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Abstract

We propose a new stochastic mixed-integer linear programming model for a home service fleet sizing

and appointment scheduling problem (HFASP) with random service and travel times. Specifically,

given a set of providers and a set of geographically distributed customers within a service region,

our model solves the following problems simultaneously: (i) a fleet sizing problem that determines

the number of providers required to serve customers; (ii) an assignment problem that assigns

customers to providers; and (iii) a sequencing and scheduling problem that decides the sequence of

appointment times of customers assigned to each provider. The objective is to minimize the fixed

cost of hiring providers plus the expectation of a weighted sum of customers’ waiting time and

providers’ travel time, overtime, and idle time. We compare our proposed model with an extension

of an existing model for a closely related problem in the literature, theoretically and empirically.

Specifically, we show that our newly proposed model is more compact (i.e., has fewer variables and

constraints) and provides a tighter linear programming relaxation. Furthermore, to handle large

instances observed in other application domains, we propose two optimization-based heuristics that

decompose the HFASP decision process into two steps. The first step involves determining fleet

sizing and assignment decisions, and the second constructs a routing plan and a schedule for each

provider. We present extensive computational results to show the size and characteristics of HFASP

instances that can be solved with our proposed model, demonstrating its computational efficiency

over the extension. Results also show that the proposed heuristics can quickly produce high-quality

solutions to large instances with an optimality gap not exceeding 5% on tested instances. Finally,

we use a case study based on a service region in Lehigh County to derive insights into the HFASP.
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1. Introduction

Home service agencies provide a wide range of services to customers at their homes, including health

care, beauty treatments, fitness training, housekeeping, appliance repair service, and babysitting.

The increasingly aging populations, busy lifestyles, extended work hours, and the outspread of

infectious and chronic diseases have led to a substantial increase in demand for home services,

especially home health care (Fikar and Hirsch, 2017; Alkaabneh et al., 2023). The cost of various

home services has also been increasing in recent years. For example, 88% of home service companies

raised their service prices in the past two years. The United States home service market is projected

to reach $1219 Billion by 2026. With competitive pressure from the market, home service providers

face the challenge of improving service quality and reducing operational costs. This motivates the

need for computationally efficient optimization models for home service planning and scheduling.

Like traditional delivery services, home services require a professional provider (or service team)

to travel and deliver services to geographically distributed customers. In contrast to most delivery

services, however, customers must present to receive their service (Zhan and Wan, 2018). In

addition, home service operators assign a provider and quote an appointment time (i.e., planned

service start time) to each customer in advance to avoid delivery failure. Then, on the day of

service, each provider visits customers assigned to them one by one.

In this paper, we address a home service fleet sizing and appointment scheduling problem

(HFASP) under stochastic service and travel times. Specifically, given a set of providers and a set

of customers within a service region, the HFASP consists of solving the following decision-making

problems simultaneously: (i) a fleet sizing problem that determines the number of providers re-

quired to serve customers; (ii) an assignment problem that assigns customers to providers; and (iii)

a sequencing and scheduling problem that decides the sequence of appointment times of customers

assigned to each provider. Here, a sequence of customers assigned to a provider is equivalent to

the provider’s route. Each provider must start from the main office (i.e., depot) and visit each

customer in their schedule one by one before returning to the main office. If a provider arrives at

a customer’s location before the scheduled service start time, the provider must wait (i.e., remains

idle) until the scheduled service start time. Conversely, the customer must wait if the provider

arrives after the scheduled appointment time. Moreover, each provider has a fixed service hour

beyond which s/he experiences overtime. Given the uncertainty of service time and travel time

between customers, the goal is to minimize the fixed cost of establishing the providers’ fleet (i.e.,

provider hiring or labor cost) and the expectation of a weighted sum of customers’ waiting time

and providers’ idle time, overtime, and travel time.

The HFASP is a challenging stochastic optimization problem for various reasons, foremost of

which are the following. First, suppose we fix the number of providers and customers’ appointment

times. In this case, the HFASP becomes similar to the multiple vehicle routing problem with time
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constraints and stochastic travel time, which is a challenging optimization problem (Cook, 2011;

Toth and Vigo, 2014). Second, suppose we fix the number of providers and customer assignments.

In this case, the HFASP reduces to a multi-server sequencing and scheduling problem with stochastic

service time, which is another well-known complex optimization problem (Denton et al., 2007).

To address service time uncertainty, Zhan and Wan (2018) proposed the first two-stage stochas-

tic mixed-integer program (SMIP) for a closely related problem to the HFASP. In the first stage,

the model decides the number of providers and their routing and scheduling decisions using tradi-

tional routing variables and constraints. Then, in the second stage, the model computes providers’

overtime and customers’ waiting time. The objective of this model is to minimize the fixed cost

of hiring providers and their total travel time plus a weighted sum of providers’ overtime and cus-

tomers’ waiting time. Note that Zhan and Wan (2018) assumed that the travel time is deterministic

and ignored providers’ idle time. Ignoring random travel time may lead to sub-optimal solutions

with excessive customers’ waiting time and providers’ overtime, consequently impacting service

quality. Ignoring idle time may yield the underutilization of providers’ time. Finally, Zhan and

Wan (2018)’s results indicate that their model is challenging to solve.

In this paper, we propose a new two-stage SMIP for the HFASP, denoted as model (S). In

contrast to Zhan and Wan (2018), our model incorporates both random travel and service times.

In addition, our second stage includes variables and constraints to compute providers’ idle time.

Furthermore, instead of using traditional routing variables and constraints, we use sequencing vari-

ables and constraints to determine the order of customers assigned to each provider (equivalently,

the provider’s route). We also derive an extension of Zhan and Wan (2018)’s model (denoted as

model (Z)) that incorporates both random travel and service times and providers’ idle time. We

rigorously analyze the relative strengths and weaknesses of the two proposed models, theoretically

and empirically. Specifically, we show that our newly proposed model (S) is more compact (i.e.,

has fewer variables and constraints), provides a tighter linear programming (LP) relaxation, and is

more computationally efficient. Furthermore, to handle large instances observed in other applica-

tion domains, we propose two optimization-based heuristics that decompose the HFASP decision

process into two steps. The first involves determining fleet sizing and assignment decisions, and

the second constructs a routing plan and a schedule for each provider.

Finally, we conduct extensive computational experiments to show the size and characteristics of

problem instances that can be solved with our proposed model (S), demonstrating the significant

computational performance improvements that can be gained with model (S). Specifically, our

results show that model (S) can solve larger instances faster and within a reasonable time than

model (Z). In addition, our results show that the proposed heuristics can quickly produce high-

quality solutions to large instances with an optimality gap not exceeding 5% on tested instances.

Finally, we use a case study based on a service region in Lehigh County, Pennsylvania, to derive

insights into the HFASP.
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1.1. Structure of the paper

The remainder of this paper is organized as follows. In Section 2, we review the relevant literature.

In Section 3, we describe our problem setting. In Section 4, we introduce our proposed model

(S) and model (Z) for the HFASP. In Section 5, we provide theoretical analyses of the proposed

models. In Section 6, we present our two optimization-based heuristics. In Section 7, we present

computational results. Finally, we draw conclusions in Section 8.

2. Relevant Literature

Planning and scheduling problems in home services have received significant attention. We refer

to Fikar and Hirsch (2017); Cissé et al. (2017); Grieco et al. (2021); Di Mascolo et al. (2021)

for comprehensive surveys on home service problems and applications. Next, we discuss relevant

studies to our work.

Determining the number of providers (fleet size) is critical because it is a major fixed investment

for home service companies. An inappropriate fleet size may lead to poor operational performance

(e.g., long travel time and excessive delays and overtime) and, consequently, poor service quality

(Shehadeh, 2023). Note that the fleet sizing problem depends on the service team’s operational

performance, and the latter depends on the routing and scheduling decisions. Thus, it is important

to integrate fleet sizing, assignment, scheduling, and routing problems. However, most of the

existing approaches for home service planning focus on a subset of these problems. For example,

Restrepo et al. (2020) focus on staff dimensioning and scheduling in home care services. They take

into account the uncertainty of customers’ demands. Other studies proposed models for integrated

routing and scheduling (see, e.g., Han et al., 2017; Zhan et al., 2021; Cinar et al., 2021; Liu et al.,

2019). Next, we limit the scope of this review to recent literature that is most relevant to our work.

Namely, we focus on studies that propose stochastic programming (SP) models for fleet sizing,

assignment, routing, and scheduling problems arising from the home service practice.

Zhan and Wan (2018) propose the first two-stage SMIP for vehicle routing and appointment

scheduling with team assignment for home services. In the first stage, the model determines the

number of providers to use/hire and the route and schedule for each. The model computes teams’

overtime and customers’ waiting time in the second stage. Zhan and Wan (2018) incorporate service

time uncertainty in the model, but they assume that the travel time is deterministic. The objective

is to minimize the fixed hiring cost and the total deterministic travel time plus the expected

overtime and waiting time. Observing the challenges of solving small instances, they propose a

modified parallel saving algorithm to obtain feasible routes and use a tabu-search method to obtain

near-optimal solutions. Later, Zhan et al. (2021) propose a two-stage SMIP for a single provider

home service routing and appointment scheduling with stochastic service time. The objective is to

minimize the providers’ travel costs and the expected second-stage cost, including providers’ idle
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time and customers’ waiting time. They exploit the structural properties of the proposed model

and develop an L-shaped method to solve problem instances with six, eight, and ten customers.

Note that ignoring travel time uncertainty and idle cost as in Zhan and Wan (2018) and Zhan

et al. (2021) may lead to sub-optimal solutions with, for example, excessive idle time, overtime,

and travel time. Recent studies that incorporate stochastic travel time include Shi et al. (2018)

and Hashemi Doulabi et al. (2020). Shi et al. (2018) propose an SP model for a home healthcare

routing and scheduling problem with random service and travel times. The objective is to minimize

the hiring cost plus the expected weighted sum of transportation costs, providers’ overtime, and

customers’ waiting costs. They integrate simulation and the simulated annealing algorithm to

solve the model. Hashemi Doulabi et al. (2020) study a vehicle routing problem (VRP) with

synchronized visits and propose a two-stage SMIP. They discuss the application of the model in

home healthcare scheduling. Given the challenges of solving the proposed model with commercial

solvers, they employ the L-shaped algorithm and implement a branch-and-cut method to solve the

problem. Moreover, they propose valid inequalities to speed up the convergence. Yu et al. (2021)

model a combination of vehicle routing with pick-up and delivery and appointment scheduling as

a scenario-based mixed-integer program. They apply the model in the context of medical service

routing and scheduling. Yu et al. (2021)’s model aims to minimize the operational cost plus the

expected penalty cost of the early/late arrival and extra working duration of vehicles. To solve

large instances, they use K-means algorithms to cluster customers into k groups and then make

routing and scheduling decisions for each identified group (cluster) of customers.

As mentioned earlier, fixing customers’ assignments to providers reduces our problem to a

sequencing and scheduling (SAS) problem with stochastic service time. Berg et al. (2014), Mancilla

and Storer (2012), and Shehadeh et al. (2019) propose SMIP models for the single-server SAS.

The SAS problem with multiple servers has been extensively studied in the healthcare scheduling

literature (Gupta and Denton, 2008; Ahmadi-Javid et al., 2017). The HFASP is also related to

VRP. We refer to Laporte et al. (1992); Kenyon and Morton (2003) for detailed discussions on

formulations and methodologies for various VRP problems under random service and travel times.

Our HFASP has similar characteristics to those addressed in Zhan and Wan (2018) and Zhan

et al. (2021). Nevertheless, our HFASP model is different from Zhan and Wan (2018) and Zhan et al.

(2021) in the following aspects. First, we consider multiple service teams while Zhan et al. (2021)’s

model focuses on the routing and scheduling of one team. Second, we consider both random travel

and service times and aim to minimize expected total travel time, while Zhan and Wan (2018)

and Zhan et al. (2021) assume that travel time is deterministic. Various vehicle routing studies

have motivated the need for hedging against travel time uncertainty to obtain high-quality routing

decisions (Anderluh et al., 2020; Lecluyse et al., 2009). Third, Zhan and Wan (2018)’s second stage

does not include idle time variables or objectives, and Zhan et al. (2021)’s second stage does not

include overtime variables or objectives. Our second stage objective includes overtime, idle time,
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waiting time, and travel time. Fourth, recognizing that the sequence of customers is equivalent to

the provider’s route, we use sequencing variables and constraints instead of routing variables and

constraints to determine routing decisions. In Section 5, we show that our sequencing-based SMIP

is more compact and provides a tighter LP relaxation than an extension of Zhan and Wan (2018)

for the HFASP. Moreover, our model can efficiently solve realistic (previously unsolved) HFASP

instances (see Section 7.2). Finally, we propose two efficient heuristics that leverage variants of our

proposed model and show that they could quickly obtain near-optimal solutions to large instances.

Table A1 in Appendix A summarizes the differences between our proposed model and those of

Zhan and Wan (2018) and Zhan et al. (2021).

3. Problem Setting

We start by introducing our problem settings. We consider a set of customers P and a set of

providers K. Each customer p ∈ P must be served by exactly one provider. On the other hand,

each provider has fixed service hours [0, L], which are long enough to serve multiple customers.

The cost of hiring one provider is λf . Each hired provider must start from an origin (e.g., the

provider’s office) and visit each customer on his/her schedule exactly once before returning to the

origin. The service time dp of each customer p ∈ P and the travel time tp,p′ between customers

(p, p′) ∈ P × P are random with known probability distributions. Given sets P and K, we aim to

solve the following decision problems simultaneously: (1) a fleet sizing problem that determines the

number of providers required to serve customers; (2) an assignment problem that determines the

assignment of customers to providers; and (3) a sequencing (routing) and scheduling problem that

determines the order and appointment times of customers assigned to each provider. The objective

is to minimize the fixed hiring cost plus the expected operational costs associated with customers’

waiting time and providers’ idle time, overtime, and travel time.

This problem can be formulated as a two-stage SMIP. The first stage contains binary (for

assignment and sequencing) and continuous (for scheduling) decision variables. Given the sequence

of appointment times decided in the first stage, the second stage problem contains continuous

decision variables representing what happens for each realization of service and travel times (i.e.,

compute waiting time, idle time, travel time, and overtime). To incorporate service and travel time

uncertainty into the model, we use a Sample Average Approximation (SAA) approach. That is, we

generate a sample of N scenarios (each scenario consists of a vector of realizations of service and

travel times which are drawn independently from the distributions corresponding to each customer

and pair of customers, respectively), and then optimize the sample average of the objective. We

refer to Kim et al. (2015); Kleywegt et al. (2002); Homem-de Mello and Bayraksan (2014) for the

technical details and discussions on SAA.

Some companies may require each provider to serve a specific number of customers to utilize
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their time better and balance their load in terms of the number of customers assigned to each. Other

companies do not have such requirements. Accordingly, we consider two types of service providers,

namely fully used and partially used providers. Fully used providers must serve a particular number

of customers, which effectively means that each provider’s sequence consists of |I| customers 1 (e.g.,

|I| = 6 customers). In this case, the number of providers needed to serve all customers equals

|P |/|I|, and the problem is reduced to an assignment, sequencing, and scheduling problem with

multiple providers.

On the other hand, partially used providers can serve any number of customers but at least

one customer (or any other threshold specified by the decision maker). In this case, the model

will determine the number of providers to hire and the assignment, sequencing, and scheduling

decisions. In Section 4, we present SMIP models for each provider type.

4. SMIP Models for the HFASP

In this section, we propose two SMIP formulations for the HFASP. In Section 4.1, we present our

new SMIP model denoted as model (S). In Section 4.2, we derive an extension of Zhan and Wan

(2018)’s model denoted as model (Z).

4.1. Model (S)

In this section, we present our proposed model, denoted as model (S). Let us first introduce the

variables and parameters defining this model. For all i ∈ I, p ∈ P, and k ∈ K, we define binary

decision variables xi,p,k that equal one if customer p is assigned to the ith position in the sequence

of customers assigned to provider k. For all i ∈ I and k ∈ K, we define non-negative continuous

decision variables ai,k to represent the scheduled appointment time of the ith customer in the

schedule of provider k.

