
Inexact Proximal-Gradient Methods with Support Identification

Yutong Daia and Daniel P. Robinsonb

a,bLehigh University, Bethlehem, Pennsylvania, USA

ARTICLE HISTORY

Compiled November 2, 2022

ABSTRACT
We consider the proximal-gradient method for minimizing an objective function
that is the sum of a smooth function and a non-smooth convex function. A feature
that distinguishes our work from most in the literature is that we assume that the
associated proximal operator does not admit a closed-form solution. To address
this challenge, we study two adaptive and implementable termination conditions
that dictate how accurately the proximal-gradient subproblem is solved. We prove
that the number of iterations required for the inexact proximal-gradient method to
reach a τ > 0 approximate first-order stationary point is O(τ−2), which matches
the similar result that holds when exact subproblem solutions are computed. Also,
by focusing on the overlapping group `1 regularizer, we propose an algorithm for
approximately solving the proximal-gradient subproblem, and then prove that its
iterates identify (asymptotically) the support of an optimal solution. If one imposes
additional control over the accuracy to which each subproblem is solved, we give an
upper bound on the maximum number of iterations before the support of an optimal
solution is obtained.

KEYWORDS
inexact proximal-gradient method; worst-case iteration complexity; support
identification; structured sparsity; overlapping group regularizer

1. Introduction

We consider the minimization of a function written as the sum of a smooth function
f : Rn → R and a non-smooth convex function r : Rn → R, which can be written as

min
x∈Rn

f(x) + r(x). (1)

Many algorithms exist for solving such problems (e.g., see [2, 4]), which cover a wide
range of machine learning problems. A common choice for the regularizer r is the `1
norm [28], which is used to attain solutions to problem (1) that have few nonzero en-
tries, i.e., a sparse solution. Computing such a solution is critical in machine learning
applications that use model prediction since it is only the nonzero entries in the solu-
tion that define the model, and therefore sparse solutions define simpler and easier to
interpret and understand models. Despite the successes of `1-norm regularization, its

This work is supported by the U.S. National Science Foundation under the Division of Mathematical Sciences

(Award Number DMS-2012243).

CONTACT Yutong Dai (Email: yud319@lehigh.edu)



inadequacy for some modern applications has been observed. For example, since co-
variates often come in groups (e.g., genes that regulate hormone levels), one may wish
to select them jointly. Also, incorporating group information into the modeling process
can improve both the interpretability and accuracy of the resulting model [34]. There-
fore, new regularizers like the elastic-net [36] and group lasso [33] have been proposed
to address these issues, and have been successful in practice for genome-wide SNP
selection, predicting Parkinson’s disease, and gene microarray selection [1, 8, 26, 35].

The proximal-gradient (PG) method and its accelerated variants (APG) (e.g.,
see [4]) form an important class of algorithms for solving problems of the form given
by (1). The core computation in a PG method is the evaluation of the proximal oper-
ator associated with the regularizer at a given point. In particular, given a proximal
parameter α > 0, the proximal operator associated with r(·) evaluated at u ∈ Rn is
defined as the unique solution to the following optimization problem:

proxαr (u) := argmin
x∈Rn

1
2α ‖x− u‖

2
2 + r(x). (2)

The most basic PG method sets u ← x − α∇f(x), where x is the current esti-
mate of a solution to problem (1), so that the PG method update takes the form
x← proxαr (x− α∇f(x)). For relatively simple regularizers, such as the `1 norm, the
solution to (2) can be computed in closed-form. However, for more complicated regu-
larizers, such as the overlapping group `1 norm [32], the solution to (2) does not admit
a closed-form solution, and therefore an iterative algorithm (the iterations of which
are often called the inner iterations) is required to approximately solve problem (2)
each iteration. As mentioned in [25], many numerical experiments have shown that PG
methods often work well even when the proximal operator is computed inexactly by
approximately solving (2). Consequently, research has been devoted to understanding
how inexact evaluations of the proximal operator impact the convergence properties
of the PG method; we discuss these efforts next.

1.1. Related Work

Since the PG method solves problem (1) by solving a sequence of subproblems of
the form (2), to guarantee convergence of an inexact PG method, the errors when
approximately solving (2) must be carefully managed. There are two basic types of
strategies for controlling errors, an absolute criterion and an adaptive criterion.

Following the convention in [15], an absolute criterion defines in advance the error
tolerance for subproblem (2) that is acceptable during each iteration. For example, a
framework is analyzed in [25] that shows that if the error in solving (2) is decreased at
the rate of O(1/kδ), where k is the iteration counter and δ > 2 (respectively, δ > 4) for
the PG (respectively, APG) method, then the inexact PG (respectively, APG) method
shares the same convergence rate as its exact counterpart. In that work, for ε > 0,
the authors define x̂ as an ε-approximate solution to subproblem (2) if and only if
it satisfies 1

2α‖x̂ − u‖22 + r(x̂) ≤ minx∈Rn
(

1
2α‖x− u‖22 + r(x)

)
+ ε. Other papers have

considered different ways of characterizing an inexact solution to subproblem (2).
For example, [30, Definition 2.1] defines x̂ to be an inexact solution if and only if
(u− x̂)/α ∈ ∂εr(x̂) for an appropriate choice of u (see Definition 3.1 for the definition
of the ε-subdifferential ∂ε), and then use this notion to analyze the convergence rate of
the APG method. In [22, Definition 2.5], x̂ is considered an inexact solution to (2) if
and only if x̂ = proxαr (u+ e) for an appropriate choice of u and where ‖e‖ ≤

√
2αε,

2



and then analyze the convergence rate of primal-dual algorithms for solving a saddle-
point problem. These latter two notions are more stringent than the notion in [25],
and all three are different in how the error is decomposed among the ε-subdifferential
of r(x) and 1

2α ‖x− u‖
2 (for more details, see the discussion in [22, Lemma 2.6]).

The motivation for an adaptive criterion is to produce, given the current iterate
xk, an approximate solution xk+1 to subproblem (2) such that f(xk+1) + r(xk+1) is
“significantly” less than f(xk) + r(xk). A criterion of this type, by its nature, cannot
be define in advance (as is the case with an absolute criterion) because it must take
information about f + r at xk into account, thus making it adaptive. Moreover, as
argued in [10], an absolute criterion may not be ideal for overall efficiency since the
actual goal is not to find xk+1 ≈ proxαkr (u), but rather to find an xk+1 that signifi-
cantly reduces the objective function. The authors in [10] consider problem (1) for the
special case when f is ill-conditioned and r ≡ 0, in which case the method is equivalent
to an inexact proximal-point method. In particular, given xk and αk > 0, they approx-
imately solve minx∈Rn

(
1

2αk
‖x− xk‖22 + f(x)

)
, where xk+1 is acceptable as an inexact

solution if f(xk) − f(xk+1) ≥ η ‖∇f(xk+1)‖2 ‖xk − xk+1‖2 with η ∈ (0, 1). This work
is extended in [15] to allow for nontrivial r and acceleration by approximately solving
minx∈Rn

(
1

2αk
‖x− xk‖22 + f(x) + r(x)

)
, where xk+1 is an acceptable inexact solution

if 1
2αk
‖xk+1 − xk‖22 + f(xk+1) + r(xk+1) − minx∈Rn

(
1

2α ‖x− xk‖
2
2 + f(x) + r(x)

)
≤

κ ‖xk+1 − xk‖22 for some κ > 0. Relating a measure of error in the subproblem to
O(‖xk+1 − xk‖2) dates back to [23] and has been extensively studied for the proximal-
point method. To integrate second-derivative information, [14] proposed to approxi-
mately solve, for a symmetric matrix H, the subproblem

min
x∈Rn

∇f(xk)
T (x− xk) + 1

2(x− xk)TH(x− xk) + r(x)− r(xk). (3)

When H = (1/αk)I and u = xk−αk∇f(xk), subproblem (3) recovers subproblem (2).
The vector xk+1 is considered an acceptable approximate solution to subproblem (3)
if it achieves a decrease in its objective function that is at least some fraction of
that achieved by its exact solution. Verifying this adaptive criterion requires either
estimating a tight lower bound of the minimal value for subproblem (3) or devising
(when problem (3) is strongly convex) an algorithm with global linear convergence
for (3). Recently, [22] designed two adaptive criteria specifically tailored to FISTA [3].

When r is a sparsity-inducing regularizer, one is interested in a support identification
property (i.e., the iterates of an algorithm correctly identify the support of an optimal
solution to problem (1) in finitely many iterations). It is shown in [20, 27] that when
problem (2) is solved exactly, the PG and APG methods have the support identification
property under non-degeneracy assumptions.1 While support identification results are
proved in [13] for a framework built upon subproblem (3), they either require the
explicit computation of the exact solution to (2) or require its implicit computation
by making an assumption on the inexact subproblem solution obtained. To the best
of our knowledge, no research has explored the support identification property when
problem (2) must be solved inexactly, which is a unique aspect of our paper.

1.2. Contributions

This paper makes the following contributions in the area of PG methodology.

1Support identification is called active-set identification in [20] and manifold identification in [27].

3



• We propose an inexact PG framework that allows for two practical adaptive
criteria for determining acceptable approximate solutions to the PG subproblem.
The adaptive criteria are easier to verify compared to most in the literature.
For example, compared with [15], our criteria are easier to verify for regularizers
such as the overlapping group-`1; to verify the adaptive criterion in [15], one must
either evaluate the proximal operator of r exactly, which excludes the overlapping
group-`1, or estimate a tight lower-bound of minx∈Rn

1
2αk
‖x− u‖2 +f(x) + r(x),

which can be as difficult as solving problem (1) itself.
• We provide a unified worst-case complexity bound analysis of our PG framework

noted in the previous bullet point. Interestingly, the complexity result for our
inexact PG framework matches the result that holds for the exact PG method.
• For the special case of the overlapping group-`1 regularizer, whose proximal

operator does not admit a closed-form solution, we propose an enhanced PG
subproblem solver that is designed with support identification in mind. When
our PG framework uses our PG subproblem solver, we prove (under common
assumptions) a worst-case complexity result for the number of iterations until
optimal support identification occurs. To the best of our knowledge, this is the
first work that establishes such a result for a framework built upon implementable
(verifiable) conditions when the regularizer does not have a closed-form solution.

1.3. Notation and assumptions

Let R denote the set of real numbers, Rn denote the set of n-dimensional real vectors,
and Rm×n denote the set of m-by-n-dimensional real matrices. Let ‖·‖ denote the `2
norm. The set of nonnegative integers is denoted as N := {0, 1, 2, . . . } and for any
positive integer n, we define [n] := {1, 2, . . . , n}. For a matrix A ∈ Rm×n and index
sets (I, I ′) ⊆ [m]× [n], we let A[I,:] denote the sub-matrix of A formed by taking rows
from the index set I and all columns, and A[I,I′] denote the sub-matrix of A formed by
taking rows in the index set I and columns in the index set I ′. For a convex function
h : Rn → R, denote its Fenchel conjugate as h∗. Given x ∈ Rn and d ∈ Rn, the
directional derivative of h at x in the direction d is denoted by Dh(x; d). Given a set
C ⊆ Rn that is closed and convex, define the projection operator ProjC (·) : Rn → C as

ProjC (y) := argmin
y∈C

‖y − y‖2,

which then also allows us to define the distance of a vector y ∈ Rn to the set C as

dist(y, C) := ‖y − ProjC (y) ‖.

For any x ∈ Rn and α > 0, we define the PG update as

T (x, α) := argmin
x∈Rn

φ(x;x, α) with φ(x;x, α) := 1
2α

∥∥x− (x− α∇f(x)
)∥∥2

+r(x). (4)

Using the notion of ε-inexactness from [25, equation (4)], we use Tε(x, α) to denote
the set of ε-PG updates, which is defined by

Tε(x, α) := {x̂ ∈ Rn | φ(x̂;x, α) ≤ φ(T (x, α);x, α) + ε}. (5)

4



Note that it follows from these definitions that T0(x, α) = {T (x, α)}.
Finally, we make the following assumption throughout the paper.

Assumption 1.1. Define L := {x ∈ Rn : f(x) + r(x) ≤ f(x0) + r(x0)} where x0 is an
initial solution estimate to (1). The function f is continuously differentiable and ∇f
is Lipschitz continuous with constant Lg on an open neighborhood containing L. The
function r is closed, proper, and convex. The function f + r is bounded below.

1.4. Organization

In Section 2, we describe the inexact PG method that uses adaptive termination
criteria for solving problem (1). The convergence analysis and support identification
result is presented in Section 3 and Section 4, respectively. Numerical results are given
in Section 5, and concluding remarks are presented in Section 6.

2. Algorithm

Our proposed inexact PG method is stated as Algorithm 1. Given the kth iterate
xk and proximal parameter αk, the algorithm computes an εk-PG update x̂k+1 ∈
Tεk(xk, αk) and associated step sk = x̂k+1 − xk, where the value for εk depends on
the value of the input parameter option ∈ {option 1, option 2}. In particular, if
option = option 1, then εk = ck‖sk‖2 with ck chosen in Step 5, while if option =
option 2, then εk = γ2

(
φ(xk;xk, αk)− φ(T (xk, αk);xk, αk)

)
with γ2 ∈ (0, 1/2]. Next,

∆k is set to a value that depends on the value of option (see Steps 7 and 10). The
choices for ∆k and ck and the restrictions on γ1 and γ2 in Algorithm 1 ensure that
sk is a descent direction for f + r at xk (see Lemma 3.4), and that the line search
performed in Steps 13–15 gives a decrease in the objective function proportional to
αkχk

2 when the unit step is accepted (see Lemma 3.5(i)) where

χk := ‖T (xk, αk)− xk‖ /αk (6)

is a measure of first-order optimality for problem (1) at xk (see [3, Theorem 10.7]
for more details on χk). Finally, in Steps 17–21 the proximal parameter for the next
iteration is set to a fraction of its current value anytime j > 0 (i.e., anytime the unit
step size is not accepted during the linesearch).

To successfully implement Algorithm 1, for each k ∈ N, one must be able to compute
the triple (x̂k+1, sk, εk) needed in Steps 6 and 9. As long as xk is not optimal (i.e., as
long as χk > 0), the existence of such points is guaranteed, although computing one is
challenging for nontrivial regularizers. We consider this practical question in Section 4.

3. Convergence Analysis

In this section we analyze Algorithm 1. In particular, in Section 3.1, we give preliminary
results related to ε-PG updates, and in Section 3.2 we present a complexity analysis.

5



Algorithm 1 Inexact PG Method for solving problem (1).

1: Input: Initial estimate x0 ∈ Rn and option ∈ {option 1, option 2}.
2: Constants: {ξ, η, ζ} ⊂ (0, 1), α0 ∈ (0,∞), γ1 ∈ (0, 2), and γ2 ∈ (0, 1/2]
3: for k = 0, 1, 2, . . . do
4: if (option = option 1) then

5: Choose ck ∈
(

0, 1
4

(√
6

(1+γ1)αk
−
√

2
αk

)2 ]
.

6: Compute a triple (x̂k+1, sk, εk) satisfying the conditions

x̂k+1 ∈ Tεk(xk, αk), sk = x̂k+1 − xk, and εk = ck‖sk‖2.

7: Set ∆k ← − 1
αk
‖sk‖2 +

√
(2/αk)εk ‖sk‖+ εk.

8: else (option = option 2)
9: Compute a triple (x̂k+1, sk, εk) satisfying the conditions

x̂k+1 ∈ Tεk(xk, αk), sk = x̂k+1−xk, and εk = γ2

(
φ(xk;xk, αk)−φ(T (xk, αk);xk, αk)

)
.

