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Abstract This paper introduces CLS, a new line search along an arbitrary smooth
search path, that starts at the current iterate tangentially to a descent direction. Like
the Goldstein line search and unlike the Wolfe line search, the new line search uses,
beyond the gradient at the current iterate, only function values. Using this line search
with search directions satisfying the bounded angle condition, global convergence to a
stationary point is proved for continuously differentiable objective functions that are
bounded below and have Lipschitz continuous gradients. The standard complexity
bounds are proved under several natural assumptions.
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1 Introduction

The unconstrained optimization problem

min f(x), s.t. x ∈ Rn (1)
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has a very long history which we do not trace here; for the history and basic tech-
niques see, instead, the books by Fletcher [6] or Nocedal & Wright [19]. Here
we only discuss the state-of-the-art concerning line search conditions used in this
context. Many of the current optimization methods employ the Wolfe conditions
(Wolfe [24]) for line searches along descent directions. These line searches are called
Wolfe line searches, which contain the Armijo condition (Armijo [1]) and the cur-
vature condition. When the Armijo condition is satisfied, a step size is found that
guarantees a sufficient reduction of f such that this reduction should be proportional
to both the obtained step size and the directional derivative. Since the Armijo condi-
tion is satisfied for all sufficiently small step sizes, the curvature condition is required
to guarantee that the directional derivative at the current accepted point is greater
than the product of the directional derivative at the previous accepted point and a
constant factor in (0, 1). Checking the Armijo condition requires a function evalua-
tion at each trial point, and checking the curvature condition requires an additional
gradient evaluation at each trial point. The Goldstein conditions (Goldstein [7])
involve the two inequalities (see Section 2.2, below). The first inequality is used to
avoid too small step sizes, while the second inequality is the Armijo condition. Al-
though line searches based on the Armijo condition and backtracking or on satisfying
the Goldstein conditions (Goldstein [7]) guarantee a sufficient reduction of f and
can therefore be used to design globally convergent algorithms, they often behave
poorly in strongly nonconvex regions. The Wolfe line searches partially overcome
this weakness, but requires additional gradient evaluations before determining a new
iterate.

Cartis et al. [3] proposed a non-monotone gradient-related descent algorithm using
the Goldstein line search method. This line search enforces the Goldstein conditions
by a construction of extrapolation, backtracking, or arithmetic mean bisection. If
no step size satisfying the Goldstein conditions can be found by backtracking or
extrapolation, a bracket is found instead whose lower bound is positive and whose
upper bound is a positive finite number. This bracket contains an interval of points
that satisfy the Goldstein conditions. Then, bisection is performed by taking the
midpoint of the lower and upper bounds of the bracket while updating either the
lower or upper bound of the bracket until the Goldstein conditions are violated.

Standard convergence theory requires that line search always finds a step size for
which the production of the opposite reduction of f and the square of the norm of
the direction over the directional derivative at the previous point from below remains
bounded by a fixed positive number. This condition is called efficiency criterion
by us since such a line search was called efficient by Warth & Werner [23]. For
the basic convergence result of an optimization algorithm guaranteeing the efficiency
criterion and the Zoutendijk condition [25], see [18, Theorems 1 and 2], which are
the two results of Lemma 2.1 and Satz 2.2 of [23] and Theorem 2.2.8 of [22].

For a non-monotone gradient-related descent algorithm using the Goldstein line
search condition, Cartis et al. [3, Theorem 3.4] proved the complexity of O(ε−2)
iterations to reach a point x at which the gradient norm is below a given thresh-
old ε. Royer & Wright [21] proved complexity results for second-order descent
algorithms using a backtracking line search condition. Under the Polyak-Lojasiewicz
condition, Karimi et al. [11, Theorem 1] obtained the O(log ε−1) complexity result
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for gradient-type methods. For the history of complexity results see the recent book
of Cartis et al. [2].

What is new. This paper is closely related to our unpublished preprint [15], which
we split for publication into three papers (the present paper and [16,18]). In addition
to the curved line search CLS and its discussion, taken from [15], the present paper
discusses and proves complexity results, while providing a comparison between CLS
and the other line searches, Armijo, Goldstein, and Wolfe (not in [15]). Compared
to the traditional approaches, our paper has the following features:
• CLS is an efficient line search in the sense of Warth & Werner ([18, Theorems
1 and 2]), without requiring additional gradient evaluations, hence gives global con-
vergence under a weak condition on the search directions.
• CLS uses a new sufficient descent condition, defined by (4) below, which is much
easier to satisfy than the Goldstein conditions and the Wolfe conditions. In partic-
ular, CLS behaves well in strongly nonconvex regions (see, e.g., Figure 1), where it
often accepts a much larger range of meaningful step sizes than Goldstein or Wolfe
conditions.
• A complexity bound on the number of function evaluations (Section 3) with the
same order of complexity as Cartis et al. [3] and Karimi et al. [11] are obtained
for optimization methods using CLS.
• For strictly convex quadratic functions, termination after at most two iterations is
guaranteed.
• The line search and its analysis are formulated for the case of searching along
an arbitrary search path that need not be a ray but starts at the current iterate
tangentially to a descent direction.

