear programs with righthand side uncertainty are of broad
importance for real-world application, e.g. in logistics and transportation. We
aim to find a practically superior and theoretically sound general approach for
large-instances. We allow for arbitrary constraint matrices for the second stage
and non-negative constraint coefficients for the first stage.

We introduce, analyze and computationally test a General Polyhedral Ap-
proximation (GPA). GPA is a general technique to approximate such problems
by substituting the scenario set with the set of vertices of a set of polyhedra
that jointly dominate (though not necessarily contain) the original scenario set.
We extend and significantly strengthen techniques from the literature to derive
improved approximation factors. Moreover, Theorem 1 applies in full generality
to any such polyhedral approximation.

In particular, we consider budgeted scenario sets, where the m righthand
side coefficients lie in bounded intervals and the sum of their relative deviations
from the lower boundary of each interval is below a budget Γ . The theoretical
analysis of the resulting approximation factor and the objective values in the
computational experiments are almost perfectly aligned to each other and show
the theoretical strength and practically superiority of GPA.

We compare affine linear approximations, approximation by a single simplex,
quasi-nominal solutions and different realizations of GPA for two-stage robust
linear programs with righthand side uncertainty. The resulting pictures for the
theoretical approximation factor and the computational results are structured
by the relation between m and Γ .

For large budgets Γ , the quasi-nominal solutions is quickly approaching the
quality of affine policies. It is clearly better than approximating with a single
simplex and slightly better than or in fact identical to our solutions.

For small budgets, i.e. Γ <
√
m, GPA is almost as good as the affine linear

policies and significantly better than approximating with a single simplex. The
quasi-nominal solutions are drastically worse than all adaptive solutions and
unreasonable for many real-world applications.

For medium budgets, i.e. Γ close to
√
m, the theoretical picture of approx-

imation factors deviates slightly from the computational results. Theoretically
the approximation by most GPA variants and the single simplex approximation
fall down the quality of a quasi-nominal solution. Beyond the

√
m-threshold

they give worse approximation factors. But, using our family of scaled budget
polytopes in GPA we can push this threshold, achieving strictly better approxi-
mation factors even for Γ >

√
m. In the computational experiments most of our

GPA methods outperform the quasi-nominal solution even for budgets larger
than their theoretical threshold.
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The single simplex approach is always outperformed by GPA with the same
computational cost. Affine linear policies are known to be best possible approx-
imation - under slightly different assumptions, namely, that the second stage
coefficients need to be non-negative but the first stage matrix is arbitrary. Still,
they require prohibitive computational time for large instances.

To summarize, for large instances where affine policies cannot be calculated
in practice, our findings suggest to use GPA unless Γ is so large that quasi-
nominal solutions are the quick and good way to go. This threshold effect for
non-adaptive solutions aligns with the finding in [8]. If non-adaptive solutions are
not sufficient in practice, GPA with scaled budget polytopes allows for a trade-off
between running time and quality until affine policies can be calculated.

We also show in this paper for the fundamental Transportation Location
Problem how GPA can be used to find improved instance specific approximation
factors. These factors are mirrored in the quality of solution in the computational
experiments. This underlines the practical value of GPA.
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