10: Set ∆k ← r(xk + sk)− r(xk) +∇f(xk)
T sk.

11: end if
12: Set j ← 0 and xtrial

k+1,0 ← xk + sk.

13: while f(xtrial
k+1,j) + r(xtrial

k+1,j) > f(xk) + r(xk) + ηξj∆k do

14: Set j ← j + 1 and xtrial
k+1,j ← xk + ξjsk.

15: end while
16: xk+1 ← xtrial

k+1,j
17: if j = 0 then
18: αk+1 ← αk and flagk ← same α.
19: else
20: αk+1 ← ζαk and flagk ← decrease α.
21: end if
22: end for

3.1. Preliminary results

In this section, we discuss the ε-subdifferential of a function, and characterize the
properties of the ε-PG update. We begin with the definition of the ε-subdifferential.

Definition 3.1 (ε-subdifferential). [7, Section 4.3] For a given convex function h :
Rn → R, vector x ∈ Rn, and scalar ε > 0, the ε-subdifferential of h at x ∈ Rn is

∂εh(x) := {d ∈ Rn | h(z) ≥ h(x) + dT (z − x)− ε for all z ∈ Rn}.

We now bound the difference between an ε-PG update and the exact PG update.

Lemma 3.2 ([24]). Let x ∈ Rn, α > 0, and ε > 0. It holds that

‖T (x, α)− x̂‖2 ≤ 2αε for all x̂ ∈ Tε(x, α).

Proof. Note that φ(x;x, α) (see (4)) is strongly convex as a function of x with strong

6



convexity parameter greater than or equal to 1/α. Therefore, we may conclude that

ε ≥ φ(x̂;x, α)− φ(T (x, α);x, α) ≥ 1
2α ‖T (x, α)− x̂‖2 for all x̂ ∈ Tε(x, α)

where the last inequality follows from 0 ∈ ∂φ(T (x, α);x, α) (i.e., it follows from the
optimality conditions for problem (4)).

Part (i) of the next result constructs two upper-bounds on the directional derivative
of the objective function f+r at x along the direction associated with the ε-PG update.
This result suggests that by choosing ε sufficiently small, the directional derivative will
be negative. For additional insight, the reader should compare them to the definition
of ∆k in lines 7 and 10 of Algorithm 1. The second part of the next result bounds the
change in f + r that results from taking the step along the direction.

Lemma 3.3. Let x ∈ Rn, α > 0, and ε > 0. If x̂ ∈ Tε(x, α), then s = x̂ − x satisfies
the following results.

(i) The directional derivative of f + r at x in the direction s satisfies

Df+r(x; s) ≤ − 1
α ‖s‖

2+
√

2ε
α ‖s‖+ε and Df+r(x; s) ≤ r(x+s)−r(x)+∇f(x)T s.

(ii) A bound on the change in the objective function after taking the step s is

f(x+ s) + r(x+ s) ≤ f(x) + r(x)− ( 1
α −

Lg
2 ) ‖s‖2 +

√
2ε
α ‖s‖+ ε.

Proof. Let x̂ ∈ Tε(x, α). It follows from [25, Lemma 2] that there is a w ∈ Rn so that

‖w‖ ≤
√

2αε and gε :=
1

α
[x− α∇f(x) + w − x̂] ∈ ∂εr(x̂). (7)

From gε ∈ ∂εr(x̂) and convexity of r(x), it follows that

r(x) ≥ r(x̂) + gTε (x− x̂)− ε and r(x̂) ≥ r(x) + gTr (x̂− x) for all gr ∈ ∂r(x). (8)

Let us now proceed to prove part (i). Adding the two inequalities in (8) together
gives (gr − gε)T (x̂ − x) ≤ ε for all gr ∈ ∂r(x). This inequality may then be combined
with s = x̂− x, the definition of gε, the Cauchy-Schwarz inequality, and (7) to obtain

sT (∇f(x) + gr) = (x̂− x)T (∇f(x) + gr) = (x̂− x)T
(

1
α(x− x̂+ w) + gr − gε

)
= − 1

α ‖x̂− x‖
2 + 1

α(x̂− x)Tw + (x̂− x)T (gr − gε)
≤ − 1

α ‖s‖
2 + 1

α

√
2αε ‖s‖+ ε for all gr ∈ ∂r(x).

(9)

By the definition of the directional derivative, the fact that f(x) is differentiable,
convexity of r, the result in [18, Theorem 2.87], and (9), it follows that

Df+r(x; s) = sT∇f(x) + sup
gr∈∂r(x)

sT gr ≤ − 1
α ‖s‖

2 +
√

2ε
α ‖s‖+ ε,

which completes the proof of the first inequality in part (i). The proof of the second
inequality in part (i) follows directly from the proof in [14, Lemma 1].

7



To prove part (ii), we can use the Lipschitz continuity of ∇f with Lipschitz constant
Lg (see Assumption 1.1), x̂ = x+ s, and the first inequality in (8) to obtain

f(x+ s) + r(x+ s) ≤ f(x) +∇f(x)T s+ Lg
2 ‖s‖

2 + r(x) + gTε s+ ε

= f(x) + r(x) + (∇f(x) + gε)
T s+ Lg

2 ‖s‖
2 + ε.

Combining this inequality with (7) and the Cauchy-Schwarz inequality gives

f(x+ s) + r(x+ s) ≤ f(x) + r(x)− 1
α(s− w)T s+ Lg

2 ‖s‖
2 + ε

≤ f(x) + r(x)−
(

1
α −

Lg
2

)
‖s‖2 + 1

α ‖w‖ ‖s‖+ ε

≤ f(x) + r(x)−
(

1
α −

Lg
2

)
‖s‖2 + 1

α

√
2αε ‖s‖+ ε,

which completes the proof.

3.2. Global Complexity

In this section, we analyze the worst-case iteration complexity of Algorithm 1 for iden-
tifying an approximate stationary point of problem (1). Specifically, given a tolerance
τ ∈ (0, 1], we derive an upper bound on the number of iterations until χk ≤ τ . We will
assume throughout, for each k ∈ N, that χk > 0 since if χk = 0 then xk would be an
exact first-order solution. The next result gives an upper bound on ∆k, which in turn
gives an upper bound on the directional derivative of f + r at xk in the direction sk.

Lemma 3.4. For each k ∈ N, the directional derivative of f + r satisfies

Df+r(xk; sk) ≤ ∆k ≤ −βαkχ2
k < 0 where β :=

{
γ1
2 if option = option 1,
1
4 if option = option 2.

(10)

Proof. We start by discussing properties of x̂k+1 and εk that hold regardless of the
value of option. It follows from (6) and the triangle inequality that x̂k+1 satisfies

χ2
k =
‖T (xk, αk)− x̂k+1 + x̂k+1 − xk‖2

α2
k

(11)

≤ ‖T (xk, αk)− x̂k+1‖2
α2
k

+
2 ‖T (xk, αk)− x̂k+1‖ ‖x̂k+1 − xk‖

α2
k

+
‖x̂k+1 − xk‖2

α2
k

.

Also, since x̂k+1 ∈ Tεk(xk, αk), we can apply Lemma 3.2 with x̂ = x̂k+1, x = xk, α = αk,
and ε = εk to get

‖T (xk, αk)− x̂k+1‖2 ≤ 2αkεk. (12)

Now, let us consider the two cases determined by the value of the parameter option.
Case 1 (option = option 1). It follows from (11), (12), and sk = x̂k+1 − xk that

αkχk
2 ≤ 2εk +

2
√

2αkεk ‖sk‖
αk

+
‖sk‖2
αk

. (13)

8



Next, it follows from Step 6 and how ck is chosen in Step 5 that

εk = ck‖sk‖2 ∈
(

0, 1
4

(√
6

(1+γ1)αk
−
√

2
αk

)2

‖sk‖2
]
.

Using the fact that εk lies in this range, it can be verified that

γ1
2αk

(
2αkεk + 2

√
2αkεk ‖sk‖+ ‖sk‖2

)
≤ 1

αk
‖sk‖2 −

√
2εk
αk
‖sk‖ − εk. (14)

Next, it follows from Step 7, (14), and (13) that

∆k = −
(

1
αk
‖sk‖2 −

√
2εk
αk
‖sk‖ − εk

)
≤ − γ1

2αk

(
2αkεk + 2

√
2αkεk ‖sk‖+ ‖sk‖2

)
= −γ1

2

(
2εk + 2

√
2αkεk‖sk‖
αk

+ ‖sk‖2
αk

)
≤ −γ1

2 αkχk
2. (15)

Finally, we can combine the equality in (15) with Lemma 3.3(i) to obtain

Df+r(xk; sk) ≤ −
(

1
αk
‖sk‖2 −

√
2εk
αk
‖sk‖ − εk

)
= ∆k.

This result together with (15) completes the proof for this case.
Case 2 (option = option 2). From x̂k+1 ∈ Tεk(xk, αk) and the definition of εk in

Step 9, we have

φ(x̂k+1;xk, αk) ≤ φ(T (xk, αk);xk, αk) + γ2(φ(xk;xk, αk)− φ(T (xk, αk);xk, αk)).

By adding the term −φ(xk;xk, αk) to both sides of the equation, rearranging terms,
and then using the definition of εk in Step 9, we obtain

φ(x̂k+1;xk, αk)− φ(xk;xk, αk) ≤ (γ2 − 1)(φ(xk;xk, αk)− φ(T (xk, αk);xk, αk))

=
(
γ2−1
γ2

)
εk. (16)

Using algebraic simplification and the definition of ∆k in Step 10, we obtain

φ(xk;xk, αk)− φ(x̂k+1;xk, αk)) = −∇f(xk)
T sk − 1

2αk
‖sk‖2 + r(xk)− r(x̂k+1)

= −∆k − 1
2αk
‖sk‖2.

By combining this equality with (16) and recalling that γ2 ∈ (0, 1/2], we get

−∆k = φ(xk;xk, αk)− φ(x̂k+1;xk, αk) + 1
2αk
‖sk‖2

≥
(

1−γ2
γ2

)
εk + 1

2αk
‖sk‖2 ≥ εk + 1

2αk
‖sk‖2 . (17)

Applying Young’s inequality to the product of norms in (11) and using (12), we obtain

χ2
k ≤ 2‖T (xk,αk)−x̂k+1‖2

α2
k

+ 2‖sk‖2
α2
k
≤ 4εk

αk
+ 2‖sk‖2

α2
k
. (18)

9



Multiplying both sides of (18) by αk/4, and then applying (17), using the definition
of ∆k in Step 10, and Lemma 3.3(i) with x̂ = x̂k+1, x = xk, s = sk, and ε = εk gives

αk
4 χ

2
k ≤ εk + 1

2αk
‖sk‖2 ≤ −∆k

= −
(
r(xk + sk)− r(xk) +∇f(xk)

T sk
)
≤ −Df+r(xk; sk). (19)

Multiplying this inequality by a negative one completes the proof for this case.
It follows from αk ∈ (0,∞) and χk > 0 that −βαkχ2

k < 0, as claimed in (10).

It is convenient to define the following partition of iterations performed by Algo-
rithm 1 that depend on the status of the PG parameter:

K→ := {k ∈ N : flagk = same α in Line 18} and

K↓ := {k ∈ N : flagk = decrease α in Line 20}.

Note that K→ ∩K↓ = ∅ and that every iteration of the algorithm is in K→ ∪K↓. Using
these sets, the next result shows that the while loop in Algorithm 1 always terminates
and that the new iterate produces a useful decrease in the objective function f + r.

Lemma 3.5. For each k ∈ N, the while loop in Step 13 terminates finitely. Also, the
following hold:

(i) If k ∈ K→, then αk+1 = αk and, with β defined in (10), it holds that

f(xk+1) + r(xk+1) ≤ f(xk) + r(xk) + η∆k ≤ f(xk) + r(xk)− ηβαkχ2
k.

(ii) If k ∈ K↓, then αk+1 = ζαk and f(xk+1) + r(xk+1) < f(xk) + r(xk).

Thus, the objective function f + r is monotonically strictly decreasing over {xk}.

Proof. From Lemma 3.4 we have Df+r(xk; sk) < 0 so that standard results for a
backtracking Armijo linesearch ensure that the while loop starting in Step 13 will
terminate finitely, thus proving the first claim.

To prove part (i), suppose that k ∈ K→. From the definition of K→ we know that
flagk = same α, and thus from Step 18 that αk+1 = αk and that j = 0 when Step 17 is
reached. This latter fact means that the inequality in Step 13 does not hold for j = 0,
meaning that the computed xk+1 satisfies xk+1 = xtrial

k+1,0 = xk + sk and f(xk+1) +

r(xk+1) ≤ f(xk) + r(xk) + η∆k. Combining this inequality with Lemma 3.4 gives

f(xk+1) + r(xk+1) ≤ f(xk) + r(xk) + η∆k ≤ f(xk) + r(xk)− ηβαkχ2
k

as claimed, thus completing the proof of part (i).
To prove part (ii), suppose that k ∈ K↓. From the definition of K↓ we know that

flagk = decrease α, and therefore from Step 20 we have that αk+1 = ζαk and that
j > 0 when Step 17 is reached. Moreover, the linesearch in Steps 13–15 produces a
vector xtrial

k+1,j ← xk + ξjsk that, with Lemma 3.4, satisfies

f(xtrial
k+1,j) + r(xtrial

k+1,j) ≤ f(xk) + r(xk) + ηξj∆k ≤ f(xk) + r(xk)− ηξjβαkχ2
k. (20)

10



Combining this with xk+1 ← xtrial
k+1,j , αk > 0, and χk > 0 establishes that

f(xk+1)+r(xk+1) = f(xtrial
k+1,j)+r(xtrial

k+1,j) ≤ f(xk)+r(xk)−ηξjβαkχ2
k < f(xk)+r(xk),

which completes the proof of part (ii).
Finally, the objective function f + r is monotonically strictly decreasing over {xk}

as a consequence of parts (i) and (ii), η ∈ (0, 1), β > 0, αk > 0, and χk > 0.

We now show that the PG parameters are bounded away from zero, thus implying
that the unit step size is accepted for all iterations with sufficiently large index.

Lemma 3.6. For all k ∈ N, the PG parameter αk satisfies

αk ≥ αmin :=

{
min

{
α0,

3γ1ζ(1−η)
Lg(1+γ1)

}
if option = option 1,

min
{
α0,

ζ(1−η)
Lg

}
if option = option 2.

(21)

Moreover, a bound on the number of times the PG parameter is decreased is given by

|K↓| ≤ cα↓ :=
log(αmin/α0)

log(ζ)
. (22)

Proof. We consider the two cases depending on the value of option.
Case 1 (option = option 1). To prove (21), we first establish the following:

if αk ≤ 3γ1(1−η)
Lg(1+γ1) then η

(
1
αk
‖sk‖2−

√
2εk
αk
‖sk‖−εk

)
≤ ( 1

αk
− Lg

2 ) ‖sk‖2−
√

2εk
αk
‖sk‖−εk.