CLS was implemented in Matlab as part of the bound-constrained optimization soft-
ware LMBOPT, whose excellent practical performance was documented in Kimiaei et
al. [12]. However, in this paper, we perform CLS, the Wolfe line search algorithm, the
Armijo line search algorithm, and the Goldstein line search algorithm along the four
different directions (the standard BFGS direction [6], the standard limited memory
BFGS direction [14], the nonstandard limited memory direction [12, Section 2.2], and
the Hager–Zhang conjugate gradient direction [10]) and compare them. Numerical
results show on the 482 unconstrained test problems with dimensions 1 to 9000 from
the CUTEst collection [9] that CLS competes with the Wolfe line search and is much
more efficient and robust than the Armijo and Goldstein line searches. Since CLS re-
quires only the directional derivative as input and no gradient evaluation within the
line search, CLS is recommended for solving real-world problems where computing
gradients is more expensive than computing function values.

2 A curved line search

In this section, we introduce a curved line search algorithm (CLS) and define some
important concepts, such as a new sufficient descent condition, the efficiency criterion
of Warth & Werner [23] and the Goldstein quotient of Goldstein [8], provide the
motivation for constructing an efficient line search method, and discuss requirements
needed for complexity results.

3



Throughout of the paper we assume the following assumption:
(L) The function f is continuously differentiable on Rn. Its gradient g(x) = f ′(x)T

is Lipschitz continuous with Lipschitz constant γ > 0, i.e.,

∥g(x) − g(x′)∥∗ ≤ γ∥x− x′∥ with γ > 0.

Here ∥ · ∥ is an arbitrary norm and ∥ · ∥∗ is its dual norm, satisfying the generalized
Cauchy–Schwarz inequality |yT s| ≤ ∥y∥∗∥s∥.

2.1 The CLS algorithm

A line search proceeds by searching points x(α) on a directionally differentiable
curve of feasible points parameterized by a step size α ≥ 0 starting at the current
point x = x(0). If the gradient g = g(x) = f ′(x) of the function f at x is nonzero,
the existence of an α > 0 with f(x(α)) < f(x) is guaranteed if the tangent vector

p := x′(0) (2)

is a descent direction, i.e.,
g(x)T p < 0 (3)

holds. In most line searches, straight line search paths x(α) = x+αp in direction p
are used, where α > 0 is an accepted step length. However, application may require
other search paths. For example, the bound-constrained solver LMBOPT [12] uses our
line search for a piecewise linear search path x(α).

The goal of a line search is to find a value for the step size such that f(x(α)) is
sufficiently smaller than f(x).

Algorithm 1 is a curved line search, called CLS, which uses a simple bisection proce-
dure that updates a bracket [α, α] containing α̂ with µ(α̂) = 1

2 until the sufficient
descent condition (SDC)

µ(α)|µ(α) − 1| ≥ β (4)

holds for some fixed β ∈]0, 1/4[. The restriction on β is needed since the left hand
side of (4) is ≤ 1/4 for µ(α) ∈ [0, 1]. Here

µ(α) := f(x+ αp) − f(x)
αg(x)T p

for α > 0 (5)

is the Goldstein quotient; for more details about this quotient see Subsection 2.2.

The Boolean variable first in the while loop ensures that the quadratic case will be
optimally handled. In the first iteration we use a formula that for strictly quadratic
objective functions leads to the minimizer; cf. (22) below. If the resulting next value
for µ does not satisfy SDC, the function is far from quadratic and bounded, and we
proceed with a simple bisection scheme:
Until we know a bracket with α > 0 and α < ∞, we either interpolate (interpolation
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Algorithm 1 CLS, curved line search

1: Purpose: CLS finds a step size α with µ(α)|µ(α) − 1| ≥ β

2: Input: x(α) (search path), f0 = f(x(0)) (initial function value), ν = −g(x(0))T x′(0)
(minus directional derivative)

3: Tuning parameters: αinit (initial step size), αmax (maximal step size), β ∈ ]0, 1
4 [

(parameter for efficiency), Q > 1 (factor for extrapolation and interpolation), 0 < κ < λ <
∞ (parameters for choosing αinit and αmax).

4: Requirements: ν > 0, κν
∥p∥2 ≤ αinit ≤ αmax ≤ λν

∥p∥2 < ∞

5: Initialization: first=1; α = 0; α = ∞; α = αinit;

6: while 1 do
7: compute the Goldstein quotient µ(α) = (f0 − f(x(α)))/(αν);
8: if µ(α)|µ(α) − 1| ≥ β, break; end ▷ sufficient descent condition was satisfied
9: if µ(α) > 1

2 , α = α;
10: elseif α = αmax, break;
11: else, set α = α; ▷ linear decrease or more
12: end
13: if first, ▷ initially check whether function is almost quadratic or not
14: first = 0;
15: if µ(α) < 1, α = 1

2 α/(1 − µ(α)); else α = αQ; end
16: else
17: if α = ∞, expand to α = αQ; ▷ extrapolation was done
18: elseif α = 0, compute α = 1

2 α/(1 − µ(α)); ▷ interpolation was done
19: else, calculate α =

√
α α; ▷ interval was found; geometric mean was computed

20: end
21: end
22: restrict α = min(α, αmax);
23: end
24: end while
25: return α;

step), or we extrapolate with a constant factor Q > 1 (extrapolation step). The
interpolation step after the first iteration guarantees, for sufficiently large αmax, that
for nearly quadratic objective functions, the line search takes at most two function
values.