We define the following scenario-based decision variables to compute waiting time, idle time, and

travel time in each scenario n ∈ [N ] of service and travel times. We define non-negative continuous

decision variables sni,k to represent the actual service start time of the ith customer in provider k’s

schedule. We define non-negative continuous decision variables gni,k to represent provider k’s idle

time before the ith customer/appointment. We define non-negative continuous decision variables

onk to represent provider k’s overtime. Finally, we let non-negative parameters λw, λo, λg, and λt

represent unit penalty cost of waiting, idle time, overtime, and travel time, respectively. A complete

list of the parameters and decision variables can be found in Table 1. Using this notation, our

SAA model can be stated as follows (see Appendix B for details on the derivation of this model):

1Note that serving the same number of customers does not necessarily prevent variation in the actual working

hours among providers. Our proposed models do not explicitly address this issue.
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Table 1: Notation

Index sets
P the set of customers
K the set of providers
I the set of positions in the serving sequence
Parameters
N the number of scenarios
λf fixed cost of hiring one provider
λo/λg/λw unit overtime/idle time/ waiting time cost
λt unit travel time cost
L working hours
tni,j travel time from node i to node j under scenario n
dni customer i’s service time under scenario n
Deterministic decision variables
xi,p,k equals one if customer p is assigned to the ith position of provider k’s sequence
ai,k scheduled time of ith appointment served by provider k
zi,p,p′,k equals one if the customer p follows the customer p′ on provider k’s serving sequence
Random (scenario-based) variables
sni,k actual start time of ith appointment served by provider k under scenario n
gni,k idle time before ith appointment served by provider k under scenario n
onk overtime of provider k under scenario n

min
x,z,a,
s,g,o

∑
p∈P

∑
k∈K

λfx1,p,k +
∑
n∈[N ]

1

N

{
λt

[∑
k∈K

( ∑
(p,p′)∈P×P

p ̸=p′

∑
i∈I

tnp,p′zi,p,p′,k +
∑
p∈P

tn0,px1,p,k +
∑
p∈P

tnp,0x0,p,k

)]

+
∑
k∈K

∑
i∈I

[
λw(sni,k − ai,k) + λggni,k

]
+
∑
k∈K

λoonk

}
(1a)

s.t.
∑
i∈I

∑
k∈K

xi,p,k = 1, ∀p ∈ P, (1b)

∑
p∈P

xi,p,k ≤ 1, ∀i ∈ I, k ∈ K, (1c)

x0,p,k ≥ xi,p,k −
∑

p′∈P :p′ ̸=p

xi+1,p′,k, ∀i ∈ I, p ∈ P, k ∈ K, (1d)

∑
p∈P

xi,p,k ≥
∑
p∈P

xi+1,p,k, ∀i ∈ [1, |I| − 1]Z, k ∈ K, (1e)

zi,p,p′,k ≤ xi−1,p,k, ∀i ∈ [2, |I|]Z, (p, p′) ∈ P × P : p ̸= p′, k ∈ K, (1f)

zi,p,p′,k ≤ xi,p′,k, ∀i ∈ [2, |I|]Z, (p, p′) ∈ P × P : p ̸= p′, k ∈ K, (1g)

zi,p,p′,k ≥ xi−1,p,k + xi,p′,k − 1, ∀i ∈ [2, |I|]Z, (p, p′) ∈ P × P : p ̸= p′, k ∈ K, (1h)

ai,k ≤ L
∑
p∈P

xi,p,k, ∀k ∈ K, i ∈ I, (1i)

sni,k ≥ ai,k, ∀i ∈ I, k ∈ K,n ∈ [N ], (1j)

sn1,k ≥
∑
p∈P

tn0,px1,p,k, ∀k ∈ K,n ∈ [N ], (1k)
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sni,k ≥ sni−1,k +
∑
p∈P

dnpxi−1,p,k +
∑

(p,p′)∈P

p̸=p′

tnp,p′zi,p,p′,k −Mi

(
1−

∑
p∈P

xi,p,k

)
, ∀i ∈ [2, |I|]Z, k, n,

(1l)

gn1,k ≥ sn1,k −

(∑
p∈P

tn0,px1,p,k

)
, ∀k ∈ K,n ∈ [N ], (1m)

gni,k ≥ sni,k −
(
sni−1,k +

∑
(p,p′)∈P×P

p ̸=p′

tnp,p′zi,p,p′,k +
∑
p∈P

dnpxi−1,p,k

)
,∀i ∈ [2, |I|]Z, k, n, (1n)

onk ≥

[
sni,k +

∑
p∈P

(dnp + tnp,0)x0,p,k

]
− L, ∀i ∈ I, k ∈ K,n ∈ [N ], (1o)

(a, s, g, o, z) ≥ 0, x ∈ {0, 1}(|I|+2)×|P |×|K|. (1p)

Formulation (1) finds optimal sizing, routing, and scheduling decisions that minimize the fixed

cost related to establishing the providers fleet or hiring costs (first term), and the sample average

of the random operational costs consisting of total waiting time, and providers’ idle time, overtime,

and travel time. Constraints (1b) ensure that each customer is assigned to exactly one position in

the schedule of one provider. Constraints (1c) ensure that at most one customer is assigned to each

position in provider k’s sequence. Constraints (1d) define the variable x0,p,k, which is equal to one

if customer p is the last customer in the schedule of provider k, and is zero otherwise. Constraints

(1e) prohibit assigning customers to position (i+1) when position i is vacant. Constraints (1f)-(1h)

ensure that if customer p′ is assigned to the ith position of provider k’s sequence and customer p

is assigned to the (i − 1)th position of provider k’s sequence, then zi,p,p′,k = 1, and zi,p,p′,k = 0

otherwise. It is easy to verify that variables z equal one or zero in any feasible solution satisfy-

ing constraints (1f)–(1h). Constraints (1i) ensure that all appointments are scheduled within the

provider’s service hours. These constraints also ensure that ai,k = 0 whenever xi,p,k = 0, ∀p ∈ P ,

i.e., when position i is empty or provider k is not hired.

For each scenario n ∈ [N ], constraints (1j)-(1l) require that the actual start time of the ith

appointment to be no smaller than the scheduled start time and the service completion time of the

preceding appointment plus the travel time between the (i− 1)th and ith customer. Note that, for

a sufficiently large M constant, constraints (1l) are relaxed and thus sni,k = 0 if the ith position is

empty. Constraints (1m) compute the idle time before the actual start time of the first customer.

Constraints (1n) compute the idle time before the ith customer as the non-negative difference

between the actual start time of the ith customer and the completion time of the (i−1)th customer

plus the travel time from the i− 1th customer to the ith customer. Constraints (1o) compute the

overtime of each provider (if any).

Note that formulation (1) does not require hired providers to serve a particular number of

customers; thus, some providers’ capacity may not be fully utilized (i.e., partially used providers).
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However, as mentioned earlier, some companies may require each provider to serve a particular

number Ik of customers. Formulation (1) for the fully used provider case reduces to:

min
x,z,a,s,g,o

∑
n∈[N ]

1

N

{
λt

[∑
k∈K

(∑
i∈Ik

∑
(p,p′)∈P×P

p̸=p′

tnp,p′zi,p,p′,k +
∑
p∈P

tn0,px1,p,k +
∑
k∈K

∑
p∈P

tnp,0x|Ik|,p,k

)]

+
∑
k∈K

∑
i∈Ik

[
λw(sni,k − ai,k) + λggni,k

]
+
∑
k∈K

λoonk

}
(2a)

s.t. (1b), (1f)− (1h), (2b)∑
p∈P

xi,p,k = 1, ∀i ∈ Ik, k ∈ K, (2c)

ai,k ≤ L, ∀i ∈ Ik, k ∈ K, (2d)

(1j), (1k), (1m), (1n), (1p), (2e)

sni,k ≥ sni−1,k +
∑
p∈P

dnpxi−1,p,k +
∑

(p,p′)∈P

p̸=p′

tnp,p′zi,p,p′,k, ∀i ∈ [2, |Ik|]Z, k ∈ K,n ∈ [N ], (2f)

onk ≥

(
sn|Ik|,k +

∑
p∈P

(dnp + tnp,0)x|Ik|,p,k

)
− L, ∀k ∈ K,n ∈ [N ]. (2g)

In Proposition 1, we derive a tight lower bound estimation of the big-M coefficients involved in

constraints (1l) of the partially used provider model (S) in (1); see Appendix C for a proof.

Proposition 1. Let d̄ = max
n∈[N ],p∈P

{dnp}, t̄ = max
n∈[N ],p∈P,p′∈P

{tp,p′} and tmax
1 = max

n∈[N ],p∈P
{tn0,p}. Sup-

pose (λf , λt, λw, λg, λo) > 0. Then, Mi ≥ L + tmax
1 + (i − 1)(d̄ + t̄), for i ∈ [2, |Ik|] are valid lower

bound values for the Mi constants in (1l).

4.2. Model (Z)

Let us now introduce our extension of Zhan and Wan (2018)’s formulation for the HFASP, denoted

as model (Z). First, we note that Zhan and Wan (2018) treat customers as nodes with customer

0 representing the depot (i.e., the set of customers is P ∪ {0}) and employs routing variables and

constraints to find providers’ routes. Thus, as in Zhan and Wan (2018), we define binary decision

variables zp,q,k that equal one if provider k travels from customer p to q, and zero otherwise, for all

p ∈ P ∪ {0}, q ∈ P ∪ {0}, and k ∈ K. For all p ∈ P , we define non-negative continuous decision

variables Ap to represent the scheduled appointment time of customer p. For each p ∈ P ∪ {0}
and n ∈ [N ], we define non-negative continuous variables Sn

p and Wn
p to respectively represent the

actual start time and waiting time of customer p under scenario n. Finally, we define non-negative

continuous decision variables On
k to represent provider k’s overtime, and non-negative continuous

decision variables Gn
p to represent the provider’s idle time after serving customer p under scenario

n. Using this notation, model (Z) can be stated as follows:

min
z,A,W,O,G

∑
k∈K

∑
p∈P

λfz0,p,k +
∑
n∈[N ]

1

N

[
λt
∑
k∈K

∑
p∈P∪{0}

∑
q∈P∪{0}

tnp,qzp,q,k
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+ λw
∑
p∈P

Wn
p + λo

∑
k∈K

On
k + λg

∑
p∈P

Gn
p

]
, (3a)

s.t.
∑
k∈K

∑
q∈P∪{0}

zp,q,k = 1, ∀p ∈ P, (3b)

∑
p∈P∪{0}

zp,q,k −
∑

p∈P∪{0}

zq,p,k = 0, ∀q ∈ P, k ∈ K, (3c)

∑
p∈P∪{0}

zp,0,k = 1, ∀k ∈ K, (3d)

∑
p∈P∪{0}

z0,p,k = 1, ∀k ∈ K, (3e)

∑
p∈P∪{0}

∑
q∈P∪{0}

zp,q,k ≤ |I|+ 1 ∀k ∈ K, (3f)

Ap ≤ L ∀p ∈ P, (3g)∑
p∈P

∑
q∈P
q ̸=p

zp,q,k ≤ |P ′| − 1, ∀P ′ ⊂ P, k ∈ K, (3h)

Sn
0 = 0, ∀n ∈ [N ], (3i)

Sn
p ≥ Ap, ∀p ∈ P, n ∈ [N ], (3j)

Sn
q ≥ Sn

p + dnp + tnp,q −M

(
1−

∑
k∈K

zp,q,k

)
, p ∈ P ∪ {0}, q ∈ P, n ∈ [N ], (3k)

Wn
p = Sn

p −Ap, ∀p ∈ P, n ∈ [N ], (3l)

On
k ≥ Sn

p + dnp + tnp,0 − L−M(1− zp,0,k), ∀p ∈ P, k ∈ K,n ∈ [N ], (3m)

Gn
q ≥ Sn

q − Sn
p − dnp − tnp,q −M

(
1−

∑
k∈K

zp,q,k

)
, ∀p ∈ P ∪ {0}, q ∈ P, n ∈ [N ], (3n)

(A,S,W,O,G) ≥ 0, z ∈ {0, 1}(|P |+1)×(|P |+1)×|K|. (3o)

Formulation (3) finds optimal fleet sizing, routing, and scheduling decisions that minimize the

fixed cost and the sample average of the random operational cost. Constraints (3b) ensure that

every customer must be visited exactly once. Constraints (3c) ensure the conservation of flow for

each provider k at each customer and the depot (i.e., node 0). Constraints (3d)–(3e) ensure that

every provider k needs to start from and end at the depot (i.e., node 0). Constraints (3f) ensure

that the number of customers assigned to each provider is at most |I|. Constraints (3g) ensure

that all appointments are scheduled within service hours. Constraints (3h) are subtour elimination

constraints. Note that although these constraints are not necessary for finding the optimal tour,

as reported by Zhan and Wan (2018), these constraints could improve the model’s computational

performance. Constraints (3i) set the actual service start time of the service team’s office (or the

service start time of the workday) to zero.

For each scenario n, constraints (3j)–(3k) require that the actual start time, Sn
q , of each customer
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q to be no smaller than the scheduled start time Aq, and the completion time of the preceding

customer p plus the travel time from customer p to q. Note that, for a sufficiently large M

constant, constraints (3k) are relaxed if customer p is not followed by customer q in provider k’s

schedule. Constraints (3l) compute the waiting time of each customer in each scenario as the

difference between the actual start and scheduled times. Constraints (3m) and (3n) compute the

overtime and idle time of each provider in each scenario. Formulation (3) extends that of Zhan

and Wan (2018) in the following aspects. First, it incorporates uncertainty of travel time, which

is ignored in Zhan and Wan (2018). Second, we modify Zhan and Wan (2018)’s first stage by

requiring all appointments to be scheduled within the service hours. Third, we generalize Zhan and

Wan (2018)’s second stage by (a) including variables and constraints to compute the random idle

time; (b) including random idle time in the objective; and (c) including the random total travel

time in the objective of the second stage (recall that Zhan and Wan (2018) assume that the travel

time is deterministic).

Note that formulation (3) is for partially used providers (i.e., it does not require hired providers

to serve a particular number of customers). However, recall that for the case of fully used providers,

we require each provider to serve |I| customers, and accordingly, we know that we need |P |/|I|
providers to serve all customers. Therefore, to model the fully used provider case, we remove the

fixed cost (first term) from model (3)’s objective and replace constraints (3f) with∑
p∈P∪{0}

∑
q∈P∪{0}

zp,q,k = |I|+ 1, ∀k ∈ K. (4a)

In Proposition 2, we derive a tight lower bound estimation of the big-M coefficients involved in

constraints (3k), (3m)–(3n) of model (Z) in (3); see Appendix D for a proof.

Proposition 2. Let d̄ = max
n∈[N ],p∈P

{dnp}, t̄ = max
n∈[N ],p∈P,p′∈P

{tp,p′}, tmax
1 = max

n∈[N ],p∈P
{tn0,p}, and tmax

2 =

max
n∈[N ],p∈P

{tnp,0}. Suppose (λf , λt, λw, λg, λo) > 0. Then, M ≥ L+ |I|d̄+ (|I| − 1)t̄+ tmax
1 + tmax

2 is a

valid lower bound value for the big-M constant in constraints (3k) and (3m)–(3n).

5. Theoretical Analysis of Model (S) and Model (Z)

For a fixed sample of service duration and travel time scenarios, model (S) and model (Z) reduce to

large-scale mixed-integer linear programs (MILP). It is well-known that the computational perfor-

mance of an MILP is mainly influenced by its size (number of decision variables and constraints)

and the tightness of its linear programming relaxation (LPR). Therefore, in this section, we an-

alyze the sizes and LPRs of the proposed models. First, in Table 2, we compare the size of the

proposed formulations in terms of the number of decision variables and constraints. Note that the

number of variables and constraints used in model (Z) under the fully and partially used cases are

equal. Hence, we only present the size for the fully used case. In contrast, model (S) for the fully

used provider case has fewer binary variables and second-stage constraints than model (S) for the
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Table 2: Size of formulations of the HFASP with |I| positions, |P | customers, |K| providers, and N scenarios

Model (Z)
Model (S)

fully used partially used

Binary variables |K|(|P |+ 1)2 |I||P ||K| (|I|+ 1)|P ||K|
Continuous variables (3|P |+ |K|+ 1)N + |P | (|I| − 1)|P |2|K|+ |I||K|+ (2|I||K|+ |K|)N (|I| − 1)|P |2|K|+ |I||K|+ (2|I||K|+ |K|)N
First-stage constraints 2|P |+ (2|P | + |P |+ 1)|K| 3|I||K|+ |P |+ 3(|I| − 1)|K||P |2 − |K| 3|I||K|+ |I||P ||K|+ |P |+ 3(|I| − 1)|K||P |2 − |K|
Second-stage constraints (2|P |2 + 4|P |+ |P ||K|+ 1)N 3|I||K|N + |K|N 4|I||K|N

partially used provider case. In particular, for the partially used provider case, we need |P ||K|
additional variables to identify the last customer on each provider’s sequence (i.e., x0,p,k, for all

p ∈ P and k ∈ K) and |I||P ||K| additional constraints (1d) on x0,p,k in the first stage. In addition,

we need more constraints to compute partially used providers’ overtime. It is clear from Table 2

that model (Z) has more binary variables and second-stage constraints than model (S). The num-

ber of continuous scenario-based variables is also smaller in model (S) under the assumption that

|P | < |I||K|, which always holds because all customers must be served in HFASP formulations.

Next, in Theorem 1, we show that models (S) and (Z) for fully used providers are equivalent

(see Appendix E for a proof). Similar analysis techniques can be used to show the equivalence of

partially used models.

Theorem 1. Suppose (λf , λt, λw, λg, λo) > 0. Model (S) and model (Z) for fully used providers are

equivalent. In particular, given an optimal solution to the model (S), we can construct a feasible

solution to the model (Z) with the same objective function value and vice versa.

Finally, in Theorem 2, we show that the LPR of model (S) provides a tighter linear relaxation

than the LPR of model (Z); see Appendix F for a proof. The theoretical analyses in this section

suggest that the smaller and tighter model (S) has a better computational performance than model

(Z). Indeed, our computational results in Section 7.2 support this conclusion.

Theorem 2. Suppose (λf , λt, λw, λg, λo) > 0. The optimal objective value of the LPR of model (S)

is greater than or equal to the optimal objective value of the LPR of model (Z).

6. Heuristics for the HFASP

In Section 7, we show that our proposed model (S) can efficiently solve realistic (and previously

unsolved) HFASP instances to optimality. However, solution times increase as the instance size

increases. Therefore, in this section, we propose two heuristics (denoted as FAS-RS and FAS-R-S)

that allow for obtaining near-optimal solutions of larger instances that may be observed in appli-

cations other than the HFASP within an acceptable time. These heuristics decompose the decision

process into two parts. The first part involves deciding the number of providers to hire (fleet sizing)

and customer assignments to hired providers. The second part involves constructing a routing plan

and a schedule for each provider. Both heuristics implement an integer program denoted as FAS to
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determine the number of providers to hire and customer-to-provider assignments. Then, the FAS-RS

heuristic employs a single-provider variant of model (S) to obtain an optimal routing plan and a

schedule for each provider. In contrast, the FAS-R-S heuristic employs a modified insertion heuris-

tic to determine a routing plan for each provider and then an LP to determine the appointment

time for each customer. We discuss the details of these heuristics in the next subsections.

6.1. Two-phase heuristic: FAS-RS

Algorithm 1 summarizes the steps of our two-phase FAS-RS heuristic. In phase 1, we solve a fleet

sizing and assignment (FAS) problem that determines the number of providers to hire and customer-

to-provider assignments. In the second phase, we implement a stochastic single-provider routing

and scheduling (RS) model to determine an optimal routing plan and a schedule for each provider.