(23)
Using basic algebra, it may be shown that (23) is equivalent to establishing that

if αk ≤ 3γ1(1−η)
Lg(1+γ1) then

(
1
αk
− Lg

2(1−η)

)
‖sk‖2 ≥

√
2εk
αk
‖sk‖+ εk. (24)

Note that by rearranging (14), one can obtain

2−γ1
2(1+γ1)αk

‖sk‖2 ≥
√

2εk
αk
‖sk‖+ εk. (25)

Next, notice that if αk ≤ 3γ1(1−η)
Lg(1+γ1) then

(
1
αk
− Lg

2(1−η)

)
‖sk‖2 ≥ 2−γ1

2(1+γ1)αk
‖sk‖2 , which

together with (25) proves that (24) holds (equivalently, that (23) holds). Combin-
ing (23) with xtrial

k+1,0 = xk + sk = x̂k+1, Lemma 3.3(ii) with x̂ = x̂k+1, x = xk, ε = εk,
and α = αk, and Step 7 yields

if αk ≤ 3γ1(1−η)
Lg(1+γ1) then f(xtrial

k+1,0) + r(xtrial
k+1,0)

≤ f(xk) + r(xk)−
(

1
αk
− Lg

2

)
‖sk‖2 +

√
2εk
αk
‖sk‖+ εk

≤ f(xk) + r(xk)− η
(

1
αk
‖sk‖2 −

√
2εk
αk
‖sk‖ − εk

)
= f(xk) + r(xk) + η∆k.

This inequality implies that the condition checked in Line 13 for j = 0 will not hold
so that j = 0 when Line 17 is reached, meaning that the update αk+1 ← αk will take

11



place. Summarizing, we have shown that, for any k ∈ N satisfying αk ≤ 3γ1(1−η)
Lg(1+γ1) , it

holds that αk+1 = αk. Combining this observation with the fact that the α0 input
to the algorithm can be any positive number, and that anytime the PG parameter is
decreased it is by a factor ζ (see Step 20), allows us to conclude that (21) holds.

Case 2 (option = option 2). Note that the inequality in (17) still holds, and
thus −∆k ≥ 1

2αk
‖sk‖2 with ∆k defined in Step 10. Combining this inequality with the

Lipschitz continuity assumption on ∇f (see Assumption 1.1), xtrial
k+1,0 = xk + sk, and

the definition of ∆k in Step 10, one obtains

f(xtrial
k+1,0) + r(xtrial

k+1,0)

≤ f(xk) +∇f(xk)
T sk + Lg

2 ‖sk‖
2 + r(xk + sk)

= f(xk) + r(xk) +∇f(xk)
T sk + Lg

2 ‖sk‖
2 + r(xk + sk)− r(xk)

= f(xk) + r(xk) + ∆k + Lg
2 ‖sk‖

2 ≤ f(xk) + r(xk) + ∆k(1− αkLg). (26)

From this inequality and ∆k < 0 (see Lemma 3.4), we can observe that if αk ≤
(1− η)/Lg, then f(xtrial

k+1,0) + r(xtrial
k+1,0) ≤ f(xk) + r(xk) + η∆k, which means that the

condition checked in Line 13 for j = 0 will not hold, which in turn means that j = 0
when Line 17 is reached so that the update αk+1 ← αk would take place. Combining
this observation with the fact that the α0 input to the algorithm can be any positive
number, and that anytime the PG parameter is decreased it is done so by a factor of
ζ (see Step 20), allows us to conclude that (21) holds.

As for (22), an upper bound on |K↓| is the smallest integer ` such that α0ζ
` ≤ αmin.

Solving this inequality for ` shows that the result in (22) holds.

The main theorem is now stated. It gives an upper bound on the number of iterations
performed by Algorithm 1 before an approximate first-order solution is found.

Theorem 3.7. For any τ ∈ (0, 1], the size of the set Kτ := {k ∈ N : χk > τ} satisfies

|K→ ∩ Kτ | ≤ cpgτ−2 with cpg :=
f(x0) + r(x0)− infx∈Rn

(
f(x) + r(x)

)
ηβαmin

(27)

where β is defined in (10) and αmin is defined in Lemma 3.6. Moreover, combining
this result with Lemma 3.6 and the definition of cα↓ in (22) shows that

|Kτ | ≤ cα↓ + cpgτ
−2. (28)

Proof. Let us define νk = f(xk) + r(xk) −
(
f(xk+1) + r(xk+1)

)
. This definition,

Lemma 3.5, Lemma 3.6, and the definition of Kτ , it holds for arbitrary k ∈ N that

f(x0) + r(x0)−
(
f(xk+1) + r(xk+1)

)
=
∑

0≤k≤k

νk ≥
∑

k∈K→∩Kτ
0≤k≤k

νk ≥
∑

k∈K→∩Kτ
0≤k≤k

ηβαkχk
2 ≥

∑
k∈K→∩Kτ

0≤k≤k

ηβαminτ
2.

Taking k →∞ and using the monotonicity of the objective values in Lemma 3.5 gives

f(x0) + r(x0)− inf
x∈Rn

(
f(x) + r(x)

)
≥ |K→ ∩ Kτ |ηβαminτ

2, (29)

12



which proves (27). Finally, (27), |Kτ | = |K→ ∩Kτ |+ |K↓ ∩Kτ |, and (22) gives (28).

Theorem 3.7 shows that the worst-case iteration complexity for our inexact PG
method is O(τ−2), which is the same result that holds for the exact PG method.

4. Sparse Regularizers and Finite Support Identification

In this section we focus our attention on the case when r is chosen as the overlapping
group-`1 regularizer, whose associated proximal operator does not admit a closed-form
solution. This regularizer, which is studied in [12], [21], and [32] is defined as

r(x) =

ng∑
i=1

[λ]i ‖[x]gi‖ (30)

where ng ∈ N \ {0} denotes the number of groups, λ ∈ Rng is a vector of strictly
positive weights for the groups, and, for each i ∈ [ng], we use gi ⊆ [n] to denote the

index set of the variables for the ith group and [x]gi ∈ R|gi| to denote the subvector of
x that corresponds to the elements in group gi. Next, we denote the jth entry of the
ith group by gi,j for every i ∈ [ng] and j ∈ [|gi|]. Finally, we assume that every variable
is included in at least one group, i.e., we assume that ∪ngi=1gi ≡ [n]. This regularizer
imposes structured sparsity on the set of solutions to problem (1) (also see [21]).

Since this choice of r is a special case of the more general regularizer considered
in the previous section, we know that the worse-case iteration complexity of Theo-
rem 3.7 holds. Although this result is comforting, it does not shed light on whether
the iterates generated by our inexact PG method can identify the support of an opti-
mal solution. In this section, we shall see that consideration of this topic is somewhat
delicate. Indeed, no matter how accurately problem (4) is approximately solved, it
is not guaranteed that the approximate solution returned by Algorithm 1 is sparse.
Rather, one needs to exploit the geometric structure of r(x) and design a specialized
algorithm for approximately solving subproblem (4).

Let us formally define the support and the support identification.

Definition 4.1 (support and support identification property). The support of a point
x ∈ Rn with respect to r in (30) is

S(x) := {i ⊆ [ng] | [x]gi 6= 0}.

We say that an algorithm has the support identification property if and only if it
generates iterates {xk} satisfying S(xk) = S(x∗) for some solution x∗ ∈ Rn to (1) and
all sufficiently large k.

It is desirable that an algorithm has the support identification property. First, an
algorithm with the support identification property is appropriate for identifying the
most “important” variables in a regression problem; an algorithm without such a
property needs to perform ad-hoc post processing to obtain a sparse estimate. Second,
a solver that possesses the support identification property is an appropriate choice to
be used within second-order subspace acceleration methods (e.g., see [9]), which are
known to be extremely efficient when the PG problem can be solved exactly.

13



Our method for approximately solving the PG subproblem, which will be proved
to have the support identification property, is based on sufficiently reducing a certain
primal-dual gap and using a special projection. We describe the dual formulation next.

4.1. A dual formulation of the PG subproblem

The PG subproblem (4) with regularizer r given by (30) that is approximately solved
during the kth iteration of Algorithm 1 (see Line 6, Line 9, and (5)) is given by

x∗k := argmin
x∈Rn

φ(x;xk, αk) with φ(x;xk, αk) := 1
2αk
‖x− uk‖2 +

ng∑
i=1

[λ]i‖[x]gi‖ (31)

with uk = xk − αk∇f(xk). By comparing the definition of x∗k with (4), we have

x∗k = T (xk, αk). (32)

Introducing a vector of auxiliary variables z ∈ Rng , subproblem (31) is equivalent to

min
x,z

1
2αk
‖x− uk‖2 + λT z s.t.

[
[x]gi
[z]i

]
∈ Ki for all i ∈ [ng]

with

Ki :=

{[
v
θ

]
| v ∈ R|gi|, θ ∈ R, and ‖v‖ ≤ θ

}
for all i ∈ [ng]

so that Ki is a second-order cone for each i ∈ [ng]. Denoting the characteristic function

by δKi : R|gi|+1 → {0,∞}, which is defined as δKi(w) = 0 if w ∈ Ki and is equal to ∞
otherwise, allows us to write this problem as

min
x,z

1
2αk
‖x− uk‖2 + λT z +

ng∑
i=1

δKi

([
[x]gi
[z]i

])
. (33)

Introducing a set of auxiliary vectors {pi}ngi=1 with pi ∈ R|gi| for each i ∈ [ng] and an
auxiliary vector q ∈ Rng , we may now rewrite (33) in the equivalent form

min
x,z,{pi},q

1
2αk
‖x−uk‖2+λT z+

ng∑
i=1

δKi

([
pi
[q]i

])
s.t. q = z and pi = [x]gi for all i ∈ [ng].

(34)
If we define dual vectors π ∈ Rng and {yi}ngi=1 with yi ∈ R|gi| for each i ∈ [ng], then
the Lagrange function associated with the optimization problem (34) takes the form

Lk(x, z, {pi}, q, π, {yi}) (35)

:= 1
2αk
‖x− uk‖2 + λT z +

ng∑
i=1

δKi

([
pi
[q]i

])
+ (q − z)Tπ +

ng∑
i=1

(pi − [x]gi)
T yi.

14



The dual function is then given by

Dk(π, {yi}) := inf
x,z,{pi},q

L(x, z, {pi}, q, π, {yi})

= inf
x,z

{
1

2αk
‖x− uk‖2 + λT z −

ng∑
i=1

yTi [x]gi − zTπ
}
− sup
{pi},q

ng∑
i=1

(
−
[
yi

[π]i

]T [
pi
[q]i

]
− δKi

([
pi
[q]i

]))

= inf
x,z

{
1

2αk
‖x− uk‖2 + λT z −

ng∑
i=1

yTi [x]gi − zTπ
}
−

ng∑
i=1

sup
pi,[q]i

(
−
[
yi

[π]i

]T [
pi
[q]i

]
− δKi

([
pi
[q]i

]))

= inf
x,z

{
1

2αk
‖x− uk‖2 + λT z −

ng∑
i=1

yTi [x]gi − zTπ
}
−

ng∑
i=1

sup
pi,[q]i

{
−
[
yi

[π]i

]T [
pi
[q]i

] ∣∣∣∣∣
[
pi
[q]i

]
∈ Ki

}
.

If, for each i ∈ [ng], we define yi ∈ Rn so that [yi]gi = yi and all other elements equal
to zero, then it follows from the optimality conditions for the infimum problem above
and the structure of the second-order cone Ki appearing in the supremum that

Dk(π, {yi}) =


−∞ if π 6= λ or

[
yi

[π]i

]
/∈ Ki for any i ∈ [ng],

−αk
2

∥∥∑ng
i=1 yi

∥∥2 − uTk (
∑ng

i=1 yi) if π = λ and

[
yi

[π]i

]
∈ Ki for all i ∈ [ng].

Thus, the dual problem obtained by maximizing the function Dk can be written as

max
{yi}

−αk
2

∥∥∥ ng∑
i=1

yi

∥∥∥2
− uTk

( ng∑
i=1

yi

)
s.t.

[
yi

[λ]i

]
∈ Ki for each i ∈ [ng]. (36)

Next, note that if we define the matrix A ∈ Rn×
∑ng
i=1 |gi| such that

[A](gi,j),j+
∑i−1
`=1 |g`| = 1 for all i ∈ [ng] and j ∈ [|gi|] (37)

and all other entries of A are set equal to zero, then it follows that

Aŷ =

ng∑
i=1

yi where ŷ := (yT1 , y
T
2 , . . . , y

T
ng)

T ∈ R
∑ng
i=1 |gi|. (38)

Introducing the set-valued mapping M : {1, 2, . . . , ng}⇒ {1, 2, . . . ,
∑ng

i=1 |gi|} so that

M(i) =

{
i−1∑
l=1

|gl|+ 1,

i−1∑
l=1

|gl|+ 2, . . . ,

i−1∑
l=1

|gl|+ |gi|
}
, (39)

it follows that yi = [ŷ]M(i) for all i ∈ [ng]. Using (38) and (36) yields the dual problem

Ŷ(xk, αk) := Argmax
ŷ∈Fd

φd(ŷ;xk, αk) with φd(ŷ;xk, αk) := −αk
2 ‖Aŷ‖2 − uTkAŷ (40)

15



where we recall that uk = xk − αk∇f(xk) and we define the dual feasibility set

Fd := {ŷ ∈ R
∑ng
i=1 |gi| | ‖[ŷ]M(i)‖ ≤ [λ]i for each i ∈ [ng]}. (41)

We use capital “Argmax” in (40) to emphasize that Ŷ(xk, αk) is a set. Note that
strong duality holds for the primal problem (31) and dual problem (40) since Slater’s
condition holds for problem (40) (since the components of λ are all strictly positive).

We now establish results related to the dual solution set Ŷ(xk, αk) of problem (40).
The first lemma establishes an important equation (the linking equation) that connects
a dual solution to problem (40) and the primal solution x∗k to problem (31).

Lemma 4.2. The following results hold for the set of dual solutions.

(i) The set of dual solutions Ŷ(xk, αk) for problem (40) satisfies

Ŷ(xk, αk) = {ŷ ∈ Fd | Aŷ = (x∗k − uk)/αk}, (42)

where A is defined in (37) and x∗k is the primal solution defined in (32).

(ii) The solution x∗k to problem (32) satisfies x∗k = uk+αkAŷ
∗
k for all ŷ∗k ∈ Ŷ(xk, αk).

(iii) If i ∈ [ng] and ŷ∗k ∈ Ŷ(xk, αk) satisfying
∥∥[ŷ∗k]M(i)

∥∥ < [λ]i, then [x∗k]gi = 0.

Proof. We begin with part (i). To prove (42) we first show that Ŷ(xk, αk) ⊆ {ŷ ∈
Fd | Aŷ = (x∗k−uk)/αk}. To this end, let ŷ∗k ∈ Ŷ(xk, αk), and thus ŷ∗k ∈ Fd (see (40)).
Since x∗k is the unique solution to the primal problem, we know that (x∗k, ŷ

∗
k) is a primal-

dual solution pair. Therefore, it follows from first-order necessary optimality conditions
obtained by setting the derivative (with respect to x) of the Lagrangian (35) to zero
that x∗k = uk + αkAŷ

∗
k, where A is defined in (37). Since this equality and ŷ∗k ∈ Fd

imply that ŷ∗k belongs to the set in the right-hand side of (42), we have proved the first

inclusion. Now, to establish the inclusion Ŷ(xk, αk) ⊇ {ŷ ∈ Fd | Aŷ = (x∗k − uk)/αk},
let ŷ∗k satisfies ŷ∗k ∈ Fd and Aŷ∗k = (x∗k−uk)/αk. Since x∗k is the unique solution to the
primal problem and strong duality holds for the primal-dual pair, we know that there
must exist ŷsol ∈ Ŷ(xk, αk). Combining this with the inclusion that we already proved
shows that ŷsol must satisfy Aŷsol = (x∗k − uk)/αk. Combining this with the definition
of the dual function φd(·;xk, αk) and Aŷ∗k = (x∗k − uk)/αk shows that

φd(ŷ
∗
k;xk, αk) = −αk

2 ‖Aŷ∗k‖2 − uTkAŷ∗k
= −αk

2 ‖(x∗k − uk)/αk‖2 − uTk (x∗k − uk)/αk
= −αk

2 ‖Aŷsol‖2 − uTkAŷsol = φd(ŷsol;xk, αk).