Once a bracket [α, α] with 0 < α < α < ∞ is found, a geometric mean step is
done by taking the geometric mean of the lower bound α and the upper bound α
updating α or α in the next iteration. This is an improvement over the arithmetic
mean bisection of Cartis et al. [3] whenever the bracket spans several orders of
magnitude. This may happens when the objective function is nearly quadratic due
to the interpolation step after the first iteration. We quit the line search once the
stopping test is satisfied and return the final step size α.

The argument in the proof of Theorem 1 below shows that CLS with αmax = ∞ either
terminates, or produces an infinite sequence of α with f(x + αp) → −∞. Because
of Theorem 2 below, CLS defines for αmax = ∞ an efficient line search and achieves
a well-defined minimal reduction in the function value. A finite but large bound on
αmax is needed in practice to account for the possibility that f is unbounded below.
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To comply with our complexity analysis in Section 3 below, CLS restricts αinit and
αmax such that

κν

∥p∥2 ≤ αinit ≤ αmax ≤ λν

∥p∥2 , ν = |g(x)T p| (6)

holds for fixed tuning parameters 0 < κ < λ < ∞. In Section 3, the bounds for the
number of function evaluations for extrapolation, interpolation, and geometric mean
phases are derived, which depend on κ and λ, but not on ν.

Cartis et al. [3] proved a complexity of O(ε−2) for a gradient-related method that
uses search directions satisfying

g(x)T p ≤ −κ1∥g(x)∥2
∗, ∥p∥ ≤ κ2∥g(x)∥∗ for κ1, κ2 > 0. (7)

By choosing α̃ = α/αmax, we can reformulate (6) as αinit/αmax ≤ α̃ ≤ 1. Then, if p
satisfies the bounded angle condition

g(x)T p

∥g(x)∥∗∥p∥
≤ −δ < 0 for ℓ = 1, 2, . . . , (8)

the scaled direction p̃ = αmaxp satisfies (7) with κ1 := κδ and κ2 := λδ. Hence, as in
[3], (6) is also a standard condition which is needed to prove our complexity result.

Line search methods cannot do better than guarantee efficiency in the sense of
Warth & Werner [23] defined in the introduction. For fixed tuning parameters κ
and λ, we prove the efficiency of CLS in Theorem 2 below. This shows that the step
size restriction in line 22 in Algorithm 1 is not harmful although ν and then αmax
become small in neighborhood of a stationary point, leading to small step sizes. In
practice, close to a saddle, the line search will typically avoid the saddle and ex-
trapolation produces a large step size, while close to a local minimizer a good step
size must be small in order not to overshoot. Close to a strong local minimizer, the
function is almost quadratic and the second function value will be almost optimal.

The best values for β and Q depend on the particular algorithm calling the line
search, and must be determined by calibration on a set of test problems. In LMBOPT
[12, Section 5.2], the default values used are β = 0.02 and Q = 25.

2.2 The Goldstein quotient

Sufficient progress in a line search algorithm is measured by the efficiency criterion

(f(x) − f(x(α)) ∥p∥2

(g(x)T p)2 ≥ 2β
γ

(9)

of Warth & Werner [23] for some β > 0 and the Lipschitz constant γ > 0. Since
γ is generally unknown, a computationally more useful measure of progress of a line
search is the Goldstein quotient µ(α) defined by (5) first considered by Goldstein
[8]. The descent condition (3) implies that for every α > 0, we have f(x(α)) < f(x)
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iff µ(α) > 0. The Goldstein quotient can be extended to a continuous function
µ : [0,∞] → Rn by defining µ(0) := 1 since, by l’Hôpital’s rule and (2),

lim
α→0

µ(α) = lim
α→0

f ′(x(α))x′(α)
g(x)T p

= f ′(x)x′(0)
f ′(x)p = 1.