Next, we discuss the details of the FAS model employed in phase 1. We define a binary decision

variable uk, which equals one if provider k ∈ K is hired, and a binary decision variable yp,k, which

equals one if customer p ∈ P is assigned to provider k. For each p ∈ P , k ∈ K and scenario n ∈ [N ],

we define a parameter λn
p,k = tn0,p + tnp∗k,p

− tn0,p∗k
, where tni,j is the travel time between customers

(i, j) ∈ (P ∪ {0})× (P ∪ {0}) under scenario n ∈ [N ], and p∗k is the customer with the kth smallest

expected travel time to the depot. For example, p∗1 is the customer with the shortest expected

travel time to the depot. Intuitively, λn
p,k evaluates the additional travel time if provider k visits

customer p under scenario n. Using this notation, we formulate the FAS problem as follows

minimize
u,yu,yu,y

∑
k∈K

λfuk +
∑
p∈P

∑
k∈K

∑
n∈[N ]

1

N
λn
p,kyp,k (5a)

subject to:
∑
p∈P

yp,k ≤ |Ik|uk, ∀k ∈ K, (5b)

∑
k∈K

yp,k = 1, ∀p ∈ P, (5c)

uk, yp,k ∈ {0, 1} ∀p ∈ P, k ∈ K. (5d)

Formulation (5) determines the optimal number of providers and customer assignments that min-

imize the total hiring cost and the additional travel time of adding customers into a provider’s

route. Constraints (5b) ensure that each provider serves at most |Ik| customers. Constraints (5c)

ensure that each customer is assigned to exactly one provider. For the fully used provider case, we

replace constraints (5b) with
∑

p∈P yp,k = |Ik|uk to ensure that each hired provider serves exactly

|Ik| customers. Let Pk := {p ∈ P : y∗p,k = 1} represent the set of customers assigned to provider

k, where yyy∗ is an optimal solution to (5). In phase 2, we solve a single-provider variant of model

(S) in (2) for each k with P fixed to Pk and |K| = 1 to obtain an optimal schedule and a routing

plan. Our results in Section 7.3 show that our FAS-RS heuristic could quickly obtain near-optimal

solutions for large HFASP instances.
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Algorithm 1: The FAS-RS Heuristic
Input : Sets of customers P , providers K, and scenarios [N ]

Output: Subset K̄ ⊆ K of hired providers, a route (xxx) and a schedule (aaa) for each k ∈ K̄

Phase 1. Solve the FAS problem in (5), record the optimal solution (u∗, y∗u∗, y∗u∗, y∗), and set K̄ ← {k ∈ K : u∗
k = 1}

and Pk ← {p ∈ P : y∗
p,k = 1}, for all k ∈ K̄;

Phase 2. For each k ∈ K̄, solve formulation (2) and return optimal (x∗, a∗)(x∗, a∗)(x∗, a∗)

Algorithm 2: The FAS-R-S Heuristic
Input : Sets of customers P , providers K, and scenarios [N ]

Output: Subset K̄ ⊆ K of hired providers, a route (Rk) and a schedule (aaa) for each k ∈ K̄

Phase 1. Solve the FAS problem in (5), record the optimal solution (u∗, y∗)(u∗, y∗)(u∗, y∗), and set K̄ ← {k ∈ K : u∗
k = 1};

and Pk ← {p ∈ P : y∗
p,k = 1}, for all k ∈ K̄;

for k ∈ K̄ do

Phase 2. Implement Algorithm 3 to obtain a route Rk;

Phase 3. Solve model (2) with (xxx, zzz) fixed according to Rk and return a∗a∗a∗;

end

6.2. Three-phase heuristic: FAS-R-S

In this section, we present our three-phase heuristic, donated as FAS-R-S. Algorithm 2 summarizes

the steps of this heuristic. Phase 1 is the same as that of FAS-RS and involves solving the FAS

model in (5) to obtain a set of hired providers and customer-to-provider assignments. Then, in

phase 2, we employ a modified insertion heuristic (MIH) to determine a routing plan for each

provider. Finally, given the routing plan from phase 2, we solve an LP model to determine the

appointment time for each customer (phase 3).

Next, we discuss the details of the MIH employed in phase 2. Let Pk represent the set of

customers assigned to provider k obtained from phase 1. We define Rk := {(1, q), (2, –), . . . , (|I|k, –)}
as the partial route of provider k, where (i, q) indicates that customer q ∈ Pk is in position i ∈ Ik

and (i, –) indicates that position i is empty. Finally, we let Rk(i, p) represent the new route

resulting from inserting customer p ∈ Pk into position i. For example, suppose that the current

route is Rk := {(1, q), (2, q′′
), (3, q

′′′
), . . .} and we want to insert customer p between the second

and third customer in Rk, i.e., assign p to position i = 3. Then, the new route will be Rk(3, p) :=

{(1, q), (2, q′′
), (3, p), (4, q

′′′
), . . .}. Note that inserting a customer in the route may increase the

provider’s travel time, change customers’ start times, and potentially increase waiting time and

overtime. Thus, the MIH finds a position for each customer with the lowest insertion cost; see

Figure 1. Algorithm 3 summarizes the steps of our MIH heuristic, which extends the insertion

heuristic for VRP (see, e.g., Campbell and Savelsbergh, 2004) to fit the HFASP. Starting with an

empty route, the MIH heuristic iteratively inserts each as-of-yet unassigned customer in Pk into

a position in the partially constructed route Rk that leads to the lowest insertion cost (described

next). Since the number of customers and positions are finite, the algorithm terminates in a finite
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Figure 1: An illustration of inserting a customer into a partially constructed route.

number of iterations. To compute the cost on route Rk, we first compute the actual start time for

each customer in route Rk as follows.

start(1,k,n) = tn0,r1 , (6a)

start(i,k,n) = start(i-1,k,n)+ dnri−1
+ tnri−1,ri , ∀i ∈ [2, |Rk|]. (6b)

Recall that the start time should be greater than or equal to the scheduled appointment time, and

the latter should not exceed L. Accordingly, we compute the appointment time appoint(i,k) as

follows (we later refine the appointment time in phase 3).

appoint(i,k) = min

{
min
n∈[N ]

{start(i,k,n)}, L
}
. (7)

Given customers’ actual service start times and appointment times, we can compute the total

waiting time EW(Rk) and overtime EO(Rk) on route Rk as follows.

EW(Rk) =

|Rk|∑
i=1

[
max{start(i,k,n)− appoint(i,k), 0}

]
,

EO(Rk) = max

{
start(|Rk|,k,n)+ dn|Rk| + tn|Rk|,0 − L, 0

}
.

Finally, we define the cost of inserting customer p ∈ Pk into the ith position of provider k’s

route Insert(i,p,k) as the weighted sum of extra travel cost (λt · ET(i,p,k)), extra waiting cost

(λw · EW(i,p,k)) and extra overtime cost (λo · EO(i,p,k)):
Insert(i,p,k) = λt · ET(i,p,k)+ λw · EW(i,p,k)+ λo · EO(i,p,k), (8)

where

ET(i,p,k) =
∑
n∈[N ]

1

N

[
tn
rki−1,p

+ tn
p,rki

− tn
rki−1,r

k
i

]
, (9a)

EW(i,p,k) = EW(Rk(i, p))− EW(Rk), EO(i,p,k) = EO(Rk(i, p))− EO(Rk). (9b)

Once we obtain a routing plan Rk from phase 2, in phase 3, we determine the optimal appointment

time for each customer on the route by solving a single-provider LP variant of model (S) in (2)

with |K| = 1 and sequencing variables (xxx, zzz) fixed according to Rk.

7. Computational Experiments

In this section, we present computational experiments that explore the size and characteristics of

the HFASP instances that can be solved using the proposed models for the HFASP. In addition,
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Algorithm 3: The Modified Insertion Heuristic (MIH)

Input : A set of hired providers K and the set of assigned customers Pk to each

Output: A routing plan Rk for each provider k ∈ K

for k ∈ K do

Initialize an empty route Rk = ∅ and the set of unassigned customers P̄k ← Pk;

while P̄k ̸= ∅ do

for p ∈ P̄k do

for i ∈ [1, |Rk|+ 1] do

// Insertion step

Construct a new route Rk(i, p) by inserting p into the ith position in Rk;

for j ∈ [i, |Rk(i, p)|] do
Compute start(j,k,n) and appoint(j,k) using (6a)–(6b) and (7)

end

Compute the insertion cost Insert(i,p,k) using equation (8)

end

Assign p to position i∗ ∈ argmin
i∈[1,|Rk|+1]

Insert(i,p,k) and Update Rk ← Rk(i
∗, p);

Update start(i,k,n) and appoint(i,k) based on Rk using (6a)–(6b) and (7);

end

P̄k ← P̄k \ {p};
end

end

we derive insights into the HFASP. In Section 7.1, we describe the set of HFASP instances that

we constructed and discuss other experimental setups. In Sections 7.2.1 and 7.2.2, we analyze

solution times of the proposed models for fully used and partially used providers, respectively. In

Section 7.3, we analyze solution times and solution quality of the proposed heuristics. Finally, in

Section 7.4, we construct HFASP instances based on Lehigh County of PA to drive managerial

insights and provide sensitivity analyses for input parameter values.

7.1. Description of experiments

We construct HFASP instances in part based on benchmarks and parameters settings made in recent

related literature (e.g., Zhan and Wan, 2018; Hashemi Doulabi et al., 2020; Yu et al., 2021). Each

instance is characterized by the number of customers |P | and providers |K|. We consider instances

with |P | ∈ {6, . . . , 72} customers and ⌈|P |/6⌉ + 1 service providers (Zhan and Wan, 2018). We

generate most instances using the approach proposed in Zhan and Wan (2018). Specifically, we

assume that customers are located uniformly and randomly on a 50 × 50 square, and the service

provider’s office is at the point [0, 0]. We set the daily working hour of each provider L to 8 hours.

We set the cost parameters in the objective function in part based on Zhan and Wan (2018).

Specifically, we set the unit overtime cost λo to 1, unit idle cost λg to 0. We generate the unit

waiting cost λw from U [0, 1.5] (U [a, b] is a uniform distribution over the interval [a, b]), and the

unit travel cost λt from U [0.1, 0.5]. We set the unit fixed cost λf to 1000. As in prior literature,
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we use the lognormal distribution for the service time dni truncated on the interval [10, 50] with

mean µ and σ = 0.5µ, where µ is generated from U [25, 35]. We assume that customers in the same

neighborhood spend an average of T minutes (e.g., T = 20 minutes) traveling from one place to

another. The assumption is realistic and widely adopted in recent literature (see, e.g., Nikzad et al.,

2021; Tsang and Shehadeh, 2023). Accordingly, we consider two types of travel times: travel time

from the provider’s office to the customer and travel time between customers. The travel times

between the office and customer p, tn0,p and tnp,0, follow a normal distribution N(tp,
tp
6 ), where tp

is the Euclidean distance between the customer p and the office (Hashemi Doulabi et al., 2020).

Consistent with the literature, we generate the travel time between customers, tnp,p′ , from U [15, 25],

for all (p, p′) ∈ P × P, n ∈ [N ]. We set dn0 = 0 and tn0,0 = 0 in model (Z) for all scenarios n ∈ [N ]

(p = 0 is the provider’s office (or depot)). Note that the average number of customers that an

provider may visit per day is often less than 6 in home health care and banking, and less than 10 in

repair services (NAHC, 2010; Yuan et al., 2015; Zhan et al., 2021). Accordingly, we consider cases

where a provider can visit 6 or 8 customers.

To decide an appropriate sample size for the proposed SAA models, we employed the Monte

Carlo optimization (MCO) procedure, which provides statistical lower and upper bounds on the

optimal value of the HFASP based on the optimal solution to its SAA with N scenarios. This, in

turn, provides a statistical estimate of the approximated relative gap between the lower and upper

bounds. Applying the MCO procedure withN = 50, the relative approximation gaps for the HFASP

instances were around 1%, whereas larger N resulted in longer solution times without consistent

and significant improvements in the gap. Therefore, we selected N = 50 for our computational

experiments. In Appendix G, we provide a description of the MCO procedure and a numerical

example. We refer readers to Kenyon and Morton (2003), Kleywegt et al. (2002), Shapiro et al.

(2021) and references therein for further details on MCO and related technical results.

In our implementations, we add symmetry-breaking constraints (H.1) to model (S) and con-

straints (H.2) to model (Z) to enforce that provider k is hired before provider k + 1. We set the

values of the big-M coefficients in constraints (1l) according to Proposition 1 and those in (3k),(3m)

and (3n) according to Proposition 2. We implemented our proposed models in AMPL modeling

language and used CPLEX (version 20.1.0.0) as the solver with default settings. We imposed a

solver time limit of 3600 seconds (1 hour) for each SAA instance. We conducted all the experiments

on a computer with an Intel Xeon Silver processor with 2.10 GHz CPU and 128 Gb memory.

7.2. CPU time

In this section, we compare solution times of the proposed models for the fully used (Section 7.2.1)

and partially used (Section 7.2.2) provider cases.
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Table 3: Solution time (in seconds) of model (S) for fully used providers

model (S) |I| = 6 |I| = 8

|P | Min Avg Max |P | Min Avg Max

24 3.2 3.3 3.5 24 3.9 9.1 19.4

30 7.6 9.1 13.1 32 12.3 13.3 15.0

36 18.6 20.6 22.3 40 31.6 46.4 60.3

42 99.5 140.7 172.5 48 462.2 751.0 1288.8

48 169.5 397.1 854.5 56 1484.9 1848.6 3165.7

54 68.1 850.9 1821.7 64 - - -

60 532.3 1458.2 2435.1 72 - - -

When |I| = 8, |P | ≥ 32, we set the relative MIP gap to 0.04

7.2.1. Fully used provider case

Recall that when the provider must serve |I| customers, we know the number of providers needed to

serve all customers (i.e., |K| = |P |/|I|). Hence, the problem reduces to an assignment, sequencing,

and scheduling problem. Therefore, we solve problem instances with |I| = 6 (|I| = 8), |P | ∈
{6, 12, . . . , 60} (|P | ∈ {8, 16, . . . , 56}), and |K| ∈ {1, 2, · · · , 10}. For each combination of |I|, |P |,
and |K|, we generated and solved five random SAAs as described in Section 7.1.

Table 3 presents the minimum (Min), average (Avg), and maximum (Max) solution time (in

seconds) solved instances using model (S) within the imposed one-hour time limit. We observe the

following from this table. First, using model (S), we were able to solve all the SAAs that correspond

to problem instances with (|I| = 6, |P | ≤ 36) and (|I| = 8, |P | ≤ 32) within 30 seconds. Second,

the average solution time of the larger instances with |I| = 6 ranges from 2.3 minutes (|P | = 42)

to 24 minutes (|P | = 60), and with |I| = 8 ranges from 46 seconds (|P | = 40) to 30 minutes

(|P | = 56). Finally, we were not able to solve instances with |I| = 8 and |P | = 64 and 72 customers

within the imposed time limit of one hour. However, the model terminated with a relative MIP

(relMIP) gap around 0.1 (relMIP=UB−LB
UB , where UB is the best upper bound and LB is the LP

relaxation-based lower bound obtained at termination).

In contrast, using model (Z), we were only able to solve small instances, specifically, all the

SAAs that correspond to instances with |I| = 6, |P | ≤ 18 and |I| = 8, |P | ≤ 16. We present a

comparison of solution times of these instances by model (S) and (Z) in Table 4. Clearly, model

(Z) takes from 0.3 to 528 times longer than model (S) to solve these instances. Moreover, for those

instances that model (Z) failed to solve within the time limit, it terminated with either a relMIP

gap around 50% (when |I| = 6) or without any feasible MIP solutions (and thus no upper bound).

We attribute the difference in solution times to the following. First, as discussed in Section 5,

model (Z) has significantly more binary first-stage variables than model (S). Moreover, model (Z)

has a significantly larger number of first-stage constraints and a larger number of scenario-based

constraints and variables. As argued in Klotz and Newman (2013), this increase in model size
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Table 4: Ratios of solution times of models (Z) and (S) on the SAAs solved by both (fully used models).

(Z) sol.time
(S) sol.time |I| = 6 |I| = 8

|P | Min Avg Max |P | Min Avg Max

6 1.2 1.7 3.2 8 0.3 0.6 1.5

12 2.3 3.9 5.6 16 7.8 39.1 80.6

18 235.8 299.6 528.6 24 - - -

Table 5: Ratios of optimal objective values of LP relaxations of models (S) and (Z) (fully used models).

(S) relaxation.obj
(Z) relaxation.obj |I| = 6 |I| = 8

|P | Min Avg Max |P | Min Avg Max

6 1744.5 1750.8 1758.4 8 1503.8 1520.9 1542.1

12 1761.3 1764.4 1769.3 16 1514.1 1521.3 1534.5

18 1761.4 1774.9 1789.6 24 1523.2 1531.0 1545.1

often suggests an increase in solution time for the LP relaxations. Second, as shown in Table 5,

the LP relaxations obtained using model (S) are strictly tighter than using model (Z) by a factor

of 1503 to 1789, which is consistent with the theoretical results in Theorem 2. Finally, model (S)

for the fully used provider does not have constraints involving big-M coefficients, but model (Z)

has such constraints. It is well-known that the big-M coefficients and constraints could undermine

computational efficiency, enlarge the feasible region of the LP relaxation of the model, and cause

numerical errors (Klotz and Newman, 2013; Camm et al., 1990). In Appendix I, we provide

additional solution time results under a larger sample size and a different cost structure in the

objective function. These results emphasize that model (S) is more computationally efficient than

model (Z) under these settings.