This equation and ŷ∗k ∈ Fd imply that ŷ∗k ∈ Ŷ(xk, αk), thus completing the proof of
this inclusion. Since we have established both inclusions, we know that (42) holds.

For (ii), let ŷ∗k ∈ Ŷ(xk, αk). Then, (i) implies Aŷ∗k = (x∗k − uk)/αk so that (ii) holds.

For (iii), let i ∈ [ng] and ŷ∗k ∈ Ŷ(xk, αk) satisfy
∥∥[ŷ∗k]M(i)

∥∥ < [λ]i. From ŷ∗k ∈
Ŷ(xk, αk), first-order optimality conditions for (40), and

∥∥[ŷ∗k]M(i)

∥∥ < [λ]i we have

∇[ŷ]M(i)
φd(ŷ

∗
k;xk, αk) = 0 ⇒

[
AT (αkAŷ

∗
k + uk)

]
M(i)

= 0. (43)

The definition of A gives Agi,M(i) = I and Agci ,M(i) = 0 , where I is the identify matrix

16



of size |gi| and gci is the complement of gi. Combining these facts with (43) gives

0 =
[
AT (αkAŷ

∗
k + uk)

]
M(i)

= [AT ]M(i),gi [αkAŷ
∗
k + uk]gi = [αkAŷ

∗
k + uk]gi .

Combining this equation with x∗k = uk+αkAŷ
∗
k implies that [x∗k]gi = 0, as claimed.

We now bound the distance between feasible points and the solution set Ŷ(xk, αk).

Lemma 4.3. The set Ŷ(xk, αk) is compact and convex, so that in particular the pro-

jection operator ProjŶ(xk,αk) (·) and dist(·, Ŷ(xk, αk)) are well defined. Moreover, there

exists νk > 0 and ρk > 0 such that

dist
(
ŷ, Ŷ(xk, αk)

)
≤ νk‖Aŷ −Ay‖ρk for all (ŷ, y) ∈

(
Fd, Ŷ(xk, αk)

)
.

Proof. From the definition of Ŷ(xk, αk) in (42) it is clear that Ŷ(xk, αk) is compact
and convex, which proves the first part of the lemma. Next, by applying [16, Theorem

2.2] with X = R
∑ng
i=1 |gi|, X̄ = Fd, fi(ŷ) =

∥∥[ŷ]M(i)

∥∥2 − [λ]2i for all i ∈ [ng], g(ŷ) =
Aŷ − (x∗k − uk)/αk, it follows that there exists νk > 0 and ρk > 0 such that

dist(ŷ, Sk) ≤ νk ‖Aŷ − (x∗k − uk)/αk‖ρk for all ŷ ∈ Fd,

where Sk = {ŷ ∈ R
∑ng
i=1 |gi| | fi(ŷ) ≤ 0 for all i ∈ [ng] and g(ŷ) = 0}. Since Sk ≡

Ŷ(xk, αk) (see (42)), one can use the previous equality and Lemma 4.2(ii) to conclude

dist
(
ŷ, Ŷ(xk, αk)

)
≤ νk ‖Aŷ − (x∗k − uk)/αk‖ρk

= νk‖Aŷ −Aŷ∗k‖ρk for all (ŷ, ŷ∗k) ∈
(
Fd, Ŷ(xk, αk)

)
,

thus completing the proof.

4.2. A new algorithm for approximately solving the PG subproblem

During the kth iteration of Algorithm 1, it is necessary to compute x̂k+1 satisfying
x̂k+1 ∈ Tεk(xk, αk) for a particular value of εk. One way to perform this task is to
apply an iterative solver to the dual subproblem (40) while monitoring the primal-
dual gap. For example, (40) can be approximately solved by the projected gradient-
ascent algorithm with arc search [6, Section 2.3] armed with an appropriate early
termination test. Unfortunately, the straightforward application of such a method to
the dual problem is insufficient for discovering the support of an optimal solution
to the primal problem. Therefore, in this section we present Algorithm 2, which is
an enhanced projected gradient-ascent algorithm that we prove terminates with an
xk+1 ∈ Tεk(xk, αk) and (asymptotically) to correctly identify the support of an optimal
solution to problem (1) under a nondegeneracy assumption.

Since we propose to use Algorithm 2 as the subproblem solver to be used during
the kth iteration of Algorithm 1, we denote its primal and dual iterate sequences by
{x̂k,t, ŷk,t}t≥0 where t is the iteration counter of the subproblem solver. Given the
tth dual iterate ŷk,t, motivated by Lemma 4.2 we compute a group index set Pk,t,
a primal trial iterate xk,t, and a projected primal trial iterate x̂k,t in Line 6 and
Line 7. The group index set Pk,t holds the groups predicted to be zero at a primal

17



solution, and x̂k,t is constructed by zeroing out all groups in Pk,t so that x̂k,t is at
least as sparse as xk,t. We draw your attention to the usage of ειk−1 appearing in the
definition of Pk,t in Line 6, which is critical to ensuring that Algorithm 2 is well posed
and that our ultimate complexity result for support identification holds. Lines 8–16
check for termination of the subproblem solver, the conditions of which are chosen to
ensure that x̂k+1 ∈ Tεk(xk, αk) anytime termination occurs (see Lemma 4.4 below and
Lines 6 and 9 in Algorithm 1). If termination does not occur during the tth iteration, a
standard projected gradient-ascent search is performed from Lines 17–25 to compute
ŷk,t+1. (There is nothing special about us using the projected gradient-ascent search;

we simply need the sequence {ŷk,t}t≥0 to converge to the solution set Ŷ(xk, αk).)

Algorithm 2 An enhanced projected gradient-ascent method for solving problem (40).

1: Input: An initial dual solution estimate ŷk,0 ∈ R
∑ng
i=1 |gi|.

2: Constants: {η2, ξ2} ⊂ (0, 1) and {σ, ι} ⊂ (0,∞)
3: Values from Algorithm 1: xk, αk, ck, εk−1, option, and γ2.
4: Set t← 0, define A as in (37), and set uk ← xk − αk∇f(xk).
5: for t = 1, 2, . . . do
6: Set Pk,t ← {i ∈ [ng] | ‖[ŷk,t]M(i)‖ < [λ]i − ειk−1} with M defined in (39).
7: Define the trial primal iterate and trial projected primal iterate as

xk,t ← uk + αkAŷk,t and [x̂k,t]gi ←
{

0, if i ∈ Pk,t,
[xk,t]gi , if i /∈ Pk,t,

for each i ∈ [ng].

8: if (option = option 1) then
9: if φ(x̂k,t;xk, αk)− φd(ŷk,t;xk, αk) ≤ ck‖x̂k,t − xk‖2 then

10: return ŷk+1 = ŷk,t and x̂k+1 = x̂k,t
11: end if
12: else (option = option 2)
13: if φ(x̂k,t;xk, αk)−φd(ŷk,t;xk, αk) ≤ γ2(φ(xk;xk, αk)−φd(ŷk,t;xk, αk) then
14: return ŷk+1 = ŷk,t and x̂k+1 = x̂k,t
15: end if
16: end if
17: j ← 0.
18: loop
19: Set the trial step length σk,t ← σξj2.
20: Set the trial iterate ŷk,t+1 ← ProjFd (ŷk,t + σk,t∇φd(ŷk,t;xk, αk)).
21: ifφd(ŷk,t+1;xk, αk)≥φd(ŷk,t;xk, αk)+η2∇φd(ŷk,t;xk, αk)T(ŷk,t+1−ŷk,t)then
22: break the inner loop
23: end if
24: j ← j + 1.
25: end loop
26: end for

We conclude this section by proving that Algorithm 2 is well posed.

Lemma 4.4. For each k ∈ N, if xk does not satisfy the first-order optimality
conditions for problem (1) with regularizer given by (30), then Algorithm 2 termi-
nates finitely with x̂k+1 ∈ Tεk(xk, αk) with εk defined in Line 6 of Algorithm 1 if
option=option 1 or with εk defined in Line 9 of Algorithm 1 if option=option 2.

18



Proof. For a proof by contradiction, assume that Algorithm 2 never terminates, and
thus it generates an infinite subsequence of iterates {ŷk,t}t≥0 that is equivalent to the
sequence generated by the projected gradient-ascent with arc search algorithm by [6,
Section 2.3]. It is well known (e.g., see [11]) that such an algorithm when applied to
a concave optimization problem will satisfy limt→∞ φd(ŷk,t;xk, αk) = φd(ŷ

∗
k;xk, αk),

for any ŷ∗k that is an optimal solution to the dual problem (40). Combining this with
the linking equation (see Lemma 4.2(iii)) and Line 7 of Algorithm 2, it follows that
limt→∞ φ(xk,t;xk, αk) = φ(x∗k;xk, αk) where x̂∗k is the optimal solution to the pri-
mal problem (31). Therefore, since strong duality holds for our primal-dual problems
(Slater’s condition holds for problem (40)), we can conclude that

lim
t→∞

(
φ(xk,t;xk, αk)− φd(ŷk,t;xk, αk)

)
= 0. (44)

Next, we claim that there exists a subsequence T such that limt∈T x̂k,t = x∗k. For
a proof by contradiction, suppose that no such subsequence T exists. Combining this
supposition with limt→∞ xk,t = x∗k (this follows from (44) and the fact that the primal
proximal subproblem has a unique solution), we can conclude that there exists an
i∗ ∈ [ng], t∗ ∈ N, and constants ε and G such that

‖[x̂k,t − xk,t]gi∗‖ ≥ ε > 0 and ‖[xk,t − x∗k]gi∗‖ < ε. for all t ≥ t∗. (45)

The first inequality in (45) together with the definition of x̂k,t in Line 7 shows that
i∗ ∈ Pk,t for all t ≥ t∗. Using this fact, the definition of Pk,t, and (45) gives

i∗ ∈ Pk,t and ‖[ŷk,t]M(i∗)‖ < [λ]i∗ − ειk−1 for all t ≥ t∗. (46)

Using limt→∞ dist
(
ŷk,t, Ŷ(xk, αk)

)
= 0, εk−1 > 0, and (46), we know that there exists

a y∗k ∈ Ŷ(xk, αk) satisfying ‖[y∗k]M(i∗)‖ < [λ]i∗ . This fact and Lemma 4.2(iii) it follows
that [x∗k]gi∗ = 0. Using this equality with the triangle inequality, i∗ ∈ Pk,t for all t ≥ t∗
(see (46)) meaning that [x̂k,t]gi∗ = [x∗k]gi∗ , and the second inequality in (45) yields

‖[x̂k,t−xk,t]gi∗‖ ≤ ‖[x̂k,t−x∗k]gi∗‖+‖[x∗k−xk,t]gi∗‖ = ‖[x∗k−xk,t]gi∗‖ < ε for all t ≥ t∗,

which contradicts the first inequality in (45). Therefore, our claim must be true, namely
that there exists a subsequence T such that limt∈T x̂k,t = x∗k.

Using limt∈T x̂k,t = x∗k, we find that

lim
t∈T

(
φ(x̂k,t;xk, αk)− φd(ŷk,t+1;xk, αk)

)
= 0. (47)

Moreover, since by assumption xk does not satisfy the first-order optimality conditions
for problem (1), we know that there exists a constant δ > 0 such that min{ck‖x̂k,t −
xk‖2, γ2(φ(xk;xk, αk) − φd(ŷk,t+1;xk, αk))} ≥ δ > 0 for all sufficiently large t ∈ T .
This fact may be combined with (47) to conclude that the conditions in Lines 9 and 13
will both hold for all sufficiently large t ∈ T , therefore proving that Algorithm 2 will
finitely terminate (regardless of the value of option), which contradicts our original
supposition, and thus Algorithm 2 finitely terminates.

Next, suppose that option = option 1. In this case, Algorithm 2 will finitely ter-

19



minate in Line 9 and return the vector x̂k+1 satisfying

φ(x̂k+1;xk, αk)−φ(T (xk, αk);xk, αk) ≤ φ(x̂k+1;xk, αk)−φd(ŷk+1;xk, αk) ≤ ck ‖x̂k+1 − xk‖2 .

This inequality and (5) show that x̂k+1 ∈ Tεk(xk, αk) with εk = ck ‖x̂k+1 − xk‖2 as
defined in Line 6 of Algorithm 1, which completes the proof for this case.

Finally, suppose that option = option 2. In this case, Algorithm 2 will finitely
terminate in Line 13 and return the vector x̂k+1 satisfying

φ(x̂k+1;xk, αk)− φd(ŷk+1;xk, αk) ≤ γ2(φ(xk;xk, αk)− φd(ŷk+1;xk, αk)).

Rearranging terms and using γ2 ∈ (0, 1/2] and weak duality gives

φ(x̂k+1;xk, αk)−γ2φ(xk;xk, αk) ≤ (1−γ2)φd(ŷk+1;xk, αk) ≤ (1−γ2)φ(T (xk, αk);xk, αk).

Thus, φ(x̂k+1;xk, αk)−φ(T (xk, αk);xk, αk) ≤ γ2(φ(xk;xk, αk)−φ(T (xk, αk);xk, αk)),
so that x̂k+1 ∈ Tεk(xk, αk) with εk = γ2(φ(xk;xk, αk)− φ(T (xk, αk);xk, αk) as defined
in Line 9 of Algorithm 1, which completes the proof for this case.

4.3. Support Identification

In this section, we prove that Algorithm 1, when paired with Algorithm 2 as its
subproblem solver, has a finite support identification property. This result is proved
under the following two assumptions.

Assumption 4.5. The function f is strongly convex with strong convexity parameter
µf > 0. Thus, problem (1) with regularizer defined by (30) has a unique minimizer x∗.

Assumption 4.6. The parameter γ1 ∈ (0, 2) from Algorithm 1 is chosen to satisfy
3γ1/(1 + γ1) ≤ 1, and the initial PG parameter is then chosen to satisfy

α0 ∈


(

0, 3γ1(1−η)
Lg(1+γ1)

]
if option = option 1,(

0, 1−η
Lg

]
if option = option 2.

Assumption 4.6 is made to simplify the presentation, since it ensures that the se-
quence {αk} is constant and smaller than 1/Lg (regardless of the value of option)
as shown in Lemma 4.7. Otherwise, the analysis below holds for all iterations beyond
some fixed iteration, as a consequence of Lemma 3.6.

The following limits hold as a consequence of Assumption 4.5 and Assumption 4.6.

Lemma 4.7. Under Assumption 4.5 and Assumption 4.6, with α∗ := α0, it holds that

lim
k→∞

εk = 0, lim
k→∞

‖sk‖ = 0, lim
k→∞

xk = x∗, lim
k→∞

x∗k = x∗, and

αk = α∗ = α0 ∈ (0, (1− η)/Lg] for all k ∈ N.