More generally, we shall need the second order divided differences

ψ[α1, α2, α3] := ψ[α1, α2] − ψ[α1, α3]
α2 − α3

(10)

of ψ(α) := f(x+ αp), where

ψ[α1, α2] := ψ(α2) − ψ(α1)
α2 − α1

= ψ[α2, α1] (11)

defines the slopes (first order divided differences) of ψ. Using ψ[α, α] := ψ′(α), the
divided differences make also sense when two of the arguments coincide; clearly the
above result remains valid in this limited case. In particular,

ψ[0, 0] = g(x)T p, ψ[0, α] = µ(α)g(x)T p, (12)

ψ[0, α, α′] = ψ[0, α] − ψ[0, α′]
α− α′ = µ(α) − µ(α′)

α− α′ g(x)T p. (13)

In a straight line search path x(α) = x+ αp, the Armijo condition

f(x+ αp) ≤ f(x) + αµ′g(x)T p with 0 < µ′ < 1 (14)

is equivalent to µ(α) ≤ µ′, and the Goldstein conditions

f(x)+αµ′′g(x)T p ≤ f(x+αp) ≤ f(x)+αµ′g(x)T p with fixed 0 < µ′ < µ′′ < 1 (15)

are equivalent to

µ′ ≤ µ(α) ≤ µ′′. (16)

The curvature condition by Wolfe

g(x+ αp)T p ≥ ηg(x)T p with µ′ ≤ η < 1 (17)

cannot be expressed in terms of the Goldstein quotient since it depends on an addi-
tional gradient at the trial point x+ αp.
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2.3 Satisfaction of the sufficient descent condition

In the following, we write
f = inf

α≥0
f(x(α)); (18)

f is finite if f is bounded below.

Theorem 1 Let β ∈ ]0, 1
4 [, g(x)T p < 0.

(i) If the equation µ(α̂) = 1
2 has a solution α̂ > 0 then α sufficiently close to α̂

satisfies (4).
(ii) If the equation µ(α̂) = 1

2 has no solution α̂ > 0, then f(x + αp) is unbounded
below for α → ∞.

Proof (i) Since µ(α̂)|µ(α̂) − 1| = 1
4 > β, (4) holds for all α sufficiently close to α̂.

(ii) µ(0) = 1 and the assumption that µ(α̂) = 1
2 has no solution α̂ > 0 imply by

continuity that µ0 := infα≥0 µ(α) ≥ 1
2 and therefore for all α > 0

f − f(x) ≤ f(x(α)) − f(x) = αg(x)T pµ(α) ≤ αg(x)T pµ0 ≤ α

2 g(x)T pµ0. (19)

For α → ∞, we find f = −∞. ⊓⊔

The sufficient descent condition SDC requires µ(α) to be both not too close to one,
forbidding steps that are too short, and sufficiently positive, typically forbidding
steps that are too long by forcing f(x(α)) < f(x). The condition is easier to satisfy
than the Goldstein conditions (15). Indeed, (15) is equivalent to (16); hence (4) holds
with β = µ′(1 − µ′′) > 0. Conversely, with

µ′ = 2β
1 +

√
1 − 4β

, µ′′ = 1 +
√

1 − 4β
2 , (20)

the SDC implies that either (15) holds or the alternative fast descent condition

µ(α) ≥ µ′′′ (21)

holds with µ′′′ = (1 +
√

1 + 4β)/2.

The Goldstein conditions (16) can be interpreted geometrically:
In the graph of f(x(α)), the cone defined by the two lines through (0, f) with slopes
µ′g(x)T p and µ′′g(x)T p cuts out a section of the graph, which defines the admissible
step size parameters. Similarly, equality in (21) defines another line that determines
the boundary of another section of the graph leading to admissible step size param-
eters. An illustrative example is given in the online supplement [17, Figure 1].

Satisfying the SDC guarantees by the preceding discussion a sensible decrease in the
objective function.
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The left hand side of (4) is largest for µ(α) = 1
2 , but the value µ(α) = 1

2 has another
significance: Near a local minimizer, twice continuously differentiable functions are
bounded from below and, because of Taylor’s theorem, almost quadratic. In the
special case of a linear search path and a strictly convex quadratic function,

f(x+ αp) = f(x) + αg(x)T p+ α2

2 pTG(x)p =: f + aα+ bα2 = f − a2

4b + b(α− α̂)2

with a < 0 < b and α̂ = −a/2b > 0. This implies that µ(α) = 1+bα/a = 1−α/2α̂ < 1
for α > 0. In particular, µ(α̂) = 1

2 , and the minimizer

α̂ = α

2(1 − µ(α)) (22)

along the search ray can be computed from any α > 0. It is therefore natural to
attempt to find a step size α with µ(α) ≈ 1

2 . This can be done by a simple bisec-
tion procedure, updating a bracket [α, α] containing α̂ with µ(α̂) = 1

2 . This is our
motivation for CLS.