It is worth noting that using off-the-shelf optimization software such as CPLEX to solve model

(S) directly is more computationally efficient than using Benders decomposition (BD). Specifically,

using BD, we were only able to solve small instances of HFASP with a maximum size of (|I|,
|P |)=(6, <24) within the given time limit. In contrast, model (S) can solve larger instances much

faster, as shown in Table 3. Furthermore, when BD fails to solve instances within the given time

limit, it terminates either with a large relMIP or without feasible MIP solutions. In such cases, the

solution obtained by BD at the termination has poor quality. For instance, consider the instance

with (|I|, |P |) = (6, 30). As shown in Table 6, BD fails to solve this instance within the given time

limit and terminates with a 7% gap. Moreover, the solution obtained from BD at termination has

longer travel time, waiting time, and overtime.

7.2.2. Partially used provider case

Let us now analyze solution times of the proposed models for the partially used provider case.

We present results for problem instances with |I| = 6 (|I| = 8) and |P | = {6, 8, . . . , 62} (|P | =
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Table 6: Comparison of solutions using Benders decomposition (BD) and CPLEX (fully used models).

(|I|, |P |) Method Sol.Time/Gap Obj Travel Time Waiting Time Overtime

(6,30)
BD 7.4% 5454 821 2171 60

Model (S) 10.3 5083 819 4.6 0.1

{6, 8, . . . , 42}). We set the number of service providers |K| to ⌈|P |/6⌉+1. We generated and solved

five instances for each combination of |P | and |K|. Table 7 presents the Min, Avg, and Max solution

time of the instances solved by model (S). we observe that using model (S), we were able to solve all

the instances with |I| = 6, |P | ≤ 42 and |I| = 8, |P | ≤ 30 within one minute. The average solution

times using model (S) with |I| = 6 ranges from 6.8 seconds (|P | = 24) to 6 minutes (|P | = 62), and

with |I| = 8 ranges from 11.8 seconds (|P | = 24) to 18 minutes (|P | = 40). Additionally, we could

not solve problem instances with |I| = 8, |P | = 48 within one hour. In contrast, using model (Z),

we were only able to solve small instances, namely all the SAAs that correspond to instances with

|I| = 6 and |P | ≤ 10 and with |I| = 8 and |P | ≤ 8. We present a comparison of solution times of

these instances by models (S) and (Z) in Table 8. Observe that the solution times of model (Z) is

2.4 to 6235.2 times longer than the solution times of model (S). Moreover, for those instances that

were not solved by model (Z) within the imposed time limit, the solver terminated with a relMIP

of around 100% (|I| = 6) and 70% (|I| = 8) or without any feasible MIP solutions.

We attribute the differences in solution time to the following. First, model (Z) has more binary

variables and constraints than model (S) (see Section 5), indicating that model (Z) is potentially

more challenging to solve than model (S). Second, as shown in Table 9, the LP relaxations of model

(S) are strictly tighter than that of model (Z), by a factor of 1500.6 to 1771 (proved theoretically in

Theorem 2). We also compare the computational performance of models (S) and (Z) using another

cost structures and a larger number of scenarios (see Appendix J for details). We observe that

model (S) is always better than model (Z) in the sense that model (S) can solve larger instances

and is more computationally efficient.

Finally, it is worth noting that using BD, we cannot solve even small instances with 12 customers

and 3 providers within the imposed time limit. For example, after two hours, the average BD gap

for instances with (|I|, |P |, |K|) = (6, 12, 3) is approximately 6%. In contrast, model (S) can solve

this instance within a few seconds and quickly solve other larger instances (see Table 7). This again

emphasizes that solving model (S) directly is more computationally efficient.

7.3. Analysis of the FAS-RS and FAS-R-S heuristics

In this section, we investigate solutions quality and computational performance of the FAS-RS and

FAS-R-S heuristics. First, in Table 10, we present the relative gap ν−ν∗

ν∗ ×100% between the optimal

objective value ν∗ of model (S) and the objective value ν computed using solutions obtained via

the proposed heuristics for all instances that model (S) can solve to optimality. The small gap
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Table 7: Solution time (in seconds) of model (S) for partially used providers.

model (S) |I| = 6 |I| = 8

|P | Min Avg Max Min Avg Max

24 6.1 6.8 7.4 9.2 11.8 15.5

30 15.1 16.1 18.6 43.6 50.5 55.1

36 17.0 18.8 20 168.6 191.5 216.3

40 27.4 29.6 32.2 644.5 1084.4 1819.4

42 28.8 31.6 34.0 484.7 738.6 967.6

48 51.8 61.8 72.6 - - -

50 67.5 109.8 148.2 - - -

54 93.0 102.0 120.2 - - -

58 122.4 199.7 306.7 - - -

60 148.8 175.3 253.4 - - -

62 154.2 361.5 1067.9 - - -

Table 8: Ratios of solution times of models (Z) and (S) on the SAAs solved by both (partially used provider models).

(Z) sol.time
(S) sol.time |I| = 6 |I| = 8

|P | Min Avg Max Min Avg Max

6 4.2 4.5 4.9 2.4 2.7 3.1

8 81.5 88.2 102.8 6.1 20.6 30.8

10 3405.1 4286.9 6235.2 - - -

Table 9: Ratios of optimal objective values of LP relaxations of model (S) and (Z) (partially used provider models).

(S) relaxation.obj
(Z) relaxation.obj |I| = 6 |I| = 8

|P | Min Avg Max Min Avg Max

6 1744.5 1750.8 1758.4 1500.6 1511.0 1520.9

8 1745.0 1755.1 1771.0 1504.4 1516.5 1533.2

10 1760.1 1764.6 1767.1 1509.1 1513.1 1518.1

values in Table 10 indicate that FAS-RS and FAS-R-S could produce near-optimal solutions to the

HFASP with gap values ranging from 0.86% to 5.10%. However, FAS-RS solutions generally yield

lower gap values than FAS-R-S, especially when |I| = 8. This makes sense because FAS-RS employs

model (S) in phase 2 to optimize routing and scheduling decisions for each provider. In contrast,

FAS-R-S uses the MIH heuristic to obtain routing decisions in phase 2 and then an LP to find the

appointment times in phase 3.

Next, we investigate the computational performance of FAS-RS and FAS-R-S on solving large

instances that might be observed in other application domains. Table 11 presents the total time

required by each heuristic to solve large instances with customers ranging from 102 to 504 (fully

used) and 100 to 500 (partially used). We observe the following from this table. First, both

heuristics can efficiently solve large instances of the HFASP within a reasonable time. Specifically,

22



Table 10: The relative gap between ν∗ and ν.

Fully used provider case
|I| = 6 |I| = 8

|P | FAS-RS FAS-R-S |P | FAS-RS FAS-R-S
24 0.89% 1.21% 24 1.62% 3.43%
30 0.96% 1.36% 32 2.03% 3.58%
36 0.99% 1.31% 40 1.74% 5.10%
42 1.01% 1.16% 48 1.90% 4.34%
48 1.01% 1.14% 56 2.11% 3.50%
54 1.01% 1.12% 64 2.00% 2.85%

Partially used provider case
|I| = 6 |I| = 8

|P | FAS-RS FAS-R-S |P | FAS-RS FAS-R-S
24 1.05% 1.16% 24 2.08% 3.52%
36 1.20% 1.29% 36 2.02% 5.07%
42 1.15% 1.07% 42 1.93% 4.39%
48 1.15% 1.21% 48 1.15% 3.92%
54 1.15% 1.12% 54 1.15% 3.09%
60 1.15% 1.07% 60 1.15% 4.23%

solution times range from 2.8 seconds (using FAS-RS for |P | = 104 and |I| = 8 fully used provider

case) to 16 minutes (using FAS-RS for |P | = 504 and |I| = 8 fully used provider case). Second,

the solution times of FAS-R-S are shorter than FAS-RS, and the difference is significant for larger

instances with |I| = 8. For example, consider the fully used provider case with |I| = 8 and

|P | = 504. FAS-R-S takes about 34 seconds to solve this instance, while FAS-RS takes 16 minutes.

Recall that FAS-RS involves solving a SMIP in phase 2 to obtain routing and scheduling decisions.

In contrast, FAS-R-S obtains routes using the MIH heuristic and then solves an LP to obtain

appointment times. Thus, it makes sense that FAS-RS takes a longer time to solve each instance.

Note that using model (S) in phase 2 of FAS-RS is more computationally efficient than using

model (Z). For example, consider the partially used provider case. For example, solution times of

instances with |P | = (100, 200, 300, 400) and |I| = 8 using FAS-RS with model (Z) implemented

in phase 2 are (470, 734, 1480, 1683) seconds and with model (S) implemented in phase 2 are (116,

197, 453, 596). These results demonstrate that model (S) also enables computationally efficient

heuristics for the HFASP.

7.4. Case study

In this section, we consider a service region based on twenty-five cities in Lehigh County of Penn-

sylvania (see Figure 2). Then, we construct two HFASP instances based on this region as fol-

lows. First, we used the population estimate for each city based on the most updated information

posted in 2013–2017 US Census Bureau to construct two instances denoted as L-50 and L-100,

where 50 and 100 are the total number of customers. In L-50 and L-100, we used the popula-

tion percentage (weight) in each city to calculate the number of customers as population% × 50

and population% × 100, respectively (see Table K1 in Appendix K). To a certain extent, these

23



Table 11: Solution times (in seconds) using FAS-RS and FAS-R-S .

Fully used provider case

|I| = 6 |I| = 8

|P | FAS-RS FAS-R-S |P | FAS-RS FAS-R-S

102 9.2 3.2 104 110 2.8

204 22.8 8.4 200 249 7.4

300 31.8 15.8 304 587 14.6

402 46.4 25.8 400 700 23

504 64.4 38.6 504 960 34.6

Partially used provider case

|I| = 6 |I| = 8

|P | FAS-RS FAS-R-S |P | FAS-RS FAS-R-S

100 9.4 2.8 100 116 3.2

200 22 9.4 200 197 7.6

300 34.2 13.4 300 453 17.6

400 72.8 21.4 400 596 23.2

500 79.4 43.2 500 687 44.6

instances reflect what may be observed in real life, i.e., locations with larger populations may

potentially create greater demand. We chose Lehigh Valley Hospital Home Care (in Allentown),

which primarily serves Lehigh County, as the depot (provider office). For each instance, we first

randomly located customers (nodes) in each city at some residential area within the city, such as

apartments or gated communities (see Figure K1 in Appendix K). Second, we obtained the travel

time t̄p,q between each pair of customers (p, q) and used it as the average travel time. Third, we

generated the non-negative travel time between each pair of customers (p, q) from a normal distri-

bution N(t̄p,q,
t̄p,q
6 ). Finally, we follow the same procedure described in Section 7.1 to generate the

service time and other parameters. For the L-100 instance, we use the K-means clustering method

to group customers into three clusters based on the distance between them.

Next, we analyze the impact of key input parameters on the optimal solutions and the associated

operational performance. In Section 7.4.1, we investigate the impact of service time variability. In

Section 7.4.2, we study the impact of the per-unit waiting and overtime costs. Finally, we analyze

the impact of ignoring uncertainty in Section 7.4.3.

7.4.1. Impact of variability in service time

In this section, we analyze the impact of service time variability on the number of hired providers

and the associated operational (second-stage) cost. In addition to the base range of average service

time (µ ∼ U [25, 35]), we consider the following three ranges: (a) µ ∼ U [25, 50]; (b) µ ∼ U [50, 60];

and (c) µ ∼ U [50, 90]. In ranges (a) and (c), we increase the variability of service time by extending

the range (difference between the lower and upper bounds) of µ from 10 to 25 and 40, respectively.

In range (b), we keep the difference between the upper and lower bounds of µ to 10 and increase
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Figure 2: Map of 25 cities in Lehigh County (PA).

the average length of service time. Note that ranges (b) and (c) correspond to applications with

longer service time than the base case and range (a). In addition, we consider fixed cost λf ∈
{50, 100, 1000}, |I| = 6, and |K| = 24 and 45 for L-50 and L-100 instances, respectively. All other

parameter settings are the same as described in Section 7.1.

Figure 3 shows the number of hired providers and the second-stage operational cost under each

combination of µ and λf . We observe the following from this figure. First, we need more providers

to serve all customers in the L-100 instance under most ranges of µ and values of λf , which makes

sense as we have a larger number of customers in this instance. Second, the optimal number of hired

providers under the base range and range (a) equals the minimum number of providers required

to serve the customers (9 and 18 providers for L-50 and L-100, respectively). This makes sense

because under these ranges, the length and variability of service time are lower than the remaining

ranges, and both the waiting time and overtime values are low (see Figures 3b and 3d). Thus, hiring

additional providers will not improve the second-stage objective but will increase the fixed cost.

Third, the optimal number of hired providers under ranges (b) and (c) (i.e., longer service time)

with λf ∈ {50, 100} (i.e., lower fixed cost) is larger than the base range and range (a). Moreover,

the optimal number of hired providers under range (c) with λf ∈ {50, 100} is larger than under

range (b). These results make sense because the service time is longer under (b) and (c), and thus,

we need more providers to serve customers and mitigate overtime and waiting time. Finally, the

optimal number of hired providers under a large value of λf = 1000 equals the minimum number of

the required providers to serve the 50/100 customers under all service time ranges. This is because

when λf = 1000, the fixed cost is much higher than the operational cost. However, by hiring fewer

providers under λf = 1000, the overtime and waiting time worsen, especially under ranges (b) and
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Figure 3: The number of hired providers and associated second stage cost under different λf and range of µ.

(c) (see Figures 3b and 3d).

7.4.2. Impact of variability in the unit waiting and overtime costs

In this section, we analyze the optimal number of hired providers as a function of unit waiting time

and overtime costs. First, we fix (λf , λt, λo) = (100, 0.1, 1), and vary λw ∈ {1, 5, 10, 15, 20, 25}. For
brevity, we discuss results for L-100, and the observations for L-50 are similar. Figure 4 shows the

optimal number of hired providers and the associated total waiting time for each combination of

λw and µ. We observe the following from this figure. First, the optimal number of hired providers

under the base range is 18 (i.e., the minimum number of providers required to serve all the 100

customers) irrespective λw. This is reasonable because the service time under the base range is

lower than the other ranges. Moreover, as shown in Figure 4b, the associated total waiting time

under this range is very low. Second, the optimal number of hired providers increases with λw under

ranges (a)–(c), consequently leading to lower waiting times. These results make sense because the

length and variability of service time under ranges (a)–(c) is greater than the base range. Thus, by

hiring more providers, we could mitigate excessive waiting time.

Next, we analyze the impact of the unit overtime cost. Figure 5 shows the optimal number of
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Figure 4: The number of hired providers (a) and total waiting time (b) under different λw and range µ.

Figure 5: The number of hired providers (a) and total overtime (b) under different λw and range µ.

hired providers and total overtime for each combination of λo and µ. We observe that the optimal

number of hired providers under the base range and range (a) is 18 (i.e., the minimum number

of providers required to serve all the 100 customers) irrespective of λo. This is because the total

overtime under the base range and range (a) is small (see Figure 5b). On the other hand, the

optimal number of hired providers under range (c) is greater than the remaining ranges. This is

reasonable because the length and variability of service time under range (c) are larger than the

remaining ranges, and additional providers are needed to mitigate providers’ overtime.

Finally, it is worth mentioning that we observe variability in the actual working time among

providers under different ranges of service time and unit overtime cost (see results in Appendix L).

Mitigating such variability is out of the scope of this paper but is worth future investigation.

7.4.3. Impact of ignoring uncertainty

Let us now compare the performance of solutions obtained using the proposed SAA model for

the HFASP and those of its deterministic counterpart. In the deterministic model, we replace the

random travel and service times with their mean values. We compute the total cost of adopting

optimal solutions to the deterministic models, denoted as TC DET, as follows. First, we solved the

deterministic model and recorded optimal solutions (z̄, x̄, ā). Second, we generated a sample of
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1000 scenarios, where each scenario consists of a vector of realizations of service and travel times

drawn independently from the distributions corresponding to each customer and pair of customers,

respectively. Finally, we used (z̄, x̄, ā) and the generated sample to compute operational metrics

(providers’ travel time and overtime and customers’ waiting time) and costs in each scenario. Then,

we computed TC DET as the fixed cost plus the average operational cost. For illustrative purposes,

we use the L-50 instance with λf = {50, 100, 1000} under the base range and range (c) of service

time.

Table 12 presents the total cost obtained from the SAA (TCSAA) and deterministic models

(TC DET) and the relative difference between them. It is clear that solutions to the deterministic

model result in significantly higher total costs than solutions to the proposed stochastic models.

Moreover, the difference between TC DET and TCSAA is larger under higher variability. For ex-

ample, the relative difference under range (c) of service time (higher variability) ranges from 21%

to 223%, while under the base range (lower variability), it ranges from 4% to 146%. We also

observe that the deterministic model often hires fewer providers, resulting in significantly longer

providers’overtime and customers’waiting time. For example, when λf = 100, the deterministic

model hires nine providers, while the SAA model hires 24 providers. The total waiting time (over

the 50 customers) associated with solutions to (deterministic, SAA) models ranges from (367, 0)

to (676,0) minutes under the base range and from (2426, 9) to (2489, 740) under range (c). These

results demonstrate the importance of incorporating uncertainty in HFASP models and emphasize

the negative consequences of ignoring it.

Table 12: Comparison of total cost of the SAA and deterministic models.

Base range Range (c)

λf TCSAA TC DET TC DET−TCSAA

TC DET TCSAA TC DET TC DET−TCSAA

TC DET

50 516.0 1271.3 146% 1340.8 4334.6 223%

100 966.6 1636.9 69% 2552.4 4754.1 86%

1000 9105.1 9468.2 4% 10679.1 12878.4 21%

8. Conclusion

In this paper, we propose and analyze two new SMIPs, denoted as model (S) and model (Z), for the

HFASP with random service and travel times. Specifically, given sets of providers and customers,

these models aim to find the number of providers to hire, the order of customers assigned to each

provider, and an appointment time for each customer. Given the uncertainty in service and travel

times, the goal is to minimize the sum of the fixed cost of hiring providers plus the expected cost

associated with customers’ waiting time and providers’ travel time, overtime, and idle time.
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The HFASP is an important multiple-vehicle fleet sizing, routing, and scheduling problem that

has been studied in closely related contexts with random service time and deterministic travel time.