Proof. The fact that αk = α∗ = α0 for all k ∈ N follows from Assumption 4.6, the defi-
nition of α∗, and the proof of Lemma 3.6. The inclusion α0 ∈ (0, (1−η)/Lg] follows from
Assumption 4.6. Next, Lemma 3.5(i) and Lemma 3.6 imply that f(xk+1) + r(xk+1) ≤
f(xk) + r(xk) + η∆k ≤ f(xk) + r(xk) − ηβα∗χ2

k for all k ∈ N. These inequalities

20



and the fact that {f(xk) + r(xk)} is bounded below because of Assumption 4.5,
show that {χk} → 0 and {∆k} → 0. Using these limits and Lemma 3.6, it follows
from (15) when option = option 1 and from (19) when option = option 2 that 0
= limk→∞ εk = limk→∞ ‖sk‖, which are the first two limits we aimed to prove. Next,
it follows from {χk} → 0, the fact that χk is a first-order optimality measure for (1)
(see [3, Theorem 10.7]), and Assumption 4.5 that limk→∞ xk = x∗. Next, combining
{εk} → 0, Lemma 3.2, and Lemma 3.6 proves that {‖x∗k − xk‖} → 0. Combining this
limit with {xk} → x∗ and ‖x∗k−x∗‖ ≤ ‖x∗k−xk‖+‖xk−x∗‖ gives limk→∞ x

∗
k = x∗.

We now show that the dual solutions to problem (1) are given by Ŷ(x∗, α∗).

Lemma 4.8. Under Assumption 4.5, the solution set to the dual of problem (1) is

Ŷmain := max
ŷ∈Fd

φmain
d (ŷ) with φmain

d (ŷ) := inf
x∈Rn

(
f(x)− xTAŷ

)
. (48)

Also, if Assumption 4.6 holds, then the dual solutions satisfy Ŷmain ≡ Ŷ(x∗, α∗).

Proof. Following a similar derivation as that which led to the dual (40) for the PG
subproblem (31), one can see that the dual problem for (1) can be written as (48).

Before proving Ŷmain ≡ Ŷ(x∗, α∗), we consider a shifted version of the dual (40)
with (xk, αk) = (x∗, α∗) and u∗ = x∗ − α∗∇f(x∗) where α∗ is defined in Lemma 4.7:

max
ŷ∈Fd

φshift
d (ŷ) (49)

where

φshift
d (ŷ) := −α∗

2 ‖Aŷ‖2 − (u∗)TAŷ + f(x∗)− α∗

2 ‖∇f(x∗)‖2

= inf
x∈Rn

(
1

2α∗ ‖x− u∗‖2 − xTAŷ + f(x∗)− α∗

2 ‖∇f(x∗)‖2
)
.

This shifted dual problem serves as a bridge between problems (48) and (40), and has

two important properties. First, Ŷ(x∗, α∗) is the solution set of problem (49) since it
is also the solution set to problem (40) (see Lemma 4.2(i)). Second, the following hold:

φshift
d (π) = f(x∗)− (x∗)T∇f(x∗) and Aπ = ∇f(x∗) for all π ∈ Ŷ(x∗, α∗), (50)

which can be seen to hold from the following argument. Let π ∈ Ŷ(x∗, α∗). Since x∗ is
a solution to problem (1), it is easy to show that x∗ is also a solution to problem (31).
Therefore, (x∗, π) is a primal-dual solution pair for the proximal problem and its dual
with (xk, αk) = (x∗, α∗). We can now apply Lemma 4.2(ii) to conclude that x∗ = u∗+
α∗Aπ = x∗−α∗∇f(x∗)+α∗Aπ, which implies the second equality in (50). It now follows
from the second equality in (50) and the definition of u∗ that φshift

d (π) = −α∗

2 ‖Aπ‖2−
(u∗)TAπ+f(x∗)−α∗

2 ‖∇f(x∗)‖2 = −α∗‖∇f(x∗)‖2−(x∗−α∗∇f(x∗))T∇f(x∗)+f(x∗) =

f(x∗)− (x∗)T∇f(x∗), which establishes the first equality in (50).

We first prove that Ŷ(x∗, α∗) ⊆ Ŷmain. To that end, suppose that ŷ∗ ∈ Ŷ(x∗, α∗)
and define (see the function inside the infimum in the definition of φshift

d ) the vector

x := argmin
x∈Rn

1
2α∗ ‖x− u∗‖2 − xTAŷ∗ + f(x∗)− α∗

2 ‖∇f(x∗)‖2 .

21



First-order optimality conditions for this problem show that 1
α∗ (x − x∗) +∇f(x∗) =

Aŷ∗, which combined with Aŷ∗ = ∇f(x∗) (see (50)) proves that x = x∗. It is also
straightforward to verify using first-order optimality conditions and Aŷ∗ = ∇f(x∗)
that x∗ = argmin

x∈Rn

(
f(x)− xTAŷ∗

)
, so that

φmain
d (ŷ∗) = f(x∗)− (x∗)TAŷ∗ = f(x∗)− (x∗)T∇f(x∗). (51)

Next, it follows from the definition of u∗, Assumption 1.1, α∗ ∈ (0, (1− η)/Lg] (see
Lemma 4.7), and η ∈ (0, 1) that

1
2α∗ ‖x− u∗‖2 + f(x∗)− α∗

2 ‖∇f(x∗)‖2

= f(x∗) + (x− x∗)T∇f(x∗) + 1
2α∗ ‖x− x∗‖

2 ≥ f(x) for all x ∈ Rn.

Substracting xTAŷ from both sides of the previous inequality and then taking the infi-
mum over x ∈ Rn, we find that φshift

d (ŷ) ≥ φmain
d (ŷ) for all ŷ ∈ Fd. Using this inequality,

(51), (50), and ŷ∗ ∈ Ŷ(x∗, α∗) (recall that we earlier commented that Ŷ(x∗, α∗) is also
the solution set to problem (49)) that

φmain
d (ŷ∗) = φshift

d (ŷ∗) = f(x∗)− (x∗)T∇f(x∗) ≥ φshift
d (ŷ) ≥ φmain

d (ŷ) for all ŷ ∈ Fd,

which shows ŷ∗ ∈ Ŷmain, and completes the proof for this inclusion.
Next, we prove the inclusion Ŷmain ⊆ Ŷ(x∗, α∗). Let ŷ∗ ∈ Ŷmain. If we denote

xmain := argminx∈Rn (f(x)− xTAŷ∗), then first-order optimality conditions give

∇f(xmain) = Aŷ∗. (52)

Since (x∗, ŷ∗) is an optimal primal-dual solution pair for problem (1) and its dual (48),
it follows that Aŷ∗ = ∇f(x∗). Together with (52) shows that ∇f(x∗) = ∇f(xmain),
which combined with f being strongly convex with parameter µf > 0 (see Assump-
tion 4.5) to obtain 0 =

∥∥∇f(x∗)−∇f(xmain)
∥∥ ≥ µ

∥∥x∗ − xmain
∥∥, so that xmain = x∗.

Using the definition of xmain, xmain = x∗, and Aŷ∗ = ∇f(x∗), we have that

φmain
d (ŷ∗) = f(xmain)− (xmain)TAŷ∗ = f(x∗)− (x∗)T∇f(x∗). (53)

Next, using Aŷ∗ = ∇f(x∗) and the definition of u∗, it follows that

φshift
d (ŷ∗) = −α∗

2 ‖Aŷ∗‖2 − (u∗)TAŷ∗ + f(x∗)− α∗

2 ‖∇f(x∗)‖2

= −α∗‖∇f(x∗)‖2 − (x∗ − α∗∇f(x∗))T∇f(x∗) + f(x∗)

= f(x∗)− (x∗)T∇f(x∗).

(54)

Taking any ŷ′ ∈ Ŷ(x∗, α∗), it follows from (50) that φshift
d (ŷ′) = f(x∗)− (x∗)T∇f(x∗),

which together with (53) and (54) implies

φshift
d (ŷ∗) = φmain

d (ŷ∗) = φshift
d (ŷ′) ≥ φshift

d (ŷ) for all ŷ ∈ Fd.

Since this inequality means ŷ∗ ∈ Ŷ(x∗, α∗), we conclude that Ŷmain ⊆ Ŷ(x∗, α∗).

22



Since we established in Lemma 4.8 that Ŷ(x∗, α∗) is the set of dual solutions to
problem (1), we may now present our non-degeneracy assumption, which uses the

support of x∗. Note that each i ∈ [ng] and ŷ ∈ Ŷ(x∗, α∗) together satisfy ‖[ŷ]M(i)‖ ≤
[λ]i by the definition of Ŷ(x∗, α∗). Therefore, the following non-degeneracy assumption
is a strengthening of this inequality for all groups not in S(x∗).

Assumption 4.9. The quantity

δnd :=

{
minŷ∈Ŷ(x∗,α∗),i 6∈S(x∗)

(
[λ]i − ‖[ŷ]M(i)‖

)
if S(x∗) $ [ng],

1 if S(x∗) = [ng],

satisfies δnd > 0. It follows that δ∗ := min{1, δnd} ∈ (0, 1].

The essence of the previous assumption is that, for each i /∈ S(x∗), the set
{[ŷ]M(i)}ŷ∈Ŷ(x∗,α∗) is bounded away from the boundary of the two-norm ball centered

at zero of radius [λ]i. This non-degeneracy assumption is crucial for proving support
identification results, where we note that a similar assumption has been used in [9, 27].
In fact, Assumption 4.9 is an extension of the assumption used by these authors that
is applicable to the overlapping group-`1 case.

We also need minimal control over the sequences {νk} and {ρk} from Lemma 4.3.

Assumption 4.10. The sequences {νk} and {ρk} defined in Lemma 4.3 can be chosen
to satisfy supk≥0 νk =: νmax <∞ and infk≥0 ρk =: ρmin > 0.

Let us also choose any ν∗ ∈ (0,∞) and ρ∗ ∈ (0,∞) satisfying

dist
(
ŷ, Ŷ(x∗, α∗)

)
≤ ν∗‖Aŷ −Ay‖ρ∗ for all (ŷ, y) ∈

(
Fd, Ŷ(x∗, α∗)

)
, (55)

which are guaranteed to exist because of Lemma 4.3 with (xk, αk) = (x∗, α∗). Using
these quantities, we may now bound the distance between any exact solution of the
dual problem (40) and Ŷ(x∗, α∗), and the distance between the inexact solution of

(40) computed by Algorithm 1 and the set Ŷ(xk, αk).

Lemma 4.11. Under Assumptions 4.5–4.10 the following hold.

(i) With ν∗ and ρ∗ from (55) and α∗ from Lemma 4.7, we have for each k ∈ N that

dist(ŷ∗k, Ŷ(x∗, α∗)) ≤ ν∗
(
‖x∗k−x∗‖

αk
+
(
Lg + 1

αk

)
‖xk − x∗‖

)ρ∗
for all ŷ∗k ∈ Ŷ(xk, αk).

(ii) The ŷk+1 returned by Algorithm 2 satisfies

dist
(
ŷk+1, Ŷ(xk, αk)

)
≤ νk

(
2εk
αk

)ρk/2
.

Proof. To prove part (i), let ŷ∗k ∈ Y(xk, αk). We may now define y∗ =
ProjŶ(x∗,α∗) (ŷ∗k). It now follows from (55) with (ŷ, y) = (ŷ∗k, y

∗), Lemma 4.2(i), the

23



triangle inequality, and Assumption 1.1 that

dist
(
ŷ∗k, Ŷ(x∗, α∗)

)
≤ ν∗ ‖Aŷ∗k −Ay∗‖ρ

∗
= ν∗

∥∥∥x∗k−ukαk
− (x∗−u∗)

α∗

∥∥∥ρ∗ = ν∗
∥∥∥x∗k−xkαk

+∇f(xk)−∇f(x∗)
∥∥∥ρ∗

≤ ν∗
(
‖x∗k−xk‖

αk
+ Lg ‖xk − x∗‖

)ρ∗
≤ ν∗

(
‖x∗k−x∗‖

αk
+
(
Lg + 1

αk

)
‖xk − x∗‖

)ρ∗
,

which establishes the claim in part (i) to be true.
We now prove part (ii). If we define hk(z) := αk

2 ‖z‖
2 + uTk z, then it follows

that φd(ŷ;xk, αk) = −hk(Aŷ). Also, to simply notation, let us define pk+1 :=
ProjŶ(xk,αk) (ŷk+1). Using this notation, we can observe from the properties that the

ŷk+1 returned by Algorithm 2 must satisfy that

φd(pk+1;xk, αk)− φd(ŷk+1;xk, αk) ≤ φ(xk+1;xk, αk)− φd(ŷk+1;xk, αk) ≤ εk.

Combining this inequality with strong convexity of hk and pk+1 ∈ Ŷ(xk, αk) gives

εk ≥ φd(pk+1;xk, αk)− φd(ŷk+1;xk, αk) = hk(Aŷk+1)− hk(Apk+1)

≥ ∇hk(Apk+1)TA(ŷk+1 − pk+1) + αk
2 ‖Aŷk+1 −Apk+1‖2

≥ −∇φd(pk+1;xk, αk)
T (ŷk+1 − pk+1) + αk

2 ‖Aŷk+1 −Apk+1‖2 ≥ αk
2 ‖Aŷk+1 −Apk+1‖2 .

The previous inequality, Lemma 4.3 with (ŷ, y) = (ŷk+1, pk+1), and Lemma 3.6 gives

dist
(
ŷk+1, Ŷ(xk, αk)

)
≤ νk

(
‖Aŷk+1 −Apk+1‖2

)ρk/2 ≤ νk (2εk
αk

)ρk/2
,

thus completing the proof of part (ii).

For the remainder of this section, our analysis applies to two difference scenarios
that are defined below based on the rate at which {εk} → 0. The first scenario uses

θ := (1− α0µf ) ∈ [η, 1), (56)

with the inclusion following from Lemma 4.7 and µf ≤ Lg since they imply that
1 > θ ≡ 1− α0µf ≥ 1− ((1− η)/Lg)Lg = η. We can now state our two scenarios.

Strategy 1. For some ψ ∈ (0, 1), we have εk ≤ min{α0

2 , ψ
2kθ2(k+1)} for all k ∈ N.

Strategy 2. For some ω ∈ (0, 1), we have εk+1 ≤ ω2εk for all k ∈ N with ε0 ≤ α0/2.
By applying this bound recursively, it follows that εk ≤ ω2kε0 ≤ α0/2 for all k ∈ N.

We consider both of these scenarios for the following reasons. To implement Strat-
egy 1 the value of θ must be known, which means that the strong convexity parameter
µf must be known. (Of course, in practice, one could also attempt to estimate µf .) If
this parameter is known, this strategy may be a good choice. On the other hand, Strat-
egy 2 can be implemented without any knowledge of the strong convexity parameter,
which is an advantage, but we shall see that our support identification result depends
on the size of ω relative to θ. Finally, let us note that implementing either strategy
requires controlling the size of each element of the sequence {εk}. This can be done

24



for each k ∈ N by checking the value of εk returned by Algorithm 2 when called by
Algorithm 1. If the value returned is not small enough, then Algorithm 1 could recall
Algorithm 2 but this time using as an initial iterate the value returned the previous
time it was called. This “recall if necessary” procedure can be repeated as necessary
until a sufficiently small εk is obtained as required by the chosen strategy.

We now prove a rate of convergence for both x∗k and xk+1 to the solution x∗.