Fig. 1: The function f(x) := (x3 + x)/((x2 − 1)2 + 5) along the path x(α) = x0 + α
for x0 = −50. Values 0 < α < 49.87 improve the function value. The SDC with our
default choice β = 0.02 is satisfied for all α ∈ [1, 49.76].
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Like, the Goldstein conditions, CLS is gradient-free once the search direction is given.
But it avoids a defect of the Goldstein conditions and the Wolfe conditions: For the
function drawn in Figure 1, both the Goldstein line search and the Wolfe line search
require α to be a tiny interval around 49.76. This requirement excludes most step
sizes that are nearly as good. But, as stated by Lemarechal [13], “in order to
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obtain fast line searches, it is necessary for the stopping criterion to be as loose as
possible.” Indeed, line searches with loose tolerances tend to be much more efficient
than nearly exact line searches. There is no advantage in locating the minimum along
a search path very precisely, since the next line search usually goes in a quite dif-
ferent direction. However, locating the minimum precisely requires an unnecessarily
large number of function evaluations, which are better spent in the subsequent line
searches. This is the reason why the parameters in all practical line search algo-
rithms are chosen to allow, if possible, a wide range of parameters, excluding only
steps that are clearly too short or too large. On the other hand, the SDC allows all
α ∈ [1, 49.76] since it includes the values where the fast descent condition (21) holds.
Thus, in the example, Lemarechal’s criterion is much better satisfied by CLS than
by Goldstein and Wolfe line searches. Qualitatively the same improved behavior is
observed in all cases where for small α, the graph of f(x(α)) is – as in Figure 1 –
concave and fairly flat, while for large α f(x(α)) is strongly increasing. Qualitatively
the same behavior is observed.

Theorem 2 Suppose that the restriction of the search path to [0, α∗] is a ray.

(i) If, for any function f with Lipschitz continuous gradients, a line search procedure
produces, if it terminates, a step satisfying

(f(x) − f(x+ αp))
∣∣∣ψ[α1, α2, α3]

∣∣∣ ≥ β(g(x)T p)2 (23)

for suitable α1, α2, α3 ∈ [0, α∗] and β > 0, then the efficiency criterion (9) holds
for any step size α′ ∈ [0, α∗] with f(x(α′)) ≤ f(x(α)). In particular, the line search
procedure is efficient.

(ii) The efficiency criterion (9) also holds if α ∈ [0, α∗] satisfies the sufficient descent
condition (4).

Proof (i) By setting (α1, α2, α3) = (0, 0, α), we conclude from the definition of µ(α),
(4), and (13) that

(f(x) − f(x+ αp))
∣∣∣ψ[α1, α2, α3]

∣∣∣ = (f(x) − f(x+ αp))
∣∣∣ψ[0, 0, α]

∣∣∣
= µ(α)|g(x)T p||(1 − µ(α))g(x)T p|

= µ(α)|1 − µ(α)|(g(x)T p)2 ≥ β(g(x)T p)2.

Hence (23) holds and (i) follows.

(ii) By [17, Proposition 1], we have for arbitrary α1, α2, α3 ∈ R

|ψ[α1, α2, α3]| ≤ γ

2 ∥p∥2. (24)

Using (23) and (24), we obtain

(f(x) − f(x+ αp))∥p∥2
2

(g(x)T p)2 ≥ 2
γ

(f(x) − f(x+ αp))|ψ[α1, α2, α3]|
(g(x)T p)2 ≥ 2β

γ
.

Since by assumption x(α) = x + αp for 0 ≤ α ≤ α∗, the left hand side is uniformly
bounded away from zero and the efficiency criterion (9) holds. ⊓⊔
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3 Complexity results for CLS

3.1 Line search complexity

Theorem 3 Given 0 < κ < λ < ∞, Q > 1, β ∈ ]0, 1
4 [, and straight search paths

x(α) = x+ αp, where x, p ∈ Rn, g(x)T p < 0. If αinit and αmax satisfy the condition
(6) then the number of function evaluations in CLS is bounded by a constant depending
only on Q, β, κ, λ, and γ. More precisely:
(i) If µ(αinit) > µ′′, then CLS ends after at most LE + ME function evaluations,
where

LE =
⌈

log Qλ
κ

/
logQ

⌉
, ME :=

⌈
log2

γλ logQ
2µ′′ − 2µ′

⌉
. (25)

(ii) If µ(αinit) < µ′, then CLS ends after at most LQ + MQ function evaluations,
where

LQ :=
⌈
log(γλ)

/
log(2 − 2µ′)

⌉
, MQ :=

⌈
log2

γλ log(γλ)
2µ′′ − 2µ′

⌉
. (26)

(iii) Otherwise, CLS ends after a single function evaluation.

Proof As long as no step size satisfying (4) is found, either the extrapolation phase
or the interpolation phase is performed until we find a bracket [α, α] with α > 0 and
α < ∞. Then, the geometric mean phase iteratively updates α or α by taking the
geometric mean of α and α, until we reach a step size αLM

that satisfies (4), i.e.,

0 < µ′ ≤ µ(αLM
) ≤ µ′′ < 1

with 0 < µ′ < µ′′ < 1 from (20). Note that these are functions of β only.