Therefore, in model (Z), we extend an existing model that employs traditional routing variables and

constraints for a closely related problem by incorporating the co-existing uncertainty of random

travel and service times and providers’ idle time. In model (S), we propose a new sequencing-

based formulation of the problem. Our theoretical analyses show that model (S) is more compact

and provides a tighter LP relaxation, suggesting a better computational performance. Indeed, the

computational results demonstrate that significant improvements in computational performance

could be gained with model (S) over model (Z). We also propose two computationally efficient

heuristics and show that they could quickly obtain near-optimal solutions to large instances of

the problem. Finally, we use instances based on Lehigh County of PA to derive insights into the

HFASP.

We suggest the following areas for future research. First, our proposed models can be considered

the first step towards building comprehensive stochastic optimization approaches for home service

staffing, capacity planning, and routing and scheduling, considering all relevant organizational

and technical constraints. Second, we have assumed that the planner knows the customers at

the time of the planning. However, customer requests for service may arrive randomly in some

applications, especially in home healthcare. Moreover, some customers may need multiple visits

(e.g., twice a month) instead of one. In this case, one needs a multi-period planning approach.

Extending the proposed model to account for these two important aspects, currently simplified

in the proposed models, represents an important and interesting future direction. Third, in these

extensions, one could consider various sources of uncertainty, such as random demand, capacities,

and cancellations. Finally, designing user-friendly decision support tools that implement the models

will enable practitioners to adopt them in practice.
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Scheduling Problem with Random Service and Travel Times (Appendices)

Shutian Li, Karmel S. Shehadeh, Man Yiu Tsang

Appendix A. Comparison between model (S) and those of Zhan and Wan (2018) and

Zhan et al. (2021)

Table A1: Summary of the key differences between our proposed model (S) and those of Zhan and Wan (2018) and

Zhan et al. (2021).

Models Providers
Random factors First stage

objectives
Second stage objectives

TT ST PT WT OT IT
Zhan and Wan (2018) M ✓ Fixed +Det PT ✓ ✓
Zhan et al. (2021) S ✓ Det PT ✓ ✓
Model (S) M ✓ ✓ Fixed ✓ ✓ ✓ ✓

Notation: S is Single provider/vehicle; M is Multiple provider/vehicle; TT is Travel Time; SS is Service Time; PT is

Providers’ Travel Time; WT is Waiting Time; OT is Overtime; IT is Idle Time; and Det is Deterministic

Appendix B. Model (S) derivation

We show the detailed derivation of model (S). We start with the second-stage formulation without

the travel cost. For notational convenience, we suppress the scenario index n ∈ [N ] from the

scenario-dependent variables and parameters. For all i ∈ I, we define the actual arrival time of the

ith appointment by Ri. It is clear that Ri should satisfy

R1 =
∑
p∈P

t0,px1,p

Ri =


Si−1 +

∑
p∈P

dpxi−1,p +
∑

(p1,p2)∈P×P

tp1,p2zi,p1,p2 , if
∑
p∈P

xi,p = 1,

0, if
∑
p∈P

xi,p = 0,
∀i ∈ [2, |I|].

Next, we define the actual start time of the ith appointment by Si. Note the ith appointment

cannot start before the scheduled appointment time, ai, nor the provider’s actual arrival time Ri.

Mathematically, the actual start time of the ith appointment Si should satisfy.

Si = max{Ri, ai}, ∀i ∈ I.

If the completion time of all appointments assigned to a provider exceeds the working hours, s/he

experiences overtime. We let O represent the provider’s overtime, and compute it as follows.

O =

(
max
i∈I

{
Si +

∑
p∈P

(dp + tp,0)x0,p − L

})+

,

where, (b)+ = max{b, 0}. If the provider arrives before the appointment time, he/she must wait

(i.e., remain idle) until the scheduled appointment time to start the service. Mathematically, we
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can compute the provider idle time cost before the ith appointment as λg(ai−Ri)
+. If the provider

arrives after the scheduled appointment time, the customer experience waiting. Mathematically,

we can compute the waiting cost as λw(Ri − ai)
+, for all i ∈ I. Accordingly, the second-stage

formulation of the HFASP without the travel cost is as follows.

(P0) min
S,R,O

λw
∑
i

(Ri − ai)
+ + λg

∑
i

(ai −Ri)
+ + λoO (B.1a)

s.t. Si = max{Ri, ai}, ∀i ∈ I, (B.1b)

R1 =
∑
p∈P

t0,px1,p, (B.1c)

Ri =

[
Si−1 +

∑
p∈P

dpxi−1,p +
∑

(p1,p2)∈P×P

tp1,p2zi,p1,p2 −M

(
1−

∑
p∈P

xi,p

)]+
, ∀i ∈ [2, |I|],

(B.1d)

O =

(
max
i∈I

{
Si +

∑
p∈P

(dp + tp,0)x0,p − L

})+

. (B.1e)

Note that formulation (B.1) is not straightforward to solve in its presented form. Next, in Theorem

3, we derive an equivalent mixed integer program reformulation that is solvable.

Theorem 3. Problem (P0) is equivalent to the following mixed integer programming model (P2).

(P2) min
s,g,o

λw
∑
i∈I

(si − ai) + λg
∑
i∈I

gi + λoo (B.2a)

s.t. si ≥ ai, ∀i ∈ I, (B.2b)

s1 ≥
∑
p∈P

t0,px1,p, (B.2c)

si ≥ si−1 +
∑
p∈P

dpxi−1,p +
∑

(p1,p2)∈P×P

tp1,p2zi,p1,p2 −M

(
1−

∑
p∈P

xi,p

)
, ∀i ∈ [2, |I|],

(B.2d)

g1 ≥ s1 −
∑
p∈P

t0,px1,p, (B.2e)

gi ≥ si −
(
si−1 +

∑
p∈P

dpxi−1,p +
∑

(p1,p2)∈P×P

tp1,p2zi,p1,p2

)
, ∀i ∈ [2, |I|], (B.2f)

o ≥ si +
∑
p∈P

(dp + tp,0)xi,p − L, ∀i ∈ I, (B.2g)

(s, g, o) ≥ 0. (B.2h)

Proof of Theorem 3. Observe that, for all i ∈ I, we have Si = max{Ri, ai} = (Ri − ai)
+ + ai =

(ai−Ri)
++Ri. Thus, for a feasible first-stage solution (x, a), the objective function of (P0) equals

λw
∑
i∈I

(Si − ai) + λg
∑
i∈I

(Si −Ri) + λo

(
max
i∈I

{
Si +

∑
p∈P

(dp + tp,0)x0,p − L

})+

2



= λw
∑
i∈I

(Si − ai) + λg

(
S1 −

[∑
p∈P

t0,px1,p

])

+ λg

|I|∑
i=2

(
Si −

[
Si−1 +

∑
p∈P

dpxi−1,p +
∑

(p1,p2)∈P×P

tp1,p2zi,p1,p2 −M

(
1−

∑
p∈P

xi,p

)]+)

+ λo

(
max
i∈I

{
Si +

∑
p∈P

(dp + tp,0)x0,p − L

})+

.

Hence, (P0) is equivalent to

(P0’) min
s

λw
∑
i∈I

(si − ai) + λg

(
s1 −

[∑
p∈P

t0,px1,p

])

+ λg

|I|∑
i=2

(
si −

[
si−1 +

∑
p∈P

dpxi−1,p +
∑

(p1,p2)∈P×P

tp1,p2zi,p1,p2 −M(1−
∑
p∈P

xi,p)

]+)

+ λo

(
max
i∈I

{
si +

∑
p∈P

(dp + tp,0)x0,p − L

})+

(B.3a)

s.t. s1 = max

{∑
p∈P

t0,px1,p, a1

}
, (B.3b)

si = max

{[
si−1 +

∑
p∈P

dpxi−1,p +
∑

(p1,p2)∈P×P

tp1,p2zi,p1,p2 −M

(
1−

∑
p∈P

xi,p

)]+
, ai

}
.

(B.3c)

Since the objective function (B.3a) is increasing in (s1, s2, . . . , s|I|), we can relax equality constraints

(B.3b)–(B.3c) to the following inequalities:

si ≥ ai, ∀i ∈ I, (B.4a)

s1 ≥
∑
p∈P

t0,px1,p, (B.4b)

si ≥ si−1 +
∑
p∈P

dpxi−1,p +
∑

(p1,p2)∈P×P

tp1,p2zi,p1,p2 −M

(
1−

∑
p∈P

xi,p

)
, ∀i ∈ [2, |I|], (B.4c)

si ≥ 0. (B.4d)

Next, we can introduce non-negative decision variables o and g satisfying

o ≥ si +
∑
p∈P

(dp + tp,0)x0,p − L, ∀i ∈ I, (B.5a)

g1 ≥ s1 −
∑
p∈P

t0,px1,p, (B.5b)

gi ≥ si − si−1 +
∑
p∈P

dpxi−1,p +
∑

(p1,p2)∈P×P

tp1,p2zi,p1,p2 −M

(
1−

∑
p∈P

xi,p

)
, ∀i ∈ [2, |I|], (B.5c)

which represent the overtime and idle time, respectively. Therefore, (P0) is equivalent to the
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following mixed integer programming model (P1).

(P1) min
s,g,o

λw
∑
i∈I

(si − ai) + λg
∑
i∈I

gi + λoo (B.6a)

s.t. (B.4a)− (B.4d), (B.5a)− (B.5c), (B.6b)

(s, g, o) ≥ 0. (B.6c)

Finally, we show that (P1) is equivalent to (P2), where the only difference between (P1) and (P2)

is the big-M constant in constraints (B.5c). To show the equivalence, we let v1 and v2 represent

the optimal values of (P1) and (P2), respectively. We claim that v1 = v2. From our derivation of

(P1), we know that an optimal solution of (P1) is given by

g∗1 = s∗1 −
∑
p∈P

t0,px1,p,

g∗i = s∗i −
[
s∗i−1 +

∑
p∈P

dpxi−1,p +
∑

(p1,p2)∈P×P

tp1,p2zi,p1,p2 −M

(
1−

∑
p∈P

xi,p

)]+
, ∀i ∈ [2, |I|],

o∗ =

(
max
i∈i

{
s∗i +

∑
p∈P

(dp + tp,0)xi,p − L

})+

,

where s∗i is the actual appointment start time of ith appointment if
∑

p∈P xi,p = 1, and is zero

otherwise, for all i ∈ I. It is easy to verify that g∗ satisfies (B.2e)–(B.2f) and thus, this optimal

solution to (P1) is feasible to (P2). For a minimization problem, a feasible solution is always an

upper bound for the optimal solution. Since the objective functions of (P1) and (P2) are the same,

we must have v2 ≤ v1. On the other hand, constraints (B.5c) is a relaxation of (B.2f) because of

the existence of the big-M constant, i.e., the feasible region of (P1) contains that of (P2). Hence,

we also have v1 ≤ v2. Therefore, we conclude that v1 = v2, implying that (P1) is equivalent to

(P2). This completes the proof.

Appendix C. Proof of Proposition 1

Proof. Consider any provider k ∈ K and position i ∈ [2, |I|] in his/her sequence of customers. From

constraints (1l), we have

sni,k ≥ sni−1,k +
∑
p∈P

dnpxi−1,p,k +
∑

(p,q)∈P×P :
p ̸=q

tnp,qzi,p,q,k −Mi

(
1−

∑
p∈P

xi,p,k

)
.

It follows that to preserve optimality when
∑

p∈P xi,p,k = 0, Mi should be

Mi ≥ sni−1,k +
∑
p∈P

dnpxi−1,p,k +
∑

(p,q)∈P×P :
p̸=q

tnp,qzi,p,q,k − sni,k,

≥ sni−1,k +
∑
p∈P

dnpxi−1,p,k +
∑

(p,q)∈P×P :
p̸=q

tnp,qzi,p,q,k (since sni,k ≥ 0).

By constraints (1k) and (1l), we can recursively find that

Mi ≥ max
k∈K,n∈[N ],i∈[2,|I|]

{
sn1,k +

i−1∑
j=1

∑
p∈P

dnpxj,p,k +

i∑
j=2

∑
(p,q)∈P×P :

p̸=q

tnp,qzj,p,q,k

}
. (C.1)
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Since (λw, λg, λo) > 0, the actual start time of the 1st customer sn1,k is at most L+tmax
1 by constraints

(1i) and (1k), for any scenario n ∈ [N ] and provider k ∈ K. It follows from (C.1) that

Mi ≥ L+ tmax
1 + (i− 1)d̄+ (i− 1)t̄, ∀i ∈ [2, |I|]. (C.2)

Appendix D. Proof of Proposition 2

Proof. Let us first prove the validity of M in constraints (3k),(3m), and (3n) of model (Z). For

constraints (3k) and (3n), we consider the following two cases:

• Case 1: p = 0, q ∈ P . By constraints (3k), we have

Sn
q ≥ Sn

0 + dn0 + tn0,q −M

(
1−

∑
k∈K

z0,q,k

)
, ∀n ∈ [N ] (D.1a)

Sn
q ≥ tn0,q −M

(
1−

∑
k∈K

z0,q,k

)
, ∀n ∈ [N ]. (D.1b)

Inequalities (D.1b) hold because (1) Sn
0 = 0 by constraints (3f), and (2) dn0 = 0. When∑

k∈K z0,q,k = 0, to ensure feasibility, we should satisfy

M ≥ tn0,q ∀n ∈ [N ]. (D.2)

Similarly, by constraints (3n), we have

M ≥ Sn
q − Sn

0 − dn0 − tn0,q −Gn
q ≥ Sn

q − tn0,q, ∀n ∈ [N ]. (D.3)

• Case 2: p ∈ P, q ∈ P . If
∑

k∈K zp,q,k = 0. By constraints (3k), we have

M ≥ Sn
p + dnp + tnp,q − Sn

q ≥ Sn
p + dnp + tnp,q, ∀n ∈ [N ]. (D.4)

By constraints (3n), we have

M ≥ Sn
q − Sn

p − dnp − tnp,q −Gn
q ≥ Sn

q − (Sn
p + dnp + tnp,q), ∀n ∈ [N ]. (D.5)

It is easy to verify from constraints (3m) that M should satisfies:

M ≥ Sn
p + dnp + tnp,0 − L−On

k ≥ Sn
p + dnp + tnp,0, ∀n ∈ [N ]. (D.6)

Combining inequalities (D.2)–(D.6), we conclude that M should satisfies:

M ≥ max
p∈P,n∈[N ]

{Sn
p }+ d̄+ tmax

2 . (D.7)

Next, we derive an upper bound on the actual start time. From constraints (3f), we know that

each provider will serve at most |I| customers. Moreover, the scheduled appointment time in any

feasible solution should be less than or equal to L by constraints (3g). Thus, when λo > 0 and

λw > 0, the actual start time of the first customer p′ ∈ P in the sequence of customers assigned to

any provider k ∈ K (i.e., z0,p′,k = 1) should satisfies: Sn
p′ ≤ L+ tmax

1 . Moreover, it is easy to verify

that the actual start time of any customer p ∈ P satisfies:

Sn
p ≤ L+ tmax

1 + (|I| − 1)(d̄+ t̄), ∀n ∈ [N ]. (D.8)

It follows from inequalities (D.7) and (D.8) that to preserve optimality, it is sufficient to choose the

big-M constant as M ≥ L+ tmax
1 + |I|d̄+ (|I| − 1)t̄+ tmax

2 . This completes the proof.
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Appendix E. Proof of Theorem 1

Proof. Suppose (x̄, z̄, ā, s̄, ḡ, ō) is an optimal solution to model (S). Below, we construct a feasible

solution to model (Z) with the same objective function value.

A) For all p ∈ P, k ∈ K, let z0,p,k = x̄1,p,k and zp,0,k = x̄|I|,p,k. In addition, let z0,0,k = 1 −∑
p∈P x̄1,p,k. For a fixed k ∈ K, note that if

∑
p∈P x̄1,p,k = 0 (i.e., provider k is not hired in

the optimal solution to model (S)), we have x̄i,p,k = 0 for all i ∈ I and p ∈ P , by constraints

(1e). On the other hand, if
∑

p∈P x̄1,p,k = 1, then by constraints (2c), there must exist p′ ∈ P

such that x̄|I|,p′,k = 1. Therefore, we conclude that∑
p∈P∪{0}

z0,p,k =
∑
p∈P

z0,p,k + z0,0,k =
∑
p∈P

x̄1,p,k +

(
1−

∑
p∈P

x̄1,p,k

)
= 1,

∑
p∈P∪{0}

zp,0,k =
∑
p∈P

zp,0,k + z0,0,k =
∑
p∈P

x̄|I|,p,k +

(
1−

∑
p∈P

x̄1,p,k

)
= 1.

Thus z0,p,k and z0,p,k satisfy constraints (3e) and (3d), respectively.

B) Let zp,q,k =
∑|I|

i=2(x̄i−1,p,k · x̄i,q,k) for all p ∈ P, q ∈ P and k ∈ K. We first show that zp,q,k ≤ 1

and hence, binary. Since x̄ is binary and satisfies constraints (1b) (i.e., for each p ∈ P , there

exists a unique pair (i, k) ∈ I×K such that x̄i,p,k = 1), we have x̄i1,p,k ∈ {0, 1}, x̄i2,q,k ∈ {0, 1},
where i1, i2 ⊂ I with i1 ̸= i2. It follows that zp,q,k =

∑|I|
i=2(x̄i−1,p,k · x̄i,q,k) is binary, for all

p ∈ P, q ∈ P . Next, we show that zp,q,k satisfies constraints (3b). Since x̄ satisfies constraint

(2c), we know that, for each (i, k) ∈ I ×K, there exists a q ∈ P such that x̄i,q,k = 1. Thus∑
k∈K

∑
q∈P∪{0}

zp,q,k =
∑
k∈K

(
∑
q∈P

zp,q,k + zp,0,k)

=
∑
k∈K

(

|I|∑
i=2

∑
q∈P

x̄i−1,p,kx̄i,q,k + x̄|I|,p,k)

=
∑
k∈K

( |I|∑
i=2

x̄i−1,p,k + x̄|I|,p,k

)
(since x̄ satisfies constraints (3b))

=
∑
k∈K

∑
i∈I

x̄i,p,k = 1, (since x̄ satisfies constraints (1b))

which implies that zp,q,k satisfies constraints (3b).