Lemma 4.12. Let Assumption 1.1 and Assumption 4.5 hold. It follows that

‖xk+1 − x∗‖ ≤ θk+1

(
‖x0 − x∗‖+

√
2α0

k∑
i=0

√
εi

θi+1

)
for all k ∈ N (57)

where θ is defined in (56). Consequently, the following rates of convergence hold:

(i) If the sequence {εk} satisfies Strategy 1, then

‖xk+1 − x∗‖ ≤ θk+1
(
‖x0 − x∗‖+

√
2α0/(1− ψ)

)
for all k ∈ N and (58)

‖x∗k − x∗‖ ≤ θk+1
(
‖x0 − x∗‖+

√
2α0/(1− ψ) +

√
2α0ψ

)
for all k ∈ N. (59)

(ii) If the sequence {εk} satisfies Strategy 2, then the following hold:
(a) If ω < θ, then

‖xk+1 − x∗‖ ≤ θk+1
(
‖x0 − x∗‖+

√
2α0ε0

(θ−ω)

)
for all k ∈ N, (60)

‖x∗k − x∗‖ ≤ θk+1
(
‖x0 − x∗‖+

√
2α0ε0

(θ−ω) +
√

2α0ε0
ω

)
for all k ∈ N. (61)

(b) If ω > θ, then

‖xk+1 − x∗‖ ≤ ωk+1
(
‖x0 − x∗‖+

√
2α0ε0
ω−θ

)
for all k ∈ N and (62)

‖x∗k − x∗‖ ≤ ωk+1
(
‖x0 − x∗‖+

√
2α0ε0
ω−θ +

√
2α0ε0
ω

)
for all k ∈ N. (63)

(c) If ω = θ, then

‖xk+1 − x∗‖ ≤ θk+1
(
‖x0 − x∗‖+ (k + 1)

√
2α0ε0
θ

)
for all k ∈ N and (64)

‖x∗k − x∗‖ ≤ θk+1
(
‖x0 − x∗‖+ (k + 1)

√
2α0ε0
θ +

√
2α0ε0ω

k
)

for all k ∈ N.
(65)

Proof. We first prove (57) using a procedure similar to [25, Proposition 3]. It follows
from Lemma 4.7, optimality of x∗, and defining pk = proxα∗r (xk − α∗∇f(xk)) that

‖xk+1 − x∗‖2 = ‖xk+1 − pk + pk − proxα∗r (x∗ − α∗∇f(x∗))‖2 . (66)

This equality, the Cauchy-Schwarz inequality, and non-expansivity of the proximal

25



operator yields

‖xk+1 − x∗‖2 ≤ ‖xk+1 − pk‖2 + ‖pk − proxα∗r (x∗ − α∗∇f(x∗))‖2
+ 2 ‖xk+1 − pk‖ ‖pk − proxα∗r (x∗ − α∗∇f(x∗))‖
≤ ‖xk+1 − pk‖2 + ‖xk − x∗ − α∗(∇f(xk)−∇f(x∗))‖2

+ 2 ‖xk+1 − pk‖ ‖xk − x∗ − α∗(∇f(xk)−∇f(x∗))‖ .

Combining this inequality, Lemma 3.2, and the fact that, for all k ∈ N, we know
αk = α∗ and xk+1 = x̂k+1 returned by Algorithm 2 satisfy xk+1 ∈ Tεk(xk, α∗) yields

‖xk+1 − x∗‖2 ≤ 2α∗εk + ‖xk − x∗ − α∗(∇f(xk)−∇f(x∗))‖2

+ 2
√

2α∗εk ‖xk − x∗ − α∗(∇f(xk)−∇f(x∗))‖ .

To bound the norm that appears in the previous inequality, we may use the Cauchy-
Schwarz inequality and [19, Theorem 2.1.12] to obtain

‖xk − x∗ − α∗(∇f(xk)−∇f(x∗))‖2

= ‖xk − x∗‖2 + (α∗)2 ‖∇f(xk)−∇f(x∗)‖2 − 2α∗(xk − x∗)T (∇f(xk)−∇f(x∗))

≤ ‖xk − x∗‖2 + (α∗)2 ‖∇f(xk)−∇f(x∗)‖2

− 2α∗
(
Lgµf
Lg+µf

‖xk − x∗‖2 + 1
µf+Lg

‖∇f(xk)−∇f(x∗)‖2
)

=
(

1− 2α∗Lgµf
Lg+µf

)
‖xk − x∗‖2 + α∗

(
α∗ − 2

Lg+µf

)
‖∇f(xk)−∇f(x∗)‖2 . (67)

From η ∈ (0, 1) and Lemma 4.7 we have α∗ ∈ (0, (1− η)/Lg] ⊂ (0, 1/Lg). Combining
this with µf ≤ Lg we have α∗ < 2/(Lg + µf ), and from strong convexity of f that

‖∇f(xk)−∇f(x∗)‖2 ≥ µ2
f ‖xk − x∗‖2. Combining these two facts with (67) gives

‖xk − x∗ − α∗(∇f(xk)−∇f(x∗))‖2

≤
(

1− 2α∗Lgµf
Lg+µf

)
‖xk − x∗‖2 + α∗µ2

f

(
α∗ − 2

Lg+µf

)
‖xk − x∗‖2

=
(

1−
(

2α∗Lgµf
Lg+µf

+
2α∗µ2

f

Lg+µf

)
+ (α∗)2µ2

f

)
‖xk − x∗‖2

= (1− α∗µf )2 ‖xk − x∗‖2 = θ2 ‖xk − x∗‖2 ,

(68)

where the last equality follows from Lemma 4.7. Combining (66) and (68) gives

‖xk+1 − x∗‖2 ≤ θ2 ‖xk − x∗‖2 + 2
√

2α∗εkθ ‖xk − x∗‖+ 2α∗εk =
(
θ ‖xk − x∗‖+

√
2α∗εk

)2
.

Taking the square root of the previous inequality and applying it recursively shows

‖xk+1 − x∗‖ ≤ θk+1 ‖x0 − x∗‖+

k∑
i=0

θk−i
√

2αiεi for all k ∈ N.

26



If we now use basic algebra and the fact that αi = α0 for all i ∈ N, we arrive at

‖xk+1 − x∗‖ ≤ θk+1

(
‖x0 − x∗‖+

√
2α0

k∑
i=0

√
εi

θi+1

)
for all k ∈ N,

which proves that the inequality in (57) holds.
Before proving the remaining results, let us make a few observations. First, since

αk = α0 for all k ∈ N (see Lemma 4.7) it follows from the construction of Algorithm 1
that xk+1 = x̂k+1 for all k ∈ N. Combining this fact with the triangle inequality,
Lemma 3.2 with xk+1 = x̂k+1 ∈ Tεk(xk, αk) (which holds by construction of Algo-
rithm 1), and the fact that αk = α0 for all k ∈ N shows that

‖x∗k − x∗‖ ≤ ‖x∗k − xk+1‖+ ‖xk+1 − x∗‖ ≤
√

2α0εk + ‖xk+1 − x∗‖ . (69)

We now consider specific choices for the sequence {εk} to derive the remaining results.

Part (i). Let {εk} satisfy the bound in Strategy 1. Applying this bound on εk for all
k ∈ N to the right-hand side of (57) leads to a geometric sum with factor ψ, from
which (58) follows. Combining (58) with the assumed bound on εk for all k ∈ N, (69),
and ψ ∈ (0, 1) proves that (59) holds.

Part (ii). Let {εk} satisfy Strategy 2 so that εk ≤ ω2kε0. This fact and (57) gives

‖xk+1 − x∗‖ ≤ θk+1

(
‖x0 − x∗‖+

√
2α0ε0
θ

k∑
i=0

(ω
θ

)i)
. (70)

We can now consider the three sub-parts (a), (b), and (c) in turn.

To prove part (ii)(a), suppose that ω < θ. It follows that
∑k

i=0 (ω/θ)i ≤∑∞
i=0 (ω/θ)i = 1

1−ω/θ . Combining this inequality with (70) shows that (60) holds.

Combining (60) with (69), εk ≤ ω2kε0, and ω < θ gives (61), completing this proof.
To prove part (ii)(b), suppose that ω > θ. Let us first observe by using basic algebra

and the fact that a geometric series with factor θ/ω ∈ (0, 1) is finite that

θk+1
k∑
i=0

(ω
θ

)i
= ωk+1

k+1∑
i=1

(
θ

ω

)i
= ωkθ

k∑
i=0

(
θ

ω

)i
≤ ωkθ

∞∑
i=0

(
θ

ω

)i
=

ωkθ

1− θ/ω =
ωk+1θ

ω − θ .

This inequality can be combined with (70) and ω > θ to conclude that

‖xk+1 − x∗‖ ≤ θk+1 ‖x0 − x∗‖+ ωk+1

√
2α0ε0
ω − θ ≤ ω

k+1

(
‖x0 − x∗‖+

√
2α0ε0
ω − θ

)
,

thus proving that (62) holds. Then, combining (62) with (69) and εk ≤ ω2kε0 gives (63).

To prove part (ii)(c), suppose that ω = θ. In this case, we know that
∑k

i=0

(
ω
θ

)i
=

k + 1. Combining this equality with (70) establishes the inequality in (64). Then,
combining (64) with (69) and εk ≤ ω2kε0 gives (65), thus completing the proof.

Lemma 4.13. Let Assumption 4.5 and Assumption 4.9 hold. Then, for all k ∈ N,
the vector ŷk+1 returned by Algorithm 2 satisfies the following bounds:

27



(i) If the sequence {εk} satisfies Strategy 1, then

dist
(
ŷk+1, Ŷ(x∗, α∗)

)
≡ ‖ŷk+1 − ProjŶ(x∗,α∗) (ŷk+1) ‖

= O
([
θmin{ρmin,ρ∗}]k) for all k ∈ N.

(ii) If the sequence {εk} satisfies Strategy 2, then

dist
(
ŷk+1, Ŷ(x∗, α∗)

)
≡
∥∥∥ŷk+1 − ProjŶ(x∗,α∗) (ŷk+1)

∥∥∥
=


O
([

max{ωρmin , θρ
∗}
]k)

if ω < θ,

O
(
[ωmin{ρmin,ρ∗}]k

)
if ω > θ,

O
(
(kθk)min{ρmin,ρ∗}

)
if ω = θ.

Proof. Let us define pk+1 = ProjŶ(xk,αk) (ŷk+1) and p∗k+1 = ProjŶ(x∗,α∗) (pk+1). The

triangle inequality and non-expansiveness of the projection operator shows that∥∥∥ŷk+1 − ProjŶ(x∗,α∗) (ŷk+1)
∥∥∥

= ‖ŷk+1 − pk+1 + pk+1 − p∗k+1 + p∗k+1 − ProjŶ(x∗,α∗) (ŷk+1) ‖
≤ ‖ŷk+1 − pk+1‖+ ‖pk+1 − p∗k+1‖+ ‖p∗k+1 − ProjŶ(x∗,α∗) (ŷk+1) ‖
≤ 2‖ŷk+1 − pk+1‖+ ‖pk+1 − p∗k+1‖ = 2 dist

(
ŷk+1, Ŷ(xk, αk)

)
+ dist

(
pk+1, Ŷ(x∗, α∗)

)
.

This inequality, Lemma 4.11, and αk = α∗ for all k ∈ N (see Lemma 4.7) show that∥∥∥ŷk+1 − ProjŶ(x∗,α∗) (ŷk+1)
∥∥∥ ≤ 2νk

(
2εk
α∗

)ρk
2 + ν∗

(
‖x∗k−x∗‖

α∗ + (Lg + 1
α∗ ) ‖xk − x∗‖

)ρ∗
.

(71)
Note that regardless of which case in the statement of the lemma we are considering
(i.e., Strategy 1 for part (i) or Strategy 2 for part (ii)), we know that εk ≤ α0/2 ≡ α∗/2
for all k ∈ N. This bound, (71), and Assumption 4.10 together show that∥∥∥ŷk+1 − ProjŶ(x∗,α∗) (ŷk+1)

∥∥∥ ≤ 2νmax

(
2εk
α∗

)ρmin

2 +ν∗
(
‖x∗k−x∗‖

α∗ +(Lg+ 1
α∗ ) ‖xk − x∗‖

)ρ∗
.

(72)
We can now consider the two cases in the statement of the lemma.

For part (i), {εk} satisfies Strategy 1 so that εk ≤ min{α0/2, ψ
2kθ2(k+1)} for all

k ∈ N. Combining this bound, (72), Lemma 4.12(i), θ ∈ [η, 1), and ψ ∈ (0, 1) gives∥∥∥ŷk+1 − ProjŶ(x∗,α∗) (ŷk+1)
∥∥∥ = O

[(
ψkθk+1

)ρmin
]

+
[
O(θk+1) +O(θk)

]ρ∗
= O

(
[θρ

min

]k
)

+O
(
[θρ
∗
]k
)

= O
([
θmin{ρmin,ρ∗}]k),

which completes the proof for part (i) of this lemma.
For part (ii), {εk} satisfies Strategy 2 so that εk ≤ ω2kε0 for all k ∈ N. This bound,

28



(72), and Lemma 4.12 yield∥∥∥ŷk+1 − ProjŶ(x∗,α∗) (ŷk+1)
∥∥∥

=


O
[ (
ωk
)ρmin

]
+
[
O
(
θk+1

)
+O(θk)

]ρ∗
if ω < θ,

O
[ (
ωk
)ρmin

]
+
[
O
(
ωk+1

)
+O(ωk)

]ρ∗
if ω > θ,

O
[ (
ωk
)ρmin

]
+
[
O
(
(k + 1)θk+1

)
+O(kθk)

]ρ∗
if ω = θ,

=


O
([

max{ωρmin , θρ
∗}
]k)

if ω < θ,

O
(
[ωmin{ρmin,ρ∗}]k

)
if ω > θ,

O
(
(kθk)min{ρmin,ρ∗}

)
if ω = θ,

which completes the proof for part (ii) of this lemma.

We are now ready to present our main support identification theorem.

Theorem 4.14. Let Assumption 4.5–Assumption 4.10 hold, and define

Θ :=

{
min{1,mini∈S(x∗) ‖[x∗]gi‖} if S(x∗) 6= ∅,
1 otherwise.

Then, the following results hold:

(i) If {εk} satisfies Strategy 1, then S(xk+1) = S(x∗) for all k ≥ K1 with

K1 := max

{
O
(

log Θ

log θ

)
,O
(

log δ∗

log max
{[
θmin{ρmin,ρ∗}

]
, [Ψθ]2ι

})} .
(ii) If {εk} satisfies Strategy 2, then S(xk+1) = S(x∗) for all k ≥ K2 with

K2 :=


max

(
O
(

log Θ
log θ

)
,O
(

log δ∗

log(max{ωρmin ,θρ∗ ,ω2ι})

))
if ω < θ,

max
(
O
(

log Θ
logω

)
,O
(

log δ∗

log(max{ωmin{ρmin,ρ
∗},ω2ι})

))
if ω > θ,

max (O(CΘ),O(Cδ∗)) if ω = θ,

CΘ is the smallest nonnegative integer such that (k+1)ωk+1 < Θ for all k ≥ CΘ,
and Cδ∗ is the smallest nonnegative integer such that (kωk)min{ρmin,ρ∗}+ω2ιk < δ∗

for all k ≥ Cδ∗.

Proof. The proof begins by establishing two claims, which we consider one at a time.