Denote by [αℓ, αℓ] the bracket [α, α] after ℓ iterations of the geometric mean phase.
By the updating rule,

µ(αℓ) > µ′′ > µ′ > µ(αℓ) for ℓ = 0, . . . , LM . (27)

By [17, Proposition 1], the Goldstein quotient is Lipschitz continuity

|µ(α) − µ(α′)| ≤ Γ |α− α′| for α, α′ > 0, (28)

where

Γ := γ∥p∥2

2|g(x)T p|
. (29)

Using (28) and substituting ℓ = LM into (27), we

αLM
− αLM

≥ Γ−1(µ(αLM
) − µ(αLM

)) > Γ−1(µ′′ − µ′). (30)
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By construction, αℓ+1 =
√
αℓ+1αℓ+1 for ℓ ≤ LM with either αℓ+1 = αℓ, αℓ+1 = αℓ

or αℓ+1 = αℓ, αℓ+1 = αℓ. Therefore

rℓ := log αℓ

αℓ

> 0 for ℓ = 0, . . . , LM ,

satisfies
rℓ+1 = rℓ/2 for ℓ = 0, . . . , LM − 1. (31)

By induction and applying (30) to

rLM
= log αLM

αLM

> 1 −
αLM

αLM

=
αLM

− αLM

αLM

,

we obtain
LM = log2

r0

rLM

≤ log2
αLM

r0

αLM
− αLM

≤ log2
αLM

r0Γ

µ′′ − µ′ . (32)

We now distinguish the three cases: (A) µ(αinit) > µ′′ > 1
2 , (B) µ(αinit) < µ′ < 1

2 ,
and (C) µ′′ ≤ µ(αinit) ≤ µ′.

Since case C is trivial, we need to consider only case A and case B.

Case A. Here CLS begins with the extrapolation phase. We first prove that to find a
bracket, CLS takes at most LE function evaluations. Suppose that the extrapolation
phase takes LE iterations. Then

α1 > αinit, αk = Qαk−1 for k = 2, . . . , LE , (33)

µ(αLE
) ≤ µ′′ < µ(αLE−1). (34)

By (6) and (33), we have

QLE−1αinit < QLE−1α1 = αLE
≤ αmax ≤ λν

∥p∥2 ≤ λαinit
κ

. (35)

Therefore QLE ≤ Qλ

κ
, giving

1 ≤ LE ≤ log Qλ
κ

/
logQ ≤ LE . (36)

We now prove that once a bracket has been found, CLS uses at most ME function
evaluations. From

αinit ≤ αLE−1 = α0 ≤ αLM
≤ αLM

≤ αmax, (37)

we conclude that
r0 = log α0

α0
= log αLE

αLE−1
= logQ, (38)

αLM
≤ αmax ≤ λ

ν

∥p∥2 ≤ γλ

2Γ . (39)

12



Here, we used (29), (35) and (37) to obtain (39). By substituting (29), (38), and (39)
into (32), we conclude that

0 ≤ LM ≤ log2
αLM

r0Γ

µ′′ − µ′ ≤ log2
γλ logQ

2µ′′ − 2µ′ ≤ ME .

Case B. Here CLS begins with the interpolation phase. We first prove that to find
a bracket, CLS takes at most LQ function evaluations. Suppose that the quadratic
interpolation phase takes LQ iterations. Then

αk = αk−1/(2 − 2µ(αk−1)) for k = 1, . . . , LQ, (40)

µ(αLQ
) ≥ µ′ > µ(αLQ−1). (41)

From (40) and (41), we obtain

αk ≤ αk−1

2 − 2µ′ for k = 1, . . . , LQ, (42)

inductively leading to
αLQ−1 ≤ αinit

(2 − 2µ′)LQ−1 . (43)

By [17, Proposition 1], the Goldstein quotient is bounded, i.e.,

|µ(α) − 1| ≤ Γα for α > 0. (44)

From (43) and (44), we conclude that

(1 − µ′) < |1 − µ(αLQ−1)| ≤ ΓαLQ−1 ≤ Γαinit
(2 − 2µ′)LQ−1 . (45)

Hence from (6), (29), and (45) we obtain

(2 − 2µ′)LQ ≤ 2Γαinit ≤ γλ, (46)

so that
1 ≤ LQ ≤ log(γλ)

/
log(2 − 2µ′) ≤ LQ.

We now prove that once a bracket has been found, CLS uses at most MQ further
function evaluations. From

αLQ
= α0 ≤ αLM

≤ αLM
≤ αLM

≤ αLQ−1 = α0 ≤ αinit, (47)

(6), and (29), we conclude that

r0 = log
αLQ−1

αLQ

= log |2 − 2µ(αLQ−1)| ≤ log(2Γαinit) ≤ log(γλ) (48)

and
αLM

≤ αinit ≤ γλ

2Γ . (49)

From (32), (48), and (49), we conclude that

0 ≤ LM ≤ log2
r0αLM

Γ

µ′′ − µ′ ≤ log2
γλ log(γλ)
2µ′′ − 2µ′ ≤ MQ.

⊓⊔
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3.2 Complexity of descent methods that use CLS

As a consequence of Theorem 3, we obtain a complexity result for descent methods
that generate sequence x0, x1, x2, . . . of feasible points and ℓ = 0, 1, 2, . . ., assuming
that we perform straight line searches along descent directions pℓ. We write fℓ :=
f(xℓ) and gℓ := g(xℓ).

We call a point x̂ ∈ Rn a strong local minimizer of f if f is twice continuously
differentiable in a neighborhood of x̂, the gradient g(x̂) of f at x̂ vanishes, and the
Hessian G(x̂) of f at x̂ is positive definite.