C) Next, we show that z satisfies constraints (3c). Since x̄ satisfies constraints (2c), for each

(i, k) ∈ I ×K, there must exists p such that x̄i,p,k = 1. Thus, for a fixed (q, k), we have∑
p∈P∪{0}

zp,q,k −
∑

p∈P∪{0}

zq,p,k =

[∑
p∈P

zp,q,k + z0,q,k

]
−
[∑
p∈P

zq,p,k + zq,0,k

]

=

[∑
p∈P

|I|∑
i=2

(x̄i−1,p,kx̄i,q,k) + x̄1,q,k

]
−
[∑
p∈P

|I|∑
i=2

(x̄i−1,q,kx̄i,p,k) + x̄|I|,q,k

]

6



=

[ |I|∑
i=2

x̄i,q,k + x̄1,q,k

]
−
[ |I|∑

i=2

x̄i−1,q,k + x̄|I|,q,k

]
= 1− 1 = 0.

Thus zp,q,k satisfies constraints (3c).

D) Now it remains to show that zp,q,k̂ satisfies constraints (4a) for all p ∈ P
⋃
{0}, q ∈ P

⋃
{0}

and k̂ ∈ K. For a fixed k ∈ K, by definition of zp,q,k in points (A) and (B), we have∑
p∈P∪{0}

∑
q∈P∪{0}

zp,q,k =
∑
p∈P

∑
q∈P

zp,q,k +
∑
p∈P

zp,0,k +
∑
q∈P

z0,q,k

=
∑
p∈P

∑
q∈P

( |I|∑
i=2

x̄i−1,p,kx̄i,q,k

)
+
∑
q∈P

x̄1,q,k +
∑
p∈P

x̄|I|,p,k.

By constraints (1e) and (2c), there exist distinctive indices {p1, · · · , p|I|} such that x̄i,pi,k = 1

for all i ∈ {1, . . . , |I|}. Hence∑
p∈P∪{0}

∑
q∈P∪{0}

zp,q,k =

|I|∑
i=2

x̄i−1,pi−1,kx̄i,pi,k +
∑
q∈P

x̄1,q,k +
∑
p∈P

x̄|I|,p,k

= x̄1,p1,kx̄2,p2,k + x̄2,p2,kx̄3,p3,k + · · ·+ x̄|I|−1,p|I|−1,kx̄|I|,p|I|,k + 1 + 1

= (|I| − 1) + 1 + 1 = |I|+ 1,

which implies that zp,q,k satisfies constraints (4a).

E) Let Ap =
∑

i∈I
∑

k∈K āi,kx̄i,p,k, for all p ∈ P . Since āi,k satisfies constraints (1b), by con-

straints (2d), we have

Ap =
∑
i∈I

∑
k∈K

āi,kx̄i,p,k ≤ L
∑
i∈I

∑
k∈K

x̄i,p,k = L, ∀p ∈ P.

Thus, Ap satisfies constraints (3g).

F) Let Sn
p =

∑
i∈I
∑

k∈K s̄ni,kx̄i,p,k for all p ∈ P and n ∈ [N ]. Since s̄ni,k satisfies constraints (1j),

by constraints (1b) and point (E), we have

Sn
p =

∑
i∈I

∑
k∈K

s̄ni,kx̄i,p,k ≥
∑
i∈I

∑
k∈K

āi,kx̄i,p,k = Ap.

Thus, Sn
p satisfies constraints (3j).

G) To verify that Sn
p satisfies constraints (3k), for each n ∈ [N ], we consider the following cases.

– Case 1: p = 0, q ∈ P . In this case, let Sn
0 = dn0 = 0, for a fixed q ∈ P , constraints (3k)

are equivalent to

Sn
q ≥ Sn

0 + dn0 + tn0,q −M(1−
∑
k∈K

z0,q,k) = tn0,q −M(1−
∑
k∈K

z0,q,k).

If x̄1,q,k = 0 for all k ∈ K, then by point (A), we have z0,q,k = 0 for all k ∈ K. Thus,

constraints (3k) are relaxed with a sufficiently large number M because
∑

k∈K z0,q,k = 0.

One the other hand, if x̄1,q,k̂ = 1 for some k̂ ∈ K then z0,q,k̂ =
∑

k∈K z0,q,k = 1 (by point

(A)). From the definition of Sn
q in point (F), we have Sn

q = s̄n
1,k̂

. Then we have,

Sn
q − Sn

p = Sn
q − Sn

0 = s̄n
1,k̂

− 0
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≥
∑
p′∈P

tn0,p′ x̄1,p′,k̂ (since s̄n
1,k̂

satisfies constraints (1k))

= tn0,q. (since
∑
p′∈P

x̄1,p′,k̂ = x̄1,q,k̂ = 1)

– Case 2: Consider the case when (p, q) ∈ P × P . Without loss of generality, we assume

that p ̸= q. By constraints (1b), there must exist x̄i1,p,k1 = x̄i2,q,k2 = 1, for some

{i1, i2} ∈ I and {k1, k2} ∈ K. By definition of zp,q,k in point (B), it is trivial that if

k1 ̸= k2, then
∑

k∈K zp,q,k = 0, and constraints (3k) are relaxed. Now, consider the first

case when x̄î−1,p,k̂ = x̄î,q,k̂ = 1 for some î ∈ [2, |I|] and k̂ ∈ K. By constraints (1f)-(1h),

we have z̄î,p,q,k̂ = x̄î−1,p,k̂x̄î,q,k̂ = 1. Accordingly, by definition of S in point (F), we have

Sn
q = s̄î,k̂ and Sn

p = s̄n
î−1,k̂

. Hence,

Sn
q − Sn

p = s̄n
î,k̂

− s̄n
î−1,k̂

≥
∑
p′∈P

dnp′ x̄î−1,p′,k +
∑

(p′,q′)∈P×P

tnp′,q′ z̄i,p′,q′,k (since s̄î,k̂ and s̄n
î−1,k̂

satisfy (2f))

= dnp + tnp,q. (since x̄î,q,k̂ = x̄î−1,p,k̂ = z̄î,p,q,k̂ = 1)

Consider the second case when x̄i1,p,k1 = x̄i2,q,k2 = 1 with i2 > i1+1. In this case, x̄i−1,p,k·
x̄i,q,k = 0 for all i ∈ [2, |I|] and k ∈ K (i.e., customer p and q are not visited consecutively

by the same provider). By the definition of z in point (B), we have
∑

k∈k zp,q,k = 0, then

constraints (3k) are relaxed to Sn
p ≥ 0.

Accordingly, we conclude that Sn
p satisfies constraints (3k).

H) Let Wn
p =

∑
i∈I
∑

k∈K(s̄ni,k − āi,k)x̄i,p,k. By definitions of S and A in points (E) and (F)

respectively, for a fixed p ∈ P and for each n ∈ [N ], we have

Wn
p =

∑
i∈I

∑
k∈K

s̄ni,kx̄i,p,k −
∑
i∈I

∑
k∈K

āi,kx̄i,p,k = Sn
p −Ap.

Thus, Wn
p satisfies constraints (3l).

I) Let On
k = ōnk for all k ∈ K and n ∈ [N ]. For a fixed k ∈ K, if x̄|I|,p′,k = zp′,0,k = 1 for some

p′ ∈ P . Then, by constraints (1o), for each n ∈ [N ] and for a fixed i ∈ I, we have

On
k = ōnk ≥ s̄ni,k +

∑
p∈P

(dnp + tnp,0)x̄|I|,p,k − L

≥ s̄ni,k + dnp′ + tnp′,0 − L. (since
∑
p′∈P

x̄|I|,p′,k = x̄|I|,p,k = 1) (E.1)

Consider the inequality (E.1) when i = |I|. By definitions of S in point (F), we have s̄n|I|,k =

Sn
p′ . Therefore, inequality (E.1) is equivalent to

On
k = ōnk ≥ Sn

p′ + dnp′ + tnp′,0 − L.

On the other hand, if x̄|I|,p,k = zp,0,k = 0 for all p ∈ P , constraints (1o) are relaxed to ōnk ≥ 0

with the non-negativity of the decision variable ō. Since zp,0,k = 0 for all p ∈ P , constraints
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(3m) are also relaxed to On
k ≥ 0 with a sufficiently large number M . Consequently, we have

On
k ≥ Sn

p + dnp + tnp,0 − L−M(1− zp,0,k), ∀p ∈ P,

which implies that On
k satisfies constraints (3m).

J) Let Gn
p =

∑
i∈I
∑

k∈K x̄i,p,kḡ
n
i,k for all p ∈ P and n ∈ [N ]. To verify that Gn

p satisfies

constraints (3n), for each n ∈ [N ], we consider the following two cases.

– Case 1: p = 0, q ∈ P . Let Sn
0 = dn0 = 0. In this case, for a fixed q ∈ P , constraints (3n)

are equivalent to

Gn
q ≥ Sn

q − Sn
p − dnp − tnp,q −M

(
1−

∑
k∈K

zp,q,k

)
≥ Sn

q − Sn
0 − dn0 − tn0,q −M

(
1−

∑
k∈K

z0,q,k

)
= Sn

q − tn0,q −M

(
1−

∑
k∈K

z0,q,k

)
.

If x̄1,q,k = z0,q,k = 0 for all k ∈ K, constraints (3n) are relaxed. Otherwise, if x̄1,q,k′ =

z0,q,k′ = 1 for some k′ ∈ K, we have Gn
q = ḡn1,k′ . It follows that

Gn
q = ḡn1,k′ ≥ s̄n1,k′ −

∑
p̄∈P

tn0,p̄x̄1,p̄,k′ (since ḡn1,k′ satisfies constraints (1m))

≥ s̄n1,k′ − tn0,q (since
∑
p̄∈P

x̄1,p̄,k′ = x̄1,q,k′ = 1)

≥ Sn
q − tn0,q. (since Sn

q = s̄n1,k′ by point (F))

– Case 2: (p, q) ∈ P × P, p ̸= q. If x̄i′−1,p,k′ = x̄i′,q,k′ = 1 for some i′ ∈ [2, |I|] and k′ ∈ K,

by definition of S in point (F), we have Sn
p = s̄ni′−1,k′ and Sn

q = s̄ni′,k′ , and accordingly

Gn
p = ḡni′−1,k′ and Gn

q = ḡni′,k′ . Hence by constraints (1n), we have

Gn
q = ḡni′,k′ ≥ s̄ni′,k′ − s̄ni′−1,k′ −

∑
p̄∈P

dnp̄ x̄i′−1,p̄,k′ −
∑

(p̄,q̄)∈P×P

tp̄,q̄ z̄i′,p̄,q̄,k′ = Sn
q −Sn

p −dnp − tnp,q.

Note that if x̄i1,p,k1 = x̄i2,q,k2 = 1 for some {i1, i2} ∈ I such that i2 > i1 + 1 and

{k1, k2} ∈ K. In this case, x̄i−1,p,k · x̄i,q,k = 0 for all i ∈ [2, |I|] and k ∈ K (i.e.,

customers p and q are not visited consecutively by the same provider). Then we have∑
k∈K zp,q,k = 0 by the conclusion of point (B), and constraints (3n) are relaxed to

Gn
p ≥ 0.

Accordingly, we conclude that Gn
p satisfies constraints (3n).

Therefore, we conclude that (z,A,W, S,G,O) defined above is a feasible solution of model (Z).

The objective value of this solution equals to∑
k∈K

∑
p∈P

λfz0,p,k +
∑
n∈[N ]

1

N

[
λt
∑
k∈K

∑
p∈P∪{0}

∑
q∈P∪{0}

tnp,qzp,q,k + λw
∑
p∈P

Wn
p + λo

∑
k∈K

On
k + λg

∑
p∈P

Gn
p

]
.

Note that by construction (see point (A)), we have∑
k∈K

∑
p∈P

λfz0,p,k =
∑
k∈K

∑
p∈P

λf x̄1,p,k, (E.2)
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and by the construction in point (B), we have

λt
∑
k∈K

∑
p∈P∪{0}

∑
q∈P∪{0}

tnp,qzp,q,k = λt
∑
k∈K

(
tnp,q

∑
(p,q)∈P×P

zp,q,k +
∑
q∈P

tn0,qz0,q,k +
∑
p∈P

tnp,0zp,0,k

)

= λt
∑
k∈K

( |I|∑
i=2

∑
(p,q)∈P×P

tnp,q,x̄i−1,p,kx̄i,q,k +
∑
p∈P

tnp,0x̄1,p,k +
∑
q∈P

tn0,qx̄|I|,p,k

)
.

(E.3)

We define z̄i,p,q,k = x̄i−1,p,kx̄i,q,k for all i ∈ [2, |I|], p ∈ P, q ∈ P and k ∈ K. By McCormick

inequalities (constraints (1f)-(1h)), for each n ∈ [N ], equation (E.3) is equivalent to

λt
∑
k∈K

∑
p∈P∪{0}

∑
q∈P∪{0}

tnp,qzp,q,k = λt
∑
k∈K

( |I|∑
i=2

∑
(p,q)∈P×P

tnp,q,z̄i,p,q,k +
∑
p∈P

tnp,0x̄1,p,k +
∑
q∈P

tn0,qx̄|I|,p,k

)
.

(E.4)

By the construction in point (H), we have for each n ∈ [N ]

λw
∑
p∈P

Wn
p = λw

∑
i∈I

∑
k∈K

(s̄ni,k − āi,k)xi,p,k = λw
∑
i∈I

∑
k∈K

(s̄ni,k − āi,k). (E.5)

By the construction in point (I), we have for each n ∈ [N ]

λo
∑
k∈K

On
k = λo

∑
k∈K

ōnk . (E.6)

Finally, by the construction in point (J), we have for each n ∈ [N ]

λg
∑
p∈P

Gn
p = λg

∑
i∈I

∑
k∈K

ḡni,kxi,p,k = λg
∑
i∈I

∑
k∈K

ḡni,k. (E.7)

Combining equations (E.2)–(E.7), we show that the objective function value of model (Z) is equal

to the objective function value of model (S).

Conversely, suppose that (z,A, S,W,G,O) is an optimal solution to model (Z), we will construct

a feasible solution (x̄, z̄, ā, s̄, ḡ, ō) to model (S) with the same objective value.

A) By constraints (3b)–(3e) and (4a), for a fixed k ∈ K, there exists a unique sequence {pk1, . . . , pk|I|}
such that z0,pk1 ,k

= 1, zpki ,pki+1,k
= 1 for all i ∈ [1, |I|−1] and zpk|I|,0,k

= 1. Then, for each pki ∈ P

and i ∈ I, we define x̄i,pki ,k
= 1. Consequently,

⋃
k̄∈K{pk̄1, pk̄2, . . . , pk̄|I|} forms a partition of P ,

implying that x̄ satisfies constraints (1b) and (2c).

B) Using the construction in point (A), we let z̄i,p,q,k = x̄i−1,p,kx̄i,q,k, for all i ∈ [2, |I|], p ∈ P, q ∈
P and k ∈ K, for a given x̄i−1,p,k and x̄i,q,k. One can easily verify that z̄ satisfies constraints

(1f)–(1h) by McCormick inequalities.

C) Let āi,k =
∑

p∈P Apx̄i,p,k for all i ∈ I and k ∈ K. For a fixed (i′, k′) ∈ I × K, we have

x̄i′,pi′ ,k′ = 1 (from the construction in point (A)). Then, by constraints (3g), we have

āi′,k′ =
∑
p∈P

Apx̄i′,p,k′ = Api′ ≤ L. (Thus āi,k satisfies constraints (2d)).

D) Let s̄ni,k =
∑

p∈P Sn
p x̄i,p,k for all i ∈ I, k ∈ K and n ∈ [N ]. By the result of point (A), for a

fixed (i′, k′) ∈ I ×K, there exists pi′ ∈ P such that x̄i′,pi′ ,k′ = 1. Since S satisfies constraints
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(3g) and (3j) and ā ≤ L (as shown in point (C)), for each n ∈ [N ], we have

s̄ni′,k′ =
∑
p∈P

Sn
p x̄i′,p,k′ = Sn

pi′
≥ Api′ =

∑
p∈P

Apx̄i′,p,k′ = āi′,k′ ,

which satisfies constraints (1j). It remains to verify that s̄ni,k =
∑

p∈P Sn
p x̄i,p,k satisfies con-

straints (1k) and (2f). Consider the following two cases for a fixed k ∈ K and each n ∈ [N ]:

– i = 1. By construction of x̄ and conclusion of point (A), there must exist pk1 ∈ P such

that z0,pk1 ,k
= x̄1,pk1 ,k

= 1. Since Sn
0 = 0 (by constraints (3i)) and dn0 = 0, we have

s̄n1,k =
∑
p∈P

Sn
p x̄1,p,k = Sn

pk1

≥ Sn
0 + dn0 + tn

0,pk1
−M(1−

∑
k′∈K

z
0,pk

′
1 ,k′) (since Sn

pk1
satisfies constraints (3k))

= tn
0,pk1

=
∑
p∈P

t0,px̄1,p,k. (since x̄ satisfies constraints (2c)).