Claim 1. We claim that
∥∥[ŷk+1]M(i)

∥∥ < [λ]i − ειk−1 and [xk+1]gi = 0 for all i 6∈ S(x∗)
and k ≥ k1 with

k1 =


O
(

log δ∗

log max{[θmin{ρmin,ρ
∗}],[Ψθ]2ι}

)
if Strategy 1 is used,

O
(

log δ∗

log(max{ωρmin ,θρ∗ω2ι})

)
if Strategy 2 is used and ω < θ,

O
(

log δ∗

log(max{ωmin{ρmin,ρ
∗}ω2ι})

)
if Strategy 2 is used and ω > θ,

O(Cδ∗) if Strategy 2 is used and ω = θ.

(73)

29



To prove this, note that if S(x∗) = [ng] (i.e., if no i /∈ S(x∗) exists), then the claim
trivially holds for all k ≥ 0, which agrees with the definition of k1 since δ∗ = 1
and Cδ∗ = 0 in this case. Therefore, for the remainder of the proof, we assume that
S(x∗) $ [ng]. It follows from Lemma 4.13 that

dist(ŷk+1, Ŷ(x∗, α∗)) + ειk−1

=



O
([
θmin{ρmin,ρ∗}

]k)
+O

((
[Ψθ]2ι

)k)
if Strategy 1 is used,

O
([

max{ωρmin , θρ
∗}
]k)

+O
((
ω2ι
)k)

if Strategy 2 is used and ω < θ,

O
(
[ωmin{ρmin,ρ∗}]k

)
+O

((
ω2ι
)k)

if Strategy 2 is used and ω > θ,

O
(
(kθk)min{ρmin,ρ∗}

)
+O

((
ω2ι
)k)

if Strategy 2 is used and ω = θ.

Thus, there exists a constant k1 satisfying (73) that makes the right-hand side
of the previous inequality less than δ∗, and therefore both ειk−1 < δ∗ and

dist(ŷk+1, Ŷ(x∗, α∗)) < δ∗ − ειk−1 must hold for all k ≥ k1. This second inequality im-

plies that, for each k ≥ k1, there exists p∗k ∈ Ŷ(x∗, α∗) such that ‖ŷk+1−p∗k‖ < δ∗−ειk−1.
This inequality and Assumption 4.9 together imply

‖[ŷk+1]M(i)‖ ≤ ‖[ŷk+1]M(i) − [p∗k]M(i)‖+ ‖[p∗k]M(i)‖ < δ∗ − ειk + [λ]i − δ∗ = [λ]i − ειk−1

for all i 6∈ S(x∗) and k ≥ k1, which proves the first part of the claim.
To prove the second part of the claim, first note from how ŷk+1 is computed in

Algorithm 2 that there exists an integer tk > 0 such that ŷk+1 = ŷk,tk . Combining this
fact with the first part of the claim that we just proved, we find that

∥∥[ŷk+1]M(i)

∥∥ =∥∥[ŷk,tk ]M(i)

∥∥ < [λ]i−ειk−1 for all i /∈ S(x∗) and k ≥ k1. Using this inequality and Line 7
of Algorithm 2, it follows that [x̂k,tk ]gi = 0 for all i /∈ S(x∗) and k ≥ k1. Thus, for all
i /∈ S(x∗) and k ≥ k1, we have [x̂k+1]gi = [x̂k,tk ]gi = 0. This result and Assumption 4.6
imply that [xk+1]gi = 0 for all i 6∈ S(x∗) and k ≥ k1 since xk+1 = x̂k+1.

Claim 2. We claim that [xk+1]gi 6= 0 for all i ∈ S(x∗) and k ≥ k2 with

k2 =


O
(

log Θ
log θ

)
if (Strategy 1 is used) or (Strategy 2 is used and ω < θ),

O
(

log Θ
logω

)
if Strategy 2 is used and ω > θ,

O(CΘ) if Strategy 2 is used and ω = θ.

(74)

To prove this, note that if S(x∗) = ∅, then the claim trivially holds for all k ≥ 0, which
agrees with the definition of k2 since Θ = 1 and CΘ = 0 in this case. Thus, for the
remainder of the proof, we assume that S(x∗) 6= ∅. It follows from Lemma 4.12 that

‖xk+1 − x∗‖

=


O
(
θk+1

)
if (Strategy 1 is used) or (Strategy 2 is used and ω < θ),

O
(
ωk+1

)
if Strategy 2 is used and ω > θ hold,

O
(
(k + 1)θk+1

)
if Strategy 2 is used and ω = θ hold.

Thus, there exists a constant k2 satisfying (74) that makes the right-hand side of
the above inequality less that Θ. The fact that ‖xk+1 − x∗‖ < Θ for k ≥ k2 implies

30



‖[xk+1]gi − [x∗]gi‖ < Θ for all i ∈ S(x∗) and k ≥ k2. This further suggests [xk+1]gi 6= 0
for all i ∈ S(x∗) and k ≥ k2.

Parts (i) and (ii) follow since S(xk+1) = S(x∗) for all k ≥ max{k1, k2}.
We remark that if we do not make any assumption on the rate of convergence of {εk}

to zero (e.g., do not assume that a strategy such as Strategy 1 or Strategy 2 is used),
then a small modification of the above analysis establishes that support identification
still occurs. However, we are no longer able to give a bound on the maximum number
of iterations before support identification will occur.

5. Numerical Results

In this section, we discuss our numerical tests. In Section 5.1 we discuss the formulation
of the test problem, in Section 5.2 we discuss the details of our implementations, and
in Section 5.3 we discuss the tests performed and the results of those tests.

5.1. Problem Formulation

We focus on the learning task of binary classification. To this end, we consider prob-
lem (1) where the function f is the binary logistic loss defined as

f(x) = 1
N

N∑
i=1

log
(

1 + e−yix
T di
)
,

where di ∈ Rn is the ith data point, N is the number of data points in the data set, and
yi ∈ {−1, 1} is the class label for the ith data point. Such an approach is commonly
used in machine learning applications.

Data sets for the logistic regression problem were obtained from the LIBSVM repos-
itory.2 We excluded all multi-class (greater than two) classification instances, instances
with less than 100 features, and all data sets that were too large (≥ 8GB) to be loaded
into memory. For the adult data (a1a–a9a) and webpage data (w1a–w8a), we used only
the largest instances, namely a9a and w8a. This left us with the final set of 11 data
sets found in Table 1. If the source of the data indicated that a data set was scaled,
we used it without modification. When the website did not indicate that scaling for a
data set was used, we scaled each column of the feature data (i.e., feature-wise scaling)
into the range [−1, 1] by dividing its entries by the largest entry in absolute value.

We consider the group regularizer r defined in (30). As for defining the groups, we use
a similar strategy as that used in [29] to define different overlapping groups, where the
overlapping of groups is controlled by parameters ratio ∈ (0, 1) and grpsize ∈ N. The
product of ratio and grpsize determines the number of elements in each group that
overlap with its neighboring groups. For example, if n = 13, ratio = 0.2, grpsize = 5,
then the groups are g1 = {1, 2, 3, 4, 5}, g2 = {5, 6, 7, 8, 9}, and g3 = {9, 10, 11, 12, 13},
which have overlap of size 1 = ratio · grpsize. In addition, we consider different
solution sparsity levels, which are achieved by adjusting the parameters {[λ]i}ngi=1.

Specifically, for each i ∈ [ng], we define [λ]i = Λ
√
|gi| for some Λ < Λmin, where

Λmin is the minimum positive number such that the solution to the problem with
[λ]i = Λmin

√
|gi| for all i ∈ [ng] is x = 0. Since Λmin cannot be computed analytically,

2https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets

31



we test a range of values and choose the smallest one that gives the zero solution; as
a starting guess for Λmin, we use the one derived from the non-overlapping group-`1
case as discussed in [31, equation (23)]. For the tests described later in this section,
we make specific choices for the parameters ratio, grpsize, and Λ.

Table 1. The first column (data set) gives the name of the data set. The second column (N) and third
column (n) indicate the number of data points and number of features (equivalently, the number of optimization

variables), respectively. The fourth column (scale) provides the feature-wise scaling used: each feature is either

scaled into the given interval or scaled to have mean zero (µ = 0) and variance one (σ2 = 1). The fifth column
(who) indicates whether the data set came pre-scaled from the LIBSVM website (“website”), or whether it did

not come pre-scaled and we scaled it (“us”) as described in Section 5.1.

data set N n scale who

a9a 32561 123 [0,1] website

colon-cancer 62 2000 (µ, σ2) = (0, 1) website
duke breast-cancer 44 7192 (µ, σ2) = (0, 1) website

gisette 6000 5000 [-1,1] website

leukemia 38 7129 (µ, σ2) = (0, 1) website
madelon 2000 500 [-1,1] us

mushrooms 8124 112 [0,1] website

news20.binary 19996 1355191 [0,1] website
rcv1.binary 20242 47236 [0,1] website

real-sim 72309 20958 [0,1] website
w8a 49749 300 [0,1] website

5.2. Implementation details

In Algorithm 1, the values of the input parameters that we use are ξ = 0.5, η = 10−3

and ζ = 0.8, and the remaining parameters γ1 and γ2 will be described later since
they are tuned. We set x0 ← 0 and α0 ← 1. For both option = option 1 and
option = option 2, Algorithm 1 decreases the value of the PG parameter for the
next iteration using a multiplicative factor when flagk = decrease α. In practice,
this strategy might be conservative as the PG parameter can become relatively small
after encountering several consecutive iterations that trigger a decrease in the PG
parameter. Instead, in our implementation, we update the PG parameter at the end
of each iteration of Algorithm 1 following an idea from [5]. Specifically, for the kth
iteration, if the inequality in Line 13 is not satisfied with j = 0 (meaning that no
backtracking is performed), we increase the PG parameter as αk+1 ← 1.1αk; otherwise,
we decrease the PG parameter as αk+1 ← ζαk. While this PG parameter update
strategy works better than the basic strategy in Algorithm 1, it is not covered by our
analysis in Section 3. However, a simple modification is to allow the PG parameter to
increase a finite number of times, which would be covered by our analysis with a larger
constant in the complexity result. We compare the two adaptive termination conditions
option 1 and option 2 with the absolute termination condition from [25], i.e., setting
εk = const

k3 for some positive number const (its value will be given later since it is
tuned), which we will refer to as option 3. For option 3, since there is no guarantee
that x̂k+1 − xk is a descent direction for f + r, we use a strategy considered in [25]
where the PG parameter is initially set to α0 and every time the inequality f(x̂k+1) ≤
f(xk)+∇f(xk)

T (x̂k+1−xk)+ 1
αk
‖x̂k+1 − xk‖2 is violated by the approximate solution

x̂k+1, the PG parameter is decreased by setting αk+1 ← ζαk and we set xk+1 ← xk.
Let us discuss the four termination conditions that we use in Algorithm 1.

(1) Maximum time. Algorithm 1 is terminated if 12 hours is reached.
(2) Maximum iterations. Algorithm 1 is terminated if 106 iterations is reached.

32



(3) Approximate solution found. Algorithm 1 is terminated if

‖x̂k+1 − xk‖+
√

2αk
(
φ(x̂k+1;xk, αk)− φd(ŷk+1;xk, αk)

)
min(1, αk)

≤ εtol := 10−5, (75)

which we proceed to justify. Note that strong duality implies that
the pair (x̂k+1, ŷk+1) returned by Algorithm 2 satisfies φ(x̂k+1;xk, αk) −
φ(T (xk, αk);xk, αk) ≤ φ(x̂k+1;xk, αk) − φd(ŷk+1;xk, αk) so that x̂k+1 is by def-
inition (see (5)) an ε̄-PG update with ε̄ = φ(x̂k+1;xk, αk) − φd(ŷk+1;xk, αk). It
follows from this fact, the reverse triangular inequality, and Lemma 3.2 that

‖T (xk, αk)− xk‖ − ‖x̂k+1 − xk‖ ≤ ‖T (xk, αk)− xk + xk − x̂k+1‖
= ‖T (xk, αk)− x̂k+1‖ ≤

√
2αk ε̄.

Combining this with the definitions of χk and ε̄, and (75), it follows that

χk =
‖T (xk, αk)− xk‖

αk
≤ ‖x̂k+1 − xk‖

αk
+

√
2αk ε̄

αk
≤ ‖x̂k+1 − xk‖+

√
2αk ε̄

min(1, αk)
≤ εtol,

i.e., x̂k is an approximate solution since χk ≤ εtol. This justifies (75).
(4) Numerical difficulties. Algorithm 1 is terminated if numerical difficulties are

encountered when the subproblem solver Algorithm 2 is called. In particular,
while running our initial tests, we occasionally observed εk to be on the order
of 10−12 when the sequence {xk} approached a stationary point. In this case,
Algorithm 2 was sometimes unable to return an approximate primal-dual pair
(x̂k+1, ŷk+1) that satisfied its approximate optimality conditions before reaching
its iteration limit of 5000 iterations; the resulting x̂k+1 in this scenario was often
dense. To address this numerical challenge, when Algorithm 2 is terminated
due to reaching its iteration limit, a reference point is used to (potentially) set
additional groups of x̂k+1 to zero. Concretely, we first define

ref(k) := max{k : k ≤ k and Algorithm 2 terminated successfully in iteration k},

which allows us to define, for each i ∈ [ng], the “corrected” iterate

[x̂corrected
k+1 ]gi =

{
[x̂k+1]gi if [xref(k)]gi 6= 0,

0 if [xref(k)]gi = 0.

We use the corrected iterate instead of x̂k+1 if it has a better objective value:

x̂k+1 ←
{
x̂corrected
k+1 if φ

(
x̂corrected
k+1 ;xk, αk

)
≤ φ

(
x̂k+1;xk, αk

)
,

x̂k+1 otherwise.

If two correction steps are needed, we terminate for numerical difficulties.

We now discuss Algorithm 2. The values for the input parameters are ξ2 = 0.5 and
η2 = 10−3. Algorithm 2 is terminated when the inequality in Line 9 holds, the inequal-
ity in Line 13 holds, or 5000 iterations are performed. In the last case, a “correction”

33



step is attempted as described above. For k = 0, we set σ ← 1 and ŷ0,0 ← 0. For
all future iterations k ≥ 1, we set σ ← σk−1,t and ŷk,0 ← ŷk−1,t, where t is the final
iteration of Algorithm 2 when called during iteration k− 1. Finally, when option 3 is
considered (see the discussion above in this section), Algorithm 2 is terminated when
the inequality in Line 9 or Line 13 (with the right-hand sides replaced by const/k3)
holds since this implies that x̂k+1 ∈ Tεk(xk, αk) with εk = const/k3, as needed.

5.3. Tests and results

We have a Python implementation that is available upon request. All experiments
were conducted on the Computational Optimization Research Laboratory (COR@L)
cluster at Lehigh University with an AMD Opteron Processor 6128 2.0 GHz CPU.

5.3.1. Comparison of the different termination conditions

We compare the performance of the three algorithm variants option 1, option 2, and
option 3. For this test, we generate overlapping groups as described in Section 5.1 us-
ing values ratio ∈ {0.1, 0.2, 0.3}, grpsize ∈ {10, 100}, and Λ ∈ {0.1Λmin, 0.01Λmin},
and the 11 data sets given in Table 1. In total, this gives 132 test instances comprised
of 12 different group constructions for each of the 11 data sets.