Theorem 4 Given constants 0 < κ < λ < ∞, suppose that the search directions
satisfy the bounded angle condition (8) for some δ > 0 and the initial step sizes are
chosen such that (6) holds. Then:

(i) The number of function values needed to reach a point x with

∥g(x)∥∗ ≤ ε. (50)

is O(ε−2).

(ii) If the sublevel set {x ∈ Rn | f(x) ≤ f(x0)} is bounded then, starting with x0,
some subsequence of the points generated converges to a stationary point.

(iii) If f has a strong local minimizer x̂ and no other stationary point then the number
of function values needed to reach a point x with (50) is O(log ε−1). In particular,
this holds if the Polyak-Lojasiewicz (PL) condition

1
2∥g(x)∥2 ≥ ω(f(x) − f(x̂))

is satisfied for some ω > 0 and all x ∈ Rn.

Proof We write fℓ+1 := f(xℓ + αℓp
ℓ) and assume that the algorithm terminates at

xL; hence
∥g(xL)∥∗ < ε ≤ ∥g(xℓ)∥∗ for ℓ < L. (51)

(i) Since the efficiency criterion (9) holds and the search direction p satisfies the
bounded angle condition (8), we have

fℓ − fℓ+1 ≥ 2β
γ
δ2∥g(xℓ)∥2

∗ ≥ 2β
γ
δ2ε2 for ℓ < L. (52)

Summing all inequalities (52) and using (18) gives

f0 − f ≥ f0 − fL =
L−1∑
ℓ=0

(fℓ − fℓ+1) ≥ 2β
γ
δ2ε2L,

leading to
L ≤ Cε−2.
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where C :=
γ(f0 − f)

2βδ2 . Together with Theorem 3, this implies that the number of

function evaluations is O(ε−2). This proves (i).

(ii) This follows by a standard compactness argument since infℓ≥0 ∥g(xℓ)∥∗ = 0 by
(i).

(iii) Under this condition, Theorem 2 guarantees that [18, Theorem 1.1(ii)] can be
applied. Thus ∥xℓ − x̂∥ ≤ cqℓ and ∥gℓ∥∗ ≤ c′qℓ hold for some 0 < q < 1. It follows
that ∥g(xℓ)∥∗ ≤ ε if

ℓ =
⌈

log c′ε−1

log(1/q)

⌉
= O(log ε−1),

where c′ > 0 and 0 < q < 1. Again by Theorem 3, the number of function evaluations
is O(log ε−1). Karimi [11] et al. observed that the PL condition implies x̂ is a strong
local minimizer of f and the hypothesis of (iii) holds. ⊓⊔

Cartis et al. [3] proved a complexity of O(ε−2) for a method that uses search
directions satisfying (7). Since these imply the bounded angle condition (8) with
δ = κ1/κ2, their complexity result is analogous to our result (i). Closer analysis
of their proof shows that under the stronger assumption on f stated in (iii) our
O(log ε−1) complexity result also applies for their method, since the argument given
above extends to their situation.
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4 Numerical results

In this section, we compare CLS with the Armijo line search algorithm (ALS), the
Goldstein line search algorithm (GLS) and the Wolfe line search algorithm (WLS).
On all 482 unconstrained test problems with dimensions 1 to 9000 from the CUTEst
collection [9] using the standard initial points, we run all four line searches with a
standard optimization algorithm along the following four different search directions:
• The standard BFGS direction [6].
• The standard limited memory BFGS direction [14].
• The limited memory (LM) direction [12, Section 2.2].
• The Hager–Zhang conjugate gradient (CG) direction [10].

The robustness of an algorithm is a measure of the number of problems it can
solve, and the efficiency of an algorithm is a measure of the number of function and
gradient evaluations it uses.

The values of the tuning parameters of CLS are β = 0.07, Q = 25, κ = 10−3,
λ = 103, lmax = 50, and αmax = ∞. The values of the tuning parameters of WLS of
Moré and Thuente [20] are default values. In this algorithm, µ′ = 0.1 in the Armijo
condition (14) and η = 0.9 in the curvature condition (17) are chosen. ALS, like
WLS, chooses µ′ = 0.1 and GLS chooses µ′ = 0.1 and µ′′ = 0.9 in the Goldstein
conditions (15). For all algorithms, the initial step size was set to one, except for
CLS, which projected one into [κν/∥p∥2, λν/∥p∥2] to guarantee the complexity result
for CLS, where ν = |g(x)T p|. We chose κ = 1/λ ∈ {0.1.0.01, 0.001} to see how much
the efficiency and robustness of CLS can be changed. Only the number of solved
problems was reduced by one and the efficiency was either increased or decreased by
one percent.

Note that in a computer implementation, this idealized CLS needs an extra stopping
test to ensure that it ends after finitely many steps even when f is unbounded
below along the search curve. In addition, one needs to take measures that make CLS
robust in the presence of rounding errors by forbidding steps that are so small that
the change in function value is dominated by rounding errors. Details were discussed
in the paper Kimiaei et al. [12], which describes the LMBOPT software.