– i ∈ [2, |I|]. Given i′ ∈ [2, |I|], by definitions of x̄ and z̄ in points (A) and (B), there

must exist (pki′−1, p
k
i′) ∈ P × P such that x̄i′−1,pk

i′−1
,k = x̄i′,pk

i′ ,k
= z̄i′,pk

i′−1
,pk

i′ ,k
= 1. By

constraints (3k), we have

s̄ni′,k =
∑
p̄∈P

Sn
p̄ x̄i′,p̄,k = Sn

pk
i′
≥ Sn

pk
i′−1

+ dn
pk
i′−1

+ tn
pk
i′−1

,pk
i′
−M

(
1−

∑
k′∈K

z
pk

′
i′−1

,pk
′

i′ ,k
′

)
= s̄ni′−1,k +

∑
p̄∈P

dnp̄ x̄i′−1,p̄,k +
∑

(p̄,q̄)∈P×P

tp̄,q̄ z̄i′,p̄,q̄,k.

Hence, we conclude that s̄ satisfies constraints (1k) and (2f).

E) Let ḡni,k =
∑

p∈P Gn
p x̄i,p,k for all i ∈ I, k ∈ K and n ∈ [N ]. To show that ḡ satisfies constraints

(1m) and (1n), we consider the following two cases for a fixed k ∈ K and each n ∈ [N ].

– i = 1. By construction of x̄ in point (A), there must exist pk1 ∈ P such that z0,pk1 ,k
=

x̄1,pk1 ,k
= 1. By definition of s̄ in point (D), we know that s̄n1,k = Sn

pk1
. Using the fact that

Sn
0 = 0, we have

ḡn1,k =
∑
p∈P

Gn
p x̄1,p,k = Gn

pk1

≥ Sn
pk1

− tn
0,pk1

−M(1−
∑
k′∈K

z
0,pk

′
1 ,k′) (since Gn

pk1
satisfies constraints (3n))

= s̄n1,k − tn
0,pk1

= s̄n1,k −
∑
p∈P

tn0,px̄1,p,k. (since
∑
p∈P

x̄1,p,k = x̄1,pk1 ,k
= 1)

– i ∈ [2, |I|]. Given i′ ∈ [2, |I|], by definitions of x̄ and z̄ in points (A) and (B), there must

exist (pki′−1, p
k
i′) ∈ P × P such that x̄i′−1,pk

i′−1
,k = x̄i′,pk

i′ ,k
= z̄i′,pk

i′−1
,pk

i′ ,k
= 1. Using the

definition of s̄ in point (D), we know that s̄ni′,k = Sn
pk
i′
and s̄ni′−1,k = Sn

pk
i′−1

. Then we have

ḡni′,k =
∑
p̄∈P

Gn
p̄ x̄i′,p̄,k = Gn

pk
i′
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≥ Sn
pk
i′
− Sn

pk
i′−1

− dn
pk
i′−1

− tn
pk
i′−1

,pk
i′
−M(1−

∑
k′∈K

z
pk

′
i′−1

,pk
′

i′ ,k
′) (by constraints (3n))

= s̄ni′,k − s̄ni′−1,k −
∑
p̄∈P

dnp̄ x̄i′−1,p̄,k −
∑

(p̄,q̄)∈P×P

tp̄,q̄ z̄i′,p̄,q̄,k.

Consequently, we conclude that ḡ satisfies constraints (1m) and (1n).

F) Let ōnk = On
k , ∀k ∈ K,n ∈ [N ]. If zp,0,k = 0, ∀p ∈ P ∪ {0} for a fixed k ∈ K, then constraints

(3m) are relaxed to On
k ≥ 0, for each n ∈ [N ]. Now, given x̄ from point (A), we know that

there must exist pk|I| ∈ P such that zpk|I|,0,k
= x̄|I|,pk|I|,k

= 1. Using s̄ as defined in point (D),

we have

ōnk = On
k ≥ Sn

p′ + dnp′ + tnp′,0 − L−M(1−
∑
k′∈K

zp′,0,k′) (since On
k satisfies constraints (3m))

≥ s̄n|I|,k +
∑
p∈P

dnp x̄|I|,p,k +
∑
p∈P

tnp,0x̄|I|,p,k − L. (since
∑
p∈P

x̄|I|,p,k = x̄|I|,pk|z|,k
= 1)

Thus, ō satisfies constraints (2g).

From points (A)–(F), we conclude that (x̄, z̄, ā, s̄, ḡ, ō) is a feasible solution of model (S). The

objective value of this solution equals∑
k∈K

∑
j∈P

λf x̄1,p,k +
∑
n∈[N ]

1

N

[
λt
∑
k∈K

( |I|∑
i=2

∑
(p,q)∈P×P

tnp,q,z̄i,p,q,k +
∑
p∈P

tnp,0x̄1,p,k +
∑
q∈P

tn0,qx̄|I|,p,k

)

+ λw
∑
i∈I

∑
k∈K

(s̄ni,k − āi,k) + λo
∑
k∈K

ōnk + λg
∑
i∈I

∑
k∈K

ḡni,k

]
(E.8)

Using the logic similar to equations (E.2)–(E.7), we conclude that (E.8) is equivalent to∑
k∈K

∑
p∈P

λfz0,p,k +
∑
n∈[N ]

1

N

[
λt
∑
k∈K

∑
p∈P∪{0}

∑
q∈P∪{0}

tnp,qzp,q,k + λw
∑
p∈P

Wn
p + λo

∑
k∈K

On
k + λg

∑
p∈P

Gn
p

]
.

(E.9)

i.e., the optimal value of model (S) equals the optimal value of model (Z).

Appendix F. Proof of Theorem 2

We provide proof of Theorem 2, showing that the linear programming relaxation (LPR) of model

(S) for the partially used provider case provides a tighter lower bound than the LPR of model

(Z). We let LP(S) and LP(Z) respectively represent the optimal objective values of LPR(S) and

LPR(Z). Our proof has the following steps. First, we derive a valid upper bound on LP(Z). Second,

we derive a lower bound on LP(S). Then, we compare the difference between these bounds.

STEP 1. In Theorem 4, we construct a feasible solution for LPR(Z) and use it to establish an

upper bound on the optimal objective value of LPR(Z), denoted as LP(Z).

Theorem 4. The optimal objective value of LPR(Z), denoted as LP(Z), satisfies

LP (Z) ≤ UBZ =

[
λf |P |+

∑
n∈[N ]

∑
p∈P

λt

N
(tn0,p + tnp,0)

]
d̄

V
, (F.1)
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for some large positive constant V > 0 (e.g., V = M).

Proof of the Theorem 4. We construct the following feasible solution to LPR(Z). In this solution

we let V = M = L + (d̄|I| + 1)(tmax
1 + tmax

2 ) + (|I| − 1)t̄. Given the number of positions on the

serving sequence |I| and the set of providers K, we consider a partition of the set of customers

P =
⋃

k∈K{P1, P2, . . . , Pk} such that Pk∩Pk′ = ∅ and 0 ≤ |Pk| ≤ |I|, for all k ∈ K, k′ ∈ K : k ̸= k′.

Then, we use this partition to construct the following feasible solution (z,A, S,W,G,O) to LPR(Z).

• For any provider k ∈ K and (p, q) ∈ (P ∪ {0})× (P ∪ {0}),

zp,q,k =



1− |Pk| d̄
M , if p = q = 0

d̄
M , if p = 0, q ∈ Pk or q = 0, p ∈ Pk

1− d̄
M , if p, q ∈ Pk × Pk : p = q

0 otherwise

(F.2)

• Ap = 0, ∀p ∈ P ; Sn
p = 0, ∀p ∈ P, n ∈ [N ]; Gn

p = 0, ∀p ∈ P, n ∈ [N ]; Wn
p = 0, ∀p ∈

P, n ∈ [N ]; and On
k = 0, ∀k ∈ K,n ∈ [N ].

Let us first show that this solution is a feasible solution for LPR(Z). First, we show that

zp,q,k ∈ [0, 1]. Since M ≥ |I|d̄ and |Pk| ≤ |I| by construction, then 0 ≤ d̄
M ≤ 1, 0 ≤ 1− d̄

M ≤ 1, and

0 ≤ 1− |Pk| d̄
M ≤ 1. It follows that zp,q,k ∈ [0, 1], for all p ∈ P ∪ {0}, q ∈ P ∪ {0} and k ∈ K.

Next, we show that solution (z,A, S,W,G,O) as defined above is a feasible solution to LPR(Z)

by verifying that it satisfies all constraints.

A) By construction, for any p ∈ P , there must exist a unique k̄ ∈ K such that p ∈ Pk̄, i.e., zp,q,k̄

assumes value as defined in (F.2) and zp,q,k = 0, ∀k ̸= k̄, q /∈ Pk̄. Accordingly, we have∑
k∈K

∑
q∈P∪{0}

zp,q,k =
∑

q∈Pk̄∪{0}

zp,q,k̄ =
∑
q∈Pk̄

zp,q,k̄ + zp,0,k̄ = zp,p,k̄ + zp,0,k̄ = 1− d̄

M
+

d̄

M
= 1.

Thus, zzz defined in (F.2) satisfies constraints (3b).

B) We show that zzz defined in (F.2) satisfies constraints (3c). Similar to the argument in point

(A), for any q ∈ P , we can always find a unique k̄ ∈ K such that q ∈ Pk̄. Thus, if k ∈ K \{k̄},
we have zp,q,k = 0 for all p ∈ P \ {q}, which satisfies constraints (3c). When k = k̄, we have∑

k∈K

∑
p∈P∪{0}

zp,q,k −
∑
k∈K

∑
p∈P∪{0}

zq,p,k =
∑

p∈P∪{0}

zp,q,k̄ −
∑

p∈P∪{0}

zq,p,k̄

=

(∑
p∈P

zp,q,k̄ + z0,q,k̄

)
−
(∑

p∈P
zq,p,k̄ + zq,0,k̄

)
= (zq,q,k̄ + z0,p,k̄)− (zq,q,k̄ + zq,0,k̄)

= (1− d̄

M
+

d̄

M
)− (1− d̄

M
+

d̄

M
) = 0.

Thus, zzz defined in (F.2) satisfies constraints (3c).
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C) For any provider k ∈ K, there is a set of customers Pk ⊂ P by the partition of P defined in

our construction. If Pk = ∅, by construction, we have∑
p∈P∪{0}

zp,0,k = z0,0,k +
∑
p∈Pk

zp,0,k = z0,0,k = 1− 0 · d̄

M
= 1.

On the other hand, when Pk ̸= ∅, we have zp,q,k = 0 for all (p, q) ∈ (P \ {Pk})× (P \ {Pk}).
Then∑
p∈P∪{0}

zp,0,k = z0,0,k +
∑
p∈Pk

zp,0,k =

(
1− |Pk|

d̄

M

)
+
∑
p∈Pk

d̄

M
=

(
1− |Pk|

d̄

M

)
+ |Pk|

d̄

M
= 1.

Similarly, we have
∑

p∈P∪{0} z0,p,k = z0,0,k+
∑

p∈Pk
z0,p,k = 1. Thus, zzz defined in (F.2) satisfies

constraints (3d) and (3e).

D) For a provider k ∈ K and corresponding customer set Pk, If Pk = ∅, then following the same

argument in point (C), we have z0,0,k = 1 and it is trivial that constraints (3f) hold. Now,

consider the case when Pk ̸= ∅, we have∑
p∈P∪{0}

∑
q∈P∪{0}

zp,q,k =
∑
p∈Pk

∑
q∈Pk

zp,q,k +
∑
q∈Pk

z0,q,k +
∑
p∈Pk

zp,0,k + z0,0,k

=
∑
p∈Pk

zp,p,k +
∑
q∈Pk

z0,q,k +
∑
p∈Pk

zp,0,k + z0,0,k

= |Pk|
(
1− d̄

M

)
+ 2|Pk|

d̄

M
+

(
1− |Pk|

d̄

M

)
= |Pk|+ 1 ≤ |I|+ 1 (since |Pk| ≤ |I| by construction)

Thus, zzz defined in (F.2) satisfies constraints (3f).

E) Since An
p = Sn

p = 0 for all p ∈ P, n ∈ [N ], they satisfy constraints (3g), (3i), (3j), and (3l).

F) To verify that Sn
p and zp,q,k satisfy constraints (3k), we need to check if they satisfy

Sn
p + dnp + tnp,q −M(1−

∑
k∈K

zp,q,k) ≤ 0, ∀p ∈ P ∪ {0}, q ∈ P.

To this end, we consider the following three cases:

– Case 1: p = 0 and q ∈ P . In this case, following the conclusion in point (A), we have∑
k∈K z0,q,k = d̄

M by construction. Then, for any q ∈ P , we have

Sn
0 + dn0 + tn0,q −M(1− d̄

M
) = tn0,q −M(1− d̄

M
) (since Sn

0 = dn0 = 0 by construction)

≤ tmax
1 −M + d̄ ≤ 0 (since M > tmax

1 + d̄).

– Case 2: p ∈ P, q ∈ P and p = q. By construction, we have
∑

k∈K zp,q,k =
∑

k∈K zp,p,k =

1− d̄
M . Thus, for any p ∈ P , we have

Sn
p + dnp + tnp,p −M

(
1−

∑
k∈K

zp,p,k

)
= dnp −M

d̄

M
≤ 0 (since d̄ = max

n∈[N ],p∈P
{dnp}).

– Case 3: p ∈ P, q ∈ P and p ̸= q. In this case
∑

k∈K zp,q,k = 0 by construction. Then, for

any p ∈ P and q ∈ P , we have

Sn
p + dnp + tnp,q −M = dnp + tnp,q −M ≤ 0 (since M > max

n∈[N ],(p,q)
{tnp,q}+ max

n∈[N ],p∈P
{dnp}).
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Thus, the constructed solution satisfies constraints (3k).

G) We verify that the constructed solution satisfies constraints (3m). First, if Pk = ∅ for any

k ∈ K, then zp,0,k = 0 for all p ∈ P by construction. In this case, constraints (3m) trivially

hold. Second, consider the case when Pk is not empty. In this case, we have zp,0,k = d̄/M for

all p ∈ Pk by construction. Next, we check if the following inequalities hold.

On
k − Sn

p − dnp − tnp,0 + L+M(1− zp,0,k) ≥ 0, ∀p ∈ P (F.3)

Since On
k = Sn

p = 0,∀k ∈ K, p ∈ P, n ∈ [N ], inequalities (F.3) reduce to

L+M − d̄− dnp − tnp,0 ≥ 0, ∀p ∈ P. (F.4)

Inequalities (F.4) hold valid since M > |I|d̄+ tmax
2 +L = |I| max

n∈[N ],p∈P
{dnp}+ max

n∈[N ],p∈P
{tnp,0}+

L > d̄+ dnp + tnp,0. Thus, constraints (3m) are satisfied.

H) To check the feasibility of constraints (3n), we need to show that, for any p ∈ P ∪ {0}, q ∈ P

and n ∈ [N ], Gn
q − Sn

p + Sn
p + dnp + tnp,q +M(1 −

∑
k∈K zp,q,k) ≥ 0. Similar to point (G), we

consider the following three cases:

– Case 1: p = 0, q ∈ P . In this case,
∑
k∈K

z0,q,k = d̄
M . For any n ∈ [N ] and q ∈ P , we have

Gn
p − Sn

p + Sn
p + dnp + tn0,p +M(1− d̄

M
) = dnp + tn0,p +M −M

d̄

M
≥ 0.

The result follows because Gn
p = Sn

p = 0,∀p ∈ P, n ∈ [N ] by construction and M >

d̄+ tmax
1 .

– Case 2: p ∈ P, q ∈ P and p = q. In this case,
∑

k∈K zp,p,k = 1 − d̄
M . Thus, for any

p ∈ P, n ∈ [N ], we have

Gn
p − Sn

p + Sn
p + dnp + tnp,p +M

d̄

M
= dnp +M

d̄

M
≥ 0 (since (dnp , d̄) ≥ 0).

– Case 3: p ∈ P, q ∈ P and p ̸= q. In this case,
∑

k∈K zp,q,k = 0. By constraints (3n), for

all p ∈ P, q ∈ P and n ∈ [N ], we have

Gn
q − Sn

q + Sn
p + dnp + tnp,q +M = dnp + tnp,q +M ≥ 0 (since (dnp , t

n
p,q,M) ≥ 0).

Thus, the constructed solution satisfies constraints (3n).

From points (A)–(H), we conclude that the constructed solution (z,A, S,W,G,O) is a feasible

solution for LPR(Z). The objective function value UBZ of this feasible solution is as follows:

UBZ =
∑
k∈K

λf |Pk|
d̄

V
+
∑
n∈[N ]

∑
p∈P

λt

N
[tn0,p + tnp,0]

d̄

V
.

Since this is a feasible solution to LPR(Z), the objective value of this solution denoted as UBZ

provides an upper bound on the optimal objective value, LP (Z), of LPR(Z), i.e., LP (Z) ≤ UBZ .

Moreover, since
∑

k∈K |Pk| = |P |, we have

LP (Z) ≤ UBZ =

[
λf |P |+

∑
n∈[N ]

∑
p∈P

λt

N
(tn0,p + tnp,0)

]
d̄

V
.

This completes the proof of Theorem 4.
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STEP 2. In Theorem 5, we derive a lower bound on the optimal objective value LP(S) of LPR(S)

Theorem 5. The optimal objective value of the LPR(S), denoted as LP(S), satisfies

LP (S) ≥ |P |
|I|

(λf + λt · tmin
1 ) = LBS .