We tune values γ1 for option 1, γ2 for option 2, and const for option 3 on the
72 test instances that correspond to the smaller data sets a9a, colon-cancer, duke
breast-cancer, leukemia, mushrooms, and w8a. We searched for best values for γ1 and
γ2 from the set {0.1, 0.2, 0.3, 0.4, 0.5}, and a best value for const from the set {10i}4i=0
(these sets were chosen based on preliminary testing). When deciding the best values
for γ1, γ2 and const, we considered an algorithms performance on the 72 problem
instances in terms of CPU time (averaged over three runs to account for randomness
in the timings). This procedure resulted in the tuned values γ1 = 0.2, γ2 = 0.5, and
const = 1000. Empirically, the performances of option 1 and option 2, which use
relative criteria each iteration, were less sensitive to parameter tuning when compared
to option 3, which uses an absolute criterion each iteration.

Using the above tuned parameters, we tested option 1, option 2, and option 3

across the entire 132 problem instances. A summary of the termination statuses (see
Section 5.2) returned by the three algorithms is found in Table 2. These results show
that all three variants successful find an approximate solution to the majority of prob-
lem instances. We note that all three variants terminated due to the maximum iteration
limit on all 12 instances of the data set madelon, and that all instances for which an
algorithm reached the maximum time limit was for the data set news20.binary.

Table 2. Termination status summary for the algorithm variants option 1, option 2, and option 3 on the 132
test instances described in Section 5.3.1. See Section 5.2 for the precise meaning of each termination condition.

approximate maximum maximum numerical
solution found iteration limit time limit difficulties

option 1 108 16 7 1
option 2 107 15 8 2
option 3 107 16 9 0

Since Table 2 verifies that all three algorithm variants are relatively robust, we now
consider various performance metrics in detail. First we compare the computing times.

CPU time comparison. Figure 1 contains performance profiles based on [17] for

34



comparing the computing times of two algorithms on a collection of problem instances.
For a plot that compares algorithms option i and option j for {i, j} ⊂ {1, 2, 3} with
i 6= j, each bar corresponds to a problem instance, with the height of the bar given by

− log2

(
time required by option i

time required by option j

)
. (76)

Thus, an upward pointing (blue) bar indicates that option i took less time than
option j to solve that test problem. In contrast, a downward pointing (red) bar means
that option i took more time than option j to solve that test problem. In either case,
the size of the bar indicates the magnitude of the outperformance. If both algorithms
fail to solve a problem instance, that instance is not included in the plot. For problem
instances that are successfully solved by only one of the two algorithms, the height of
the bar is set according to the following procedure. For each p ∈ {1, 2, · · · , 132} and
i ∈ {1, 2, 3}, let tp,i denote the time consumed by option i on the pth problem and Si,j
denote the set of all problem instances that are successfully solved by both option i

and option j. Then, if exactly one of option i and option j fails on problem instance
p, the height of the associated bar is set as 1.5 maxj∈Si,j{| log2(tp,i/tp,j)|} pointing in
the direction of the algorithm that successfully solved the problem. For each given
plot, a single performance metric can be computed for each of the two competing
algorithms by computing the areas of their respective bars (the width of each bar is
one so the the area of each bar is equal to its height); theses areas are indicated in the
legend of each plot. As shown in Fig 1, the adaptive criteria used by option 1 and
option 2 outperforms the absolute criterion used in option 3.

0 20 40 60 80 100

−2

−1

0

1

2

-l
og

2(
ra

ti
o)

Metric: Computational Time

option_1 (area:41.837)

option_3 (area:29.752)

0 20 40 60 80 100

−2

−1

0

1

2

-l
og

2(
ra

ti
o)

Metric: Computational Time

option_2 (area:34.519)

option_3 (area:22.768)

0 20 40 60 80 100

−2

−1

0

1

2

-l
og

2(
ra

ti
o)

Metric: Computational Time

option_1 (area:26.874)

option_2 (area:26.025)

Figure 1. A performance profile for CPU time (seconds). In each plot, we exclude problem instances for
which both algorithms fail.

Final objective value and sparsity. For problem instance p ∈ {1, 2, . . . , 132} and
algorithm option i for i ∈ {1, 2, 3}, we let Fp,i denote the final objective value returned
by option i when solving problem p. If Fi − Fj < −10−6, then we say option i

obtained a “better” objective value compared to option j; if Fi − Fj > 10−6, then
we say option i obtained a “worse” objective value compared to option j; and if
|Fi − Fj | ≤ 10−6, then we consider them to have performed the “same”.

One must also consider the sparsity of the returned solutions. If the solution returned
by option i is sparser than the solution returned by option j, we say that option i

performed “better” than option j; if the solution returned by option i is denser
than the solution returned by option j, we say that option i performed “worse”
than option j; if the solutions returned by both algorithms have the same level of
sparsity, we say that the two algorithms performed the “same”.

The results from our tests can be found in Table 3. From these results, we may
first conclude that the adaptive termination criteria (option 1 and option 2) out-
perform the absolute termination criterion (option 3) in achieving a lower objective

35



value. Second, the algorithms based on an adaptive termination criteria (option 1 and
option 2) slightly outperform the algorithm using an absolute termination criterion
(option 3) in terms of obtaining sparser solutions. Third, option 1 slightly outper-
forms option 2 in terms of achieving a better final objective value but at the expense
of being slightly outperformed by option 2 in terms of final solution sparsity.

Table 3. A comparison of solution sparsity and final objective value for option 1, option 2, and option 3

over the entire 132 problem instances. For example, the 6 in the first row (“option 1 versus option 3” )

indicates that option 1 returned a sparser solution (i.e., a “better” solution) than option 3 on 6 problem
instances. Similarly, the 24 in that same row means that option 1 returned a lower objective function value

(i.e., a “better” final objective value) than option 3 on 24 problem instances.

sparsity objective value
better same worse better same worse

option 1 versus option 3 6 121 5 24 103 5
option 2 versus option 3 8 118 6 23 103 6
option 1 versus option 2 4 118 10 10 115 7

5.3.2. Subproblem solver comparison: Algorithm 2 versus projected gradient ascent

We now explore the support identification property of our subproblem solver Algo-
rithm 2. It is clear from the previous section that Algorithm 1 with any option ∈
{option 1, option 2, option 3} is returns sparse solutions when Algorithm 2 is used
as the subproblem solver. Here, we compare the sparsity of the solutions produced
by Algorithm 1 when our proposed subproblem solver Algorithm 2 is replaced by a
projected gradient ascent (PGA) method. The results of our tests are in Table 4; we
only compare PGA to option 1 since option 1 and option 2 perform similarly.

For each data set in Table 1 we created a single test instance by first setting ratio←
0.1 and grpsize ← 10 (see Section 5.1). To ensure that a sparse solution existed for
each problem instance, we selected Λ (see Section 5.1) differently for each data set as
indicated in the second column of Table 4. Note that the three largest data sets from
Table 1 are excluded from Table 4 because the PGA subproblem solver was not able
to achieve any reasonable solution within the time limit (see Section 5.2).

Table 4 indicates that when Algorithm 1 uses either Algorithm 2 or the PGA method
as the subproblem solver the same objective value (up to 6 digits of accuracy) is
achieved. However, while Algorithm 2 consistently finds sparse solutions, the subprob-
lem solver PGA consistently finds dense solutions. Although it is possible to enhance
the PGA method through a post-processing step that forces blocks of variables with
small magnitude to zero, this would require the careful tuning of a threshold parame-
ter. Our method does not require any such post-processing to achieve sparse solutions.
Although not the focus of this section, we observed that Algorithm 1 converged in
fewer iterations when Algorithm 2 is used as the subproblem solver compared to when
PGA is used. It is clear that using Algorithm 2 is crucial to obtaining sparse solutions.

6. Conclusion

We proposed a PG framework to solve optimization problems that use a regularizer
whose proximal operator does not have a closed-form solution. To address this chal-
lenge, we proposed two adaptive criteria for approximately solving the PG subproblem,
and then proved a worst-case complexity result for the maximum number of iterations

36



Table 4. The test results for Algorithm 1 when using Algorithm 2 or the PGA algorithm as its subproblem

solvers. Columns “#z”, “#nz”, and “F” give the number of zero groups, the number of non-zero groups, and

the final objective value, respectively.

Algorithm 2 (option 1) PGA
data set Λ #z #nz F #z #nz F

a9a 0.013458 12 2 0.508337 0 14 0.508337
colon-cancer 0.017751 213 10 0.336270 1 222 0.336270

duke breast-cancer 0.016198 779 13 0.246910 2 790 0.246910
gisette 0.012003 536 20 0.402671 2 554 0.402671

leukemia 0.020514 781 11 0.258627 0 792 0.258627
madelon 0.000402 19 37 0.666079 0 56 0.666112

mushrooms 0.009528 10 3 0.316138 0 13 0.316138
w8a 0.006687 24 10 0.429029 0 34 0.429029

before an approximate first-order solution is computed. We also designed an enhanced
solver for the PG subproblem when the group-`1 regularizer is used. When this sub-
problem solver is used within our overall PG method, we provide an upper bound
on the number of iterations before optimal support identification occurs. Numerical
experiments on regularized logistic regression problems illustrate the effectiveness of
our approach for efficiently finding structured sparse solutions.

References

[1] K.L. Ayers and H.J. Cordell, SNP selection in genome-wide and candidate gene studies
via penalized logistic regression, Genetic Epidemiology 34 (2010), pp. 879–891.

[2] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with sparsity-inducing
penalties, Foundations and Trends® in Machine Learning 4 (2012), pp. 1–106.

[3] A. Beck, First-order methods in optimization, Vol. 25, SIAM, Philadelphia, PA, 2017.
[4] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear

inverse problems, SIAM journal on imaging sciences 2 (2009), pp. 183–202.
[5] S.R. Becker, E.J. Candès, and M.C. Grant, Templates for convex cone problems with

applications to sparse signal recovery, Math. Prog. Comp. 3 (2011), p. 165.
[6] D. Bertsekas, Nonlinear programming, 2nd ed., Athena Scientific, Belmont, Massachusetts,

1999.
[7] D. Bertsekas, A. Nedić, and A. Ozdaglar, Convex Analysis and Optimization, Athena

Scientific optimization and computation series, Athena Scientific, Belmont, Mass, 2003.
[8] G.C. Cawley and N.L.C. Talbot, Gene selection in cancer classification using sparse lo-

gistic regression with bayesian regularization, Bioinformatics 22 (2006), pp. 2348–2355.
[9] F.E. Curtis, Y. Dai, and D.P. Robinson, A subspace acceleration method for minimization

involving a group sparsity-inducing regularizer, SIAM Journal on Optimization 32 (2022),
pp. 545–572. Available at https://doi.org/10.1137/21M1411111.

[10] M. Fuentes, J. Malick, and C. Lemaréchal, Descentwise inexact proximal algorithms for
smooth optimization, Comp. Opt. and Applications 53 (2012), pp. 755–769.

[11] A.N. Iusem, On the convergence properties of the projected gradient method for convex
optimization, Computational & Applied Mathematics 22 (2003), pp. 37–52.

[12] R. Jenatton, J.Y. Audibert, and F. Bach, Structured variable selection with sparsity-
inducing norms, The Journal of Machine Learning Research 12 (2011), pp. 2777–2824.

[13] C.p. Lee, Accelerating inexact successive quadratic approximation for regularized optimiza-
tion through manifold identification, arXiv preprint arXiv:2012.02522 (2020).

[14] C.p. Lee and S.J. Wright, Inexact successive quadratic approximation for regularized op-

37

https://doi.org/10.1137/21M1411111


timization, Computational Optimization and Applications 72 (2019), pp. 641–674.
[15] H. Lin, J. Mairal, and Z. Harchaoui, Catalyst acceleration for first-order convex opti-

mization: from theory to practice, Journal of Machine Learning Research 18 (2018), pp.
7854–7907.

[16] Z.Q. Luo and J.S. Pang, Error bounds for analytic systems and their applications, Math-
ematical Programming 67 (1994), pp. 1–28.

[17] J.L. Morales, A numerical study of limited memory BFGS methods, Applied Mathematics
Letters 15 (2002), pp. 481–487.

[18] B.S. Mordukhovich and N.M. Nam, An easy path to convex analysis and applications,
Vol. 6, Morgan & Claypool Publishers, San Rafael, CA., 2013.

[19] Y. Nesterov, Introductory lectures on convex optimization: a basic course, Springer Science
& Business Media, ., 2004.

[20] J. Nutini, M. Schmidt, and W. Hare, “active-set complexity” of proximal gradient: How
long does it take to find the sparsity pattern?, Opt. Letters 13 (2019), pp. 645–655.

[21] G. Obozinski, L. Jacob, and J.P. Vert, Group lasso with overlaps: the latent group lasso
approach, arXiv preprint arXiv:1110.0413 (2011).

[22] J. Rasch and A. Chambolle, Inexact first-order primal–dual algorithms, Computational
Optimization and Applications 76 (2020), pp. 381–430.

[23] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM journal on
control and optimization 14 (1976), pp. 877–898.

[24] S. Salzo and S. Villa, Inexact and accelerated proximal point algorithms, Journal of Convex
analysis 19 (2012), pp. 1167–1192.

[25] M. Schmidt, N. Roux, and F. Bach, Convergence rates of inexact proximal-gradient
methods for convex optimization, Advances in Neural Information Processing Systems
24 (2011), pp. 1458–1466.

[26] T. Shen, J. Jiang, W. Lin, J. Ge, P. Wu, Y. Zhou, C. Zuo, J. Wang, Z. Yan, and K.
Shi, Use of overlapping group lasso sparse deep belief network to discriminate Parkinson’s
disease and normal control, Frontiers in Neuroscience 13 (2019), p. 396.

[27] Y. Sun, H. Jeong, J. Nutini, and M. Schmidt, Are we there yet? manifold identification
of gradient-related proximal methods, in The 22nd International Conference on Artificial
Intelligence and Statistics, Naha, Okinawa, Japa. PMLR, 2019, pp. 1110–1119.

[28] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal
Statistical Society: Series B (Methodological) 58 (1996), pp. 267–288.

[29] S. Villa, L. Rosasco, S. Mosci, and A. Verri, Proximal methods for the latent group lasso
penalty, Computational Optimization and Applications 58 (2014), pp. 381–407.

[30] S. Villa, S. Salzo, L. Baldassarre, and A. Verri, Accelerated and inexact forward-backward
algorithms, SIAM Journal on Optimization 23 (2013), pp. 1607–1633.

[31] Y. Yang and H. Zou, A fast unified algorithm for solving group-lasso penalize learning
problems, Statistics and Computing 25 (2015), pp. 1129–1141.

[32] L. Yuan, J. Liu, and J. Ye, Efficient methods for overlapping group lasso, IEEE transac-
tions on pattern analysis and machine intelligence 35 (2013), pp. 2104–2116.

[33] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables,
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68 (2006), pp.
49–67.

[34] Y. Zeng and P. Breheny, Overlapping group logistic regression with applications to genetic
pathway selection, Cancer Informatics 15 (2016), pp. CIN–S40043.

[35] J. Zhu and T. Hastie, Classification of gene microarrays by penalized logistic regression,
Biostatistics 5 (2004), pp. 427–443.

[36] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 67 (2005), pp. 301–320.

38


	Introduction
	Related Work
	Contributions
	Notation and assumptions
	Organization

	Algorithm
	Convergence Analysis
	Preliminary results
	Global Complexity

	Sparse Regularizers and Finite Support Identification
	A dual formulation of the PG subproblem
	A new algorithm for approximately solving the PG subproblem
	Support Identification

	Numerical Results
	Problem Formulation
	Implementation details
	Tests and results
	Comparison of the different termination conditions
	Subproblem solver comparison: Algorithm 2 versus projected gradient ascent


	Conclusion