Denote by nf the number of function evaluations, by ng the number of gradient eval-
uations, and by cf the (problem dependent) ratio gradient evaluation cost/function
evaluation cost. Then the total evaluation cost is nf + cf ∗ ng. If gradients are com-
puted by finite differences, we have nf = n extra function evaluations. In reverse
automatic differentiation, one can prove that cf ≤ 5 independent of n (cf. [4]). As
was shown in Section 3 of the supplemental material for LMBOPT [12], cf is for the
CUTEst collection on the average approximately 2. Therefore

nf2g := nf + 2 ∗ ng

is a reasonable cost measure when algorithms have different performance in terms of
nf and ng. We use the performance profile of Dolan & Moré [5] using the three
cost measures nf, ng, and nf2g to investigate the efficiency and robustness of the
four proposed line searches when these algorithms are performed along four proposed
different directions.
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4.1 A comparison among line searches with the standard BFGS direction

Figure 2 shows the performance profiles with the three cost measures nf, ng, and
nf2g. As a consequence of these profiles, CLS has the lowest ng on 68% and the
lowest nf2g on 52% of the test problems compared to the other three algorithms,
while WLS has the lowest nf on 60% of the test problems compared to the other three
algorithms. Out of the 482 test problems, WLS and CLS solve 371 and 370 problems,
respectively.
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Fig. 2: Performance profile ρ(τ) independent of a bound τ on the performance ratio.
Problems solved by no solver are ignored. All algorithms were performed along the
standard BFGS directions.

4.2 A comparison among line searches with the LBFGS direction

Figure 3 shows the performance profiles with the three cost measures are nf, ng,
and nf2g. As a consequence of these profiles, CLS has the lowest ng on 80% and the
lowest nf2g on 60% of the test problems compared to the other three algorithms,
while WLS has the lowest nf on 65% of the test problems compared to the other three
algorithms. Out of the 482 test problems, CLS and WLS solve 411 and 384 problems,
respectively.
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Fig. 3: Performance profile ρ(τ) independent of a bound τ on the performance ratio.
Problems solved by no solver are ignored. All algorithms were performed along the
LBFGS directions.
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4.3 A comparison among line searches with the LM direction

Figure 4 shows the performance profiles with the three cost measures are nf, ng,
and nf2g. As a consequence of these profiles, CLS has the lowest ng on 65% and the
lowest nf2g on 50% of the test problems compared to the other three algorithms,
while WLS has the lowest nf on 66% of the test problems compared to the other three
algorithms. Out of the 482 test problems, CLS and WLS solve 376 and 374 problems,
respectively.
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Fig. 4: Performance profile ρ(τ) independent of a bound τ on the performance ratio.
Problems solved by no solver are ignored. All algorithms were performed along the
LM directions.

4.4 A comparison among line searches with the Hager–Zhang CG direction

Figure 5 shows the performance profiles in terms of the three cost measures nf, ng,
and nf2g. As a consequence of these profiles, CLS has the lowest ng on 69% and the
lowest nf2g on 60% of the test problems compared to the other three algorithms,
while WLS has the lowest nf on 41% of the test problems compared to the other three
algorithms. Out of the 482 test problems, CLS and WLS solve 362 and 355 problems,
respectively.
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Fig. 5: Performance profile ρ(τ) independent of a bound τ on the performance ratio.
Problems solved by no solver are ignored. All algorithms were performed along the
CG directions.
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4.5 Conclusion and recommendation

CLS and WLS are much more efficient and robust than ALS and GLS on the CUTEst test
problems. CLS is at least competitive with WLS in terms of robustness and much more
efficient than WLS in terms of ng and nf2g, while WLS is much more efficient than CLS
in terms of nf on the CUTEst test problems. Consequently, CLS is recommended for
solving real-world problems where computing gradients is expensive. As can be seen
from Figures 2–5 in Section 3 of the supplemental material [17], this recommendation
for CLS is independent of problem dimension, even valid for large scale problems.

Acknowledgments The second author acknowledges financial support of the Aus-
trian Science Foundation under Project No. P 34317. The authors are grateful for
the thoughtful comments of two reviewers and the associate editor.

Data availability The online supplement is available in [17].

Declarations

Conflict of interest The authors declare that they have no competing interests.

References

1. L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives.
Pacific J. Math. 16(1) (1966), 1–3.

2. C. Cartis, N. I. M. Gould, and Ph. L. Toint. Evaluation Complexity of Algorithms for
Nonconvex Optimization: Theory, Computation and Perspectives, volume MO30 of MOS-
SIAM Series on Optimization. SIAM, 2022.

3. C. Cartis, Ph. R. Sampaio, and Ph. L. Toint. Worst-case evaluation complexity of non-
monotone gradient-related algorithms for unconstrained optimization. Optimization 64(3)
(2015), 1349–1361.

4. G. Corliss, C. Faure, A. Griewank, L. Hascoët, U. Naumann. Automatic Differentiation
of Algorithms: From Simulation to Optimization. Springer New York, 2002.
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