Proof of the Theorem 5. Let (x, a, z, s, g, o) be an optimal solution to LPR(S). The objective value

of this solutions is

LP (S) =
∑
p∈P

∑
k∈K

λfx1,p,k +
∑
n∈[N ]

1

N

{
λt

[ ∑
(p,p′)∈P×P

p̸=p′

∑
i∈I

∑
k∈K

tnp,p′zi,p,p′,k +
∑
p∈P

tn0,px1,p,k

+
∑
p∈P

tnp,0x0,p,k

]
+
∑
k∈K

∑
i∈I

[
λw(sni,k − ai,k) + λggni,k

]
+
∑
k∈K

λoonk

}
Since decision variables (x, z, s, a, g, o) are non-negative, we have

LP (S) ≥
∑
p∈P

∑
k∈K

λfx1,p,k +
∑
n∈[N ]

λt

N

[∑
p∈P

∑
k∈K

tn0,px1,p,k

]

≥
∑
p∈P

∑
k∈K

λfx1,p,k + λt

[∑
p∈P

∑
k∈K

tmin
1 x1,p,k

]
= (λf + λttmin

1 )
∑
p∈P

∑
k∈K

x1,p,k. (F.5)

Next, we claim that for any k ∈ K, there exists some p′ ∈ P such that

x1,p′,k ≥ 1

|I||K|
(F.6)

We prove this claim by contradiction. Suppose, on the contrary, that x1,p,k < 1/|I||K| for all p ∈ P

and k ∈ K. Summing over the customers set P we have∑
p∈P

x1,p,k <
∑
p∈P

1/|I||K = |P |/|I||K|, ∀k ∈ K. (F.7)

Form constraints (1e), we know that any feasible solution to LPR(S) should satisfies
∑

p∈P xi,p,k ≤∑
p∈P x1,p,k, for all i ∈ [2, |I|] and k ∈ K. Thus, from (F.7), we have

∑
p∈P xi,p,k < |P |/|I||K|, for

all i ∈ [2, |I|] and k ∈ K. Summing over the position set I and provider set K, we have∑
i∈I

∑
p∈P

∑
k∈K

xi,p,k <
|P |

|I||K|
· |I||K| = |P |. (F.8)

Note that any feasible solution should also satisfy constraints (1b), i.e.,
∑

i∈I
∑

k∈K xi,p,k = 1, ∀p ∈
P , which implies that

∑
i∈I
∑

p∈P
∑

k∈K xi,p,k = |P |. However, from (F.8), we have
∑
i∈I

∑
p∈P

∑
k∈K

xi,p,k <

|P |. Hence, we have a contradiction. This complete the proof of our claim. Summing inequality

(F.6) over the customer set P and provider set K, we obtain∑
p∈P

∑
k∈K

x1,p,k ≥ |P |
|I||K|

· |K| = |P |
|I|

(F.9)

Combining (F.9) with (F.5), we conclude

LP (S) ≥ |P |
|I|
(
λf + λttmin

1

)
.

This completes the proof of Theorem 5.
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STEP 3. From Theorem 4, we know that the optimal objective value of LPR(Z) is not greater

than the constructed upper bound UBZ in (F.1), i.e.,

LP (Z) ≤ UBZ =

[
λf |P |+

∑
n∈[N ]

∑
p∈P

λt

N
(tn0,p + tnp,0)

]
d̄

V
≤
[
λf + λt(tmax

1 + tmax
2 )

]
d̄|P |
V

, (F.10)

where the last inequality follows from tmax
1 = max

p∈P,n∈[N ]
{tn0,p} and tmax

2 = max p ∈ P, n ∈ [N ]{tnp,0}.

On the other hand, from Theorem 5, we know that the optimal objective value of LPR(S) satisfies

LP (S) ≥ LBS = |P |
|I|
(
λf + λttmin

1

)
. The difference between the lower bound on LP(S) (LBS) and

the upper bound of LPR(Z) defined in (F.10) is as follows
V − |I|d̄
V |I|

|P |λf +

[
V tmin

1 − |I|d̄(tmax
1 + tmax

2 )

|I|V

]
|P |λt (F.11)

Since V > (d̄|I|+1)(tmax
1 + tmax

2 ), the first and second terms in (F.11) are greater than zero, i.e.,

i.e., the difference between the lower bound on LP(S) and the upper bound on LP(Z) is positive.

This indicates that LPR(S) is tighter than LPR(Z). Indeed, the numerical results in Sections 7.2.1

and 7.2.2 show that LPR(S) is strictly tighter than LPR(Z).

Appendix G. Sample average approximation and sample size

We use the SAA method with Monte Carlo Optimization (MCO) procedure to decide the sample

size for the SAA model. We refer to Kenyon and Morton (2003) and Kleywegt et al. (2002) for

details of the algorithm. We initialize the MCO procedure with sample size N , simulation sample

size N ′, and the number of replicates M . In each replicate m ∈ [M ], we first solve the SAA problem

with sample size N , obtain the optimal solution x̂mN , and the optimal objective value vmN . Second,

we solve the second-stage problem with x̂mN and N ′ scenarios to compute vmN ′ . We repeat these steps

M times, each time with new N and N ′ scenarios of service and travel time sampled from their

distributions. Finally, we compute the average of the SAA objective value v̄N = 1
M

∑
k∈K vmN and

the simulated objective values v̄N ′ = 1
M

∑
k∈K vmN ′ . As detailed in Kenyon and Morton (2003) and

Kleywegt et al. (2002), v̄N and v̄N ′ respectively represents statistical lower and upper bounds on the

optimal value of the HFASP. Thus, we estimate the Approximate Optimality Index AOI =
vN′−vN

vN′
.

We implement the algorithm using model (S) for partially used providers with the problem

instance |I| = 6, |P | = 24, |K| = 5 under the cost structure defined in Section 7.1. We run the

experiment with the sample size N ranging from 1 to 100. For each value of N , we repeat the

algorithm ten times (M = 10) and choose the Monte Carlo simulation sample size N ′ = 10000. We

present SAA objective value vN , objective function value of simulation vN ′ , AOI, and their 95%

Confidence Interval (95% CI) in Table G1. This table shows that AOI with N = 50 equals 0.01%.

In addition, the 95%CI of v̄N=50 and v̄N ′ are very tight. These results qualify vN=50 as a tight

estimator of the optimal value.
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Table G1: vN , vN′ , and AOI of the partially used model with |I| = 6, |P | = 24 and |K| = 5.

N v̄N v̄N ′ |AOI(%)| 95% CI v̄N 95%CI v̄N ′

1 4052.98 4186.69 3.19 [4050,4056] [4171,4203]
5 4053.23 4061.81 0.21 [4052,4054] [4059,4065]
10 4054.45 4057.24 0.07 [4054,4055] [4056,4058]
20 4054.57 4056.65 0.05 [4054,4055] [4056,4057]
30 4054.49 4058.98 0.11 [4054,4055] [4058,4060]
40 4054.50 4055.81 0.03 [4054,4055] [4056,4056]
50 4055.06 4055.42 0.01 [4055,4056] [4055,4056]
60 4054.73 4055.58 0.02 [4054,4055] [4055,4056]
70 4055.03 4056.34 0.03 [4055,4055] [4056,4057]
80 4054.70 4054.47 0.01 [4054,4055] [4054,4055]
90 4054.59 4055.20 0.02 [4054,4055] [4055,4055]
100 4054.82 4054.74 0.01 [4055,4055] [4055,4055]

Appendix H. Symmetry breaking constraints

Suppose there are three homogeneous providers K = {1, 2, 3}, i.e., they share the same hiring

cost λf and have same service time distribution. Then, solutions (
∑

p∈P x1,p,1 = 1,
∑

p∈P x1,p,2),

(
∑

p∈P x1,p,1 = 1,
∑

p∈P x1,p,3 = 1), and (
∑

p∈P x1,p,2 = 1,
∑

p∈P x1,p,3 = 1) are equivalent (i.e., yield

the same objective) in the sense that they all permit hiring 2 out of 3 providers. To prevent wasting

time exploring such equivalent solutions, we assume that providers are numbered sequentially and

add constraints (H.1) to model (S). Similarly, we add constraints (H.2) to model (Z) to enforce

that provider k is hired before provider k + 1.∑
p∈P

x1,p,k ≥
∑
p∈P

x1,p,k+1, ∀k ∈ [1, |K| − 1]. (H.1)∑
p∈P

z0,p,k ≥
∑
p∈P

z0,p,k+1, ∀k ∈ [1, |K| − 1]. (H.2)

Appendix I. Additional computational results for model (S) for fully used provider

We provide additional computational time results of model (S) for fully used providers. We present

the results in two parts. In the first part, we analyze the solution times of model (S) and compare

them with that of model (Z) under 100 scenarios. In the second part, we present solution times of

model (S) and the comparison results of solution times of models (S) and (Z) under another cost

structure in the objective. All the remaining experiment settings are the same as Section 7.1.

We start with reporting solution times of model (S) using N =100 scenarios in Table I1. First,

we observe that solution time increases when N increases from 50 to 100 scenarios. In fact, the

average solution time of model (S) with |I| = 6 ranges from 5.4 seconds (|P | = 24) to 35 minutes

(|P | = 54), with |I| = 8 ranges from 7.1 seconds (|P | = 24) to 47 minutes (|P | = 56). In contrast,

using model (Z), we were only able to solve instances with |I| = 6, |P | ≤ 18 or |I| = 8, |P | ≤ 16.

We compare the ratios of solution times of model (Z) and (S) in Table I2. Clearly, solution times

of model (Z) are longer than model (S). Next, we present numerical results under a different cost

structure (hereafter denoted as cost structure 2). Specifically, as in Yu et al. (2021), we set the unit
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Table I1: Solution time (in seconds) of model (S) for fully used providers with 100 scenarios.

model (S) |I| = 6 |I| = 8
|P | Min Avg Max |P | Min Avg Max
24 4.8 5.4 5.9 24 5.5 7.1 12.4
30 11.6 13.9 19.5 32 20.3 22.9 25.4
36 28.7 31.9 39.7 40 47.3 67.0 114.2
42 88.6 390.7 682.6 48 793.0 1142.3 1656.3
48 248.9 658.4 1240.4 56 2388.3 2860.7 3500.3
54 1339.3 2116.3 2817.1 64 - - -

When |I| = 8, |P | ≥ 32, we set the relative MIP gap to 0.04.

Table I2: Ratios of solution times of models (Z) and (S) on the SAAs solved by both with N = 100 (fully used)

(Z) sol.time
(S) sol.time |I| = 6 |I| = 8

|P | Min Avg Max |P | Min Avg Max
6 1.6 2.4 3.9 8 0.1 0.7 2.0
12 2.0 3.2 5.5 16 16.1 25.1 31.8
18 148.7 187.7 305.0 24 - - -

Table I3: Solution time (in seconds) of model (S) for fully used providers with cost structure 2.

|I| = 6 (λw, λo, λg) = (2, 10, 0)
|P | Min Avg Max
24 3.2 3.4 3.7
30 7.9 9.0 11.6
36 18.0 21.5 28.3
42 26.5 142.2 192.4
48 155.7 261.6 392.9
54 245.0 861.4 1993.4
60 110.5 777.6 2221.9

overtime cost λo = 10, and unit waiting cost λw = 2. The other elements in the cost structure are

the same. We generate unit travel cost λt from U [0.1, 0.5] (Zhan and Wan, 2018) and set the fixed

cost of hiring one provider λf to 1000 based on real-world applications. In Table I3, we present the

solution time of model (S) under cost structure 2 and 50 scenarios. We observe that using model

(S), the average solution time ranges from 3.4 seconds (|P | = 24) to 13 minutes (|P | = 60).

Finally, we compare the solution time of two models with cost structure 2 and present the ratio

of solution times of models (S) and (Z) in Table I4. Observe that, model (Z) takes a longer time to

solve all instances than model (S). For those instances that model (Z) failed to solve, it terminated

with the average relMIP around 6%.
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Table I4: Ratios of solution time (in seconds) of models (Z) and (S) on the SAAs solved by both with cost structure

2. Results are for fully used models.

(λw, λo, λg) = (2, 10, 0)
(Z) sol.time
(S) sol.time |I| = 6 |I| = 8

|P | Min Avg Max |P | Min Avg Max

6 2.0 2.5 3.1 8 2.0 2.5 3.1

12 1.1 2.0 2.2 16 - - -

18 250.6 335.0 447.8 24 - - -

Table J1: Solution time (in seconds) of model (S) for partially used providers with 100 scenarios.

model (S) |I| = 6 |I| = 8
|P | Min Avg Max Min Avg Max
24 7.8 9.6 10.8 16.6 17.3 22.3
30 27.6 31.1 34.0 51.8 65.8 80.9
36 60.9 64.7 69.8 331.3 443.1 525.0
40 106.7 121.6 134.3 1127.3 2419.8 3089.4
42 121.5 146.0 178.5 914.2 1218.5 1532.8
48 965.3 1361.3 1590.5 - - -
50 991.3 1661.9 2334.3 - - -
54 1166.0 2520.7 3170.7 - - -

Appendix J. Additional computational results for model (S) for partially used provider

In this section, we provide additional computational time results of model (S) for partially used

providers with 100 scenarios and cost structure 2. The experiment settings are same as what we

discussed in Section 7.1, and details about cost structure 2 are described in Appendix I.

First, we report the Min, Avg and Max solution time of generated instances with N = 100 in

Table J1. We observe that the solution time of model (S) with |I| = 6 varies from 7.8 seconds

(|P | = 24) to 53 minutes (|P | = 54), and with |I| = 8 varies from 17.3 seconds (|P | = 24) to 20

minutes (|P | = 42). In contrast, model (Z) was able to solve only instances with |I| = {6, 8}, |P | ≤ 8.

We compare the ratios of solution times of model (Z) and (S) in Table J2. It is clear that solution

time of model (Z) is longer than that of model (S). For those instances that model (Z) failed to

solve, it terminated with the average relMIP gap around 74% (|I| = 6) and 100% (|I| = 8).

Finally, we present results with cost structure 2 in Table J3. We observe that the average

solution time of model (S) with |I| = 6 ranges from 7.1 (|P | = 24) seconds to 9.5 minutes (|P | = 62).

In contrast, model (Z) can only solve instances with |I| ⊂ {6, 8}, |P | ≤ 8. The average relMIP at

termination is 100%. We present the comparison of solution times between models (S) and (Z) in

Table J4. It is clear that model (Z) takes a longer time to solve all instances than model (S).
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Table J2: Ratios of solution time of models (Z) and (S) on the SAAs solved by both with N = 100 (partially used).

(Z) sol.time
(S) sol.time |I| = 6 |I| = 8

|P | Min Avg Max Min Avg Max
6 2.2 5.1 7.8 1.1 2.9 3.9
8 86.2 95.8 100.1 9.2 21.0 54.0

Table J3: Solution time (in seconds) of model (S) for partially used providers with cost structure 2.

|I| = 6 (λw, λo, λg) = (2, 10, 0)
|P | Min Avg Max
24 6.1 7.1 9.0
30 13.5 14.5 15.4
36 16.2 16.8 18.3
40 23.7 25.5 27.7
42 28.3 29.0 30.1
48 43.4 46.6 52.3
50 60.7 132.4 340.1
54 81.4 85.6 96.0
58 115.7 197.2 311.2
60 119.7 136.4 150.0
62 163.6 574.9 1599.9

Table J4: Ratios of solution time of models (S) and (Z) on the SAAs solved by both with cost structure 2. Results

are for partially used models.

(λw, λo, λg) = (2, 10, 0)
(Z) sol.time
(S) sol.time |I| = 6 |I| = 8

|P | Min Avg Max Min Avg Max
6 1.5 1.7 1.8 0.8 1.0 1.3
8 69.8 73.6 80.5 3.3 3.5 4.0

Appendix K. Details of Lehigh County instances

Table K1: The number of customers in each city/township of Lehigh Valley Instance.

City Pop Pop% L-50 L-100 City Pop Pop% L-50 L-100

Alburtis 2596 0.7 1 1 Bethlehem 25868 6.6 3 7

Coplay 3348 0.9 1 1 Hanover 11783 3 1 3

Heidelberg 3324 0.9 1 1 Lower Macungie 32426 8.3 4 8

Lower Milford 3861 1 1 1 Lynn 4232 1.1 1 1

Lowhill 2292 0.6 1 1 Salisbury 13621 3.5 1 3

North Whitehall 15655 4 2 4 South Whitehall 21080 5.4 2 5

Weisenberg 4976 1.3 1 1 Upper Macungie 26377 6.8 3 7

Catasauqua 6518 1.7 1 2 Upper Milford 7777 2 1 2

Coopersburg 2447 0.6 1 1 Upper Saucon 16973 4.3 2 4

Emmaus 11652 3 1 3 Washington 6551 1.7 1 2

Fountain Hill 4832 1.2 1 1 Whitehall 29173 7.5 3 7

Macungie 3257 0.8 1 1 Allentown 125845 32.2 14 32

Slatington 4283 1.1 1 1
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Figure K.1: Location of customers in L-50 (left) and L-100 (right)

Appendix L. Analysis of providers’ actual working time

In this section, we analyze the variability in providers’ actual working time. For illustrative pur-

poses, we use the L-50 instance from Section 7.4. Table L1 presents the number of hired providers,

the average and standard deviation of providers’ working time (the number of hired providers,

avg, stdv) under different unit overtime cost λo ∈ {1, 5, 10} and service time ranges. First, we ob-

serve that the average actual working time varies under different service time ranges and λo. This

makes sense because, as we discussed in Section 7.4.2 and shown in Table L1, different numbers of

providers are hired under each combination of these parameter settings. For example, the average

working time under range (c) is lower because we hire more providers under this range. Second, it

is clear that there is a slight variability in working time among providers under each setting. This

also makes sense, as the HFASP does not have a criterion to control such variability. Mitigating

such variability is worth future investigation.

Table L1: The (number of hired providers, average actual working time in minutes, the standard deviation of actual

working time) under different unit overtime cost λo and service time ranges for L-50.

Unit overtime cost λo

Service time range 1 5 10

Base range (9, 352, 50) (9, 395, 47) (9, 408, 25)

Range (a) (9, 422, 17) (9, 380, 11) (9, 397, 20)

Range (b) (9, 452, 31) (24, 346, 8) (24, 349, 9)

Range (c) (24, 263, 44) (24, 242, 46) (24, 280, 42)
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